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Resumo 

A presente tese desenvolve uma metodologia de planeamento energético que visa melhorar a 

sustentabilidade de um determinado sistema isolado, através de uma avaliação multicritério de 

estratégias para a integração de fontes de energia renovável, armazenamento de electricidade, 

mobilidade sustentável e adopção de medidas de eficiência energética. 

Inicialmente é apresentada uma revisão dos desenvolvimentos associados ao armazenamento de 

electricidade e à mobilidade eléctrica, tal como das mais relevantes vantagens e desvantagens de 

cada tecnologia. É igualmente realizada uma avaliação dos modelos existentes para planeamento 

energético, através da identificação das principais motivações para a investigação neste tópico.  

Nesta tese são apresentados os princípios teóricos inerentes ao planeamento energético, incluindo o 

impacto ambiental, custos económicos e financeiros, e adequação do sistema electroprodutor. É 

também elaborada uma perspectiva sobre apoio à decisão multicritério e abordagens para modelizar 

a incerteza.  

No que diz respeito à metodologia proposta para o planeamento energético multicritério, nesta tese 

é construída uma formulação matemática para os seguintes critérios: impacto ambiental (emissões 

de carbono do sector dos transportes e do sistema eléctrico de energia); custos económicos e 

financeiros (custos associados às emissões de carbono, custos de produção de energia eléctrica, 

custos do armazenamento centralizado de electricidade, custos da mobilidade eléctrica, e custos das 

medidas de eficiência energética); e adequação do sistema electroprodutor (probabilidade de risco 

de perda de carga). Esta metodologia beneficia do desenvolvimento de um algoritmo para o 

escalonamento e despacho económico de grupos térmicos, incluindo fontes de energia renovável, 

armazenamento centralizado de electricidade, e carregamento de veículos eléctricos, endereçando 

também o conceito V2G. 

A abordagem desenvolvida é aplicada a um caso de estudo, o qual consiste na ilha de São Miguel 

(Açores, Portugal), atendendo às características do respectivo sistema eléctrico de energia e aos 

investimentos previstos. Esta tese, para além de identificar as alternativas para o planeamento 

energético e calcular os atributos seleccionados para o ano 2030, apresenta uma discussão dos 

resultados obtidos, assim como uma análise multi-attributo e multi-cenário incluindo a incerteza. 

Em suma, este trabalho disponibiliza uma nova metodologia de planeamento energético 

multicritério, para sistemas isolados, a qual supre certos hiatos relevantes do conhecimento, mas 

também adapta formulações já conhecidas, ao problema de planeamento em questão. Considera-se 

que a abordagem construída no âmbito da presente tese, oferece contribuições concretas e valor 

aplicável ao processo de planeamento energético em sistemas isolados, tanto na perspectiva das 

preocupações do operador do sistema eléctrico, como do ponto de vista das autoridades regionais. 



             
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



             
 
  

Abstract 

This thesis develops an energy planning methodology for enhancing the sustainability of a given 

isolated system, through a multicriteria evaluation of strategies for renewable energy sources 

integration, electricity storage, sustainable mobility and the adoption of energy efficiency measures.  

Initially, a review is provided on electricity storage and electric mobility developments, as well as 

on the most relevant advantages and disadvantages of each technology. A survey on energy 

planning models is also carried out, through the diagnosis of research drivers. 

In this thesis, major theoretical fundamentals are exposed for energy planning, including 

environmental impact, economic and financial costs, and adequacy of the electric generation 

system. An outline of multicriteria decision aid and approaches to model uncertainty is also 

provided. 

When it comes to the proposed methodology for multicriteria energy planning, this thesis builds a 

mathematical formulation for the next criteria: environmental impact (carbon emissions from the 

transport sector and power system); economic and financial costs (carbon-based costs, power 

generation costs, costs of centralized storage, costs of electric mobility, and costs of energy 

efficiency measures); and adequacy of the electric generation system (loss of load expectation). 

This methodology benefits of the development of an algorithm for unit commitment and economic 

dispatch of thermal power units, including renewable energy sources, centralized electricity storage, 

and electric vehicles charging, addressing as well the V2G concept. 

The developed energy planning approach is applied to a case study, which consists in the São 

Miguel Island (Azores, Portugal), bearing in mind its power system characteristics and expected 

investments. This thesis, besides identifying energy planning alternatives and computing the 

selected attributes for the year 2030, presents a discussion of the obtained results, as well as a multi-

attribute and multi-scenario analysis dealing with uncertainty.  

To sum up, this work presents a new methodology for multicriteria energy planning, for isolated 

systems, which fulfils some critical knowledge gaps, as well as adapts, to the current planning 

problem, already established formulations. The approach built within this thesis is believed to 

upgrade current approaches and, as a result, bring concrete contributions and applicable value to the 

energy planning process of isolated systems, either through a utility-oriented perspective, or 

government-oriented viewpoint.  
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Chapter 1  
 
 

1 Introduction 

1.1 Research Motivation 

The world undergoes a demanding Era. Several concurrent crises have unfolded during the last 

decade: climate, biodiversity, fuel, food, water and, more recently, the global financial system. As it 

is scientifically demonstrated, the anthropogenic carbon emissions lead to global warming and 

climate change, with disastrous human consequences. The fuel price shock of 2008 and the related 

food and commodity prices, reflect both structural weaknesses and unresolved risks. Currently, 

there is no international consensus on the problem of global food security or on possible solutions 

to feed a population of 9 billion by 2050. Freshwater scarcity is already a global problem and 

forecasts suggest a growing gap by 2030, between annual freshwater demand and renewable supply. 

Collectively, these crises impact the possibility of sustaining prosperity worldwide and are 

compounding persistent social problems, such as job losses, socioeconomic insecurity, disease and 

social instability. The policy-making for Green Economy will differ across countries (depending on 

local environment and economic conditions), but there’s a common framework which gathers: (i) 

integration of natural resource base into the same dynamics and decisions that drive growth; (ii) 

development of ways to create economic payoffs reflecting the value of the natural resource base of 

the economy; and (iii) mutually reinforcing aspects of economic and environmental policy. 

Realising the value of the natural resource base for growth will require the payoffs change for 

specific economic activities, adopting measures to overcome obstacles to green growth. 

Furthermore, policy initiatives could be designed in terms of a set of criteria: cost-effectiveness; 

adoption and compliance incentives; and ability to cope with uncertainty and provide a clear and 

credible signal to investors. Other important criterion includes effectiveness in stimulating 

innovation and the diffusion of green technologies, and the extent to which instruments can be 

designed and implemented in a way that facilitates international co-ordination [1]. 

 

A global transition towards a green economy will require substantial redirection of investment to 

increase the current level of public and private sector flows to key priority areas, the bulk of which 

will need to be mobilised through financial markets. United Nations Environment Programme 

(UNEP) suggests that the level of additional investment needed is between 1-2,5% of global GDP 

per year from 2010-2050. Currently, green economy investment is well below 1% of global GDP 

[2]. 
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According to OECD, shifting to a greener growth path requires special attention to infrastructures 

such as energy, transport, water and communications networks. There is considerable potential for 

infrastructure investment to contribute to economic growth and prosperity because it enables trade 

specialisation, competition, access to new resources, the diffusion of technology and new 

organisational practices [1]. 

For instance, ENTSO-E advocates, in [3], that the way forward during the next 20 years must 

support today’s innovations by building tomorrow’s electricity highway. In parallel, European 

energy policies have set clean energy plans and targets by 2020 and 2050 [4], [5] . The new energy 

paradigm brings a set of demanding challenges to the power system operators, as a result of the 

integration of variable renewable energy sources (e.g. wind and solar), as well as the rise of the 

smart grid concept, in which there is an empowerment of the consumer/citizen, leading to a new and 

major role of loads in the system operation (becoming controllable and elastic). In addition, the 

power system is foreseen to broaden its boundaries to new services, following public policies 

towards the holistic integration of Energy, Transport and Climate objectives. Carbon cap-and-trade 

mechanisms applied on the power system are already on track in the European Union (EU). What’s 

more, the electric mobility path will introduce major challenges to the Distribution System 

Operators (DSOs) but also to the Transmission System Operators (TSOs). Besides the Electric 

Vehicles (EVs) effect on the daily load profile and wholesale prices, electric mobility may bring a 

set of ancillary services within the scope of the system operators, enclosed to the Vehicle-to-Grid 

(V2G) concept. Additionally, a growing interplay between TSOs and DSOs is reckoned crucial. 

The smart grid paradigm is pushed forward owing to recent technology breakthroughs, applied on 

power systems, such as advanced metering, smart substations, electricity storage, cyber-security 

models, etc. Although the benefits led by the smart grids rollout, utilities may expect worth 

mentioning challenges on the system operation.  

The large integration of renewable energy sources (RES) has been impacting the TSOs and DSOs’ 

day-to-day operations, as listed next [6]: 

 Power Flow inversion in secondary substations, High Voltage/Medium Voltage substations 

and even in 150/60 kV substations; 

 Increase of congestions on distribution and transmission networks at daily off-peak periods; 

 Balancing of generation surplus in valley hours; 

 Security problems (frequency stability, ramps); 

 Risks for lack of regulating capacity margins; 

 Primary Reserve - increase of photovoltaic and wind generation implies an equivalent 

reduction of thermal generation available for primary reserve services; 
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 Tertiary Reserve: intermittent/fluctuating RES generation increases uncertainty in real time 

balancing of load and generation; tertiary reserve assigned to substitute secondary reserve, is 

not always enough. 

 

In view of this Energy Revolution, ENTSO-E presents the next trends for the power systems [3]: 

 Distributed renewable energy sources 

Large power plants with high base loads and slow ramping capabilities will gradually be 

supplanted by highly distributed renewable energy resources with variable generation. 

Energy sources will be expectedly cleaner, but they will also have to be stable and efficient. 

This will require a new paradigm for developing the grid (infrastructure and power 

technologies), as well as substantial balancing between control areas to ensure that supply 

meets demand. 

 Single Electricity Market for Europe 

A Single Electricity Market for Europe will allow integrate balancing markets and establish 

a framework for advanced grid operating systems that enables storage, demand response and 

other distributed resources. 

 Power tariffs increase 

The political and regulatory pressure for lower costs and higher operating efficiency will 

conflict with the evolution towards clean energy and smart grid implementation. 

 Smart Grids 

As the existing infrastructure evolves towards the smart grid, there will be new opportunities 

for transmission and distribution systems, as well as for power generation. By exploiting 

innovative sensory monitoring and control technologies, smart grids will ease the 

assimilation of distributed energy sources and allow consumers to participate directly in 

energy management. 

 

The referred new energy paradigm will then present various challenges for both the supply and 

demand side. Besides integrating large amounts of RES, the future power systems will have to 

ensure flexibility, stability and reliability. According to [7], the variability of RES can be offset by: 

 “Peaking plants” (e.g. hydro units or gas turbines) which are able to follow load-variations 

rapidly, due to their technical features (e.g. load gradients, power ramps, start-up times). 

Appropriate price signals would attract investments in these “conventional” generation 

units, ensuring they provide the system with the flexible “back-up” capacity. 
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 Active Demand Side Management (DSM), in which suppliers could stimulate customers to 

shift their consumption from “peak” to “off-peak” hours, by rewarding them with economic 

incentives. 

 The expansion of transmission and distribution networks can effectively mitigate grid 

congestions. This solution is however viable only where the problem of local opposition to 

the construction of large infrastructures is successfully overcome. Besides traditional grid 

reinforcement, the development of smart grids would allow the system to effectively cope 

with bidirectional flows of electricity, related to the phenomenon of decentralized generation 

and “prosumers”, and manage overload problems without the need to reinforce the grid.  

 The development of cross-border transport capacity can strengthen the system’s flexibility, 

simply because it allows that system to import or export additional sources of flexibility, 

available in neighbouring countries. A country could benefit from peaking units available in 

foreign countries, when load is increasing, and export electricity when wind is blowing very 

strongly.  

 Implementation of electricity storage, which is seen as an inevitable strategy to cope with 

larger variability and intermittency of supply. Electricity storage should be considered as 

one of the many means to provide various services to the system, such as capacity firming, 

capacity accommodation, voltage and frequency regulation, or back-up capacity.  

 

Bearing in mind the alternatives for enhancing the power systems’ flexibility, it is crucial to build a 

comprehensive assessment of electricity storage impact and benefits.  

The future role of electricity storage technologies will depend on: i) technical and cost 

developments; ii) evolution of alternative strategies for the same services. If Europe moves towards 

the Super Grids (electricity highways with massive solar energy transported from North Africa to 

Central Europe, huge amounts of offshore wind energy being produced in the North Sea and nuclear 

energy from Eastern Europe contributing to Western European electricity supply), bulk electricity 

storage is likely to be rather adequate. On the other hand, if Europe opts for system with increased 

penetration of small-scale distributed generation and successful demand side management, then 

smaller-scale storage systems and thermal storage (directly connected to end-users) would be 

critical and the amount of electricity to be transported across the power system would be reduced. 

Additionally, the rollout of EVs and their potential for controlled charging/discharging is still 

uncertain [8]. Anyway, the available technologies for electricity storage can be adopted in a 

complementary way, for instance implementing pumped hydro storage (bulk storage) together with 

EVs charging (dispersed storage). 
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In case of isolated power systems (such as islands), electricity storage option gains an even bolder 

relevance for enhancing the system’s flexibility, since there is lack of interconnection capacity.  

 

Besides the challenges presented to power systems, a holistic energy planning requires addressing 

the transport sector. So, concerning sustainable mobility drivers, one should firstly bear in mind 

that, within the EU, over 70% of the population lives in cities and this number is projected to 

continue growing to 80% by 2030, though the EU population is not expected to increase in the 

following decades [9]. As a result, cities are responsible for the bulk of the world’s energy use and, 

consequently, for a significant share of the world’s Greenhouse Gas (GHG) emissions. Within the 

EU, cities are responsible for about 70% of the overall primary energy consumption, and this share 

is expected to increase to 75% by 2030 [9]. Regarding transport, energy demand is strongly linked 

to the specific characteristics of a city (urban mobility). Urban density and CO2 emissions tend to 

have a direct inverse correlation. That’s to say, the lower the density of a city, the higher its 

emissions from the transport sector. Urban planning is thus a key factor in the demand for transport. 

Furthermore, the suitability of different mobility modalities, such as walking and cycling, depends 

on the morphology and dimensions of the city. Therefore, the management of energy demand, done 

at a local level, allows tailoring the actions based on the city’s characteristics [10]. 

Besides the urban planning towards a more sustainable mobility, technological innovation can help 

the transition to a more efficient and low carbon transport system, by acting on three main factors: i) 

vehicle efficiency through new engines, materials and design; ii) cleaner energy use through new 

fuels and propulsion systems; iii) better use of networks and safer and more secure operation 

through information and communication systems. Emissions from road, rail and inland waterways 

could in fact be brought back to below 1990’s levels in 2030, in combination with measures such 

as: pricing schemes, to tackle congestion and air pollution; infrastructure charging; intelligent city 

planning; and improving public transport. The gradual transition towards large-scale penetration of 

cleaner vehicles in all transport modes (including plug-in hybrids and electric vehicles) should be 

fostered through CO2 standards and smart taxation systems. In view of the synergies with other EU 

sustainability objectives (such as the reduction of oil dependence, the competitiveness of Europe's 

automotive industry as well as health benefits), the EU compelled to accelerate the development 

and early deployment of electrification, and in general, of alternative fuels and propulsion methods, 

for the whole transport system [11].  

Sustainable biofuels could be used as an alternative fuel, especially in aviation and heavy duty 

trucks, with strong growth in these sectors after 2030. In case electrification would not be deployed 

on a large-scale, biofuels and other alternative fuels would need to play a greater role to achieve the 

same level of emissions reduction in the transport sector. For biofuels this could lead, directly or 



             
 

 
 
1. Introduction    26 
 

indirectly, to a decrease of the net GHG benefits and increased pressure on bio-diversity, water 

management and the environment in general. This reinforces the need to advance in 2nd and 3rd 

generation biofuels, and to proceed with the ongoing work on indirect land use change and 

sustainability [11]. 

 

What’s more, “green vehicles”, are likely to contribute significantly to the Europe 2020 priorities 

for developing an economy based on knowledge and innovation (smart growth), and promoting a 

more resource efficient, greener and more competitive economy (sustainable growth). According to 

the European Commission (EC), the flagship initiative “Resource-efficient Europe” seeks to 

promote new technologies to modernise and decarbonise the transport sector, thereby contributing 

to increase competitiveness. One aim of the flagship initiative is, thus, to promote "green vehicles” 

by encouraging research, setting common standards and developing the infrastructure needed to 

support the shift towards a resource efficient and low-carbon economy, which is efficient in the way 

it uses all resources. The EC advocates that two tracks need to be followed simultaneously: 

promoting clean and energy efficient vehicles based on conventional internal combustion vehicles 

(ICV); and facilitating the deployment of new technologies in ultra-low-carbon vehicles [12].  

When it comes to the electric mobility, it must come together with an increased investment on RES 

for power generation, in order to bring environmental benefits. 

 

In view of the aforementioned challenges and trends, models for energy planning ought to be 

upgraded, by utterly integrating: 

 Renewable energy sources variability; 

 Energy efficiency measures; 

 Electric mobility architecture; 

 Vehicle-to-grid strategy; 

 Electricity storage systems; 

 ICV-based sustainable mobility; 

 Carbon emissions cap-and-trade mechanisms; 

 Power systems’ reliability indices; 

 Uncertainty modelling. 

 

Furthermore, emerges the relevance of addressing the sustainability challenge in isolated systems, 

such as islands. Islands contain a set of characteristics which obstacle their economic attractiveness, 

and jeopardize the accomplishment of sustainability goals. Isolated territories show lack of 

competitiveness, since they face a lot of extra costs. In addition, islands are generally characterised 
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by weak infrastructures of general economic interest, as transport, communication, energy and 

water [13]. Thus, isolated energy systems face the next challenges: 

 Limited quantity of resources (human and natural); 

 Remoteness (can’t have good accessibility and cheap transport); 

 Market failure (lack of economies of scale and few options for energy supply); 

 Inconsistent regulation (solutions from the mainland are applied to a different reality, which 

require a different approach); 

 Security of supply (islands have to take extra measures to ensure system stability and 

security of supply, which is even more challenging with the growing penetration of variable 

RES, such as wind and solar); 

 Carbon emissions (islands’ dependency on fossil fuel power generation will lead to a bold 

financial effort to comply with EU emissions trading scheme); 

 Import dependency (typically islands have fossil fuel power generation, which results on a 

high energy dependency and vulnerability to prices volatility). 

 

According to Eurelectric, in [14], the EU totals 286 islands, with 10 million people occupying an 

area of 100 000 km2 and located in three major geographical areas: the Atlantic; the North; and the 

Mediterranean (accounting for 85% of the population). The EU islands belong to eleven member 

states, five of them accounting for over 75% of the islands. 

Eurelectric also refers that islands’ economic and social profile generally is less favourable than the 

corresponding to the country to which they belong. Although many islands have significant natural 

resources, most of them import considerable amounts of fossil fuels, mainly oil. Oil-based products 

are not only used in transport, but also in power generation. Additionally, islands located in remote 

places can’t afford power interconnection investments. That’s to say, high costs restrict the number 

of islands investing on interconnections, including just larger ones and those relatively close to 

mainland [14]. 

Yet islands are not only subject to threats. These isolated systems materialize a noticeable 

opportunity to become Living Labs, for new energy solutions, since they consist of a mirror of the 

European energy system. These Living Labs can integrate innovative projects such the ones 

designed for demand response, smart grids and electric mobility, with rapid findings and 

conclusions. Thus, isolated systems can perform a major role in testing the upcoming smart and 

sustainable energy systems. 
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1.2 Thesis Scope and Research Questions 

The previous section allowed drawing the most challenging research drivers, for planning the future 

energy systems. In view of that, this thesis seeks to bring value to the scientific community, by 

developing a methodology for enhancing the energy sustainability of a given isolated system, 

through a multicriteria evaluation of renewable energy sources integration, plus electricity storage, 

sustainable mobility and the adoption of energy efficiency measures.  

 

The renewable energy increase in the generation mix presents several challenges for isolated power 

systems. One relevant constraint refers to the variability of renewable energy sources (e.g. wind) 

during the day, which in case of having large amounts of renewable-based capacity and/or applying 

energy efficiency measures could lead to energy surplus and/or difficulties in managing the power 

system. Consequently, emerges the need of building accurate storage strategies, aiming to: use 

surplus renewable power; help the power system operation; and, therefore, reduce CO2 emissions 

from the power system.  

On the other hand, sustainable mobility strategies should be defined, by analysing the costs and 

benefits of efficient ICVs, biofuels and behavioural change, as well as EVs.  

 

To sum up, an energy planning approach is worth developing, by tackling multicriteria and different 

technology alternatives. The referred methodology should, then, answer to the following research 

questions: 

1. How can a methodology be built to compare different alternatives for energy planning, through 

a set of criteria and attributes? 

2. What is the correlation between additional capacity of renewable energy sources and energy 

efficiency measures, when it comes to the selected criteria? 

3. How to compare electric mobility and ICV-based sustainable mobility, in terms of costs and 

benefits? 

4. What is the influence of sustainable mobility strategies on the electricity storage contribution for 

the system? 

5. What are the preferred alternatives for enhancing the energy sustainability of a given isolated 

power system? 
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1.3 Thesis Outline 

The current thesis starts to present, in chapter 2, a state of art on the current research topic, by 

providing a review on electricity storage and electric mobility developments, and identifying the 

most relevant advantages and disadvantages of each technology. A survey on energy planning 

models is also carried out, through the diagnosis of research gaps. 

 

In chapter 3, an overview is performed on the major theoretical fundamentals for energy planning, 

including the environmental impact, economic and financial costs, and adequacy of the generation 

system. In this chapter a theoretical introduction to multicriteria decision aid is depicted. A review 

of approaches to model uncertainty is also provided, as well as decision paradigms and rules. 

 

Afterwards, the proposed methodology for multicriteria energy planning is explained in chapter 4, 

by modelling the next criteria: environmental impact (carbon emissions from the transport sector 

and power system); economic and financial costs (carbon-based costs, power generation costs, costs 

of centralized storage, costs of electric mobility, and costs of energy efficiency measures); and 

adequacy of the generation system (loss of load expectation).  

 

The proposed energy planning approach is then applied to a case study, in chapter 5. The chosen 

testing system is São Miguel Island, bearing in mind its power system characteristics and expected 

investments. This chapter, besides identifying energy planning alternatives and computing the 

selected attributes for the year 2030, presents a discussion of the obtained results, as well as a multi-

attribute and multi-scenario analysis dealing with uncertainty. 

 

Finally, the research conclusions are drawn in chapter 6, where the most important thesis 

contributions are identified, as well as future work perspectives. 
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Chapter 2 
 

2 State of Art on the Research Topic  

2.1 Introduction 

In this chapter a state of art is provided, on electricity storage technologies and electric mobility. A 

detailed characterization is presented, when it comes to technical functionalities, applications, costs 

and benefits, as well as regulatory framework. This chapter also includes an overview on energy 

planning tools and models, through a characterization of the most applied approaches, and the 

identification of research drivers. 

To sum up, this section seeks to draw a critical overview on strategies for electricity storage and 

electric mobility, as well as the gaps of current energy planning models. 

 

2.2 Electricity Storage Technologies 

Overview 

Energy storage technologies aim to transform electricity, into other form of energy (mechanic 

energy, chemical energy, heat, etc.), which is stored and afterwards converted back to electricity. 

Nowadays, it is possible to find a set of available technologies for electricity storage, which can be 

classified by their: energy transformation process/physical principal; functionalities of the 

technology; and services or applications for the power system [15]. 

Concerning the energy transformation process, one can identify [7]:  

 mechanical storage: pumped hydro storage; compressed air energy storage, adiabatic 

compressed air storage; and flywheels. 

 electromagnetic storage: superconducting magnetic energy storage; super capacitors; and 

superconductors. 

 electrochemical storage: conventional batteries (Li-ion, Lead-Acid); high-temperature 

batteries (NaS, ZEBRA); and Flow batteries (VRB, PSB, ZnBr). 

 

When it comes to the functionalities method, the technologies can perform: 

 Intertemporal shift of energy: capacity to transfer the energy over a considerable length of 

time (from some minutes to some hours or even some days or months).  

 Fast response: capacity to rapidly inject or absorb the power, within some tens of 

milliseconds.  
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The energy shift allows the management of power generation/consumption equilibrium, supporting 

system flexibility and renewable integration. Therefore, for this purpose it is critical that storage 

technology offers several hours of autonomy, with a large power capacity (e.g. hundreds of MW) 

and reduced response time (e.g. 1-5 minutes). According to the following figures, one observes that 

hydro pumped storage is the technology that best satisfies these functionalities, followed by 

compressed air energy storage. 

 
Fig. 1: Electricity storage technologies portfolio (1) [16] 

 

 
Fig. 2: Electricity storage technologies portfolio (2) [17] 
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Regarding the fast response functionality, the corresponding technologies are mostly related to 

applications for the power systems’ reliability and to power quality issues. Some electricity storage 

technologies may perform both functionalities, whereas others are rather suitable for one of the 

functionalities [15]. 

The third method for the electricity storage classification, consist on the assessment of specific 

services that the technology can deliver to the power system (which depend on their functionalities), 

as presented next. 

 
Fig. 3: Classification of electricity storage technologies using the services delivered method [15] 

 

Additionally, the electricity storage technologies can be differentiated among each other, according 

to: costs of investment in terms of both capacity (MW) and energy (MWh); efficiency; lifetime; and 

environmental impact [7].  

 

When it comes to the location, typically, electricity storage has been mostly based in centralized 

facilities (e.g. pumped hydro storage). Yet there is now a trend to commission small-scale, 

decentralized storage. Hence, electricity storage could be connected directly to transmission grids, 

distribution grids, renewable energy sources and consumers. Electric vehicles are also perceived as 

mobile storage units. Besides electricity storage, thermal storage facilities may be applied at 

consumer level or combined with large and remote concentrated solar power facilities. 

Consequently, storage facilities can be commissioned near power generation or closer to end-users, 

operated by centralized or decentralized ways, and benefiting the whole system or benefiting a 

single actor. In view of the previously mentioned, the future role of electricity storage will be 
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influenced by the degree, location and timing of the flexibility requirements related to the power 

systems’ evolution [8]. 

 

Therefore, it isn’t possible to identify the “best” storage technology, depending on the objective for 

electricity storage and project constraints (e.g. power grid, natural conditions of the site, etc.). A 

technical description is hereafter carried out, for each technology option. 

 

Pumped Hydro Storage  

Pumped hydro represents more than 99% of world’s total storage capacity (i.e. 127 GW of global 

storage capacity). In Europe, there are over 43 GW of installed power for pumped hydro storage, 

which stands for 5% of total net installed generation capacity [16], [18], [19], [20].  

 
Fig. 4: Electricity storage worldwide, adapted from [21] 

In the US, 38 pumped hydro storage facilities can store the equivalent to more than 2% of the 

country’s power generation capacity, whereas in Japan this figure is about 10% [22]. According to 

IEA, in [23], since 1970 more than 100 GW of pumped turbines have been installed around the 

world.  

In Europe, the majority of electricity storage facilities is concentrated in the Alpine regions of 

France, Switzerland and Austria, as well as in Italy, Germany and Spain [8]. In Portugal, there was 

an installed capacity of pumped hydro storage of 1 GW, in 2008 [24]. 

 

The starting point of pumped hydro storage projects coincided with the development of the high-

head pump turbines, supplied for the Numappara Power Station (Japan), in 1973, with more than 
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500 meters of head. The world’s highest pump turbine unit, with a pumping head of 779 meters and 

turbine capacity of 412 MW, was installed in 1999, in Kazunogawa Pumped Storage Power Station 

(Japan). There are ambitious plans for electricity storage, as the Eagle Mountain Pumped Storage 

Project in southern California. This project seeks to carve two reservoirs out of an abandoned iron 

surface mine, in order to store electricity from local wind and solar farms, having 1,3 GW of 

installed capacity (as much as a nuclear power plant) [22]. 

 

Rangoni, in [7], and EPRI, in [17], stated that pumped storage is the most mature and cost-efficient 

large-scale storage technology, currently available, as confirmed by the pumped hydro’s share 

among the total storage capacity, commissioned around the world. Moreover, a recent review 

carried out in [22], supported by an expert panel (including specialists from US DOE, Ball State 

University, EPRI, University of Cambridge and MIT), rated the pumped hydro storage solution 

with higher scores for all the concerned criteria (technology scale up; cost-effectiveness; and 

operation efficiency), than for the other storage technologies. 

 

The pumped hydro Centralized Storage Facility (CSF), in periods of discharging (usually during 

off-valley period), generates power just as a conventional hydropower plant and, in periods of 

charging (usually during valley hours), water is pumped from a lower reservoir to an upper one. The 

schematic of the infrastructure associated to the pumped hydro is described next. 

 

 
Fig. 5: Pumped hydro CSF operation [23] 

 

Besides the load shift capability, pumped hydro storage is also used for combined operation with 

wind farms, in order to smooth the overall output and enable larger penetration of renewable energy 

in the network [25]. In the case of a combined wind power/pumped hydro storage, this architecture 

enables: a) to store energy produced in low consumption periods, to satisfy demand in peak periods; 

b) to store energy in the reservoirs during high wind speed periods to be used afterwards for filling 
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wind-power gaps [26]. According to Schoenung, in [27], advanced pumped storage hydro 

technologies enable frequent and rapid (less than 15 seconds) changes among the pumping, 

generating and spinning modes. The pumped hydro units have a wide range of installed capacity 

levels, from a few MW to some GW.  Discharging time extend from some hours to some tens of 

hours [15].  

 

Pumped hydro storage facilities can be either mixed pumped hydro or simple pumped hydro 

structures. The mixed pumped hydro storage plants use a large reservoir, having a higher effective 

storage capacity, based on a natural source of water. Thus, it can operate during high water seasons. 

On the other hand, during dry seasons the pumped hydro facility can provide support to meet the 

load. Generally, 200 to 400 MW class systems are chosen. Regarding the simple pumped hydro 

storage type, it has only an artificial reservoir, so charging it with water is critical [23].  

A pumped hydro storage facility is similar to a typical hydropower plant, differing in the 

requirement for the lower lake and extra machinery in the powerhouse for pumping, which consists 

on the next possible configurations [25], [15]: 

 Group of four units, where a pump is coupled to a motor and a turbine is coupled to a 

generator. This configuration is no longer applied, having as drawback the high volume 

required for the site. 

 Group of three units, where a pump and turbine are both coupled to a single reversible 

motor/generator. The efficiencies of the pump and turbine can be optimized and multi-stage 

pumps can be used for very high heads. 

 Group of two units, where a reversible pump/turbine is coupled to a reversible 

motor/generator. This configuration requires a smaller space compared to the other two 

architectures, having also a lower installation cost. On the other hand, this technical option 

leads to a lower efficiency. 

 

There are still hybrid combinations of reversible and non-reversible turbines. For instance, the 

French Grand Maison pumped hydro storage facility has a turbine capacity of 1790 MW and pump 

capacity of 1160 MW, consisting on 8 reversible Francis turbines and 4 Pelton. This architecture 

could gain a momentum, taking into account that future pumped hydro storage facilities will 

certainly be based on old hydro power plants (owing to limited sites for new pumped hydro 

storage). In those cases, the new machinery to install will be scarce, having only the need to add 

pumps or auxiliary machines [15]. 

According to the IEA, in [23], in the reversible pump of a conventional pumped hydro plant, the 

capacity of the pump is smaller than the capacity of the water turbine. As a result, the water 
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pumping process takes longer than the generation process. Therefore, it is advisable to speed-up the 

pumping process, during periods of reduced-rate power availability. However, the addition of 

pumping capacity might damage the turbine runner (e.g. cracking). One successful example of 

pumped hydro storage upgrade is the Blenheim Gilboa project, in New York State, in which 

efficiency was significantly increased [23]. 

 

Concerning the start-up time of pumped hydro storage facilities, these technologies are suitable for 

following short-cycle power demand variation, with governor-free operation, since they take only 

about 60 seconds to turn out full output. Nonetheless, the conventional single-speed unit does not 

work to stabilize grid frequency, in the night time, taking into account that when it is operating in 

the pumping mode, input power can not be changed because it is determined exclusively by the 

pumping head. The pump turbine uses a turbo impeller, so the rotational speed and the pumping 

head determine the input of the pump turbine. As a result, when operating at a given pumping head, 

a single-speed pump turbine, driven by a synchronous motor, cannot vary the input. As opposition, 

an adjustable-speed pump turbine, driven by an adjustable speed motor, can vary the input. This 

capacity allows tuning the grid frequency, during valley periods, and enables the use of fluctuating 

renewable wind or solar energies, to pump water to the upper reservoir. Hence, an adjustable-speed 

unit can contribute to stabilizing the grid frequency, by rapidly changing input power. The main 

characteristic of the adjustable-speed units is to adjust the input power, when performing automatic 

frequency control, at the same time of charging the energy in the upper reservoir. Operational hours 

are fairly longer for adjustable-speed units than for single-speed units, and, in addition, pump starts 

are much more frequent for variable-speed units than for single-speed units. 

Pumped hydro storage with variable-speed doubly fed asynchronous machines started to be 

competitive and two machines (370 MW each) will be connected to the transmission grid (400 kV), 

in Portugal. This technology allows that in the pumping (motor) mode, the absorbed power in each 

machine can vary between 70/80 and 100% of the nominal power, in reduced times, and so the 

power plant can “follow” the grid load and wind generation changes. This capability is similar to 

the spinning reserve, by enhancing the wind power integration, mostly in extreme off-peak load 

periods. Yet the connection process should be developed carefully, to ensure a stable and reliable 

interaction with the transmission grid. In view of that, REN identified a set of technical 

requirements for connecting these variable-speed doubly fed asynchronous machines [28]. 

In addition, some pumped hydro storage facilities - of both single-speed and variable-speed types - 

can operate in a capacitor mode, in order to tune the phase difference or the reactive power of the 

power grid. The capacitor mode operation is based on the water downward depression of the 



             
 

 
 
2. State of Art on the Research Topic     38 
 

runner/impeller, by compressed air, in order to reduce stirling power loss led by a spinning runner 

[23]. 

 

One should also analyse the seawater option, for pumped hydro storage. This technical option draws 

a set of advantages: 

 It is easer to find an appropriate location for the pumped hydro storage facility, owing to the 

vast ocean that can be used as lower reservoir; 

 This option can have an efficiency of up to 80%, due to the short waterway length, which 

reduces the hydraulic losses by 93% to 98%. 

As drawback, the seawater solution leads to an overall cost increase of 15%, resulting from 

corrosion prevention measures [23]. 
 

Pumped hydro storage brings major benefits to the power system operation. Nevertheless, these 

facilities have also challenges to tackle, such as economical difficulties due to lack of appropriate 

locations that satisfy environmental, topographical and geological conditions. Thus, the IEA 

foresees that underground reservoir systems can be a solution to these difficulties [23]. 

It is known that for conventional pumped hydro plants, both the upper and the lower reservoirs are 

installed above ground. Alternatively, underground pumped hydro systems can be either based on 

fresh-water underground pumped hydro systems (that use artificial underground tunnels as the 

lower reservoir and a natural lake as the upper reservoir), or seawater underground pumped hydro 

systems (that use artificial underground tunnels as the lower reservoir and the ocean as an upper 

reservoir). A typical underground pumped hydro system is presented as follows. 

 
Fig. 6: Underground hydro pumped storage plant [23] 

 



             
 

 
 
2. State of Art on the Research Topic     39 
 

Underground pumped hydro plants have some extra characteristics, regarding the conventional 

solution [23]: 

 Reduce the impact on the above-ground environment, such as the natural scenery; 

 Preserve the ecological system of raptor species; 

 Expand the range of plant location choice by relaxing the restrictions on topographical 

conditions; 

 Reduce transmission costs by installing the pumped hydro plant nearer the site of electricity 

consumption. 

Compared to conventional pumped hydro facilities, underground plants have been designed to be 

more practical solutions for the future. 

 

Compressed Air Energy Storage  

Compressed air energy storage (CAES) is a competitive technology for bulk electricity storage, next 

to pumped hydro storage. CAES stores energy during valley periods, by compressing air within an 

air reservoir (using a compressor powered by low cost electric energy system). During off-valley 

hours, the CAES releases the compressed air, which is heated with a small amount of fuel and fed 

into a combustion turbine, in order to generate electricity. This turbine is three times more efficient 

than a conventional gas turbine, since the combustion turbine doesn’t have to use part of its output 

to drive an air compressor, because the air is pre-compressed [15], [16]. Bearing in mind that CAES 

uses a fuel to heat air, during the discharge generation cycle, it is not a pure electricity storage plant. 

The global energy efficiency of the CAES is 40-50% and has a start-up time of about 10 minutes 

[29]. CAES’ output ranges from a few MW to some GW, and the discharging time can reach some 

tens of hours [15]. 

When it comes to the Advanced Adiabatic CAES, the heat released during the compression stage is 

stored before the compressed air enters into the air reservoir. Therefore, during the discharge phase, 

the compressed air and the heat are both released, avoiding the external fuel burning for the air 

heating, in order to drive the combustion turbine. As a consequence, the adiabatic CAES lead to 

higher energy efficiency (70%) [30]. 

Concerning the CAES worldwide installation, there is one unit in Huntorf (Germany), 

commissioned in 1978, and another in Alabama (US), commissioned in 1991. The Huntorf plant 

(operated by E.ON) has a compressor of 60 MW and a turbine of 290 MW, delivering full output 

for 2 hours. The Alabama’s facility (run by PowerSouth Energy Cooperative) has a 50 MW of 

compressor capacity and 110 MW of turbine capacity, supplying a full output for 26 hours [15], 

[16], [22]. In addition, an adiabatic CAES facility is considered for development in Germany, 

within the ADELE project, in which RWE Power, General Electric, Züblin and DLR are working to 
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launch a demonstration plant in Stassfurt (360 MWh, 90 MW), located in a region with wind power 

[8]. 

 
Lithium Ion (Li-ion) Batteries 

Lithium-ion batteries are dominating the small portable electronic markets, owing to major 

advantages such as a high open circuit voltage and efficiency near 100%. This type of batteries is 

becoming more popular as they get economy of scale [31]. Li-ion batteries do not suffer from 

memory effect and also have a low self-discharge rate. On the other hand, these batteries are very 

expensive due to their special packaging and internal overcharge protection circuits [32]. Hence, the 

cost of this type of batteries should be reduced, in order to become a suitable option for large scale 

power integration, for peak shaving or storage [16], [33]. In addition, these batteries require a 

Battery Management System to perform, for instance, the state of charge monitoring. 

 

Sodium Sulfur (NaS) Battery  

The Sodium Sulfur (NaS) batteries consist of an anode of sodium and a cathode of sulfur, which are 

separated by a solid electrolyte membrane made with beta-alumina. This membrane allows the 

migration of sodium ions from the anode to cathode, during the discharge phase and the reverse 

process during the charge phase. A sodium sulfur battery has a high energy density, high efficiency 

(85% DC/DC) and life-cycle of about 250 cycles (at full capacity) per year, for 15 years. During the 

charging and discharging process, the heat generated by the chemical reaction is enough to keep the 

operating temperature. Yet when the battery stays inactive, it needs to consume energy equivalent to 

0.6-1% of its nominal capacity per hour, to maintain the high temperature. The investment cost of 

NaS batteries ranges from 1000 to 1500 €/kW [15]. Concerning this technology demonstration, 

there are projects in Berlin-Adlershof, Gran Canaria, and Reunion Island [8]. 

 

ZEBRA (Sodium-Nickel-Chloride) Battery 

This technology is a high-temperature battery system, being able to support a wider temperature 

range than NaS batteries. As drawback, these batteries have a lower energy density. Although 

ZEBRA batteries are mainly used in automotive and mobile applications, they can also be applied 

for stationary applications to support renewable energy integration, for load-levelling [8].  

 
Metal Air Batteries 

Although metal-air batteries are compact and relatively inexpensive, they have a life of a few 

hundred cycles and an efficiency of about 50%. The electrical recharging of metal air batteries is 

difficult and inefficient, thus most them are not rechargeable [16], [32]  
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Lead-Acid Battery 

These batteries are able to maintain a relatively high power-to-weight ratio (i.e. high overall 

performance as a power source), as well as a low cost. In view of that, lead-acid batteries are tuned 

for UPS applications and the automobile market. One of the known applications of lead acid 

batteries is at the American Electric Power, which installed 250-kW, 30-s Pure Wave UPS, using 

conventional lead-acid batteries [16]. Furthermore, the project DEMO-RESTORE, financed under 

FP6, intends to test the robustness of these batteries as a support to PV systems [8]. 

 

Nickel-Cadmium (Ni-Cd) Battery 

Ni-Cd batteries are less developed, but have advantages over Lead-acid batteries, mainly owing to 

the toxicity of some used materials and challenges related to the conformity with EU regulations on 

batteries and waste (Directive 2006/66/EC) [8]. 

 

Flow battery  

In the flow battery system, the electrolytes are stored separately in large storage tanks, outside the 

electrochemical reactor. The energy rating is determined by the size of the storage tanks and the 

amount of electrolytes. Therefore, it can be dimensioned independently from the power rating of the 

battery, making the system more flexible. Currently, three types of flow batteries have achieved the 

demonstration and commercialization stages: Vanadium Redox Batteries (VRB); Polysulphide 

Bromide Batteries (PSB); Zinc Bromine (ZnBr) batteries. The response time of flow batteries is 

very fast, enabling a shift from charging to discharging mode in about 1/1000 second. The DC/DC 

efficiency for these batteries is about 80%. The main drawbacks of this battery technology are the 

risk of electrolyte leakage and low energy density. Till now, VRB and ZnBr batteries are currently 

commercialized, whereas PSB are still in the demonstration stage [15].  

 

Flywheels  

Concerning the operation principle of flywheels, these store kinetic energy in a spinning mass and, 

during the charging phase, electricity is used to spin up the flywheel through a motor. At the 

discharging phase, electricity is generated by the same motor from the rotational energy. The energy 

rating of the flywheels is set up by the rotor’s mass and speed. The power rating is determined by 

the motor-generator. The major feature of flywheels regards its high power density (400-1600 

W/kg), which is meaningful for ensuring the transitory stability of power systems. Flywheels are 

useful for frequency and voltage control, levelling the fluctuating load and non-interruptible power 

supply. The DC/DC efficiency of flywheels can be higher than 90%, yet this is decreased with 
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lower discharge power. Since flywheels can be completely discharged in some minutes or hours, 

they require external power to maintain certain level of charge, in a standby mode. The investment 

cost of a flywheel system tuned for power application ranges 150-600 €/kW [15].  

There are many demonstration projects of this technology, such as the Spanish project SA2VE 

(application in railway transport, energy management for buildings and power supply quality); the 

flywheel facility installed, in 2005, in the Flores Island of the Azores Archipelago (to allow higher 

integration of wind power in this island, providing peak lopping and spinning reserves); and in 

Graciosa Island (Azores), which addresses wind power integration and diesel fuel offset [8]. 

 

Super Capacitor 

Although super capacitors are comparable to lead-acid batteries in energy density and cost, they 

present thousands of deep discharges and superior performance at low temperatures [34]. Super 

capacitors are also capable to perform very fast charges and discharges, going through a large 

number of cycles without degradation. These capabilities turn this technology suited to voltage 

regulation [35], [16]. In terms of demonstration projects, there is the STORE project (Canary 

Island) for ultra capacitors and the FP6 project HyHeels, which envisages super capacitors as a 

means to optimize hydrogen-based systems [8].  

 

SMES – Superconducting Magnetic Energy Storage 

The operation of SMES systems consists of storing energy in a magnetic field created by the flow 

of direct current in a superconducting coil. This system has an efficiency of about 95% from input 

back to output [35]. The most relevant advantage of SMES facilities refers to the short time delay 

during charge and discharge. Power is available almost instantaneously and very high power output 

can be supplied for a brief period of time. This feature is relevant, when comparing to other 

electricity storage options (e.g. pumped hydro storage or CAES) that have a larger time delay 

(seconds to several minutes), taking into account the energy conversion from the stored mechanical 

energy back into electricity. Additionally, the loss of power is lower than for other storage 

technologies, since electric currents encounter almost no resistance [16].  

Taking into consideration the energy requirements for SMES refrigeration, as well as the high cost 

of superconducting wires, these systems are currently used for short duration electricity storage. In 

view of that, SMES is mostly enclosed to enhancing power quality. Small SMES units are 

commercially available and larger projects are underway. Power quality control units have typically 

1 MW, installed at manufacturing plants requiring ultra-clean power, like microchip production 

facilities. When it comes to power grids applications, Northern Wisconsin is a known example of 

SMES installation, where a string of distributed SMES units was deployed to improve the 
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transmission system stability. The transmission line is subject to large and sudden load variations, 

owing to the operation of a paper mill, with uncontrolled fluctuations and voltage collapse. Utilities 

preferably charge their SMES facilities from the base load power at night, in order to meet the peak 

load demands during the day [36]. SMES systems are also used to supply grid stability in 

distribution grids, as referred in [16]. In Europe, there is a set of successful demonstration projects, 

namely in Germany, Finland and France, operating at 20 kW. Besides demonstration projects, 

research prototypes of SMES have also been designed in Italy, Germany, Finland and Spain [8]. 

 

Power-to-Gas Storage 

These systems rely on an energy-consuming electrolysis process to split water into oxygen and 

hydrogen. Afterwards, a methane-rich gas (equivalent to natural gas) is produced using the H2 

obtained and CO2, and feeding the natural gas network. In addition, the stored gas can be fed back 

to gas power stations [8]. This technology could be particularly useful for multi-utility companies 

(with electricity and natural gas businesses), such as EDP and REN (in Portugal), RWE and E.ON 

(in Germany), National Grid (in UK), Energinet (in Denmark), Svenska Krafnät (in Sweden), and 

others [37], [38], [39], [40]. 

The roundtrip efficiency of this solution is about 70% [41]. As advantages, this option allows higher 

power capacity than conventional pumped hydro storage systems, and enables long-run storage (by 

bridging shortages, due to RES variability, for up to 2 months) [8]. As drawbacks, currently, this 

system is still inefficient, being mostly suitable for power systems with lack of potential sites for 

pumped hydro storage. Fraunhofer IWES and Hydrogenics have been carrying out pilot projects, 

whereas E.ON has been developing an installation that can convert wind power into H2 at 

Falkenhagen [8]. 

 

Hydrogen Storage 

Hydrogen storage can be assessed as a type of power-to-gas storage, since an electrolyser unit 

converts power into H2 and, at times of higher load demand, it is transformed back into electricity 

using fuel cells. H2 can be stored on underground caverns, salt domes and depleted oil and gas 

fields. Hydrogen storage has both high energy rating and energy density, and low self-discharge 

rate. Thus, it is appropriate to be coupled with large wind farms, or support power grids in isolated 

systems. Yet this solution is still technically immature, highly cost-intensive and presents a reduced 

round-trip efficiency [8].  
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Thermal storage 

There are three types of thermal storage: 1) sensible heat storage (exploiting the change in a 

material’s temperature to store and release heat); 2) latent heat storage (storing and releasing heat 

through a change in a material’s physical state, e.g. liquid to solid and vice versa); 3) and 

thermochemical heat storage (based on a reversible chemical reaction) [42]. The thermal power 

rating is mostly set up by the size of heat exchangers, pimps and other auxiliary components. The 

volume of the storage tank determines the energy content [8].  

When it comes to storage duration, it can go from days to one year (sensible heat storage); hours to 

weeks (latent heat storage); and a few hours to a day (thermochemical heat storage) [42]. 

 

The next figure draws the power costs and maturity stages of the electricity storage technologies. 

 

 
Fig. 7: Power costs and maturity of the energy storage technologies [43] 

 

Greenhouse Gas Emissions Comparison 

Taking into account that greenhouse gas emissions are generally proportional to energy use, battery 

storage systems have much higher emissions than pumped hydro storage or CAES, with similar 

size, including construction, operation and maintenance.  

Pumped hydro storage has low energy demand relative to the volume of energy stored, despite the 

dam building process. Concerning the CAES, this facility requires a relatively low energy for 

construction operations, but its hybrid storage-generation nature demands significant energy during 
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operation. CAES leads to higher emissions than other technologies, during operation stages, owing 

to the natural gas process combustion. 

 

But a holistic assessment on greenhouse gases requires a life-cycle analysis, including primary 

energy consumption. In fact, when an energy mix is based on fossil fuels, primary energy emissions 

dominate the emissions assessment of stored power [44]. 

The greenhouse gas emissions from the analyzed storage facilities are presented underneath, for 

different power systems mix. 

 

 
Fig. 8: Greenhouse gas emissions from energy storage technologies [44] 
 

From the previous plot, some conclusions can be drawn [44]: 

 CAES has higher greenhouse gas emissions than pumped hydro or battery storage, when 

coupled to a low-emission energy mix.  

 CAES turns environmentally favourable when emissions from the power system increase. 

 CAES becomes the preferred storage technology, in terms of greenhouse gas emissions, 

when the electricity comes from gas, oil or coal generation sources. 
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 Pumped hydro and battery storage have a similar performance in terms of greenhouse gas 

emissions, but pumped hydro has lower global emissions due to effect the construction 

related emissions. 

 The PSB has a lower emissions impact than the VRB technology, when installed in a low-

emission power system. But in a fossil-fuel-based energy mix, the lower efficiency of PSB 

results in higher emissions than the other storage technologies. 

 

Energy Markets and Electricity Storage 

Concerning the electricity storage participation in energy markets, there is a set of services that 

could be provided, such as [8]:  

 Price arbitrage; 

 Demand response; 

 Extra high end-user power quality/autonomy; 

 Balancing services; 

 Primary and secondary frequency control; 

 Voltage control; 

 Blackstart; 

 Congestion relief; 

 Connection of generators and load. 

 

Spot and balancing markets should be analyzed jointly, as proposed in [8], bearing in mind that the 

price signals of balancing markets could account for the price depression in the day-ahead spot 

market. That’s to say, if it is less expensive to buy power near real-time, there is lack of economic 

incentive to buy it in the day-ahead, at a higher price. There is a set of reasons that could lead to a 

price depression in balancing markets, as described next [8]. 

 ad-hoc peak load arrangements: ex-ante capacity payment for peak load units, which 

enables them to bid into the energy market at a lower price; the Norwegian TSO (Statnett) 

implemented a reserves option market to secure enough resource bidding into the balancing 

market; the French TSO (RTE) remunerates a capacity payment for fast tertiary reserve to 

bid into the balancing mechanism. 

 price fixation method in balancing markets: bids are selected according to the merit order of 

the bidding prices; the marginal price remuneration of the selected bids is not the global  

“rule” in balancing market; alternatively, balancing energy may be remunerated based on 

pay-as-bid (e.g. Austria, Italy) or at average prices (e.g. France, Germany or the UK). 
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 lack of liquidity: this is motivated by the small market scale, limited number of market 

participants and restrictive bidding requirements. 

 

Ruester et al., proposed the next market design, in view of electricity storage participation [8]: 

 ad-hoc peak load arrangements should be considered when defining “energy-only” markets. 

 regarding the price fixation mechanisms in day-ahead and balancing markets, remuneration 

in both markets should be harmonized and ensure an economically efficient dispatch. 

 liquidity of the balancing market could be enhanced by modifying market rules. Generally, 

only the balance entities are allowed to participate in the balancing markets bidding. Hence, 

minimum bidding requirements and rules should be relaxed, which would give market 

access to small and decentralized players, such as storage facilities and other flexibility 

solutions. Besides setting a value to electricity storage services, this market change may 

have a positive impact on market liquidity. 

 

Regulation of Electricity Storage 

As opposition to the established in the gas sector, in the electricity sector storage has not been 

confirmed as a regulated market segment. In truth, till now, electricity storage has been assessed by 

regulators as a generating technology, ignoring its capabilities for enhancing the system’s flexibility 

[7].  

Anyway, electricity storage urges organizing the provision of services, in a way that:  

a) technical benefits can be achieved within a regulatory framework that gives fair and stable 

opportunities to the different actors;  

b) sustainability of the related businesses is assured;   

c) consumers’ costs are maintained at an adequate level [8]. 

 

The role of distributed storage (including EVs) and smart appliances is particularly demanding in 

regulatory terms, with the emergence of the new concept of aggregator and the Smart Grids, but a 

complete framework must be built to integrate all the alternative means of storage. According to 

Ruester et al., the core of the business model for electricity storage is how the facility’s 

functionalities are matched with services to be provided [8]. Hence, the business model of 

electricity storage depends of: 

 finding the optimal match between functionalities and services to provide by the storage 

unit; 

 market design and regulatory framework in order to adequately reward individual 

stakeholders, acknowledging their value in terms of electricity storage services. 
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Besides the energy shift purpose (for storing RES surplus) – which is addressed in this research –

electricity storage facilities can provide the following innovative reserve services: 

 Regulation Reserve (frequency control); 

 Balancing Reserve (“new” tertiary reserve to handle, for instance, wind forecast errors); 

 Congestion Management Reserve. 

 

In view of these drivers, regulated actors might ask for controlling electricity storage devices given 

their mission to “keep the lights on”. For instance, Svenska Kraftnät (Swedish TSO) owns and 

operates gas turbines (400 MW) for system balancing (i.e. handling disturbances). In addition, 

Directive 2009/28/EC states: “Member States shall take appropriate steps to develop transmission 

and distribution grid infrastructure, intelligent networks, storage facilities and the electricity system, 

in order to allow the secure operation of the electricity system as it accommodates the further 

development of electricity production from renewable energy sources” [45].  

Accordingly, a recent change in Italian legislation (implementing Directive 2009/28/EC) allows the 

TSO (Terna)  to build and manage “diffused” storage systems such as batteries, by calling on the 

TSO to identify in its network development plan, the reinforcements necessary to ensure that 

renewable generation is fully dispatched (avoiding curtailments), stating that these interventions 

may include storage systems. The Italian Ministry of Economic Development has approved Terna’s 

2011 national transmission development plan, including the implementation of the batteries for 

electricity storage for as much as 75 MW, out of which 35 MW under the Plan for the Development 

of the Grid and 40MW under the Plan for the Security of the Grid [46].  

 

Yet part of the deregulated actors’ revenue may come from the provision of ancillary services. 

Looking at the possible horizons of deciding the usage of storage (forward, day-ahead, intraday, 

balancing market and real-time balancing), one could see that the use of storage by TSOs comes at 

the last place.  Ruester et al., stated that residual capacities of storage, once put at the disposal of a 

TSO (after commercial trading), could effectively contribute to balancing. Hence, a regulatory 

decision to ensure that the residual capacities of any asset, including storage, would not be wasted if 

they could be used for ancillary services, and would be fairly remunerated, is required. The benefits 

of regulated ownership might be justified if electricity storage services are considered regulated 

services, being highly beneficial for system stability, but without introducing interference to 

competitive activities. 
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The Challenges of Isolated Power Systems 

The electricity storage need is even more undeniable in the case of isolated power systems, such as 

islands, if renewable energy integration is foreseen to increase considerably. As a consequence, the 

scientific community has undertaken some important studies and research activities, which will be 

briefly recovered henceforth. 

When it comes to isolated power systems, there is a set of potential technologies for energy 

management applications: battery energy storage; fuel cells; flow batteries; pumped hydro storage; 

CAES; and flywheels. Accordingly, Kaldellis et al. developed a methodology for electricity storage 

systems that can both utilize the excess/rejected energy produced from renewable energy power 

plants and improve the operation of existing thermal power units [47]. Furthermore, Kaldellis and 

Zafirakis analyzed, in [48], the cost effect of introducing selected storage technologies in a large 

variety of autonomous electrical grids so as to ensure higher levels of renewable energy sources 

penetration.  

 

As previously presented, one of the most mature storage technologies is the pumped hydro storage. 

When it comes to the particular case of isolated power systems, it is possible to increase wind 

generation at a competitive cost if all options are examined using externalities. This evidence was 

ratified by Bueno and Carta, in [49], based on an optimum sized economic model of a wind/pumped 

hydro storage system developed for Gran Canaria island. Furthermore, according to a study 

developed by Kapsali et al., in [50], for Lesbos Island, the proposed wind/hydro solution, besides 

allowing wind generation increase, might lead to an improvement of the energy supply stability and 

security of supply; reduction of imported oil dependency; minimization of environmental impacts; 

and  regional development free of weighty investment costs. Nevertheless, the research developed 

by Katsaprakakis et al,  in [51], for the islands of Crete and Rhodes – aiming to reduce the annual 

energy production cost and maximize the wind energy penetration – concluded that the pumped 

storage introduction in isolated power systems, with high thermoelectric production and wind 

energy rejection, is not always economically feasible. According to the referred study, the project 

feasibility depends on each specific power system. Namely, the pumped storage approach reveals to 

be particularly suitable for power systems with soaring specific costs from energy generation and 

high annual consumption of expensive fossil fuels.  

Additionally, according to the study developed by Brown et al., in [52], results showed that 

including pumped hydro storage can be an effective means of allowing larger penetration of 

intermittent renewable energy sources, improving both the dynamic security and the economic 

operation of the system. In this approach the shedding of pumping units is also considered as a way 

to keep the system stability when sudden wind power losses occur.  
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In respect to CAES, this technology does not really suit for small isolated systems, because the 

installed capacity of CAES ranges from a few MW to some GW. However, in big islands, and 

according to Kaldellis et al., CAES is considered to be a technology capable to compete with 

pumped hydro storage systems [47]. 

 

Regarding the flywheel system, this solution is found with units in the range of some hundreds of 

kW. Moreover, its potential operational period is limited by a maximum of a few minutes.  Clear 

benefits can be obtained from the presence of flywheel storage in small isolated power systems 

[47]. As a matter of fact, the introduction of flywheel storage into an isolated hybrid grid allows the 

increase of renewable energy penetration. This statement was inferred by  Hamsic et al., in [53], 

from a study developed for the island of Flores (Azores, Portugal), in which the addition of a 

flywheel storage system, in the wind/diesel/hydro power system, has improved the system stability 

and raised renewable energy penetration, by plunging diesel fuel usage. Flywheels are in this case 

used to compensate renewable generation intermittency, balancing in fast way the system when 

facing sudden wind power changes. 

 

Concerning fuel cells’ vocation, Ntziachristos et al., carried out a study of coupling a wind-turbine 

with a fuel cell in order to enhance the wind power utilization, in the non-interconnected Greek 

archipelago grid [54]. The outcome of the referred study revealed that it is possible to replace 

conventional power units with a hybrid system, delivering energy at constant power. 

 

When it comes to hydrogen storage in isolated power systems, Agbossou et al. stated that the 

surplus renewable generation can be used to produce and store hydrogen and, at times of 

insufficient renewable generation, electricity is regenerated from the stored hydrogen [55]. The 

combined operation of renewable generation (i.e. wind power) and hydrogen storage gives as well 

the possibility to use the hydrogen produced from electrolysis as fuel for vehicles, as affirmed by 

Holen and Korpas, in [56]. For instance, Korpas and Greiner developed a study which describes 

how H2 storage can be applied in both isolated and grid-connected systems, and how the produced 

H2 can be utilized for stationary energy supply and/or as a fuel for transportation [57]. In addition, 

as a result of a study based on a Norwegian island’s power system, Korpas proposed to use H2 as a 

fuel for a local ferry [58]. However, according to the assessment presented by Greinera et al., for a 

wind–hydrogen energy system implemented in a Norwegian island, an isolated system was 

concluded to be a poor alternative, both in what concerns to H2 cost and in an environmental point 

of view [59]. Besides, according to a study developed by Kavadias et al., based on Island of Crete’s 
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information, it was deduced that the optimum size of a hydrogen production facility largely depends 

on the proportion and time-scattering of the renewable energy being rejected [60]. 

 

Concerning flow batteries, above a certain quantity of electrolytes, these units may be applied for 

large scale energy storage and, therefore, compete with pumped hydro storage and CAES. This 

happens because flow batteries’ capacity depends on the size of the electrolytic tanks, as affirmed in 

[47]. In particular, vanadium redox-flow batteries could be a reasonable alternative for load 

levelling and seasonal energy storage in small grids and stand-alone photovoltaic systems. 

Specifically, Joerissen et al. developed a cost analysis which shows that vanadium redox-flow 

batteries could compete with current high capacity lead-acid batteries used in stationary applications 

[61]. 

 

Regarding battery energy storage applications, there’s almost no restrictions. However, for instance 

Li-ion systems may be used only for very small islands, with maximum power rate less than 500 

kW, as presented in [47]. 

 

Taking into account the current advantages of the pumped hydro storage (in terms of costs, 

emissions and maturity), for energy management purposes, regarding the other possible 

technologies (i.e. CAES), this storage option was chosen to investigate in this thesis. 

 

2.3 Electric Mobility 

The transport sector accounts for over half of the world’s consumption of oil and much of this is 

used by road vehicles. The broad adoption of vehicles powered wholly, or in part, by batteries 

would create a noteworthy contribution for the urban air quality enhancement. However, the 

environmental effectiveness of the EVs implementation depends mostly on each generation mix. 

EVs use an electric motor to move the vehicle and are recharged with electricity. The energy is 

stored in batteries or in other alternative storage systems on board the vehicle. The higher the 

renewable share in the mix, the larger the environmental benefits from EVs. As a result of the 

exposed, a generation mix that is likely to have renewable power surplus (e.g. power systems with 

high penetration of hydro power plants and large amounts of wind power), should pursue accurate 

strategies in order to use that renewable excess [62]. 

The European Commission envisages the EVs as a niche market in the near future, but sales are 

expected to expand when battery technologies improve. There are forecasts assuming EVs will have 

a market share in new car sales of 1 to 2% in 2020, rising to 11 to 30% in 2030. For plug-in hybrid 
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electric vehicles (PHEVs), a share of 2% is forecasted by 2020, and 5 to 20% by 2030 [63], [12]. 

BP estimates 4% of EVs among global vehicle fleet in 2030 and the consortium A.T. Kearney / 

INESC Porto projects 1,2% of EVs share, at most, among the Portuguese light vehicles fleet, in 

2020 [64].  

According to the European Commission, affordability is a major factor in introducing EVs to the 

mainstream consumer market. Consumer prices will have to fall significantly through technological 

improvements and economies of scale to expand market share. This technology has a bold potential 

to utterly address a set of global challenges, such as global warming, dependency from fossil fuels, 

local air pollution and storage of renewable energy in vehicle batteries through smart grids. The 

European Commission also states that pure EVs appear to be more promising for urban use, given 

the relatively limited range provided by batteries and the potentially better cost-benefit ratio of 

deploying recharging infrastructure first in cities. Lower pollutant and noise emissions also lead to 

meaningful social benefits in urban areas [12]. 

 

Taking into account the aforementioned policy-making-drivers, the UK Department for Transport 

investigated the scope for the transport sector to switch to vehicles powered through electricity from 

the grid, in the period until 2030 [65]. The report aimed to provide a better knowledge of the 

contribution that the introduction of EVs and PHEVs can make to the long-term reduction of the 

UK’s CO2 emissions. This study inferred that the EVs’ role in the mid-run will be enclosed to urban 

environments (starting with city markets and van fleets). On the other hand, PHEVs will have 

greater penetration in the market in the medium term, owing to their increased flexibility. 

A similar study was carried out in Denmark by Nielsen and Jørgensen, in [66], targeting to analyze 

energy, environmental and electricity market aspects of integrating electric vehicles in the future 

Danish energy system. Consequences of large-scale utilisation of electric vehicles are analyzed. 

Furthermore, the aim is to illustrate the potential synergistic interplay between the utilisation of 

electric vehicles and large-scale utilisation of fluctuating renewable energy sources, such as wind 

power. Economic aspects for electric vehicles interacting with a liberalised electricity market are 

analysed. The project was focused on battery electric vehicles and fuel cell vehicles based on 

hydrogen. According to this study, the EV compared to the conventional ICV is very attractive, 

from both an energy efficiency and CO2 emission point of view. EVs entering the fleet in the period 

2025 to 2030 have considerable lower carbon emissions than the ICVs. The combination of the 

Danish power supply system development towards reduced CO2 emission/kWh and the technical 

development of the EV, lead in very low EV long-term specific CO2 emissions.  

For the US case, Cheah et al. examined the vehicle design and sales mix changes necessary to 

double the average fuel economy of new US cars and light-trucks by 2035 [67]. To achieve this 
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target, three technology options - that are available and can be implemented on a large scale - are 

assessed: channelling future vehicle technical efficiency improvements to reducing fuel 

consumption rather than improving vehicle performance; increasing the market share of diesel, 

turbocharged gasoline and hybrid electric gasoline propulsion systems; and reducing vehicle weight 

and size.  Results from this study imply that continuing the current trend of ever increasing 

performance and size will have to be reversed if significantly lower vehicle fuel consumption is to 

be achieved. 

In what pertains to PHEVs, Markel and Simpson presented a comparison of the costs (vehicle 

purchase costs and energy costs) and benefits (reduced petroleum consumption) of these vehicles 

relative to hybrid-electric and conventional vehicles. According to the author, the PHEV cost-

benefit equation is quite sensitive to a range of factors, such as: battery costs, fuel costs, vehicle 

performance, and driving habits [68]. Taking into consideration the large variability and uncertainty 

in these factors, the author concluded that is difficult to predict the future potential for PHEVs to 

penetrate the market and reduce fleet petroleum consumption. The report also emphasized that it 

does seem likely that “it will be quite a challenge to justify the PHEV capital cost premium on the 

basis of reduced lifetime energy costs alone. Other incentives and business models may be required 

to create an attractive value proposition for PHEV motorists.”  

 

According to the EU Project MERGE [69], the increase of EVs penetration will lead to a 

considerable impact on power grids, which could be handled by: 1) reinforcing the grid 

infrastructure to cope with the increased load (expensive); or 2) controlling the grid loading through 

active demand side management, which will avoid the need to reinforce the grid and generation 

infrastructures. Together with the smart grids concept, emerges the V2G strategy. According to 

Kempton and Tomic, the basic concept of V2G is that EVs provide power to the grid while parked. 

Basically, there are three types of vehicles well-matched to the V2G concept: battery, fuel cell 

(vehicles running on gasoline, natural gas or hydrogen) and hybrid. All of these use an electric 

motor to provide all or part of the mechanical drive power [70].  

The use of V2G requires the capability of 2-way energy flow between the EV and the Charging 

Post (CP), and the inclusion of both these flows within billing. This should be pursued together with 

the installation of 2-way communication electronic meters (usually named smart meters), at the CP 

level, and remote communication between the CP and the supplier/aggregator, who will act as 

billing authority. V2G also implies control strategies, in order to tune the battery 

charging/discharging with power system needs [69].  
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Fig. 9: V2G concept [71] 

 

Concerning strategies and business models for the V2G implementation, Kempton and Tomic 

suggested that after the initial high-value, V2G markets saturate and production costs drop, V2G 

can provide storage for renewable energy generation [72]. The authors’ calculations suggest that 

V2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet 

dedicated to regulation for wind, plus 8-38% of the fleet providing operating reserves or storage for 

wind. Additionaly,  Kempton and Dhanju proposed V2G as a storage resource for large-scale wind 

power [73]. In that article, the authors advocated that EVs will simultaneously reduce petroleum 

needs of the light vehicle fleet and allow wind generation increase (by tapping energy surplus via 

V2G). Furthermore, Kempton highlighted, in [72], that one efficient way to use the renewable 

surplus relies on the replacement of traditional vehicles by EVs. 

In what regards to power markets, Letendre and Kempton examined a range of EVs to provide four 

types of power: baseload, peak, spinning reserves, and regulation (up and down) [74]. According to 

the authors, V2G does not make sense for baseload power, since the per-kWh cost is too high and 

drive train designs assume low operating time (average 1 hour/day). On the other hand, the 

economic value of other forms of V2G appears high, more than enough to offset the initially higher 

costs of EVs. Accordingly, Kempton and Tomic stated, in [70], that V2G’s greatest near-term 

promise is for quick-response, high-value electric services. These quick-response electric services 

are purchased to balance constant fluctuations in load and to adapt to unexpected equipment 

failures. Furthermore, the works presented in [75] conclude that, in the United States, EVs can be 

cost-effective as a source of peak power or as spinning reserves. 
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The following figure depicts the suitability of different vehicle types for electricity storage versus 

backup, and for differing electric markets. 

 

Vehicle type 
Renewable Energy Electricity Market 

Backup Storage Regulation Spinning 
Reserve 

Non-Spinning 
Reserve 

EV  ++ ++ ++  

PHEV ++ + + ++ ++ 

Fuel Cell ++    ++ 

 
Fig. 10: Suitability of different vehicle types for energy storage versus backup, and for differing electric markets, 

adapted from [73] 

 

The UK Department for Transport affirmed, in [65], that V2G can be a useful concept in remote or 

vulnerable locations, when it could provide backup power at times of supply interruptions. 

According to the referred study, V2G could also offer benefits to the generator in demand 

smoothing at peak times, by reducing demand from the grid.  

Regarding smart charging strategies, Peças Lopes et al. analyzed, in [76], the impacts led by the 

EVs rollout through two charging approaches (dumb charging and smart charging) on 

load/generation profiles. For the purpose of this analysis, a 2011’s wet and windy day was 

considered, where large hydro and wind generation exists. The authors concluded that for the 

analyzed day with 11% EVs integration, the absence of a smart charging strategy leads to a 

considerable load increase at the end of the day and, therefore, the EVs do not absorb the energy 

surplus occurring at valley hours. The lack of smart charging strategies performs even worse for the 

scenario with 61% of EVs integration, as the generation mix is not capable to follow the demand 

soar. Concerning CO2 emissions, the referred work showed that there are major environmental 

benefits on account of EVs integration, when accompanied with smart charging strategies. 

In addition, Peças Lopes et al. provided, in [77], a conceptual framework to successfully integrate 

EVs into power systems, both in terms of the grid technical operation, as well as the electricity 

markets environment. All the players involved in both these processes, as well as their activities, are 

described in detail, as sketched out next. 
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Legend: 

CAU - Central Aggregation Unit 

MGAU - Microgrid Aggregation Unit 

VC - Vehicle Controller 

CVC - Cluster of Vehicles Controller 

GENCO - Generation Company 

MG - Microgrid 

MMG - Multimicrogrid 

MGCC - Microgrid Central Controller 

CAMC - Central Autonomous Management Controller 

DMS - Distribution Management System 

AGC - Automatic Generation Control 

 

Fig. 11: Technical management and market operation framework for EV integration into electric power systems [77] 

 

In [77] , several simulations are also presented, in order to illustrate the potential impacts/benefits 

arising from the EVs grid integration, comprising steady-state and dynamic behaviour analysis. 

 
According to recent works, the necessary infrastructure to handle the upcoming Electric Mobility 

(EM) was identified [78]. Basically, the EM system gathers:  

 User;  

 Electric Vehicle;  

 Charging Post;  
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 DSO;  

 And a new agent – the Supplier/Aggregator (SupAg). 

 
Fig. 12: The EM Infrastructure [78] 

 

The SupAg is considered as the responsible entity for both selling electricity to the users (i.e. 

supplier) and aggregating their charging demand (i.e. aggregator). The supplier is the entity that 

purchases electricity from the power market and sells it to the users, while the aggregator is the 

entity which groups charging demand of a number of EV and can offer demand side management of 

this aggregated group of EV to the market. The work presented in [78] considers that the aggregator 

is expected to be owned by the suppliers, since it is rather economically justifiable. 

Alternatively, the supplier and the aggregator can be different entities, as established for Portugal, 

where there is an EM Network Operations Manager (aggregator), providing services to the EM 

Retailers (suppliers), who buy electricity in the wholesale market, in order to sell it to the EVs’ 

users. Besides these two entities, the Portuguese authorities have also defined a legal framework for 

the CP Operator, which shall be licensed players in charge with the CP’s installation, operation and 

maintenance [79]. 

 

Concerning the EM process, Fig. 12 presents how the elements of the EM infrastructure should 

communicate with each other. The charging procedure may enclose four high level stages, as 

follows [78]. 

 Stage 1: allow connection;   

 Stage 2: charging process; 

 Stage 3: payment; 

 Stage 4: disconnect. 
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As opposition to the internal combustion vehicles – in which the refuelling occurs almost 

exclusively at fuel stations – the EVs have a broader range of charging sites, within the electricity 

grid. The charging sites can be grouped into three categories: 

 Public (e.g. on-street and large car parks); 

 Private (e.g. individual and shared domestic garages, and workplaces); 

 Commercial charging (e.g. recharging stations and commercial fleets). 

 

When it comes to the charging option, it can be based on [65], [80]: 

 standard charging (taking 6 to 8 hours to full storage); 

 fast charging (taking 20 to 30 minutes to full storage); 

 battery swap. 

 

For the EM spread, a broad installation of charging posts is required in public and commercial 

places, besides the home charging infrastructure. An advanced infrastructure would be, therefore, 

required to handle the EM rollout [71]. 

A major issue for the EM massive implementation stands for the considerable strain of the EVs’ 

charging on the power system. As previously mentioned, smart charging strategies are 

recommended to handle the potential EVs’ strain on the power system. The development of smart 

charging strategies is, as a result, crucial to avoid generation capacity expansion and network 

reinforcement. The strategy to accommodate the electricity load, from EVs, should be materialized 

through innovative products, like smart meters and energy management software.  

 

The next table presents a set of smart charging solutions provided by the market. 
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Table 1 - Smart charging technologies [71], [81], [82], [83], [84] 

 Company Technology 

Coulomb Technologies Smart charging added to charging 
hardware. Partnership with GridPoint.  

Ford/Microsoft Microsoft Hohm to be used in all 
electric Ford Focus. 

General Motors OnStar System to be used on Chevy 
Volt. 

Google Vehicle dispatch algorithm. 

GridPoint Smart Charging 3.0, used in eTec 
program, in a partnership with 
Coulomb. 

IBM Linking smart charging with 
renewable energies, within the 
EDISON project with SIEMENS and 
Dong Energy. 

Nissan EV-IT system, in partnership with 
GE. 

Pacific Northwest National 
Laboratory 

Smart charger controller, licensed to 
Zap. 

Juice PlugStart, in partnership with GE. 

GE WattStation. 

ITRON OpenWay system, installed in 
American utilities (i.e. SDGE, SCE 
and DTE Energy). 

SIEMENS VersiCharge. 

EFACEC QC 45 – Quick Charger. 

 

When it comes to the payment method, typically power utilities follow either pre-payment (e.g. 

United Kingdom and South Africa) or payment in arrears (requiring an account to be debited after 

charging), in which one consumer/customer stands for one meter. In the case of EM, the payment 

method becomes critical and rather complex, since the EVs can be charged in several sites, 

therefore, using different meters. 

The next figure presents the possible payment options within the EM concept. 
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Fig. 13: Payment mode for EM [78] 

 

Regarding the communication architecture, there is a broad range of available technologies for 

wired and wireless communication between the different elements of the infrastructure 

(authentication; communication from the EV to CP; and communication from the CP to DSO or 

SupAg), namely: 

 RFID; 

 CAN-bus; 

 RS-485 (used for loop communication); 

 Power Line Carrier (PLC), typically applied for smart metering; 

 Ethernet; 

 GPRS. 

 

Within the European project MERGE, the work presented in [78] has identified the most suited 

technologies for each purpose, as presented next. 
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Table 2 – Communication technologies for the EM infrastructure 

 Location 
 Private Public Fast Charging 

Authentication 
If necessary: 
1. RFID 
2. Touch screen 

1. RFID 
2. Touch screen 

1. RFID 
2. Touch screen 

EV to CP 
1. CAN-bus 
2. RS-485 
3. PLC 

1. CAN-bus 
2. RS-485 
3. PLC 

1. CAN-bus 
2. RS-485 
3. PLC 

CP outwards 
1. Domestic internet 
2. PLC 
3. GPRS 

1. GPRS 
2. PLC 

1. GPRS 
2. PLC 

 

The strategy towards the implementation of the electric mobility infrastructure should consider the 

advantages and disadvantages of each technology, regarding the case under analysis. The next 

points provide a critical assessment on the available communication options.  

 Touch screen: this option could be used either within the EV or in the CP. If the touch 

screen is located in the EV, the battery management system can use the input from the user 

and control the charging. 

 RS-485: the RS-485 could be used for either communications from the EV to CP, or for CP 

to a central provider or node of a larger network. This communication option is often used in 

block smart metering (e.g. a building), where the meters are equipped with a RS485 

interface, in order to establish a loop connection with the data communicator (linked to up to 

roughly 30 meters), which is equipped with a GSM/GPRS modem. 

 Ethernet: this technology is rather tuned to communications from many CP to a wider 

network, than from EV to CP. Ethernet is also a common communication technology for 

smart metering within private installations (e.g. shopping centre).  

 CAN-bus: this technology is widely used in recent vehicles, thus the use of a CAN-bus to 

connect the EV to the CP would be easy to apply.  

 PLC: this option uses the power network for two-way data communication. PLC provides 

good advantages (the infrastructure costs and installation time is reduced) but the main 

purpose of the physical network is not data communication support. Today PLC 

communications have evolved and have been consolidated as the main communication 

required by the market for smart grids’ Local Area Network. The most mature PLC version 

is the PLAN-SFSK, with proven robustness (e.g. Alliander and ErDF smart metering 

projects). In addition, the PRIME OFDM is a new PLC version (proposed by Iberdrola), 

which pledges higher transmission speed. High frequency PLC could be used for 

communication between the EV and CP. Low frequency PLC is rather appropriate to use by 

the DSO or supplier/aggregator for communication or control over long distances.  
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 Wi-Fi: this technology could be used for communication between the EV and CP, or 

between the CP and a central provider over a limited distance. As drawbacks, this option has 

some weaknesses regarding data privacy and difficulties in determining which EV is 

communicating with which CP. 

 GPRS: this option is not suitable for the short distance communication between the EV and 

CP, but is adequate for long distance communication between the CP and DSO or 

supplier/aggregator. In fact there are today tens of thousands GPRS smart meters, installed 

all over the world. 

 RFID: a contactless RFID smartcard could be used for simple and secure user authorisation, 

and as a cashless payment method. 

 
 

2.4 Energy Planning Models and Tools 

The research on energy planning tools has been addressed during the last few decades, for different 

motives (e.g. oil crises, energy geopolitics, environment threats, etc.). A literature review on energy 

planning studies, allows the identification of two model types in what pertains to the detail level in 

modelling the system: top-down models; and bottom-up models. The top-down models are 

macroeconomic tools, whereas bottom-up models are engineering models, which dive into a 

detailed characterization of the energy system [85].   

 

Connelly et al. presented, in [86], a review on 37 energy planning models and suggested the next 

classification. 

 Simulation tool: these tools simulate the operation of a given energy system to supply a 

given set of energy demands. Typically a simulation tool is operated in hourly time-steps 

over a one-year time-period. 

 Scenario tool: this type of tool usually combines a series of years into a long-run scenario. 

Typically scenario tools function in time-steps of 1 year and combine such annual results 

into a scenario of typically 20-50 years. 

 Equilibrium tool: these tools seek to explain the behaviour of supply, demand and prices in a 

whole economy or part of an economy (general or partial) with several or many markets. It 

is often assumed that agents are price takers and that equilibrium can be identified. 

 Top-down tool: as stated before, these are macroeconomic tools using general 

macroeconomic data to determine growth in energy prices and demands. Typically top-

down tools are also equilibrium tools. 
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 Bottom-up tool: these tools identify and analyse the specific energy technologies and 

thereby identifies investment options and alternatives. 

 Operation optimization tool: these tools optimize the operation of a given energy system. 

Typically operation optimization tools are also simulation tools, optimizing the operation of 

a given system.  

 Investment optimization tool: these tools optimize the investments in an energy system. 

Typically, optimization tools are also scenario tools, optimizing investments in new energy 

facilities and technologies. 

 

When it comes to the geographical scope of the tools, as well the corresponding timeframe, the next 

table brings a more detailed characterization. 
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Table 3 – Scope and profile of energy planning tools 

Tool Scope Timeframe Time-step 
Mesap  National/regional No limit 1 minute to several years 
TRNSYS16 Local Multiple years Seconds 
HOMER Local 1 year Minutes 
SimREN  National/regional No limit Minutes 
EnergyPLAN  National/regional 1 year Hourly 
SIVAEL  National/regional 1 year Hourly 
STREAM  National/regional 1 year Hourly 
WILMAR Planning Tool  International 1 year Hourly 
RAMSES  International 30 years Hourly 
GTMax  National/regional No limit Hourly 
H2RES  Island No limit Hourly 
MARKAL/TIMES  National/regional Max 50 years Hourly, daily, monthly  
PERSEUS  International Max 50 years Based on typical days  
UniSyD3.0  National/regional Max 50 years Bi-weekly 
RETScreen  User-defined Max 50 years Monthly 
E4cast  National/regional Max 30 years Yearly 
EMINENT  National/regional 1 year None/yearly 
IKARUS  National/regional Max 50 years Yearly 
PRIMES  International/national Max 50 years Years 
INFORSE  National/regional More than 50 years Yearly 
ENPEP-BALANCE  National/regional 75 years Yearly 
LEAP  National/regional 20 to 50 years Yearly 
MESSAGE  Global Max 120 years 5 or 10 years 
MiniCAM  Global and regional More than 50 years 15 years 
AEOLIUS  National/regional 1 year Minutes 
HYDROGEMS  Project-oriented  1 year Minutes 
energyPRO  Project-oriented Max 40 years Minutes 
BCHP Screening Tool  Project-oriented 1 year Hourly 
ORCED  National/regional 1 year Hourly 
EMCAS  National/regional No limit Hourly 
ProdRisk  National/regional Multiple years Hourly 
COMPOSE  Project-oriented No limit Hourly 
EMPS  International 25 years Weekly  
WASP  National/regional Max 50 years 12 load duration curves/year 
Invert  National/regional Max 50 years Yearly 
NEMS  National/regional Max 50 years Yearly 
Valoragua International/national 1 year Weekly interval divided in 5 steps  
 

After presenting a common classification of the energy models types and their scope, an overview is 

provided on some of the most applied tools, to the type of energy planning to address in this 

research. 

 E4cast: this is a partial-equilibrium tool employing an integrated analysis of power and gas 
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sectors. The model represents two sets of conditions, i.e. quantity and competitive price 

constraints. The competitive equilibrium is reached when all the constraints are fulfilled. 

E4cast is used to simulate future energy requirements and identify the way these can be 

achieved. The analysis is applied for an annual time-step, up to a maximum of 30 years. The 

tool accounts all the costs and the energy consumption is foreseen by fuel, industry and 

region, for an annual basis. This model provides an outlook for the Australian energy sector 

that is feasible and satisfies the economic competitive price conditions. In this tool, 

constraints on power and gas flows are considered in terms of existing and planned networks 

limits [87]. 

 EnergyPLAN: this is a user-friendly tool programmed in Delphi Pascal. Input is defined by 

the user in terms of technologies and cost specifications. The main goal of the model is to 

support the design of national or regional energy planning strategies, based on technical and 

economic analyses of the consequences of implementing different investments. 

EnergyPLAN gathers the whole national or regional energy system, including heat, 

electricity, transport and industrial sectors. It is a deterministic input/output tool and 

optimizes the operation of a given system. General inputs are: demand; renewable energy 

sources; energy plants capacities; and costs. Outputs are: energy balances and resulting 

annual productions; fuel consumption; import/export of electricity; and total costs. This is an 

hour simulation model, optimizing the operation of a given system throughout one year.  

This tool is based on analytical programming as opposed to iterations, dynamic 

programming or advanced mathematical tools [88]. 

 MARKAL/TIMES: this family of tools is tailored by the input data to represent the 

evolution of a specific energy system, over a period of 40 to 50 years, at the national, 

regional, state/province or community level. The TIMES and MARKAL models share the 

same basic modelling paradigm, i.e. both are technology explicit and dynamic partial 

equilibrium models of energy markets. The equilibrium is obtained by maximizing the total 

surplus of consumers and suppliers via Linear Programming. The two models also share the 

multi-regional feature [89]. All thermal, renewable, storage/conversion and transport 

technologies can be simulated by these tools [90]. Each annual load duration curve can be 

detailed at three levels: seasonal (or monthly); weekdays/weekends; and hourly [86]. 

MARKAL is implemented through an open architecture provided by the General Algebraic 

Modeling System (GAMS) [91]. This model gathers a set of energy or emission control 

technology types, represented by performance and cost characteristics. The input to the 

model consists of a menu with both existing and future technologies and the supply and 

demand sides are integrated. The optimization routine selects the technology option that 
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produces the least-cost solution subject to a set of constraints. MARKAL does not 

allow/require an a priori ranking of greenhouse gas abatement measures, as an input to the 

model. That’s to say, the model selects the preferred technologies and then provides the 

ranking [89]. When it comes to TIMES, this tool fills some gaps of MARKAL, such as 

allowing the user to define period lengths in a more flexible way, as well as the planning 

horizon. In addition, in TIMES any commodity and process may have user-chosen time-

slices, whereas in MARKAL only two commodities have rigidly defined time-slices 

(electricity and low temperature heat). TIMES has also a larger number of commodity-

related variables and more accurate and realistic depiction of investment cost payments [92]. 

 Mesap: this tool can be used as a market information system for energy trading; power plant 

information system for electricity generators; regulatory data management system for grid 

operators; environmental information system for environmental protection agencies; and 

tool for planning, simulation and balancing of energy systems. Mesap is a high performance 

database, enabling flexible data management [93]. Mesap consists of three parts: the 

calculation modules; the Mesap information system; and additional tools for specific 

modules or purposes [94]. The simulation is developed through a time-step ranging from 1 

minute to several years and the total time-frame is unlimited. 

 EMINENT: this tool consists of a database and an assessment tool, providing a general 

framework for the evaluation of new energy technologies and solutions for national energy 

systems. EMINENT evaluates the performance and potential impact of recent technologies 

over a one-year time-period. The tool gathers two databases: a database of national energy 

infrastructures, containing information on the number of consumers per sector, type of 

demand, typical quality of the energy required, and the consumption and installed capacity 

per end-user; and a second database, that contains key information on new thermal 

generation, heat and renewable technologies. The tool is capable to compare the 

technologies, regarding financial, environmental and energy concerns [95], [86]. 

 MESSAGE: this is a systems engineering optimization tool used for the energy systems 

planning in the medium to long-term, energy policy analysis and scenario development. The 

model provides a framework for representing an energy system with all its 

interdependencies from resource extraction, imports/exports, conversion, transport and 

distribution, to the supply of energy end-use services such as light, space conditioning, 

industrial production processes and transportation. Scenarios are developed by minimizing 

the total systems and the model configures the energy system evolution from the base year 

to the target year. The outcomes of the models include estimates of strategies for specific 

climate stabilization targets, by identifying the least-cost technologies portfolio. This tool 



             
 

 
 
2. State of Art on the Research Topic     67 
 

includes endogenous technology learning for various technologies using a Mixed Integer 

Programming approach. Message uses a 5 or 10 year time-step to simulate a maximum of 

120 years [96].  

 H2RES: this tool is designed for balancing hourly time series of water, electricity, heat and 

hydrogen demand, storage technologies and power supply (wind, solar, hydro, geothermal, 

biomass, fossil fuels or mainland grid). This model is tuned to energy planning of isolated 

regions (such as islands), with lack of interconnection. It can also assist in planning single 

wind, hydro or solar power producer, connected to a larger power system. The methodology 

adopted by this tool is divided in the next tiers: 1) mapping the needs (electricity, heat, cold, 

transport fuel, water, waste treatment, wastewater treatment, etc.); 2) mapping the resources 

(wind, sun, geothermal energy, ocean energy, hydro potential, water resources, but also 

imported resources such as natural gas, oil, water shipped, potential to dump waste and 

wastewater, etc.); 3) develop scenarios with technologies that can use available resources to 

cover the needs (conventional and pioneering technologies for power generation, water 

heating, waste and wastewater treatment); 4) modelling the scenarios [97]. 

 LEAP: this tool can be used to track energy consumption, generation and resource 

extraction, in all sectors of the economy. It can be used to account both energy sector and 

non-energy sector’s greenhouse gases emissions, as well as analyze emissions of local and 

regional air pollutants. LEAP’s modelling capabilities operate at two levels: 1) calculations 

are done for energy, emissions and cost-benefit; 2) users enter spreadsheet-like expressions, 

enabling econometric and simulation approaches to be embedded within the model’s 

accounting framework.  New versions of LEAP also handle optimization modelling, 

allowing the construction of least cost models of capacity power system expansion and 

dispatch. LEAP is generally applied to study national energy systems, using an annual time-

step and with a time horizon between 20 to 50 years. Yet some results are computed for a 

shorter timeframe, enabling, for instance, the observation of loads and generation profiles 

throughout the year. LEAP gives the opportunity to evaluate alternative scenarios, by 

comparing energy requirements, social costs and benefits, and environmental impacts [98]. 

 PRIMES: this tool is differentiated from the others by the detailed combination of micro-

economy with engineering, from a long-term perspective (up to 2050). It performs impact 

assessment of specific energy and environment policies, applied at Member State or EU 

level, including: price signals, such as taxation and subsidies; technology promoting 

policies; RES supporting policies; efficiency promoting policies; and environmental 

policies. PRIMES is then tuned to long-run energy system projections, for both the demand 

and supply sides. PRIMES’ projections include: energy balances; structure of demand by 
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sector; structure of power system and other fuel supplies; technology roadmap; overall costs, 

costs per sector, overall system costs and investment; consumer prices and certificate prices; 

emissions. Nonetheless, PRIMES can neither perform short-term forecasts nor closed-loop 

energy-economy equilibrium analysis, unless linked with a macroeconomic model. In 

addition, PRIMES is unable to develop short-term engineering analysis of the power and gas 

systems operation [99], [100]. 

 Valoragua: this model is a developed in FORTRAN and composed by several modules. It 

performs the management of a hydrothermal electric power system, at a national level or 

with cross-border interconnections. This tool establishes the optimal operation strategy for a 

given power system by the use of the “value of water” concept, in each power station, for 

each time interval (i.e. month/week) and for each hydrological condition. From a 

methodological perspective, the optimal management of electric power system is formulated 

as a non-linear optimization problem, where the hydro subsystem is completely 

desegregated. The objective is to minimize the total variable generation costs, subject to a 

set of constraints. Therefore, the model enables determining the operational characteristic in 

order to reach the minimum operation costs. The problem solution gathers the use stochastic 

dynamic programming, linear programming and non linear programming. The model 

supplies detailed information on technical, economic and environmental behaviour of each 

generation centre and the system. Valoragua is run for one year, while the month or the 

week is the time interval unit considered for the management purposes of the power system. 

Each time interval (month or week) is divided in time steps for the load characterization 

(typically five discrete steps). The main goal of Valoragua is to optimize the integrated 

management of a hydro-thermal power system, linking the water management and the 

power system operation, bearing in mind physical, technical, economic and operation 

characteristics of the system. This model also computes thermal-based power generation 

emissions and optimizes maintenance schedule of power plants. Valoragua is often used for 

analyzing: energy import/export contracts; maximize power generation revenues; long-term 

management of stored water in reservoir with regulating capability; better use of water in a 

multi-purpose scheme, considering its operation constraints [101]. 

 

2.5 Summary and Main Conclusions 

This chapter allowed identifying the main characteristics of technology options for electricity 

storage and electric mobility, which is crucial for building energy planning criteria and alternatives. 

In addition, an overview was presented on the major energy planning tools. Accordingly, emerges 
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the need to identify the corresponding gaps and research drivers. The fact is that most of the top-

down tools are fairly oriented to provide a global picture of the energy system, being fed by 

macroeconomic input data. When it comes to bottom-up engineering approaches, a set of tools (e.g. 

Aeolius, Balmorel, BCHP Screening Tool, Compose, EMCAS, EMPS, GTMax, WASP) is tuned to 

a specific technical field or energy vector.  On the other hand, there is another group of tools (e.g. 

E4Cast, EMINENT, MARKAL/TIMES, LEAP, PRIMES, Mesap, H2RES, EnergyPLAN, Message, 

Valoragua) that is tailored to present a global view on the system, when it comes to energy, 

economy and environment.  

Taking into account these models’ characteristics and the upcoming changes in the energy systems 

(mentioned in chapter 1), a set of further analyses and approaches should be developed, such as: 

 Energy planning of small scale systems, such as islands; 

 Multicriteria comparison of different alternatives for energy planning, for different 

scenarios; 

 Modelling strategies for demand-side energy efficiency, in terms of energy/emissions 

savings impact and associated costs; 

 Reliability of the power systems (e.g. adequacy of the generation capacity); 

 Operation costs of the power system, from a zoom-in perspective (e.g. unit commitment 

and economic dispatch); 

 Environmental and economic impact from the adoption of new mobility strategies, such as 

electric mobility, efficient ICVs, biofuels and behavioural change; 

 Technical, environmental and economic impact from the implementation, in the power 

system, of new operation strategies, such as electricity storage and EVs V2G; 

 Uncertainty modelling. 

In view of these gaps, an energy planning methodology is worth developing, in order to evaluate 

long-term alternatives for planning isolated systems, through a multi-attribute and multi-scenario 

analysis. 
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Chapter 3 
 

3 Theoretical Fundamentals for Energy Planning with Electricity Storage and 

Sustainable Mobility 

3.1 Introduction 

This chapter pursues an overview on theoretical fundamentals for energy planning, namely: 

environmental impact; economic and financial costs; and adequacy of the generation system. These 

topics are traditionally addressed in energy planning, though they are typically analyzed through 

different models, depending on the problem purpose. Alternatively, this work aims to deliver an 

integrated vision and approach regarding different criteria. Environmental concerns deserve a 

deeper attention in this thesis, than in typical works on power systems engineering, since this 

dissertation is made within a PhD Program in Sustainable Energy Systems.  

This chapter also provides an overview on multicriteria decision aid, by making a review on the 

concepts and characterizing multi-objective and multi-attribute problems. In the end, a review on 

approaches to model uncertainty is also provided, as well as decision paradigms and rules. 

To sum up, this chapter presents the theoretical concepts and framework to perform, subsequently, 

the mathematical formulation associated to the research. 

 

3.2 Environmental Impact 

3.2.1 Greenhouse Gases and Climate Change  

Changes in the atmospheric abundance of greenhouse gases and aerosols, in solar radiation and in 

land surface properties modify the energy balance of the climate system. These changes are 

expressed in terms of radiative forcing, which is used to compare how a range of human and natural 

factors drive warming or cooling influences on global climate [102].  
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Fig. 14: Atmospheric concentrations of carbon dioxide, methane and nitrous oxide [102] 

 

The stocks of greenhouse gases in the atmosphere are rising, as a result of human activity, being 

carbon dioxide the most important anthropogenic greenhouse gas [103]. Recent studies inform that 

the current level of greenhouse gases in the atmosphere is more than 390 parts per million (ppm) 

CO2, compared with only 280 ppm before the Industrial Revolution [104]. These concentrations 

have already led to a globally averaged increase in the surface temperature of the planet of 1 degree 

Celsius [104]. As the Intergovernmental Panel on Climate Change (IPPC) stated in [102], the main 

cause for carbon dioxide increase since the pre-industrial period stands for fossil fuel use and land-

use change (with a smaller impact). Stern also highlights the increasing risks of serious, irreversible 

impacts from climate change, linked with business-as-usual paths for emissions [103]. It is believed 

that the level of greenhouse gases in the atmosphere would double pre-industrial levels by 2050 (i.e. 
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550 ppm) and would keep rising thereafter, for a scenario without increases on the annual flow of 

emissions beyond today's rate. On the contrary, the annual flow of emissions is rather accelerating, 

owing to investments in high-carbon infrastructure and rising demand for energy and transport. 

Stern states that, at current trend, average global temperatures will rise by 2 to 3 °C within the next 

fifty years or so [103]. What’s more, the OECD suggests that without more ambitious policies than 

the ones already announced (e.g. Copenhagen and Cancun conferences), the world will be on course 

for atmospheric concentrations of nearer to 685 ppm CO2 by 2050 [104]. Fig. 15 points a set of 

emissions projections, which would lead to an increase on global average temperatures, at the end 

of the century, of 3 to 6 °C regarding pre-industrial levels.  

 

 
 

Fig. 15: Comparison of global emissions CO2 from fossil fuel combustion across selected studies [105] 

 

Stern also affirms that stabilisation of greenhouse gas in the atmosphere is feasible and compatible 

with economic growth. The developed countries have noticed a decrease on the responsiveness of 

emissions to income growth, owing to changes in energy technologies and the structure of 

economies [103]. The fact is that is possible to decarbonise both developed and developing 

economies, while tackling economic growth in both. Stern refers that stabilisation requires a slump 

of annual emissions to the level that balances the Earth’s natural capacity to remove greenhouse 

gases from the atmosphere [103]. Stabilising at or below 550 ppm CO2 would demand the 

emissions’ peak in the next 10-20 years, followed by a decrease at a rate of at least 1-3% per year. 

The set of pathways is presented in Fig. 16. Basically, by 2050 global emissions would need to be 

roughly 25% below current levels.  
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Fig. 16: Pathways for greenhouse gas stabilization [103] 

 

Stern foresees that the annual costs for a stabilisation at 500-550 ppm of CO2 concentration would 

be around 1% of GDP by 2050 [103]. The author reckons the greenhouse gas emissions can be cut 

in four ways: 

 Reducing demand for emissions-intensive goods and services; 

 Increased efficiency, which can save both money and emissions; 

 Action on non-energy emissions, such as avoiding deforestation; 

 Switching to lower-carbon technologies for power, heat and transport. 

 

A key driver for low carbon economy results from the high price of delay, which would lead to 

acceptance of more climate change and higher mitigation costs. As OECD highlighted, the costs of 

delayed action may be so high that reaching the 2 °C goal may become unaffordable, unless 

additional mitigation measures are put in practice before 2020 [104]. Moreover, there are new 

opportunities for CleanTech industries and services, with a market worth likely to be at least $500 

billion per year by 2050 [103].   

 

3.2.2 Mitigation Mechanisms 

In 1992, the United Nations Framework Convention on Climate Change (UNFCCC) was set up, in 

Rio de Janeiro. 153 countries signed the agreement, which has become the cornerstone of the 

international community’s attempt to tackle one of the most serious threats to Planet Earth [106]. 
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In 1997, the Kyoto Protocol was created to cut greenhouse gas emissions worldwide, without 

immediate demands on the developing countries but calling on each of the developed countries to 

reduce their emissions by specific amounts from 1990 levels, by 2012. The Kyoto Protocol has been 

ratified by all the Annex I’s parties (industrialized countries), unless the US and Australia. 

However, during the UNFCCC conference occurred in Bali (December 2007), the Australian 

Government announced that the country would ratify the Kyoto Protocol. 

To enhance the efficiency of the overall system of reducing emissions, an emissions trading 

mechanism has been introduced, with great potential for cost savings. For instance, the US cost of 

meeting its commitments could be reduced by 60% [106]. 

The Kyoto Protocol defined three “flexibility mechanisms” to lower the overall costs of achieving 

its emissions targets. With these mechanisms, Parties become able to access cost-effectively 

opportunities to reduce emissions or to remove carbon from the atmosphere, in other countries. If in 

one hand, the reduction emissions cost depends on each region, on the other hand, the effect for the 

atmosphere of limiting emissions is the same, regardless where the action is taken. 

Under the Kyoto Protocol, the amount to which an Annex I Party (industrialized country) must 

reduce its emissions over the five-year commitment period is divided into units each equal to one 

tonne of carbon dioxide equivalent. These assigned amount units (AAUs), and other units defined 

by the Protocol, give the basis for the Kyoto mechanisms by providing for a Party to gain credit 

from action taken in other Parties that may be counted towards its own emissions target. 

The three Kyoto mechanisms are: 

1. The Clean Development Mechanism (CDM); 

2. The Joint Implementation (JI); 

3. Emissions Trading (ET). 

 

The CDM and JI enable developed countries, that have binding emission reduction or limitation 

targets under the Kyoto Protocol, to invest in clean energy projects in third countries and credit the 

resulting emission savings towards their own emission targets. The CDM covers projects in 

developing nations. Reductions since 2000 are potentially eligible to receive credits called certified 

emission reductions (CERs). JI applies to projects in countries that have agreed to an emission 

target (industrialised countries and countries with economies in transition). JI projects yield credits 

known as emission reduction units (ERUs) from the beginning of the first Kyoto commitment 

period [107]. 

Bearing in mind the dynamics of climate change negotiations, the next table presents an overview 

on the major deliverables on climate change policies, over time. 
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Table 4 - Overview on major deliverables on climate change policies [108] 

Year Deliverable 

1979 The first World Climate Conference takes place. 

1988 The Intergovernmental Panel on Climate Change is set up.  

1990 
IPCC’s first assessment report is released. IPCC and second World Climate Conference call for a global 
treaty on climate change. United Nations General Assembly negotiations on a framework convention 
begin. 

1991 First meeting of the Intergovernmental Negotiating Committee takes place. 

1992 The Intergovernmental Negotiating Committee adopts UNFCCC text. At the Earth Summit in Rio, the 
UNFCCC is opened for signature along with its sister Rio Conventions, UNCBD and UNCCD.  

1994 UNFCCC enters into force.  

1995 The first Conference of the Parties (COP 1) takes place in Berlin. 

1996 The UNFCCC Secretariat is set up to support action under the Convention.  

1997 Kyoto Protocol formally adopted in December at COP3. 

2001 

Release of IPCC’s Third Assessment Report. Bonn Agreements adopted, based on the Buenos Aires Plan 
of Action of 1998. Marrakesh Accords adopted at COP7, detailing rules for implementation of Kyoto 
Protocol, setting up new funding and planning instruments for adaptation, and establishing a technology 
transfer framework. 

2005 

Entry into force of the Kyoto Protocol. The first Meeting of the Parties to the Kyoto Protocol (MOP 1) 
takes place in Montreal. In accordance with Kyoto Protocol requirements, Parties launched negotiations 
on the next phase of the Kyoto Protocol under the Ad Hoc Working Group on Further Commitments for 
Annex I Parties under the Kyoto Protocol (AWG-KP). What was to become the Nairobi Work 
Programme on Adaptation (it would receive its name in 2006, one year later) is accepted and agreed on. 

2007 

IPCC’s Fourth Assessment Report released. Climate science entered into popular consciousness. At 
COP13, Parties agreed on the Bali Road Map, which charted the way towards a post-2012 outcome in 
two work streams: the AWG-KP, and another under the Convention, known as the Ad-Hoc Working 
Group on Long-Term Cooperative Action Under the Convention. 

2009 Copenhagen Accord drafted at COP15 in Copenhagen. This was taken note of by the COP. Countries 
later submitted emissions reductions pledges or mitigation action pledges, all non-binding. 

2010 Cancun Agreements drafted and largely accepted by the COP, at COP16. 

2011 The Durban Platform for Enhanced Action drafted and accepted by the COP, at COP17. 

 
Rather recently (2011), the 195 Parties to the UN climate conference in Durban agreed on a 

roadmap, proposed by the EU, for drawing up a legal framework by 2015 for climate action by all 

countries. The Durban conference also agreed that there will be a second commitment period of the 

Kyoto Protocol; made operational the new Green Climate Fund for developing countries; and 

approved a series of measures which build on the progress made at last year’s Cancun conference 

[108].  

 

From a regional perspective, the EU is a leader in the climate change combat. The Europe 2020 

Strategy for smart, sustainable and inclusive growth includes five headline targets that set out where 

the EU should be in 2020. One of them relates to climate and energy. Member States have 

committed themselves to reducing GHG by 20%, increasing the share of renewables in the EU's 



             
 

 
 
3. Theoretical Fundamentals for Energy Planning with Electricity Storage and Sustainable Mobility   77 
 

energy mix to 20%, and achieving the 20% energy efficiency target by 2020. According to the 

European Commission, the EU will certainly meet two of those targets, but will not fulfil with its 

energy efficiency goal [109]. 

The European Commission presented recently its “Analysis of options beyond 20% GHG emission 

reductions: Member State results” [110]. The Commission’s communication explored the options, 

and related costs and benefits, for moving towards a 30% reduction.  The Commission advocates 

that reaching the 20% GHG emissions reductions target and the 20% renewables target by 2020, has 

lower costs than originally foreseen. In fact, the costs for energy users in the year 2020 have fallen 

to an estimated €48 billion, or 0,3% of GDP, with further expansion of renewable energy 

accounting for a major part of this. The Commission considers that the 20% emissions reduction 

target is now less expensive than was assumed in 2008, which means that the 30% reduction 

scenario has turned out less expensive too. Getting 25% out of 30% reductions domestically, by 

2020, is now estimated to cost around €70 billion, without taking into account the indirect economic 

benefits of accelerated technology innovations, increased energy security or reduced air pollution 

[110]. 

In a complementary way, the European Commission has recently proposed the Europe 2020 

flagship initiative for a resource-efficient Europe and is now putting forward a series of long-term 

policies on transport, energy and climate change. The European Commission in [109] has set out 

key elements that should shape the EU's climate action, road to a competitive low carbon economy 

by 2050. The European Council has also reconfirmed (in February 2011) the EU objective of 

reducing GHG emissions by 80-95%, by 2050, compared to 1990. 

 

3.2.3 Sector Analysis  

Emissions fall into four group of sectors: Electricity and Heat; Industry (with Oil and Gas, Steel and 

Iron, Cement, and Chemicals); consumer-related sectors (Buildings, Transport and Waste); and 

land-use related sectors (Forestry and Agriculture). The European Commission has drawn a sector 

analysis for a low carbon economy, according to the next table [109]. 
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Table 5 - Sector GHG reductions  

GHG reductions compared to 1990 2005 2030 2050 

Total -7% -40 to -44% -79 to -82% 

Sectors    

Power (CO2) -7% -54 to -68% -93 to -99% 

Industry (CO2) -20% -34 to -40% -83 to -87% 

Transport (including aviation CO2, 
excluding maritime) 

+30% +20 to -9% -54 to -67% 

Residential and services (CO2) -12% -37 to -53% -88 to -91% 

Agriculture (non-CO2) -20% -36 to -37% -42 to -49% 

Other non-CO2 emissions -30% -72 to -73% -70 to -78% 

 
According to IEA, the electricity and heat generation, and transport produced nearly two-thirds of 

global CO2 emissions in 2009, as shown in the next figure.  

 
* Other includes commercial/public services, agriculture/forestry, fishing, energy industries other than electricity and 

heat generation, and other emissions not specified elsewhere. 

Fig. 17: World CO2 emissions by sector in 2009, adapted from [111] 
 

As observed from the previous figure, generation of electricity and heat is the largest producer of 

CO2 emissions, standing for 41% of the world’s emissions in 2009, even though the greening 

process is undergoing. The IEA also remembers that by 2035 the electricity demand will be 

approximately three-quarters higher than current demand [111]. This is explained by the rise of 

population and income in developing countries, as well as by the growing electrification of 

household, commercial and industry consumptions. When it comes to the supply side, renewable 

energy sources are expected to grow over the next 25 years, from the current 19% (in 2008).  
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What’s more, UNEP has presented a split of energy sources contributions among the energy supply, 

as depicted in the next figure. 

 

 
Fig. 18: Renewable energy share of global final energy consumption, in 2008, adapted from [112] 

  

Within renewable energy sources, hydropower stands for 3,2%, traditional biomass 13%, 

biomass/solar/geothermal/hot water heating 1,4%, and wind/solar/biomass/geothermal power 

generation accounts 0,7%. 

 

When it comes to the transport sector, according to the IEA this is the second-largest sector, 

accounting 23% of global CO2 emissions in 2009, with a 1,7% decrease from 2008 [111]. The next 

figure presents a breakdown of the transport emissions, by type of use. 
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Fig. 19: CO2 emissions from transport in 2008 and 2009 [111] 

 

The UNEP has also made a projection for carbon emissions from the transport sector, as presented 

below. 

 
Fig. 20: Total emissions and reductions under a green economy scenario (2050 G2), relative to Business-as-Usual 

scenarios (2050 BAU and 2050 BAU2) [112] 

 

In addition, the IEA foresaw a global demand increase for transport by about 40%, by 2035 [111]. 

The quoted study advocates that to tackle transport emissions, policy makers should consider 

measures to require improved vehicle efficiency, as well as encourage a shift from individual to 

public transport, together with a shift to low-carbon fuels, including electric/plug-in hybrid vehicles, 
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hydrogen vehicles and greater use of biofuels. This study emphasizes the need of complementary 

policies (e.g. emissions pricing), which would both reduce the environmental impact of transport 

and help reducing oil prices, bearing in mind demand projections. 

 

McKinsey & Company has identified major categories for abatement opportunities of GHG 

emissions, namely: energy efficiency; low carbon energy supply; terrestrial carbon (forestry and 

agriculture); and behavioural change [113].  

 

 
 

Fig. 21: Major categories of abatement opportunities [113] 

 

Furthermore, UNEP presented a green economy study, identifying sector measures and 

opportunities for a decarbonised growth, as observed underneath. 
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Fig. 22: Total emissions and reductions under a green economy scenario, relative to Business-as-Usual [112] 

 

In view of the previous analyses of UNEP, IEA and McKinsey & Company, a set of pathways is 

worth studying, for the energy systems “greening”, i.e.: renewable energy sources; energy 

efficiency; and sustainable mobility (e.g. EVs, efficient ICVs, biofuels and behavioural change). 

 

3.3 Economic and Financial Costs 

3.3.1 Carbon Economy  

As previously mentioned, the Kyoto Protocol established three mechanisms to lower the overall 

costs of achieving the emissions targets. The three Kyoto mechanisms are: 

1. The Clean Development Mechanism (CDM) defined in Article 12 provides for Annex I 

Parties to implement projects that reduce emissions in non-Annex I Parties, or absorb carbon 

through afforestation or reforestation activities, in return for certified emission reductions 

(CERs, tCERs and lCERs) and assists the host Parties in achieving sustainable development 

and contributing to the ultimate objective of the Convention. The CDM is supervised by the 

CDM Executive Board. 

2. The Joint Implementation (JI) basic principles are defined in Article 6 of the Kyoto 

Protocol. Under JI, an Annex I Party (with a commitment inscribed in Annex B of the Kyoto 

Protocol) may implement an emission-reducing project or a project that enhances removals 

by sinks in the territory of another Annex I Party (with a commitment inscribed in Annex B 

of the Kyoto Protocol) and count the resulting emission reduction units (ERUs) towards 

meeting its own Kyoto target. 
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3. Emissions Trading (ET), as set out in Article 17, provides for Annex I Parties to acquire 

units from other Annex I Parties. These units may be in the form of AAUs, removal units, 

ERUs, CERs, tCERs and lCERs.  

 

Carbon transactions are defined as purchase contracts whereby one party pays another party in 

return for GHG emissions reductions or for the right to release a given amount of GHG emissions, 

which the buyer can use to meet its compliance – or corporate citizenship – objectives concerning 

climate change mitigation. Payment is made using one or more of the following forms: cash, equity, 

debt, convertible debt or warrant, or in-kind contributions such as providing technologies to abate 

GHG emissions [85].  

 

There is a range of active programs to manage GHG emissions that establishes a market by setting a 

target (absolute cap or intensity target) and that allow mandated participants to trade emissions 

allowances in order to meet compliance requirements at the lowest possible cost. Various Emission 

Trading Schemes exist inside and outside the scope of the Kyoto Protocol. These trading schemes 

are part of the commitment of States or companies to reduce their GHG emission. The EU 

Emissions Trading System (EU ETS) continues to be the most prominent of these markets in terms 

of overall volume and financial value transacted, with compliance, risk management and arbitrage 

being its major drivers and spill-over effects being felt in project-based and other allowance markets 

[114] . 

 

The EU ETS has been established through binding legislation proposed by the European 

Commission and approved by the EU Member States and the European Parliament, being the first 

international trading system for CO2 emissions in the world. From the start of 2007 the EU ETS 

applies not only to the 27 EU Member States, but also the other three members of the European 

Economic Area – Norway, Iceland and Liechtenstein [115].  

The EU ETS is based on six fundamental principles. 

 It is a “cap-and-trade” system; 

 Its initial focus is on CO2 from non-renewable power plants and big industrial emitters;  

 Implementation is taking place in phases, with periodic reviews and opportunities for 

expansion to other gases and sectors; 

 Allocation plans for emission allowances are decided periodically; 

 It includes a strong compliance framework; 
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 The market is EU-wide but taps emission reduction opportunities in the rest of the world 

through the use of the CDM and JI, and provides links with compatible systems in third 

countries [107]. 

 

The EU ETS is a “cap and trade” system, that is to say it caps the overall level of emissions allowed 

but, within that limit, allows participants in the system to buy and sell allowances as they require. 

These allowances are the trading “currency” of the system. One allowance gives the holder the right 

to emit one tonne of CO2. The cap on the total number of allowances is what actually creates 

scarcity in the market. At the end of each year, installations should surrender allowances equivalent 

to their emissions. Companies that keep their emissions below the level of their allowances can sell 

their excess allowances. Those facing difficulty in keeping their emissions in line with their 

allowances, have a choice between taking measures to reduce their own emissions - such as 

investing in rather efficient technology or using less carbon-intensive energy sources - or buying the 

extra allowances they need in the market, or a combination of the two. Such choices are likely to be 

determined by relative costs. In this way, emissions are reduced wherever it is most cost-effective to 

do so [115]. 

 

For phase I (2005-2007) and phase II (2008-2012) of EU ETS, Member States drew up national 

allocation plans (NAPs), which determined their total level of ETS emissions and how many 

emission allowances each installation in their country receives. The European Commission 

presented in 2008 a proposal for amending the Directive 2003/87/EC (that establishes the EU ETS), 

which was published on June 5th 2009. The new allocation methodology in phase III brings bold 

differences, regarding the previous ones. Firstly, in phase III there will only be a Community-wide 

harmonised allocation method, in which auctioning should be the basic principle for allocation, and 

from 2013 the total number of allowances should decrease annually in a linear manner [116]. The 

starting point of this line is the average total quantity of allowances (phase II cap) to be issued by 

Member States for the 2008-12 period, adjusted to reflect the broadened scope of the system from 

2013. The linear factor by which the annual amount shall decrease is 1,74% in relation to the phase 

II cap [117]. The linear factor of 1,74% used to determine the phase III cap will continue to apply 

beyond the end of the trading period in 2020 and will determine the cap for the fourth trading period 

(2021 to 2028) and beyond. It may be reviewed by 2025 at the latest.  

 

This amendment to the Directive of the EU ETS has also obliged power producers to acquire all of 

their emissions allowances at auctions from 2013 onwards, at the market price. Transitional free 

allocation to installations should be provided through harmonised Community-wide rules, in order 
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to minimise distortions of competition with the Community. None of such rules should give 

incentives to increase emissions, ensuring that an increasing proportion of these allowances is 

auctioned. Allocations must be fixed prior to the trading period so as to enable the market to 

function properly [117]. 

 

 
 

Fig. 23: Distribution of allowances for EU ETS phases III and IV [118] 

 

This directive also provides a solidarity mechanism in order to help less affluent EU states with the 

transition to a low-carbon economy (the twelve "new" Member States and Greece and Portugal 

benefit from this solidarity mechanism). They will receive an increased amount of emissions 

permits to auction – i.e. 12% more than their actual share in overall EU GHG emissions – that will 

give them an opportunity of generating substantial revenues from selling allowances [119]. 

According to the European Commission/DG Climate Action, the allocation process starts with the 

Community-wide and fully harmonised Implementing Measures (CIMs) [116]. Based on the CIMs, 

the Competent Authorities calculate the preliminary annual allocation on a sub-installation level and 

each Member State submits to the EC the list of all incumbent installations – covered by the ETS 

Directive within its territory – and any free allocation to each installation. This list is called 

National Implementation Measures (NIMs).  

 

According to the European Commission, the auction format will be a single-round, sealed bid, 

uniform price auction [120]. During a single bidding window of the auction, bidders can place any 



             
 

 
 
3. Theoretical Fundamentals for Energy Planning with Electricity Storage and Sustainable Mobility   86 
 

number of bids, each specifying the number of allowances they would like to buy at a given price. 

Directly following the closure of the bidding window, the auction platform will determine and 

publish the clearing price, at which demand for allowances equals the number of allowances offered 

for sale in the concerned auction. Successful bidders will be the ones who have placed bids for 

allowances at or above the clearing price. All successful bidders will pay the same price, regardless 

the price they specified in their bids.  

The Auctioning Regulation provides for allowances to be auctioned in the form of spot products, 

which means delivery within a maximum of five working days after the auction. Spot products have 

been chosen for their simplicity and because, unlike futures, they do not lock-in the trading of the 

auctioned allowances to the auction platform(s), which could have a potential negative impact on 

competition between trading places in the secondary market [121]. 

In order to limit the impact of auctions on the secondary market, the auctions will be relatively 

frequent. The common auction platform will hold auctions, at least weekly, for EUAs. According to 

Zapfel, the auctioning platform must be a Regulated Market, in the meaning of the Markets in 

Financial Instruments Directive (MiFID) and should be established as a common auction platform 

(24 Member States will make use of it, except Germany, Poland and United Kingdom) [122]. When 

it comes to auctions predictability, annual volumes will be determined in the Regulation and the 

auction calendar will be fixed about a year in advance. 

One should emphasize that the auctions revenues go directly to Member States and 50% of 

revenues from auctioning should be used for climate related purposes. For instance, Portugal’s 

share among the EU ETS is around 1,72%, which leads to €187 million per year of revenues, at 

2011’s prices. 

 

Regarding market performance, large scale auctions mean a major change for the daily operations 

of the market. For comparison, the EU ETS auctioning encloses 1 billion allowances per year and in 

2010 the secondary market volume was around 5,5 billion allowances. Therefore, auctioning will 

work if the clearing price mirrors the price in the secondary market [122]. 

The secondary markets operate carbon allowances derived from the primary market, such as EUA, 

CER and ERU, traded in major markets like ECX, BlueNext, EEX and GreenX. The secondary 

markets can trade allowances as spot, futures, organized and over-the-counter (OTC). Therefore, the 

generation companies should define adequate hedging strategies, such as a “single-shot” bid 

(acquiring the total amount of required allowances), sequential transactions according to needs 

(weekly or monthly) or a diversified strategy by combining auctions and futures (to purchase not 

only short-run allowances but also mid-run products) [123]. 
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3.3.2 Power Generation Costs 

Drivers for Costs 

The life cycle cost of electricity generation is usually defined as the discounted lifetime cost of 

ownership of using a generation asset, converted into an equivalent unit cost of generation [124]. 

There are two main components of life cycle costs:  

 Investment (or capital) costs of bringing the asset to a point of operation. These are usually 

called Capital Expenditures (CAPEX). The capital cost when excluding the financing terms, 

is usually called “overnight cost”. 

 Operation Costs, including the fixed costs (of keeping the plant available to generate) and 

the variable of costs of operation. These are usually called Operation Expenditures (OPEX). 

 

Capital Costs 

In power generation projects, the time value of money (discounting) and the discount rate are 

critical, since these are usually long-life capital intensive projects, with high operation costs [125]. 

According to NREL, basically, there are two categories of methodologies to calculate the capital 

costs of power generating assets, namely: discounted cash-flow analyses; and recovery factor 

analyses [126].  

The discounted cash-flow (DCF) methodology provides the annual estimation of revenues, 

expenses, tax obligations or benefits, and repayments to all capital providers. These annual net cash 

flows are discounted to a single net present value (NPV) and internal rate of return (IRR).  

The recovery factor methodology replaces the year-by-year free cash flow estimates of the discounted 

cash-flow analysis, by converting capital costs to an annual figure, which estimates tax benefits or 

obligations and repayments to all capital providers, over the project life. Therefore, the annual 

capital cost is calculated by multiplying the initial investment by the recovery factor. A number of 

alternative methodologies fall into the recovery factor analysis category, such as: capital recovery 

factor (CRF); fixed-charge rate (FCR); and Economic Carrying-Charge Rate (ECCR). 

The CRF converts a present value into a stream of equal annual payments over a specified time, at a 

discount rate (interest). The CRF is a value between 0 and 1 designed to calculate the annual cost 

required to fully amortize an investment over a specified period [125], [126].  

According to Kahn, the FCR is a fraction, between 0 and 1, which expresses the sum of annual 

requirements for return, taxes and depreciation (and, in some cases, other fixed overhead costs) 

[127]. Thus, the annual return requirements consolidate debt and equity returns, into a single figure 

(like a weighted average cost of capital). The FCR is multiplied by the project’s total installed cost, 

in order to find the revenue requirement, attributable to the fixed costs [126]. 
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When it comes to the ECCR methodology, it gathers all costs related to a new unit, including: 

depreciation of and return on the initial investment; property taxes; and fixed and maintenance costs 

during the unit’s life [128]. As opposition to the FCR, the ECCR is used specifically to compute the 

cost of energy of a project, in the first year. According to Kahn and NREL, the ECCR methodology 

generates a stream of payments that increase at a constant rate, since the year-one value is escalated 

by an inflation rate, in order to approximate the cost of market entry over time [126], [127].  

The next table summarizes the described methodologies for the capital cost calculation, including 

also other investment analysis tools (simple payback and profitability index method). 

 
Table 6 – Summary of capital cost calculation methodologies [126] 

Methodology Description Calculation 

Discounted cash-flow 

Discounts to present value the 
estimated annual cash flows to equity 
investors; provides either before-tax 
or after-tax results. 

Initial equity investment plus net 
present value of free cash flow to 
equity over the project life; internal 
rate of return of investment and cash 
flows for a specified period. 

Capital recovery factor 

Amortizes an investment into a 
stream of equal annual payments; 
provides pretax results; also called 
“annuity method”. 

Sums weighted average cost of 
capital and depreciation annuity. 

Fixed-charge rate 

Calculates the portion of a project’s 
year-one revenue requirement, 
attributable to fixed costs; provides 
after-tax results. 

Sums annual weighted average cost 
of capital, tax, depreciation, and 
fixed overhead. 

Economic carrying-charge rate 

Amortizes all fixed costs to produce a 
stream of annual payments that 
increase at a constant rate; provides 
after-tax results. 

Sums year-one weighted average 
cost of capital, tax, depreciation, and 
fixed overhead to derive year-one 
cost of energy. 

Simple payback 

Estimates the number of years 
necessary to recover an initial equity 
investment; provides before-tax 
results. 

Initial equity investment/annualized 
cash flow to equity. 

Profitability index method 
Indicates the efficiency of invested 
capital; used to rank projects based on 
net present value per money invested. 

Net present value /total installed 
cost. 

 

The capital costs of power plants enclose the next set of components: 

 The main plant and equipment package, often referred as engineering, procurement and 

construction (EPC) price. 

 Infrastructure/connection costs, including power, fuel and cooling system (these could also 

be included in the EPC price).  

 Development costs, including permitting, advisory services, land options/purchase.  

 Interest and funding cost during construction.  
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As stated by Mott MacDonald, market conditions can have a key impact on capital costs of power 

plants, taking into consideration EPC prices for the main mature technologies [124]. The next figure 

shows the trend of EPC prices over time. 

 
Fig. 24: EPC prices over time [124] 

 

It is possible to compare the power generation technologies, according to their capital costs. Mott 

MacDonald presented, in [124], the next power technologies hierarchy in terms of capital costs: 

nuclear is more expensive than coal; coal is more expensive than oil fired plant; fired boiler-steam 

plant is more expensive that combined cycle gas turbine (CCGT); and CCGT costs some 50% more 

than an equivalent open cycle gas turbine. Regarding renewable energy sources, biomass 

combustion based plant may be seen as an expensive version of a coal plant. For wind power, 

offshore projects have higher capital costs, owing to more complex foundations, assembly and 

electrical cable connection to shore. 

The capital costs differences among generation technologies are led by a combination of the 

complexity of the technology and its energy density. Energy technologies that generate more energy 

per square metre, usually need less material inputs than those with lower energy densities. 

Furthermore, technologies with complex designs and production processes, often have higher 

capital costs per installed power, than less sophisticated technologies. In addition, there are other 

characteristics that influence the capital cost, such as the fuel and residue handling requirements, 

and control and safety systems [124]. 

 

The main costs drivers for mature power technologies are market conditions and commodity prices. 

These technologies are usually called nth of a kind (NOAK), whereas the units still at a learning 

stage are called first of a kind (FOAK). Consequently, FOAK encloses additional risks than NOAK, 
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related to the implementation of new technologies, new construction techniques and supply chain 

management. Traditionally, these risks are carried by the original equipment manufacturer (OEM), 

the EPC contractor and the developer.  

According to Mott MacDonald, the FOAK EPC comprises four elements [124]: 

 the base cost of build (i.e. cost of equipment and construction); 

 a FOAK premium, reflecting the OEM and contractor’s expectations of additional costs of 

undertaking the first projects;  

 the OEM and contractors’ risk premium, which provides a contingency;  

 the OEM’s and contractor’s profit. 

 

When there’s still little track record on a given new technology, the FOAK premium can be high. 

As opposition, for a NOAK project the EPC prices will have no FOAK premium and minimal, if 

any, OEM/Contractor’s contingency. The next figures present the EPC prices for FOAK and 

NOAK plants, ordered in 2010. 

 
Fig. 25: EPC prices for FOAK plants, ordered in 2010 [124] 

 



             
 

 
 
3. Theoretical Fundamentals for Energy Planning with Electricity Storage and Sustainable Mobility   91 
 

 
Fig. 26: EPC prices for NOAK plants, ordered in 2010 [124] 

 

Operation Costs 

Within the operation costs, there are some specific costs that include: 

 Operating labour. 

 Planned and unplanned maintenance (additional labour, spares and consumables). 

 Through life (time dependent) capital maintenance. 

 Property taxes (rates), insurance and network use of system charges.  

 

Concerning the variable costs of operation, these include fuel, carbon, output related repair and 

maintenance and residue disposal and treatment. In this thesis, the carbon costs are treated 

separately (in section 4.3.3.2), allowing also a cost-based environmental assessment of emissions 

from power generation.  Fuel costs are determined by the type of fuel, heat rate and fuel prices. 

Regarding repair and maintenance costs, these tend to be related to the plant type, fuel used and 

operating regime. Finally, residue disposal and treatment are mostly influenced by the fuel used and 

compliance requirement, regarding residues. 

Power plants can be categorised either as being expensive machines for converting free or low cost 

energy into electricity (e.g. renewable energy sources), or low cost engines for converting expensive 

fuels into electricity (i.e. fossil fuels). For the expensive fuel converters, the major cost drivers are 

the efficiency of fuel conversion and the fuel price [124]. 

 

Concerning renewable energy sources, the life cycle cost of the projects is dominated by capital 

costs, rather than operation expenditures. However, the annual fixed and variable costs also impact 

a project’s economics. According to NREL, the annual operations cost of a renewable energy unit 

includes: project management; insurance; property taxes; permit maintenance; site maintenance; 
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land lease or royalty payments; and others [126]. Since most renewable energy sources are still 

FOAK technologies, generally these are given incentives that take many forms: tax credits and 

accelerated depreciation deductions; production incentives; rebates; and grants (both taxable and 

non-taxable). Traditionally, renewable energy facilities receive specific feed-in-tariffs (FIT). It is 

possible to find out wide FIT mechanisms in Europe and North America, such as the generation-

cost models adopted in Germany, the Netherlands, Ontario (Canada), Vermont (US), Florida (US) 

[126], and also Spain and Portugal. 

 

Regarding non-renewable technologies, the life cycle cost of energy is dominated by fixed and 

variable costs. Within variable costs, fuel costs are linked to the fuel consumption (which depends 

on the plant efficiency and power output in each period of time) and to fuel price. Generally, the 

functions that model these costs are non-continuous and non-convex. Nonetheless, it is common to 

approximate those costs with polynomial functions. 

Additionally, one should also consider the shut-down and start-up costs, which have an economic 

impact due to: fuel waste; extra maintenance; and additional feed water and energy for heating. 

According to Viana, the start-up and shut-down costs are also unpleasant from a social, technical 

and environmental perspective, since they are stressful to operators, reduce the effective life of the 

generating units (owing to heating and cooling cycle, pressurisation and decompression of boilers, 

etc.) and the GHG emissions increase during the transient period of start-up and shut-down [129]. 

Usually, shut-down costs are significantly lower than start-up costs. 

 

Bearing in mind the referred fuel, start-up and shut-down costs, the unit commitment and economic 

dispatch (UCED) become a critical problem, when dealing with the identification of operation costs 

and their impact on energy planning. Before tackling the economic dispatch problem, the unit 

commitment problem should be solved, because it is necessary to know - in advance - which are the 

units that will be operating in the interval under analysis, in order to proceed to their output 

(electricity generation/interval) set up by the economic dispatch model. The unit commitment is a 

crucial sub-problem for scheduling generation units to be “on” or “off”, during each interval of the 

scheduling period. This problem has a set of constraints, such as: meet the demand; fulfill minimum 

value of spinning reserve; and fulfill minimum and maximum limits of the unit.  

The UCED problem has been studied for long time, moving from simple calculations to rather 

sophisticated methods [130]. There is a set of available methods for UCED, which can be grouped 

as follows: extensive enumeration; priority list (merit order scheduling); dynamic programming and 

its variants; Lagrangian relaxation; branch-and-bound method; linear programming; expert 

systems/artificial neural networks; simulated annealing; and genetic algorithms [131].  
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In section  4.3.3.3 a more detailed description is provided on the developed algorithm for unit 

commitment and economic dispatch used in this research. 

 

3.3.3 Costs of Centralized Electricity Storage  

Cost structure of Pumped Hydro Storage  

The overall cost of a project is a decisive factor, thus the selection of the appropriate storage 

technology will be affected by capital cost. The following figure depicts the storage technologies’ 

cost per unit energy versus cost per unit power. 

 

 
Fig. 27: Storage technologies’ cost per unit energy vs. cost per unit power [132] 

 

As mentioned in section 2.2, pumped hydro storage is the chosen technology to study the 

centralized storage in this work, taking into account its benefits (in terms of costs, emissions and 

maturity), for energy management in isolated systems. Pumped hydro storage is a mature 

technology with no experience curve efficiency expectations. According to the IEA, the typical 

capital cost breakdown for the pumped hydro storage facility is the following [23]: 

 Dam: 30% 

 Chanel: 21% 

 Generator: 15% 

 Civil Engineering: 9% 

 Others: 25% 

 

Pumped hydro storage facilities are long-run investments, with high initial capital costs and low 

operation and maintenance costs. A pioneering pumped hydro storage plant, with the new variable 
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speed pumps, was installed in Thuringia, Germany, in April 2004. The Goldisthal plant is the 

largest pumped storage plant in Germany, with a total installed capacity of 1 060 MW (with four 

pumps from Voith Siemens Hydro, of which two are variable speed pumps). This plant took six 

years to build and had a capital cost of €620 million, owned and operated by Vattenfall. More 

recently (October 2009), Alstom and Axpo AG signed a €178 million contract, to install four 250 

MW variable speed pumps in eastern Switzerland, by 2015. In the same year, Alstom had also 

signed a €125 million deal to supply four 157 MW variable speed pumps, for the new pumped 

hydro storage facility Nant de Drance, in Switzerland [133]. 

 

Regarding operation costs, Rangoni stated that a pumped hydro storage facility gets enough market 

margin (to cover its fixed costs), if its electricity selling price is at least 1,4 times higher than the 

purchase price, owing to the electricity losses involved in pumping [7]. For example, the recent 

Goldisthal pumped storage facility buys electricity (for pumping), during off-peak hours, at 20 

€/MWh, having a selling price, during peak periods, of 50 €/MWh, resulting in a 30 €/MWh gross 

margin. The equivalent annual capital costs (amortized during 30 years) plus the variable costs 

account for 17 €/MWh, which leads to 13 €/MWh of profits [133]. 

However, for a specific isolated system, accurate costs estimations are necessary, taking into 

account the storage installations details. In addition, the specific costs of the electro-mechanical 

solution must be properly identified for this purpose. 

 

3.3.4 Costs of Electric Mobility 

Cost structure 

Taking into account the previously described EM infrastructure, for capital cost analysis, the 

existence of an infrastructure for smart metering would be advisable (in line with EC’s guidelines 

for advanced metering), in order to allow two-way remote communication for control/management 

and billing purposes. Therefore, the additional infrastructure components, urged by EM, are [71], 

[134], [79]:  

 EM Network Management tool (hosted at the DSO);  

 EM Business and Operations Management tool (hosted at the aggregator);  

 Smart Payment System (hosted at the aggregator);  

 CP (installed by the certified CP Operator).  

 

The next figure presents the three-layer architecture of a traditional power system with the required 

tools for the EM. Basically, one has the Control and Management Layer, the Power System Layer 
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and the Infrastructure Layer, gathering the Advanced Meter Infrastructure (AMI), the CP and the 

EV.  

 

 
Fig. 28: Three-layer architecture of a power system with EM requirements 

 

Concerning the CP, the EM system is likely to require one public CP for one EV [71].  For instance, 

the EM rollout may represent between $80 billion and $180 billion in the US, over the next two 

decades, with the cost of CP technologies ranging from $1 000 to $10 000 (costs in US and 

Europe). 

 

When it comes to the operation costs of EM, the UK’s Department for Transport stated that EVs 

and PHEVs, besides benefiting from the lower carbon content of their energy, also benefit from the 

lower cost of electricity compared to fossil fuels [65]. The referred report emphasized that the 

energy cost of charging an EV using off-peak electricity is roughly one seventh the cost of fuelling 

a corresponding ICV. Nonetheless, one should include the cost of battery depreciation among the 

EVs operation costs, in order to make fair comparisons. The following figure presents a comparison 

between the operation costs of an EV and ICV, over time. 
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Fig. 29: Comparison between the running costs of an EV and ICV [65] 
 

According to the quoted work, the EVs will be competitive with the ICVs between 2015 and 2026 

(overlap area), depending on the relative price to consumers of batteries, electricity and fossil fuels.  

Concerning the electricity purchase costs for EVs charging, there are already some dedicated tariff 

regimes. For example, the Californian utility Pacific Gas & Electricity Company (PG&E) offers a 

large difference between peak load and off-peak load rates for EVs charging. In summer, the off-

peak rate is 5,6 c$/kWh, compared to 28,0 c$/kWh at peak times [135]. DTE Energy has also a 

special regime for EVs’ users, with a 7,7 c$/kWh rate at off-peak periods and 18,2 c$/kWh at peak 

load period [136]. Another US utility, San Diego Gas & Electric (SDGE), presents a wider rate 

regime for EVs, having super off-peak (14,5 c$/kWh), off-peak (16,7 c$/kWh) and peak (25,8 

c$/kWh) [137]. 

 

In order to foster the adoption of EVs, a set of public funding initiatives have been raised. This is 

justified because usually utilities are not allowed to add the cost of chargers to their rate base, thus, 

the EM investment would cut their profits. In those circumstances, the EM adoption would lead to 

costs pass-through to the end users, which would make EVs less attractive as an alternative to 

gasoline-powered vehicles.  

The next table summarizes the current public stimulus for EM in several countries. 
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Table 7 – EM stimulus [65], [138] 

EM funding 

US 

- The Department of Energy awarded $3.4bn for the development of the smart grid. 
$8.1billion was allocated to the smart grid from the public and private sectors combined. 

- Business owners can receive a tax credit of up to half the cost of EV charging equipment 
installation through the federal Alternative Fuel Vehicle Refuelling Property Credit, which 
was expanded in 2009 to a maximum of $50 000. 

- EV charging equipment manufacturers can receive the tax credit if the refuelling property is 
acquired by a tax-exempt organization, governmental unit, or a foreign person or entity. 

- DTE Energy has launched a program, in which the first 2 500 customers who purchase a 
plug-in vehicle and enrol in the EV rate, will receive a separately-metered charging station. 

Portugal 

- Private customers buying one of the first five thousand electric cars, from 2010, will be 
entitled to an incentive of €5 000. 

- Incentives for buying an EV may be as high as €6 500 if the bought EV is to replace an 
end-of-life vehicle. 

- The purchase of an EV will entitle the buyer to Income Tax relief (for individuals) and 
Corporation Tax relief (for companies). 

- EVs are exempt from both ISV (Vehicle Tax) and IUC (Single Circulation Tax). 

Norway 

- EVs exempt from car registration tax. For a B class car the registration tax is around €7 
500. 

- VAT (25%) does not apply to EVs. EVs are not subject to the annual car tax of €345.  
- EVs do not have to pay road tolls in Oslo.  
- EVs qualify for free parking which can provide annual savings of around €2 000 - €4 000.  
- EVs are permitted to use bus lanes. 

Denmark - EVs do not pay registration tax. EVs are exempt from annual car tax and qualify for free 
parking. 

Sweden - Low or zero carbon emission vehicles get a subsidy of 10 000 SEK (€2 500). 

Netherlands - EVs in the Netherlands are exempted from car registration tax. 

Belgium - Belgian vehicles which emit less than 105g CO2/km will have a €4 100 reduction in 
registration tax. 

Switzerland - Individual cantons provide their own EV incentives. 

Germany - Germany is currently considering inner circle parking and congestion charge incentives for 
EVs similar to those in London. 

France 

- A French initiative named Eco-pastille, which began on January 1st 2008, sees that people 
who buy EVs receive €5 000 back.  

- Free parking spaces for EVs (equipped with charging apparatus) are also being reviewed.  
- The Government is committed to invest $1,5 billion in EV charging infrastructure. 

Greece 

- No road tax or car registration fees for EVs.  
- EVs are also free to drive in Athens when parts of it are restricted to other vehicles to 

reduce traffic congestion.  
- There is also free charging on the street of some cities. 

Italy - Certain cities in Italy have restricted driving within the city to EVs only.  
- Some cities also allow free parking and charging for EVs. 

Spain - For an EV bought in Spain €6 000 or 15% of the price of the vehicle will be returned to the 
customer. 

Israel 
- The Israeli government is providing tax incentives to help Project Better Place achieve its 

goals.  
- It taxes petrol cars at 72% while EVs are only taxed at 10%. 

United Kingdom - A $46 million fund was established for a network of EV charging stations including more 
than 11 000 stations to be installed in London by 2012. 
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3.3.5 Costs of Energy Efficiency Measures 

Measures for the Power System  

The European Commission has presented its Energy Efficiency Plan, to be adopted by the Member 

States [139]. This plan sets a range of energy efficiency measures, namely: 

 Sustainable buildings: buildings with a “near zero-energy” performance level. In view of 

that, the Commission will present a legal instrument requiring that public authorities will 

refurbish at least 3% of their buildings each year.  

 Energy Performance contracting: under this performance-based form of purchasing, 

monetary savings from lower utility bills and maintenance costs that result from energy 

efficiency measures are used to cover part or all of the measures' investment costs. Energy 

Service Companies (ESCOs) deliver energy efficiency improvements, accepting financial 

risk by covering – or helping to finance – upfront investment costs and refinancing this 

through the savings achieved. 

 Tackling heat use in buildings: promote the use of district heating in the context of 

integrated urban planning. 

 Training: energy efficient building solutions are often technically demanding. Therefore, it 

is necessary to deliver appropriate training for architects, engineers, auditors, craftsmen, 

technicians and installers, involved in refurbishment.  

 

The Portuguese Action Plan for Energy Efficiency (following Directive 2006/32/EC) was raised in 

2008 and aimed to reduce business-as-usual final energy consumption in 10%, by 2015. This plan 

designed 12 programs, tackling energy consumption by households, services, industry, public 

administration and transport [140]. The referred plan was reviewed in 2012 and the XIX Portuguese 

Government announced a new energy efficiency target, which consists of reducing the final energy 

consumption in 25% by 2020 [141]. To support Portugal’s energy policies review (energy 

efficiency and renewable energy sources), a study was provided by the A.T. Kearney/INESC Porto 

consortium [64]. Moreover, the Portuguese Regulator for Energy Services (ERSE) launched a set of 

electricity efficiency measures, to put in place from 2011 to 2032, with 2 244 GWh of potential 

savings over the period [142]. This plan encloses some relevant measures, such as: 

 Demand Response; 

 Smart Metering; 

 Energy Auditing; 

 Efficient equipments; 

 Load control and automated shedding. 
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Demand response is, indeed, a concrete measure for energy economy. According to US Department 

of Energy, demand response is defined as the “changes in electric usage by end-use customers from 

their normal consumption patterns in response to changes in the price of electricity over time, or to 

incentive payments designed to induce lower electricity use at times of high wholesale market 

prices or when system reliability is jeopardized” [143]. What’s more, the Federal Energy 

Regulatory Commission (FERC) highlighted the relevance of demand response, as the ability of 

customers to respond to either a reliability trigger or a price trigger, from their utility operator, in 

order to decrease their power consumption [144]. As opposition to peak clipping (in which the 

actions are focused on a limited period of hours of the year), demand response actions are applied to 

any part of the load profile, not just to the period of peak usage. Demand response is, as a result, 

dependent on the installation of smart appliances that can rapidly respond (near real‐time) to the 

utility’s signals and, in addition, requires the adoption of smart meters with in-house displays or 

other options for home-area-network (e.g. energy consumption available in the internet, smart 

phone or TV).  

A Staff Report for FERC discusses five different demand response programs including [145], [146]: 

 Dynamic pricing with enabling technology; 

 Direct load control; 

 Interruptible/curtailable rates; 

 Emergency demand response; 

 Capacity market programs; 

 Demand bidding/buyback programs; 

 Ancillary services market programs. 

 

Additionally, FERC proposes a National Action Plan on Demand Response, aiming to maximize 

the cost‐effectiveness of the measures, by enabling price‐responsiveness and facilitating market 

penetration of newly smart grid technologies and programs [144].  

In what regards to smart grids deliverables, VaasaETT conducted a large pool of pilot projects on 

smart metering, concluding that informative billing can deliver 1 to 12% of energy savings [147]. 

Moreover, the IEA foresaw that feeding back energy end use information can lead to roughly 10% 

of average energy savings [148].  
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Measures for the Transport Sector  

The European Commission, in its “Roadmap for building a competitive low-carbon Europe by 

2050”, emphasized that technological innovation can help the transition to a more efficient and 

sustainable transport system, by acting on three major factors: vehicle efficiency through new 

engines, materials and design; cleaner energy use through new fuels and propulsion systems; and 

better use of networks and safer and more secure operation through information and communication 

systems [109]. In addition, the European Commission has already launched initiatives to make 

transport greener and more sustainable, as follows [149]:  

 Internalise the external costs of transport; 

 Revise the heavy goods vehicles charging directive, to encourage differentiated charging 

systems; 

 Tackle local and regional pollution; 

 Limit emissions from new vehicles; 

 Limit noise pollution; 

 Congestion management. 

 

In parallel, the “Action Plan on Urban Mobility” provides a framework for 20 EU-level actions 

[150]. In a rather detailed way, McKinsey & Company [151] and APDC [152] identified a set of 

opportunities to reduce energy consumption and carbon emissions from transport sector, such as: 

 Efficient Internal Combustion Vehicles; 

 Biofuels; 

 Traffic improvement; 

 Driving behaviour change; 

 Reduce distance driven; 

 Initiative “pay-as-you-emit”; 

 Intermodality; 

 Car sharing/pooling; 

 Virtualization (i.e. adoption of video-conferences and e-government) 

 Freight logistics. 

 

Investment on Energy Efficiency  

In the EU-level, energy efficiency is part of the 2020 Strategy for smart, sustainable and inclusive 

growth, and of the transition to a resource efficient economy. The EU has set itself a target, for 

2020, of saving 20% of its primary energy consumption compared to projections (or 20% GHG 
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emissions reductions, compared to 1990 levels). It will be pursued with other policy actions under 

the Flagship Initiative for a Resource Efficient Europe [139]. 

Despite launching the 20% efficiency target, the EC has recently provided a technical analysis on 

moving towards a 30% reduction of GHG emissions, by 2020 [153]. In terms of investment needed, 

stepping-up to 25% domestic GHG emissions reductions (compared to 1990 and -13% compared to 

2005) would lead to an estimated cost of €70 billion. In the other hand, this 25% target would save 

an average of €20 billion in fuel costs, each year, over the period 2016-2020, compared to the 

reference scenario (20% GHG emissions reductions, compared to 1990 levels). Concerning the 30% 

reduction target, total costs are foreseen to encompass €82 billion (including the costs of the 

additional energy efficiency measures). 

In the US, the Department of Energy issued, in October 2009, 100 awards totalling $3.4 billion to 

stimulate the development of smart grids, including projects for demand response adoption, based 

on pricing concepts such as dynamic pricing [144]. For instance, demand response actions 

represented, in 2009, a cost of $3,6 billion [154]. 

In Portugal, the Action Plan for Energy Efficiency estimates that to achieve the 10% efficiency 

target, by 2015, will be required an annual investment of €30 million, over the period. The reviewed 

version of that plan has still lack of consolidated information, since the Portuguese General 

Directorate for Energy and Geology (DGEG) is currently (at the moment of the thesis writing) 

analysing the contributions collected, within the public consultancy period. Additionally, the 

electricity efficiency program of ERSE accounted €37 million, for projects submitted in the 2011-

2012 call. One should refer that the financing sources and models, for DGEG and ERSE initiatives, 

are different. 

Regarding sustainable mobility, APDC delivered the program Smart Portugal 2020, estimating 34% 

of CO2 emissions savings from the transport sector, by 2020 (comparing to the business-as-usual 

scenario) [152]. This sustainable mobility program would worth €1,2 billion. Sustainable mobility 

was also addressed by McKinsey & Company, which presented a study proposing 11 to 22% of 

carbon emissions savings by 2030, regarding 2006 level [113]. This abatement pathway would 

account, in 2030, €170 billion or €1 899 per vehicle. 

 

3.4 Adequacy of the Generation System 

3.4.1 Concepts of Adequacy and Security 

Before diving into a detailed description of reliability indices, it is useful to define and differentiate 

the concepts of adequacy and security. Generally, the concept of adequacy is considered to be the 

existence of enough facilities (generation units and transmission and distribution networks) to meet 
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the demand, being therefore associated to static conditions [155]. Adequacy is, as a result, “used to 

describe a system state in which the actual entry to and departure from that state is ignored and is 

thus defined as a steady-state condition”, as stated by Billinton and Allan, in [156].  

On the other hand, security is concerned to the ability of the system to respond to disturbances 

arising within the system. These disturbances include conditions causing local and broad effects, as 

well as the loss of major generation and transmission lines [155]. Typically (but not exclusively), 

security is related to the dynamic process that occurs when the system transits between one state 

and another state [156]. In this final state, both equality and inequality constraints are verified. 

According to Billinton and Allan, adequacy provides valuable input for decision making [156].  

Adequacy and security are, however, correlated.  That’s to say, a system with large amount of 

reserve capacity has a higher flexibility to react to unforeseen disturbances. On the other hand, 

when facing a power shortage, a given system with limited planning reserves can still be operated in 

a secure way, whereas a system with a larger reserve can be operated insecurely [157]. 

Bearing in mind the scope of the present research, an adequacy assessment will be conducted for 

reliability studies. 

 

3.4.2 Hierarchical levels of the system 

The most common approach for analysing a power system, is through the identification of its main 

functional zones, namely: generation systems; transmission systems; and distribution systems.  

Billinton presented the concept of hierarchical levels (HL), aiming to identify group functional 

zones of power systems [155]. The referred author set out three levels: 

 HL1: consists of generation facilities and their ability to satisfy the demand; 

 HL2: refers to the composite generation and transmission system, and its ability to deliver 

electricity to supply points; 

 HL3: refers to the complete system, gathering distribution and its ability to satisfy the 

capacity and energy demands of consumers (these studies are rather complex, owing to the 

scale of the problem). 

 

When it comes to the timeframe, the system operation challenges can be identified through the next 

layers: 

i. Long-term system security of supply: operational reserve required to the system; 

ii. Transmission grid development plan: future stability and security of the system, and 

integration areas; 
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iii. Intraday system and grid management: very high levels of renewable energy non-

dispatchable; 

iv. High generation intermittence.  

 

3.4.3 Reliability of Generating Capacity 

Theoretical Introduction 

The problem of defining the necessary amount of generating capacity is divided in two areas of 

study: static capacity requirements; and operating capacity requirements. The static capacity area 

performs a long-run assessment of the system requirements, being considered as the installed 

capacity that must be planned and built in advance. The static reserve must provide to the system 

enough capacity to handle outages, scheduled maintenance and load growth. According to this 

approach, adequacy is measured of both planned and installed capacity in terms of a percentage 

reserve. Nevertheless, this criterion has an important objection, since it analyses the power systems 

on the basis of peak load, regardless the specific characteristics of load and generating plants.  

The basic approach to evaluate the adequacy of a certain generation configuration consists in three 

parts: generation model; load model; and risk model. The generation and load models are combined 

(convolved) to form the appropriate risk model [156]. 

 

 

 

 

 

 
Fig. 30: Generating capacity reliability evaluation 

 

When it comes to the operating capacity area, it is concerned with short-term assessment of the 

actual required capacity to satisfy the demand. Basically, the major difference between static and 

operating capacity evaluation stands for the period time under analysis [156]. 

The integration of renewable energy sources has led to several impacts on the power systems 

operation, namely on security of supply, such as the required mobilization at peak load periods (due 

to lack of RES), and the response to sudden generation drops (owing to rapid changes in the 

resource). This (and other) drivers increase the need for operating reserve. Although deterministic 

approaches have very attractive characteristics (e.g. simple implementation, easy understanding, 

assessment and judgment), the perception of many planning engineers that past experience, in 

Generation Model Load Model 

Risk Model 
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addition to some known critical situations, is enough to assess system risk conditions is not valid. 

What’s more, past experience with renewable sources such as wind power is scarce. Yet the 

principles of some deterministic standards (e.g. ‘‘N-1” criterion) are useful [158]. Methodologies 

based on probability concepts are useful to assess the power systems performance, having been 

applied to generation and transmission capacity planning, operating reserve assessment, distribution 

systems, etc. Conventional probabilistic indices (described subsequently) are already widely used, 

and Well-Being Analysis has been built combining the deterministic perception with probability 

concepts [158].  

Chronological or sequential Monte Carlo simulation has been used for generating system well-being 

analysis. Matos et al. presented an application of chronological Monte Carlo simulation to evaluate 

the reserve requirements of generating systems, considering renewable energy sources. The referred 

work studied the behaviour of reliability indices (conventional and well-being), when a major 

portion of the energy sources is renewable (i.e. mainly hydro, wind and mini-hydro power sources) 

[158]. Sequential simulation identifies all chronological aspects, being capable to represent 

equipment aging process, time varying loads, and spatial and time correlations. According to the 

referred authors, chronological Monte Carlo simulation is very suitable owing to its flexibility, 

since it allows representing non-exponential residence times, meaningful when dealing with 

chronological processes. Additionally, chronological Monte Carlo simulation is an effective mean 

to adequately model and solve the difficulties to deal with renewable energy sources, their natural 

uncertainties (i.e. hydrologic inflow sequences, wind speed variations, etc.) and correlations.  

 

Generating Unit Unavailability 

In static capacity evaluation problems, the basic generating unit parameter to be used, is the 

probability of finding the unit on forced outage. This probability is known as Forced Outage Rate 

(FOR) and expressed as follows [156]. 

 

ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܷܽ݊ = ܴܱܨ = ܷ = ఒ
ఒାఓ

= ௥
௠ା௥

= ௥
்

= ௙
ఓ

= ∑[ௗ௢௪௡ ௧௜௠௘]
∑[ௗ௢௪௡ ௧௜௠௘]ା∑[௨௣ ௧௜௠௘]

            (3. 1) 
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  (3. 2)      
 

Where, 

 ;is the expected failure rate ߣ

 ;is the expected repair rate ߤ

m is the mean time to failure, which is equal to 1/ߣ; 
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r is the mean time to repair, which is equal to 1/ߤ; 

m + r is the mean time between failures, which is equal to T; 

f is the cycle frequency; 

T is the cycle time, which is equal to 1/f. 

 

The next figure presents the concepts of unavailability and availability for the two-state model. 

 
Fig. 31: Two-state model [156] 

 
 
Capacity Outage Probability Table 

The capacity outage probability table (COPT) is an array of capacity levels and the corresponding 

probabilities. The units can be combined applying probability concepts, and this methodology can 

be extended to build a useful recursive technique [159].  

As alternative to the classical recursive technique, one can find other methodologies for the COPT 

computation. In cases where the system is very large, the discrete distribution of system capacity 

outages can be approximated by a continuous distribution [160], which approaches the normal 

distribution as the system size increases. However, the results achieved with this methodology are 

less accurate comparing to the obtained using the recursive technique [161]. In addition, Schenk and 

Rau proposed a Fourier transform method in order to improve the accuracy of the continuous 

model, though it is only compared with the recursive technique when the system is sufficiently large 

[162]. This approach is especially inaccurate for systems with hydro units with low FOR [163]. 

Another alternative approach consists of transforming the unit capacity tables into the frequency 

domain through fast Fourier transforms and to convolve using a point by point multiplication. An 

inverse fast Fourier transform can be used to generate the final COPT [164]. This method is 

considerably faster than the direct recursive technique and leads to more accurate results than the 

Fourier transform method [156].  
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Conventional Reliability Indices  

The most common indices used for the assessment of generation adequacy are the Loss of Load 

Expectation (LOLE), the Loss of Energy Expectation (LOEE) and the Loss of Load Frequency 

(LOLF). The LOLE is the expected number of days (hours) in a specified period in which the daily 

peak load (hourly load) exceeds the available generating capacity. The LOEE is the expected 

unsupplied energy due to generating inadequacy and incorporates the severity of the deficiencies. 

The LOLF is the expected frequency of encountering a generation deficiency in a given period 

[165], [166].  

According to the literature, most electric power utilities adopt the LOLE index in their generation 

system planning. Although the broad use of LOLE, this index can barely recognize the difference 

between a small capacity shortage and a large one (it is focused on the loss of load). Nonetheless, 

the LOLE responds to the adequacy criterion purpose in this research, which is to indicate the 

capacity adequacy of a given generation configuration. The adoption of other indices could present 

worth collecting data, but would lead to redundant information, according to the purpose of this 

thesis. For this reason, LOLE is the adopted index for generation planning with several 

scenarios/alternatives. This takes place, for example, in France, Netherlands and Belgium [156], 

[167].  

 

LOLE 

For LOLE calculation, the generation model is convolved with the load model in order to produce 

the risk index. There is a wide range of load models, but the simplest (and widely used) is the daily 

peak load, in which the individual daily peak loads are arranged in descending order, to form the 

daily peak load variation curve. Alternatively, the model is named load duration curve, when the 

individual hourly loads are used. 

The loss of load index is then obtained by combining the COPT with load characteristics. It should 

be emphasized that a loss of load occurs when the capability of the generating capacity remaining in 

service is exceeded by the load level. For the case of LOLE index, the individual daily peak loads 

are combined with the COPT, to get the expected number of days in which the daily peak load will 

exceed the available capacity, in the specified period. 

In case of scheduled outages (i.e. periodic inspection and maintenance), the COPT won’t be 

constant throughout the period, therefore the modified capacity model is obtained by creating a new 

COPT for each capacity condition. The annual LOLE is divided into periods and is, as a result, 

calculated as the sum of individual LOLE, computed for each COPT (combined with the period 

load model). 
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Fig. 32: Approximate method for including maintenance, adapted from [156] 
 

According to Billinton and Allan, the most realistic approach to handle maintenance capacity, for 

LOLE calculation, is to combine the available units into a COPT applicable for the considered 

period [156]. Yet for maintenance considerations, the referred authors suggested that annual LOLE 

can be determined by three ways: 

 Monthly (or period) basis considering maintenance; 

 Annual basis neglecting maintenance; 

 Worst period basis. 

For the annual method neglecting the maintenance, a constant capacity level exists over the whole 

period. This assumption is justified because, typically, the year is divided into a peak load season 

and a light load season, and the maintenance is often planned for the latter period. Since the 

contribution of the light load season to the annual risk is usually low, the assumption of a constant 

capacity level is justified. 

 

Well-being Indices 

As stated previously, well-being analysis combines the deterministic perception with probability 

concepts, and provides additional characterization of the performance of the power system, by 

splitting the success states into healthy and marginal states, depending on whether or not a 

deterministic rule for reserve is satisfied. The specified value for secondary reserve or the largest 

available unit in the system, are typical thresholds used for this purpose. For instance, in the first 

case, the state is considered healthy if the margin between available generation and load is greater 

than the required secondary reserve [168]. 

Well-being analysis encompasses the next indices [169], [170], [171], [172]:  

Modified load characteristic 
 
Original load characteristic 

Peak Load 

Installed Capacity 

Reserve 
Capacity 

Capacity on maintenance 

Time load exceeded the indicated value 

Load 
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 EH - expected healthy hours, which is the expected number of hours in a period (e.g. year) 

the system will stay in healthy states;  

 EM - expected marginal hours, which is the expected number of hours in a period (e.g. year) 

the system will stay in marginal states;  

 FH and FM - expected frequency associated with healthy and marginal states, respectively; 

 DH and DM - expected duration of system residing in healthy and marginal states, 

respectively. The deterministic criterion used to differentiate between healthy and marginal 

states may be the specified value for the secondary reserve, but the loss of the largest 

available unit in the system can also be used. 

 

Chronological Monte Carlo simulation 

According to Peças Lopes et al., the algorithm associated with the chronological Monte Carlo 

simulation starts by defining – for each simulation of a specific year – the hourly load to be served 

by the system, and set up (through historical registers) the series of hourly wind availability and 

monthly hydro volumes that are used to estimate hydro power available capacity. Generation in 

special regime (biomass, biogas, solid waste, industrial waste, combined heat and power) is 

considered, as well as maintenance, which is assigned to the chronological periods where it is 

expected to occur. Over this chronological frame – that preserves the correlations between load, 

maintenance, wind and hydro – the times to failure and repair times of each individual generator are 

sampled, according to their statistical distributions and specific parameters (failure rate and mean 

repair time). This defines a number of success states, where the available power is sufficient to meet 

the load, and failure states that result from the unavailability of generation, due to the units’ failures 

or lack of natural resources, in a way that load cannot be supplied. In each failure state power not 

supplied is computed and chronology is, again, used to identify the information about the failure 

event duration. By repeating the simulation for a significant number of years, statistics of these 

indicators are obtained, leading to the performance indices [168]. 

 

Operating Reserve Assessment 

Grid operators have developed techniques for managing the variability and uncertainty of demand 

and conventional generation, in a system, by carrying operating reserves. The term “operating 

reserve” was defined in [173] as the “active power capacity that can be deployed to assist with 

generation and load balance and frequency control”. Systems also require reactive power reserve for 

voltage support and a long-term reserve in order to ensure system adequacy (as described 

afterwards). 
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Reserves may be classified by [173]: 

 the direction of their actions: an upward response (up-regulation) is required when there is 

less generation than load and can be secured from additional generating power or a decrease 

in participating loads; a downward response (down-regulation) is required when there is 

more generation than load and can be obtained from a drop in generating power or an 

increase in participating loads. 

 the required response time: fast response in order to arrest a frequency drop; slower response 

for reserve that replaces other reserve categories (a matter of minutes or tens of minutes); for 

longer time scales, there can be also reserve provision for additional reserves, balancing or 

supplemental or reserve, to counter forecast errors. 

 

A proposal for assessing the performance of the operating reserve was presented in [168] and [158], 

through the RESERVAS model. According to this model, at a certain period of time, minimum 

number of units will have to be dispatched to satisfy the forecasted load and the specified needs for 

primary and secondary reserve. In order to complete the operating reserve, units that could be 

available in less than one hour must be identified (tertiary reserve) [168]. 

In this model, the next power balance equation is set to assess the risk indices associated with the 

operating reserve. 

 

ܴை௉ா = ܴௌ + ்ܴ < ܮ∆ + ∆ܲௐ +  (3 .3)      ܩ∆
 

Where, ROPE refers to the operating reserve at period t, RS is the secondary reserve at period t, RT is 

the tertiary reserve at period t; ΔL stands for the short term load deviation at period t, ΔPW refers to 

the possible wind power capacity variation at period t, and ΔG represents the generating capacity 

variation due to forced outages at period t. 

The previous equation describes the risk of changes in the load, wind power capacity and generating 

outages not being properly covered by the amount of spinning reserve, and also by those generators 

that can be synchronized within 1 hour. From this comparison, risk indices like the ones mentioned 

for generation adequacy analysis can be evaluated [158], [168]. 
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3.5 Muticriteria Decision Aid  

3.5.1 Overview 

“Decision aiding is the activity of the person who, through the use of explicit but not necessarily 

completely formalized models, helps obtain elements of responses to the questions posed by a 

stakeholder of a decision process. These elements work towards clarifying the decision and usually 

recommending, or simply favouring, a behaviour that will increase the constituency between the 

evolution of the process and this stakeholder’s objectives and value system.” This definition was 

provided by Roy in [174].  A decision is related to the comparison of different points of view (some 

in favour and some against a given decision), which can be approximately defined as criteria. For 

many years this multicriteria nature of a decision was disregarded by the use of single-criterion 

methodologies. Nonetheless, for at least thirty years, a new look at decision problems has gained 

importance, by evaluating the pros and cons of several points of view. This methodology is 

generally named Multicriteria Decision Aid or Multicriteria Decision Analysis (MCDA). The basic 

principles of MCDA are very clear: a finite or infinite set of actions (alternatives, solutions, courses 

of action); at least two criteria; and at least one decision-maker [175], [176].   

The process of planning engineering systems (electricity, gas, water, communications, etc.) 

encompasses the formulation of a decision. In view of that, the system should be modelled and 

projected in order to be subject to a decision by the decision maker. The problem can be either 

operation-based or strategy-based, depending on the hierarchical level of the decision. Typically, 

operation problems seek to optimize the exploitation of a given resource, for performing a pre-

defined task. These problems have been previously evaluated by the decision makers, who have 

defined the tasks, resources and rules of the problem. Alternatively, in strategic planning the 

decision maker is actively involved and the problems are rather abstract, which requires the 

identification of objectives, criteria and alternatives. Therefore, identification of problem nature is 

fundamental for an adequate separation between operation optimization and decision aid [177].  

Decision aid requires that a particular stakeholder is identified as decision maker, who plays a 

critical role in the process evolution and is under his/her behalf that the decision aid is applied. 

Nevertheless, the decision maker might be a spokesperson of third parties. The decision aid is 

usually developed by the analyst, who should be a specialist and is on charge to build the model 

[174]. According to Chankong and Haimes, in [178], the MCDA starts with the decision maker’s 

perception of the need for change regarding the system about which he/she is committed. 

Afterwards, the decision situation will be diagnosed, by identifying the decision variables, 

alternatives and criteria. At the stage of the problem formulation, the vaguely stated criteria ought to 

be translated into an operational set of specific multiple criteria. Taking into consideration that the 
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alternatives must be compared, a set of attributes should be defined. These attributes – whose values 

can be obtained from the model or by subjective judgements – are used as benchmarks of the 

attainment degree of the criteria. 

After the problem formulation step, a well-tuned model should be built-up. A model is understood 

as a collection of key variables and their relationships, which together can comprehensively tackle 

the problem under analysis. One of the functions of the model is to generate alternative courses of 

action. The assessment and evaluation steps are finished when each alternative is evaluated relative 

to others, concerning a decision rule (or set of rules) used to rank the alternatives [178]. 

The following figure summarizes the MCDA process. 
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Fig. 33: Multicriteria decision process, adapted from [178] 

 
 
 
 
 
Concerning the types of multicriteria problems, Roy defined the next groups [179]: 

 Choice problems: when a simple choice must be made from a set of possible actions (or 

decision alternatives). 
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 Sorting problems: when actions must be sorted into classes or categories such as “definitely 

acceptable”, “possibly acceptable but needing more information”, and “definitely 

unacceptable”. 

 Ranking problems: when actions must be ranked according to some sort of preference order, 

which might not necessarily be complete. 

 Learning (descriptive) problems: when actions and their consequences must be described in 

a formalized manner so that decision makers can evaluate them. These are essentially 

learning problems, in which the decision maker aims to get a larger understanding of what 

may or may not be achievable. 

 

Belton and Stewart have added two more types of multicriteria problems [180]:  

 Design problems: these problems imply searching, identifying or creating new decision 

alternatives to meet the goals and aspirations identified through the MCDA process. Keeney 

endorsed this methodology in [181], through the concept of “value focused thinking”. 

 Portfolio problems: when a subset of alternatives must be chosen from a large set of 

possibilities, taking into consideration both the characteristics of the individual alternatives 

and the manner in which they interact, as well as the positive or negative synergies between 

them. 

 

3.5.2 MCDA Problems 

Taxonomy 

This thesis follows the taxonomy presented in [182], [183]  and [177], when it comes to the 

classification multi-objective/multi-attribute. 

These authors stated that decision aid problems can be classified into two categories: 

 Multi-attribute problems (MA); 

 Multi-objective problems (MO) 

The MA problems are usually enclosed to a number of predetermined alternatives. The alternatives 

have associated with them an achievement level of the attributes, based on which the final decision 

is made. The final selection of the alternative is made with the help of inter and intra-attribute 

comparisons. One the other hand, MO problems aim to compute the “best” alternative, by 

considering the various interactions within the design constraints which best satisfy the decision 

maker, by way of attaining some acceptable levels of a set of quantifiable objectives [182].  

The next figure sketches the MCDA classifications. 
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Fig. 34: Categories of MCDA problems 

 

Prior to characterizing MCDA problems, key concepts should be clarified. According to Chagkong 

and Haimes “a noninferior solution is one which is not dominated by any other feasible solution”. 

Yu provided, in [184], a generalized concept for nondominated (or noninferior) solutions, which is 

based on the domination structure. This structure is related to the decision maker’s preference, 

which determines how one alternative dominates another one [178].  

Thus, the next concepts can be presented, which will be useful in chapter 5 [178], [185], [176], 

[186]: 

 Dominated (inferior) alternative: a solution is dominated if and only if there exists another 

one that is better in at least one criterion, without being worse in any of the remaining 

criteria. 

 Efficient (nondominated, noninferior, Pareto optimal) alternative: a solution is efficient if 

and only if it is not dominated by any other feasible alternative. 

 Ideal: (non feasible) solution that joins up the individual optima; defined only in the 

attributes’ space. 

 

Multiobjective Problems 

The MO methods are characterized by: a set of quantifiable objectives; a set of well defines 

constraints; a process of obtaining some trade-off information, implicit or explicit, between the 

stated quantifiable objectives and also between stated or unstated non-quantifiable objectives. 

Hence, the MO decision aid is associated with design problems, as opposition of the selection 

problems tackled by MA [182]. 

A multiobjective problem can be formulated as following: 

Decision Problem 

Single Objective Multiple Objectives  

Optimization 

Ranking of 
alternatives 

Finite number of 
alternatives 
available? 

Multiattribute 
Decision Aid 

Multiobjective 
Decision Aid 

Yes No 
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max F(x) 

subject to:  

G(x) = 0 

H(x) ≤ 0 

x ≥ 0 

where, 

F(x) vector of objective functions; 

x vector of decision variables; 

G(x) set of equality constraints; 

H(x) set of inequality constraints. 

 

Solving a MO problem consists of finding its set of efficient solutions. According to Chankong and 

Haimes, in [178], efficient solutions can be found by methods based on a weighting characterization 

or based on ε-constraint characterizations. When it comes to MO decision aid, depending on the 

types of preference information elicited and the ways they are used, methodologies could be 

grouped as follows: methodologies that use some form of global preference; methodologies that 

require preference elicitation by weights, priorities, goals and ideals; and methodologies that require 

eliciting preference through trade-offs [178]. 

 

Multiattribute Problems 

In these problems, there is a finite set of predefined alternatives (discrete), namely A = {a1, a2,…, 

am}, where A is the finite set m of alternatives. The alternatives are assessed by a set of criteria C = 

{c1, c2,…, cn}, which reflects the decision maker’s concerns, and a set of attributes X = {x1,1, …, 

xm,n}. The attributes levels serve as yardstick by which the attainment degree of the criteria can be 

assessed. The values of the attributes for a given alternative are obtained from the model or through 

subjective judgements [176], [178]. 

 

A MA problem can be presented by means of a payoff matrix, which is depicted underneath. 
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Fig. 35: Payoff matrix of a MA problem 

 

Regarding the resolution of MA problems, the next tiers should be followed [176], [177]: 

1. Reduce the set of alternatives, A, to the efficient ones, by eliminating the dominated 

alternatives.  

2. Evaluate and make further selections from the set of efficient alternatives.  

In large and complex decision problems, this selection is eased by modelling or quantifying 

the decision maker’s values and preferences regarding the criteria.  

 

There is a wide range of methodological concepts for solving MA problems. The methods applied 

in MA problems can be grouped into the next categories (according to the ways the decision maker 

is involved, the kind of information being given to and elicited from the decision maker, and the 

way in which information on preference is processed): direct assessment; sequential elimination; 

and spatial proximity. 

 

The first category of methods is based on the multi-attribute utility theory and assumes that the 

decision maker is able to specify precise answers to a wide range of preference elicitation questions. 

There is a set of methods that follow this approach, such as the direct rating and mid-point methods 

for constructing value functions, the Analytical Hierarchy Process (AHP) method, Simple Multi-

Attribute Rating Technique (SMART), and the Utility Theory Additive (UAT). Multi-attribute 

utility theory, proposed by Keeney and Raiffa in [187], assumes that the decision maker’s 

preference “can be quantified, measured, and represented in the form of a real-valued function 

called multi-attribute value function or utility function” [178]. With this utility function the decision 

problem is solved through a routine evaluation and search procedure. Thus, having identified the 

attributes and alternatives, the next tiers should be followed, as recommended by Chankong and 

Haimes in [178]: 1) verify the existence of the multi-attribute value function; 2) select a suitable 

form of the function; 3) construct component functions to use in step 2; 4) determine scaling 

constants; 5) check consistency and make the final analysis. 
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When it comes to the second category, two famous approaches can be found in the literature for 

sequential elimination: Lexicographic method and outranking methods. In the Lexicographic 

method, the decision maker is asked to rank order the attributes in terms of their importance, and 

the most important one is used in the first screening step, in which alternatives with most preferred 

value for the referred attribute are kept, whereas the others are rejected. So a modified group of 

alternatives is built and the ones having the most preferred value for the second most important 

attribute are selected, and the others are discarded. This process continues until the modified group 

of alternatives has one alternative (the best one), or until all the attributes have been screened once 

[178]. Concerning the outranking methods, the underlying concept was introduced by Roy in [188]. 

For any alternatives a’ and a’’ (which belong to the set of alternatives A), a’Saa’’ (i.e. a’ outranks or 

is indifferent to a’’) if and only if given the decision maker’s preference ordering ≥, and given 

information on the values of attributes X1(a), X2(a), …, Xn(a), there are reasons to believe that a’ ≥ 

a’’, while there is no essential reason to disapprove that statement [178]. 

In what pertains to outranking methods, these are applicable to discrete choice problems and 

perform pair-wise comparisons of alternatives. One of the most applied outranking method is the 

ELECTRE, introduced by Roy in [188] and used to: make the final selection; classify alternatives in 

“reject” or “non-reject” classes; or classify alternatives in indifference classes and rank order the 

referred classes [178]. ELECTRE has already experienced several changes regarding the original 

method, such as ELECTRE II [189], ELECTRE III [190], ELECTRE IV [191], ELECTRE IS [192] 

and ELECTRE TRI [193]. Another widely used outranking method is the PROMETHEE [194], 

which is also based on pair-wise comparison of alternatives, as ELECTRE. There are still other 

outranking methods, such as ORESTE [195], TACTIC [196], EVAMIX [197], REGIME [198] and 

MAPPAC [199]. 

 

Finally, when it comes to the third category for solving MA problems, the indifference curve 

method is often applied to problems with up to three attributes. In this method, the alternatives that 

lie on the same indifference curve are indifferent to one another. There is a close relationship 

between this method and the multi-attribute value function, but the indifference curve approach is 

both less restrictive and prescriptive than the latter. According to Chankong and Haimes, “for any 

two points on the same indifferent curve, there is always a trade-off involving a certain amount of 

degradation of one attribute the decision maker is willing to tolerate in exchange for a certain 

amount of improvement of the other attribute while preferences for the two points remain the same” 

[178]. This statement seeks to define the “indifference trade-off” concept.  

A trade-off is de facto a stimulus for spurring a strategic criterion (e.g. environmental preservation, 

power system reliability, etc.). That’s to say, the trade-offs setting up materializes the decision 
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maker’s willingness/unwillingness to pursue a certain strategy. Basically, trade-off analysis enables 

selecting solutions on the basis of indifference curves, which describe the decision maker’s 

preferences structure. Thus, constant trade-offs lead to linear indifference curves [200]. 

Given two alternatives, a1 and a2, the corresponding levels of n attributes are f (a1) = ( f1(a1), fn(a1) ) 

and f (a2) = ( f1(a2), fn(a2) ). A trade-off between two attributes fk and fj is obtained as follows [178]. 

 

ߙ  = ௙ೖ(௔ଵ)ି௙ೖ(௔ଶ)
௙ೕ(௔ଵ)ି௙ೕ(௔ଶ)

                (3. 4) 

 

With this formulation, the decision maker can compare changes in two attributes at a time, which 

facilitates the preferences assignment. 

But as Keeney highlighted in [201], value judgements are required to make value trade-offs, since 

they can’t be calculated directly from other information. Anyway, information and auxiliary 

calculations can be useful to support making meaningful and better-informed value trade-offs. 

Hence, the decision maker is who judges about whether certain value judgements are appropriate. 

As a result, a good value trade-off accurately represents the decision maker’s views. 

But trade-offs have some limitations. For instance, constant trade-offs imply additive and linear 

value functions. 

 

3.5.3 Uncertainty and Risk 

The planning process – of different kinds of activities – frequently addresses situations of decision 

under uncertainty. Some authors define uncertainty as factors which have a major influence on a 

utility, but are beyond the utility's foreknowledge or control, such as fuel prices or regulatory 

changes. Risk is reckoned as the hazard to which a utility is exposed because of uncertainty, like the 

cost of electricity, capital requirements or environmental effects [202], [203]. In addition other 

authors state that “risk is associated with the lack of certainty of an outcome and how sensitive one 

is to that outcome and thus to the uncertainty” [204]. Furthermore, Chankong and Haimes 

characterize different types of decision problems, i.e. decision making under certainty, decision 

making under risk, decision making under uncertainty and decision making under conflict. These 

authors stated that decision making under certainty corresponds to the case where it is known with 

certainty that one and only one of r states of nature occurs. When it comes to decision making under 

risk, it is possible to estimate the probability of occurrence of each state of nature, either 

subjectively or objectively. In what pertains to decision making under uncertainty, it is a class of 

decision problems where it is not possible to estimate the probabilities of the states of nature. For 
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these problems, risk can’t be quantified or analyzed explicitly, though the element of risk remains. 

Usually, in these cases, risk is coped through proper selection of decision rules. Finally, decision 

making under conflict corresponds to problems in an environment consisting of rational opponents 

with conflicting interest [178]. 

Alternatively to the previous approaches, Matos does not distinguish uncertainty and risk in [205]. 

According to this author, dealing with uncertainty, or risk, includes building models for uncertainty 

(what may happen) and decision (what to do). A review of approaches to model uncertainty is now 

provided [205]. 

 Scenarios 

Usually, it is possible to characterize each scenario by a linguistic label that shows the 

comprehensive nature of scenario definition. In the scenarios approach, uncertainty variables 

are globally estimated, correlations are considered and diverse structured futures are built. 

Although the basic idea about scenarios does not require a probability distribution, the 

concept of “most likely scenario” is sometimes invoked in a qualitative way (meaning 

generally that all the other possible scenarios will be discarded). An impact model is 

required to turn the scenarios approach meaningful, since they are possible occurrences of 

data and parameters. The impact could be described by a single attribute or multiple 

attributes.  

 Intervals 

Another approach to deal with uncertainty corresponds to assuming that some or all of the 

data and parameters are described by intervals, instead of a single real number. Similarly to 

scenarios, intervals try to capture every possible future value of the relevant data. 

 Probabilistic models 

When additional data is available – coming from statistics or symmetry considerations – 

probabilistic models become improvements to the two previous approaches. Setting up 

probabilities to scenarios is indeed a usual practice. Yet sometimes come up subjective 

probabilities, meaning a set of probability values estimated by an expert. A rather usual 

situation consists of holding probability distributions for the data, enabling, theoretically, the 

use of each alternative’s probability distribution of the consequences.  

 Fuzzy models 

When statistical information is not available or when the problem is subject to qualitative 

descriptions (corresponding to expert declarations about the data or the impact of the 

alternatives), fuzzy set theory comes up as another way of incorporating additional 

information in the uncertainty model. The general fuzzy number can be perceived as a set of 

nested intervals, with increasing degrees of membership (or possibility values). This means 
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that each value of the support interval has assigned a real number (the degree of 

membership) that measures its compatibility with the vague declaration associated with the 

fuzzy number.  An impact model is also required in fuzzy models.  Yet sometimes the fuzzy 

impact comes directly from an expert vague judgment. 

 

Having drawn an overview on approaches to model uncertainty, now a set of decision paradigms 

and rules is presented. 

 Expected Value Paradigm 

This paradigm is applied in probabilistic context, being described by the next decision rule: 

Choose the alternative with the best expected value of the attribute. “Best” refers to 

“minimum” or “maximum”, depending on the decision problem. Despite being often used in 

isolated situations, the Expected Value Paradigm assumes implicitly that a number of 

similar decision situations will be repeated over the time. The referred decision rule is 

generally associated with the decision tree approach, which consists of decision nodes and 

outcome nodes, action branches and outcome branches. A decision tree always starts with an 

initial decision node and ends with outcome branches.  The tree is gradually reduced by the 

use of the mentioned decision rule. The Expected Value Paradigm is, thus, an aggregation 

procedure, which substitutes a probability distribution of outcomes by its expected value. 

Therefore, the paradigm transforms the original problem into a deterministic single criterion 

problem [205]. 

 Utility Theory 

Implicit in any decision making process is the need to build the preference order, so that 

alternatives can be ranked and the final choice can be selected. Utility theory attempts to 

construct the preference order by directly eliciting the decision maker’s preference. The 

decision rule for this theory is the following: Choose the alternative with the greatest 

expected utility [205]. Risk behaviour is linked to how the decision maker values a given 

attribute, in the face of uncertainty. If a decision maker judges the actual values of an 

attribute, in situations of uncertainty, in the same way as under certainty, such a decision 

maker is described as risk-neutral. Chankong defined in [178] that a decision maker is said 

to be: 

i. Risk neutral if and only if ui(x) is a linear function of xi; 

ii. Risk averse if and only if ui(x) is a strictly concave function of xi; 

iii. Risk prone if and only if ui(x) is a strictly convex function of xi. 
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 E-V Analysis and Risk-based Value Functions 

Representation of alternatives in the E-V plan is common, thus corresponding prescriptive 

models with value functions have been developed. These approaches are alternative to 

utility theory models, since they use value functions on deterministic indices, while utility 

functions are applied directly to the probability distributions of the attributes. 

 Robust Optimization 

A major approach in what pertains to uncertainty problems is based on the concept of 

robustness and related notions, like disappointment or regret. This approach applies the 

minimax paradigm: Choose the alternative that, in the worst case, has the best value of the 

attribute. This principle is expressed by the next equation, which minimizes costs under 

different scenarios (where Z is the set of alternatives and S is the set of scenarios). 

 

݉݅݊௭∈௓{݉ܽݔ௦∈ௌ  ݖ)ݐݏ݋ܥ,  (5 .3)     {(ݏ

 

This approach is appropriate when there are no repeated decisions, where bad outcomes may 

be compensated by future good outcomes. The minimax principle is classified as an absolute 

robust approach, suited for goal satisfaction or competition situations where the uncertainty 

comes from competitors’ decisions. The minimax regret approach is adequate to situations 

where the quality of the decisions is evaluated ex post facto. That’s to say, no one cares with 

the possible scenarios that finally did not happen, and market situations where losses are 

automatically gains of competitors. Regret is expressed by the difference between the 

outcome of the decision (after the resolution of the uncertainty) and the best possible 

outcome in the same scenario, as described bellow. 

 

݉݅݊௭∈௓݉ܽݔ௦∈ௌܴ݁݃ݖ)ݐ݁ݎ, (ݏ = ݉݅݊௭∈௓݉ܽݔ௦∈ௌ(ݖ)ݐݏ݋ܥ, (ݏ −  (6 .3)           ((ݏ)∗ݐݏ݋ܥ

 

Where,  

 

(ݏ)∗ݐݏ݋ܥ = ݉݅݊௭∈௓൫ݖ)ݐݏ݋ܥ,  ൯    (3. 7)(ݏ

 

Cost*(s) is the best possible outcome in scenario s. 
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 Bellman and Zadeh Fuzzy Decision 

This is a symmetrical approach, where satisfaction of constraints and goals is unified, so 

each alternative has a degree of membership to the Fuzzy Decision, equal to the minimum of 

the degrees of membership to the fuzzy sets Goal and Restriction. 

 

3.6 Summary and Main Conclusions 

This chapter presented an overview on theoretical fundamentals for energy planning, namely: 

environmental impact; economic and financial costs; and adequacy of the generation system. This 

survey is critical for building, adequately and utterly, a methodology for multicriteria energy 

planning. 

Additionally, a theoretical overview was provided on multicriteria decision aid, as well as on 

uncertainty and risk. These concepts will be applied in the methodology and case study 

assignments. 

To sum up, this chapter presented the theoretical concepts and framework to perform, subsequently, 

the mathematical formulation associated to the research. 
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Chapter 4 
 

4 Methodology for Multicriteria Energy Planning  

4.1 Introduction 

This chapter describes the methodology developed for the multicriteria energy planning of isolated 

systems. The methodology hereafter described, is pursued through the following steps: 

a) Problem identification and global description; 

b) Defining the scope and objectives for the problem; 

c) Problem formulation, including the identification of decision variables, alternatives, criteria 

and attributes; 

d) Mathematical modelling. 

The methodology, within this thesis, provides a mathematical formulation which aims to enhance 

the energy sustainability of a given isolated system, through a multicriteria evaluation of renewable 

energy sources integration, plus electricity storage, sustainable mobility and the adoption of energy 

efficiency measures. 

This chapter is, then, the cornerstone for building an innovative approach for planning energy 

systems, which will be subsequently tested through a case study. 

 

4.2 Problem Identification and Global Description 

4.2.1 Scope and Objectives 

In ancient rhetorics, the circumstantiae was an important component of argumentation, serving to 

define the specific attributes or circumstances of the case. Hermagoras of Temnos (Greek 

rhetorician of the 2nd century BC) is known for his system of invention and has defined the theory 

of the seven circumstances, by delimiting the hypothesis to seven attributes, which Pseudo-

Augustine lists as: quis, quid, quando, ubi, cur, quem ad modum, quibus adminiculis. Or in English: 

who, what, when, where, why, in what way, by what means [206].   

In this section, these questions are answered, in order to present a clear sight of the current thesis’ 

scope. 

Taking into account the research drivers presented in chapter 1 (why), the present work aims to 

enhance the sustainability of a given energy system, when it comes to environment, economic and 

generation adequacy criteria (what). This objective is pursued through the development of a multi-

criteria energy planning methodology (in what way) addressing renewable energy integration, 

electricity storage, sustainable mobility and the adoption of energy efficiency measures (by what 
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means). Concerning the time horizon, the referred methodology is conceived to carry out a long-run 

energy planning, from a few years to decades (when). 

When it comes to the work applicability, the current research is built for the case of isolated systems 

(e.g. an island), bearing in mind the challenges and constraints related to the energy planning in 

such cases (where). This thesis embodies, therefore, an energy planning approach, providing 

technical support to the decision maker, who is assumed to be a regional authority of the 

corresponding system (who). 

 

4.2.2 Problem Formulation 

Decision Situation 

The energy planning process starts when the decision maker’s reckons the need to design a strategic 

and long-run study for a given isolated system, taking into account different strains, such as 

environmental worries, costs or system’s operation performance. The decision maker is assumed to 

be an authority of the system under analysis, with power and legitimacy to decide among a set of 

feasible options. The energy plan should be holistic, by gathering strategies applied in both the 

demand and supply sides of the power system, as well as in the transport sector. 

 

In view of the previous overview, the decision situation of the energy planning problem should be 

characterized. Although there is no formal guideline for identifying an adequate decision situation, 

this can be typified by the next elements: 

 A set of decision variables and alternatives; 

 A set of criteria; 

 A set of attributes. 

The endeavour for defining a problem demands a comprehensive understanding of the meaning, 

structure and properties of the alternatives, criteria and attributes. Keeney and Raiffa presented a set 

of illustrative examples, which summarize the involved concepts and emphasized that there are no 

universal definitions of these terms [187]. 

 

Alternatives and Decision Variables  

The alternatives are options, plans or strategies that represent possible solutions for the problem 

[207]. Roy presented the mutual exclusiveness of the concept of “alternative”, stating that an 

alternative “corresponds to the particular case in which modelling is such that two distinct potential 

actions can in no way be conjointly put into operation” [208]. The author also referred that the set 
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of alternatives can be denoted by A, where ai stands for a given alternative among a finite number of 

potential actions m.  

 

ܣ = {ܽଵ, ܽଶ, … , ܽ௠}       (4. 1) 
 

In the current research, the alternatives are defined by considering the investments and policies that 

are being studied by the decision maker, who is represented by the regional authorities of the 

analyzed energy system. Hence, the alternatives identification reproduces a set of potential 

hypotheses for a given energy system. As affirmed by Roy, an action is qualified as potential when 

is possible to be implemented, or deserves interest within the decision aid [208].  

Accordingly, each alternative is a strategy, enclosing a set of decision variables, namely: 

 Load variation (increase/decrease) associated to the adoption of energy efficiency measures. 

 Installed capacity of renewable energy sources (RES): business-as-usual RES increase; 

mid-range RES increase; or high-range RES increase. 

 Sustainable mobility options: efficient ICVs, biofuels and behavioural change; or strategies 

based in EVs introduction. 

 Electricity storage strategies: storage through a Centralized Storage Facility and/or Electric 

Vehicles charging, including the Vehicle-to-Grid concept.   

 

Criteria and Attributes 

The alternatives evaluation is carried out by defining key criteria, which are based on general 

aspects (e.g. reliability, environmental impact, etc). The criteria selection is one of the first steps 

within the decision aid. According to Roy, in order to verify the suitability of the chosen criteria, 

one should confirm that [208]: 

 What is apprehended by each criterion is sufficiently intelligible for each of the 

stakeholders; 

 Each criterion is perceived to be a relevant instrument for comparing potential actions along 

the scale associated with it, without prejudging their relative importance, which could vary 

significantly among the stakeholders. 

In addition, a coherent family of criteria must be [209]: 

 Exhaustive: all important points of view must be included; 

 Consistent: if two alternatives A and B are equivalent except in criterion k, and Ak is better 

than Bk, then A must be at least as good as B; 

 Non-redundant: eliminating a criterion leads to the violation of one of the preceding axioms; 

 Furthermore, there are other desirable properties, as follows [210]: 



             
 

 
 
4. Methodology for Multicriteria Energy Planning     126 
 

o Legibility: the number of criteria must be relatively low; 

o Operationality: the family of criteria must be accepted by the stakeholders and 

decision-makers. 

 

When it comes to the criteria assessment, an attribute is associated to each criterion, which serves as 

yardstick [178]. Hwang and Masud defined the attributes as characteristics, qualities or performance 

parameters of alternatives [182]. That is to say, an attribute is a measurable quantity whose value 

reflects the degree of achievement for a given criterion, to which the attribute is ascribed.  

The association of an attribute to a criterion requires the fulfilment of the next properties [178]: 

 Comprehensiveness: an attribute is comprehensive if its value is sufficiently indicative of 

the degree to which the criterion/objective is met.  

 Measurability: an attribute is measurable if it is reasonably practical to assign a value in 

some scale to the attribute for a given alternative. 

Besides the properties of an attribute, a set of attributes should follow some properties. Keeney and 

Raiffa stated that a set of attributes must be: complete, operational, decomposable, non-redundant 

and minimal [187]. 

 

Having in mind the thesis objective for enhancing the sustainability of a given isolated energy 

system – by planning renewable energy integration, plus electricity storage, sustainable mobility 

and energy efficiency measures – one has defined the concerned criteria and attributes. Each 

criterion, Ci, gathers a set of attributes, Xi, and sub-attributes, which are presented as follows: 

 C1: Environmental impact (minimize) 

 X1: CO2 emissions from transport sector 

 C2: Economic and Financial costs (minimize) 

 X2: Overall alternative costs  

• Carbon-based costs 

• Power generation costs (renewable and non-renewable generation) 

• Costs of Centralized Storage Facility  

• Costs of Electric Mobility  

• Costs of Energy Efficiency Measures (power system and transport sector) 

 C3: Adequacy of the generation system in terms of reliability (maximize) 

 X3: Loss of Load Expectation index (minimize) 

 

This formulation was initially applied in the research. Nonetheless, the multicriteria assessment of 

the alternatives (namely comparing costs and emissions) becomes clearer and more comprehensive, 
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when carbon emissions from the power system are accounted through an environmental attribute, 

rather than by an economic attribute. Hence, if carbon costs are disregarded and the corresponding 

power system’s emissions are accounted in the environment impact criterion, the previous criteria 

identification will be then redesigned, as follows: 

 C1: Environmental impact (minimize) 

 X1: CO2 emissions from transport sector and power system 

 C2: Economic and Financial costs (minimize) 

 X2: Overall alternative costs  

• Power generation costs (renewable and non-renewable generation) 

• Costs of Centralized Storage Facility  

• Costs of Electric Mobility  

• Costs of Energy Efficiency Measures (power system and transport sector) 

 C3: Adequacy of the generation system in terms of reliability (maximize) 

 X3: Loss of Load Expectation index (minimize) 

 

Since carbon costs accountability is followed by energy planning divisions of generation companies 

and governmental institutions, in this research both formulations for carbon emissions assessment 

will be provided (i.e. carbon emissions as a cost and as environmental criterion).  
 

4.3 Mathematical Modelling  

4.3.1 Framework 

Addressing each of the identified criteria and attributes requires building a specific mathematical 

formulation, which is described in this section. In what pertains to environmental impact, global 

carbon emissions shall be accounted, as a result of energy use (transport and power system).  

In terms of the economic and financial costs, these include: carbon-based costs (if carbon emissions 

from the power system are accounted as a cost); power generation costs; costs of centralized storage 

facility; costs of electric mobility; and costs of energy efficiency measures (power system and 

transport sector).  

When it comes to the adequacy of the generation system in terms of reliability, the loss of load 

expectation index shall be computed. 

The calculation of these attributes is formulated in the decision maker’s perspective, for a certain 

year in the future. The development of a formulation based on an annual assessment, enables the 

decision maker to get a deeper understanding of the system’s evolution (and impacts) throughout 

the planning timeline. 
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4.3.2 Environmental Impact 

Formulation 

Carbon emissions from energy use are computed by multiplying quantities of fossil fuel combusted 

(measures in energy terms) by emission factors which are specific to fuels and countries [211]. The 

broad assessment on CO2 emissions within an energy system demands data collection from both the 

power system and transport sector. The equation which gives the annual CO2 emissions from both 

the power system and transport sector, TE, is the following (obtained from a typical daily pattern). 

 

ܧܶ  = ൫∑ ( ௩ܰ  × ℎ௜ݏ  ×  ݉ௗ  × ( ௜ݐ݁ × (1 − (ℎா௏ݏ +  ∑ ∑ ௛,௝ܩ  ×  ݁݃௝ே
௝

ு
௛

௡
௜ ൯ ×  (2 .4)           ܦ

 

Where, 

n is the number of fuel types for  internal combustion vehicles;  

i is the type of internal combustion fuel;  

Nv is the total number of light vehicles;  

shi is the share of light vehicles with fuel i;  

md is the daily mileage of light vehicles (km);  

eti stands for the well-to-wheel emissions factor of light vehicles with fuel i (gCO2/km);  

shEV is the share of electric vehicles among the light vehicles of the system;  

H refers to total hours of a day;  

h corresponds to a certain hour;  

N is the number of non-renewable electricity generators per fuel type;  

j is the fuel type of non-renewable electricity generation;  

Gh,j is the hourly electricity generation of j type generation (kWh);  

egj represents the emissions factor (including processing and extraction, transport of raw material, 

and electricity generation)  owing to j type of electricity generation (gCO2/kWh);  

D is the number of days of the target year. 

 

The inclusion of well-to-wheel emissions due to transport sector, and power system’s emissions 

from extraction, transport of fuel and electricity generation, allows evaluating the global impact that 

islands have in world’s emissions. 

Although the comprehensiveness of the previous formulation, energy planning entities sometimes 

account carbon emissions from the power system as a cost, associated to the European Emissions 
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Trading System. If that option is followed, the attribute for environmental impact only considers the 

transport sector emissions. Hence, the carbon emissions attribute is calculated by the next equation. 

 

ܧܶ = (∑ ( ௩ܰ  × ℎ௜ݏ  ×  ݉ௗ  × ( ௜ݐ݁ × (1 − ℎா௏)௡ݏ
௜ )  (3 .4)       ܦ×

 

This methodology was based on several reports on carbon emissions assessment, such as [212], 

[211], [213], [214]. 

One should emphasize that in systems with lack of fossil fuels for energy use (e.g. Portugal), a 

carbon dioxide analysis is in certain way an energy dependence analysis. Therefore, the lower the 

carbon emissions, the higher will be the energy independence. Accordingly, the level of carbon 

emissions of such energy system is also linked to the use of endogenous natural and human 

resources, which are associated to the energy dependence degree. As a result, the lower the carbon 

emissions and the energy dependence, the higher will be the use of endogenous resources. These 

relationships are highlighted by both the OECD and UNEP [215], [112]. 

 

4.3.3 Economic and Financial Costs 

4.3.3.1 Global Formulation 

The attribute for the overall alternative costs should gather the Operation Expenditures (OPEX) and 

the additional Capital Expenditures (CAPEX) from a set of sub-attributes:   

 Carbon-based costs (TACCO2);  

 Power Generation costs (TACPS);  

 Costs of Centralized Storage Facility (TACss);  

 Costs of Electric Mobility (TACEV);  

 Costs of Energy Efficiency Measures (TACEff). 

 

Thus, the total annual costs, TAC, are obtained from the next equation. 
 

ܥܣܶ = ஼଴ଶܥܣܶ + ௉ௌܥܣܶ + ௦௦ܥܣܶ + ா௏ܥܣܶ +  ா௙௙    (4. 4)ܥܣܶ

 

To simplify the costs accountability, all the referred costs are assumed to be handled by the local 

utility, yet the costs for energy efficiency measures and electric mobility may be indirectly financed 

by the regional authorities.  

Currently, there is a wide range of programs for supporting clean technologies and low carbon 

economy, which award projects and products with considerable public subsidies, such as the 2009’s 
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US Smart Grid Investment Program, that provided grants of up to 50% for electric utilities’ 

investments on Smart Grids [216]. 

 

4.3.3.2 Carbon-based costs  

Formulation 

This formulation is only valid if carbon emissions from the power system are accounted as a cost, 

instead of an environmental attribute. 

Taking into account the EU ETS overview presented in chapter 3, at the end of each trading period 

installations must surrender allowances equivalent to their emissions. Thus, if a GENCO (electricity 

Generation Company) keeps its emissions below the emissions cap, it can sell the excess 

allowances. But if the GENCO has emitted more CO2 than its cap, it will have to buy further 

allowances in the market.  

The carbon price should be combined with the difference between the annual CO2 emissions from 

the power system and the corresponding cap, as described underneath. 

 

஼଴ଶܥܣܶ   = ߠ × ܥ ଵܲ + ௉ௌܧ)  − (ߠ × ܥ ଶܲ     (4. 5) 
    

Where, 

TACCO2 stands for the annual carbon-based costs (€);  

  ;is the annual allocation of CO2 allowances (cap), received from the auctioning (tonCO2) ߠ

CP1 is the average auctioning price of allowances in the EU ETS (€/tonCO2); 

CP2 is the average EUAs price in the secondary market (i.e. spot, forwards, organized and OTC) for 

additional allowances (€/tonCO2); 

EPS refers to the actual annual CO2 emissions from the power system (tonCO2). 

 

The annual emissions from the power system, EPS, are obtained as follows. 

 

ܵܲܧ = ൫∑ ∑ ௛,௝ܩ  ×  ݁݃௝ே
௝

ு
௛ ൯ ×  (6 .4)           ܦ

 

Where, Gh,j, egj and D were introduced in section 4.3.2. 
 

4.3.3.3 Power Generation Costs 

Global Formulation 

The annual costs related to power generation, ACCPS, gather capital and operation costs, as follows. 
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௉ௌܥܣܶ = ௉ௌܥܥܣ + ௉ௌܥܯܱ = ௉ௌܥܥܣ + ܥܴܰ +  (7 .4)    ܥܴ
 

Where, 

ACCPS, refers to the equivalent annual capital cost for additional power generation units (€); 

OMCPS, refers to the annual operation and maintenance cost for power generation units (€); 

NRC is the annual operation and maintenance cost for non-renewable energy sources (€); 

RC is the annual operation and maintenance cost for renewable energy sources (€). 

 

Capital Costs  

As presented in section 3.3.2, to make financial decisions, calculations are typically made on a 

yearly basis and capital cost is annualized. One way to annualize a single capital cost is to multiply 

it by the capital recovery factor. The CRF converts a present value in a stream of equal annual 

payments, over a specific time and at a specific discount rate. That is to say, the equivalent annual 

capital cost is the amount of money to be paid at the end of each year, to amortize the present value 

for the capital cost, CCPS, at a rate d and during n years.  

Therefore, the equivalent annual capital cost, ACCPS, is computed by combining the cost of capital 

with the depreciation annuity, as follows [125], [126]. 

 

௉ௌܥܥܣ = ௉ௌܥܥ × ܨܴܥ = ௉ௌܥܥ × ଵ
భ
೏ି

భ
೏×(భశ೏)೙

      (4. 8) 

 
The CRF is a value, between 0 and 1, representing the annual cost required to fully amortize an 

investment over a specified period.  

In this thesis, one considers that capital costs for renewable energy sources are included in the 

corresponding feed-in-tariff, as a common cost-based incentive [126]. 

 

Unit Commitment, Economic Dispatch and Operation Costs of non-renewable energy sources 

The operation costs of non-renewable energy sources are determined by the Unit Commitment and 

Economic Dispatch, for the corresponding generation diagram of the time under analysis. Before 

solving the economic dispatch problem, the unit commitment problem should be solved, in order to 

know, in advance, which are the units that will be switched on in the interval under analysis, to 

proceed to their output (electricity generation/interval) set up by the economic dispatch model. The 

unit commitment is a crucial sub-problem for scheduling generation units to be “on” or “off” during 

each interval of the scheduling period (from 1 day to 2 weeks, typically in hourly intervals), 

allowing the minimization of start-up and shut down costs. The economic dispatch gives, thereafter, 



             
 

 
 
4. Methodology for Multicriteria Energy Planning     132 
 

the units’ power output in order to minimize fuel costs, subject to a set of constraints (meet the 

demand, fulfill minimum value of spinning reserve, and fulfill minimum and maximum limits of the 

unit) [131].  

In this formulation, the Unit Commitment and Economic Dispatch problem is applied to a typical 

daily load profile of a certain isolated system. The UCED is divided into 24 sub-problems (one sub-

problem per period) and for each period of time:  

 the units are assigned to be “on” or “off”; 

 the power output of each unit that is “on” is calculated.  

Taking into account the relevance of start-up and shut-down costs, the UCED is de facto a multi-

period problem, being impossible to solve it in a separate way for each period. 

The basic thermal UCED problem is modelled as a single objective problem that aims to minimize 

total operation costs. Fuel costs are linked to the fuel consumption of each unit, which depends on 

the power output in each period of time and type of unit (fuel oil, diesel, etc). The functions that 

represent the fuel costs are, generally, non-continuous and non-convex. Nevertheless, since non-

convexity of such functions prevents the use of conventional optimisation techniques, polynomial 

interpolation is often applied and a linearization can be made to describe the fuel consumption at 

different power levels, for each unit type, as referred in the literature [217], [200], [218]. This 

approach was followed in this research, as subsequently presented in chapter 5. 

 

When it comes to start-up costs and shut-down costs, these are incurred each time a power plant is 

turned “on” and “off”, respectively. The start-up costs depend on the latest period the unit was 

operating and, for steam units, on whether the machine was kept hot, or not, while the “off” period. 

Nonetheless, this research assumes that the power system under study has no steam units (these are 

just commissioned in larger systems) and the start-up costs are constant, as also followed by [219]. 

Concerning shut-down costs, these can be represented as a constant, being lower than start-up costs, 

as referred in [129]. 

 
The classical UCED problem has, then, the following formulation and corresponds to the 

minimization of power generation operation costs in a 24h period [220], [221].  

 

݇,݅ݑ෍෍ൣ ݁ݖ݅݉݅݊݅ܯ × (݇,݅ܲ)ܨ) + ݑ݇ܥ × (1 − ((݇,1−݅ݑ + (1 − (݇,݅ݑ × ݇,1−݅ݑ × ൧݀݇ܥ
௡

௞ୀଵ

௛

௜ୀଵ

 

(4. 9) 
 

Subject to: 
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∑ ௜,௞ݑ × ௜ܲ,௞ = ௜ܲ
௅,௡

௞ୀଵ  ∀݅             (4. 10) 

 

∑ ௜,௞ݑ × ௞ܲ
௠௔௫ ≥ ௜ܲ

௅ + ܴܵ௜ ,∀݅௡
௞ୀଵ               (4. 11) 

 

௜,௞ݑ × ௞ܲ
௠௜௡ ≤ ௜ܲ,௞ ≤ ௜,௞ݑ × ௞ܲ

௠௔௫ ,∀݅, ݇                      (4. 12) 
 

௜,௞ݑ = ∑ ݎ݋݂ 1 ௜,௞ݑ < ܷܯ ௞ܶ
௜ିଵ
௜ୀ௜ೞೠ   , ∀݇                                      (4. 13) 

 

௜,௞ݑ = ∑ ݎ݋݂ 0 (1 − (௜,௞ݑ < ܦܯ ௞ܶ
௜ିଵ
௜ୀ௜೏ೠ   , ∀݇                        (4. 14) 

 

Where, 

ui,k is the status (1 – on; 0 – off) of unit k, at period i;  

F refers to the fuel and fixed costs in period i, of unit k with Pi,k of power output; 

Pi,k is the power output from unit k at period i;  

h is the number of periods;  

n is the number of units (non-renewable generators);  

Ck
u refers to the costs of starting-up unit k;  

Ck
d represents the costs of shutting-down unit k;  

Pk
max is the maximum power output of the fossil-fired unit k; 

Pk
min is the minimum power output of the fossil-fired unit k; 

SRi is the spinning reserve at period i; 

MUTk is the minimum up-time of unit k; 

MDTk is the minimum down-time of unit k; 

isu is the hour at which the unit k is started up; 

isd is the hour at which the unit k is shut down. 

 

The described formulation is, however, inadequate for power systems with renewable generation 

and electricity storage facilities, including EVs’ V2G operation. For the UCED with renewable 

generation, such as wind, the renewable output is typically subtracted from demand, producing the 

“net load,” which can then be used to compute the thermal generator requirements [222]. Therefore, 

the modified formulation for UCED is now presented, by integrating the power output from 

renewable energy sources, centralized storage and V2G (if exist), for a typical day of operation. 
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ܥܴܰ ݊݅݉ = ෍൝෍ൣݑ௜,௞ × )ܨ) ௜ܲ,௞) + ௞௨ܥ × (1− ((௜ିଵ,௞ݑ + (1− (௜,௞ݑ × ௜ିଵ,௞ݑ × ௞ௗ൧ܥ
௡

௞ୀଵ

ൡ
௛

௜ୀଵ

 ×  ܦ

(4. 15) 
 

Subject to: 

∑ ௜,௞ݑ × ௜ܲ,௞ = ௜ܲ
௅ − ௜ܲ

ோ − ௜ܲ
ௌ − ௜ܲ

௏ ,௡
௞ୀଵ  ∀݅          (4. 16) 

 
∑ ௜,௞ݑ × ௞ܲ

௠௔௫ ≥ ܴܵ௜ + ௜ܲ
௅ − ௜ܲ

ோ − ௜ܲ
ௌ − ௜ܲ

௏ ,∀݅௡
௞ୀଵ                         (4. 17) 

 
௜,௞ݑ × ௞ܲ

௠௜௡ ≤ ௜ܲ,௞ ≤ ௜,௞ݑ × ௞ܲ
௠௔௫ ,∀݅, ݇       (4. 18) 

 
௜,௞ݑ = ∑ ݎ݋݂ 1 ௜,௞ݑ < ܷܯ ௞ܶ

௜ିଵ
௜ୀ௜ೞೠ   , ∀݇            (4. 19) 

 

௜,௞ݑ = ∑ ݎ݋݂ 0 (1 − (௜,௞ݑ < ܦܯ ௞ܶ
௜ିଵ
௜ୀ௜೏ೠ   , ∀݇                                        (4. 20) 

 

 

Where, 

NRC refers to the annual operation and maintenance cost for non-renewable energy units; 

D is number of days of the target year; 

Pi
R is the total renewable power output at period i (including wind, hydro, geothermal, biomass, 

etc.); 

Pi
S is the power output from centralized storage (e.g. pumped hydro) at period i (which electricity 

comes from surplus renewable energy sources), according to a strategy for daily CSF generation 

profile, tuned to supply electricity at off-valley periods (assuming a constant power output); 

Pi
V is the power output from EVs V2G at period i, according to a strategy for daily V2G profile 

with a constant power output (included in the UCED as input data, disregarding the uncertainty 

inherent to the drivers/users’ behaviour); 

Pi
L is the electricity load at period i, including the additional load from EVs’ charging, disregarding 

the uncertainty inherent to the drivers/users’ behaviour (the stored electricity by the centralized 

storage facility is not accounted in the load, since it is conceived as a service to the system, instead 

of a load to serve). 

 

The previous objective functions are subject to five constraints, which are described as follows: 

 System power balance demand: in each period, the committed units must satisfy the total 

load demand. 
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 Spinning reserve requirements: the spinning reserve is the unused capacity which can be 

activated on decision of the system operator, being provided by devices which are 

synchronized to the network and able to affect the active power [223]. A commonly used 

deterministic criterion sets the desired amount of spinning reserve so that the system can 

withstand the outage of any single generating unit without perform load shedding. This 

criterion is also known as N-1 criterion [220], [173]. Many system operators set the spinning 

reserve in order to be enough to handle the outage of the largest power unit in service [224], 

[225]. 

 Unit generation limits: thermal units are neither technically capable of producing below a 

given minimum production level, nor above a maximum.  

 Unit minimum up and down times: if a unit is “on” it must be kept “on” for at least MUT 

periods of time. On the other hand, if a unit is “off”, it must remain “off” for at least MDT 

periods of time. 

 

Concerning the available methods for UCED, these have already been mentioned in section 3.3.2. 

Taking into account the characteristics and purpose of the present research, a merit order scheme, 

using a priority list, is developed. In fact, the merit order priority list for the UCED, presents a 

satisfactory compromise accuracy/computational effort [226]. This method ranks all the system 

units according to a merit function and, based on this ranking and for each time interval, the units 

are switched “on” or “off” until load and spinning reserve constraints are fulfilled [129]. This 

technique is applied in several power utilities from different countries, owing to its ease of 

application and understanding [131]. Moreover, this approach is often used in market environments, 

where suppliers are ordered according to their bid prices and selected, in that order, until load 

demand is satisfied [129]. The commitment priority may be determined by applying the 

Commitment Utilization Factor (CUF), the classical Average Full Load Cost (AFLC) index or both 

[131]. 

The priority criterion followed in this research is based on the AFLC, which is the cost per unit of 

power when the unit is at its full capacity, being expressed as follows, for unit k [227]. 

 

ܥܮܨܣ = ௪௢௥௞௜௡௚ ௖௢௦௧ ௔௧ ௠௔௫௜௠௨௠ ௣௥௢ௗ௨௖௧௜௢௡ ௟௘௩௘௟
௠௔௫௜௠௨௠ ௣௥௢ௗ௨௖௧௜௢௡ ௟௘௩௘௟

= ி(௉ೖ
೘ೌೣ)

௉ೖ
೘ೌೣ                                 (4. 21) 

 

 

The algorithm to solve the UCED problem (through the merit order priority list method) was built 

in the course of the current research, using Matlab® environment. This algorithm is applied to a 
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typical daily load profile (in Atlantic and Mediterranean islands there is a weather steadiness 

throughout the year, with reduced seasonality effect on the load profile). At each period of time, the 

previously described constraints are verified and the power surplus is quantified. There is power 

surplus when RES generation plus thermal power (at technical minimums) exceeds the load 

(including the additional load for EVs charging, if exists). In such cases, the CSF stores the power 

surplus, to be afterwards (off-valley period) injected into the grid at a constant power output. Yet 

that energy shift is only possible, if the sum of the CSF power output at a certain period (according 

to a strategy for its generation profile) with RES and thermal power (at technical minimums) 

doesn’t exceed the load. When it comes to V2G, it also has a constant power output (at off-valley 

period), according to a strategy for V2G profile, except if the sum of that power together with the 

CSF, RES and thermal power (at technical minimums), is higher than the load. That’s to say, there 

is only V2G and CSF at a certain period, if there is no power surplus.  

In the end of each period, the algorithm performs the economic dispatch and writes in a database the 

status (“on” or “off”), power output and operation costs of each thermal unit. The V2G and CSF 

power outputs are also exported back to the database. Yet this algorithm just computes the operation 

costs from thermal units (non-renewable). Other costs are calculated separately through specific 

mathematical formulation, such as costs from RES, EVs, centralized storage facility, carbon 

emissions and energy efficiency measures. 

The logic of the referred algorithm is characterized by the next flowchart. 
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Fig. 36: Flowchart of the priority-list-based UCED algorithm 
 

 
Operation Costs of renewable energy sources 

Besides the non-renewable energy units, it is also worth evaluating the costs of the renewable 

energy sources. However, unlike fossil-fuel power generation, the costs of RES are typically 

accounted through a specific feed-in tariff, which includes both capital and operation costs. This 

feed-in tariff represents, therefore, the purchase cost per unit of energy produced [228], [229]. The 

below suggested formulation, assumes that there is absence of long-run (decades) forecasts on 

hourly power generation from RES, which requires an extrapolation based in past values (typical 

day). Hence, the power generation from RES, in the target year, is calculated by the use of past 

registers of data, as well as the difference of renewable-based installed capacity.  

The annual renewable generation costs, RC, are then obtained from the next equation. 

 

ܥܴ = ൬∑ ൬∑ ௜,௞ூܩܴ × ൬ோ௉ೖ
಺ାோ௉ೖ

಺಺

ோ௉ೖ
಺ ൰× ௞ோ௡ܥ

௞ୀଵ ൰௛
௜ୀଵ ൰ ×  (22 .4)    ܦ
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Where,  

RGi,k
I is the renewable generation of energy type k, at period i, in the base year (MWh);  

RPk
I is the already installed power of renewable generation of energy type k, in the base year (MW);  

RPk
II is the new installed power of the renewable generation of energy type k, in the target year 

(MW);  

Ck
R is the feed-in-tariff for renewable generation, energy type k, that includes capital and operation 

costs (€/MWh);  

D is number of days of the target year. 

 

According to the described, the generation costs from RES are utterly computed by the previous 

equation, since capital costs are included in the feed-in tariff.  

 

The previously described formulation for power generation costs was applied into the São Miguel 

Island, in the year 2008. The characteristics of the referred power system are presented in Annex I. 

With the use of cost and technical-based data provided by the local utility, the UCED algorithm was 

applied to a typical 2008’s day. 
The obtained outcome was then compared with actual generation profiles occurred in São Miguel’s 

power system during 2008. The referred comparative analysis confirmed that the obtained 

generation profiles (and corresponding operation costs), from the proposed merit order algorithm, 

reproduce the typical operation strategy.  

Taking into account that the developed algorithm seeks to draw a typical operation day, if one 

extrapolates the obtained results to the 2008’s 366 days, the annual operation costs from fuel oil 

units are €25,5 million, while renewable generation totaled €16,4 million. From data supplied by the 

local utility, the real 2008’s fuel oil-based operation costs were €25,7 million, while the renewable 

ones were €15,9 million. Thus, these figures confirm the suitability of the proposed formulation, for 

calculating power generation costs, bearing in mind the scope of the current thesis. Anyway, the 

quality of this estimation could be improved by including more typical days of the referred year. 
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4.3.3.4 Costs of Centralized Storage Facility  

Global Formulation 

In sections 2.2 and 3.3.3 the pumped hydro storage was identified as technology for CSF and a 

review was presented on its capital and operation costs. The total equivalent annual costs, TACss, for 

a CSF are described as follows [48], [229]. 

 

௦௦ܥܣܶ = ௦௦ܥܥܣ + ௦௦ܥܯܱ = ௦௦ܥܥܣ  + ௦௦ܥܧ +  ௦௦        (4. 23)ܥܨ
 

 

Where,  

ACCss stands for annualized capital cost (€);  

OMCss refers to operation and maintenance cost (€);  

ECss is the annual energy cost (€);  

FCss is the annual fixed maintenance cost (€). 

 

The details of the previous equation are hereafter explained, based on the premise that the local 

utility is the CSF investor and operator, and following similar approaches presented in [48] and 

[23].  

 

Equivalent Annual Capital Cost, ACCss 

Firstly, it is necessary to find out a parameter to describe the contribution of the storage system to 

the overall energy demand, ε. This parameter is presented underneath. 

 

ߝ = ௧௢௧ܨ ⁄௧௢௧௜ܧ               (4. 24) 

 

Where,  

E i
tot is the annual electricity demand of the target year (MWh); 

Ftot is the annual electricity generated by the CSF, resulting from a strategy for daily generation 

profile, and calculated as follows (MWh). 

 

௧௢௧ܨ = ൫∑ ௜ܲ
ௌ௛

௜ୀଵ ൯ ܦ× = ௦௧௢௥ܨ × ௌௌߟ                                            (4. 25) 
 

Where,  

Pi
S is the CSF power output, at period i, according to a strategy for daily CSF generation profile, 

tuned to supply electricity at off-valley periods and with a constant power output (MW); 
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D is the number of days of the target year;  

h stands for the hours of a day;  

Fstor is the annual electricity stored by the CSF, due to RES surplus (MWh);  

ηss is the energy transformation (round-trip) efficiency of the CSF (%). 

 

The previous equality assumes the technical feasibility of performing energy shift of the whole 

stored electricity (led by RES surplus). However, when a part or all the stored electricity is not 

allowed to be injected into the grid (owing to the power system operation rules), the referred 

equality is not applicable. 

 

The UCED is run without defining the energy storage capacity (the CSF stores energy surplus, 

which is injected into the grid according to a generation strategy and with a constant power output), 

but for making an economic evaluation of CSF its main characteristics should be defined, i.e. the 

energy storage capacity, Ess, and nominal power, Nss.  

 

௦௦ܧ = ݀௢ . ቀ ி೟೚೟
଼଻଺଴

ቁ . ଵ
ఎೞೞ

. ଵ
஽ை஽ಽ

                          (4. 26) 

 
Where,  

do stands for the typical hours of energy autonomy in a day;  

DODL is the maximum depth of discharge (%). 

 

While the CSF nominal power is given by, 

 

௦ܰ௦ = ௉೛ೄ

ఎ೛
                                                       (4. 27) 

 
Where,  

Pp
S is the CSF power output, at the peak power period p (MW);  

ηp is the power generation efficiency of the CSF (%).  

 

The installed power of the centralized storage facility can also be defined by projecting the load and 

generation profiles, in order to identify the daily energy surplus. Accordingly, the CSF installed 

capacity is defined to store the maximum amount of energy surplus. 

 

Now it is possible to find the capital cost, CCss, of the storage system, as presented bellow. 
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௦௦ܥܥ = ௖ܥ) ௦௦ܧ. + .௣ܥ ௦ܰ௦) × (1 +  ௖௢)              (4. 28)ܥ

 
 

Where,  

Cc is the specific energy cost (€/MWh);  

Cp is the specific power cost (€/MW);  

Cco is the additional cost for corrosion prevention measures, in case of a seawater storage facility (% 

of capital cost increase), whereas in case of a freshwater system this parameter is zero. 

 

Cc and Cp can be collected from benchmarking of international pumped hydro storage projects, as 

provided in [23]. 

 

Finally, one can compute the equivalent annual capital cost, which concept was presented in section 

3.3.2 and deepened in section 4.3.3.3. Hence, the equivalent annual capital cost, ACCss, is found out 

by applying the next equation. 

 

௦௦ܥܥܣ = ௦௦ܥܥ × ܨܴܥ = ௦௦ܥܥ × ଵ
భ
೏ି

భ
೏×(భశ೏)೙

       (4. 29) 

 

Where,  

d is the discount rate (%);  

n is the investment period (years). 

 

Annual Operation and Maintenance Cost, OMCss 

a) Energy cost, ECss 

In conventional power exchange, the market operator ensures the matching between the highest 

buying orders, with lowest selling orders for each time step. The market operator maximizes the 

value of demand-side orders minus the cost of supply-side orders, subject to the demand-supply 

balance, and originating the market clearing price. With the addition of storage to the power 

exchange, the storage facilities are modulated as net action performers to the demand-supply 

balance [15]. According to the formulation proposed in [15], a discharging action leads to a positive 

profit to the storage owner, while a charging action represents a cost, thus a negative profit.  
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Unlike the market-based dynamics, typical in deregulated power systems, for isolated systems one 

assumes the electricity selling and purchase prices aren’t established through the pool, rather via 

contracted prices. 

 

The energy cost, ECss, is then drawn by the next equation, assuming storage/pumping operation 

during valley hours and power generation at off-valley periods. 

 

௦௦ܥܧ = ௦௧௢௥ܨ ௘ௌௌܥ. − .௧௢௧ܨ  ௘ܲ
ௌௌ              (4. 30) 

 

Where,  

Fstor is the annual electricity stored by the CSF, due to RES surplus, as presented previously 

(MWh);  

Ce
SS is the local electricity purchase cost for the valley-hour rate (€/MWh);  

Ftot is the annual electricity generated by the CSF as presented previously (MWh); 

Pe
SS is the local electricity selling price for the off-valley-hour rate (€/MWh);  

 

When the energy cost is negative, the CSF investor and operator is getting positive gross margin 

from the energy storage/pumping process. 

 

a) Annual Fixed Maintenance Cost, FCss 

The FCss, is found by multiplying the CSF’s capital cost, CCss, by a parameter, m, which stands for 

the fraction of the initial capital invested.  

 

௦௦ܥܨ = ௦௦ܥܥ .݉               (4. 31) 

 

The parameter m is a standard, being available from a benchmarking of pumped hydro projects. 

 

4.3.3.5 Costs of Electric Mobility  

Global Formulation 

The total annual costs of the electric mobility, TACEV, gather the following strands: annual 

operation and maintenance cost, OMEV; and annualized capital cost, ACCEV.   

 

ா௏ܥܣܶ = ா௏ܥܯܱ + ா௏ܥܥܣ       (4. 32) 
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The next formulation is based on the assumption that the local utility is the investor and operator of 

the EM. 

When it comes to the capital costs, these are assumed to be supported by the EM investor and 

operator (i.e. local utility). The profits concerned with the EM investment and operation depend on 

the margin driven by the electricity trading for providing the EVs charging service. 

 

Annual Operation and Maintenance Cost, OMCEV 

As previously described, the EVs may contribute for the power system operation, by consuming a 

certain share of the energy surplus (EVs charging) and injecting just a part of the stored energy into 

the grid, through the V2G concept.  

As formulated for the centralized storage facility, the operation costs of EM assume that for isolated 

power systems the electricity selling and purchase prices aren’t established through the market, 

rather via contracted prices. Additionally, the supplier and aggregator are supposed to be the same 

entity (i.e. SupAg), as suggested in [78]. The SupAg, in islands, can be considered to be the local 

DSO, which will provide all the EM and electricity operations.  

 

Then, the EM operation cost is described by the next equation, assuming that the EVs charge during 

valley hours and, for the alternatives with V2G, the EVs inject electricity into the grid during off-

valley hours. 

 

ா௏ܥܯܱ = ௘ଵா௏ܥ) − ௘ܲଵ
ா௏) × ௖௛ܧ + ௘ଶா௏ܥ) − ௘ܲଶ

ா௏) × ௗ௜௦௣ܧ     (4. 33) 

 
While, 

 

௖௛ܧ = ൫∑ ܧ ௜ܸ
௖௛௛

௜ୀଵ ൯ × ܦ = ܧ) ாܸ஼ × ݉ௗ × ாܰ௏ + ܧ ܵܧܸ × ݀ݎ × ாܰ௏) ×  (34 .4)           ܦ

 
ௗ௜௦௣ܧ = ൫∑ ௜ܲ

௏௛
௜ୀଵ ൯ × ܦ = ܧ ாܸௌ × ௗݎ × ௖௢௡௩ߟ × ாܰ௏ ×  (35 .4)    ܦ

 

Where,  

Ce1
EV is the local electricity purchase cost for the valley-hour rate (€/MWh); 

Pe1
EV is the local electricity selling price for the valley-hour rate (€/MWh); 

Ech is the annual electricity consumed for EVs charging, which results from a strategy for daily 

charging profile, tuned to maximize the RES integration (expectedly at valley periods) and taking 

into account energy demand for daily mobility and, if it is the case, the additional energy required to 

perform V2G at off-valley periods (MWh);  
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Ce2
EV is the cost of electricity generation through EV Vehicle-to-Grid (€/MWh);  

Pe2
EV is the local electricity selling price at off-valley hours (€/MWh); 

Edisp is the annual electricity dispatched from the EVs, according to a strategy for daily V2G profile, 

tuned to provide energy at off-valley periods (MWh);  

EVi
ch is the EVs power demand, at period i, according to a strategy for daily charging profile (MW);  

h stands for the hours of a day;  

D refers to number of days of the target year; 

EVEC is the energy consumed per EV for mobility purposes (MWh/km);  

md is the daily mileage of each EV (km);  

NEV is the number of EVs in the system; 

EVES is the total energy storage of the EV battery (MWh);  

rd is the rate of the EVs’ daily available energy for V2G, according to a strategy for daily V2G 

profile (%);  

Pi
V is the EVs power for V2G, at period i, according to a strategy for daily V2G profile with a 

constant power output (MW);  

ηconv is the efficiency of the EV conversion of the stored energy back to electricity (%) 

 

The equality presented in equation (4. 35) assumes the technical feasibility of performing energy 

shift of the whole stored electricity, for V2G purposes. However, when a part or all the stored 

electricity is not allowed to be injected into the grid (owing to the power system operation rules), 

the referred equality is not applicable. 

 

When it comes to the cost of electricity generation through EV Vehicle-to-Grid, Ce2
EV, one proposes 

the next formulation, adapted from [230], [70] and [124]. 

 

௘ଶா௏ܥ = ஺஼஼ಶೇ
ா೏೔ೞ೛

+ ௗܥ                   (4. 36) 

 
Where,  

ACCEV is the annualized capital cost for electric mobility, described subsequently (€);  

Cd is the extra degradation cost owing to V2G functionalities (€/MWh).  

 

The Cd is found by the next equation. 

 

ௗܥ = ஼್ೌ೟
௅ಶ೅

               (4. 37) 
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The battery lifetime throughput energy for the cycling regime, LET (MWh), is obtained as follows. 

 

ா்ܮ = ௖ܮ × ܧ ாܸௌ ×  (38 .4)                          ܦ݋ܦ

 
Where,  

Cbat is the battery capital cost, including replacement labour (€);  

Lc stands for the lifetime in cycles;  

DoD is the depth-of-discharge for the corresponding Lc (%).  

 

Equivalent Annual Capital Cost, ACCEV 

Concerning the formulation for the equivalent annual capital cost (theory presented in section 3.3.2 

and deepened in section 4.3.3.3), the capital recovery factor is multiplied to the capital cost of EM, 

as follows. 

 

ா௏ܥܥܣ = ா௏ܥܥ × ܨܴܥ = ா௏ܥܥ × ଵ
భ
೏ି

భ
೏×(భశ೏)೙

          (4. 39) 

 

Where,  

ACCEV is the equivalent annual capital cost (€);  

CCEV is capital cost (€);  

d is the discount rate (%);  

n is the investment period (years). 

 

The EM capital cost should consider the investment on the EM infrastructure, presented in section 

3.3.4.  

 

4.3.3.6 Costs of Energy Efficiency Measures 

Global Formulation 

The annual costs for energy efficiency measures, TACEff, gather power system and transport sector 

costs, as follows. 

 

ா௙௙ܥܣܶ = ா௙௙௉ௌܥܣܶ + ா௙௙ூ஼௏௦ܥܣܶ            (4. 40) 
 

Where, 
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TACEffPS, refers to the annual costs for measures applied on the demand-side of the power system 

(€); 

TACEffICVs, refers to the annual costs for measures applied on the transport sector (€); 

 

Measures for the Power System  

As stated previously, some alternatives follow an energy efficiency pathway, as a result of thriving 

dedicated programs for demand response, demand side management, load control and sustainable 

buildings. The search out of the concerned energy efficiency costs is carried out right through the 

next tiers. 

The annual electricity consumption in the target year i, Etot
i, and the annual electricity demand 

variation, EEffPS
i, are given by the following equations. 

 

௧௢௧௜ܧ = ௧௢௧௜ିଵܧ × (1 +  ௱)     (4. 41)ܧ
 

 

ா௙௙௉ௌ௜ܧ = ௧௢௧௜ିଵܧ − ௧௢௧௜ܧ                       (4. 42) 
 

Where,  

EΔ is the percentage of annual load variation from year i-1 to year i;  

Etot
i-1 is the annual electricity demand in year i-1 (GWh). 

 

The energy efficiency depends, consequently, on the EΔ and occurs only when this variable is 

negative. Hence, the total annual costs of energy efficiency applied to the power system, TACEffPS, 

are calculated as follows. 

 

ா௙௙௉ௌܥܣܶ = ா௙௙௉ௌ௜ܧ × ா௙௙௉ௌܥ         (4. 43) 
 

CEffPS is the energy efficiency cost applied to the power system (expressed in €/GWh), which 

increases linearly over time, being calculated through the next equation. 

 

ா௙௙௉ௌܥ = ܽ. ݔ + ܾ         (4. 44) 

 

a and b describe the linear equation for the energy efficiency cost and x is the time variable. This 

equation is obtained from costs and savings data of ongoing energy efficiency and demand response 

programs [231], reflecting the marginal cost increase for energy efficiency with the course of time. 
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As referred previously, to simplify the costs accountability, in this work, these costs are assumed to 

be handled by the local utility, but can be considered as indirectly financed by the regional 

authorities. 

 

Measures for the Transport Sector  

When it comes to the transport sector, as described in section 3.3.5, there is a set of energy 

efficiency measures, gathering technology improvements (i.e. efficient internal combustion vehicles 

and biofuels), as well as behavioural changes (i.e. driving behaviour, distance driven, intermodality 

and car sharing). The annual ICVs’ emissions for the energy efficiency alternatives, in the target 

year i, EICVs
i (tonCO2), are calculated by the next equation [151]. 

 

ூ஼௏௦௜ܧ = ூ஼௏௦௜ିଵܧ × (1− ܧܧ − ܨܶ − ܤܦ − ܦܦ −  (45 .4)                (ܨܤ
 

 

Where,  

EICVs
i-1 stands for annual ICVs’ emissions in year i-1 (tonCO2);  

EE is the annual abatement potential owing for efficient ICVs (%);  

TF is the annual abatement potential by improving the traffic flow (%); 

DB is the annual abatement potential owing to improved driving behavior (%);  

DD is the annual abatement potential by reducing the distance driven (%); 

BF is the annual abatement potential by blending low carbon biofuel (%). 

 

Now, the total annual costs of energy efficiency measures applied to the ICVs, TACEffICVs, are 

determined as follows. 

 

ா௙௙ூ஼௏௦ܥܣܶ = ா்ܥ × ூ஼௏௦௜ିଵܧ) − ூ஼௏௦௜ܧ  (46 .4)            ݊݋ܥ/(
 

As built for the power system, the cost of abatement measures, CET (expressed in €/GWh), increases 

linearly over time, being calculated through the next equation. 

 

ா்ܥ = ݔ.ܽ + ܾ                (4. 47) 
 

In which a and b describe the linear equation for the abatement cost and x is the time variable. 

The conversion factor from tonCO2 to GWh of energy consumption from the ICVs is represented 

by Con. Alternatively, the CET can be expressed in €/ton, leading to the next equation. 
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ா௙௙ூ஼௏௦ܥܣܶ = ா்ܥ × ூ஼௏௦௜ିଵܧ) − ூ஼௏௦௜ܧ )                                           (4. 48) 
 

Again, these costs are assumed to be handled by the local utility, but can be considered as indirectly 

financed by the regional authorities. 

 

4.3.4 Adequacy of the Generation System 

Adopted Methodology  

Although the clear benefits of analyses such as well-being indices and chronological Monte Carlo 

simulation, this work adopts the conventional reliability indices for generation adequacy assessment 

(namely, LOLE), owing to the scope and objectives of the current research. 

 

Recursive algorithm for the COPT  

The capacity model can be built by the use of a widely known recursive algorithm, described in 

[159]. According to Billinton and Allan, in [156], the cumulative probability of a given capacity 

outage state of X MW, after a unit is added, with capacity C MW and forced outage rate equal to U, 

is obtained by the following equation. 

 

ܲ(ܺ) = (1 −ܷ)ܲᇱ(ܺ) + (ܷ)ܲᇱ(ܺ −  (49 .4)                  (ܥ
 

 
Where P’(X) and P(X) are the cumulative probabilities of the capacity outage state of X MW, before 

and after the unit is added, respectively. The previous equation is initialized by making P’(X) = 1 

for X ≤ 0 P’(X) = 0 otherwise. This formulation is exemplified in [156]. 

 

The referred recursive algorithm was developed using Matlab® and tested through several 

exercises, in order to be applied in this research.  

 

Loss of Load Expectation 

Although the existence of rather accurate methodologies to assess a wide range of situations that 

could occur during the operation of a power system, the LOLE shall be used in this work, due to the 

research goals and simplicity of the concerned index. The LOLE is obtained by combining the 

individual daily peak loads with the capacity outage probability table, to get the expected number of 

days in the specified period in which the daily peak load will exceed the available capacity. The 

mathematical formulation of the LOLE is given as follows. 
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ܧܮܱܮ =  ∑ ௜ܲ(ܥ௜ − ௜)௡ܮ
௜ୀଵ   days/period      (4. 50) 

 
 

Where, 

n is the number of days; 

Ci is the available capacity on day i; 

Li is the forecast peak load on day i; 

Pi(Ci-Li) is the probability of loss of load on day i (obtained directly through the COPT). 

 

Alternatively, the LOLE can be computed by the next equation. 

 

ܧܮܱܮ = ∑ ௞݌ . ௞௡ݐ
௞ୀଵ    time units     (4. 51) 

 
Or 
 

ܧܮܱܮ = ∑ ௞ݐ) − ௞ିଵ)௡ݐ
௞ୀଵ ௞ܲ     time units                (4. 52) 

 
 

Where,  

n is the number of capacity outage states; 

pk is the probability of the kth capacity outage state with magnitude Ok;  

Pk is the cumulative outage probability of the kth capacity outage state with magnitude Ok;  

tk is the number of time units in the study interval that an outage magnitude, Ok, would result in a 

loss of load. 

 

The next figure presents an example of a daily peak load variation curve for a period of 365 days. A 

given outage will contribute to the system LOLE by an amount equal to the product of the 

probability of the particular outage and the number of time units in the study interval that a loss of 

load would occur, if such a capacity outage is verified. Any capacity outage less than the reserve 

won’t contribute to the system LOLE. On the other hand, outages higher than the reserve results in 

varying numbers of time units during which loss of load could occur. 
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Fig. 37: Relationship between load, capacity and reserve  

  

The period of study of the LOLE can be a week, a month or a year, being the annual approach the 

simplest application, with LOLE expressed in days per year (indicating the average number of days 

which a loss of load will be verified) [156].  

 

LOLE with Renewable Energy Sources  

Wind and hydro power cannot be adequately modelled by their capacity and FOR, since one has to 

count with the resource availability besides wind and hydro generators availability [232], [233]. 

According to [233], wind generators have typically very high electrical and mechanical availability, 

exceeding 95% in many instances. However, the “effective” forced outage rate for wind generators 

may be much higher, when recognizing the variability of wind. When it comes to reliability studies, 

for conventional generators, rated capacity, forced outage rates and specific maintenance schedules 

are the primary requirements. For an intermittent resource such as wind, at least one year of hourly 

power output is required.  

The present research proposes to analyze wind and hydro power historical performance, in order to 

assess the impact on the reliability, once it provides “the most accurate fidelity for a backward-

looking evaluation and is relatively simple to accomplish in most modelling frameworks”, as 

highlighted in [234]. Through that approach, a vector is built gathering 365 daily wind power values 

at peak load periods, WPi, taking into account that, essentially, only loads above 90% of the peak 

provide significant contributions to the system risk [235]. 

 

ܹܲ = [ܹ ଵܲ ⋯ ܹ ଷܲ଺ହ]                                     (4. 53) 
 

Hence, the wind power outage at peak load period of day i is given by the next equation. 

 

ܱ௜ௐ௉ = ௐ௉ܥ −ܹ ௜ܲ                             (4. 54) 

Ok 

Installed Capacity (MW) 

Reserve 

0        Time load exceeds the indicated value                      365 

Daily Peak Load 
(MW) 

tk 
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Where, 

Oi
WP is the wind power outage at peak load period of day i; 

CWP is the installed capacity of wind generation. 

 

As performed for wind power, vectors for hydro power, HPi, and daily peak load values, PLi are 

also built. 

 

ܲܪ = ܪ] ଵܲ ⋯ ܪ ଷܲ଺ହ]        (4. 55) 
 

ܮܲ = ଵܮܲ] ⋯  ଷ଺ହ]        (4. 56)ܮܲ

 

Hydro power availability is treated, in this study, as wind power in terms of resource availability. 

Wind and hydro power values at daily peak load periods could result from just one annual series of 

data or, if possible, could be built from a study of several years. 

 

According to methodologies proposed in [233], [232] and [236], a possible approach to include 

variable renewable energy sources into the methodology for LOLE calculation, is through the 

subtraction of the daily peak loads by the corresponding wind power and hydro power at peak load 

periods. That’s to say, the available renewable power is treated as a negative load, leading to a 

modified vector of daily peak load values, MPLi. This methodology is illustrated through the next 

equation. 

 

ܮܲܯ = ܮܲ −ܹܲ −  (57 .4)       ܲܪ

 

Since in this research pumped hydro storage is planned for absorbing the energy surplus (which 

otherwise would be lost), the energy consumed for pumping isn’t added to the system’s load for 

generation adequacy assessment. Therefore, the load model for LOLE calculation doesn’t take into 

account the additional load due to pumped hydro storage, since this strategy is understood as 

“service to the system” rather than “load to serve”. Regarding the generation model, pumped hydro 

storage is treated as a conventional hydro power plant, at off-valley hours.  

Concerning the electric mobility impact on the power system, the EVs’ charging is disregarded, 

since it will occur during valley hours, having, as a result, no effect in the daily peak load curve. 

The V2G contribution is also neglected for the capacity adequacy assessment. 
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4.4 Summary and Main Conclusions 

The current chapter encompassed the development of assignments for building a multicriteria 

energy planning methodology, aiming to enhance the sustainability of a given isolated system.  

This section proposed a mathematical formulation for a set of criteria and attributes, namely:  

 environmental impact (CO2 emissions from transport sector and power systems); 

 economic and financial costs (carbon-based costs; power generation costs; costs of centralized 

storage facility; costs of electric mobility; and costs of energy efficiency measures on the power 

system and transport sector); 

 adequacy of the generation system (loss of load expectation index). 

With this energy planning methodology, an isolated power system can be now addressed as case 

study. 
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Chapter 5 
 

5 The São Miguel Island Case Study 

5.1 Introduction 

The methodology developed in this research is applied to São Miguel Island (Azores, Portugal), 

bearing in mind its power system characteristics and the local government’s commitment to reach, 

by 2018, 40% of primary energy consumption from renewable energy sources. The required 

investments in renewable energy sources may include the reinforcement of Ribeira Grande 

geothermal facility, a new geothermal power plant or the reinforcement of Pico Vermelho 

geothermal facility, and a wind farm (already commissioned in the course of this work). Besides 

these power plants, other facilities could be commissioned such as further hydro power, biomass 

generation and centralized electricity storage, namely pumped hydro.   

Taking into account the typical load and generation profiles of the concerned power system, the 

referred investments in renewable energy sources may lead to energy surplus. Hence, electricity 

storage options should be studied in order to enhance the sustainability of São Miguel Island. 

Concerning the demand-side, the impact of energy efficiency measures will also be assessed for this 

case study. 

In what pertains to the transport sector, the local government vowed to promote the penetration of 

electric mobility. In addition to the study of electric vehicles’ introduction in São Miguel Island, in 

this chapter other sustainable mobility options will be evaluated, namely efficient internal 

combustion vehicles, biofuels and behavioural change. 

When it comes to the chapter organization, firstly the case study will be described in terms of its 

power system and transport sector. Afterwards, the alternatives for energy planning will be 

presented, as well as the input data for the attributes calculation. Finally, this chapter will draw the 

results obtained from the proposed methodology and a multi-attribute and multi-scenario analysis 

will be also carried out. 

 

5.2 Overview on the Power System and Transport Sector 

5.2.1 Power System 

In what concerns past values of the demand, São Miguel’s peak load has increased during the last 

few years and was registered in September, for 2000, 2001, 2004 and 2005, and December, for 

2002, 2003, 2006 and 2007 [237]. In Annex I are depicted the annual and monthly peak loads for 

the last decade. The annual load has grown more than 3%/year for the last years. According to 
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forecasts provided in 2008, by São Miguel’s local utility (EDA), the future demand is expected to 

keep rising, since there is a set of projected investments which will be responsible for additional 

electricity consumption [237]. Owing to the referred plans, the demand is expected to follow the 

following trend, with an average annual load increase of 3%.  

 
Fig. 38: São Miguel’s generation forecast (kWh) [237] 
  

Although the demand trend predicted by the local utility, the impact of energy efficiency measures 

on the system’s load should be studied, as a result of the strategic energy plan vowed by the 

Regional Government in [238]. 

Regarding the supply side, in 2008 the generation system of São Miguel Island had roughly 130 

MW of installed capacity with the following breakdown: one thermal power plant (Caldeirão) with 

8 fuel oil units; two geothermal power plants (Ribeira Grande and Pico Vermelho); and seven small 

hydro power plants [237]. Detailed specification of these generation units are shown in Annex I and 

typical load/generation profiles are presented next.  
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Fig. 39: Typical daily load and generation profiles, in 2008 (EDA) 
 

Fuel oil and geothermal power generate together more than 90% of the demand, whereas the hydro 

facilities stand for approximately 5% of the load. Additionally, since there is a weather steadiness 

throughout the year, load and generation profiles appear similar for both winter and summer days. 

The previous load and generation profiles refer to the power system operation in 2008. More 

recently a 9 MW wind farm entered into operation (Graminhais).  

In São Miguel Island, there is neither market for energy nor for reserve services. Through an 

analysis of the power system operation strategy, at least one 16,82 MW fuel oil unit is supposed to 

be in operation throughout the day, for frequency control purposes. In fact, hydro and geothermal 

units – and even electricity storage facilities and EV (through controllable charging and V2G) – 

could theoretically provide frequency control, but this research considers only regulation from fuel 

oil units. 

 

When it comes to future investments on generation units, the local government pledged to reach, by 

2018, 40% of primary energy consumption from renewable energy sources, and 50% of the global 

energy consumption from electricity [238]. As far as renewable energy is concerned, São Miguel’s 

power system may receive the following investments [239]: 

 3 MW reinforcement of Ribeira Grande geothermal facility.  

 Either build up a new geothermal facility (with 8-12 MW) or reinforce an already built 

power plant (Pico Vermelho) with further 10 MW. With the referred power upgrade, Pico 
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Vermelho would gather 20 MW of installed power and an annual average generation 

increase of 83 GWh. Concerning the new facility, EDA foresees an average generation of 67 

to 100 GWh, per annum. 

 In what regards to wind generation, in 2008, the Graminhais wind farm was studied, which 

would provide 9 MW of installed power and an expected annual average generation of 22,5 

GWh. In fact, this wind farm has already been commissioned at the final stage of the current 

research. 

 

5.2.2 Transport Sector 

The fuel percentage of light vehicles in Azores, in 2003, was 56% of gasoline and 44% of diesel, 

and the total number of light vehicles was 91 850. It’s worth mentioning that the diesel vehicles 

share is higher in the newest vehicles, than the verified for the gasoline ones, owing to the recent 

developments of diesel engines. Similarly, diesel vehicles share is higher in the oldest vehicles, than 

the verified for the gasoline ones, due to their higher lifetime. In what regards to future figures, 

TiS.PT states that by 2015 Azores will have 568 light vehicles/1000 inhabitants, which corresponds 

to a 42% increase over the 2003’s figure (401 light vehicles/1000 inhabitants) [240].  

 

Concerning the mileage from light vehicles, in Azores, this has been increasing during the last 

decades and that trend is likely to persist for the next few years. Taking into account the projected 

upgrades on São Miguel’s roads and highways, light vehicles mileage is expected to grow above the 

GDP growth rate, by 2015. The mobility of passengers light vehicles is foreseen to be about 1 062 

million vehicles-km by 2015, which corresponds to a 48,5% increase over 2003’s value [240].  

Accordingly, the Regional Government of Azores pledged, in 2008, to slump diesel and gasoline 

fuel consumption by 10%, in ten years. In view of that, clean technology-based vehicles, such as 

plug-in hybrid and electric vehicles, are planned to be supported. In addition, the Regional 

Government also vowed to promote the introduction, in the state-owned fleet, of hybrid mini-buses, 

plug-in hybrid and electric vehicles (in city journeys), and the destruction of end-of-life vehicles 

[238]. 

 

5.2.3 Electricity Storage Potential 

São Miguel Island has a bold potential for electricity storage from renewable energy sources. In 

view of that, two sites have been selected for evaluating the suitability of pumped hydro storage, 

namely a seawater solution, in Feteiras district, or a freshwater solution, using Furnas’ lake. 
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The freshwater solution envisages the construction of the upper reservoir with a 200m drop, in 

regards to the lower reservoir (the lake), as presented underneath [241]. 

 

 
Fig. 40: Pumped hydro storage using Furnas’ lake [241] 
 
When it comes to the seawater solution, although São Miguel has 227,3km of shore width, there is 

lack of available sites for pumped hydro storage. Yet the Southwest of the island (Feteiras district) 

has adequate conditions for the project, with a head of over 250m [241]. 

 
 

Project Area 

Lake (i.e. lower reservoir) 
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Fig. 41: Pumped hydro storage using the seawater solution [241] 
 
 

5.3 Multicriteria Decision Aid for Planning São Miguel Island’s Energy System 

5.3.1 Introduction to the Problem 

In this section, the proposed methodology for energy planning is applied in São Miguel Island, 

aiming to enhance the sustainability of that isolated system, through a multicriteria evaluation of 

renewable energy sources integration, plus electricity storage, sustainable mobility and the adoption 

of energy efficiency measures. 

This methodology starts with the identification of potential hypotheses for energy planning, by 

considering the investments and policies announced by the regional authorities, and by building 

integrated strategies for both the power system and transport sector.  

These alternatives for energy planning are then compared by the calculation of a set of attributes, 

namely: global carbon emissions as a result of energy use (transport and power system); economic 

and financial costs, which include carbon-based costs (if carbon emissions from the power system 

are accounted as a cost), power generation costs, costs of centralized storage facility, costs of 

electric mobility, and costs of energy efficiency measures (power system and transport sector); and 

when it comes to the adequacy of the generation system in terms of reliability, the loss of load 

expectation index is computed. 
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The calculation of these attributes is formulated in the decision maker’s perspective and is based on 

an annual assessment, for two scenarios of prices. The chosen year for analysis was 2030, in order 

to evaluate the energy planning options through a long-term perspective, which is common in 

studies developed by entities such as the European Commission. 

In the final stage of this study, a multi-attribute and multi-scenario analysis is performed, including 

auxiliary calculations for trade-offs and regret. 

 

5.3.2 Alternatives Characterization 

Overview 

As stated in chapter 4, alternatives are defined by considering the investments and policies that are 

being studied by the decision maker, who is represented by the regional authorities of the analysed 

energy system. Hence, the alternatives identification reproduces a range of potential hypotheses for 

a given energy system, gathering a set of decision variables, i.e.: load variation associated to the 

adoption of energy efficiency measures; installed capacity of renewable energy sources; sustainable 

mobility options; and electricity storage strategies. 

These alternatives for energy planning are built with the objective of enhancing the sustainability of 

São Miguel Island, in terms of environmental impact, economic and financial costs, and adequacy 

of the generation system. 

 

Energy Efficiency Measures on the Load 

Some alternatives follow an energy efficiency pathway, as a result of thriving dedicated programs 

for demand response, demand side management, load control and sustainable buildings. So, in what 

regards to electric energy demand variation, there are two pathways: annual demand increase (as 

foreseen by the utility); or annual demand decrease (by implementing energy efficiency measures).  
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Fig. 42: Load variation pathways for the case study 
 
 

For the alternatives without energy efficiency measures, the annual load increase pace is assumed to 

drop after 2015 (from +3%/year to +1%/year), bearing in mind the business-as-usual improvements 

on the appliances’ efficiency as well as on the consumers’ awareness.  

When it comes to the alternatives with energy efficiency measures, the load decrease range is 

assumed to slow down after 2015 (from -2%/year to -0,5%/year). That’s to say, the efficiency 

potential will drop a few years after these alternatives’ implementation. The building process for the 

energy efficiency path followed the trends presented in section 3.3.5. 

 

Pathways for Renewable Energy Sources 

When it comes to the energy mix, one has defined three hypotheses for the capacity of RES: 

business-as-usual (just scheduled RES capacity); mid-range RES increase; or high-range RES 

increase. The next figure shows these pathways for RES capacity, including the following energy 

sources (adjusted with the studies made by the regional authorities): geothermal; hydro; wind; and 

biomass.  
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Fig. 43: Pathways for RES for the case study 
 

The next table sketches out the installed capacity for each pathway. 

 
Table 8 – Pathways for RES 

Pathways for RES 
Installed Capacity (MW) 

Wind Hydro Geothermal Biomass 

High-range 9 9 47 10 

Mid-range 9 5 37 0 

BAU 01 5 24 0 

 

Transport Sector 

For the transport sector, three options were identified towards sustainable mobility, namely: 

 Strategy based on efficient ICVs, biofuels and behavioural change;  

 Strategy based on the introduction of 5 000 EVs (which correspond to 7,5% of São Miguel’s 

light vehicles fleet); 

 Strategy based on the introduction of 10 000 EVs (which correspond to 15% of São 

Miguel’s light vehicles fleet). 

 

In this study, the transport sector is subject to a certain sustainable mobility strategy (one of the 

previous three), for all the alternatives.  

                                                
1 This hypothesis existed in 2008, but recently a 9 MW wind farm was commissioned. Nevertheless, this hypothesis was 
kept for the development of this research. 
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Concerning the EVs figures, these were built in order to internalize the trends of some recent 

forecasts for electric mobility rollout, as presented in section 2.3.  

 

Electricity Storage 

Finally, regarding electricity storage strategies, the next alternatives were defined: centralized 

storage facility (i.e. pumped hydro storage) and/or EVs charging, including the V2G concept. 

Besides the mobility goal (which should be preserved), the EVs may also contribute for the power 

system operation, by consuming a certain share of the energy surplus (EVs charging) and injecting 

just a part of the stored energy into the grid, through V2G.  

The installed power of the centralized storage facility was identified, after projecting the load and 

generation profiles by 2030, in order to identify the daily energy surplus. The CSF installed 

capacity is set up to store the maximum amount of power surplus (i.e. 20 MW). The electricity 

storage facility’s characteristics are presented in the next section. 

 

Having presented the decision variables for the current problem, a set of potential alternatives for 

energy planning in São Miguel Island should now be built, including all the hypotheses for 

combining the decision variables, excluding the ones which result from the next conditions: 

 The strategies for electric mobility are not independent from the strategy based on efficient 

ICVs, biofuels and behavioural change. That’s to say, when the latter is adopted, this study 

assumes that there will not be introduced EVs and, as a consequence, V2G is obviously 

disregarded. But the centralized storage facility can be commissioned together with efficient 

ICVs, biofuels and behavioural change.  

 The transport sector is subject to a certain sustainable mobility strategy (efficient ICVs, 

biofuels and behavioural change; 5 000 EVs; or 10 000 EVs), for all the alternatives. That’s 

to say, this study disregards the absence of a sustainable mobility strategy. 

 When there is an introduction of 10 000 EVs, the centralized storage facility is not installed. 

On the other hand, the strategy based on 5 000 EVs is always implemented together with the 

centralized storage facility. In both cases (10 000 and 5 000 EVs), V2G can be either 

performed or not. 

 

These conditions were made after studying the energy system of São Miguel Island, and the 

interactions between the different individual options. The potential alternatives for energy planning 

are sketched out through the next figure. 
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Table 9 – Alternatives for energy planning of São Miguel Island 
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5.3.3 Attributes Calculation 

5.3.3.1 CO2 emissions 

The carbon emissions from the transport sector (light ICVs) and power system are computed 

through the methodology presented in section 4.3.2 and by integrating the next input parameters. 
 

Table 10 – Parameters for the carbon emissions attribute 

Parameter Value Source 

Number of light vehicles 66 336 [240], [242] 

Share of diesel light vehicles 50 % Assumption based on [240] 

Share of gasoline light vehicles 50 % Assumption based on [240] 

Daily mileage of light vehicles 35 km [243] 

Well-to-wheel emissions factor of diesel light vehicles  156 gCO2/km [65] 

Well-to-wheel emissions factor of gasoline light 
vehicles  172 gCO2/km [65] 

Emissions factor (including processing and extraction, 
transport of raw material, and electricity generation)  
owing to fuel oil electricity generation  

0,8 tonCO2/MWh [212], [244] 

 
When it comes to the share of fuel types in the transport sector, one assumed 50% of diesel and 

50% of gasoline light vehicles, which corresponds to an increase of diesel ICVs’ current percentage, 

according to the expected light vehicles’ trend [240]. 

Concerning the environmental impact of biomass power plants, the corresponding carbon emissions 

are assumed neglectable in this study. The works done by [245] and [246] highlight that biomass 

power plants can have emission factors (tonCO2/MWh) near zero. 

 

5.3.3.2 Total annual costs 

Scenarios for Prices 

During the last years one has noticed a bold turbulence on the energy markets. In 2008, the oil 

prices fluctuated swiftly between 150 $ and 50 $, within just six months [113]. When it comes to 

the carbon price in the EU ETS, during its first trading period the European Union Allowances 

(EUA) dropped sharply from 30 €/tonCO2 to near 0 €/tonCO2 in less than half year [115]. 
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Fig. 44: ETS outlook, data from [247] 

 

Therefore, it is worth analysing the forecasts carried out by some studies, regarding oil and carbon 

prices for the 2015-2030 perspective. 

 
Table 11 - Oil prices forecast [113], [248], [249], [153], [250] 

Source Year Value Unit EUR 
Barclays Capital 2020 185 $(2011)/bbl 132 

European Commission 2020 88 $(2007)/bbl 65 
PIRA 2020 110 $(2008)/bbl 75 
IHS 2020 81 $(2008)/bbl 55 

US Energy Information 
Administration 2020 108 $(2008)/bbl 73 

International Energy Agency 2020 100 $(2008)/bbl 68 
WM 2020 101 $(2008)/bbl 69 

European Climate Foundation 2050 115 $(2009)/bbl 83 

McKinsey&Company (high 
scenario) 2030 120 $(2008)/bbl 82 

McKinsey&Company (low 
scenario) 2030 60 $(2008)/bbl 41 

Daiwa Institute of Research 2015-2020 100 $(2008)/bbl 68 
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Table 12 - Carbon prices forecast [113], [248], [249], [153], [250], [251], [103] 

Study Year Value Unit 
European Commission - ETS (high 
pledge scenario) 2020 30 €/ton 

European Commission - ETS (low 
pledge scenario) 2020 16 €/ton 

European Climate Foundation (high 
scenario) 2050 40 €/ton 

European Climate Foundation (low 
scenario) 2050 0 €/ton 

European Climate Foundation (average 
scenario for the next 40 years) 2010-2050 20-30 €/ton 

Eurelectric 2030 39 €/ton 
International Energy Agency 2050 20 €/ton 
Stern Review 2020 30 €/ton 
JP Morgan post-2012 30 €/ton 
Deutsche Bank 2020 40 €/ton 
New Carbon Finance 2020 24 €/ton 
European Climate Exchange 2020 18 €/ton 
IHS 2018 22 €/ton 
Daiwa Institute of Research 2015 18 €/ton 
Daiwa Institute of Research 2020 24 €/ton 
Point Carbon 2020 16 €/ton 

 

When it comes to the electricity prices forecasts, the Portuguese Government (Ministry for 

Economy and Employment) and EDP – Energias de Portugal estimated 3,4% to 4,5% of annual 

nominal increase, for the next years [252], [253]. In addition, Eurelectric foresaw a real annual 

increase of electricity prices ranging from 2,6% to 2,8%, as average trend for the current decade 

[251]. 

Taking into account the uncertainty regarding the oil, carbon and electricity prices forecasts, two 

scenarios are defined for this case study, i.e. “high prices” scenario and “low prices” scenario. 

 “High prices” scenario (prices in 2030):  

o Oil: 80 €/bbl;  

o Carbon: 30 €/tonCO2 

o Electricity: annual increase of 3,4% (nominal). 

 “Low prices” scenario (prices in 2030): 

o Oil: 40 €/bbl; 

o Carbon: 16 €/tonCO2; 

o Electricity: no annual increase (i.e. 2010 rates). 
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Carbon-based costs 

The carbon-based costs are computed through the methodology presented in section 4.3.3.2. For the 

present case study, the National Allocation Plan for the second EU ETS period (2008-2012), capped 

the CO2 emissions from Caldeirão (fuel oil) power plant at 245 432 ton CO2/year [254]. The 

Caldeirão’s emissions cap in 2030 is, then, computed by annually decreasing the emissions cap 

established for ETS II, by a linear factor of 1,74%.  
 

Table 13 – Parameters for the calculation of carbon-based costs  

Parameter Value Source 

Emissions factor (including processing and 
extraction, transport of raw material, and electricity 
generation)  owing to fuel oil electricity generation 

0,8 tonCO2/MWh [212], [244] 

Average auctioning price of allowances in the EU 
ETS 

“High prices” scenario: 30,0 €/tonCO2 
“Low prices” scenario: 16,0 €/tonCO2 [113], [248], 

[249], [153], 
[118] Average EUAs price in the secondary market (i.e. 

spot, forwards, organized and OTC) for additional 
allowances 

“High prices” scenario: 24,0 €/tonCO2 
“Low prices” scenario: 12,8 €/tonCO2 

 

 

Power Generation Costs 

The power generation costs are computed through the methodology presented in section 4.3.3.3. It 

should be emphasized that for the analysed case study, the weather pattern throughout the year was 

assumed steady, bearing in mind local conditions. Moreover, a typical wind power profile was 

collected from past registers of wind farms in the Azores Archipelago (i.e. Terceira Island). São 

Miguel’s typical load, hydro and geothermal profiles were also identified and are provided in 

Annex I.  

Taking into account the identified alternatives for energy planning, none of them included 

reinforcement of non-renewable energy sources, which leads to absence of capital costs from these 

generation types. Concerning fuel oil generation, typically this technology has a lifetime of 25-40 

years [229]. Therefore, some fuel oil units will be decommissioned by 2030, which, for this study, 

were assumed to be two units (one of 7,7 MW and the other of 16,8 MW). The corresponding costs 

for decommissioning are disregarded in this research.  

Concerning renewable energy sources, a feed-in tariff is assigned to each type of power generation, 

by including both capital and operation costs, as described in section 4.3.3.3. Since for some 

alternatives, a part or even all the energy surplus won’t be absorbed (depending on the electricity 

storage strategy), that unused amount of available renewable energy sources won’t generate 

operation costs. One assumed that in those circumstances, geothermal power plants should adjust 

their power output, enabling the integration of wind and hydro, through a ramp down procedure. 
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Although currently there are geothermal units capable to provide frequency control, in this research 

this regulation is not considered.  Frequency control is assumed to be provided only by fuel oil 

units, without receiving any type of service remuneration. 

The next table presents the required input parameters for cost calculation. 

 
Table 14 – Parameters for the calculation of power generation costs  

Parameter Value Source 

Costs of fuel consumption (fuel oil units) 
“High prices” scenario:  0,66 €/kg  
“Low prices” scenario: 0,33 €/kg 

[255] 

Maintenance cost (fuel oil units) 5 €/MWh [256] 

Start-up costs (fuel oil units) 100 € Assumption based on [256] 

Shut-down (fuel oil units) 50 € Assumption based on [256] 

Wind generation cost (electric energy) 74 €/MWh Based on the Portuguese 
feed-in tariff [257] 

Hydro generation cost (electric energy) 75 €/MWh Based on the Portuguese 
feed-in tariff [257] 

Geothermal generation cost (electric energy) 84 €/MWh Based on the local utility’s 
costs [258] 

Biomass generation cost (electric energy) 107 €/MWh Based on the Portuguese 
feed-in tariff [257] 

 
 

When it comes to fuel costs, the specific fuel consumption at different points of operation is known 

[256]. With this data a polynomial interpolation was made, followed by a linearization to describe 

the fuel consumption at different power levels, for each unit type. The linear equation that describes 

the fuel consumption of each unit, at a certain power output, is combined with the corresponding 

cost of fuel.  

 

Concerning spinning reserve, one has assumed that this should be enough to handle the outage of 

the largest power unit in service, as followed by some system operators [224], [225]. Since the 

algorithm for unit commitment and economic dispatch assumes that at least one 16,8 MW unit must 

be operating all over the day (biggest fuel oil unit type) – for frequency control – the spinning 

reserve is computed with 16,8 MW, corresponding to the installed power of the largest power unit 

in service. 
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Costs of Centralized Storage Facility  

As described previously, in São Miguel, pumped hydro storage can be performed by either the 

seawater solution (in Feteiras district) or through the use of a lake as lower reservoir (Furnas’ lake). 

According to a recent environmental impact assessment, although the fresh-water storage is less 

expensive and technologically easier for local circumstances, it leads to significantly more 

ecological and geological externalities than the seawater solution. The referred study, hence, 

advocated for the adoption of the seawater project, emphasizing as well that environmental and 

technical constraints can be overcome by the use of measures applied in Okinawa pilot-project 

(Japan) [241].  

Therefore, this case study assumes the adoption of the seawater storage technology, resulting from 

the environmental impact assessment. Anyway, sensitivity analysis could be conducted for this 

power system, in case of admitting the installation of a fresh-water system, by using the 

methodology described in this research. In that case, the input data would be different, mostly when 

it comes to the facility’s capital costs. 

 

The CSF costs are computed through the methodology presented in section 4.3.3.4 and by 

integrating the next input parameters. 

 
Table 15 – Parameters for the calculation of costs of centralized storage facility 

Parameter Value Source 

Maximum depth of discharge 95 % [47] 

Energy transformation (round-trip) 
efficiency of the storage system 80 % [23] 

Specific energy cost 10 €/kWh [47] 

Specific power cost  500 €/kW [259], [23], [260], [261], [47] 

Additional capital cost owing to the 
corrosion prevention measures for 
seawater technology 

15 % [23] 

Local electricity selling price for the 
off-valley-hour rate 

“High prices” scenario: 0,255 €/kWh 
“Low prices” scenario: 0,122 €/kWh 

To formulate this price, one 
assumes that the demand for 
CSF’s generation will be evenly 
split between residential and 
commerce and industry 
customers, based on the report 
presented by [262]. The prices 
trend is supported by [263], 
[264], [253] 

Local electricity purchase cost for the 
valley-hour rate 

“High prices” scenario: 0,104 €/kWh 
“Low prices” scenario: 0,050 €/kWh 

Fraction of the initial capital invested, 
for the fixed maintenance cost 0,25 % [47] 

Discount rate 8 %  
[265], [153] 

Investment period 25 years 
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The CSF pumps water (stores) whenever there is energy surplus (expectedly  during valley hours) 

and generates electricity throughout off-valley hours, assuming a constant power output through 

this period and fulfilling the operating rules established by the algorithm for fuel oil plants’ unit 

commitment and economic dispatch.  

 
Costs of Electric Mobility  

The EM costs are computed through the methodology presented in section 4.3.3.5 and by 

integrating the next input parameters. 

 
Table 16 – Parameters for the calculation of costs of electric mobility 

Parameter Value Source 

Local electricity selling price for the 
valley-hour rate 

“High prices” scenario: 0,155 €/kWh 
“Low prices” scenario: 0,074 €/kWh 

The prices trend is 
supported by [263], [264], 
[253] 

Local electricity purchase cost for the 
valley-hour rate 

“High prices” scenario: 0,104 €/kWh 
“Low prices” scenario: 0,050 €/kWh 

Local electricity selling price for the off-
valley-hour rate 

“High prices” scenario: 0,288 €/kWh 
“Low prices” scenario: 0,138 €/kWh 

Efficiency of the EV conversion of energy 
storage back to electricity 93% [70] 

Battery capital cost, including replacement 
labour 8 000 € 

[266], [267] 
Lifetime in cycles (for the corresponding 
depth-of discharge) 2 000 

Total energy storage of the battery 27,4 kWh 
[70] 

Depth-of-discharge 80% 

Capital Cost (Network Management tool + 
Business and Operations Management tool 
+ Smart Payment System + CPs) 

Software: €1 million 
CP: 750€/unit 
 

Software licences for 50 
000 CPs, with capital costs 
based on: Energy Data 
Management SW – San 
Diego Gas and Electric 
[268]; Smart Card 
Prepayment System – UK’s 
market [269]; Meter Data 
Management SW – EU 
pilot-projects [270]. 1 CP/ 
EV and cost based on [71] 

Discount rate 8%  
[265], [153] 

Investment period 25 years 

 

The EM in São Miguel assumes also an energy consumption/EV of 0,2 kWh/km [267], [271], and 

9% of losses in the power grids [239]. For a daily mileage of 35 km, each EV will lead to an energy 
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demand of 7,7 kWh for mobility. This research assumes that just ¼ of the battery’s energy is 

available for V2G (i.e. 7,5 kWh for a 27,4 kWh battery).  

The next figure shows the assumed charging profile for one EV (without the additional energy for 

V2G), in order to maximize the renewable generation surplus. 

 
Fig. 45: Preferred load profile for charging one EV 
 

The previous figure illustrates the preferred charging profile of EVs, usually called “smart 

charging”. Although some EVs could opt for another charging profile, the current study assumes 

that the smart charging strategy is adopted by EVs. 

  

The charging profile of an EV that performs V2G should add to the previous load profile the 

corresponding energy for that purpose, as bellow presented. 

 
Fig. 46: Load profile for charging one EV including the V2G impact 
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The V2G contribution for the power system considers network and battery conversion losses, 

totalling 22% (grid-battery-grid) [70], [239].  

When it comes to the capital costs, these are assumed to be supported by the EM investor and 

operator (i.e. local utility). The profits concerned with the EM investment and operation depend on 

the margin driven by the electricity trading for providing the EVs charging service.  

  

Costs of Energy Efficiency Measures 

The costs of energy efficiency measures are computed through the methodology presented in 

section 4.3.3.6 and by integrating the next input parameters. 

 
Table 17 – Parameters for the calculation of costs of energy efficiency measures 

Parameter Value Source 

Parameters of the linear equation for the 
energy efficiency costs  

a: 6,6 
b: 98,3 
These values are 
expressed in thousand 
€/GWh 

[140], [231] 

Annual abatement potential owing to 
efficient ICVs 0,46% 

[151] 

Annual abatement potential by 
improving the traffic flow 0,02% 

Annual abatement potential owing to 
improved driving behaviour 0,02% 

Annual abatement potential by reducing 
the distance driven 0,02% 

Annual abatement potential by blending 
low carbon biofuel 0,09% 

Conversion factor for the ICVs energy 
consumption 0,25 kgCO2/kWh [272] 

 
 

Regarding energy efficiency applied on the transport sector, in order to compare the competing 

strategies for sustainable mobility and to assess their results over the base year, the number of light 

vehicles is assumed constant from the base year to the target year. Additionally, for the electric 

mobility strategy a daily mileage of 35 km is assumed for the light vehicles, both for the base year 

and target year [273]. On the contrary, the alternatives with energy efficiency measures will 

improve that figure, through behavioural changes.  

These assumptions are made in order to compare the EM and ICV-based sustainable mobility 

contributions, with a common transport profile. 
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5.3.3.3 LOLE 

The LOLE calculation follows the methodology described in section 4.3.4 and considers the next 

reliability input parameters (assuming the decommissioning of two fuel oil units that are still 

currently operating, as presented in section 5.3.3.2), for the forced outage rates (FOR) 

 
Table 18 – Parameters for the LOLE calculation [274] 

Power Plant FOR 

Caldeirão G1 (fuel oil) 0,00277 

Caldeirão G2 (fuel oil) 0,00277 

Caldeirão G3 (fuel oil) 0,00355 

Caldeirão G4 (fuel oil) 0,00400 

Caldeirão G5 (fuel oil) 0,00400 

Caldeirão G6 (fuel oil) 0,00400 

Geothermal  Pico Vermelho 0,00300 

Geothermal  Ribeira Grande 0,00300 

Biomass 0,00300 

 

For LOLE computing, the modified peak load variation curve is built by collecting São Miguel’s 

daily load, hydro and wind power profiles, taking into account the assumptions presented in section 

5.3.3.2 (Power Generation Costs).  

 

5.3.4 Results in 2030 

5.3.4.1 Methodological Framework 

The previously described attributes are now computed for the year 2030, in order to evaluate the 

energy planning options through a long-term perspective. The attributes calculation is done for two 

scenarios of prices, as mentioned in section 5.3.3.2, i.e.: “high prices” scenario; and “low prices” 

scenario. 

The results to present in this chapter follow the two methodologies proposed in section 4.2.2. That 

is to say, firstly carbon emissions from the power system are accounted as a cost, in the scope of the 

EU Emissions Trading Scheme. Subsequently, carbon costs are disregarded and the corresponding 

power system’s emissions are accounted in the environment impact criterion. This last methodology 

will be adopted throughout the results analysis, since the multicriteria assessment of the alternatives 

(namely comparing costs and emissions) becomes clearer and more comprehensive, when carbon 
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emissions from the power system are accounted through an environmental attribute, rather than by 

an economic attribute 

 

5.3.4.2 “High Prices” Scenario  

The prices variation between the two scenarios (high and low prices), is rooted on different trends 

for oil, carbon and electricity prices by 2030. The next table presents the results of the proposed 

methodology in 2030, for the “high prices” scenario, considering the power system’s emissions as 

costs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



             
 

 
 
5. The São Miguel Island Case Study    177 
 

Table 19 - Total annual carbon emissions, costs and LOLE for “high prices” scenario in 2030, including power system’s 

carbon emissions as costs 

 

Annual CO2 
emissions 

(kton) 
Total Annual Costs (million Euros) - 2030 

LOLE 
(days/year) 

Alternative 
Transport 

Sector 
(ICVs) 

Carbon
-based 
costs 

Energy 
Efficiency 
measures 

Power 
Generation CSF1 EM2 TOTAL 

1 121,76 4,46 0,76 57,38 -2,57 0 60,03 0,004 
2 121,76 5,04 0,76 58,05 0 0 63,85 0,065 
3 118,03 4,93 0 60,16 0 -3,74 61,35 0,065 
4 118,03 5,09 0 60,08 0 -0,61 64,56 0,065 
5 128,50 4,67 0 58,58 -0,03 -1,77 61,45 0,004 
6 128,50 4,68 0 59,06 -1,25 -0,26 62,24 0,004 
7 121,76 7,52 0,76 61,29 1,13 0 70,69 0,130 
8 121,76 7,52 0,76 61,29 0 0 69,57 0,846 
9 118,03 8,13 0 64,44 0 -3,74 68,83 0,846 
10 118,03 8,07 0 62,93 0 -0,61 70,39 0,846 
11 128,50 7,83 0 60,86 1,13 -1,77 68,04 0,130 
12 128,50 7,79 0 62,42 1,13 -0,26 71,09 0,130 
13 121,76 10,02 0,76 69,52 1,13 0 81,42 1,057 
14 121,76 10,02 0,76 69,52 0 0 80,30 9,308 
15 118,03 10,63 0 72,21 0 -3,74 79,10 9,308 
16 118,03 10,57 0 72,91 0 -0,61 82,87 9,308 
17 128,50 10,32 0 70,66 1,13 -1,77 80,34 1,057 
18 128,50 10,29 0 71,64 1,13 -0,26 82,80 1,057 
19 121,76 2,15 1,22 41,07 38,08 0 82,52 4E-08 
20 121,76 2,15 1,22 30,16 0 0 33,54 1E-06 
21 118,03 2,15 0,46 32,50 0 -0,61 34,51 1E-06 
22 118,03 2,15 0,46 32,50 0 -0,61 34,51 1E-06 
23 128,50 2,15 0,46 42,24 14,63 -0,26 59,22 4E-08 
24 128,50 2,15 0,46 42,24 14,63 -0,26 59,22 4E-08 
25 121,76 2,53 1,22 33,08 1,09 0 37,92 2E-06 
26 121,76 2,95 1,22 28,38 0 0 32,55 2E-05 
27 118,03 2,66 0,46 31,85 0 -3,53 31,43 2E-05 
28 118,03 2,95 0,46 30,71 0 -0,61 33,52 2E-05 
29 128,50 2,40 0,46 30,95 -0,90 -1,56 31,35 2E-06 
30 128,50 2,48 0,46 31,51 -1,02 -0,26 33,17 2E-06 
31 121,76 4,42 1,22 32,84 0,88 0 39,37 7E-06 
32 121,76 4,46 1,22 33,25 0 0 38,93 2E-04 
33 118,03 5,02 0,46 31,57 0 -3,74 33,31 2E-04 
34 118,03 4,96 0,46 32,94 0 -0,61 37,75 2E-04 
35 128,50 4,72 0,46 30,74 1,13 -1,77 35,27 7E-06 
36 128,50 4,69 0,46 32,62 1,13 -0,26 38,64 7E-06 

                                                
1 Centralized Storage Facility 
2 Electric Mobility 
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The previous results are drawn for an annual basis, for the year 2030, as explained in section 5.3.1. 

Accordingly, the next graphs are built in order to show the relationship between the total annual 

costs and the other attributes.  

Firstly, the next graph presents the alternatives results for the attributes referred to Total Annual 

Costs (in million Euros) and Annual CO2 Emissions from ICVs (in kton). One should highlight that 

carbon emissions from the power system are accounted within total annual costs, in the scope of the 

EU Emissions Trading Scheme. 

 

 
Fig. 47: Total annual costs and carbon emissions of the alternatives in 2030, for the “high prices” scenario, including 

power system’s carbon emissions as costs (1) 

 

The previous graph shows, basically, six groups of alternatives, in terms of electric mobility and 

energy efficiency measures on the load, as presented below. 
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Fig. 48: Total annual costs and carbon emissions of the alternatives in 2030, for the “high prices” scenario, including 

power system’s carbon emissions as costs (2) 

 

Although the relevance of the previous plots, in fact it’s hard to identify the relationship between 

total costs and corresponding global emissions (power system plus ICVs), since the CO2 emitted by 

power generation units is accounted as a carbon cost according to the EU ETS (cap-and-trade). That 

carbon accountability is indeed followed by the energy planning divisions of GENCOs and 

governmental institutions, but leads to lack of environmental understanding, in view of a 

multicriteria assessment. 

In view of this worry, the obtained results are now presented by disregarding carbon costs (within 

total annual costs) and adding the power system’s CO2 emissions to the ICVs emissions, as 

described by equation (4. 2).  
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Table 20 – Total annual carbon emissions, costs and LOLE for “high prices scenario” in 2030, including power 

system’s carbon emissions in the environmental attribute 

 

Annual CO2 
emissions 

(kton) 
Total Annual Costs (million Euros) - 2030 

LOLE 
(days/year) 

Alternative 
Power System 
plus Transport 
Sector (ICVs) 

Energy 
Efficiency 
measures 

Power 
Generation CSF1 EM2 TOTAL 

1 262,98 0,76 57,38 -2,57 0 55,57 0,004 
2 287,11 0,76 58,05 0 0 58,81 0,065 
3 278,69 0 60,16 0 -3,74 56,42 0,065 
4 285,21 0 60,08 0 -0,61 59,47 0,065 
5 278,30 0 58,58 -0,03 -1,77 56,78 0,004 
6 278,96 0 59,06 -1,25 -0,26 57,56 0,004 
7 390,35 0,76 61,29 1,13 0 63,17 0,130 
8 390,35 0,76 61,29 0 0 62,05 0,846 
9 412,09 0 64,44 0 -3,74 60,70 0,846 

10 409,41 0 62,93 0 -0,61 62,32 0,846 
11 409,83 0 60,86 1,13 -1,77 60,21 0,130 
12 408,49 0 62,42 1,13 -0,26 63,29 0,130 
13 494,44 0,76 69,52 1,13 0 71,40 1,057 
14 494,44 0,76 69,52 0 0 70,28 9,308 
15 516,18 0 72,21 0 -3,74 68,47 9,308 
16 513,51 0 72,91 0 -0,61 72,30 9,308 
17 513,92 0 70,66 1,13 -1,77 70,01 1,057 
18 512,58 0 71,64 1,13 -0,26 72,51 1,057 
19 166,58 1,22 41,07 38,08 0 80,37 4E-08 
20 166,58 1,22 30,16 0 0 31,39 1E-06 
21 162,85 0,46 32,50 0 -0,61 32,36 1E-06 
22 162,85 0,46 32,50 0 -0,61 32,36 1E-06 
23 173,32 0,46 42,24 14,63 -0,26 57,07 4E-08 
24 173,32 0,46 42,24 14,63 -0,26 57,07 4E-08 
25 182,37 1,22 33,08 1,09 0 35,39 2E-06 
26 200,14 1,22 28,38 0 0 29,60 2E-05 
27 183,98 0,46 31,85 0 -3,53 28,78 2E-05 
28 196,41 0,46 30,71 0 -0,61 30,57 2E-05 
29 183,74 0,46 30,95 -0,90 -1,56 28,96 2E-06 
30 186,98 0,46 31,51 -1,02 -0,26 30,69 2E-06 
31 261,26 1,22 32,84 0,88 0 34,95 7E-06 
32 262,86 1,22 33,25 0 0 34,47 2E-04 
33 282,61 0,46 31,57 0 -3,74 28,29 2E-04 
34 279,93 0,46 32,94 0 -0,61 32,79 2E-04 
35 280,35 0,46 30,74 1,13 -1,77 30,56 7E-06 
36 279,01 0,46 32,62 1,13 -0,26 33,96 7E-06 

                                                
1 Centralized Storage Facility 
2 Electric Mobility 
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Fig. 49: Total annual costs and carbon emissions of the alternatives in 2030, for the “high prices” scenario, including 

power system’s carbon emissions in the environmental attribute 

 

According to the obtained results, alternatives with higher share of RES lead to lower carbon 

emissions. When it comes to the effect of energy efficiency measures on the load, the next graph 

illustrates that with the exception of alternatives 19, 23 and 24 (which are affected by the economic 

impact of CSF operation when there is energy surplus throughout all the day), all the other 

alternatives implementing energy efficiency measures on the load, have lower total annual costs. 
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Fig. 50: Effect of energy efficiency measures on the load, on total annual costs and carbon emissions of the alternatives 

in 2030, for the “high prices” scenario 

 

If the analysis is only focused on the power generation costs, all alternatives facing energy 

efficiency measures on the load present lower costs than the alternatives without energy efficiency 

measures. To explain this conclusion, an observation of the power generation options is worth 

performing, for both load increase and decrease pathways. 
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Fig. 51: Effect of energy efficiency measures on the load and RES pathways, on total annual costs and carbon emissions 

of the alternatives in 2030, for the “high prices” scenario 

 

The previous plot ratifies the environmental benefits of RES increase and load decrease, and shows 

that, in terms of carbon emissions, alternatives with high-range RES increase and without energy 

efficiency on the load are similar to the ones with BAU RES together with energy efficiency 

measures on the power system. 

When it comes to the cost-effectiveness of energy efficiency on the power system, an economic 

analysis should be carried out, by comparing: (i) annual cost per unit of electric energy generated, 

without investing on efficiency measures; (ii) annual cost per unit of electric energy generated, with 

energy efficiency measures; and (iii) annual cost per unit of electric energy generated, with energy 

efficiency measures, plus the annual cost for applying these measures. 

This assessment will only consider comparable alternatives in terms of power generation, that’s to 

say alternatives with neither electricity storage nor electric mobility. 
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Table 21 – Annual cost per unit of electric energy generated, without investing on efficiency measures, for “high 

prices” scenario in 2030 

Annual Demand in 2030 654,37 GWh 

Annual cost for electric 
energy generation (RES 
and non-RES) 

High-range RES increase 58,05 million € 
Mid-range RES increase 61,29 million € 
BAU 69,52 million € 

Annual cost per unit of 
electric energy generated 

High-range RES increase 88,71 €/MWh 
Mid-range RES increase 93,66 €/MWh 
BAU 106,23 €/MWh 

 

 
Table 22 – Annual cost per unit of electric energy generated, with energy efficiency measures, for “high prices” 

scenario in 2030 

Annual Demand in 2030 369,04 GWh 

Annual cost for electric 
energy generation (RES 
and non-RES) 

High-range RES increase 30,16 million € 
Mid-range RES increase 28,38 million € 
BAU 33,25 million € 

Annual cost per unit of 
electric energy generated 

High-range RES increase 81,74 €/MWh 
Mid-range RES increase 76,89 €/MWh 
BAU 90,10 €/MWh 

 

 
Table 23 – Annual cost per unit of electric energy generated, with energy efficiency measures, plus the annual cost for 

applying these measures, for “high prices” scenario in 2030 

Annual Demand in 2030 369,04 GWh 

Annual cost for electric 
energy generation (RES 
and non-RES) 

High-range RES increase 30,63 million € 
Mid-range RES increase 28,84 million € 
BAU 33,71 million € 

Annual cost per unit of 
electric energy generated 
(including the annual cost 
for energy efficiency) 

High-range RES increase 82,99 €/MWh 
Mid-range RES increase 78,14 €/MWh 
BAU 91,35 €/MWh 

 

The previous tables allow observing that alternatives implementing energy efficiency measures 

result on lower annual cost per unit of electric energy generated, comparing to analogous 

alternatives that don’t invest on load reduction. That is also true even adding the annual costs for 

energy efficiency on power system, to the power generation costs. The annual costs of energy 

efficiency increase linearly over time and, in 2030, stand for 461 thousand Euros of investment.   

The next figure represents graphically the concerned alternatives, in terms of total annual costs 

(more than just power generation costs) and total carbon emissions. 
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Fig. 52: Effect of RES pathways on total annual costs and carbon emissions of the alternatives in 2030, for the “high 

prices” scenario 

 

According to the above plot and tables, alternatives with energy efficiency measures on the load 

besides leading to a lower cost per unit of electric energy generated, also result on global lower 

costs than alternatives without energy efficiency. 

 

Concerning total annual costs, renewable energy sources become more cost-competitive than fuel-

oil thermal generation. That’s to say, high-range and mid-range RES increase are economically 

more beneficial than BAU option, for both load strategies. If energy efficiency measures on the load 

are not applied, high-range RES increase leads to lower total annual costs than mid-range RES 

increase. In case of applying energy efficiency measures on the load, mid-range RES increase is 

less expensive than high-range RES increase, because in the latter biomass generation is 

commissioned, and geothermal and hydro power units are reinforced. The cost-effectiveness of this 

RES increase depends on the load level. When load is higher, the effect of expensive RES, such as 

biomass (feed-in tariff of 107 €/MWh), is smoothened. On the other hand, when load is decreased, 

the weight of biomass among global power generation cost increases (28% of the total power 

generation cost), comparing to the case in which there are no energy efficiency measures on the 
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load (20% of the total power generation cost).  That’s to say, it is worth reducing the load through 

energy efficiency measures, instead of commissioning expensive RES to compensate the load 

increase. These conclusions are ratified by Table 21, Table 22 and Table 23. 

In terms of carbon emissions, alternatives applying energy efficiency measures on the load lead to 

lower amounts of CO2.  

 

To compare the mobility options in terms of costs and carbon emissions, the alternatives should be 

compared for the same planning specifications. Therefore, firstly mobility alternatives will be 

presented, without neither CSF nor V2G. The next graph presents the alternatives for sustainable 

mobility, including the RES and load characteristics. 

 

 
Legend: 

S-ICV: Efficient ICVs, Biofuels and Behavioural Change 

10EV: 10 000 EVs pathway without V2G 

Fig. 53: Assessment of mobility options in terms of costs and carbon emissions, in 2030, for the “high prices” scenario 

 

The previous plot allows concluding that alternative 22 has the lowest total carbon emissions, 

whereas alternative 26 leads to the lowest costs. The referred graph also enables observing six 
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groups of alternatives, influenced by the RES strategy. The comparison of mobility options should 

then be done within each group of alternatives. 

Within the group of alternatives that don’t apply energy efficiency measures on the load, if BAU 

RES is followed, alternative 14 (Efficient ICVs, Biofuels and Behavioural Change) has both lower 

costs and carbon emissions than the other option (alternative 16). This is justified since the 

additional energy demand for EVs charging (alternative 16) is fulfilled by thermal units, which 

results on both higher power generation costs (more 3,4 million Euros) and emissions (more 22,8 

kton CO2), but lower ICVs emissions (less 3,7 kton CO2).  

When it comes to the alternatives adopting mid-range RES increase, alternative 8 (Efficient ICVs, 

Biofuels and Behavioural Change) leads to both lower costs and carbon emissions than the other 

option (alternative 10), due to the same reasons presented for the BAU RES option. Again this 

happens because the additional energy demand for EVs charging (alternative 10) is filled up by 

thermal units, which leads to both higher power generation costs (more 1,6 million Euros) and 

emissions (more 22,8 kton CO2), but lower ICVs emissions (less 3,7 kton CO2). These results allow 

inferring that there is a similar relationship between the mobility options, for both BAU and mid-

range RES increase. 

Alternatively, if high-range RES increase is followed, alternative 4 (10 000 EVs pathway), has 

lower carbon emissions than the other strategy (alternative 2). Now the extra energy demand for 

EVs charging is provided by RES, which lowers the total amount of emissions (less 1,9 kton CO2), 

but still leads to higher power generation costs than alternative 2 (more 2,0 million Euros). 

 

Concerning alternatives adopting energy efficiency measures, if BAU RES option is pursued, 

alternative 32 (Efficient ICVs, Biofuels and Behavioural Change) despite having lower emissions, 

leads to higher costs than alternative 34 (10 000 EVs pathway). In fact, alternative 32 leads to less 

20,8 kton CO2 from the power system than alternative 34, since the EVs are “fuelled” by additional 

thermal power generation. On the other hand, alternative 34 results on a fall of carbon emissions 

from the ICVs, comparing to alternative 32 (less 3,7 kton CO2), but globally still has higher 

emissions than the latter (more 17,1 kton CO2). In terms of power generation costs, theoretically, 

alternative 32 should also be more competitive. However, the analysis of the load/generation profile 

allows noticing that although alternative 34 has a higher demand of energy (more annual 27,8 

GWh), the power generation costs are lower than the registered in alternative 32 (less annual 310 

thousand Euros). Taking into account the operation rules of the system, alternative 34 enables a 

better cost performance of fuel oil units, than alternative 32, as sketched out next. 
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Fig. 54: Thermal-based power generation costs of alternatives 32 and 34, for the “high prices” scenario 

 

Concerning the options with mid-range RES increase, alternative 28 (10 000 EVs pathway) leads to 

lower carbon emissions and higher costs than alternative 26 (Efficient ICVs, Biofuels and 

Behavioural Change). As a matter of fact, in alternative 28, the additional energy demand for EVs 

charging is provided by RES, therefore there are no extra carbon emissions from the power system 

owing to electric mobility. Furthermore, alternative 28 also benefits from the decrease of carbon 

emissions from the ICVs (less 3,7 kton CO2 than alternative 26). Regarding the costs, the additional 

power generation for EVs “fuelling”, in alternative 28, leads to more 2,3 million Euros of cost 

(accounted to RES), than for alternative 26. 

 

Finally, concerning the high-range RES increase, alternative 22 (10 000 EVs pathway) leads to 

lower carbon emissions and higher costs than alternative 20 (Efficient ICVs, Biofuels and 
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Behavioural Change). The relationship between these two alternatives is indeed similar to the 

registered in the case of mid-range RES increase, both on power generation costs and emissions. 

 

From the previous analysis, some conclusions can be drawn: 

 Electric mobility becomes environmentally more beneficial with the increase of RES; 

 Electric mobility needs lower amounts of RES to be environmentally competitive, in the 

case of investing on energy efficiency measures on the load; 

 Only when there is a load decrease and BAU RES, electric mobility appears economically 

competitive (thanks to the operation of power units with lower cost for electric energy 

generation). 

 

At this time mobility alternatives will be presented, together with CSF, yet disregarding V2G 

strategy. The next graph presents the alternatives for sustainable mobility plus CSF, including the 

RES and load characteristics. 

 
Legend: 

S-ICV: Efficient ICVs, Biofuels and Behavioural Change, plus CSF 

5EV: 5 000 EVs pathway (without V2G), plus CSF 

Fig. 55: Assessment of mobility options together with CSF, in terms of costs and carbon emissions, in 2030, for the 

“high prices” scenario 



             
 

 
 
5. The São Miguel Island Case Study    190 
 

 

The previous plot allows concluding that alternative 19 has the lowest total carbon emissions, 

whereas alternative 30 leads to the lowest costs. The referred graph also enables observing six 

groups of alternatives, influenced by the RES strategy. The comparison of mobility options should 

then be done within each group of alternatives. 

Within the group of alternatives that don’t apply energy efficiency measures on the load, if BAU 

RES option is followed, alternative 13 (Efficient ICVs, Biofuels and Behavioural Change, plus 

CSF) has both lower costs and carbon emissions than the other option (alternative 18). This is 

justified since the additional energy demand for EVs charging (alternative 18) is fulfilled by thermal 

units (there is no energy surplus), which results on both higher power generation costs (more 2,1 

million Euros) and emissions (more 11,4 kton CO2), and higher ICVs emissions (more 6,7 kton 

CO2).  

When it comes to the alternatives adopting mid-range RES increase, alternative 7 (Efficient ICVs, 

Biofuels and Behavioural Change, plus CSF) leads to both lower costs and carbon emissions than 

the other option (alternative 12), due to the same reasons presented for the BAU RES option. Again 

this happens because the additional energy demand for EVs charging (alternative 12) is filled up by 

thermal units (there is no energy surplus), which leads to both higher power generation costs (more 

1,1 million Euros) and emissions (more 11,4 kton CO2), and higher ICVs emissions (more 6,7 kton 

CO2). These results allow inferring that there is a similar relationship between the options for 

mobility together with centralized storage, for both BAU and mid-range RES increase. 

In line with these findings, if high-range RES increase is followed, alternative 1 (Efficient ICVs, 

Biofuels and Behavioural Change, plus CSF), has both lower costs and carbon emissions than the 

other option (alternative 6).  

Alternative 6 leads to additional energy demand for EVs charging, which stands for more 13,9 

GWh/year totally supplied by RES. This alternative has also 23,6 GWh/year of energy surplus 

stored by the CSF (through an equivalent load increase). When it comes to alternative 1, it observes 

an energy surplus of 36,9 GWh/year (based on RES), stored by the centralized storage facility 

(through an equivalent load increase). Therefore, both alternatives have the same RES power 

generation costs. In addition, alternative 1 has lower thermal-based power generation costs (less 1,7 

million Euros) and carbon emissions (less 9,2 kton CO2), owing to a larger energy shift from the 

CSF (more 10,6 GWh of CSF power generation). In case of energy surplus, the larger the EVs 

charging, the lower will be the stored energy by the CSF. In terms of emissions from the ICVs, 

alternative 6 results on more 6,7 kton CO2, in 2030. 
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To sum up, if energy efficiency is not applied on the load, the alternatives personified by Efficient 

ICVs, Biofuels and Behavioural Change, plus CSF, are preferred both in terms of costs and 

emissions. 

 

Hereinafter an analysis is performed on the alternatives implementing energy efficiency measures 

on the load.  

If BAU RES option is followed, alternative 31 (Efficient ICVs, Biofuels and Behavioural Change, 

plus CSF) has lower global carbon emissions (less 17,7 kton CO2) but slightly higher total annual 

costs (more 1,0 million Euros) than alternative 36. Alternative 36 leads to additional energy demand 

for EVs charging, which stands for more 13,9 GWh/year. Part of this extra load is supplied by RES 

(2,4 GWh/year). In alternative 31, where there are no EVs, that energy (surplus) is stored by the 

CSF, which is afterwards converted into electricity (with transformation losses). Therefore, both 

alternatives have equal RES power generation costs. Concerning thermal-based power generation 

costs, alternative 36 although has a higher electric load, results on faintly better cost performance 

(less 0,2 million Euros per year), due to the power system operation rules, as sketched out below.  
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Fig. 56: Thermal-based power generation costs of alternatives 31 and 36, for the “high prices” scenario 

 

Nonetheless, alternative 36 leads to higher carbon emissions from both the power system (more 

11,0 kton CO2, due to the effect of EVs charging) and ICVs (more 6,7 kton CO2), than alternative 

31. 

 

Concerning the options with mid-range RES increase, alternative 30 (5 000 EVs plus CSF) leads to 

higher carbon emissions and lower costs than alternative 25 (Efficient ICVs, Biofuels and 

Behavioural Change, plus CSF). Alternative 30 leads to additional energy demand for EVs 

charging, which stands for more 13,9 GWh/year totally supplied by RES. This alternative has also 

39,0 GWh/year of energy surplus stored by the CSF (through an equivalent load increase). When it 

comes to alternative 25, it observes an energy surplus of 53,0 GWh/year (based on RES), stored by 
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the centralized storage facility (through an equivalent load increase). Therefore, both alternatives 

have the same RES power generation costs. 

Alternative 30 allows a higher energy shift through CSF (more 2,6 GWh/year) and better cost 

performance of thermal-based power generation (less 1,6 million Euros of power generation costs 

per year), due to the power system operation rules. These drivers justify a higher cost-

competitiveness of alternative 30, over alternative 25. What’s more, since the CSF generation is 

higher in alternative 30, the carbon emissions from the power system are lower in this option, than 

in alternative 25. Bearing in mind that the additional energy demand for EVs charging (in 

alternative 30) is provided by RES, there are no extra carbon emissions from the power system 

owing to electric mobility. However, alternative 25 has lower carbon emissions from the ICVs (less 

6,7 kton CO2) than alternative 30.  

 

Finally, regarding the options with high-range RES increase, alternative 24 (5 000 EVs plus CSF) 

leads to higher carbon emissions and lower costs than alternative 19 (Efficient ICVs, Biofuels and 

Behavioural Change, plus CSF). Alternative 24 leads to additional energy demand for EVs 

charging, which stands for more 13,9 GWh/year totally supplied by RES. This alternative has also 

129,8 GWh/year of energy surplus stored by the CSF (through an equivalent load increase), but 

there is yet 31,2 GWh/year of energy surplus not stored owing to lack of capacity of the CSF. When 

it comes to alternative 19, it stores 129,8 GWh/year of energy surplus (based on RES) by the CSF 

(through an equivalent load increase), but there is still 45,1 GWh/year of energy surplus not stored, 

bearing in mind lack of CSF capacity. 

In terms of power generation costs, alternative 24 has higher RES based costs than alternative 19 

(more 1,2 million Euros/year) for EVs charging. Both alternatives observe energy surplus during all 

day, which turns thermal generation operating at minimum levels. Hence, alternatives 19 and 24 

share the same fuel oil power generation costs. One should also emphasize the harmful effect of an 

all-day energy surplus, which leads to ineffective CSF operation. That’s to say, since CSF can’t 

inject electricity back into the grid (after storing the energy surplus), it is unable to perform energy 

trading. This results on very high positive operation costs (negative gross margin) from the CSF for 

both alternative 19 and 24, totalling excessive annual costs comparing to the analogous alternatives. 

In view of these findings, the present match between high-range RES increase and energy 

efficiency on the load turns CSF an inappropriate option, owing to lack of opportunity for 

performing its energy shift mission. 

When it comes to the environment perspective, the alternatives under analysis have the same carbon 

emissions from the power system. Bearing in mind that the additional energy demand for EVs 

charging (in alternative 24) is provided by RES, there are no extra carbon emissions from the power 
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system owing to electric mobility. However, alternative 19 has lower carbon emissions from the 

ICVs (less 6,7 kton CO2) than alternative 24.  

 

From the previous analysis the next insights can be drawn: 

 If energy efficiency measures are applied on the load, the option with Efficient ICVs, 

Biofuels and Behavioural Change, plus CSF, originates lower carbon emissions, but higher 

total costs than the alternative with 5 000 EVs plus CSF; 

 If energy efficiency measures are not applied on the load, the option with Efficient ICVs, 

Biofuels and Behavioural Change, plus CSF, originates both lower carbon emissions and 

total costs than the alternative with 5 000 EVs plus CSF. 

 

As far as V2G is concerned, the next plot depicts the alternatives with electric mobility in terms of 

the V2G strategy (“Yes” for alternatives applying V2G; “No” for alternatives not applying V2G).  

 

 
Fig. 57: Total annual costs and carbon emissions of alternatives with 10 000 EVs in 2030, for the “high prices” scenario 
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Fig. 58: Total annual costs and carbon emissions of alternatives with 5 000 EVs in 2030, for the “high prices” scenario 
 

These graphs don’t include the alternatives 21 and 22 (Fig. 57), as well as 23 and 24 (Fig. 58), 

because in the corresponding circumstances (high-range RES increase and energy efficiency on the 

load), there is lack of opportunity for V2G. That’s to say, 21 is equal to 22 (no V2G) and 23 is equal 

to 24 (no V2G).  

Therefore, excluding alternatives 21 and 23 (which actually don’t perform V2G) all the alternatives 

with V2G have lower total costs, than the ones without V2G. Although V2G requires a higher 

demand for EVs charging (during valley hours) – and, as a result, larger power generation costs in 

that period – the rise of power generation costs is offset, during off-valley hours, with a reduction of 

thermal-based generation through the V2G strategy.  

The economic advantage of alternatives with V2G, for this prices scenario, results from positive 

gross margin (negative costs) benefited by the electric mobility investor and operator (local utility), 

which is driven  by the current prices scenario’s parameters for electricity rates, combined with the 

amount of energy charged to and dispatched by EVs. 
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When it comes to the environment analysis, one should highlight that V2G strategy has no influence 

on the CO2 emissions from ICVs, since the V2G energy requirements are fulfilled by an electricity 

consumption increase from the EVs, without changing the mobility pattern. Therefore, the 

environment impact of V2G depends on the energy mix, as well as the global balance between CO2 

emitted due to EVs charging and CO2 avoided owing to the electricity dispatched by EVs, through 

V2G. 

Regarding the previous graphs (alternatives with 10 000 EVs and 5 000 EVs), when there is no 

energy efficiency on the load, V2G allows lowering global carbon emissions only if high-range 

RES increase is followed. Alternatively, for alternatives applying energy efficiency measures, V2G 

leads to lower CO2 emissions in the case of mid-range RES increase. 

 

Finally, when it comes to the reliability influence on energy planning, the next figure presents the 

alternatives results for the attributes referred to Total Annual Costs (in million Euros) and Loss of 

Load Expectation (days/year). 

 
Fig. 59: Total annual costs and LOLE of the alternatives in 2030, for the “high prices” scenario 

 



             
 

 
 
5. The São Miguel Island Case Study    197 
 

Taking into account that alternatives 14, 15 and 16 draw unacceptable LOLE, the next figure 

disregards the referred alternatives. 

 
Fig. 60: Total annual costs and LOLE of a reduced set of alternatives in 2030, for the “high prices” scenario  
 

From the previous graphs one observes a set of alternatives having a LOLE very close to zero. In 

view of getting a rather detailed analysis on the Cost/LOLE relationship, the next figure presents the 

influence of energy efficiency measures on the load and RES strategies. 
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Fig. 61: Effect of energy efficiency measures on the load and RES pathways on total annual costs and LOLE, of a 

reduced set of alternatives in 2030, for the “high prices” scenario 
 

The previous graph allows inferring that all the alternatives facing energy efficiency measures on 

the load present lower LOLE than the alternatives without energy efficiency measures. In addition, 

LOLE is lower in alternatives with higher capacity of renewable energy sources. At this moment, 

one should remember that the fuel oil power capacity is the same for all the RES pathways. That’s 

to say, high-range RES increase doesn’t lead to a thermal power decommissioning, comparing to 

the mid-range RES increase and BAU RES option. 

Regarding the effect of electricity storage on the generation system adequacy, the presence of CSF 

decreases considerably the LOLE. Accordingly, all the alternatives with hydro pumped storage 

present better adequacy levels than the others. The CSF has the effect of a hydro power unit, 

concerning adequacy assessment. Concerning the electric mobility impact on the power system 

adequacy, the EVs’ charging is disregarded, since it occurs during valley hours, having, as a result, 

no effect in the daily peak load curve. In addition, V2G contribution is also neglected for LOLE 

assessment. 
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The CSF effect on the generation system adequacy can be observed by comparing alternatives, with 

the same energy mix, but with and without CSF. The text table just presents alternatives without 

energy efficiency on the load, to get a clearer impact of both RES levels and CSF. 

 
Table 24 – CSF and RES effect on LOLE, for alternatives without energy efficiency on the load, for the “high prices 

scenario” in 2030 

RES pathway Electricity Storage strategy LOLE (days/year) 

High-range RES increase 
With CSF (alternatives 1, 5 and 6) 0,004 

Without CSF (alternatives 2, 3 and 4) 0,065 

Mid-range RES increase 
With CSF (alternatives 7, 11 and 12) 0,130 

Without CSF (alternatives 8, 9 and 10) 0,846 

BAU  
With CSF (alternatives 13, 17 and 18) 1,057 

Without CSF (alternatives 14, 15 and 16) 9,308 

 

 

 

5.3.4.3 “Low Prices” Scenario  

The next table presents the results of the proposed methodology in 2030, for the “low prices” 

scenario, considering the power system’s emissions as costs.  
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Table 25 - Total annual carbon emissions, costs and LOLE for “low prices” scenario in 2030, including power system’s 

carbon emissions as costs 

 

Annual CO2 
emissions 

(kton) 
Total Annual Costs (million Euros) - 2030 

LOLE 
(days/year) 

Alternative 
Transport 

Sector 
(ICVs) 

Carbon
-based 
costs 

Energy 
Efficiency 
measures 

Power 
Generation CSF1 EM2 TOTAL 

1 121,76 2,38 0,76 50,25 -0,64 0 52,75 0,004 
2 121,76 2,69 0,76 49,14 0 0 52,59 0,065 
3 118,03 2,63 0 51,77 0 1,32 55,73 0,065 
4 118,03 2,71 0 51,24 0 0,13 54,08 0,065 
5 128,50 2,49 0 50,93 0,57 0,76 54,76 0,004 
6 128,50 2,50 0 51,15 -0,01 0,11 53,75 0,004 
7 121,76 4,01 0,76 45,02 1,13 0 50,92 0,130 
8 121,76 4,01 0,76 45,02 0 0 49,80 0,846 
9 118,03 4,34 0 46,62 0 1,32 52,28 0,846 

10 118,03 4,30 0 45,86 0 0,13 50,29 0,846 
11 128,50 4,17 0 44,79 1,13 0,76 50,85 0,130 
12 128,50 4,16 0 45,60 1,13 0,11 51,00 0,130 
13 121,76 5,34 0,76 44,20 1,13 0 51,43 1,057 
14 121,76 5,34 0,76 44,20 0 0 50,30 9,308 
15 118,03 5,60 0 45,58 0 1,32 52,51 9,308 
16 118,03 5,57 0 45,94 0 0,13 51,64 9,308 
17 128,50 5,44 0 44,79 1,13 0,76 52,12 1,057 
18 128,50 5,43 0 45,30 1,13 0,11 51,97 1,057 
19 121,76 1,15 1,22 39,86 18,85 0 61,07 4E-08 
20 121,76 1,15 1,22 28,95 0 0 31,32 1E-06 
21 118,03 1,15 0,46 31,29 0 0,13 33,03 1E-06 
22 118,03 1,15 0,46 31,29 0 0,13 33,03 1E-06 
23 128,50 1,15 0,46 41,03 7,61 0,11 50,36 4E-08 
24 128,50 1,15 0,46 41,03 7,61 0,11 50,36 4E-08 
25 121,76 1,35 1,22 30,19 1,11 0 33,87 2E-06 
26 121,76 1,58 1,22 25,77 0 0 28,57 2E-05 
27 118,03 1,42 0,46 29,61 0 1,24 32,72 2E-05 
28 118,03 1,58 0,46 28,11 0 0,13 30,28 2E-05 
29 128,50 1,28 0,46 29,22 0,16 0,67 31,79 2E-06 
30 128,50 1,32 0,46 29,56 0,10 0,11 31,56 2E-06 
31 121,76 2,36 1,22 25,17 1,01 0 29,76 7E-06 
32 121,76 2,38 1,22 25,27 0 0 28,87 2E-04 
33 118,03 2,68 0,46 24,56 0 1,32 29,02 2E-04 
34 118,03 2,64 0,46 25,26 0 0,13 28,49 2E-04 
35 128,50 2,52 0,46 24,13 1,13 0,76 28,99 7E-06 
36 128,50 2,50 0,46 25,15 1,13 0,11 29,35 7E-06 

                                                
1 Centralized Storage Facility 
2 Electric Mobility 
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The previous results are drawn for an annual basis, for the year 2030, as explained in section 5.3.1. 

Accordingly, the next graphs are built in order to show the relationship between the total annual 

costs and the other attributes.  

Firstly, the next graph presents the alternatives results for the attributes referred to Total Annual 

Costs (in million Euros) and Annual CO2 Emissions from ICVs (in kton). One should highlight that 

carbon emissions from the power system are accounted within the total annual costs, in the scope of 

the EU Emissions Trading Scheme. 

 

 
Fig. 62: Total annual costs and carbon emissions of the alternatives in 2030, for the “low prices” scenario, including 

power system’s carbon emissions as costs (1) 

 

The previous graph shows, basically, six groups of alternatives, in terms of electric mobility and 

energy efficiency measures on the load, as presented below. 
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Fig. 63: Total annual costs and carbon emissions of the alternatives in 2030, for the “low prices” scenario, including 

power system’s carbon emissions as costs (2) 

 

As inferred for the “high prices” scenario, it’s hard to identify the relationship between total costs 

and corresponding global emissions (power system plus ICVs), since the CO2 emitted by power 

generation units is accounted as a carbon cost according to the EU ETS (cap-and-trade). In view of 

this worry, the obtained results are now presented by disregarding carbon costs (within total annual 

costs) and adding the power system’s CO2 emissions to the ICVs emissions, as described by 

equation (4. 2). 
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Table 26 – Total annual carbon emissions, costs and LOLE for “low prices” scenario in 2030, including power system’s 

carbon emissions in the environmental attribute 

 

Annual CO2 
emissions 

(kton) 
Total Annual Costs (million Euros) - 2030 

LOLE 
(days/year) 

Alternative 
Power System 
plus Transport 
Sector (ICVs) 

Energy 
Efficiency 
measures 

Power 
Generation CSF1 EM2 TOTAL 

1 262,98 0,76 50,25 -0,64 0 50,37 0,004 
2 287,11 0,76 49,14 0 0 49,90 0,065 
3 278,69 0 51,77 0 1,32 53,10 0,065 
4 285,21 0 51,24 0 0,13 51,37 0,065 
5 278,30 0 50,93 0,57 0,76 52,27 0,004 
6 278,96 0 51,15 -0,01 0,11 51,25 0,004 
7 390,35 0,76 45,02 1,13 0 46,91 0,130 
8 390,35 0,76 45,02 0 0 45,79 0,846 
9 412,09 0 46,62 0 1,32 47,94 0,846 

10 409,41 0 45,86 0 0,13 45,99 0,846 
11 409,83 0 44,79 1,13 0,76 46,68 0,130 
12 408,49 0 45,60 1,13 0,11 46,84 0,130 
13 494,44 0,76 44,20 1,13 0 46,09 1,057 
14 494,44 0,76 44,20 0 0 44,96 9,308 
15 516,18 0 45,58 0 1,32 46,90 9,308 
16 513,51 0 45,94 0 0,13 46,07 9,308 
17 513,92 0 44,79 1,13 0,76 46,67 1,057 
18 512,58 0 45,30 1,13 0,11 46,54 1,057 
19 166,58 1,22 39,86 18,85 0 59,92 4E-08 
20 166,58 1,22 28,95 0 0 30,17 1E-06 
21 162,85 0,46 31,29 0 0,13 31,88 1E-06 
22 162,85 0,46 31,29 0 0,13 31,88 1E-06 
23 173,32 0,46 41,03 7,61 0,11 49,21 4E-08 
24 173,32 0,46 41,03 7,61 0,11 49,21 4E-08 
25 182,37 1,22 30,19 1,11 0 32,52 2E-06 
26 200,14 1,22 25,77 0 0 27,00 2E-05 
27 183,98 0,46 29,61 0 1,24 31,30 2E-05 
28 196,41 0,46 28,11 0 0,13 28,71 2E-05 
29 183,74 0,46 29,22 0,16 0,67 30,51 2E-06 
30 186,98 0,46 29,56 0,10 0,11 30,24 2E-06 
31 261,26 1,22 25,17 1,01 0 27,40 7E-06 
32 262,86 1,22 25,27 0 0 26,49 2E-04 
33 282,61 0,46 24,56 0 1,32 26,34 2E-04 
34 279,93 0,46 25,26 0 0,13 25,85 2E-04 
35 280,35 0,46 24,13 1,13 0,76 26,47 7E-06 
36 279,01 0,46 25,15 1,13 0,11 26,85 7E-06 

                                                
1 Centralized Storage Facility 
2 Electric Mobility 
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Fig. 64: Total annual costs and carbon emissions of the alternatives in 2030, for the “low prices” scenario, including 

power system’s carbon emissions in the environmental attribute 

 

According to the obtained results, alternatives with higher share of RES lead to lower carbon 

emissions. When it comes to the effect of energy efficiency measures on the load, the next graph 

illustrates that with the exception of alternatives 19, 23 and 24 (which are affected by the economic 

impact of CSF operation when there is energy surplus throughout all the day), all the other 

alternatives implementing energy efficiency measures on the load, have lower total annual costs. 
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Fig. 65: Effect of energy efficiency measures on the load, on total annual costs and carbon emissions of the alternatives 

in 2030, for the “low prices” scenario 

 

If the analysis is only focused on the power generation costs, all alternatives facing energy 

efficiency measures on the load present lower costs than the alternatives without energy efficiency 

measures. To explain this conclusion, an observation of the power generation options is worth 

performing, for both load increase and decrease pathways. 

 

 



             
 

 
 
5. The São Miguel Island Case Study    206 
 

 
Fig. 66: Effect of energy efficiency measures on the load and RES pathways, on total annual costs and carbon emissions 

of the alternatives in 2030, for the “low prices” scenario 

 

The previous plot ratifies the environmental benefits of RES increase and load decrease, and shows 

that, in terms of carbon emissions, alternatives with high-range RES increase and without energy 

efficiency on the load are similar to the ones with BAU RES together with energy efficiency 

measures on the power system. This finding was already stated in the analysis for the “high prices” 

scenario. 

When it comes to the cost-effectiveness of energy efficiency on the power system, an economic 

analysis should be carried out (as described for the “high prices” scenario), by comparing: (i) annual 

cost per unit of electric energy generated, without investing on efficiency measures; (ii) annual cost 

per unit of electric energy generated, with energy efficiency measures; and (iii) annual cost per unit 

of electric energy generated, with energy efficiency measures, plus the annual cost for applying 

these measures. 

This assessment will only consider comparable alternatives in terms of power generation, that’s to 

say alternatives with neither electricity storage nor electric mobility. 
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Table 27 – Annual cost per unit of electric energy generated, without investing on efficiency measures, for “low prices” 

scenario in 2030 

Annual Demand in 2030 654,37 GWh 

Annual cost for electric 
energy generation (RES 
and non-RES) 

High-range RES increase 49,14 million € 
Mid-range RES increase 45,02 million € 
BAU 44,20 million € 

Annual cost per unit of 
electric energy generated 

High-range RES increase 75,10 €/MWh 
Mid-range RES increase 68,81 €/MWh 
BAU 67,54 €/MWh 

 

 
Table 28 – Annual cost per unit of electric energy generated, with energy efficiency measures, for “low prices” scenario 

in 2030 

Annual Demand in 2030 369,04 GWh 

Annual cost for electric 
energy generation (RES 
and non-RES) 

High-range RES increase 28,95 million € 
Mid-range RES increase 25,77 million € 
BAU 25,27 million € 

Annual cost per unit of 
electric energy generated 

High-range RES increase 78,45 €/MWh 
Mid-range RES increase 69,84 €/MWh 
BAU 68,47 €/MWh 

 

 
Table 29 – Annual cost per unit of electric energy generated, with energy efficiency measures, plus the annual cost for 

applying these measures, for “low prices” scenario in 2030 

Annual Demand in 2030 369,04 GWh 

Annual cost for electric 
energy generation (RES 
and non-RES) 

High-range RES increase 29,41 million € 
Mid-range RES increase 26,24 million € 
BAU 25,73 million € 

Annual cost per unit of 
electric energy generated 
(including the annual cost 
for energy efficiency) 

High-range RES increase 79,70 €/MWh 
Mid-range RES increase 71,09 €/MWh 
BAU 69,72 €/MWh 

 

The previous tables allow observing that alternatives implementing energy efficiency measures 

result on higher annual cost per unit of electric energy generated, comparing to analogous 

alternatives that don’t invest on load reduction. This relation becomes even bolder when adding the 

annual costs for energy efficiency on power system, to the power generation costs. The annual costs 

of energy efficiency increase linearly over time and, in 2030, stand for 461 thousand Euros of 

investment.  This finding is contradictory to what was obtained for the “high prices” scenario, in 
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which the alternatives applying energy efficiency measures were more beneficial than the others, 

regarding the cost per unit of electric energy generation. 

The next figure represents graphically the concerned alternatives, in terms of total annual costs 

(more than just power generation costs) and total carbon emissions. 
    

 
Fig. 67: Effect of RES pathways, on total annual costs and carbon emissions of the alternatives in 2030, for the “low 

prices” scenario 
 

According to the above plot, although alternatives with energy efficiency measures on the load lead 

to a higher cost per unit of electric energy generated, these result on global lower costs than 

alternatives without energy efficiency. 

 

Concerning total annual costs, fuel-oil thermal generation becomes more cost-competitive than 

renewable energy sources. That’s to say, BAU RES option is economically more beneficial than 

high-range and mid-range RES options, for both load strategies. According to the previous plot and 

Table 27, Table 28 and Table 29, BAU RES plus energy efficiency on the load is the preferred 

match, when it comes to total annual costs. 

In terms of carbon emissions, alternatives applying energy efficiency measures on the load lead to 

lower amounts of CO2. In addition, the higher the RES share in the mix, the lower the carbon 

emissions.  
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To compare the mobility options in terms of costs and carbon emissions, the alternatives should be 

compared for the same planning specifications. Therefore, firstly mobility alternatives will be 

presented, without neither CSF nor V2G. The next graph presents the alternatives for sustainable 

mobility, including the RES and load characteristics. 

 

 
Legend: 

S-ICV: Efficient ICVs, Biofuels and Behavioural Change 

10EV: 10 000 EVs pathway without V2G 

Fig. 68: Assessment of mobility options in terms of costs and carbon emissions, in 2030, for the “low prices” scenario  

 

The previous plot allows concluding that alternative 22 has the lowest total carbon emissions, 

whereas alternative 34 leads to the lowest costs. The referred graph also enables observing six 

groups of alternatives, influenced by the RES strategy. The comparison of mobility options should 

then be done within each group of alternatives. 

Within the group of alternatives that don’t apply energy efficiency measures on the load, if BAU 

RES option is followed, alternative 14 (Efficient ICVs, Biofuels and Behavioural Change) has both 

lower costs and carbon emissions than the other option (alternative 16). This is justified since the 

additional energy demand for EVs charging (alternative 16) is fulfilled by thermal units, which 
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results on both higher power generation costs (more 1,8 million Euros) and emissions (more 22,8 

kton CO2), but lower ICVs emissions (less 3,7 kton CO2).  

When it comes to the alternatives adopting mid-range RES increase, alternative 8 (Efficient ICVs, 

Biofuels and Behavioural Change) leads to both lower costs and carbon emissions than the other 

option (alternative 10), due to the same reasons presented for the BAU RES option. Again this 

happens because the additional energy demand for EVs charging (alternative 10) is filled up by 

thermal units, which leads to both higher power generation costs (more 0,8 million Euros) and 

emissions (more 22,8 kton CO2), but lower ICVs emissions (less 3,7 kton CO2). These results allow 

inferring that there is a similar relationship between the mobility options, for both BAU and mid-

range RES increase. 

Alternatively, if high-range RES increase is followed, alternative 4 (10 000 EVs pathway), has 

lower carbon emissions than the other strategy (alternative 2). Now the extra energy demand for 

EVs charging is provided by RES, which lowers the total amount of emissions (less 1,9 kton CO2), 

but still leads to higher power generation costs than alternative 2 (more 2,1 million Euros). 

 

Concerning alternatives adopting energy efficiency measures, if BAU RES option is pursued, 

alternative 32 (Efficient ICVs, Biofuels and Behavioural Change) despite having lower emissions, 

leads to higher costs than alternative 34 (10 000 EVs pathway). In fact, alternative 32 leads to less 

20,8 kton CO2 from the power system than alternative 34, since the EVs are “fuelled” mostly by 

additional thermal power generation. On the other hand, alternative 34 results on a fall of carbon 

emissions from the ICVs, comparing to alternative 32 (less 3,7 kton CO2), but globally still has 

higher emissions than the latter (more 17,1 kton CO2). In terms of power generation costs, 

theoretically, alternative 32 should also be more competitive. However, the analysis of the 

load/generation profile allows noticing that although alternative 34 has a higher demand of energy 

(more annual 27,8 GWh), the power generation costs are lower than the registered in alternative 32 

(less annual 10,5 thousand Euros). Taking into account the operation rules of the system, alternative 

34 enables a better cost performance of fuel oil units, than alternative 32, as sketched out next. 
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Fig. 69: Thermal-based power generation costs of alternatives 32 and 36, for the “low prices” scenario 

 

Concerning the options with mid-range RES increase, alternative 28 (10 000 EVs pathway) leads to 

lower carbon emissions and higher costs than alternative 26 (Efficient ICVs, Biofuels and 

Behavioural Change). As a matter of fact, in alternative 28, the additional energy demand for EVs 

charging is provided by RES, therefore there are no extra carbon emissions from the power system 

owing to electric mobility. Furthermore, alternative 28 also benefits from the decrease of carbon 

emissions from the ICVs (less 3,7 kton CO2 than alternative 26). Regarding the costs, the additional 

power generation for EVs “fuelling”, in alternative 28, leads to more 2,3 million Euros of cost 

(accounted to RES), than for alternative 26. 

Finally, regarding the high-range RES increase, alternative 22 (10 000 EVs pathway) leads to lower 

carbon emissions and higher costs than alternative 20 (Efficient ICVs, Biofuels and Behavioural 
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Change). The relationship between these two alternatives is indeed similar to the registered in the 

case of mid-range RES increase, both on power generation costs and emissions. 

From the previous analysis, some conclusions can be drawn, similar to what was presented for the 

“high prices” scenario: 

 Electric mobility becomes environmentally more beneficial with the increase of RES; 

 Electric mobility needs lower amounts of RES to be environmentally competitive, in the 

case of investing on energy efficiency measures on the load; 

 Only when there is a load decrease and BAU RES, electric mobility appears economically 

competitive (thanks to the operation of power units with lower cost for electric energy 

generation). 

 

At this time mobility alternatives will be presented, together with CSF, yet disregarding V2G 

strategy. The next graph presents the alternatives for sustainable mobility plus CSF, including the 

RES and load characteristics. 

 

 
Legend: 

S-ICV: Efficient ICVs, Biofuels and Behavioural Change, plus CSF 

5EV: 5 000 EVs pathway (without V2G), plus CSF 

Fig. 70: Assessment of mobility options together with CSF, in terms of costs and carbon emissions, in 2030, for the 

“low prices” scenario 
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The previous plot allows concluding that alternative 19 has the lowest total carbon emissions, 

whereas alternative 36 leads to the lowest costs. The referred graph also enables observing six 

groups of alternatives, influenced by the RES strategy. The comparison of mobility options should 

then be done within each group of alternatives. 

Within the group of alternatives that don’t apply energy efficiency measures on the load, if BAU 

RES option is followed, alternative 13 (Efficient ICVs, Biofuels and Behavioural Change, plus 

CSF) has both lower costs and carbon emissions than the other option (alternative 18). This is 

justified since the additional energy demand for EVs charging (alternative 18) is fulfilled by thermal 

units (there is no energy surplus), which results on both higher power generation costs (more 1,1 

million Euros) and emissions (more 11,4 kton CO2), and higher ICVs emissions (more 6,7 kton 

CO2).  

When it comes to the alternatives adopting mid-range RES increase, alternative 7 (Efficient ICVs, 

Biofuels and Behavioural Change, plus CSF) leads to lower carbon emissions than the other option 

(alternative 12), but the latter results on slightly lower total costs than the former. Although 

alternative 12 has higher power generation costs (more 575 thousand Euros due to the additional 

energy demand for EVs charging, filled up by thermal units), it leads to lower total costs than 

alternative 7 owing to the effect of investment costs on Efficient ICVs, Biofuels and Behavioural 

Change (more 761 thousand Euros) of the latter option. Regarding the environmental attribute, 

alternative 12 results on both higher carbon emissions from the power system (more 11,4 kton CO2) 

and from ICVs (more 6,7 kton CO2).  

In addition, if high-range RES increase is followed, alternative 1 (Efficient ICVs, Biofuels and 

Behavioural Change, plus CSF), has both lower costs and carbon emissions than the other option 

(alternative 6). Alternative 6 leads to additional energy demand for EVs charging, which stands for 

more 13,9 GWh/year totally supplied by RES. This alternative has also 23,6 GWh/year of energy 

surplus stored by the CSF (through an equivalent load increase). When it comes to alternative 1, it 

observes an energy surplus of 36,9 GWh/year (based on RES), stored  by the centralized storage 

facility (through an equivalent load increase). Therefore, both alternatives have the same RES 

power generation costs. In addition, alternative 1 has lower thermal-based power generation costs 

(less 0,9 million Euros) and carbon emissions (less 9,2 kton CO2), owing to a larger energy shift 

from the CSF (more 10,6 GWh of CSF power generation). In case of energy surplus, the larger the 

EVs charging, the lower will be the stored energy by the CSF. In terms of emissions from the ICVs, 

alternative 6 results on more 6,7 kton CO2, in 2030. 
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To sum up, if energy efficiency is not applied on the load, the alternatives personified by Efficient 

ICVs, Biofuels and Behavioural Change, plus CSF, are preferred both in terms of costs and 

emissions, except when mid-range RES increase is chosen, for which the 5 000 EVs pathway 

together with CSF contributes for lower costs than the former option. 

 

Hereinafter an analysis is performed on the alternatives implementing energy efficiency measures 

on the load. If BAU RES option is followed, alternative 31 (Efficient ICVs, Biofuels and 

Behavioural Change, plus CSF) has lower global carbon emissions (less 17,7 kton CO2) but higher 

total annual costs (more 554 thousand Euros) than alternative 36. 

Alternative 36 leads to additional energy demand for EVs charging, which stands for more 13,9 

GWh/year. Part of this extra load is supplied by RES (2,4 GWh/year). In alternative 31, where there 

are no EVs, that energy (surplus) is stored by the CSF, which is afterwards converted into electricity 

(with transformation losses). Therefore, both alternatives have equal RES power generation costs. 

Concerning thermal-based power generation costs, alternative 36 although has a higher electric 

load, results on better cost performance (less 23 thousand Euros per year), due to the power system 

operation rules, as sketched out below.  
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Fig. 71: Thermal-based power generation costs of alternatives 31 and 36, for the “low prices” scenario 

 

Nonetheless, alternative 36 leads to higher carbon emissions from both the power system (more 

11,0 kton CO2, due to the effect of EVs charging) and ICVs (more 6,7 kton CO2), than alternative 

31. 

 

Concerning the options with mid-range RES increase, alternative 30 (5 000 EVs plus CSF) leads to 

higher carbon emissions and lower costs than alternative 25 (Efficient ICVs, Biofuels and 

Behavioural Change, plus CSF). Alternative 30 leads to additional energy demand for EVs 

charging, which stands for more 13,9 GWh/year totally supplied by RES. This alternative has also 

39,0 GWh/year of energy surplus stored by the CSF (through an equivalent load increase). When it 
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comes to alternative 25, it observes an energy surplus of 53,0 GWh/year (based on RES), stored by 

the centralized storage facility (through an equivalent load increase). Therefore, both alternatives 

have the same RES power generation costs. 

Alternative 30 allows a higher energy shift through CSF (more 2,6 GWh/year) and better cost 

performance of thermal-based power generation (less 626 thousand Euros of power generation costs 

per year), due to the power system operation rules. These drivers justify a higher cost-

competitiveness of alternative 30, over alternative 25. What’s more, since the CSF generation is 

higher in alternative 30, the carbon emissions from the power system are lower in this option, than 

in alternative 25. Bearing in mind that the additional energy demand for EVs charging (in 

alternative 30) is provided by RES, there are no extra carbon emissions from the power system 

owing to electric mobility. However, alternative 25 has lower carbon emissions from the ICVs (less 

6,7 kton CO2) than alternative 30.  

 

Finally, regarding the options with high-range RES increase, alternative 24 (5 000 EVs plus CSF) 

leads to higher carbon emissions and lower costs than alternative 19 (Efficient ICVs, Biofuels and 

Behavioural Change, plus CSF). Alternative 24 has an additional energy demand for EVs charging, 

totalling 13,9 GWh/year fully supplied by RES. This alternative has also 129,8 GWh/year of energy 

surplus stored by the CSF (through an equivalent load increase), but there is yet 31,2 GWh/year of 

energy surplus not stored owing to lack of capacity of the CSF. When it comes to alternative 19, it 

stores 129,8 GWh/year of energy surplus (based on RES) by the CSF (through an equivalent load 

increase), but there is still 45,1 GWh/year of energy surplus not stored, bearing in mind lack of CSF 

capacity. 

In terms of power generation costs, alternative 24 has higher RES based costs than alternative 19 

(more 1,2 million Euros/year) for EVs charging. Both alternatives observe energy surplus during all 

day, which turns thermal generation operating at minimum levels. Hence, alternatives 19 and 24 

share the same fuel oil power generation costs. One should also emphasize the harmful effect of an 

all-day energy surplus, which leads to ineffective CSF operation. That’s to say, since CSF can’t 

inject electricity back into the grid (after storing the energy surplus), it is unable to perform energy 

trading. This results on very high positive operation costs (negative gross margin) from the CSF for 

both alternative 19 and 24, totalling excessive annual costs comparing to the analogous alternatives. 

In view of these findings, the present match between high-range RES increase and energy 

efficiency on the load turns CSF an inappropriate option, owing to lack of opportunity for 

performing its energy shift mission.  

When it comes to the environment perspective, the alternatives under analysis have the same carbon 

emissions from the power system. Bearing in mind that the additional energy demand for EVs 
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charging (in alternative 24) is provided by RES, there are no extra carbon emissions from the power 

system owing to electric mobility. However, alternative 19 has lower carbon emissions from the 

ICVs (less 6,7 kton CO2) than alternative 24.  

 

From the previous analysis the next insights can be drawn: 

 If energy efficiency measures are applied on the load, the option with Efficient ICVs, 

Biofuels and Behavioural Change, plus CSF, originates lower carbon emissions, but higher 

total costs than the alternative with 5 000 EVs plus CSF; 

 If energy efficiency measures are not applied on the load, the alternatives personified by 

Efficient ICVs, Biofuels and Behavioural Change, plus CSF, are preferred both in terms of 

costs and emissions, except when mid-range RES increase is chosen, for which the 5 000 

EVs pathway together with CSF contributes for lower costs than the former option. 

 

As far as V2G is concerned, the next plot depicts the alternatives with electric mobility in terms of 

the V2G strategy (“Yes” for alternatives applying V2G; “No” for alternatives not applying V2G).  

 

 
Fig. 72: Total annual costs and carbon emissions of alternatives with 10 000 EVs in 2030, for the “low prices” scenario 
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Fig. 73: Total annual costs and carbon emissions of alternatives with 5 000 EVs in 2030, for the “low prices” scenario 
 

These graphs don’t include the alternatives 21 and 22 (Fig. 72), as well as 23 and 24 (Fig. 73), 

because in the corresponding circumstances (high-range RES increase and energy efficiency on the 

load), there is lack of opportunity for V2G. That’s to say, 21 is equal to 22 (no V2G) and 23 is equal 

to 24 (no V2G).  

Concerning the alternatives with 10 000 EVs, all them with V2G have higher total costs. As 

opposition to what happens for the “high prices” scenario (where V2G is beneficial in terms of 

costs), the energy trading performed by the electric mobility investor and operator (local utility) 

results on negative gross margin (positive costs), as a consequence of lower electricity rates for the 

current scenario. That’s to say, the local utility is unable to completely pass through (to electricity 

consumers) the purchase cost of electricity generated through V2G. In addition, if in one hand V2G 

reduces power generation costs during off-valley hours, in the other hand this strategy increases the 

load at valley periods.   

In fact, alternatives 27 (efficiency measures on the load; mid-range RES increase; without CSF; 

with 10 000 EVs; and V2G) and 29 (efficiency measures on the load; mid-range RES increase; with 

CSF; with 5 000 EVs; and V2G) have higher total annual costs in the “low prices” scenario, than in 

the “high prices” scenario. This happens mostly due to the effect of electric mobility costs. 
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When it comes to alternatives with 5 000 EVs, V2G is only beneficial in terms of total costs for the 

next combinations: 

 Energy efficiency on the load, together with BAU RES; 

 No energy efficiency on the load, together with mid-range RES increase. 

 

In these cases V2G is a cost-competitive solution, because the drop of power generation costs 

during off-valley hours is enough to offset the positive costs of electric mobility. 

The difference between 10 000 and 5 000 EVs, in terms of V2G impact, derive from the magnitude 

of the negative margin related to the energy trading, associated to the electric mobility. The larger 

the number of EVs performing V2G in this prices scenario, the higher the negative margin (positive 

costs) of the electric mobility investor and operator. These electric mobility costs are a combination 

of current prices scenario’s parameters for electricity rates, and the amount of energy charged to and 

dispatched by EVs. 

 

When it comes to the environment analysis, one should highlight that V2G strategy has no influence 

on the CO2 emissions from ICVs, since the V2G energy requirements are fulfilled by an electricity 

consumption increase from the EVs, without changing the mobility pattern. Therefore, the 

environment impact of V2G depends on the energy mix, as well as the global balance between CO2 

emitted due to EVs charging and CO2 avoided owing to the electricity dispatched by EVs, through 

V2G. For alternatives when there is no energy efficiency on the load, V2G allows lower global 

carbon emissions only if high-range RES increase is followed. Alternatively, for alternatives 

applying energy efficiency measures, V2G leads to lower CO2 emissions in the case of mid-range 

RES increase. 

 

Finally, when it comes to the reliability influence on energy planning, the next figure presents the 

alternatives results for the attributes referred to Total Annual Costs (in million Euros) and Loss of 

Load Expectation (days/year). 
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Fig. 74: Total annual costs and LOLE of the alternatives in 2030, for the “low prices” scenario 

 

Taking into account that alternatives 14, 15 and 16 draw unacceptable LOLE, the next figure 

disregards the referred alternatives. 
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Fig. 75: Total annual costs and LOLE of a reduced set of alternatives in 2030, for the “low prices” scenario  
 

From the previous graphs one observes a set of alternatives having a LOLE very close to zero. In 

view of getting a rather detailed analysis on the Cost/LOLE relationship, the next figure presents the 

influence of energy efficiency measures on the load and RES strategies. 
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Fig. 76: Effect of energy efficiency measures on the load and RES pathways on total annual costs and LOLE, of a 

reduced set of alternatives in 2030, for the “low prices” scenario 
 

The previous graph allows inferring that all the alternatives facing energy efficiency measures on 

the load present lower LOLE than the alternatives without energy efficiency measures. In addition, 

LOLE is lower in alternatives with higher capacity of renewable energy sources. At this moment, 

one should remember that the fuel oil power capacity is the same for all the RES pathways. That’s 

to say, high-range RES increase doesn’t lead to a thermal power decommissioning, comparing to 

the mid-range RES increase and BAU RES. 

Regarding the effect of electricity storage on the generation system adequacy, the presence of CSF 

decreases considerably the LOLE. Accordingly, all the alternatives with hydro pumped storage 

present better adequacy levels than the others. The CSF has the effect of a hydro power unit, 

concerning adequacy assessment. Concerning the electric mobility impact on the power system 

adequacy, the EVs’ charging is disregarded, since it occurs during valley hours, having, as a result, 

no effect in the daily peak load curve. In addition, V2G contribution is also neglected for LOLE 

assessment. 
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The CSF effect on the generation system adequacy can be observed by comparing alternatives, with 

the same energy mix, but with and without CSF. The text table just presents alternatives without 

energy efficiency on the load, to get a clearer impact of both RES levels and CSF. 

 
Table 30 – CSF and RES effect on LOLE, for alternatives without energy efficiency on the load, for the “low prices” 

scenario in 2030 

RES pathway Electricity Storage strategy LOLE (days/year) 

High-range RES increase 
With CSF (alternatives 1, 5 and 6) 0,004 

Without CSF (alternatives 2, 3 and 4) 0,065 

Mid-range RES increase 
With CSF (alternatives 7, 11 and 12) 0,130 

Without CSF (alternatives 8, 9 and 10) 0,846 

BAU  
With CSF (alternatives 13, 17 and 18) 1,057 

Without CSF (alternatives 14, 15 and 16) 9,308 

 

 

5.3.5 Multi-attribute and Multi-scenario Analysis 

Having analysed the results from both high and low prices scenarios, now decision issues shall be 

addressed. The problem under study is multi-attribute (three attributes) and multi-scenario (two 

scenarios). The three attributes calculated in this case study are: annual carbon emissions costs from 

power system and transport sector; total annual costs; and loss of load expectation. Through the 

results analysis provided in the previous section, the LOLE was found reasonable for most of the 

alternatives (for both scenarios), except for a reduced set of alternatives. 

As a consequence, the next approach is followed for the multi-attribute and multi-scenario analysis: 

1. Find a reduced set of alternatives, using LOLE as constraint; 

2. Exclude dominated alternatives; 

3. For each scenario, provide auxiliary calculations regarding the trade-offs and compute the 

alternatives’ equivalent costs; 

4. Apply a meaningful risk index. 

 

Thus, an analysis is proposed for two attributes (carbon emissions and costs), taking into account 

the obtained values for LOLE. But in the circumstance of having different values for LOLE, this 

study would be done for the three attributes (carbon emissions, costs and LOLE). 
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Step 1 

In this step, LOLE is perceived as a constraint. As observed previously, except alternatives 14, 15 

and 16, all the other alternatives generate reasonable LOLE (< 1,06 days/year) for both scenarios. 

Therefore, these alternatives will be disregarded in the next steps of this study. The reduced set of 

alternatives is presented next. 

 
Legend:  

“H” refers to an alternative for the “high prices” scenario (blue pointer) 

“L” refers to an alternative for the “low prices” scenario (red pointer) 

Fig. 77: Total annual costs and carbon emissions of alternatives in 2030, for the “high prices” and “low prices” 

scenarios, after applying the LOLE constraint 

 

Step 2 

As stated in section 3.5, for each scenario, a solution is dominated if and only if there is another one 

that is better in at least one criterion, without being worse in any of the remaining criteria. In case of 

more than one scenario, a solution is dominated if the previous condition is verified for all the 

scenarios.  
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Therefore, the dominated alternatives for the current case are the following: 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 17, 18, 19, 23, 24, 25 and 31. Some examples of dominated alternatives can be 

given. For instance, alternative 8 (no energy efficiency measures on the load; mid-range RES 

increase; efficient ICVs, biofuels and behavioural change; no CSF) is dominated by alternative 26 

(energy efficiency measures on the load; mid-range RES increase; efficient ICVs, biofuels and 

behavioural change; no CSF). In this comparison, the adoption energy efficiency is a differentiating 

factor. 

 

As a result of this procedure, the next group of non-dominated alternatives was found: 20, 21, 22, 

26, 27, 28, 29, 30, 32, 33, 34, 35 and 36. Yet alternative 21 won’t be included in the decision study, 

since it is represented by 22 (owing to lack of V2G opportunity, as previously explained). 
 

 
Fig. 78: Total annual costs and carbon emissions of non-dominated alternatives in 2030, for the “high prices” and “low 

prices” scenarios 

 

The previous graphs allow presenting the next findings. 
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 All the non-dominated alternatives implement energy efficiency measures on the load. 

 Centralized storage facility, as the only storage approach (without EVs charging), leads to 

dominated alternatives. If for the alternatives with an increasing load this electricity storage 

option is beneficial in terms of costs, when energy efficiency measures are applied it 

becomes more expensive.  

 Centralized storage facility results only on non-dominated alternatives, when associated 

with EVs charging. 

 

Step 3 

As Keeney highlighted in [201], value judgements are required to make value trade-offs, since they 

can’t be calculated directly from other information. However, due to the impossibility of having the 

decision maker’s value judgements, a sensitivity study on the trade-offs is developed (continuing in 

Step 4). These auxiliary calculations can be useful to support making meaningful and better-

informed value trade-offs. 

This analysis considers the next range of trade-offs, in order to provide different perceptions 

regarding carbons emissions and costs: 0 €/tonCO2; 10 €/tonCO2; 20 €/tonCO2; 30 €/tonCO2; 40 

€/tonCO2; 50 €/tonCO2; and 60 €/tonCO2. 

 

The next equation describes how to compute each Equivalent Cost of alternatives in “high prices” 

scenario, ZH, and alternatives in “low prices” scenario, ZL. 

 

ܼு  = ுܻ +  ு      (5. 1)ܺ.ߙ

ܼ௅  = ௅ܻ +  ௅      (5. 2)ܺ.ߙ

 

Where, 

YH refers to total annual costs of a given alternative, in the “high prices” scenario; 

XH refers to total annual carbon emissions of a given alternative, in the “high prices” scenario; 

α refers to the trade-off costs/carbon emissions; 

YL refers to total annual costs of a given alternative, in the “low prices” scenario; 

XL refers to total annual carbon emissions of a given alternative, in the “low prices” scenario. 

 

The use of the previous trade-offs allows computing the Equivalent Costs ZH  and ZL, as follows. 
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Table 31 – Equivalent Costs of alternatives, in 2030, with 0 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 31,39 166,58 30,17 30,17 

22 162,85 32,36 32,36 162,85 31,88 31,88 

26 200,14 29,60 29,60 200,14 27,00 27,00 

27 183,98 28,78 28,78 183,98 31,30 31,30 

28 196,41 30,57 30,57 196,41 28,71 28,71 

29 183,74 28,96 28,96 183,74 30,51 30,51 

30 186,98 30,69 30,69 186,98 30,24 30,24 

32 262,86 34,47 34,47 262,86 26,49 26,49 

33 282,61 28,29 28,29 282,61 26,34 26,34 

34 279,93 32,79 32,79 279,93 25,85 25,85 

35 280,35 30,56 30,56 280,35 26,47 26,47 

36 279,01 33,96 33,96 279,01 26,85 26,85 

 

 
Table 32 – Equivalent Costs of alternatives, in 2030, with 10 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 33,05 166,58 30,17 31,84 

22 162,85 32,36 33,99 162,85 31,88 33,51 

26 200,14 29,60 31,60 200,14 27,00 29,00 

27 183,98 28,78 30,62 183,98 31,30 33,14 

28 196,41 30,57 32,53 196,41 28,71 30,67 

29 183,74 28,96 30,79 183,74 30,51 32,35 

30 186,98 30,69 32,56 186,98 30,24 32,11 

32 262,86 34,47 37,10 262,86 26,49 29,12 

33 282,61 28,29 31,11 282,61 26,34 29,17 

34 279,93 32,79 35,59 279,93 25,85 28,65 

35 280,35 30,56 33,36 280,35 26,47 29,28 

36 279,01 33,96 36,75 279,01 26,85 29,64 
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Table 33 – Equivalent Costs of alternatives, in 2030, with 20 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 34,72 166,58 30,17 33,50 

22 162,85 32,36 35,61 162,85 31,88 35,14 

26 200,14 29,60 33,60 200,14 27,00 31,00 

27 183,98 28,78 32,46 183,98 31,30 34,98 

28 196,41 30,57 34,49 196,41 28,71 32,63 

29 183,74 28,96 32,63 183,74 30,51 34,18 

30 186,98 30,69 34,43 186,98 30,24 33,98 

32 262,86 34,47 39,73 262,86 26,49 31,75 

33 282,61 28,29 33,94 282,61 26,34 32,00 

34 279,93 32,79 38,39 279,93 25,85 31,45 

35 280,35 30,56 36,16 280,35 26,47 32,08 

36 279,01 33,96 39,54 279,01 26,85 32,43 

 

 
Table 34 – Equivalent Costs of alternatives, in 2030, with 30 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 36,38 166,58 30,17 35,17 

22 162,85 32,36 37,24 162,85 31,88 36,77 

26 200,14 29,60 35,60 200,14 27,00 33,00 

27 183,98 28,78 34,30 183,98 31,30 36,82 

28 196,41 30,57 36,46 196,41 28,71 34,60 

29 183,74 28,96 34,47 183,74 30,51 36,02 

30 186,98 30,69 36,30 186,98 30,24 35,85 

32 262,86 34,47 42,36 262,86 26,49 34,38 

33 282,61 28,29 36,77 282,61 26,34 34,82 

34 279,93 32,79 41,19 279,93 25,85 34,25 

35 280,35 30,56 38,97 280,35 26,47 34,88 

36 279,01 33,96 42,33 279,01 26,85 35,22 
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Table 35 – Equivalent Costs of alternatives, in 2030, with 40 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 38,05 166,58 30,17 36,83 

22 162,85 32,36 38,87 162,85 31,88 38,39 

26 200,14 29,60 37,60 200,14 27,00 35,00 

27 183,98 28,78 36,14 183,98 31,30 38,66 

28 196,41 30,57 38,42 196,41 28,71 36,56 

29 183,74 28,96 36,30 183,74 30,51 37,86 

30 186,98 30,69 38,17 186,98 30,24 37,71 

32 262,86 34,47 44,99 262,86 26,49 37,00 

33 282,61 28,29 39,59 282,61 26,34 37,65 

34 279,93 32,79 43,99 279,93 25,85 37,05 

35 280,35 30,56 41,77 280,35 26,47 37,69 

36 279,01 33,96 45,12 279,01 26,85 38,01 

 

 
Table 36 – Equivalent Costs of alternatives, in 2030, with 50 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 39,72 166,58 30,17 38,50 

22 162,85 32,36 40,50 162,85 31,88 40,02 

26 200,14 29,60 39,60 200,14 27,00 37,00 

27 183,98 28,78 37,98 183,98 31,30 40,50 

28 196,41 30,57 40,39 196,41 28,71 38,53 

29 183,74 28,96 38,14 183,74 30,51 39,70 

30 186,98 30,69 40,04 186,98 30,24 39,58 

32 262,86 34,47 47,62 262,86 26,49 39,63 

33 282,61 28,29 42,42 282,61 26,34 40,47 

34 279,93 32,79 46,79 279,93 25,85 39,85 

35 280,35 30,56 44,57 280,35 26,47 40,49 

36 279,01 33,96 47,91 279,01 26,85 40,80 
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Table 37 – Equivalent Costs of alternatives, in 2030, with 60 €/tonCO2 as trade-off 

Alternative 
XH  

(kton) 
YH  

(million €) 
ZH  

(million €) 
XL  

(kton) 
YL 

(million €) 
ZL  

(million €) 

20 166,58 31,39 41,38 166,58 30,17 40,17 

22 162,85 32,36 42,13 162,85 31,88 41,65 

26 200,14 29,60 41,61 200,14 27,00 39,00 

27 183,98 28,78 39,82 183,98 31,30 42,34 

28 196,41 30,57 42,35 196,41 28,71 40,49 

29 183,74 28,96 39,98 183,74 30,51 41,53 

30 186,98 30,69 41,91 186,98 30,24 41,45 

32 262,86 34,47 50,24 262,86 26,49 42,26 

33 282,61 28,29 45,24 282,61 26,34 43,30 

34 279,93 32,79 49,59 279,93 25,85 42,65 

35 280,35 30,56 47,38 280,35 26,47 43,30 

36 279,01 33,96 50,70 279,01 26,85 43,59 

 

 

Step 4 

In section 3.5.3, an overview was made on approaches to model uncertainty. Taking into account 

the type of formulation adopted in this study (i.e. scenarios are not characterized by probabilities) 

and the fact that “high prices” scenario leads, typically, to higher equivalent costs than the “low 

prices” scenario, the minimax regret approach is adopted.  

According to the minimax regret approach, initially, the best alternative (lowest costs) in each 

scenario is identified. Then, regret is computed for each scenario, by subtracting the best 

alternative’s value from the alternatives’ Equivalent Costs, of the corresponding scenario. 

 

The next tables show the results from the minimax regret approach, for each trade-off. 
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Table 38 – Minimax regret ranking of alternatives, in 2030, with 0 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 31,39 30,17 3,10 4,32 5 

22 32,36 31,88 4,07 6,03 11 

26 29,60 27,00 1,31 1,15 2 

27 28,78 31,30 0,49 5,45 9 

28 30,57 28,71 2,28 2,86 4 

29 28,96 30,51 0,67 4,66 8 

30 30,69 30,24 2,40 4,39 6 

32 34,47 26,49 6,19 0,64 12 

33 28,29 26,34 0,00 0,49 1 

34 32,79 25,85 4,51 0,00 7 

35 30,56 26,47 2,27 0,62 3 

36 33,96 26,85 5,67 1,00 10 

Best in scenario 28,29 25,85 

 

 
Table 39 – Minimax regret ranking of alternatives, in 2030, with 10 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 33,05 31,84 2,43 3,19 5 

22 33,99 33,51 3,37 4,86 9 

26 31,60 29,00 0,98 0,35 2 

27 30,62 33,14 0,00 4,49 8 

28 32,53 30,67 1,91 2,02 3 

29 30,79 32,35 0,17 3,70 7 

30 32,56 32,11 1,94 3,46 6 

32 37,10 29,12 6,48 0,47 12 

33 31,11 29,17 0,50 0,52 1 

34 35,59 28,65 4,97 0,00 10 

35 33,36 29,28 2,74 0,63 4 

36 36,75 29,64 6,13 0,99 11 

Best in scenario 30,62 28,65 
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Table 40 – Minimax regret ranking of alternatives, in 2030, with 20 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 34,72 33,50 2,26 2,50 4 

22 35,61 35,14 3,16 4,14 9 

26 33,60 31,00 1,14 0,00 1 

27 32,46 34,98 0,00 3,99 8 

28 34,49 32,63 2,04 1,63 3 

29 32,63 34,18 0,17 3,18 6 

30 34,43 33,98 1,97 2,98 5 

32 39,73 31,75 7,27 0,75 12 

33 33,94 32,00 1,48 1,00 2 

34 38,39 31,45 5,93 0,45 10 

35 36,16 32,08 3,71 1,08 7 

36 39,54 32,43 7,08 1,43 11 

Best in scenario 32,46 31,00 

 
 

Table 41 – Minimax regret ranking of alternatives, in 2030, with 30 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 36,38 35,17 2,09 2,17 3 

22 37,24 36,77 2,94 3,77 7 

26 35,60 33,00 1,30 0,00 1 

27 34,30 36,82 0,00 3,82 8 

28 36,46 34,60 2,16 1,60 2 

29 34,47 36,02 0,17 3,02 6 

30 36,30 35,85 2,00 2,84 5 

32 42,36 34,38 8,06 1,38 12 

33 36,77 34,82 2,47 1,82 4 

34 41,19 34,25 6,89 1,25 10 

35 38,97 34,88 4,67 1,88 9 

36 42,33 35,22 8,03 2,22 11 

Best in scenario 34,30 33,00 
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Table 42 – Minimax regret ranking of alternatives, in 2030, with 40 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 38,05 36,83 1,91 1,83 2 

22 38,87 38,39 2,73 3,39 6 

26 37,60 35,00 1,47 0,00 1 

27 36,14 38,66 0,00 3,66 8 

28 38,42 36,56 2,29 1,56 3 

29 36,30 37,86 0,17 2,86 5 

30 38,17 37,71 2,03 2,71 4 

32 44,99 37,00 8,85 2,00 11 

33 39,59 37,65 3,45 2,65 7 

34 43,99 37,05 7,85 2,05 10 

35 41,77 37,69 5,63 2,69 9 

36 45,12 38,01 8,98 3,01 12 

Best in scenario 36,14 35,00 

 

 
Table 43 – Minimax regret ranking of alternatives, in 2030, with 50 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 39,72 38,50 1,74 1,50 2 

22 40,50 40,02 2,52 3,02 6 

26 39,60 37,00 1,63 0,00 1 

27 37,98 40,50 0,00 3,50 7 

28 40,39 38,53 2,41 1,52 3 

29 38,14 39,70 0,16 2,69 5 

30 40,04 39,58 2,06 2,58 4 

32 47,62 39,63 9,64 2,63 11 

33 42,42 40,47 4,44 3,47 8 

34 46,79 39,85 8,81 2,84 10 

35 44,57 40,49 6,60 3,49 9 

36 47,91 40,80 9,93 3,80 12 

Best in scenario 37,98 37,00 
 

 

 



             
 

 
 
5. The São Miguel Island Case Study    234 
 

 
Table 44 – Minimax regret ranking of alternatives, in 2030, with 60 €/CO2ton as trade-off 

Alternative 
ZH  

(million €) 
ZL  

(million €) 

Regret in “high 
prices” 

scenario 
(million €) 

Regret in “low 
prices” 

scenario 
(million €) 

Minimax 
Regret Ranking 

20 41,38 40,17 1,56 1,16 1 

22 42,13 41,65 2,31 2,65 6 

26 41,61 39,00 1,79 0,00 2 

27 39,82 42,34 0,00 3,34 7 

28 42,35 40,49 2,53 1,49 5 

29 39,98 41,53 0,16 2,53 4 

30 41,91 41,45 2,09 2,45 3 

32 50,24 42,26 10,43 3,26 11 

33 45,24 43,30 5,43 4,30 8 

34 49,59 42,65 9,77 3,64 10 

35 47,38 43,30 7,56 4,29 9 

36 50,70 43,59 10,88 4,59 12 

Best in scenario 39,82 39,00 

 

As illustrated by the previous tables:  

 Alternative 33 (energy efficiency measures on the load; BAU RES; 10 000 EVs; no CSF; 

V2G) is the preferred one when the trade-offs are 0 €/tonCO2 and 10 €/tonCO2; 

 Alternative 26 (energy efficiency measures on the load; mid-range RES increase; efficient 

ICVs, biofuels and behavioural changes; no CSF) is the preferred one when the trade-offs 

are 20 €/tonCO2, 30 €/tonCO2, 40 €/tonCO2 and 50 €/tonCO2; 

 Alternative 20 (energy efficiency measures on the load; high-range RES increase; efficient 

ICVs, biofuels and behavioural changes; no CSF) is the preferred one when the trade-off is 

60 €/tonCO2. 

 

Taking into account the obtained alternatives ranking, for each analyzed trade-off, the next graph is 

built, in order to perform a sensitivity study of the trade-offs effect on the maximum regret. 
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Fig. 79: Sensitivity study of trade-offs effect on the maximum regret 

 

According to the previous graph, the next relations between alternatives can be presented: 

 Alternative 33 leads to lower maximum regret than alternative 26, if α < 16 €/tonCO2; 

 Alternative 33 leads to lower maximum regret than alternative 20, if α < 28 €/tonCO2; 

 Alternative 26 leads to lower maximum regret than alternatives 20 and 33, if 16 < α < 53 

€/tonCO2; 

 Alternative 20 leads to lower maximum regret than alternatives 26 and 33, if α > 53 

€/tonCO2. 

 

As expected, the preferred alternative depends considerably on the trade-off.  

 

 

5.4 Summary and Main Conclusions 

In this chapter, the methodology proposed by the current research for energy planning was applied 

in São Miguel Island, aiming to enhance the sustainability of that isolated system, through a 

multicriteria evaluation of renewable energy sources integration, plus electricity storage, sustainable 

mobility and the adoption of energy efficiency measures. 

 

The energy planning methodology developed for the chosen case study brought the next findings. 
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“High prices” scenario 

 According to the study carried out for São Miguel Island, for the “high prices” scenario, the 

environmental benefits of RES increase and load decrease were ratified. This assessment 

enabled concluding that alternatives implementing energy efficiency measures result on both 

lower total annual costs and cost per unit of electric energy generated, comparing to 

analogous alternatives that don’t invest on load reduction. In fact, for this scenario, 

alternatives with energy efficiency lead to both lower costs and emissions, regardless the 

RES capacity.  

 Concerning total annual costs, renewable energy sources become more cost-competitive 

than fuel-oil thermal generation. That’s to say, high-range and mid-range RES increase are 

economically more beneficial than BAU option, for both load strategies. If energy efficiency 

measures on the load are not applied, high-range RES increase leads to lower total annual 

costs than mid-range RES increase. In case of applying energy efficiency measures on the 

load, mid-range RES increase is less expensive than high-range RES increase, because in 

the latter biomass generation is commissioned, and geothermal and hydro power units are 

reinforced. The cost-effectiveness of this RES increase depends on the load level. As 

described in this chapter, when load is higher, the effect of expensive RES, such as biomass, 

is smoothened. On the other hand, when load is decreased, the weight of biomass among 

global power generation cost increases (28% of the total power generation cost), comparing 

to the case in which there are no energy efficiency measures on the load (20% of the total 

power generation cost).  That’s to say, it is worth reducing the load through energy 

efficiency measures, instead of commissioning expensive RES to compensate the load 

increase. 

 In the “high prices” scenario, alternatives performing V2G have lower total costs, than the 

ones without V2G.  

“Low prices” scenario 

 Although alternatives with energy efficiency measures on the load lead to a higher cost per 

unit of electric energy generated, these result on total lower annual costs than alternatives 

without energy efficiency. For this scenario, alternatives with energy efficiency also lead to 

both lower total annual costs and emissions, regardless the RES capacity. 

 Concerning total annual costs, fuel-oil thermal generation becomes more cost-competitive 

than renewable energy sources. That’s to say, BAU RES option is economically more 

beneficial than high-range and mid-range RES options, for both load strategies. According 

to the analysis provided in this chapter, BAU RES plus energy efficiency on the load is the 
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preferred match, when it comes to total annual costs. In terms of carbon emissions, the 

higher the RES share in the mix, the lower the carbon emissions.  

 In the “low prices” scenario, V2G is only beneficial in terms of total costs for alternatives 

with 5 000 EVs, and among these, when there is energy efficiency on the load, together with 

BAU RES, and when there is no energy efficiency on the load, together with mid-range RES 

increase. 

 

Besides the previous conclusions, others can be drawn, regardless the prices scenario: 

 Electric mobility needs lower amounts of RES to be environmentally competitive, in the 

case of investing on energy efficiency measures on the load; 

 Only when there is a load decrease and BAU RES, electric mobility appears economically 

competitive (thanks to the operation of power units with lower cost for electric energy 

generation). 

 If energy efficiency measures are applied on the load, the storage option without EVs 

charging (i.e. Efficient ICVs, Biofuels and Behavioural Change, plus CSF) originates lower 

carbon emissions, but higher total costs than the alternative with 5 000 EVs plus CSF; 

 If energy efficiency measures are not applied on the load, the storage option without EVs 

charging (i.e. Efficient ICVs, Biofuels and Behavioural Change, plus CSF) originates both 

lower carbon emissions and total costs than the alternative with 5 000 EVs plus CSF. 

 

In this chapter, a multi-attribute and multi-scenario analysis was developed, which provided 

meaningful findings, as presented next:  

 All the non-dominated alternatives implement energy efficiency measures on the load. 

 Centralized storage facility, as only storage approach (without EVs charging), leads to 

dominated alternatives. If for the alternatives with an increasing load this electricity storage 

option is beneficial in terms of costs, when energy efficiency measures are applied it 

becomes more expensive.  

 Centralized storage facility only results on non-dominated alternatives, when associated 

with EVs charging. 

 In what pertains to the environmental criteria, if energy efficiency measures are not 

implemented on the load, V2G allows lowering global carbon emissions only if high-range 

RES increase is followed. Alternatively, for alternatives applying energy efficiency 

measures, V2G leads to lower CO2 emissions in the case of mid-range RES increase. 

From the sensitivity study concerning the trade-offs effect on the maximum regret, for low trade-

offs (less valorisation of emissions) alternative 33 (energy efficiency measures on the load; BAU 
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RES; 10 000 EVs; no CSF; V2G) is the best. But for intermediate values (up to 53 €/tonCO2), 

alternative 26 (energy efficiency measures on the load; mid-range RES increase; efficient ICVs, 

biofuels and behavioural changes; no CSF) is the best. Additionally, if there is a clear commitment 

for the reduction of carbon emissions (trade-off higher than 53 €/tonCO2), then alternative 20 

(energy efficiency measures on the load; high-range RES increase; efficient ICVs, biofuels and 

behavioural changes; no CSF) is the preferred. 
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Chapter 6 
 

6 Conclusions  

6.1 Answers to Research Questions 

In chapter 1, a set of research drivers were identified, including the development of comprehensive 

energy planning for isolated systems, addressing utterly: renewable energy sources variability; 

energy efficiency measures; electric mobility architecture; vehicle-to-grid strategy; electricity 

storage systems; sustainable mobility based on internal combustion vehicles (ICVs); carbon 

emissions cap-and-trade mechanisms; power systems’ reliability indices; and uncertainty modelling. 

In view of the diagnosed research motivation, this thesis aimed bridging knowledge gaps and 

bringing scientific value, by developing a methodology for enhancing the energy sustainability of a 

given isolated system, through a multicriteria evaluation approach, considering renewable energy 

sources integration, plus electricity storage, sustainable mobility and the adoption of energy 

efficiency measures.  

The assessment of this work’s achievements is pursued by answering to the research questions 

raised in chapter 1.  

 

1. How can a methodology be built to compare different alternatives for energy planning, through 

a set of criteria and attributes? 

In chapter 4, a methodology was described for multicriteria energy planning, encompassing the 

following steps: problem identification and global description; defining the scope and objectives for 

the problem; problem formulation, including the identification of decision variables, alternatives, 

criteria and attributes; and mathematical modelling. 

That methodology has also established a framework for the proposed research, by answering to the 

next questions: who, what, when, where, why, in what way, by what means. This outline allowed 

clarifying the purpose of the work and preparing the arrangement for the approach, described in the 

same chapter. 

Prior to identifying the decision situation, an overview was made, in chapter 3, on theoretical 

fundamentals for energy planning. That overview allowed characterizing the decision situation, in 

chapter 4, by setting up a set of decision variables and alternatives; a set of criteria; and a set of 

attributes.  

The decision variables consist of: load variation (increase/decrease) associated to the adoption of 

energy efficiency measures; installed capacity of renewable energy sources (business-as-usual, mid-

range and high-range renewable energy sources increase); sustainable mobility options (i.e. efficient 
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ICVs, biofuels and behavioural change; or strategies based in electric vehicles introduction); and 

electricity storage strategies (centralized storage facility and/or electric vehicles charging, including 

the vehicle-to-grid concept).  When it comes to the criteria, this work has required a specific 

mathematical formulation for the evaluation of attributes associated to each of the next criteria: 

environmental impact; economic and financial costs; and adequacy of the generation system. 

Regarding the alternatives identification, in chapter 5, the potential hypotheses were set up, for 

planning a given energy system (which in this thesis is São Miguel island). These alternatives were 

built by considering the investments and policies studied by the decision maker, who was assumed 

to be the regional authorities of the analysed energy system.  The chosen year for analysis was 

2030, to evaluate the energy planning options through a long-term perspective 

In order to handle the uncertainty of energy planning, two scenarios were built regarding the costs 

evolution. The formulated attributes were then computed, enabling a comparison between the 

alternatives under analysis.  

 

2. What is the correlation between additional capacity of renewable energy sources and energy 

efficiency measures, when it comes to the selected criteria? 

From the study carried out for São Miguel Island, for the “high prices” scenario, the next set of 

observations can be drawn. 

 Environmental benefits of renewable energy sources (RES) increase and load decrease were 

ratified (also true for the “low prices” scenario).  

 Alternatives implementing energy efficiency measures result on both lower total annual 

costs and cost per unit of electric energy generated, comparing to analogous alternatives 

that don’t invest in load reduction. In fact, for this scenario, alternatives with energy 

efficiency lead to both lower costs and emissions, regardless the RES capacity.  

 Concerning total annual costs, renewable energy sources become more cost-competitive 

than fuel-oil thermal generation. That’s to say, high-range and mid-range RES increase are 

economically more beneficial than the business-as-usual (BAU) option, for both load 

strategies. 

 It is worth reducing the load through energy efficiency measures, instead of commissioning 

expensive RES to compensate the load increase. 

When it comes to the “low prices” scenario, the next set of remarks is presented. 

 Although alternatives with energy efficiency measures on the load lead to a higher cost per 

unit of electric energy generated, these result on total lower annual costs than alternatives 

without energy efficiency. For this scenario, alternatives with energy efficiency also lead to 

both lower total annual costs and emissions, regardless the RES capacity. 
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 Concerning total annual costs, fuel-oil thermal generation becomes more cost-competitive 

than renewable energy sources. That’s to say, BAU RES option is economically more 

beneficial than high-range and mid-range RES options, for both load strategies.  

 According to the analysis provided in chapter 5, BAU RES plus energy efficiency on the 

load is the preferred match, when it comes to total annual costs. In terms of carbon 

emissions, the higher the RES share in the mix, the lower the carbon emissions.  

In terms of the adequacy of the generation system, a decreasing load and increasing RES capacity 

(without decommissioning, in advance, thermal units) leads to lower loss of load expectation 

(LOLE). 

 

3. How to compare electric mobility and ICV-based sustainable mobility, in terms of costs and 

benefits? 

As presented in chapter 5, three strategies were designed for sustainable mobility by 2030, i.e.: 

efficient ICVs, biofuels and behavioural change; introduction of 5 000 electric vehicles (7,5% of 

São Miguel’s light vehicles fleet); and introduction of 10 000 electric vehicles (15% of São 

Miguel’s light vehicles fleet). 

From the analysis developed in that chapter, some conclusions can be drawn, regardless the prices 

scenario: 

 Electric mobility becomes environmentally more beneficial with the increase of RES; 

 Electric mobility needs lower amounts of RES to be environmentally competitive, in the 

case of investing on energy efficiency measures on the load; 

 Only when there is a load decrease and BAU RES, electric mobility appears economically 

competitive (thanks to the operation of power units with lower cost for electric energy 

generation). 

 

4. What is the influence of sustainable mobility strategies on the electricity storage contribution for 

the system? 

In chapter 5, the next pathways were defined for electricity storage: centralized storage facility (i.e. 

pumped hydro storage) and/or electric vehicles (EVs) charging, including the vehicle-to-grid (V2G) 

concept. From the analysis developed in that chapter, some conclusions can be drawn, regardless 

the prices scenario: 

 If energy efficiency measures are applied on the load, the storage option without EVs 

charging (i.e. efficient ICVs, biofuels and behavioural change, plus centralized storage 

facility) originates lower carbon emissions, but higher total costs than the alternative with 5 

000 EVs plus centralized storage facility (CSF); 
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 If energy efficiency measures are not applied on the load, the storage option without EVs 

charging (i.e. Efficient ICVs, Biofuels and Behavioural Change, plus CSF) originates both 

lower carbon emissions and total costs than the alternative with 5 000 EVs plus CSF. 

 
5. What are the preferred alternatives for enhancing the energy sustainability of a given isolated 

power system? 

The proposed energy planning methodology, when applied to São Miguel Island, draws the next 

conclusions, besides the ones already depicted by answering to the previous research questions:  

 All the non-dominated alternatives implement energy efficiency measures on the load; 

 Centralized storage facility, as the only storage approach (without EVs charging), leads to 

dominated alternatives. If for the alternatives with an increasing load this electricity storage 

option is beneficial in terms of costs, when energy efficiency measures are applied it 

becomes more expensive.  

 Centralized storage facility results only on non-dominated alternatives, when associated 

with EVs charging; 

 In the “high prices” scenario, alternatives performing V2G have lower total costs, than the 

ones without V2G.  

 In the “low prices” scenario, V2G is only beneficial in terms of total costs for alternatives 

with 5 000 EVs, and among these, when there is energy efficiency on the load, together with 

BAU RES, and when there is no energy efficiency on the load, together with mid-range RES 

increase. 

 In what pertains to the environmental criteria, if energy efficiency measures are not 

implemented on the load, V2G allows lowering global carbon emissions only if high-range 

RES increase is followed. Alternatively, for alternatives applying energy efficiency 

measures, V2G leads to lower CO2 emissions in the case of mid-range RES increase. 

Furthermore, in chapter 5, a multi-attribute and multi-scenario analysis was presented by 

performing a sensitivity study on the effect of the trade-offs on maximum regret. According to this 

study, for low trade-offs (less valorisation of emissions) alternative 33 (energy efficiency measures 

on the load; BAU RES; 10 000 EVs; no CSF; V2G) is the best. But for intermediate values (up to 

53 €/tonCO2), alternative 26 (energy efficiency measures on the load; mid-range RES increase; 

efficient ICVs, biofuels and behavioural changes; no CSF) is the best. Additionally, if there is a 

clear commitment for the reduction of carbon emissions (trade-off higher than 53 €/tonCO2), then 

alternative 20 (energy efficiency measures on the load; high-range RES increase; efficient ICVs, 

biofuels and behavioural changes; no CSF) is the preferred. 
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6.2 Main Contributions 

To sum up, this work presents the next major contributions. 

 A new methodology for multicriteria energy planning was developed, for isolated systems, 

by filling some critical knowledge gaps. This methodology consists in a process of 

systematic building of energy planning alternatives, for an isolated system, from a set of 

basis options, namely the integration of renewable energy sources, strategies for sustainable 

mobility (ICV-based or electric mobility), electricity storage options (centralized storage 

facility and/or electric vehicles charging), and adoption of energy efficiency measures.  

 The proposed approach includes the consideration of uncertainty in the prices, by defining 

two scenarios and implementing the regret concept, through a multicriteria and multi-

scenario perspective. 

 For evaluating the alternatives, a detailed modelling of meaningful criteria is provided, i.e.: 

environmental impact; economic and financial costs; and adequacy of the generation 

system. Thus, one significant contribution of this thesis is related with the mathematical 

formulation for computing the selected attributes (associated to the criteria), especially the 

equations describing the economic and financial costs of centralized storage facility and 

electric mobility.  

 The proposed energy planning methodology benefited from the development of an 

algorithm for unit commitment and economic dispatch, including renewable energy 

sources, centralized electricity storage, and EVs charging and V2G. This algorithm adopts 

the logic of the merit order priority list method, and maintains the simplicity and 

accountability of that approach. The algorithm for unit commitment and economic dispatch 

allows an hourly analysis of the power system, though the long-run time horizon of the 

energy planning focus.  

 The developed approach was applied into a real case study and, consequently, meaningful 

findings could be assessed and followed by the corresponding regional authorities. The 

analysis carried out for São Miguel Island delivered a set of expected findings 

(environmental benefits of RES and energy efficiency), but also innovative understanding, 

such as: the economic benefits of EVs V2G for energy shift; cost competitiveness of RES, 

for the “high prices” scenario; economic benefits of energy efficiency measures on the load; 

and contribution of efficient ICVs, biofuels and behavioural change, for lowering carbon 

emissions. 
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To conclude, the methodology built within this thesis is believed to upgrade current approaches and, 

as a result, bring concrete contributions and applicable value to the energy planning process of 

isolated systems, either through a utility-oriented perspective, or government-oriented viewpoint.  

 

6.3 Suggestions for Future Work 

In terms of future works following the current research topic, a set of further studies would be worth 

performing, as described next: 

 Apply a similar multicriteria approach for interconnected power systems, by comparing 

electricity storage with interconnection capacity reinforcement, and with demand response; 

 Upgrade the described formulation to study power systems with market rules; 

 Study the ability of electricity storage facilities and EVs for providing services to the system 

(e.g. reserve services); 

 Add transmission and distribution networks to the energy planning methodology, in order to 

study the location of dispersed storage, for congestion management and dealing with power 

flow inversion; 

 Build a regulatory study to address the services provided by electricity storage, EVs and 

demand response players, through a fair remuneration and new market design; 

 Enhance the reliability studies, by addressing operating reserve assessment; 

 Study the uncertainty inherent to the EVs charging and V2G; 

 Develop a formulation to integrate the stakeholders’ preferences, regarding each of the 

energy planning alternatives; 

 Perform a sensitivity analysis regarding the installation of a fresh-water pumped hydro 

storage facility (i.e. Furnas’ lake, São Miguel Island), by using the methodology described 

in this research. 
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Annexes 
Annex I 
Data of the power system of São Miguel Island  

 

In this annex the main characteristics of São Miguel’s power system are presented. 

 
Table 45 - Evolution of the annual peak load in S. Miguel (kW), adapted from [275] 

São Miguel 2003 2004 2005 2006 2007 2008* 2009* 2010* 2011* 2012* 

Generation 
(MWh) 353 828 386 700 400 109 413 137 428 923 442 992 458 393 474 023 488 246 502 468 

evolution % 7,0 9,3 3,5 3,3 3,8 3,3 3,5 3,4 3,0 2,9 

Peak Load 
(kW) 62 180 64 800 69 600 70 250 72 150 74 315 76 326 78 536 80 489 82 628 

evolution % 9,3 4,2 7,4 0,9 2,7 3,0 2,7 2,9 2,5 2,7 
 
*Estimation 
 

 
Table 46 - Evolution of the monthly peak load in S. Miguel (kW) [275] 

Month 2001 2002 2003 2004 2005 2006 2007 2008 

Jan 46600 50080 54300 59090 62900 65500 68450 69750 

Feb 44700 48940 54640 57750 59400 63200 65850 66200 

Mar 47300 50010 51700 57050 61400 63200 63250 63150 

Apr 43850 49960 53080 57580 60650 60600 63450 64700 

May 47200 50270 53180 58300 61800 63190 64100 65130 

Jun 48500 51980 55180 63350 63600 62950 66550 69350 

Jul 51850 54870 59270 62800 63800 66740 69300 71480 

Aug 52050 54820 60470 63400 64940 67600 70000 72200 

Sep 54450 56070 60500 64800 69600 69080 69600 73850 * 

Oct 50560 51900 58170 61550 63650 66600 68750 70813 * 

Nov 49560 55690 58870 60300 61500 66150 68200 70246 * 

Dec 52600 56870 62180 63900 66400 70250 72150 74315 * 
* Estimation  
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Table 47 – Generation Units in S. Miguel (kW) [275] 

Unit Installed Power (MW) 

Caldeirão (fuel oil power) 98,06 

Unit I 7,70 

Unit II 7,70 

Unit III 7,70 

Unit IV 7,70 

Unit V 16,82 

Unit VI 16,82 

Unit VII 16,82 

Unit VIII 16,82 

Salto do Cabrito (hydro power) 0,71 

Tambores (hydro power) 0,11 

Canário (hydro power) 0,40 

Foz Rib. Quente (hydro power) 0,82 

Rib. Praia (hydro power) 0,80 

Nova (hydro power) 0,61 

Túneis (hydro power) 1,61 

Pico Vermelho (geothermal power) 13,00 

Ribeira Grande (geothermal power) 14,80 

TOTAL 130,93 

 
 

 
Fig. 80: Typical daily load and generation profiles, in 2008 (EDA) 
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