
Remote Boundary-Scan Testbench with Extended
SFV Commands

Américo Dias ⇤, Paulo Sousa ⇤†, José M. M. Ferreira ⇤‡
⇤ Universidade do Porto - Faculdade de Engenharia, Porto, PORTUGAL

† Instituto de Engenharia Biomédica, Porto, PORTUGAL
‡ Buskerud University College, Kongsberg, NORWAY

email: {americo.dias, sousa, jmf}@fe.up.pt

Abstract—This paper proposes a solution for real-time moni-

toring of boundary-scan compatible integrated circuits. To enable

the monitoring of forbidden patterns, a extended set of SFV

instructions is also introduced. The solution runs in a low-cost

embedded board with its own IP address, enabling remote control

of the target hardware. An application example is presented,

using a simple dual-port boundary-scan board.

I. INTRODUCTION

The IEEE boundary-scan test (BST) standard was approved
in 1990 [1] in response to the difficulties faced by traditional
in-circuit and functional test technologies, which were increas-
ingly unable to cope with the shrinking trends enabled by
surface-mount technology, and the complexity of digital cores,
resulting from the exponential growth of gate/pin ratios. The
built-in BST infrastructure allocates a digital test cell to each
functional pins, enabling direct control of their logic values.
A standard 4-pin test access port (TAP) supports scan-in
(TDI), scan-out (TDO), mode select (TMS) and clock (TCK)
functions. The test programs can be generated automatically
and represented in a standard test format known as SVF (Serial
Vector Format) [2].

This paper proposes a remote testbench for electronics
circuits equipped with IEEE 1149.1-compatible integrated
circuits and an extension of the standard Serial Vector Format
(SVFe) which enables the design of simple test algorithms and
hardware monitoring. It can be used for educational proposes
in electrical engineering courses, providing students with a
tool that allows them to run tests remotely, as a complement
to the test programs executed at the lab during classes. This
solution is based on a hardware/software framework that was
presented by the authors in a recent paper [3].

The next sections are organized as follows: Section II
describes the developed hardware/software solution. Section
III depicts the Serial Vector Format, the additional instructions
proposed in this work, and presents some utilization examples.
Finally section IV addresses the conclusions about this work.

II. SYSTEM DESCRIPTION

The system comprises a hardware / software server plus a
client interface, as described in the following sections.

Fig. 1: The ICnova AP7000 Base board (9,65 x 6,1 cm)

A. Server hardware

The ICnova AP7000 Base board [4], [5] is represented in
Figure 1.

Its main characteristics can be summarized as follows:

• Software development support includes a GNU C com-
piler (http://gcc.gnu.org/), a C library optimized for
embedded systems (http://www.uclibc.org/), small exe-
cutable modules containing many common UNIX utilities
(http://busybox.net/), a telnet daemon for remote com-
mand line access, Dynamic Host Configuration (DHCP),
HTTP server, and full control over the general purpose
input / output (GPIO) pins and other devices.

• All Linux sources are open source and delivered on the
accompanying CD.

• Main hardware: An AT32AP7000 microcontroller with
32-bit data bus, running at 140 MHz (max. 200 MHz).
The boards also offers 64 MB SDRAM and 8 MB Flash
RAM, a USB-UART, 10/100 Mbps Ethernet, 64 GPIOs,
an I2C bus, and a built-in step-down voltage regulator.

The large number of GPIOs enables the implementation
of parallel I/O test channels, plus one or more TAPs. In
order to protect the ICnova board from undesired hazards,
a simple interface board was designed. It comprises only
two MAX30001 integrated circuits. The interface board also
translate the Device Under Test (DUT) logic level to the same
used in the ICNova board (3.3V). The complete hardware is
shown in Figure 2.

Fig. 2: Server hardware and BST demonstration board

B. Server software

Any functions implemented on the ICnova I/O pins, using
the original GPIO drivers, are limited to a few hundred
hertz. Due to this reason, and with a view to maximizing
the performance of our test controller, new device drivers
were written to enable execution of all I/O operations in
kernel space. The kernel and user space organization can be
represented as shown in Figure 3.




  









Fig. 3: Kernel and user space

The insmod instruction must be used at the command shell
to load the device kernel / module dynamically (when booting
the system, this operation can be executed automatically). The
open(), close(), ioctl(), etc., system calls are then used to
interact with the user space application, making it possible
to execute high-level functions in user space, and low-level
control functions in kernel space.

The low level routines available in the kernel module,
through the ioctl function, are the following:

• SELTAP: TAP selection
• RESET: Puts the selected TAP controller in the RESET

state
• STATE: Puts the selected TAP controller in the desired

state (i.e. shift IR or shift DR)
• GET STATE: Returns the current state of the TAP con-

troller
• SHIFT: Shifts data or instructions to TAP controller
• RUNTEST: Forces the TAP controller to a run state for

a specified number of clocks
• SET IO: Set of GPIO pins

• GET IO: Returns the state of GPIO pins
On the other hand, the user space application deals with the

high level operations such as TCP/IP communications, file I/O,
interpretation of the SVF code, and interface with the kernel
module.

C. Client software

The client software was written in Visual Basic .Net 2010
and runs on Microsoft Windows Operating Systems offering
an easy-to-use interface to interact with the server hardware.

The user interface of the client software, comprises various
windows selectable by the corresponding tabs. The main
features of the client are the SVFe source code editor and
the visualization of the BST signals, generated as the test
program executes. The SVFe editor, includes a set of features
specifically designed to simplify and speed up input of source
code, such as syntax highlighting, online syntax checking and
correction. The SVFe editor, also has an “compiler” facet,
when the SVFe code is converted into hexadecimal machine
code, which is preferable for the operation of the remote
workbench server. The editor also enables the execution of
the SVFe code in debug mode (step-by-step) to facilitate the
analysis of the experiment results.

Fig. 4: Client software with detachable windows

To show the waveforms that result from the experiments, a
graphic engine was developed. It supports zooming in and out,
and offers a “detach window” option to enable observation to-
gether with other tab windows as shown in Figure 4. The BST
workbench client interface uses the graphic engine provided,
to produce a waveform display window showing the digital
signals present in the two sets of TAP pins. Following the
execution of SIR (Scan Instruction Register), SDR (Scan Data
Register), or of any other instructions generating TAP activity,
this window enables the users to see the effect of every SVF
command on each pin. SVF line numbers are indicated below
the sets of waveforms associated to each TAP, as illustrated in
Figure 5.

The zoom function, available on the bottom left part of this
window, allows the user to see longer segments, or to analyze
finer details. The operation codes shifted into the devices’
BST instruction registers, in combination with the state of

Fig. 5: Client software waveform window

the internal TAP controller finite state machine, dictate the
operating mode of the BST test infrastructure, and in particular
of the BST cells. An additional tab was therefore included
to identify the current TAP controller state, as illustrated in
Figure 6.

Fig. 6: Client software state diagram window

According to each specific remote experiment, further tabs
can be added to the basic core, which includes a mini-browser
window (to enable integrated web casting/conferencing, live
image feedback from the remote workbench, etc.). The client
software integrates the two TCP/IP communication channels
that are also present in the server core: 1) a bidirectional
synchronous channel to exchange commands and 2) an asyn-
chronous channel for data transfer. File management functions
(Open, Save, Save as) are provided on the bottom-left corner
(“Tools”). When ready, the SVF code can be executed step-
by-step, or completely in one run, using the corresponding
button. Live video feedback from the remote workbench may
or may not be necessary for BST experiments. In the case of
strictly digital test experiments, the waveforms and the data
shifted out of the board under test will contain all the necessary
information. When live video is required, the stream produced
by an IP camera can be visualized in the mini-browser, as
illustrated in Figure 7.

Likewise, this mini-browser window can also be used by the
lecturer to webcast a demonstration/presentation of structural
test detection in distance learning scenarios.

Fig. 7: Client software mini-browser window

III. EXTENDED SERIAL VECTOR FORMAT

The Serial Vector Format (SVF), was developed as a vendor-
independent way of representing JTAG test patterns in ASCII
(text) files.

SVF is an industry standard file format that is used to
describe JTAG chain operations in a compact and portable
fashion. SVF files are portable because complicated vendor-
specific programming algorithms can be converted to se-
quences of SVF instructions, requiring no special knowledge
of the target device [6].

SVF files consist of a list of statements and/or comments
as shown in the next example:

SDR 8 TDI(00) TDO(FF) MASK(0F)

In this example: i) 8 TCK cycles are required; ii) An all-0
8-bitstream will be shifted into the selected scan chain; iii)
The 8 bits shifted out are compared to their expected values
XXX1111b; iv) The mask is set to ignore the more significant
nibble.

The SVF specification defines the following commands [2]:
• ENDDR: Specifies default end state for DR scan opera-

tions.
• ENDIR: Specifies default end state for IR scan operations.
• FREQUENCY: Specifies maximum test clock frequency

for IEEE 1149.1 bus operations.
• HDR: (Header Data Register) Specifies a header pattern

that is prepended to the beginning of subsequent DR scan
operations.

• HIR: (Header Instruction Register) Specifies a header
pattern that is prepended to the beginning of subsequent
IR scan operations.

• PIO: (Parallel Input/Output) Specifies a parallel test pat-
tern.

• PIOMAP: (Parallel Input/Output Map) Maps PIO column
positions to a logical pin.

• RUNTEST: Forces the IEEE 1149.1 bus to a run state for
a specified number of clocks or a specified time period.

• SDR: (Scan Data Register) Performs an IEEE 1149.1
Data Register scan.

X3

TDO

TCK

TMS

TDI

X1

X2

IC3D

1A1

1A3

1A2

1A1

1A3

1A2

2A2

1A4

2A1

2A3

2A4

1G

2G

1Y2

1Y3

2Y1

2Y2

2Y3

2Y4

1Y1

1Y4

74BCT8244

TDOTDI

TCK

TMS

74LS139

1G

1B

2G

2B

1A

2A

1Y0

1Y1

1Y2

1Y3

2Y1

2Y2

2Y3

2Y0

2A2

1A4

2A1

2A3

2A4

1G

2G

1Y2

1Y3

2Y1

2Y2

2Y3

2Y4

1Y1

1Y4

74BCT8244

TDOTDI

TCK

TMS

IC1

IC2

IC4

IC3A

IC3B

IC3C

Fig. 8: A sub-circuit of the BST demonstration board

• SIR: (Scan Instruction Register) Performs an IEEE
1149.1 Instruction Register scan.

• STATE: Forces the IEEE 1149.1 bus to a specified stable
state. TDR: (Trailer Data Register) Specifies a trailer
pattern that is appended to the end of subsequent DR
scan operations.

• TIR: (Trailer Instruction Register) Specifies a trailer pat-
tern that is appended to the end of subsequent IR scan
operations.

• TRST: (Test ReSeT) Controls the optional Test Reset line.

All commands in SFV programs are executed sequentially.
Another limitation of SFV is that it can only control a single
IEEE 1149.1 TAP. However, there are cases where multiple
IEEE 1149.1 TAPs are present. To overcome these limitations,
this work proposes an additional set of commands, to be
added as an extension to SFV. The new commands enable
the operation of several TAPs, and the design of basic test
algorithms using simple / conditional jumps. Another feature
introduced by our proposal is the possibility to read / write
additional signals. This feature may be used to monitor digital
pins outside the IEEE 1149.1 chain or to control additional
hardware.

The extended SVF (SVFe) commands are the following:

• SELTAP: (SELect TAP) Selects a tap for operation
• JMP: (JuMP) Executes a jump to a specified label in the

SVF program
• JMPE: (JuMP if Error) Jump to a specified label if an

error has been detected
• RSTE: (ReSeT Errors) Clean previously detected errors
• JMPP: (JuMP if Port) Jump if a specified input is set

(logic level 1)
• SETP: (Set Port) Set the specified output to logic level 1
• RSTP: (Reset Port) Set the specified output to logic level

0
• ADDCHECK: Add a specified test to the check list
• CLEARCHECK: Clear the check list

• SAFECHECK: Executes all the tests in the check list for
a specified period of time. If an error is detected, jumps
to a specified label.

The last commands, ADDCHECK, CLEARCHECK, and
SAFECHECK are particularly useful to enable real-time mon-
itoring of hardware malfunctions. It is possible to create a
check list with several forbidden patterns and monitor the
hardware for a period of time. If a forbidden pattern is
detected, it is possible to immediately disable the I/O pins
of the integrated circuits in the boundary scan chain, in an
attempt to avoid permanent damage to the hardware.

A. Application examples

A section of our BST demonstration board is illustrated in
Figure 8. This sub-circuit is comprises two 74BCT8244 octal
buffers equipped with IEEE 1149.1 boundary scan, a 74LS139
dual 2-line to 4-line decoder, and a 74LS04 hex inverter. Three
possible defects are shown: X1, X2 and X3. X1 is normally
closed and when opened emulates an open circuit between
the output 2Y 2 of IC2 and the input of the inverter IC3C.
X2 is normally open and emulates a short circuit between the
outputs 2Y 0 and 2Y 1 of the decoder. Finally, the defect X3 is
normally open and emulates a short circuit between the output
2Y1 of IC1 and the output 2Y 3 of IC2. A simple example to
detect defects X1, X2, and X3 is shown in Example 1.

SELTAP 1
STATE RESET
SIR 16 TDI(0002) TDO(8181) MASK(FFFF)
! X1 test
SDR 18 TDI(00040)
SDR 18 TDI(00000) TDO(0D200) MASK(0FF00)
! X2 and X3 test
SDR 18 TDI(00000) TDO(00800) MASK(00D00)

Example 1: Test program to detect X1, X2, and X3 defects using
standard SVF

In this example, the TAP 1 is selected and its state is

set to RESET. The integrity of the boundary scan chain is
then tested, shifting through the Instruction Register with the
instruction SIR. At the same time, IC1 is configured to external
test mode and IC4 to sample/preload. The first scan operation
is intended to drive the output 2Y 2 of IC2 to 0 because a
floating inverter input will behave as a 1. Finally, the IC4 I/O
values are read and compared with their expected value.

Example 2, shows how to monitor the same defects for a
period of time, using the proposed set of SVFe commands.
The initialization and the integrity check remain the same as
in Example 1.

SELTAP 1
STATE RESET
SIR 16 TDI(0002) TDO(8181) MASK(FFFF)
! X1 test
ADDCHECK 18 TDI(00040) TDO(0D200) MASK(0FF00)
! X2 and X3 test
ADDCHECK 18 TDI(00000) TDO(00800) MASK(00C00)
SAFECHECK 20 Error
! No error detected.
(...)
Error:
! Error detected.

Example 2: Test program to monitor X1, X2, and X3 defects using
SFVe

Two tests are added to the check list and the hardware is
monitored for 20 seconds or until a defect is detected. If a
defect is found the execution jumps immediately to the label
“Error” where the user should put the hardware in a safe state,
avoiding permanent damage to the DUT.

IV. CONCLUSION

This paper proposes a low-cost remote boundary-scan work-
bench with extended SFV commands. The server hardware
is based on a ICNova AP7000 board, running Linux. The
client software was written in Visual Basic .Net 2010 and
is compatible with Microsoft Windows Operating Systems. It
comprises an SVF editor and compiler, a waveform visualizer,
a state diagram visualizer and a mini-browser to reproduce live
video from experiments or presentations from the lecturer.

The extended SVF instructions enables the control of several
IEEE 1149.1 buses, the development of simple algorithms and
the monitoring of the hardware under test.

The server and client open source code sets are available
from the following web addresses (Code license: GNU General
Public License v3; Content license: Creative Commons 3.0
BY-SA):

• http://code.google.com/p/rbstws/
• http://code.google.com/p/rbstw-client/

REFERENCES

[1] “IEEE standard test access port and boundary-scan architecture,” IEEE

Std 1149.1-2001, 2001.
[2] ASSET InterTech, Inc., “Serial Vector Format specification,” pp. 1–26,

Mar 1999.

[3] J. M. M. Ferreira, A. Dias, P. Sousa, Z. Nedic, J. Machotka, O. Gol,
and A. Nafalski, “Low-cost workbench client / server cores for remote
experiments in electronics,” 7th International Conference on Remote

Engineering and Virtual Instrumentation, pp. 59–64, Jun 2010.
[4] (2011) ICnova AP7000 Base. [Online]. Available: http://www.ic-

board.de/product info.php?info=p75 ICnova-AP7000-Base.html
[5] (2011) ICnova AP7000 base. [Online]. Available: http://www.avrfreaks.

net/index.php?module=Freaks%20Tools&func=viewItem&item id=874
[6] B. Bridgford and J. Cammon, “SVF and XSVF file formats for xilinx

devices,” pp. 1–25, Aug 2000.

http://www.ic-board.de/product_info.php?info=p75_ICnova-AP7000-Base.html
http://www.ic-board.de/product_info.php?info=p75_ICnova-AP7000-Base.html
http://www.avrfreaks.net/index.php?module=Freaks%20Tools&func=viewItem&item_id=874
http://www.avrfreaks.net/index.php?module=Freaks%20Tools&func=viewItem&item_id=874

	Introduction
	System description
	Server hardware
	Server software
	Client software

	Extended Serial Vector Format
	Application examples

	Conclusion
	References

