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ABSTRACT  

This dissertation involves the study of a retrofit building design in order to make it more sustainable.  

To achieve sustainability in any system, we need to look at the whole processes where the system is 

involved and not only for the system that we are trying to make more sustainable. Such approach 

brings early conclusions and bad sustainable strategies.  

As any system, a building is an open system, i.e., itself is a subsystem of other system and, besides, it 

has other systems inside. Such fact makes this system becoming a complex problem, mainly because 

of the existent interconnectivity which for many reasons, as lack of information or overview, couldn’t 

be expose. Thus it’s essential the use of tools capable to work with questions of complexity and 

networks in an effective way. 

In this work will be used the Sensitivity Model of prof. Frederic Vester, described in his book “The 

Art of Interconnected Thinking” which was an essential tool in the development of the present work. 

This work follows the nine steps of the Sensitivity Model which its main aim is reveal the role of some 

variables in the system through changes in the model input data and verifying which changes occurred 

in the model output data. Thus, throughout the use of alternative scenarios it’s possible to understand 

the system behaviour and which variables play the biggest role in that behaviour. 

In general, due to the complexity of the problem, there are some restrictions and limitations in the 

study as well as uncertainties in the input data. However, the use of this model allows reducing the 

impact of those uncertainties and, thus, establishing the reliability of the results. 

Regardless of the problems to solve, this model presents good results when sustainability is main goal. 

The present work is divided in five chapters. In the first chapter an introduction to the present work is 

done: context, main goals and work structure are presented. In the next chapter an approach to 

building sustainability importance is done, the role of structural engineer while designer and the 

application of methods which allow the achievement of more sustainable building designs. In the third 

chapter the Sensitivity Model is approached, issues like method operation, main features and 

applicability of it are explained. In the fourth chapter the sensitivity model is applied in the building 

design of a case of study and the nine steps of model essential to achieve conclusions are covered. At 

last, the fifth chapter is dedicated to conclusions observed after application of the method as well as 

design recommendations in order to improve the study building design and for the use of this kind of 

method in construction field. 

 

KEYWORDS: system, sensitivity, analysis, sustainability, building, interconnectivity 
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RESUMO  

Esta dissertação envolve o estudo do melhoramento/aperfeiçoamento do projeto de um edifício de 

forma a torna-lo mais sustentável.  

Para alcançar sustentabilidade num determinado sistema é necessário observar todos os processos em 

que este sistema está envolvido, e não apenas para o sistema que estamos a tentar tornar mais 

sustentável. Este tipo de abordagem traz conclusões precoces e más estratégias de sustentabilidade.  

Como qualquer sistema, um edifício é um sistema aberto, isto é, contêm outros sistemas e ele próprio é 

um subsistema de outro sistema. Tal facto faz com que o estudo deste sistema se torne num problema 

complexo devido, essencialmente, à interconectividade existente a qual, por diversas razões, tais como 

falta de informação ou visão geral, pode não ser totalmente exposta. Desta forma, é essencial o uso de 

ferramentas capazes de trabalhar com questões de complexidade e redes de forma eficaz. Assim, neste 

trabalho será utilizado o Modelo de Sensibilidade do prof. Frederic Vester descrito detalhadamente no 

seu livro “The Art of Interconnected Thinking”, o qual foi ferramenta essencial para o 

desenvolvimento deste trabalho. 

O presente trabalho segue, assim, os nove passos do modelo de sensibilidade e tem como principal 

objetivo revelar o papel de algumas variáveis no sistema através de alterações nos dados introduzidos 

no modelo e verificando que alterações ocorreram nos dados que saem do modelo. Desta forma, 

através do uso de cenários alternativos, é possível entender o comportamento do sistema, e quais as 

variáveis que maior papel interpretam nesse comportamento.  

Em geral, devido à complexidade do problema, existem algumas restrições ou limitações no estudo 

assim como incertezas nos dados introduzidos, a utilização deste modelo permite reduzir o impacto 

dessas incertezas e, assim, estabelecer a reliabilidade dos resultados. 

Independentemente do problema a resolver, este modelo apresenta bons resultados quando o sistema 

pretende alcançar sustentabilidade.  

Este trabalho encontra-se dividido em cinco capítulos. No primeiro capítulo é feita uma introdução ao 

trabalho incluindo uma descrição detalhada do sistema de estudo. No capítulo seguinte será feita uma 

abordagem à importância da sustentabilidade dos edifícios, o papel do engenheiro estrutural enquanto 

projectista e a aplicação de métodos que permitem a obtenção de projectos mais sustentáveis. No 

terceiro capítulo é exposto o Modelo de Sensibilidade, questões sobre funcionamento do método, 

principais características e áreas de aplicação são explicadas. No quarto capítulo será aplicado o 

Modelo de Sensibilidade no projecto do edifício de estudo, percorrendo os nove passos necessários 

para obter conclusões. Por fim, o quinto capítulo dedica-se a conclusões observadas após aplicação do 

método, assim como recomendações para melhoramento do projecto em estudo e para o uso deste tipo 

de métodos na área da construção. 

 

PALAVRAS-CHAVE: sistema, sensibilidade, análise, sustentabilidade, edifício, interconectividade 
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1 
INTRODUCTION 

 

 

1.1. CONTEXT 

Currently, among the uncontrolled growth of the population, arises the consequent environmental and 

economic preoccupations and it’s essential an adequate resources management. Being the construction 

industry one of those that more resources consume, it’s important a prior planning of all the different 

phases involved in this activity in way to obtain more sustainable solutions. 

According to ASCE (2016),  sustainability is the capacity of the society to maintain and improve its 

quality of life indefinitely without degrading the quantity, quality or the availability of economic, 

environmental and social sources. As engineers, we have the responsibility to find effective and 

innovative building design solutions in order to reduce materials consumption, improve quality of life 

for people, better economic performance and preserve natural resources for future generations 

(Ochsendorf, 2005). 

The concept of sustainable development is not new and has evolved greatly in the last years. Rio 92 

was the first international conference attended by world leaders, among 108 countries, to discuss the 

environmental issues and introduce the concept of sustainable development. Before this conference 

another two were important in this field: the Stockholm Conference in 1972 and Brundtland 

Commission in 1987, both were an essential basis for Rio 92. Agenda 21 was one of the documents 

resulting from Rio 92 conference, which reflects the importance of each country to study solutions for 

their socio-environmental problems. 

However, being the construction sector a larger industrial sector, after the Rio 92 conference there was 

the necessity to develop an international agreement on sustainable construction. In 1999, the 

International Council for Research and Innovation in Building and Construction (CIB) published its 

Agenda 21 on Sustainable Construction (Du Plessis, 2002). 

Over the years the understanding of sustainability in buildings has changed. In the beginning the focus 

was on limited resources, especially energy, and how to reduce impacts in the natural environment 

(Bourdeau, 1998). In the last years, the main concern is on building materials and components, 

construction technologies and on energy related design concepts. 

The building design is the first phase of building process and one of the most important when 

sustainability is the goal. It is up to architects and engineers, not forgetting the other actors in 

construction sector, the decision of more sustainable options, among materials and technics, in the 

earlier stages of the design process.   
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However, sustainability causes complex interdependencies in design and planning of buildings. Such 

happens because a building is, as said before, an open system, which contains other systems and, itself 

is part of others systems. The city that the building belongs, the construction materials manufacturing 

and the local environment, are some of the systems that affect and are affected by the building system. 

It’s important to understand that the system is not isolate and because of that, to make it more 

sustainable, it’s necessary take into account the relations and interactions with other systems, i.e., the 

interconnectivity.  

To lead with such complex system as a building design, it’s critical the use of a modelling tool where 

we can simplify the real world and to understand the complex interrelations involved. 

Among the systemic management methods, Frederic Vester (2007), a German biochemist, has defined 

an easy way to use discussion based approach called sensitivity modelling which is, also, a successful 

tool dealing with complex systems. Sensitivity models have been used since the 1980s in many 

important studies, e.g. by Ford (Motor Company) and the UNESCO (Funk et al., 2014). 

A system is a group of interconnected elements which in their set they form a whole. The sensitivity 

model reflects the dynamics that determine how a system develops (Vester, 2007). Sensitivity analysis 

is the basis for sensitivity modelling. 

The sensitivity analysis allows understanding the disturbances effect in the system in is normal 

behavior and thus identify the important parameters to control it. This can be understood when the 

output model values are very affected by new input values in the model. Therefore, it’s possible to 

know which parameters are the most important in the system and which ones affect it more. This is the 

main aim of the sensitivity analysis. Since we know the importance of each variable in the system we 

are able to understand the important connections within that system. 

In buildings, to achieve the goals of sustainability it is required to adopt a multi-disciplinary approach 

covering a number of features such as energy saving, improved use of materials including water, reuse 

and recycling of materials and emissions control (Ramesh et al., 2010). 

 

1.2. OBJECTIVES 

The present work main aim is the sensitivity modelling of a case of study building design. Applying 

the nine steps of the Sensitivity Model it will be possible to understand how the system works and how 

different variables concerned to the system affect it, especially, its behavior. In short, the main steps of 

this thesis are following described: 

 Get to know the study system in detail: find problems and define goals and boundaries; 

 Gather a list of actuating variables concerned to the study system; 

 Through application of Sensitivity Model discover which of those variables are relevant for 

system behavior and how these variables affect it; 

 Build a partial scenario with the relevant variables based on the question that it’s expected to 

answer “How can we reduce the embodied energy demand by the building?”; 

 Simulate that partial scenario through mathematical relations between variables using a 

suitable software and thus identify relevant control parameters for the  previous question; 

 Identified the relevant control parameters, find the best design options and give 

recommendations for case study building design and for future research as well. 
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1.3. THESIS STRUCTURE 

This thesis is structured as follows: In chapter one, a contextualization of the thesis topic is made. The 

sustainability in construction sector is emphasized and the important role of Sensitivity Model in the 

achievement of sustainable solutions. 

The chapter two approaches the importance of sustainability in the construction sector. The reasons to 

introduce the concept of sustainability in this sector as well as the role of structural engineers as 

building designers. The importance of building modelling to achieve designs with better 

environmental performances. 

The Chapter three is totally dedicated to the description of the Sensitivity Model developed by 

Frederic Vester. Main issues as well as how the Sensitivity Model works, areas of use and 

applicability of it are approached.  

In the fourth chapter, the case of study is presented. The nine recursive steps of Sensitivity Model are 

applied to the study system, a building design, in order to understand how the system works, its 

problems and define its goals. A set of variables concerned to the system is gathered and according to 

their roles it’s possible to understand the cybernetic character of each variable and their importance in 

the system. In way to focus on particular issues, partial scenarios are built and simulated in order to 

understand the system cybernetics and reveal the control parameters which are an essential 

information to define design strategies. Last step is dedicated to the viability of the study system 

where the eight biocybernetic rules of any viable system are applied. 

The fifth and last chapter presents the conclusions of the Sensitivity Model application in the case of 

study. Furthermore, design recommendations for future researchers and hints about future research in 

this area will be recommended. Even the possibility of continuing this research will be left open. 
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2 
BUILDINGS SUSTAINABILITY 

 

 

2.1. IMPORTANCE OF SUSTAINABILITY CONCEPT IN CONSTRUCTION SECTOR 

From all the activities performed by humanity, building construction is the most critical in terms of 

environmental impact and resources consumption. Construction, operation and maintenance of 

buildings have had serious impacts on the environment. To clarify this idea, let’s have a look in some 

numbers taken from (Langston, 2008, Torgal and Jalali, 2010): 

 50% of material resources taken from nature are building-related; 

 Over 50% of national waste production comes from building sector; 

 40% of energy consumption in  Europe is building-related; 

 30% of carbon emissions result from building sector. 

These facts above clearly show the unsustainability of this sector and why it was necessary to 

implement the concept of sustainable development into construction industry in order to reverse those 

facts. Sustainable construction focuses on the issues of procurement, assembly and commissioning, 

materials selection, recycling and, in particular, waste minimization (Langston, 2008). These three 

first concepts won’t be approached in this work since they are related with clients, contractors and 

users of the facility. On the other hand, the others concepts are important for this study since their 

approach starts in the design phases. 

In order to better implement the sustainable construction concept and define the main goals of it, the 

CIB (Conseil International du Bâtiment, in English International Council for Building) as defined 

seven principles for sustainable construction – see table 2.1. 

Table 2.1  - Kibbert (1994) Principles of Sustainable Construction (Torgal and Jalali, 2010). 

1 Reduce resources consumption 

2 Reutilization of resources 

3 Use of recyclable resources 

4 Nature protection 

5 Elimination of toxics 

6 Application of life-cycle analysis in terms of economics 

7 Improve quality 
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2.1.1. PORTUGUESE SITUATION 

In Portugal, in contrast with other countries in Europe, the construction sector intensified during the 

90s. Currently, this sector is at same level as other European countries. Between the 70s and finals of 

90s, were built more than two millions of habitational units which justify the intensive growth of this 

sector in Portugal (Castro et al., 2012). 

In the last years, the population has been growing (about 1.9% between 2001-2011), which result in 

the necessity of construction of new habitations buildings. In this way, in Portugal, the main building 

function is habitation. However, the problem here is that the majority of these buildings present 

nowadays problems like lack of thermal and visual comfort and bad quality of indoor environment. 

These problems are associated to the increase of resources consumption (energy and water) during 

operational phase of the building and thus the increase of environmental impacts (Castro et al., 2012). 

Besides, the conventional construction is associated with large resources consumption, large use of 

materials and energy consumption. Materials as concrete, aluminum and brick masonry are materials 

used in large scale in Portugal, which their production implies great consume of energy with release of 

GHG. 

The sustainable building solutions, in Portugal, are mostly related with the reduction of operational 

energy. The solutions are the use of passive systems based in solar energy, ecologic insulation 

materials and LED illumination. However, comparing with other countries in north of Europe, 

Portugal has a long journey to cover in this thematic. 

With the growing environmental awareness and the necessity of facing the negative impacts of 

traditional construction materials and methods, the construction professionals started to search for new 

materials and technics, more efficient and ecologic for new buildings construction. However, it still 

missing an improvement at education level where this topic should be more debated in universities in 

order to raise awareness of the future professionals in construction sector to this problem. The lack of 

education and professionals specialized in this thematic also contributes the unsustainability of this 

sector. 

 

2.2. SUSTAINABLE BUILDINGS 

2.2.1. BUILDING DESIGNERS: THE ROLE OF THE STRUCTURAL ENGINEERS 

Due to the non-ecological structure of the building industry and the historical lack of environmental 

awareness of many building professionals, the process of building has become the worst environment 

enemy (Graham, 2009). That is the reason why sustainable practices should be seriously taken into 

account by construction professionals, including building designers. According to Miller and Doh 

(2015) many of the factors leading to unnecessary resource consumption result directly from the 

inefficient design of buildings and their associated infrastructure. 

It’s crucial that designers are aware of sustainable developments concepts and practice them as a 

matter of routine in order to reduce these numbers. A proper design is an important component in the 

achievement of financial return, social contribution, energy efficiency and minimal environmental 

impact objectives (Langston, 2008). An effective planning of these fields results in effective 

sustainable design solutions. 

In short, according to Torgal and Jalali (2010) the prior considerations when designing a building are 

shown in fig.2.1. 
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During design process the role of structural engineers is very limited since the main preoccupations 

lately have been the reduction of operational energy. This energy is the energy used for maintaining 

the indoor comfort of the building (electricity, heating, etc.) and it’s the main responsible for GHG 

emissions during building life-cycle. However, in the last years, some studies were performed and 

consequently the importance of embodied energy has risen. Although this fact, the variability and the 

uncertainty of the publications make this issue difficult to approach by the structural engineers.   

Furthermore, it is also the building designer’s role to be informed about new technologies and technics 

that enhance the environmental performance of buildings. Besides, they have a professional obligation 

to broaden the understanding of construction owners and clients who may in turn demand sustainable 

design (Miller and Doh, 2015). 

 

2.2.2. STRUCTURAL ENGINEERING: TYPICAL PROBLEMS TO TACKLE  

Currently and over the years, structural engineering has as trends reinforced concrete and steel 

structures, which have contributed in a large scale for the environmental impacts in construction 

industry. Each ton of Portland cement, the larger component of concrete, is responsible for 

approximately one ton of CO2 emissions (Ochsendorf, 2005). On the other hand, steel production is 

energy intensive with the release of greater quantities of GHG, however the infinitely recyclable 

property of steel make it almost an irreplaceable building material.   

However, are not only these two materials that contribute for environmental problems, in general 

building materials play an important role in sustainable construction context. Such happens because 

every building material derives from a raw product which can exhaust after extreme extraction. In this 

way, it’s important to know the materials sources for better choices among them. Their choice should 

focus on the following properties described in Torgal and Jalali (2010): 

Sustainable 
Construction 

Project 

Minimize life-
cycle costs 

Reduce 
energy and 

water 
consumption 

Maximize 
durability 

Use of eco-
efficient 

materials  

Planning of 
conservation 

and 
rehabilitation 

Reduce 
wastes 

generation 

Ensure 
building 

salubriousness 

Figure 2.1 – Considerations on a sustainable building design (Torgal and Jalali, 2010). 
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 With low embodied energy; 

 Recyclables; 

 Materials that can reuse wastes from other industries; 

 Materials from renewable sources; 

 With low GHG emissions; 

 Durables; 

 Not toxic. 

Another problem resulting from “bad” design is the structural inflexibility. The impossibility of 

changes in the use/function of certain building results in an earlier demolition since these buildings 

become obsolete. It results in expensive retrofitting and several consequences as energy outlay and 

demolition wastes (most of them not reusable or recyclable). Sustainable practices must include ease 

upgrade, flexibility, adaptability and recycling potential (Langston, 2008). 

Besides the problems above, other considerations should take place during a sustainable building 

design. A proper siting and orientation, natural lighting and ventilation, insulation, low energy and 

long life are today’s essential concepts for successful building designs. 

Design must be understood to comprise the trilogy of form, function and cost. Form is the solution to 

accommodate the desire function. Function is the translation of the needs of the client, and in a wider 

range the needs of the society. Cost includes the initial and recurrent expenditure over the life cycle of 

the building (Langston, 2008). 

The energy used during building operational phase (heating, ventilation and air conditioning) is also 

an issue that should be taken into account. That can be solved with designs which reveal a poor 

dependence in energy for maintaining building comfort.  

The main goal here is to find strategies from material selection to radical designs that embody both 

passive and active solutions to create more comfortable spaces at reduced cost and energy (Langston, 

2008).  

Regarding all these considerations above, it’s a first step to improve building design solutions in order 

to make them more sustainable and thus preserve the future generation’s quality of life. 

 

2.3. BUILDING DESIGN MODELLING 

A successful project always begins with a good planning. The construction industry is very 

fragmented. Over all stages, including design phase, teams composed by many different professionals 

from different areas are built and, in the case of design team, they need to cooperate to achieve a 

successful building project for a specific client. Each professional has its own responsibility and ideas 

which together generate great amounts of information. However, due to the lack of a good information 

structure, this information may not be correctly worked and part of it can even be lost or neglected. To 

solve this problem a mediation session would be essential. Besides the lack of mediation, also the poor 

decision-making found in building design phase contributes for the great difficulty in find sustainable 

solutions. 

To counter this situation, it is necessary the use of effective planning and management tools to replace 

this fragmented responsibility and decision-making and to help in the achievement of successful 

design solutions. 

Modelling, applied to design phase, is the process of creating a model of a building design to estimate 

a certain issue that the modeller wants to study. However, to modelling a certain building design it is 
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needed to use specialized tools where it is gather all the possible data (input data) about the building 

like function, materials, size, etc. and about the surrounding area like location, surrounding activities 

and places etc. The aim here is to achieve the generated information (output data) about how the 

building performs itself about the study issue. 

With all the problems that the construction sector brings in many areas, this process becomes essential 

in the building design phase since it’s possible a detailed analysis and try solutions and see how it 

works, preventing bad decisions. Furthermore, this new methods are a major contribute to enhance 

building designs and to help building professionals to become more creatives, raising their 

productivity. 

In this work will be used a modelling tool combined with sustainable principles, the Sensitivity Model, 

two desirable features to analyze a building design. 
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3 
THE SENSITIVITY MODEL 

3.1. INTRODUCTION 

Dealing with complex systems can be a problem for us. Our whole education leads us to draw simple 

logical conclusions and defining obvious cause-and-effect relations. However, this way of thinking 

leads to the most common errors made in dealing with complex systems (Vester, 2007). 

A complex system is like an organism which consists of a number of distinct parts (organs) that co-

exist in a specific dynamic arrangement. In this way, it is impossible an intervention without changing 

the relationship of each part to every other and hence the overall character of the system. Furthermore, 

real systems are open which means that they are in constant interchange with their environment 

(Vester, 2007). Hence, complexity is not an easy question due to the interlinked networks involved 

and thus it’s essential to approach it with efficient tools. In Vester (2007), six errors committed when 

dealing with complex systems are described as follow: 

i. False description of goals: Instead of setting about enhancing system’s viability, people try to 

solve individual problems; 

ii. One-dimensional analysis of situations: The dynamics of the system remain a mystery 

because people refuse to grasp the cybernetic nature of it. They gathered large amounts of 

information without producing a structure; 

iii. Irreversible foregrounding: people insisted on a single point of emphasis, initially 

acknowledged as correct; 

iv. Neglected side effects: people pursued their search for measures to improve the situation in a 

very single-minded manner, without analyzing side effects. 

v. Tendency to oversteer: in the beginning people act with small interventions then, if nothing 

occurs in the system, they do something major. When finally repercussions occur they 

immediately stop. However, the first interventions go unnoticed. 

vi. Tendency towards authoritarian behavior: the most effective approach for complex 

systems is not to swim against the current but to swim with it. 

Frederic Vester tried to correct these errors with the Sensitivity Model where tools and concepts are 

approached to tackling complexity. 
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3.2. ABOUT THE METHOD 

3.2.1.  SENSITIVITY MODEL DESCRIPTION 

The Sensitivity Model helps us to tackling complexity in an easy and successful way. This model not 

only reflects the dynamics that determine how a system develops, it’s capable to develop the 

cybernetic that prevail inside those dynamics. By rendering cause-and-effect flows visible, the method 

allows the person who is using it to influence those flows, establishing new courses, to improve all 

system by self-regulation, and with the aid of simulations to examine how the system behaves as 

consequence/result (Vester, 2007). 

In the present work context, using this model allow us to visualize the cause-effect flows and thus 

influence those flows to enhance the design project in the way to obtain more sustainability. 

The success of this method is due to one of the main features of the model, the mediation capacity. 

This mediation characteristic can be understood by the different convictions and opinions, from each 

project participant, that can be placed in the same model and in the end they recognize that they are 

interconnected when sustainability is the goal.  

The model is composed by nine recursive steps represented in fig. 3.1. This recursive feature is 

explained by the fact that each stage remains open until the end and thus the entirely model can be 

constantly updated, being the initial faults successively corrected by the following steps (Vester, 

2007). 

 

 

 

The process begins with the system description and it ends in the system evaluation. After the first step 

(system description), in the next four steps (set of variables, systemic matrix of criteria, influence 

matrix and systemic role chart) the interactions present in the system are examined and the system 

interconnectedness is visualized. The cybernetic role of each variable concerned to the system is 

known and also how it’s affect the system behavior in order to characterize it.  

Figure 3.1 – Sensitivity Model structure (Wolf et al., 2012). 
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Then, in the following two steps (effect system and partial scenarios) the specific interplay between 

variables is defined and thus the interplay between variables renders the system chain of effects and 

feedback loops visible. The interesting parts of effect system are built like partial scenarios. Next step, 

simulation, the partial scenarios are simulated according to “what if” forecasts. Last step, system 

evaluation, eight basic rules are used to evaluate system’s viability and long-term sustainability. At 

this step, particular strategies and measures are achieved for dealing appropriately with the system 

(Wolf et al., 2012). 

This model is applicable to any system striving for sustainability because of its neutral design - 

independent of the problem to solve. It has been applied in many projects among different study areas 

and it is recognized as a very successful tool when sustainability is the goal. 

The Sensitivity Model can be found in a computerized version called Malik Sensitivity Model®
Prof.Vester

 

which performs all the steps and allows an easy visualization of results, however, in this work was not 

possible to use it due, mainly to its cost. Instead of using that, was used Microsoft Excel to perform the 

initial steps and for simulation step was used the MATLAB tool, Simulink.  

 

3.2.2. MAIN FEATURES OF THE MODEL 

The Sensitivity Model due its success to the main features present and fully described in Vester 

(2007): 

 Holistic capture: the complex system should be captured with its socio-economic-ecological 

environment as a biocybernetic whole; 

 No more floods of data: instead of a large amount of data, the sensitivity model works with a 

manageable number of representative actuating variables thanks to its process to reduce the 

variables to the minimum;  

 Fuzzy logic as foundation: with the sensitivity model it’s possible to draw connections 

between data of lesser relevance and through them reach conclusions about system functions; 

 Interactive operation: the user can find himself in constant open dialogue between the 

computerized and manual parts of the proceeding; 

 Permanent working tool: this feature is due to sensitivity model recursive structure, every 

step remains open until the end and capable of being updated; 

 Argumentation aid: didactically innovative methods of simulation, interpretation, and 

appraisal provide useful political and material aids to decision-making for the future 

development of a system; 

 New kinds of solution: interpreting the system behavior in the light of its “sensitivity” will 

bring new kinds of potential solution and opportunities that spring from the better 

understanding of the system; 

 More scope for action: the biocybernetic view of things offer solutions that vary from system 

to system and are not standard. As a result scope for action is not restricted to a single fixed 

goal but will be greatly expanded; 

 An end to forecasts that make no sense: sensitivity model will help the user to recognise the 

qualities and development potential of the system and using the ‘what if’ forecasts about how 

the system will behave treat those qualities and potential in such way that the system can cope 

better. 

 

 



Systems modelling for sustainable building design 

 

14  

3.2.3. AREAS OF USE 

The Sensitivity Model can be used in practically unlimited areas thanks to its open structure, already 

explained in 3.2.1, and it is useful everywhere where the complexity of the problem can no longer be 

tackled by customary methods (Vester, 2007). The most common areas of use are: 

 Corporate strategic planning; 

 Technology assessment; 

 Developmental aid projects; 

 Examination of economic sectors; 

 City, regional and environmental planning; 

 Traffic planning; 

 Insurance and risk management; 

 Financial services; 

 Research and training. 

 

3.2.4. SENSITIVITY MODELLING IN BUILDING ANALYSIS 

As observed above, the construction area is not mentioned however, as explained before, the 

Sensitivity Model has a large range of applications in many areas. After an extensive research it was 

found some applications in buildings area. Several studies in thermal and energy performance of 

buildings were carried out using this method. The aim of those studies is analyze the building behavior 

to achieve specific targets like reducing energy consumption, reducing environmental impacts or 

improving indoor thermal environment (Nguyen and Reiter, 2015). 
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4 
APPLICATION OF SENSITIVITY MODEL - CASE OF 

STUDY 

 

 

4.1. SYSTEM DESCRIPTION 

4.1.1. INTRODUCTION 

The first step to system analysis consists in describing the system. The initial description of the system 

is very subjective: different entities present different visions and opinions of the same system. The 

author calls it a brainstorming session. Record all opinions, views and ideas, is essential to create a 

structured system model. Here is where the model mediation capacity is visible. 

This step is the basis for building the model, here, the users will for the first time get to know 

relationships and connections. System boundaries will be defined, problems will be found and the 

partial goals will be set. However, setting goals in so earlier stage brings as consequence errors but, 

since the model structure is open, other goals will arise from the analysis carried out. 

At this step, a system map will be drawn. This tool is very useful to see relationships and connections 

that would not have occurred before. 

 

4.1.2. FACTS AND DATA 

The system related to this work is a seven storeys multi-family dwelling with 28 habitations located in 

the city of Maia, Portugal.  

The building structure is in frame reinforced concrete supported by shallow foundations. The slabs are 

voided and flat slabs which loads are supported by horizontal beams and then vertical columns until 

the foundations. The exterior and interior walls are in brick masonry, being the first double walls with 

interior insulation in polystyrene extruded (XPS) and the second simple walls. The building has, as 

bracing system, two lift shafts and stairwells. 

The basement is entirely for parking, the ground floor is for parking and habitations entrance and the 

others are entirely for habitation. 

This building, under construction until 2017, is located in a rich place of the city provided of good 

infrastructures and services such as schools, markets and also recreation spaces as city gardens. 
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4.1.2.1. Building details 
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Figure 4.1 – Floor architectural plan (CIVI4, 2015). 

Figure 4.2 – Floor structural plan (CIVI4, 2015). 

Figure 4.3 – Balcony with outside wall detail (CIVI4, 2015). 
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4.1.2.2. Building characteristics 

In table 4.1 are gathered some characteristics about the study building withdrew from the building 

project. This information will be furthest useful. 

Table 4.1 – Building Parameters. 

Building Parameters Specifications 

Number of floors 7 (1 parking, 1 GF + parking, 5 residential) 

Total roof area 985 m
2
 

Total floor area 6895 m
2
 

Structure Reinforced Concrete (RC) 

Envelope Brick masonry 

Foundations Shallow (RC) 

Walls (interior) Brick masonry 

Walls (exterior) 
Brick masonry, exterior tessellation and 

interior insulation (XPS) 

 

4.1.3. PROBLEMS AND GOALS 

After understand the type of system that we are dealing with, it’s possible at first sight to find some 

problems in it. However, before jumping into conclusions and fix it in any final design solutions it is 

essential to find the problems looking to the whole system, that is to the relations and boundaries in it. 

That happens because those problems result from our one dimensional way of looking at things which 

doesn’t contribute much for a sustainable solution. 

Looking to the system and thinking about all the purpose of this work, there is an existent design 

project of a building and we want, throughout the sensitivity modelling find new ways or change 

others in order to achieve a more sustainable design project. The goal here is get to know the relevant 

parameters that we can play in order to redesign the building for a more efficient and sustainable 

design.  

 

Figure 4.4 – West (at left) and East (at right) building facades (Prumocerto, 2015). 
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4.1.4. SYSTEM MAP 

An easy way to better understand the system is representing it through a small sketch with pictures and 

symbols – see fig.4.5. That way of represent it, sometimes will reveal relationships and connections 

not seen before. Vester (2007) ensures that this way of doing things trains our imagination and blinds 

our system description to reality in a quite different way of right from the start.  

Moreover, here it’s possible for the first time think in the networks of influence among the key 

variables that will be approached in the ensuing steps. 

 

 

4.2. THE SET OF VARIABLES 

Variables (as their name implies) are quantities that can change, they should be flexible. During the 

course of sensitivity analysis, the interactions of each reveals show the cybernetics of the system. 

Cybernetics is the study of how a system control and communicate information. 

In complex systems we can have many variables, most of them are components of that system, 

however just a few can be interesting for modelling it. In that way, sensitivity analysis is essential for 

model building and quality assurance. Some steps further, it will be possible to understand which 

variables are important to the system, most of them because of the interactions that they reveal.  

Seventeen variables were identified. Most of them are based on typical parameters of a building design 

that can contribute for sustainability, as mentioned in fig.2.1. Others stem from the surrounding 

environment. In the steps above each one of them will be described and indicators will be used to 

represent each one of them during the run of the method. 

 

Figure 4.5 – System map (author, 2016). 
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4.2.1. VARIABLES DESCRIPTION  

4.2.1.1. Cost 

This variable includes the total cost of the whole building but including only the building design and 

construction phases. 

 

4.2.1.2. Function 

This variable is about the final purpose of the building design: habitation, education (ex: school) or 

commercial (ex: hotel). It depends on the flexibility and it could be affected by the needs of the city or 

society in terms of structures.  

 

4.2.1.3. Energy Consumption 

The consumption of energy in the building sector is a problem very discussed in the last years because 

on the one hand, energetic efficient buildings increase sustainability and on the other hand, energy 

consumption causes environmental impact. During the lifespan of a building, the life cycle energy 

(LCE) includes, among operational energy, two types of embodied energy (EE): initial embodied 

energy (energy consumed in manufacture, transport and construction of materials) and recurring 

embodied energy (energy associated to maintenance and replacement of materials during operation 

phase). In this way, embodied energy is the non-renewable energy required for raw materials 

extraction, processing, manufacture, construction, maintenance and demolition (this last one isn’t 

always included) (Haynes, 2010). It is measured as the quantity of energy per unit of material and 

expressed in megajoules (MJ) or gigajoules (GJ) per unit weight (kg or tonne) or area (m
2
) (Level, 

2014).  Embodied energy will be the indicator of this variable. 

Operational energy won’t be talked here because it depends on the use of the building. Operational 

energy is the energy consumed to maintain the internal environment and ensure system functionality 

during the operation/use phase of the building. 

Choose certain materials properties like durability, locally sourced materials, and recycled materials 

can help to reduce embodied energy of building materials and also the environmental impact (Level, 

2014). Fig.4.6 represents the EE cycle and how it’s can be inserted in the building system. For this 

study only from manufacture until maintenance stages will be accounted.  

 

 

 

 

 

 

 

 

 

 

Manufacture 
of building 
materials 

Transport to 
the site 

Construction 

Maintenance 

Demolition 

Extract raw 
materials 

Embodied 
Energy 

Cycle 

Figure 4.6 - Embodied Energy cycle (author, 2016). 
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4.2.1.4. Environmental Impact 

During building life cycle, for all different stages, it is demanded energy to accomplish all the tasks 

and necessities. This amount of energy required brings as consequences the emission of greater 

quantities of greenhouse gas (GHG) into the air due mainly to the use of fossil fuel energy based.  

This variable involves it: the impact of building design and construction phases in the environment. 

Since carbon dioxide (CO2) represents around 80% of GHG, it will be the indicator of this variable. 

Besides GHG emissions, waste generation, soil pollution, resources consumption and effects on 

biodiversity represent other environmental impacts caused by building construction. 

 

4.2.1.5. Structure Material 

This variable includes the selection of different structural materials among construction industry. 

Selection of materials with certain properties like recyclable or reusable materials as well as materials 

with low EE coefficients and low environmental impact. 

The materials selected to the analysis were reinforced concrete, steel and timber since they are the 

most common used structural materials. 

 

4.2.1.6. Type/Quality of materials 

Type and quality of structural materials used in the construction. Quality of materials can bring more 

costs but also more durability of the construction. For example, a study of how a change in resistance 

class of concrete affects variables such cost, energy, environmental impact or building lifetime. 

Concrete is used as example because is one of the materials used in larger quantity in the construction. 

 

4.2.1.7. Flexibility 

Flexibility is the adaptation of the space to new future changes by the users. Designing and building 

for variable conditions allow significant energy savings and more efficient use of resources 

(PennState). It can also extend the building lifespan.  

 

4.2.1.8. Comfort 

Well-being, comfort and health of the occupants are essential to improve their quality of life. In 

buildings, comfort is measured in thermal comfort (insulation, solar and wind exposure), visual 

comfort (strategic windows), air quality (ventilation, windows) and acoustic comfort (barriers and 

sound breaks) (Workshop). 

 

4.2.1.9. Time 

Expect time to finish the construction. It is very important that the construction be achieved in the 

expected time. More time involves more cost. 
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4.2.1.10.  Slab  

This variable indicator will be the length of the span. With long spans we can increase the interior 

spaces flexibility and reduce the number of columns. The length of the span depends on the structural 

material used: steel framed buildings allow longer spans than reinforced concrete frames. However, in 

average reinforced concrete buildings spans can measure until 8 meters. To understand better this 

topic let’s have a look in the structural plan of the study building – see fig.4.7. 

 

This plan composed by voided slab is inflexible because of its shorter spans (around 3.70m) in the 

bottom part of fig.4.7. To increase that span, an option would be, in the earlier design stage, remove 

the surrounding line of columns, increasing the span. However, for that be possible is necessary a 

more resistant slab, like a flat slab or higher slab thickness. As everything in construction that will 

bring extra costs, however, is ensured more flexibility and even a new future building function. 

 

4.2.1.11. Building Orientation 

A good orientation of the building is very important, mainly because of the sunlight and the benefits 

that could be taken from it. The building should be oriented to minimize summer afternoon solar heat 

and to maximize winter solar heat (PennState). Building orientation is measured by the azimuth angle 

of a surface relative to the true north (Workshop) - see fig.4.8. In fig.4.9, the actual study building 

orientation is represented with respective sun movements during summer and winter seasons.  
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Figure 4.7 – Actual structural plan and possibility of increasing flexibility. 
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4.2.1.12. Insulation 

This variable includes as indicators the insulation material and thickness. The effectiveness of the 

insulation depends on thermal resistance (R-value) of insulation material. More thickness increases the 

R-value, however there is a big list of materials which have different R-values among them and in this 

way comparing two materials with high and low values of R, the material with higher R-value needs 

less thickness to insulate a certain element.  

Fig.4.10 shows that amongst the most common insulation materials the R-values and EE coefficients 

are very diverse. Assuming an insulation thickness of 100mm, the R and EE values of most common 

insulation materials vary as follow. – see fig.4.10.  

 

In this way, chose an insulation material should be a weighted decision because, on the one hand 

materials with higher R-values (higher EE) lead to less thickness and on the other hand, lower R-

values (lower EE) can bring to future extra costs in operational energy (e.g. for heating, cooling, etc.) 

because of heat losses or gains due to insufficient insulation.  

Figure 4.8 – Building orientation measure (Workshop). Figure 4.9- Study building orientation (author, 
2016). 
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4.2.1.13. Space Organization 

This variable is about the plan disposal. Main living spaces like living rooms and kitchen face to south 

side. Bedrooms face to north side. It’s related with the building orientation. 

 

4.2.1.14. Space Division 

This variable is about the division of the internal spaces inside each habitation. Walls that can be 

easily removed (ex: gypsum boards walls). This can be related with the flexibility of the space since 

that walls can be easily removed. 

 

4.2.1.15. Attractiveness 

This is about the attractiveness of the building to new users. Factors such as good location of the 

building and good access infrastructures are assessed. This variable is directly affected by the 

surrounding environment. 

 

4.2.1.16. City/Population demands 

This variable has is focus on the local city and its population. Function of the building matches with 

the city necessities in terms of structures. A city with too many dwellings doesn’t need more. What 

does the city need? Social demands are a very important factor that can directly affect building 

durability and also new construction. 

 

4.2.1.17. Lifetime 

This variable includes the building lifetime. It’s affected for many factors, mainly, economic, 

functional and social. If you double the life of a building and you use the same amount of resources to 

construct it, the building is twice as resource efficient (Lstiburek, 2006). 

 

4.3. SYSTEM RELEVANCE 

4.3.1. NATURE OF VARIABLES 

After define the set of variables concerned to the system, it’s important to understand the content and 

nature of each one in it. The set of variables should represent the 18 essential criteria of any viable 

system.  

Within the essential criteria, there are all “spheres of life” from economic aspects to feelings and 

actions of those who are active in the system. Additionally, they should cover physical bases like 

matter, energy and information and also dynamic bases like flows of matter (e.g. power consumption, 

traffic, etc.), a structure rather than flow (e.g. accessibility, population densities, etc.), certain temporal 

dynamics (e.g. seasonal activity, climatic factors, etc.) and spatial dynamics (traffic revenue, industrial 

effluent, etc.). Besides, they need to be checked on their system relatedness: they can be variables that 

open the system by input (e.g. precipitation, dumping, etc.) or output (e.g. waste water, exports, etc.) 

and variables which are controllable from inside or outside (Vester, 2007, Wolf et al., 2012).  

All these criteria are checked for all variables with the help of the criteria matrix. 

 



Systems modelling for sustainable building design 

 

24  

4.3.2. MATRIX OF CRITERIA  

As mentioned in 3.2.2., one of the several features of SM is working with a manageable number of 

representative actuating variables in order to make the system model convenient to use.  

Here the variables are reduced to a flexible number. That reduction is obtained through the relation 

between the variables with the 18 criteria mentioned before. In this way, we can reduce the variables 

in a secure way without omitting essential characteristics. 

The matrix of criteria, represented in fig.4.11, is a useful and easy tool to relate the set of variables 

with the 18 essential criteria. 

 

Figure 4.11 - System matrix of criteria (author, 2016). 

 

4.4. EFFECT SYSTEM 

In the previous step, the content and nature of the variables was known and, therefore, we know now 

the individual components of the system and the criteria that each one represents. Therefore, we are 

ready to build the model, i.e., analyses its effects in the systemic context.  

During this step, which is divided in three different phases followed by discussion, we will get to 

know the system by other point of view and we will identify the relevant factors. 

The three phases are: matrix of influence, index of influence and the matrix of consensus which are 

essential steps to the next step of the model where is known the variables cybernetic role in the 

system. 

4.4.1. MATRIX OF INFLUENCE 

The role of a variable in the system is defined through its interactions with the other components of the 

system and the interactions amongst themselves (Vester, 2007). The first step for a cybernetic 

description of the role of a variable consists in estimate in which way it influences each one of the 

others. 
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This may be achieved with the help of the influence matrix represented in fig.4.12. In this matrix the 

variables are arranged numerically from top to bottom (in row) and again, and in the same order, in 

line, from left to right. Strengths of relationships are given values of 0 to 3 (Vester, 2007): 

 0= no connection at all; 

 1 = a change in A brings about only a weak change in B; 

 2 = I need to change A a lot in order to achieve an equally big change in B; 

 3 = A changes little, but B changes a lot.  

Easily, as far as the matrix is filled, we will understand on the one hand, how and in which way each 

variable affects the others and on the other hand, which ones are more influent in the system. This 

latter conclusion will be possible after all the matrix is filled through two new concepts: active and 

passive totals. 

To the sum of the line correspondent of each variable we call active total, to the sum of the row of 

each variable we call passive total. 

A variable which presents a high active total requires small modifications to affect significantly the 

system, the opposite happens if the variable has low active total. One the other hand, whether the 

variable presents a high passive total this means that if something happen in the system this variable is 

going to suffer large changes.  

In this way it is possible to have an idea of the influence/importance of each variable in the system 

behavior. 

This matrix will be a useful tool in the step 4.5 since it will help us to achieve the role played by each 

variable in the system. 
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4.4.2. TABLE OF INFLUENCE STRENGTHS 

Through the matrix of influences it’s possible to build a table of influence strengths. This table, 

represented in fig. 4.13, shows at a glance which variables have a stronger effect on the system, which 

react strongly to it, and which perhaps do both (Vester, 2007). Furthermore, this table is an useful tool 

for the next steps, first of all to scale the index of influence and further for the role of variables. 

In this table, variables with higher values of active and passive sum, as soon as they suffer any change, 

not only will assume a strong influence in the system as a whole, as well as will strongly react to 

changes inside it. Such behavior makes them crucial influence factors. 

As fig.4.13 shows, variables like environmental impact, embodied energy and cost present a high 

value of passive total and building lifetime, function, flexibility, structure material and comfort a high 

value of active total. The first group is strongly affected by changes in the system while changes in the 

second affect markedly the system.  

 

4.4.3. INDEX OF INFLUENCE 

There are questions that need to be done about the considered system. Where are the potential control 

levers? Which components can put the system in danger? In relation to which indicators are we doing 

analog improvements to threat symptoms? Which variables offer to the system a certain inertia that 

makes possible absorb even the great changes? To answer questions like these it’s necessary go 

beyond active and passive totals (Vester, 2007). 

Only the relation between passive and active totals, called “AT/PT quotient”, reflects the active or 

passive variable cybernetic character. However, whether the question is until where variable plays a 

role in the system as a whole or how much is it involved in the events, this quotient is not enough. In 

this way, a second scale is needed, represented by the product (P) of each active and passive total.  

Figure 4.13 - Table of influence strengths (author, 2016). 
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Bigger that product, bigger the role and more relevant is the component in the system behavior 

(critical character). Fewer the product, fewer the variable role (buffering character) (Vester, 2007). 

The quotients (Q) show us whether the system as something to say independently of its strength. A 

high quotient, even together with a low product, means that the variable in question has really 

something to say even that doesn’t show.  

In this way, the variables gain gradually a relevant position in the system. They can be active, critical, 

buffering or reactive, with all the intermediate stages between these four values patterns. Only the 

position of them in the two tension fields (between active and reactive and on the other hand between 

critical and buffering) will show whether  and in which way the intervention in a variable, can or may 

be used, in the struggle with the study system (Vester, 2007). The meaning of each stage can be seen 

in table 4.2. 

Table 4.2 – Vester’s typology. 

 Influenced by other factors (PS) 

 Weak Strong 

Influence on other 

factors (AS) 

Strong 
Active 

(Q is high) 

Critical 

(P is high) 

Weak 
Buffering 

(P is small) 

Reactive 

(Q is small) 

  

Active factors have more influence on other factors that they are influenced themselves. Passive 

factors are the opposite: more influenced by other factors than the influence they exert themselves. At 

a simple level, active factors might be potential levers of change, and passive factors measures of the 

system state (Vester, 2007). Buffer factors are neither influenced by the system or in turn influence it, 

and thus have the capacity to absorb change. Critical factors have high influence and are highly 

influenced by other factors as well.  

Influence strengths were derived from influence matrix, fig.4.12, and the active and passive sums 

calculated, together with the product P = AS x PS and the quotient Q = AS / PS. These are measures of 

where a factor is placed on the continuum between buffering and critical (P) and between reactive and 

active (Q). 

In the next step, role of variables, the position that each variable take in the two fields of tensions 

referred before, will be analyzed and interpreted in the cybernetics field of the study system. 

 

4.5. ROLE OF VARIABLES 

As mentioned before, cybernetics is the study of how a system control and communicate information. 

In this step the cybernetic character of each variable is revealed.  

In order to easily reach this aim, Frederic Vester created a two-dimensional diagram, fig.4.14, in 

which it’s possible to see the position of each variable among the four roles (critical, buffering, active 

and reactive). 
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The diagram is divided in quadrants, each one with a specific meaning. The location of each variable 

depends on the value of passive and active totals calculated in the impact matrix in 4.4.1. 

Observing fig.4.14, a variable selection is made. The variables located below the first radial line are 

not very relevant for the system because their role is not important. Because of that, they will not be 

mentioned in the next steps. Our focus should be on the variables located above that line. These 

variables will set up the system. They show us the important interdependencies, which are the relevant 

controllers and the indicators. Furthermore, these variables are the primary candidates for the furthest 

step of partial simulation.  

 

 

 

The diagram of roles, fig.4.14, shows: 

 Variable V1 and V3 are reactive variables. They are influenced by other variables but there 

isn’t influence on others. Those variables are very sensitive to changes in the set of variables 

and they are very good indicators of the system. Such result was expectable because on one 

hand the cost involved in the building is very dependent on almost all the variables of the 

present system and on the other hand every building component demand energy to create it. 

 Variable V4 is very reactive. This variable is strongly influenced by other and deserves a 

special attention since a small change in other variables can cause a large change on it. 

 Variable V2 is a highly active variable which means that it has a strong influence on other 

variables but it is weakly influenced by others. It is a good variable to control the system. The 

purpose of a building easily influences the set of variables since it has direct effect on them. If 

the function changes the other variables are strongly affected. Variables V5 and V17 are also 

active variables and good controllers. 

 The variables V7 and V8 are also important in this analysis. Its location is in a denominated 

neutral area which represents the position of variables that are self-regulated, i.e., these 

variables don’t influence others or aren’t influenced by others, they depend on themselves. 

 All the variables above the bellow radial line are important to the partial simulation; 

 Active variables as V2 are good controllers of the system and reactive variables as V1, V3 and 

V4 are good indicators.  
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Figure 4.14 – Allocation of variables roles (author, 2016). 
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4.6. EFFECT STRUCTURE 

4.6.1. SYSTEM INTERCONNECTEDNESS  

Having reached this step, we know all the variables of the system and the role they play in it (active, 

reactive, buffering or critical). However, we don’t know the direction of the effects that one variable 

has on another if a change occur. In this chapter, we will measure the effect that a change in one 

variable has on all other variables, in other words, a change on variable A is going to decrease, 

increase, improve or degrade variable B. 

This step has something similar to the influence matrix because both represent links between 

variables, however here the links are examined differently like explained above. As a result of that, 

different links between variables can appear that we couldn’t find in the matrix of influence. These 

links show us the system from a different perspective and it is possible to find errors that weren’t 

observed before. In order to accomplish that it’s really essential to build up the effect structure 

independently from the matrix of influence. 

The effect structure will put the system’s chains of effect and feedback loops visible, reflecting present 

reality in its multi-dimensional interconnectedness. 

 

4.6.2. FEEDBACK LOOPS AND REGULATORY CYCLES 

The interconnectedness is represented with feedback loops or regulatory cycles and the table 4.3 

shows how are represented the basic elements of those cycles. The variables are linked not because of 

the influence strengths (like in matrix of influence) but for the direction that influence makes effect on 

others variables. 

Table 4.3 – Description of the links between variables (Vester, 2007). 

TYPE OF 
LINK 

SIMBOLOLOGY MEANING 

Same 
direction 

Continuous arrow 
 

The more the first 
change the more the 

other change 

Reverse 
direction 

Dotted arrow 

 

The more the first 
changes, fewer the 

other change 

Same 
direction 

Two continuous 
arrows 

 
(Positive Feedback) 

Variables mutually 
reinforce each other in 

same direction 

Reverse 
direction 

Two dotted 
arrows 

 
(Positive Feedback) 

A variable starts 
rocking at the 

expense of the other 

Both 
directions 

Continuous arrow 
plus dotted arrow 

 
(Negative Feedback) 

Self-regulation. 
They have the 

property of absorbing 
changes or converting 
them into a pendulum 

movement. 
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The positive and negative feedbacks are more interesting and complex to understand under the system. 

The first ones are rare in living systems but the second ones are very interesting because they suggest 

the presence of self-regulation. It means that they have the property of absorbing changes so if the 

system is to remain stable in the face of disturbances, they should predominate over positive feedback 

loops (Vester, 2007). 

Starting with individual variables links, it’s possible to build all system network. Besides, we start to 

see that some variables defined in the beginning of this work have no connection at all with any other 

variable like was seen in matrix of influence. Variables like V9, V10 and V13 are a little isolate in the 

system since they only present an individual link.  

 

In this network, fig.4.15, only one short positive feedback is visible. It involves Embodied Energy and 

Environmental Impact variables. If embodied energy demand increase, environmental impact will 

increase. If embodied energy decreases, environmental impact will decrease as well. 

 

4.7. PARTIAL SCENARIOS 

Partial scenarios represent a small specific part of the effect structure regarding to an issue of 

particular thematic interest. They should have between two and ten variables, however small partial 

scenarios made up of three or four variables can show often clear cybernetics functions.  

The partial scenarios aim is to allow understanding the cybernetic examination of specific interesting 

areas of the system in a clearer way. Due to the limited time to develop this work, only a scenario was 

studied. 

 

 

 

V6 Type of 

material 

Figure 4.15 - System network developed using software SmartDraw. 
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4.7.1. PARTIAL SCENARIO 1 – EMBODIED ENERGY DEMAND 

One of the main topics to consider during the building design phase is the energy use. In this work, the 

energy consumption is measure in terms of embodied energy and thus this partial scenario will focus 

on this topic and it will show how the embodied energy demand is controlled. 

Although the cost and the environmental impact may be as well important questions in design phase, 

the energy demand is one of the main problems and concerns at this phase, which brings consequences 

in terms of global greenhouse gas emissions. 

So, an interesting question could be: how can we reduce the embodied energy consumed by the 

building? 

For this partial scenario were selected the following variables: Embodied Energy, Structure Material, 

Environmental Impact and Building Lifetime. 

 

 

 

 

 

 

 

 

 

 

 

4.8. SIMULATION 

Now that we have the partial scenario, the next step is the scenario simulation. Simulation is a tool that 

allows understanding the cybernetics of the system. It reveals how the system reacts, for example, to 

an increase or decrease in a certain variable (Vester, 2007).  The basis for simulation is the partial 

scenario mentioned in 4.7.1. 

4.8.1. SCALES FOR VARIABLES 

The way used to measure, in reality, the effect that a change in a certain variable has in other variables 

is through mathematical functions which represent, with satisfactory accuracy, the relation between 

each two variables. Accordingly to the values obtained, it is possible to build scales for each variable 

concerned to the partial scenario, fig.4.16, where is clear whether the scale position is ok, careful or 

dangerous. With these scales the model user easily understands how a change in a variable affects the 

other variables. 

4.8.1.1. Embodied Energy – Building Lifetime 

According to (Cole and Kernan, 1996, Ramesh et al., 2010), life cycle energy (LCE) demand 

(embodied and operational energy) of residential buildings is in the range of 150-400 KWh/m
2
 per 

year.  Furthermore, according to the same article the percentage of embodied energy consumed by a 

Figure 4.16 – Partial Scenario 1: How can we reduce Embodied Energy consumed by the building? 
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building is 10-20% of total LCE and thus the embodied energy consumption per year in residential 

buildings, during its lifespan, is about 15-40 KWh/m
2
 (0.054-0.144 GJ/m

2
). 

As mentioned in 4.2.1.3., embodied energy includes both initial and recurring embodied energy.  In 

this study, the initial embodied energy is the energy consumed by building materials manufacture and 

construction, the transport to the site will be excluded since there isn’t data about it. 

Since in this study there is a lack of information about building materials quantities used in the 

construction it was assumed, based on a value of a similar building studied in Talakonukula et al. 

(2013), a total initial embodied energy value of  48,891.6 GJ (7.09GJ/m
2
).  

Furthermore, in the 1-10 years period it was assumed that none of the materials were replaced which 

means that no recurring energy was demanded, and thus the value for 10 years corresponds to the 

initial embodied energy value over the 10 years. For year zero, the value corresponds to the total initial 

EE over two years, normal period to conclude construction works. 

The remaining values include both initial and recurring EE and were obtained through the same 

relation observed among the embodied energy values of case of study by Rauf and Crawford (2015) 

for different building lifetimes over a period of 150 years.  

The values of EE per year for each building lifetime were obtained through the expression (2.1). 

)./(, 2 yearmGJ
lifetimeofYearsareafloorTotal

lifetimeeachfordemandEnergy
EE


 (2.1) 

 

The fig.4.17 shows the demand of EE during building lifetime and respective mathematical relation 

between these two variables using Excel. However, as we can see the tendency curve is a bit lagged 

from the original curve, especially between 0-10 year’s period. To prevent future errors, it was used 

MATLAB software in order to obtain better results at this level. As represented in fig.4.18, the 

function obtained is much more adjusted to the real values as shows the coefficient of determination 

(R
2
) close to 1.  

 

 

Figure 4.17 - Embodied energy demand according to each different building lifetime. 
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According to Rauf and Crawford (2015) the values of embodied energy decrease with the lifetime of 

the building, the longer the building lasts, the lower its annual life cycle embodied energy demand. 

Such fact can be explained by the decreasing of initial embodied energy over the years and the 

increase of recurrent energy after some years of lifetime. However, the demand of recurrent embodied 

energy is much lower than the initial embodied energy demand. In the first it’s the energy demand to 

build a whole building, and in the second the energy consumed for occasional repairs. 

 

4.8.1.2. Environmental Impact - Embodied Energy 

The link between these two variables, observed in fig.4.16, is called positive feedback which means 

that the two variables mutually reinforce each other, and in this case, in the same direction (Vester, 

2007). Every stage of building requires energy input and lead to GHG emissions output, mainly CO2 

emissions, as represented in fig.4.19. Therefore, the environmental impact variable will be measured 

in terms of CO2 emissions and it will be explained how an input of energy in the system leads to CO2 

emissions output.  
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Figure 4.18 – Embodied Energy demand according to each different building lifetime using MATLAB. 

Figure 4.19 - Energy and CO2 relation in the system (Seo and Hwang, 2001). 



Systems modelling for sustainable building design 

 

 

 35 

 

To reduce CO2 emissions from building phases, there are two options: reduce the energy input or make 

that energy cleaner, i.e., replace fossil-fuel energy based for energy derived from renewable sources as 

hydroelectric, wind and solar energy. With regard to energy reduction, it means reduce the embodied 

energy input since it’s the only energy approached in this study.  

However, this relation is a bit complex since a correct evaluation of the environmental impact of a 

building should go beyond the building initial phases where only EE is accounted. Many studies reveal 

that the operational energy, which corresponds to 80-90% of building LCE, is the one responsible for 

the greater quantities of CO2 emitted by buildings (Ramesh et al., 2010, Seo and Hwang, 2001). Such 

fact can be explained on the one hand because is the longer phase of the building where users use 

energy to maintain their quality of life, and on the other hand the main operational energy sources are 

fossil fuels (coal, gas etc.). 

However, in this study only EE is approached and so only the relation of it with CO2 emissions will be 

explained. 

In several studies (Hammond and Jones, 2008, Jeong et al., 2012), it was found some data that relates 

embodied energy demand and CO2 emissions by construction. In table 4.4, it’s presented some values 

of each parameter for those studies and the percentage relation between them. 

Table 4.4 - Embodied energy and CO2 emissions by different buildings. 

Area (m
2
) 

Embodied 
energy (GJ/m

2
) 

CO2 emission 
(KgCO2/m

2
) 

Relation (%) Ref. 

84.9 5.82 531.21 1.09 (Jeong et al., 2012) 

102.5 6.58 602.93 1.09 (Jeong et al., 2012) 

149.5 6.05 557.19 1.08 (Jeong et al., 2012) 

several cases 
5.34  

(average value) 
403  

(average value) 
1.32 (Hammond and 

Jones, 2008) 

 

Looking at table 4.4, EE demanded by a building corresponds to 1.15% (average value) of CO2 

emissions by that building. This percentage is applicable to manufacture of construction materials 

only. 

In order to scale EE, as mentioned in 4.8.1.1., the embodied energy in a building corresponds to a 10-

20% of total LCE, hence it was considered 10% a conventional low EE value and 20% a conventional 

high EE value.  Conventional means, in this case, conventional construction from reinforced concrete 

structure. So, if the initial value of 48,891.6 GJ (3.55 GJ/m
2
.year) used in 4.8.1.1 corresponds to 11% 

of LCE, for 10% is 3.22 GJ/m
2
 per year and 20% is equal to 6.45 GJ/m

2
 per year. An average value 

corresponds to 4.83 GJ/m
2
.year, i.e., 15% of LCE. These values are applicable to manufacture and 

construction phases and are represented in fig.4.20. 

The CO2 emissions values correspondents to each EE value were obtained through the relation above 

of 1.15%. 
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The reduction of EE can be achieved through the use of mixture of materials instead of use 

conventional materials. Example of it is the use of concrete with recycled materials like fly ash or blast 

furnace slag, the substitution of aluminum for timber pieces and a lot of other options which can 

reduce significantly the EE of the entire building and consequently the CO2 emissions. 

After understanding how EE demand affects CO2 emissions in a building it’s important to understand 

how the opposite happens. As before, less CO2 emissions include less EE consumed. Some articles 

(Cho and Chae, 2016, González and Navarro, 2006) explained the life cycle of carbon emissions 

(manufacturing and construction) in low carbon buildings (column B) and how it differs from 

conventional buildings (column A) – see table 4.5. 

Table 4.5 - Difference of CO2 emissions in conventional and low carbon buildings. 

Area (m
2
) 

A 

CO2 emission 

(Kg/m
2
) 

B 

CO2 emission 

(Kg/m
2
) 

 

Emissions 

of B in 

relation 

with A (%) 

Ref. 

526 268.057 195.975 - 27 
(González and 

Navarro, 2006) 

1078 480.1 369.3 - 23 (Cho and Chae, 2016) 

 

Looking at table 4.5, it’s possible to assume a relation of less 25% (average value) emissions between 

conventional and low carbon buildings. Conventional buildings are buildings built with traditional 

methods of construction, in this case, brick masonry envelope. Taking into account Peng and Wu 

(2015), where a similar building was studied, it was assumed for this case of study a value of CO2 

emissions due manufacture and construction of 4298.78 tonnes (311.73 KgCO2/m
2
.year). Assuming 

that value as an average value of CO2 emissions in a conventional building, the value of 233.8 

KgCO2/m
2
.year can be assumed for a low carbon building. The variation of embodied energy 

according to each CO2 emissions quantities is represented in fig.4.21. 
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Figure 4.20 –CO2 emissions according to Embodied Energy demand. 
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As explained in Haynes (2010) independently of embodied energy and CO2 emissions being different 

aspects they are dependent of each other and so they evolve in the same way. 

 

4.8.1.3. Environmental Impact – Building Lifetime 

According to Seo and Hwang (2001) the range of values for CO2 emissions in residential buildings 

resulting from construction (including manufacture) are 38.11-62.01 Kg-C/m
2
 per year. To measure 

the relation between these two variables, two approaches were made. The first one, as mentioned in 

4.8.1.2., for the study building it was assumed the value of 4298.78 tonnes (311.73 KgCO2/m
2
.year) 

for manufacturing and construction stages, i.e., for year 0 (over 2 years) and for year 10 (over 10 

years) using the expression 2.2.  

Analogously to expression 2.1, the quantity of CO2 emissions per area per year (C) were calculated 

through expression (2.2): 

)./(,
)( 2 yearmKg

lifetimeofYearsareafloorTotal

KgphaseperemissionsTotal
C


 (2.2) 

 

The remaining values were obtained using the percentages of 49% and 35% of initial 4298.78 tonnes 

of CO2 for 25 and 50 years respectively, and 84% and 71% of 50 years  emissions value for 100 and 

150 years observed in Rauf and Crawford (2015). The second approach was to use the relation of 

1.15% between EE and CO2 emissions observed in 4.8.1.2 combined with the EE values of 4.8.1.1. It 

was observed that both results were similar, however to keep the consistency the second approach was 

used and it is presented in fig.4.22.  

Figure 4.21 – Embodied Energy demand according to CO2 emissions. 
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Observing fig.4.22, it’s noticeable that the mathematical relation between the two variables presented 

is not close from the real values what can lead to bad results. To correct that it was used the software 

MATLAB to find a better curve for this relation – see fig.4.23. 

 

 

 

 

 

 

 

 

As expected, see fig. 4.23, increasing the lifetime of the building the CO2 emissions will decrease, 

mainly because if a building lasts more it means that the building materials present good properties, 

such long lifespan, which means that less changes will be required and thus less energy demands and 

consequently less CO2 emissions. 

 

4.8.1.4. Structure Material – Environmental Impact 

The choice of the structural material for the building frame is one of the most important to reduce 

energy demands, environmental impacts and even building costs (Kim et al., 2013).  
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Figure 4.22 – CO2 emissions according to each different building lifetime. 

Figure 4.23 – CO2 emissions according to each different lifetime using MATLAB. 
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In some studies which show that among all the parts that form a building, the structural system is the 

one that more contribute for energy demands and environmental impacts (Perez Fernandez, 2008). 

Concrete can be considered the most used material in construction. However, its production causes 

great environmental problems, mainly due to the GHG emissions. This fact can be explained because 

cement is one of its main components and its production use fossil fuels energy based which are the 

main responsible for these GHG emissions during its combustion (Kuruscu and Girgin).  

A wood structure is not so common in Portugal although is a very good option in terms of GHG 

emissions, embodied energy demand and energy efficiency. Furthermore, at the end of building 

service life, wood can be recycled or reused and it’s also a renewable material fig.4.26. However, for 

that be true it’s essential that the wood comes from a sustainable source with the respective 

certification. In that way it’s guaranteed no deforestation of green reserves and ensured replanting 

(Papakosta, 2016). The taller wood framed buildings, fig.4.25, are nowadays possible because of the 

technology of “mass timber”, which includes products such as Cross Laminated Timber (CLT), 

Laminated Strand Lumber (LSL) and Laminated Veneer Lumber (LVL). These products composed 

with thin layers of wood, fig.4.24, that are not only stronger than conventional timber, but thanks to 

their uniformity and straightness, are also simpler to design and build with (Arstechnica, 2012). 

 

 

 

 

 

 

 

 

The steel is considered environment-friendly due to its recycling potential (93%) however, the 

production of it leads to great CO2 emissions and energy demand for the same reason of cement 

production.  

Figure 4.26 allows us to better understand the end-of-life scenarios of each one of the structure 

materials. 

Figure 4.24 – CLT panel disposition (Ebnesajjad, 2016). Figure 4.25 – “The Cube”, tallest CLT building 
in Europe (London) (BKStructures). 



Systems modelling for sustainable building design 

 

40  

 

 

 

 

 

 

 

 

 

Like in 4.8.1.2, the environmental impact variable will be measured in terms of CO2 emissions, and in 

this case resulting from the use of different structure materials (wood, concrete and steel). For the 

wood structure was chosen a CLT structure since it is more realistic for this study due to its common 

use in medium and high rise buildings.  

Accessing some studies about the use of different structure materials amongst steel, concrete and 

wood, it was gathered some information presented in table 4.6. 

Table 4.6 – Differences of CO2 emissions among structural materials. 

Area (m
2
) Material 

CO2 emission (Tonnes of 

CO2) 

Concrete 

relation (%) 
Ref. 

19,027.78 Steel 10,461.34 
135 

(Kim et al., 

2013) 18,861.61 Concrete 7,731.55 

51,076.63 Steel 27,249.08 
138 

(Kim et al., 

2013) 50,959.81 Concrete 19,774.08 

14,127.58 Wood (CLT) 2,370 
40 (Chen, 2012) 

14,127.58 Concrete 5,980 

4,154 Wood (CLT) 655 
39 

(Darby et al., 

2013) 4,154 Concrete 1661 

 

As table 4.6 shows, steel and wood structures were correlated with concrete structures in terms of CO2 

emissions. In fig.4.27 was used the average percentage of each relation with reinforced concrete 

structure, 137% for steel structure and 40% for timber structure. 

The values of fig.4.27 include CO2 emission due to construction stage, assuming 2 years for this stage. 

Figure 4.26 – End-of-life of different structural materials (Construction). 
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Figure 4.27 – CO2 emissions by different structure materials.  

 

As expected, a wood framed option is the more environment-friendly. Such fact can be explained by 

the fact that wood, besides release less CO2 during its manufacture, also the trees have during its life 

the capacity of carbon sequestration which sometimes is represented by negative CO2 emissions 

(Darby et al., 2013). 

 

4.8.1.5. Structure Material – Embodied Energy 

According to Griffin et al. (2010), the structure of a building should be a primary target for reducing 

the embodied energy of a building. Depending on the material, it is also sustainable and economically 

favorable. In this way, it’s essential that, in the building design phase, the designers consider this issue 

and choose materials also durables but environment-friendly, to replace the conventional materials and 

thus reduce the energy demand and hence the environmental impacts.  

Cole and Kernan (1996) developed a study with different structural systems among wood, concrete 

and steel, where they found out the differences of each structural option in the life cycle energy of the 

building.  

In present case of study, for the concrete structure, was used the previous EE value of 3.55 GJ/m
2
 per 

year. For the remaining materials, the EE values were withdrawn from different articles, represented in 

table 4.7, where was conclude that a steel structure requires more 4% of EE than a concrete structure 

and CLT structure requires less 18% than concrete one.  
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Table 4.7 – Embodied Energy for different structure materials. 

Area (m
2
) Structure 

Embodied Energy (GJ/m
2
) 

Concrete 

relation 
Ref 

Structure 
Non 

Structure 
Total 

4,620 Concrete 1.17 3.62 11.24 - 
(Cole and 

Kernan, 1996) 

4,620 Wood 0.92 3.62 10.86 0.97 
(Cole and 

Kernan, 1996) 

4,620 Steel 1.48 3.65 11.69 1.04 
(Cole and 

Kernan, 1996) 

14,127.58 Concrete - - 3.42 - (Chen, 2012) 

14,127.58 Wood (CLT) - - 2.80 0.82 (Chen, 2012) 

The values presented in table 4.7, refers only to the total initial embodied energy. Recurring embodied 

energy is not accounted at this point because that energy is associated with the maintenance and 

replacement of building materials and it is directly affected by different materials life cycle (Rauf and 

Crawford, 2014) which is very difficult to estimate. 

In the values accessed from Cole and Kernan (1996) it is clear the difference of energy demand for 

different types of structures, since the energy required for non-structure materials is almost the same in 

the three cases – see table 4.7. 

Thus, based on table 4.5 relation values, for the study building the total initial embodied energy 

demand per year, assuming 2 years for construction stage, vary as the fig.4.28 shows: 
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Figure 4.28– Embodied Energy for each structural material. 
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One more time, a wood-framed building plays a favorable role in terms of EE demand and CO2 

emissions than the other two options. The manufacture of wood products requires less energy than 

other materials and its residues can be used as energy supply for other industries (Gustavsson et al., 

2006). With regard to the relation between concrete and steel structures, the concrete structure seem to 

be a better choice as well as in other several articles, however according to Griffin et al. (2010) a 

simulation with a special tool revealed the opposite. In this way, this relation above will be used here 

but may not be reliable. 

 

4.8.1.6. Structure Material – Building Lifetime 

The lifetime of a building depends on a few factors among economic, social and functional. The 

economic problem arises from a building when maintenance costs are no more viable comparing with 

the demolition costs. The social problem is related with the function of the building and the local city 

development, and the last one is related with the condition of the building, structurally, i.e., if it 

remains serviceable. However, in the majority of cases, the main reason for building end of life is not 

due to structural problems but economy and building function no more suitable. 

In EN (1992) a concrete structure is generally dimensioned for 50 years in good conditions however,  

most of them can start to deteriorate after 20 to 30 years due to lack of maintenance. Furthermore, 

there is a lack of research about this topic, since it’s a question that depends on other many factors.  

If it’s assumed a correct maintenance of the building, a building structure can last more than 100 years 

regardless of the material that compose it. Some years ago, state something like that about a timber 

structure could have been ignored, although if we think about Pombalina downtown, in Lisbon, there it 

is possible to find wood structures with more than a century and in very good conditions. 

Since this is a matter where many factors are involved, it was decided, for this work, do not consider 

this relation and, in this way, avoid future discussions and disagreements. 

 

4.8.2. ASSUMPTIONS AND UNCERTAINTIES  

Over the developing of subchapter 4.8.1, due to lack of data and differences of information among 

consulted articles some assumptions were made and thus uncertainties in data will be inevitable. 

Variables such as embodied energy and environmental impact are very difficult to estimate. EE is 

obtained through the product between the quantity of specific material and it correspondent EE 

coefficient per unit. The problem here is that there are a lot of databases that present different EE 

coefficients among them for the same material. According to Hammond and Jones (2008), there are 

some reasons to explain these differences such as use of different methodologies to calculate EE, 

boundary conditions and general assumptions. The same happens when calculating CO2 emissions by 

buildings.  

Furthermore, on this work, since there wasn’t data about quantities of building materials it was 

assumed, based in structurally similar buildings, the values of embodied energy demand and CO2 

emissions. Such assumption brings even more uncertainties in the results. In some relations only the 

initial EE was accounted because recurring embodied energy is difficult to estimate over the long term 
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since the non-renewable energy contents of replacement materials, components or systems are difficult 

to predict (Canadian Architect) and this is also directly related with materials and components lifespan 

which are not known. 

When analyzing building lifetime due to different structural materials, it was neglected the possibility 

of lack of maintenance, so it was assumed an adequate maintenance of the building. However, this is 

not predictable and so the failure could be derived from lack of it or improper use of the building. 

Another important aspect is about the energy source used during the different building stages studied 

here, it was assumed fossil fuel energy based and hence the EE and CO2 emissions values are assumed 

based on that. 

 

4.8.3. PARTIAL SCENARIO 1: SIMULATION 

After defined all the mathematical relations between partial scenario variables, we are now able to 

start the simulation. The simulation of a sensitivity model helps us to better understand the cybernetics 

of the system. It shows how the system reacts to a change in a certain variable and how a relation 

between two linked variables changes over time. 

To build the model, fig.4.29, it was used a software called Simulink developed by MathWorks used for 

modelling, simulation and dynamic systems analysis. As we can see, the partial scenario of fig.4.16 is 

the basis of this model. 

 

The simulation occurs round by round where some variables are changed in order to see the 

consequent effects that those changes have in the entire partial structure. That process is called “policy 

test”. Besides that, those changes over the time, round by round, are represent by effect flows which 

show the evolution of the variables during the simulation. 

In this partial scenario simulation, variables Structure Material and Building Lifetime are both active 

variables, as explained in 4.5 and good controllers as well. In this way, this simulation was controlled 

by different inputs of those variables and the effects of it in the other two variables of the partial 

structure were recorded. As a result of this simulation, the effect flows are presented in the graph 

bellow – see fig.4.30. 

Figure 4.29 – System model in Simulink (author, 2016). 
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Fig.4.30 represents the effect flow resulting from the simulation of the partial scenario. Observing 

“environmental impact” variable it’s possible to understand that design of buildings for few years of 

lifetime is not a good solution in terms of CO2 emissions. The values observed in fig.4.30 are 

decreasing with the increase of lifetime. It’s environment friendly a building design for many years. 

Besides, the maximum values of this variable are related with the use of steel framed design. In terms 

of this variable, an optimal solution to reduce CO2 emissions building would be a design for long 

lifetime (100 years) when concrete is the main structural material or the use of wood/timber in 

structure solutions combined with shorter lifetimes (25, 50 years). The steel frame design is not 

recommended because increases a lot the CO2 emissions even for long building lifetimes. 

Looking at “Embodied Energy” variable, as well as “environmental impact” it also decreases with the 

increase of “building lifetime” variable however in a subtle way. A strategy for low EE consumption 

building is a concrete based design for 100 years of lifetime or a wood based design for lower building 

lifetimes. Again, steel frame revealed not be a good option in reducing EE demands. 

The understanding of the simulation effect flow for these variables, help us to control the system: 

whether a certain variable is too high or too low we know how to proceed to change it for a better 

solution. 

 

4.9. SYSTEM EVALUATION 

The last step of the SM procedure is the system evaluation. It consists in evaluate the system according 

to the eight basic rules of the bio-cybernetics.  They reflect how a system should function in order to 

be long-term sustainable. Taking them into account brings new ideas which are essential helping to 

solve problems within the system. 

The eight basic rules are followed described (Vester, 2007): 

i. Self-regulation: Negative feedback must dominate over positive feedback. Positive feedback 

sets things in motion through self-reinforcement, while negative feedback ensures stability 

against disruptions and excesses. 

To explain this criterion, Vester (2007) uses the example of a predator (wolf) and its prey 

(hare), where body weight, running speed and kill frequency form a feedback loop. The faster 

the wolf runs, the more hares is capable to catch. The more hares it catches, the fatter it 

becomes, ergo the slower it becomes, the fewer hares it can catch, and the thinner it becomes 

again, ergo the faster it is able to run again and so on and so forth. 

As fig.4.15 shows, in the study system the negative feedback exceed the positive ones. 

However, we can’t say that the system is totally self-regulated. For example the variables 

“structure material” and “building lifetime” aren’t, in reality, directly interlinked because the 

building lifetime not only depends on the structure material, it depends in many factors and in 

the way buildings are used and maintained as well. 

ii. Independence of growth: the system’s function must be independent of quantitative growth. 

A system mustn’t growth beyond its limits. An uninterrupted growth and a greater degree of 

interconnectedness can lead to a chaos reducing stability. To apply this rule, the function of 

the system should be clear otherwise it’s impossible to evaluate if the function could be 

realized in a different manner (with less energy, less raw materials, etc.) than done today 

(Wolf et al., 2012). 

Design for habitation is the function of the study system. It is boosted by the necessity of 

building quality (more quality, more durability and more attractive) and the growing 
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preoccupation in environmental problems. To improve building design it’s necessary reduce 

energy and water demands and when possible the cost. To reduce energy demand by the 

building, a strategic choice of materials should be done as well as a design for a long lifetime. 

As the environmental exigency grows, the building design needs to be more and more efficient 

and innovative. This is not a strategy of quantitative growth. 

iii. Orientation of functions: The system must operate in a function-oriented, not a product- 

oriented manner. The system and its product are interlinked, if the product ceases to exist so 

the system providing it. On the other hand, systems that provide a function are more flexible 

and viable. 

Individual buildings are designed to satisfy specific requirements of clients in the light of 

specific conditions of the site, such as its area and shape, flexibility of the ground, climate of 

the area, surrounding environment, including surrounding buildings and infrastructures (Co-

operation and Development, 2003). The building function is also an important factor for the 

design. In this way, building design is both product-oriented and function-oriented. 

However, it should be capable to overcome the challenge of being more attractive than the 

other buildings with the same function. 

iv. Jiu-Jitsu Principle:  In the context of a system, the developments and trends impact society, 

companies and people on many different levels. They can be seen by companies as threats to 

them position in the market or they can be seen as a chance to develop new products, services, 

etc. According to this, companies can adopt two sides: they can fight against the developments 

and conserve its status-quo using what is called the “boxing principle”, or they can incorporate 

those developments in their business and gain a larger market and more profits by 

manipulating existing forces to their own good (Wolf et al., 2012). This position is called the 

“Jiu-jitsu Principle”.  

The construction sector, including design engineers, has been confronted with the necessity to 

reduce energy use and environmental impacts with more efficient and effective building 

designs. To use the “jiu-jitsu principle” in the building design, it should be developed 

according to some sustainable design strategies like use of recyclable materials, take 

advantage of the sunlight, etc. in order to diminish the environmental issues. 

Furthermore, as people become more informed and more aware about the environmental 

problems caused by inefficient building designs or simple construction negligence, they will 

be more critics about the “product” that they are buying or living in and more sensitive to this 

issue. 

v. Multiple Use: no single product or process should be used in isolation but rather in 

conjunction with others. Multiple uses reduces throughput, enhances interconnectedness, and 

cuts expenditure of energy, materials and information. 

The study system only allows a single use: habitation. However, it can change with the 

existence of flexibility in the plan. Other uses such as education (e.g. school) or commercial 

(e.g. hotel) can be possible in a flexible building structure.  

vi. Recycling: The cycle of materials should be closed where waste products can be 

reincorporated in the life cycle of the system involved. Furthermore, industries from different 

sectors should join together and find ways to exchange their waste products in order to make a 

sustainable use of materials. This last issue leads us to the seventh rule. 

One of the problems of the construction industry is the large waste generation. However, only 

developed countries have had the preoccupation of reutilize those waste materials and 

minimize the construction wastes. The building design phase is where the selection of building 

materials is made. The decision of use certain materials like recyclable, reusable or recycled 
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materials is at this stage. Some building materials used in great quantities can be recycled like 

steel (with 93% of recycling power), concrete and wood – see fig.4.26. 

Besides, the construction industry also takes advantage of wastes from other industries like 

steel production (e.g. blast furnace slag), thermoelectric centrals (e.g. coal combustion fly ash) 

and from municipal waste ashes (Cabeza et al., 2013). Those materials are combined with 

concrete reducing the cement quantity and thus the environmental impact. 

vii. Symbiosis: symbiosis is the closes coexistence of different species for mutual benefit. The 

building appears in symbiosis with other systems like the population that need a home, the 

construction materials industry that depends on the construction sector etc. 

The construction industry is linked with a few other industries which their existence also 

depends on the construction sector. Different building materials and equipment’s companies, 

service companies (e.g. architecture, engineering, consulting, etc.) and further furniture 

companies and other services companies (e.g. legal services, decoration, etc.) are directly 

affected by construction sector. If the last is bad the others will suffer economic impacts. 

viii. Biological Design: products, services and methods should be designed in way to not harm 

natural structures and functions and people’s health. Although all the appeals from different 

environmental organizations in reducing the environmental problems resulting from 

construction sector, some countries continue to neglect this issue. Even that a new green 

materials appeared to solve or reduce some of those problems, the larger quantity of 

construction materials continue to be produced with fossil-fuel based energies. The 

consequence of that are the continuous emissions of greenhouse gas into the atmosphere 

which affect even more the climate. 

Considering all the rules above mentioned and how the system includes them, it was built the 

following estimation of the total system – see fig.4.31. 

 

 

 

 

 

 

 

 

 

 

 

 

The green bars represent the extent of the rule that is regarded by the system. On the other hand, the 

red bars represent what needs to be done in order to fulfil that rule. This evaluation helps us to 

understand where the system is strong and where it needs to be improved. 

According to fig.4.31, the larger problems in the system are in the multiple use and biological design 

criteria. The first one can be improved by a flexible building design, capable to adapt to changes in the 
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Figure 4.31 – System’s Evaluation (author, 2016). 
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building users and functions easily. The second problem is more complicated: even thought, in 

Portugal, there are preoccupations in more sustainable building designs, the use of concrete and steel 

as primary structural materials will continue for a long time and thus the environmental problems that 

came with it. The inherent properties of these materials make them dominant choices for building 

design. However, new materials should be explored as alternatives for these two: wood for example, in 

Portugal, there are a lot of wood constructions which last centuries. Self-regulation is also a weakness 

in this system however the chances of improvement are very limited. 

The strongest criteria are orientation of function and symbiosis. The design of a building is totally 

dependent of its function. Whether function is a hospital, a school, a shopping or a habitation the 

design process is always different. Each function has its particularities and need to fill in some 

requisites. An improvement of this criterion in the future may not be relevant since a system should be 

function-oriented and it happens in the analyzed system. Contrary to the previous criterion, symbiosis 

can be improved. A necessity of find new materials and technics demanded by more sustainable 

designs can create new links with other companies, benefiting each other. 

Besides these changes, recycling and biological design also have potential to be enhanced. The future 

environmental demands for new building materials, which can be mixed or replace the old 

environmental harmful materials will bring an improvement in these both criteria. On the one hand, 

the use of mixed materials like concrete combined with fly ash or blast furnace slag will grow and thus 

the other industries wastes exploitation. On the other hand those new materials are more environment-

friendly contributing to the environmental impacts reduction. 

Gathering all these possibilities of criteria improvement in the future, a new evaluation results – see 

fig.4.32. 

 

 

 

 

 

 

 

 

 

 

 

The gradient bars show the possibility of enhancement of the selected criteria in the future. However, 

this is not completely correct. It is based on this study and in the author opinion which is not an expert 

on the area. The more important here, is that this evaluation gives an idea of the potential for change. 

The structure of the model ends here. However, as explained before, this structure is recursive and 

thus it still open until the end. In this last step it is possible to re-examine the way that the system was 

originally described – step 4.1. 
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Figure 4.32- Possibilities of future enhancement (author, 2016). 
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5 
FINAL CONSIDERATIONS 

 

 

5.1. DESIGN RECOMMENDATIONS 

During the development of this work, some recommendations and hints were already mentioned. As 

referred before, the building design phase is the most important and decisive phase to take decisions 

about sustainable practices.  

To help in that task, the use of management tools striving for sustainability is the ideal to achieve 

successful solutions in design of buildings. The possibility of simulate a solution before the 

construction increases the success of the project as well as designers productivity and imagination. 

Although all the qualities of the Sensitivity Model, this method may not be the ideal method for this 

analysis. It requires time and the involvement of all the stakeholders in constant meetings and 

discussions. Since there is little time during the earlier stages of design process maybe it is more 

adequate a more effective tool. 

In this work was analyzed only one partial scenario, composed by four variables. It doesn’t reveal 

enough to achieve interesting conclusions. Maybe one or two more variables should reveal better 

results. Variables like cost and flexibility would be very interesting to study here but due to the lack of 

time, it wasn’t possible. Cost is one of the main barriers to overcome. Sustainable designs are seen as 

more expensive than traditional designs since they may require specialized professionals, advanced 

simulation and analysis, higher construction standards, additional construction precautions and even 

the use of new materials. Even that there are several studies that show the opposite, the effort to 

minimize costs combined with the lack of education and appropriate knowledge in this field doesn’t 

allow to take these approaches (Miller and Doh, 2015). With regard to flexibility variable, the 

importance of this in the increase of sustainability was already discussed in this work. 

Regarding the partial scenario studied, the wood as main structural material revealed several 

advantages in terms of embodied energy and CO2 emissions. However, in Portugal, the conventional 

construction keeps being associated to concrete and brick masonry structures. The fact is that the wood 

industry in Portugal is very successful but mainly due to the paper and furniture industry and not 

because construction industry. Many countries from north of Europe use wood framed buildings since 

long time, why doesn’t Portugal increase the use of this material? It is an issue that should be more 

discussed since 35.4% of the portuguese territory is occupied by forest. In order to conclude this issue, 

also the cork industry is very famous in Portugal. Cork is not a structural material however is a very 

ecologic insulation material and could be more used in this function.  
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As mentioned several times during this work, the lack of skilled professionals in this area is a serious 

problem and barrier for more sustainable projects. In this way, it would be really important a greater 

investment from universities to approach more and deeper this concept. The today students are the 

tomorrow’s future professionals and it is really important that they can be more aware of this thematic. 

From the parameters studied in this work, some showed more relevance than the others.  

 

5.2. CONCLUSIONS 

5.2.1. THE SENSITIVITY MODEL 

The sensitivity model can be applied to almost all areas of study due to its open structure. Through 

this, it is possible to visualize the system through a bigger perspective than we are used too. In this 

way, it is allowed an improvement in the decisions taken since a deeper analysis from the total system 

is made and not only from small parts of it.  

To achieve better results with this model, the participation of a large number of different stakeholders 

involved in the system would be essential. However, the author of this work was the only person 

involved, which has severely reduced the information introduced in the model. 

Another problem found during the development of this work was the fact that this model is very 

“fuzzy” since the earlier steps, which has complicated the use of it, especially for inexperienced users. 

However, this “fuzzy” property is part of the system and it is clearly explained in Vester (2007).  

Furthermore, a design of a building is a complex issue which has made this system very difficult to 

study and it brought some challenges during the application of the method. As such, some difficulties 

found during some steps of the SM will be following described. 

5.2.1.1.  Set of variables 

At this point, the user needed to gather a list of variables concerned to the system. Since building 

design is a multidisciplinary task which complies a large number of decisions in numerous aspects 

such energy, materials, water use, etc., select a list of variables was not an easy task. In this way, due 

to the light knowledge of the user, only seventeen variables were reunited, which is not a small 

number, however the relevance of them may not be great. The participation of an expert, or many 

experts, could bring other variables interesting to study.  

 

5.2.1.2.  Effect System 

Here, the bigger obstacle was filling the matrix of influence. To decide the degree of influence of each 

pair of variables was a slow process since this step would be essential for the following step where the 

cybernetic character of each variable in the system is revealed. Besides, it is important to understand 

that the decisions about the degree of interconnectedness between variables can change from one user 

to the other, and thus the decisions taken in this work may not be the best. A different person could 

obtain different roles for the same variables studied here resulting from different decisions taken in 

this step. 
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5.2.1.3.  Simulation 

Simulation was by far the most difficult step in this work. It took the majority of the work’s time. 

First of all, the definition of the variables scales was very complicated due to the lack of some data 

about the case of study building and the lack of information about the variables chosen for the 

simulation. About the lack of data related to the case of study, it refers, in the main, the quantity of 

some building materials used. It was essential to evaluate embodied energy and environmental impact 

variables. Instead of calculate the real embodied energy used (quantity of material times material 

embodied energy coefficient), it was used values from structurally similar buildings. Such assumptions 

bring errors in the final results. The same can be used for the environmental impact variable. The 

indicator used for this variable, CO2 emissions, can be achieved in the same way as EE, quantity of 

material times its embodied carbon coefficient. However, as embodied energy, the CO2 emissions were 

assumed from other similar buildings. 

The mathematical relations obtained between building lifetime and embodied energy variable as well 

as the first and environmental impact variable is not totally adjusted to the real values which causes a 

large discrepancy between the real values and the values of the function. That happens, after the 10 

years of lifetime, the values for bigger lifetimes are very lagged from the reality. 

Besides, the relation between building lifetime and structure materials was not used since it wasn’t 

found acceptable information that could be used. The building lifetime depends in many factors, 

including location, materials, construction methods, and the way buildings are used and maintained 

(Co-operation and Development, 2003). There are buildings that last long than others mainly due to its 

adequate maintenance and preservation and not because of the structural material. In this way, this 

topic is a very complex issue that can bring a lot of discussion and thus it was neglected. 

For all these reasons, the results obtained in this step may not be the best which has influenced the 

steps further. 

 

5.2.2. CASE OF STUDY 

With regard to the case of study, the possibility of reduction of embodied energy demand was studied. 

It was conclude that such fact would be possible taking into account two different approaches: 

replacing the structure material for timber or keeping the actual structure (concrete and brick masonry 

envelope) but increasing the lifetime to 100 years. This last option can be easily reached however, it’s 

essential a good structure project, which means respecting all the regulations, and combined with an 

adequate use and maintenance during use phase. Although the adequate use and maintenance is not 

designer’s responsibility, it is their responsibility the development of a maintenance plan during the 

earlier stages of design process to prevent a needless demolition. On the other hand, replacing the 

structure for timber, e.g. CLT structure, is not as easy as the second option. Although in Portugal there 

are some companies dedicated to implement wood as main structural material, it still not being a 

common practice. First of all because those companies only work with low rise habitations and second 

because conventional construction has conquered this industry which can be explained by the fact that 

the cement industry occupy an important position in portuguese economy. Whereas exist this barrier 

about wood structures derived from the lack of information/education about this material, the 

construction in Portugal will continue to be the conventional and little sustainable. This is from 

particular interest since Portugal has a very large forest territory. 
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With regard to the two approaches for EE reduction mentioned above, they are not innovative, which 

once again emphasize the necessity to go further into this study. Bigger partial scenarios, more 

variables involved are some of the paths that can be followed in a future research. Besides, the 

selected case of study building, even following the conventional construction method, is very recent 

and it already incorporates some sustainable practices that have been demanded to building designers. 

Last but not least, this study allowed the author to be more aware of the importance of sustainable 

practices as future structural engineer and it also intends to warn the readers for this thematic and how 

important would be to make this theme part of the future engineer’s education.  
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