Improved dependability for dynamically reconfigurable hardware

Restoration of the reliability index via replication and error correction

J. M. Martins Ferreira [jmf@fe.up.pt]FEUP / DEECHIBURua Roberto FriasFrogsvei 41P-4200-465 PortoN-3603 Kongsberg

Manuel G. Gericota [mgg@dee.isep.ipp.pt] ISEP / DEE Rua Dr. António Bernardino de Almeida P-4200-072 Porto

[this presentation is available online at

http://www.fe.up.pt/~jmf/dak-2004.ppt]

Trondheim, Norway October 19-21 2004 (1 / 26)

Outline of the presentation

- Introduction and motivation
- Causes of failure
- Concurrent fault detection
- Fault detection latency and fault tolerance
- Fault masking and fault correction
- Research directions
- Conclusion

Introduction and motivation

- Dynamically reconfigurable FPGAs:
 - Production tests cannot guarantee fault-free operation
 - Application areas include mission-critical systems
 - The cost / benefit of spatial redundancy is different from static implementations

Whome Wews Resources Zone Products ElectronicsWeekly.com Resources Zone: Programmable Logic and Asic by Harry Yeates Thursday 29 April 2004 Xilinx queries SRAM errors in FPGA tests

Xilinx has responded to claims made last week that SRAM-based FPGAs are more susceptible to logic errors caused by neutron scattering events than first thought.

A report by chip test firm iRoC Technologies found that between one in five and one in ten configuration upsets in SRAM devices leads to a logic error.

The iRoc tests used a JEDEC approved methodology that subjects parts to a neutron flux deemed to be equivalent to 7,600 years at sea level. But Rick Padovani, director of high reliability products at Xilinx, said the correlation between the accelerated test and real life is inaccurate. Padovani said that the company's own experiments to determine the impact of the effect on the reliability of its parts suggests a different figure.

"We've compiled [our] data and we do have some correlation now with the [neutron] beam. It would indicate that the results in this report are probably overstated by an order of magnitude," Padovani said. "If you look at the test results compared to what is seen in the real world - we've shipped millions of devices, along with the rest of the industry with microcontrollers and so on - and to date this phenomenon has not shown itself as a reliability problem to any large extent."

However, last week Ken O'Neill, director of military and aerospace product marketing at Actel, said: "We're actually seeing a lot of Japanese customers who have complained that they have had strange behaviour in their devices."

The debate, which has been ongoing between the SRAM, flash and antifuse FPGA firms for years, looks likely to rumble on. For example, while Actel says the reduced charge on an SRAM cell at smaller geometries makes errors more likely, Xilinx says the smaller transistor size presents a reduced cross section to the neutron flux, so reliability is improved.

Introduction and motivation

Report of the Odyssey FPGA Independent Assessment Team

<u>Abstract:</u> An independent assessment team (IAT) was formed and met on April 2, 2001, at Lockheed Martin in Denver, Colorado, to aid in understanding a technical issue for the Mars Odyssey spacecraft scheduled for launch on April 7, 2001. An RP1280A field-programmable gate array (FPGA) from a lot of parts common to the SIRTF, Odyssey, and Genesis missions had failed on a SIRTF printed circuit board.

Prepared by

Donald C. Mayer, The Aerospace Corporation, Chair Richard B. Katz, NASA/Goddard Space Flight Center Jon V. Osborn, The Aerospace Corporation Jerry M. Soden, Sandia National Laboratories

For

NASA/Jet Propulsion Laboratory

Trondheim, Norway October 19-21 2004 (4 / 26)

Causes of failure

- Post-production failure modes may be permanent or temporary examples:
 - Electromigration phenomena may lead to permanent physical damage
 - Single-event upsets (SEUs) may cause permanent malfunction if not mitigated (modification of SRAM contents changes design and data information)

Consequences and Categories of SRAM FPGA Configuration SEUs ➡

Military and Aerospace Programmable Logic Devices International Conference, Washington DC 9/9-9/11/2003

Paul Graham, Michael Caffrey, Jason Zimmerman, Darrel E. Johnson, Los Alamos National Laboratory, Los Alamos NM Prasanna Sundararajan, Cameron Patterson Xilinx Inc., San Jose CA

> Trondheim, Norway October 19-21 2004 (5 / 26)

Fault detection

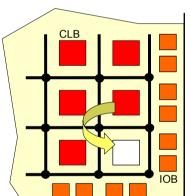
- Dynamic reconfiguration enables
 concurrent fault detection
 - Modifications in the configuration memory may be tested by *scrubbing*
 - Structural faults that emerge on the field may be detected by *release-to-test* strategies

Fault detection: Scrubbing

- Errors in the on-chip configuration memory may be detected by partial readback (and corrected by partial reconfiguration)
- Scrubbing prevents "design" errors that might lead to functional failure
- Data stored in flip-flop registers is not writable via the configuration memory, so scrubbing does not correct "data" errors

Fault detection: Release-to-test

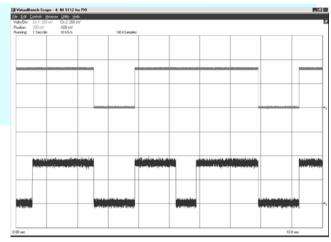
 The basic idea underlying release-to-test strategies consists of *non-intrusively* replicating a given functional block Relocation in another area, and to make the Rotation Replication c Rotation of functionality free resources original resources Resources under test available for test


Test

Trondheim, Norway October 19-21 2004 (8 / 26)

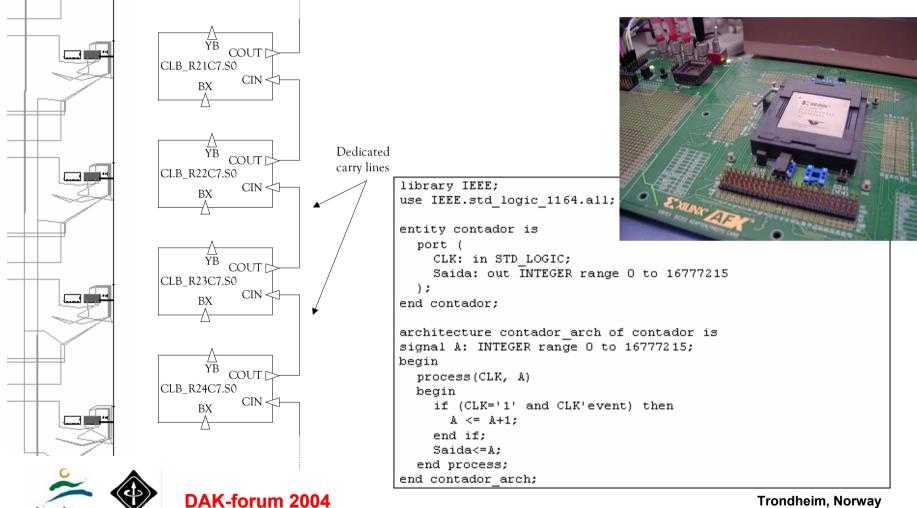
Replication of active resources

- Concurrent fault detection based on release-to-test approaches must provide functional and state replication
- Replication at CLB-level
 - Facilitates state transfer and requires a minimal amount of spare resources


 The relative position of the replicated CLB and its replica has an impact on propagation delay

CLB replication

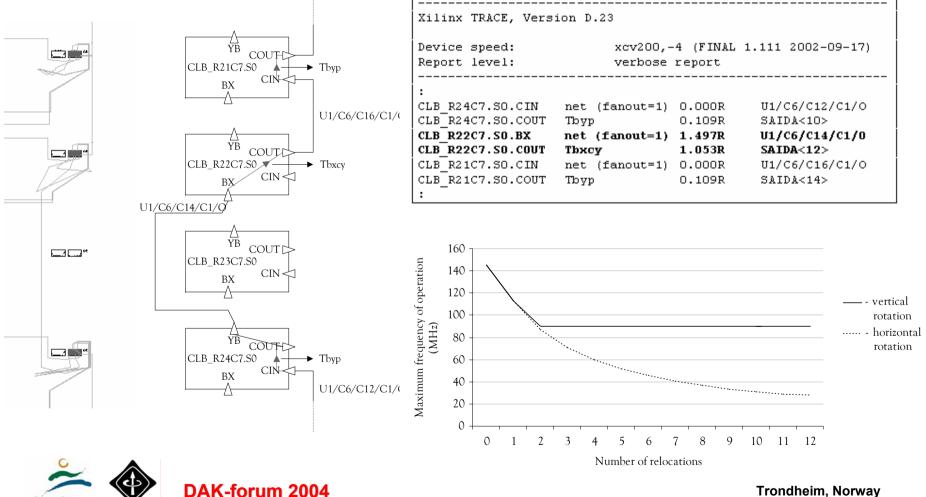
 Replicating the functional configuration of a CLB is done with minimal overhead


(paralleling CLB outputs is not a problem)

 In free-running clock circuits, placing the inputs of the two CLBs in parallel ensures common state acquisition

 Gated-clock circuits need an auxiliary block to provide state transfer

Example: Replicate and release-totest in a 24-bit binary counter


abelia

IEEE

October 19-21 2004 (11 / 26)

Improved dependability for dynamically reconfigurable hardware: Restoration of the reliability index via replication and error correction

Example: Replicate and release-totest in a 24-bit binary counter

October 19-21 2004 (12 / 26)

Validation: ITC'99 benchmarks

	Circuit		Lo	gic	Carı	ry logic
Reference	Primary inputs	Primary outputs	Number of gates	Number of flip-flops	Lines	Segments
B01	2+2	2	47	5	0	0
B02	1+2	1	29	4	0	0
B03	4+2	4	150	30	0	0
B04	11+2	8	606	66	4	14
B05	1+2	36	977	34	4	16
B06	2+2	6	61	9	0	0
B07	1+2	8	422	49	2	6
B08	9+2	4	168	21	0	0
B09	1+2	1	160	28	0	0
B10	11+2	6	190	17	0	0
B11	7+2	6	484	31	1	4
B12	5+2	6	1037	121	0	0
B13	10+2	10	343	53	1	4
B14	32+2	54	4787	245	11	150

DAK-forum 2004

Trondheim, Norway October 19-21 2004 (13 / 26)

ITC'99 benchmarks: Δf and size

Circuit reference _	Maximum frequency deviation (%)		Total size of the reconfiguration files (bytes)		Ratio between the total size of the reconf. files by CLB (%)
_	Vertical	Horizontal	Vertical	Horizontal	(horizontal>vertical)
B01	-5,5	0,0	48 350	56 102	16,0
B02	0,0	0,0	7 016	10 623	51,4
B03	-1,9	-4,9	120 705	138 484	14,7
B04	-6,1	-29,3	548 595	665 419	21,3
B05	-17,3	-36,9	1 130 985	1 286 031	13,7
B06	-2,7	0,0	45 291	53 503	18,1
B07	-23,6	-37,8	354 367	425 214	20,0
B08	-5,8	-5,8	150 093	178 339	18,8
B09	-1,8	-4,9	112 107	129 855	15,8
B10	-7,5	-7,6	195 571	245 455	25,5
B11	-10,5	-36,0	500 261	614 093	22,8
B12	0,0	-1,2	1 275 804	1 631 953	27,9
B13	-4,3	-42,8	258 827	332 954	28,6
B14	-13,5	-47,8	5 195 444	6 070 485	16,8

DAK-forum 2004

Trondheim, Norway October 19-21 2004 (14 / 26)

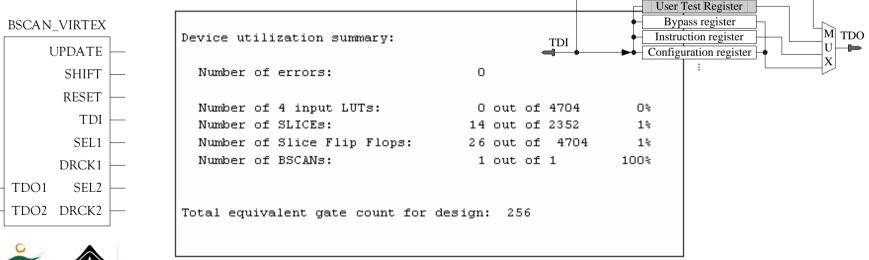
ITC'99 benchmarks: size per CLB

		Mean size of the reconfiguration files by CLB (bytes)		Ratio between the mean size value of the reconf.	
Circuit	Number of	Incs by CE	D (Dytes)	files by CLB (%)	
reference	occupied CLBs	Vertical Horizontal		(horizontal>vertical)	
B01	6	8 058	9 350	16,03	
B02	1	7 016	10 623	51,41	
B03	11	10 973	12 589	14,73	
B04	54	10 159	12 322	21,30	
B05	103	10 980	12 485	13,71	
B06	5	9 058	10 700	18,13	
B07	31	11 431	13 716	19,99	
B08	17	8 829	10 490	18,82	
B09	12	9 342	10 821	15,83	
B10	20	9 778	12 272	25,51	
B11	39	12 827	15 745	22,75	
B12	119	10 721	13 713	27,92	
B13	37	6 995	8 998	28,64	
B14	333	15 601	18 229	16,84	

DAK-forum 2004

Trondheim, Norway October 19-21 2004 (15 / 26)

Structural fault detection in CLBs


4

4

- | 4

IN

 Test vector application / response capturing is carried out via the 1149.1 boundary-scan interface

abelia

IEEE

Trondheim, Norway October 19-21 2004 (16 / 26)

-1-

OUT

CLB under test

CLB

under test

CLB under test

Fault detection latency

Partial reconfiguration file size and reconfiguration time for each step in the replication of synchronous circuits with clock enable			
Replication using the auxiliary relocation block			
	Number 7 of bytes	CK = 20 MHz Time (ms)	
Copy of the internal logic functionality and place of the input signals in parallel	11 289	9,705	
BY_C=1ACC=1	441	0,379	
CC=0	277	0,238	
BY_C=0	277	0,238	
Connect of the clock enable inputs of both CLBs	2 145	1,844	
Disconnect of all the auxiliary relocation circuit signals	2 217	1,906	
Place of the CLB outputs in parallel	4 129	3,550	
Disconnect of the original CLB outputs	1 333	1,146	
Disconnect of the original CLB inputs and test configuration	18 392	15,813	
Total 🚄 🔉	40 500	34,820	
abelia	rum 2004		

Partial reconfiguration file size and reconfiguration time for each step in the replication of synchronous circuits with free-running clock and of combinational circuits				
Replication without auxiliary relocation block				
	Number 7 of bytes	CK = 20 MHz Time (ms)		
Copy of the internal logic functionality and place of the input signals in parallel	12 163	10,457		
Place of the CLB outputs in parallel	3 993	3,433		
Disconnect of the original CLB outputs	1 073	0,923		
Disconnect of the original CLB inputs and test configuration	18 392	15,813		
Total	35 621	30,625		

Trondheim, Norway October 19-21 2004 (17 / 26)

Fault detection latency

Partial reconfiguration file size and reconfiguration time of the test configurations		
Number of configurations	Number of bytes	TCK = 20 MHz Time (ms)
2 nd	3 115	2,678
3 rd	623	0,536
4 th	634	0,545
5 th	613	0,527
6 th	512	0,440
Total	5 497	4,726

Shifting time for test vector application				
Number of vectors	Length (bits)	Total (bits)	TCK = 20 MHz Application time (ms)	
40	13	520	0,066	
Shifting time for the test vector responses from a CLB under test				
Number of cells of register in a XCV		mber of ectors	TCK = 20 MHz Shifting time (ms)	
1 022		40	4,088	

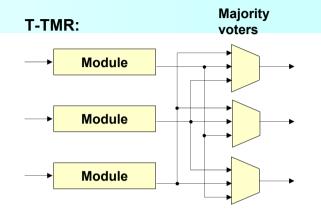
The mean time to test the full CLB matrix is also the worst case **fault detection latency**

Mean time for the test of a 1 176 CLBs matrix					
Occupation type: 25% synchronous + 50% combinational + 25% empty					
	43 679,188 ms	TCK = 20 MHz			
	26 472,235 ms	TCK = 33 MHz			

DAK-forum 2004

Trondheim, Norway October 19-21 2004 (18 / 26)

Fault detection latency x fault masking


- A fault detection latency higher than 40 s may be acceptable in some applications, but may be a problem in many others
- Fault masking by spatial redundancy may solve the problem until the defective CLB is flagged / soft error is corrected

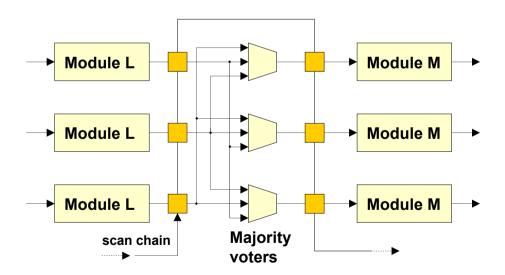
Trondheim, Norway October 19-21 2004 (19 / 26)

Spatial redundancy

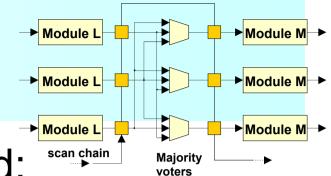
 N-NMR implementations enhance reliability by allowing voter failure

- Earlier NMR implementations were a form of static redundancy, but dynamic reconfiguration brings an added value
 - Just-in-time implementation saves space
 - The reliability index may be restored

Improved dependability for dynamically reconfigurable hardware: Restoration of the reliability index via replication and error correction


Fault detection and correction in N-NMR via replication of CLBs

- The CLB testing approach previously described enables the identification of a defective CLB (structural fault)
- Replication will be used to remove the defective CLB from operation (and to reestablish the reliability index)


N-NMR plus online error detection

- An internal scan chain capturing the module and voter outputs enables the detection of incoherencies
- Fault detection latency still exists, but fault masking prevents system malfunction

Error correction

- If an incoherency is detected: ^{***}
 - A scrubbing procedure is launched to readand-compare the configuration bitstream for the affected area
 - If no error is found, each CLB in the affected module / voter is tested (a defective CLB will be replicated and removed from service)
- Error correction via CLB replication or scrubbing reestablishes the reliability index

Research directions

- One-chip "self-healing" architectures may be achieved via self-reconfiguration (a microprocessor core controls the selfreconfiguration port and scan chains)
- Dual-chip or multi-chip architectures may monitor the error detection circuitry of each other - See Reconfigurable Architecture

Subhasish Mitra, Wei-Je Huang, Nirmal R. Saxena, Shu-Yi Yu, and Edward J. McCluskey Center for Reliable Computing, Stanford University

for Autonomous Self-Repair

Trondheim, Norway October 19-21 2004 (24 / 26)

Conclusion

- The CLB replication and test procedure proposed enables concurrent non-intrusive fault detection, but fault detection latency prevents true fault tolerance
- Combining the proposed fault detection techniques with spatial redundancy enables low overhead fault tolerance for DR-FPGAs (and self-healing for SR-FPGAs)

Conclusion

 Dependability will also be improved by runtime defragmentation of the FPGA logic space (using the proposed CLB replication and test procedure)

RUN-TIME DEFRAGMENTATION FOR DYNAMICALLY RECONFIGURABLE HARDWARE * →

Manuel G. Gericota,¹ Gustavo R. Alves,¹ Miguel L. Silva,² and José M. Ferreira^{2,3}

¹Department of Electrical Engineering - ISEP Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto, Portugal

²Department of Electrical and Computer Engineering - FEUP Rua Dr. Roberto Frias 4200-465 Porto, Portugal

D Springer

Reconfigurable Computing

ISBN: 1-4020-3127-0 Due: December 2004

Lysaght, Patrick; Rosenstiel, W. (Eds.) 2005, Approx. 315 p., Hardcover

New Algorithms, Architectures and Applications for

³Institutt for datateknikk - Høgskolen i Buskerud - Frogsvei 41 - 3601 Kongsberg, Norway

Trondheim, Norway October 19-21 2004 (26 / 26)

Improved dependability for dynamically reconfigurable hardware

Restoration of the reliability index via replication and error correction

J. M. Martins Ferreira [jmf@fe.up.pt]FEUP / DEECHIBURua Roberto FriasFrogsvei 41P-4200-465 PortoN-3603 Kongsberg

Manuel G. Gericota [mgg@dee.isep.ipp.pt] ISEP / DEE Rua Dr. António Bernardino de Almeida P-4200-072 Porto

[this presentation is available online at

http://www.fe.up.pt/~jmf/dak-2004.ppt]

Trondheim, Norway October 19-21 2004 (27 / 26)