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Summary

Gray-categories are semistrict version of tricategories, which however (unlike
3-categories) fully retain the richness of the theory, in the sense that any
tricategory can be strictified to a triequivalent Gray category. They can be
defined as categories enriched in the monoidal category Gray of 2-categories, with
the Gray-tensor product, which in turn can be defined as the left adjoint to the
internal hom functor of 2-functors, pseudo-transformations and modifications
between a given pair of 2-categories. Gray-categories are similar to 3-categories,
the crucial difference being that the horizontal composites of 2-cells coinciding
on O-cells are not unique; the two such composites are however connected by an
invertible 3-cell called the tensor of the respective 2-cells, satisfying coherence
conditions.

In this work we define a Gray-category of functors, lax transformations,
modifications and perturbations between a given pair of Gray-categories, thereby
providing a partial generalization of the internal hom functor for 2-categories.
The principal obstacle here is that when the composite of two composable strict
transformations is defined as the obvious pasting of diagrams, not all such
composites exist. This is due to the lack of unique horizontal composites of
2-cells in the codomain Gray-category.

We solve this problem by introducing a minimally extended notion of
transformation, avoiding the full generality of tricategories. There are two
essential technical ingredients that make this possible: First, we construct a
Gray-category, called path space, for every given Gray-category, and this pair
constitutes an internal reflexive graph in the category of Gray-categories. The
second tool we introduce is a resolution of the 1-dimensional structure of a
given Gray-category, which is given by a co-monad derived from the canonical
fibration of Gray-categories over categories and the free category co-monad.

Taking the co-Kleisli category for this co-monad gives us a suitably weakened
kind of functor between Gray-categories. This provides just enough freedom to
define a composition operation for the path space described above, turning it
into an internal category in the category of Gray-categories and weak functors.

Given this internal category we can define lax transformations between weak
Gray-functors as weak Gray-functors into the path space of the co-domain, satis-
fying the obvious incidence conditions. Now, given the composition operation
of the path space, composable lax transformations have an obvious, well defined
composition.

In turn, modifications and perturbations can be defined by iterating this
idea to the second and third degree: For every Gray-category we define an
internal Gray-category in the category of Gray-categories and weak functors,
extending the path space. Modifications and perturbations are now describable
as pseudo-functors into the second and third degree part of this internal Gray-
category, called the 2-path and 3-path spaces, respectively; again, the various
compositions of modifications and perturbations are defined using the operations
of the extended path space.

By virtue of this construction, taking all weak functors from one Gray-
category into the various degrees of the extended path space of another gives
us a Gray-category of functors, transformations, modifications and perturbation
as 0-, 1-, 2- and 3-cells respectively. We provide detailed explications of the
objects thus obtained.
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Resumo

Uma Gray-categoria é um caso particular, semi-estrito, do conceito de tricate-
goria. N&o obstante (ao contrario das 3-categorias) as Gray-categorias retém
completamente a riqueza da teoria, no sentido que qualquer tricategoria pode
ser estritificada numa Gray-categoria tri-equivalente.

As Gray-categorias podem ser definidas como categorias enriquecidas sobre
a categoria monoidal Gray das 2-categorias, munidas do produto tensorial
Gray, que por sua vez pode ser definido como o adjunto a esquerda do objecto
exponencial de 2-functores, pseudo-transformagoes naturais e modificagoes entre
um dado par de 2-categorias. As Gray-categorias sdo semelhantes as 3-categorias,
sendo a diferenca crucial o facto que as duas composigoes horizontais possiveis
de 2-morfismos, adjacentes a um dado objecto, nao coincidem; pese embora
estejam ligadas por um 3-morfismo invertivel (chamado produto tensorial dos
respectivos 2-morfismos) satisfazendo este condigbes de coeréncia.

Neste trabalho, definimos uma Gray-categoria de functores fracos, transfor-
magoes maleaveis, modificagoes e perturbagoes entre um determinado par de
Gray-categorias, proporcionando assim uma generalizacao parcial do objecto
exponencial para as 2-categorias. O principal obstaculo aqui é que, quando a
composi¢ao de duas transformagoes rigidas é definido como sendo a colagem
6bvia de diagramas, nem todas as composigoes fazem sentido. Isto acontece
devido a falha na unicidade das composigoes horizontais de 2-morfismos na
Gray-categoria alvo.

Superamos este problema introduzindo uma nog¢ao, minimamente esten-
dida, de transformacdo (transformacdo maleéavel) entre functores, evitando
assim a generalidade completa das tricategorias. Existem dois ingredientes
técnicos essenciais na defini¢gao de transformagao maledvel: Em primeiro lugar,
construimos uma Gray-categoria, chamada categoria dos caminhos numa Gray-
categoria, dada uma certa Gray-categoria, sendo que o par constituido por uma
Gray-categoria e o seu espaco dos caminhos define um grafo reflexivo interno a
categoria das Gray-categorias. A segunda ferramenta que nos apresentamos é
uma resolugao da estrutura uni-dimensional de uma dada Gray-categoria, que
é dada por uma co-moénade derivada da fibragao canénica das Gray-categorias
sobre as categorias, e da co-ménade da categoria livre numa categoria.

Considerando a categoria co-Kleisli desta co-moénade fornece-nos uma nogao
adequadamente fraca de functor entre duas Gray-categorias. Isto proporciona-
nos exactamente a liberdade necessaria para definir uma operagao de composi¢ao
dentro da Gray-categoria dos caminhos numa Gray-categoria, descrita acima,
tornando-a numa categoria interna a categoria das Gray-categorias e functores
fracos.

Dada esta categoria interna podemos definir transformacoes maleéveis entre
Gray-functores fracos como sendo Gray-functores fracos para o espago dos camin-
hos na Gray-categoria alvo, satisfazendo estes as condigoes 6bvias de incidéncia.
Devido & operacao de composigao no espago dos caminhos, as transformacgoes
maledveis tém agora uma composi¢ao 6ébvia e bem definida.

Por sua vez, as modificacées e as perturbacoes podem ser definidas por
iteracao dessa ideia, para o segundo e terceiro grau: Dada uma Gray-categoria,
definimos uma Gray-categoria interna & categoria das Gray-categorias e dos
functores fracos, estendendo o espaco dos caminhos na Gray-categoria. Modifi-
cagoes e perturbagoes podem agora ser descritas como sendo functores para as



Gray-categorias dos 2- e 3-morfismos desta Gray-categoria interna, sendo estas
ultimas chamadas os espagos dos 2-caminhos e dos 3-caminhos na Gray categoria
alvo, respectivamente. Mais uma vez, as varias composi¢oes de modificagoes e
perturbagoes sao definidas utilizando as operagoes na extensao do espaco dos
caminhos numa Gray-categoria.

Devido a essa construgao, considerando todos os functores fracos de uma Gray-
categoria para os varios graus do espago caminho estendido de uma outra da-noés
uma Gray-categoria de functores fracos, transformacoes maleaveis, modificagoes e
perturbagoes como 0-, 1-, 2- e 3-morfismos respectivamente. Faremos explicagoes
detalhadas dos objectos assim obtidos.
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Chapter 1

Introduction

Folk knowledge of yore, among algebraic models for homotopy n-types Gray-
groupoids model 3-types; [Lack| [2011] gives us a proof using a model category
methods. Wanting to study the homotopy 3-type of the moduli space of
3-connections on a manifold, we thought it apt to define a mapping space
[83(M),C(H)] of Gray-groupoids that could model that moduli space, where
83(M) is the fundamental Gray-groupoid and C(#) is the Gray-groupoid ul-
timately derived from a 2-crossed Lie-algebra where the triconnections take
their values; this is the obvious next step after 2-connections, see for example
Schreiber and Waldorf] [2011]. See [Martins and Picken|[2011] for the background
on the fundamental Gray-groupoid and triconnections.

In |[1999 Crans gave a partial solution the mapping space problem; however,
the absence of an interchange law in Gray-categories prevents lax transforma-
tions between Gray-functors from being composable in general. The slightly
unsatisfactory solution is to restrict to those transformations and higher cells
that can in fact be composed; this does give mapping space Gray-category, but
a mere stopgap not sufficient for our purposes.

Instead we enlarge the repertoire of maps, and thereby transformations, in a
way that will permit forming all composites of transformations; specifically we
introduce a 2-cocycle that intermediates coherently between the two possible
evaluations of arrangements of squares shown in and . In analogy
with |Garner| [2010] we introduce a co-monadic weakening of strict Gray-functors
in section The comonad Q' then yields a co-Kleisli category GrayCatq:. We
use in an essential way that GrayCat is fibered over Cat.

Inspired by [Bénabou||1967| we axiomatise lax transformations by maps into
a path-space. In section [4] we introduce a functorial path-space construction
for Gray-categories; subsequently in section [5| it is shown that this yields an

internal category ﬁ :]HI in GrayCatq: for a given H in GrayCat.

The n-th iterate of () yields an n-truncated internal cubical object in
GrayCat. In section [6] we construct an internal Gray-category

A—A—H—H

— T — T —
in GrayCatq: as a subobject of the third iterated path-space. It is then a trivial
consequence that we obtain a mapping space Gray-category by applying the
hom functor

G, H] := GrayCateu (G, H " H " H —H).

1
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We hope to be able to prove in a later paper that this internal hom is part of a
monoidal closed structure on GrayCatq: involving a suitable extension of (Crans
tensor product.

Lastly, we remark that if H is a Gray-groupoid then ﬁ as well as [G, H] will
be Gray-groupoids.



Chapter 2

Gray-Categories

We shall give an overview of 2- and 3-dimensional categories before giving the
precise definition internal to a category.

Sesquicategories

Ordinary categories have objects and arrows

e —7s Y . (2.1)
We shall often talk about 0- and 1-cells instead when the category in question
is the structure being investigated rather than the context in which the inves-
tigation is carried out. Objects and arrows may also bear upper case names.
There are units and composition

T —2 :z:*f>y—g>z (2.2)

gf

that obey the obvious unit and associativity laws. In the presence of higher
cells it will be convenient to denote the composition by g#g f, that is, we note
down the dimension of the incidence cell.

If we add 2-cells

Q

Bz (2.3)

into the mix we can define a sesquicategory by defining an action of the 1-
cells on the 2-cells when they coincide on a 0-cell. We call this the «right
whiskering» when the 1-cell appears on the right hand side in the diagram, and
«left whiskering» in the opposite case. For example

f g#of
SN g Y
x\ﬂ;‘y%z = T g#ox 2 (2.4)
: N,
g#of
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and
p g#of’
R >
r——y |2 = x@z (2.5)
7 g #of’

f
) 7
N
rT—f=sy =z va z (2.6)
s \f/\
f//

We assume units and and associativity for the 2-cells well.
Now, we can define derived operations called left and right horizontal
composition. Given a diagram

f g
TR
x ﬂa y |8z (2.7)
AT\
j-/ g/

there are two ways to evaluate it in terms of the operations #y and #; as
follows:

¥ g g#tof g#of g#of
TR TR
T ua Y z T g#oa Z g%oa I
\f p -~ N o , _ (B#of")
= 4 = X ——g#of—Y = z
YR /g,#ie& #1(g#oc)
x y sz T il 2 sl v
N A A AN o
f! g g'#of’ —,
g #of g'#of’
(2.8)

We shall call this the left horizontal composite, for no other reason than that «the
left hand cell goes on top of the right hand celly. We denote it diagrammatically
by

f g
et (29)
N A N A
I’ g’
and define
Baa= (B#of")#1(9#0) . (2.10)

Note how when reading this expression from left to right one traverses the
corresponding diagram from bottom to top and from right to left.



The other way to evalute (2.7) is

f g g#tof g#tof g#tof

N T Y, I,
T Y 8z T Bﬁof z ﬁﬁo}‘ |
\l/‘ NN _ (¢’ #o00)

f g = ’ = T ——g #of—> —
o~ pan? gl #1(B#of) 7
x a Yy z x g’#oaz i N 3
N AT N A 9o

I’ g’ g'#of —,
g #of g'#of’
(2.11)
We draw this as
f g

/\ m
x e Bz (2.12)

Nt N

and define the right horizontal composite as

Bra=(9'#oa)#1(B#0f) - (2.13)

Of course we assume that whiskering distributes over the vertical composition
of 2-cells.
In addition one might insist on the interchange condition

Baa=Pra (2.14)

making a well defined composite. This is of course what turns the
sesquicategory into a 2-category.

One can take a slightly more abstract view describing sesquicategories as
categories enriched in the category of categories with a peculiar symmetric
monoidal structure. First, for two categories B, C we can consider Un(B, C) with
ordinary functors as objects, and unnatural transformations, that is, families of
C-morphisms indexed by B-objects as morphisms. So, unnatural transformations
are like natural transformations, except that we do not impose naturality.

One can easily check that there is a symmeric tensor product AOB having
Ag x By as the set of vertices and as arrows sequences generated from expressions
(f,y) and (z,g), where f € Ay, y € By, € Ag and g € By, subject to the
relations

(o) (fy) = (' frv) (2.15)
(z,9')(x,9) = (x,9g) . (2.16)

Furthermore, one checks that there is an adjunction
OB AHUn(B, ) (2.17)
for all categories B.

Definition 1 Sesquicategories are categories enriched in (Cat, ).

1Perhaps this monoidal category should be called Sesqui, so we can call sesquicategories
Sesqui-categories.
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For the definition of enriched categories see [Kelly| [2005].

Remark 2 The failure of the interchange condition is reflected in the
fact that in ACIB the square

(f,yi J(f-,y') (2.18)
X

18 in general not commutative; as opposed to the situation in A x B.

We now unravel definition [I]in terms of internal structures in a cateogory
with the necessary limits. An internal sesquicategory is given by the following
data:

e a reflexive 2-globular object
S1 S0

_  —
Cy <—idr— C ¢—ido— Cj (2.19)

— —
t1 t()

globularity means

SnSnt1 =Sntnt1 (2.20)

tn8n+1 :tnthrl 221)

so by abuse of notation we shall write

Sn = SnSni1 =Sntni1 (2.22)

tn = tn8n+1 :tntn+1 . (223)
Reflexive means

C,, = spid,, = t,id,, . (2.24)

e composition operations:

Cn-i—l ><sn,tn C(n-i-l

N

Chnt1 Cnt1 Chnt1 (2.25)
Sn tn

Ch // Ch \\HJ Cn

such that each
(Cnyanrla#n,Snvtnyidn) (226)

is a category for n =0, 1.



e Functorial, compatible, unital, associative left and right actions of C}
on the category Cy ::Cl, given by maps #¢: C; X5, C2 — Co and
#o: Oy X554 C1 — Cy. In detail this means, left and right functoriality
with respect to 2-cells

#o X #o
(C1 Xsp,t0 C2) XCuxs1,01xty (C1 Xsg.40 C2) — > Co X5, 4, Co
C1 X#1 #1
#o
C1 Xgp,t0 Ca Cs ,
C'1 X 51 C1 Xty
s1|id4| t1
1 Xid1
Ch Xs,t0 C1 Ch
#o
(2.27)

#oX#o
(02 XSg,to Cl) XsGChtGCl (02 XSD,tQ Cl) — 02 Xsl,tl 02

#1xC1 #1
#
Ca Xs5.t0 C1 2 Cs :
s1 X C1| t1xXC1h
. s1|id4| t1
1dq X1
Cl XSo,to Cl #0 Cl
(2.28)
Unitality of the #( whiskering actions means
idoto,C Ca,id
CQ<1L>2&‘1 X s0,to 02 CQ<£§O&'2 Xs0,to C1
X l#o ’ X J#O
02 CQ
(2.29) (2.30)

Left and right associativity as well as compatibility mean
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(#0)xCy (#0)xCy
Cl X807t0 Cl XSo,to 02 I Cl XSQ’Q gﬁo,to Cl X807t0 Cl — 02 XSg,to Cl

CIX(#[?L J/#OCEX(#C?L l#o

Cr Xgy 4y Co ————Cy Oy X4y 4, Co ———— Cs
#o #o

(2.31) (2.32)

(#0)xCr
C1 Xsg,t0 C2 Xsg,89 C1 — C2 X410 C1

clx(#ﬂ J#o ) (2.33)

Ch Xsp,tyg Co ———— Oy
#o

Gray-categories

Having an idea about sesquicategories we can now go one dimension higher,
introducing Gray-categories. They are the principal objects of study in this
paper. For a more algebraic but similarly explicit exposition of them, see [Crans
1999].

We add 3-cells to sesquicategories

f !
TR Y
v |ley ==2" [0y (2.34)
N A N A
f 7

and of course we demand that 3-cells coinciding on a 2-cell compose associatively
and that there are unit 3-cells

U f f f

f
/\ r /\ A /\ /\ A#2F /\
x ﬂaygw ﬂa’y =k 'Y =T ﬂayEx oY
N A N A N A N A N A
I’ I’ I’ I’ I’

(2.35)
Moreover, we can somewhat mend the oddity of two horizontal composites <

and > in the diagram (2.7) in a sesquicategory by inserting an invertible 3-cell
between them

f g f g
RN SR TR
x| Uﬁ e Bz . (2.36)
N A N N A N A
I q' I’ g’

called the tensor of the respective 2-cells. Of course there are also actions of 1-



and 2-cells on 3-cells. For example

g#of

f
p . % gt |1
r g

é @/ Yy —>z = o@g;@)a z . (237)

I g#of’

Of course, the tensor has to fulfill certain compatibilities, for example

f g f g
SN T Boa 70N S N
x ﬂa ﬂﬁ z =z | Bz . (2.38)
N A N A N A N A
' g’ I’ q'
L'« I'ba
f g f g
TR SN S N
T ﬂaﬂ:g>— B8 z = T a B8z
N A N A Boa NI N\ I~
I’ g’ I’ g’

commutes. Here we have extended < and > to pairs of 3-cells coinciding with a
2-cell along a 0-cell, that is

I'oa = (g'#oc)#1(T#of) (2.39)
'qaa= (F#Of,)#l (g#oa) . (240)

We will sometimes use underlining to emphasise the top-dimensional operands
in an expression.

But beyond the tensor there are no further pathologies, meaning that the
1-, 2- and 3-cells between any given pair of 0O-cells actually are the 0-, 1- and
2-cells of a 2-category. By this means in particular that two 3-cells incident
on a 1-cell have a unique composite #i.

Remember how in definition [} the enrichement was in (Cat,J) meaning
that locally a sesquicategory is a category. Now, a Gray-category is locally
a 2-category, so we have to replace Cat with 2Cat and extend the tensor [
to something that allows us to fill in the square [2.18 with an invertible local
2-cell, that will yield the invertible 3-cell in [2:36] This extension is called the
Gray-tensor product for 2-categories, also denoted by ®, see |Gray| [1974]. It can
be defined as a left adjoint analogous to

@B HPs(B, ) (2.41)

for all 2-categories B where Ps(B, ) is the 2-categoy of 2-functors, pseudotrans-
formations and modifications.
For the moment we make the following observation
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Remark 3 A Gray-category is a reflexive 3-globular set Go,... 3, with composi-
tion operations #i, where k denotes the dimension of the incidence cell. In
general we can say that composing an i-cell with a j-cell along a k-cell yields
an i+ j — (k+ 1)-cell. The ones where i =j and k =i — 1 are called vertical.
The ones where i + j — (k + 1) = max{i, j} are called whiskers. This seems to
suggest a certain relationship with graded Lie algebras. For considerations of
dimension raising see also [Crans||1999, section 1].

Definition 4 A Gray-category is a category enriched in the category Gray =
(2Cat, ®) of 2-categories with the Gray-tensor product.

We summarize here the axioms of Gray-categories in an internal fashion,
that is, using diagrams in a category with pullbacks. We crossreference the
definition given in |Crans||1999) section 2].

Explicitly, if Gray was internal to a category with limits C, then we get a
notion of Gray-categories internal to C, which is given by the following data,
which is a translation of Crans’ definition:

e a reflexive 3-globular object

S2 S1 S0
C3 +idz— Co idr— O +ido— Cp (2.42)
ta ty1 to
globularity means
SnSn41 =Sntni1 (243)
tnSnJ,_]_ :tntn+1 (244)

so by abuse of notation we shall write

Sn = SnSn+1 =Snlnt1 (245)

tn = tnSns1 =tntnit - (2.46)
Reflexive means

C,, = spid,, = t,id,, . (2.47)

This already captures condition [Crans||1999} 2.3(i)].

e vertical composition operations:

Cnt1 Xt Cnt1

e

On+1 Cn+1 Cn—i—l (248)

Sn tn

C’n// Cp \"\C

n

such that each
(Ona Crnt1,#n» Sns tn, idn) (2'49)

is a category.



11

e compatible, unital, associative left and right actions of Cy on C3 _ Cs,
that is, maps #1: C2 X4, 1, C3 — C3 and #1: C3 X, 1, Co — C3, that
form internal functors as follows:

#1XF#1
(Ca Xy 1y C3) XCyxsy,Coxts (Ca X 8, C3) ——————C3 Xgy.4, C3
Ca X #9 #2
#
Co xs,.4, C3 ' Cs
C2 X 89 CoXto
S2l idg ta
2 Xid2
Co Xy 1, Co m Co
1
(2.50)
and
#1XF#1
(C3 Xs1,t1 02) X5 xC,taxCa <C3 Xs1,t1 02) Cs X sa,to Cs
#2XCq #2
#
O3 Xgy,8, Co : C3
SQXCQ ta XCQ
Sol idg| t2
i 2 X Lo
Co Xs,.4, Co Cy
#1
(2.51)
Unital means
<ld t ,C <C3,id151
Cs Lﬁ&‘z X1t O3 C3 —— 63 X1t C2
and , and
Cs l#ﬁ X l#l
(2.52) (2.53)

left and right associativity means



12 CHAPTER 2. GRAY-CATEGORIES

(#1)xCsy (#1)xCo

02 X817t1 02 Xsl,tl 03 — 02 X517t1 03 C?) xsl,tl 02 X517t1 02 — 03 xsl,tl 02
C2><(#13L J/#l and CBX(#liL l#l
O Xy, Cy s Cy Oy ot Co e Cy
(2.54) (2.55)

Compatibility means

(#1)xCy
02 Xsl,tl 03 XSl,tl 02 — 03 Xsl,tl 02

CZX(#IEL J/#l . (2.56)

Cs X4y, Oy ————Cl
1

Furthermore we demand that the horizontal whiskers #; of 3-cells by
2-cells along 1-cells, and vertical composition #3 of 3-cells along 2-cells
define a unique horizontal composition of 3-cells along a 1-cell, that is,

Cs), C3xs
C3 Xsl,t<1(# 3)(t2>< 2 (#1)() :61<3 2>)<>52,t2 C3

((#1)(Cs xt2),(#1)(52xC3)) #2 . (2,57)

C3 Xgy1, Cs C3

#2

This point together with the previous one captures |Crans|[1999} 2.4(ii)].

e Furthermore, 2-functorial, compatible, unital, associative left and right ac-
tions of C} on the 2-category C3 ; Cy —; C, given by maps #o: C1 X 1,
Cy — Oy, #0: Ca Xgo00 C1 — Ca, #0: C1 Xgy,60 C3 — Cs, and
#o: C3 X 5540 C1 — (3. In detail this means, left and right functoriality
with respect to 2-cells

#oX#o
(Cl XSo,to 02) Xchsl,Clxtl (Cl XS(,,to CZ) —>C2 Xsl,tl 02

Clx#l #1
#o
C1 Xg,t0 Ca Co ,
C X s C1 Xty
s1|id4| t1
1 Xid1
Ch Xs0,to Ch C

#o
(2.58)
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#oX#o
(02 X s0,t0 Cl) Xs1xC1,t1xCq (02 X s0,t0 Cl) Co Xs1,t1 Co
#1XxC1 #1
#
Ca X410 Ch 2 Cy ;
s1 XY t1 xCq
s1|id4| t1
id, x(C1
C1 Xy, Ch o Cy
(2.59)
left and right functoriality with respect to 3-cells
#o X #
(Cl X307t0 CS) Xcl X 89,01 Xta (Cl XSo,tQ 03) % 03 X527t2 C3
C X #4 #2
#
C1 Xgp,t0 Cs > Cs ,
C1 X s9 Cy Xto
S2| ido t2
1 xid2
C1 Xt Co Cs
#o
(2.60)
#oX#o

(03 X s0,to Cl) X s3xC4,t2 X Cy (C3 X s0,to Cl) Cs X stz Cs

#2xC1 #2
#o
C3 X010 C1 Co
51X C1] t1xCy
s1] idg t1
i 1 X1
Ca X010 C1 Co

#o
(2.61)
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Unitality of the #( whiskering actions means

(idoto,Ca2
Cy—— 871 X 59,10 C2

S

Cs

(Ca,idg so
Cy —— Oy X s0,to Cy

S

Cs

similarly for the action of 1-cells on 3-cells,

(idoto,Cs
Cs —— 271 X 59,10 C3

S

C3

(Cs,idoso
— 273 X s,t0 C1

X |

C3

Cs

Left and right associativity as well as compatibility mean

(#0)xCo
Cl XSo,tO Cl XSQ,tO C2 — Cl XSo,tQ 02

ClX(#OZL J#O

C1 Xy 4y Cg —————
#o

(#0)xCy
CQ XSo,to Cl XS(),t() Cl — C2 XSU,t() Cl

sz(#oi J#o

Cy Xsp,tyg Co ———— Oy
#o

(#0)xCy
Cl XS(),tg 02 XSg,t() Cl — 02 XSo,tg Cl

C1><(#03L J#o

C1 Xy g Oy —————Ch
0

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)
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(#0)xCs
Cl XSQ,to Cl XSo,to C3 I Cl XSo,to 03

Clx(#oﬂ/ J#o , (2.69)

C1 Xy 4y O —————Ch
0

(#0)xCy
03 XS(),tO Cl XSo,t(, Cl — CB XS(),to Cl

@x(#ﬂ l#o , (2.70)

C3 Xgp.tyg C1 ———— C}
#o

(#0)xCy
Cl XSo,to C3 XSo,tO Cl E— C?) XSo,to Cl

clx(#ﬂ J,#O . (2.71)

C1 Xso.to Cs — Cs
This covers conditions [Crans| [1999, 2.4(iii)&(iv)].
e amap ®: Cy X4, C2 —> C3 such that

((#0)(t1XC2),(#0)(C2x51))

02 XSo,tg CQ 02 Xsl,tl CQ
®
((#0)(Caxt1),(#0) (51X C2)) Cs #1
ta
S2
Co Xsy.4, Ca o Cy
(2.72)

where Cj is the object of invertible 3-cells. This means that Cs :C’g is

an internal groupoid with an inversion (_): C3 — C3 such that

Cy —————— (4

b , (2.73)
S2 S2

Cy
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((0):Cs)

C3 ——C3 X4y 1, C3

J J#Q (2.74)

Oy —— Cs
1d2
and

. (Cs, (). .
03“;>>C’3 ><52’52 C3

tQJ J#Q . (2.75)

Cy ————C
2 idy 3

This expresses condition [Crans|[1999, 2.4(v)].

e Abbreviating

> =(#1)((#0)(t1 x C2), (#0)(C2 x 1)) (2.76)
< =(#1)((#0)(C2 x t1), (#0) (51 x C2)) (2.77)
>e =(#1)((#0)(t1 x C3), (#0)(Ca x 1)) (2.78)
9 =(#1)((#0)(C2 x t1), (#0)(s1 x C3)) (2.79)
> =(#1)((#0)(t1 x Ca), (#0)(C3 X 51)) (2.80)
< =(#1)((#0)(Cs x 1), (#0)(s1 X C2)) (2.81)
we require ® to have the following naturality properties
C3 X, t0 %?QTMG?,»XSQ,Q Cs
<®(t2x02>,<<r>i J#z (2.82)
03 X sq,ta Cg #24} 03
and
Cv2 X50,to &K%XS;é(SQ,tQ C3
<®(Cz><t2)7(<1z)ﬂ J#z . (2.83)

C3 Xs,t, Cs3 — Cs

This expresses condition [Crans| (1999} 2.4(vi)].
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e Functoriality of the tensor. 1999} (vii)]

Cax (#1)
Ca Xgp.t0 (Co Xg, 4, Co) — Ca X444 Ca

(#1(#0(t1xp0),®(C2xp1)),#1(®(C2Xpo),#o(s1 XPI))% J{@
o onts Gy Gy
(2.84)
(#1)xC
(02 Xsq,t1 CQ) Xs0,to 02 1*>2CV2 X s0,to CQ
(#1(®(po xC2),#0(p1 xC2))),#1{#0(poxt1),®(p1 XCz)ﬂ l@
CB X so,ts OS T 03
(2.85)

e Associativity of the #( compositions 1999, (ix)]

RxCy -
Ca Xs9.t0 C2 X590 C1 — C3 X540 C1

Ca x#{ l#o (2.86)

Ca X410 Co W C3

#oxC2
CQ XSo,to Cl XSo,to CQ E— C2 XSo,to CQ

czx#{ l@ (2.87)

Cs X gt Co ———— C

Ci1X® .
Cl XSO,tO 02 XSo,to CQ E— Cl XSg,to CB

#o xc{ l#o (2.88)

Cs X gty Co ———— C

e Tensoring is unital

idQXCQ CgXidQ
Ca Xgp,t0 C1 — 02 X510 C2 C1 X4 Co ——— Co X401, Co

'

. S
Cz ids Cs C2 id, Cs

(2.89) (2.90)

This encodes 1999, (viii)].
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Definition 5 A Gray-functor is a Gray-enriched functor.

Internally this means of course that a Gray-functor between Gray-categories is a
map of globular sets, that preserves all the above operations.



Chapter 3

Resolution in Dimension One

We define a resolution of the 1-dimensional structure of a Gray-category using a
comonad, by lifting the free category comonad called “path” in [Dawson et al.
2006] to Gray-categories; but note that we use the term in a different way in
this paper.

The resulting co-Kleisli category can be seen as the category of Gray-
categories with an enlarged repertoire of maps, that is flexible enough to
carry out our path space construction. After giving an abstract construction of
this category of pseudo maps we proceed to characterize them explicitly.

3.1 Basic Fibrations
There are obvious functors

GrayCat g SesquiCat & Cat ﬂ Set (3.1)

that forget the 3-cells, the 2-cells and 1-cells respectively. The last one will not
play an explicit role here.

Let G be a sesquicategory, G a Gray-category, and F': & — G2 a sesqui-
functor. We define F': F*& — G as follows:

(F*&)o = &0 (3.2)
(F &), = &, (3.3)
(F*&)y = &, (3.4)
(F*&)s = {(I 0, B)|T': Fao — F3) (3.5)

Note that the interchange of two 2-cells o, 5 in F*& incident on a 0-cell is
given essentially by the interchange of their images under F'

Boa = (FBRFSB;Bra,Bda). (3.6)

Let us take note of the following useful fact that helps to characterize the
Cartesian maps:

19
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Remark 6 For a functor p: E — B that preserves co-limits, let D: D — E
a diagram in E with co-limit (C, k;)

: (3.7)
A B

assume p(g) factors below as p(f)u = p(g). Furthermore, assume that the
induced sink (u;) = up(k;) has fillers (u;) above with f (u;) = gk;, then the
co-universally induced map (u) : C — A is a filler over u.

This means that to check whether a map f is Cartesian we don’t need to
give the filler u directly, but we can define it on presumably simpler parts of C.
These then combine into a valid filler.

Remark 7 Maps Cartesian with respect to (_)o are exactly the Gray-functors,
that are 2-locally isomorphisms of sets. That is, given two parallel 2-cells on
the intervening 3-cells the map is bijective.

Lemma 8 F*G is a Gray-category, F is a Gray-functor and Cartesian with
respect to (_)a. O

Similarly, let G a sesquicategory and C a category, F': C — &3 a functor,
then we define a sesquicategory:

(F*C)o = Cy (3.8)
(F*C); = Cy (3.9)
(F7C)2 = {(s f,9)|a: Ff — Fg} (3.10)

Lemma 9 F*C is a sesquicategory, F is a sesquifunctor, and Cartesian with
respect to (_)1. O

Remark 10 Maps Cartesian with respect to (_ )1 are exactly the sesquifunctors,
that are 1-locally isomorphisms of sets. That is, given two parallel 1-cells on
the intervening 2-cells the map is bijective.

We will denote the composite (_)1(_ )2 also by ()1, it is of course a fibration
as well. For later reference we describe its Cartesian liftings explicitly as well.
Let G be a Gray-category, G; its underlying category. Let C be an ordinary
category and F': C — Gy a functor. Then F*G is given by:

(F*G)o = Co (3.11)
(F*G)1=C (3.12)
(F*G)2 ={(a; f,9)|f,9: * — y, a: Ff — Fg} (3.13)
(F*G)z = {(T50,8; £, 9| f,9: 2 — y, [': Fa — Fp} (3.14)

Source and target maps are as follows:

52(Ts 0, 85 f,9) = (a3 f, 9) t2(Ts 0, B f,9) = (B f, 9) (3.15)
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si(as f,9) = f ties f9) =g- (3.16)
and sg,to are as given by C. As identities we take:
i1(f) = (idpgs £, f)  dz(os f,g) = (das o, f ) - (3.17)

The tensor in F*G of two 2-cells is

(B59,9)2(c; f, f') = (BRa; Baa, B> a; g#of, g #of') (3.18)

where

Baa = (B#F [ #1(Fyg#or), Bra=(Fg'#oa)#1(B#.Ff). (3.19)

There is an obvious map F: F*G — G over F that acts like F on 0- and
1-cells, and on 2- and 3-cells as a projection to G.

Remark 11 The globular set F*G is a Gray-category. The composition opera-
tions of F*G are given by those of C and G and it is easy to see that they fulfill
the axioms of a Gray-category.

Obviously G*F*G = (FG)*G and id¢ 2 idgraycatc coherently. Also, we can
always choose id¢ = idgraycatc, but this is not necessary in what follows.

Lemma 12 A map of Gray-categories is Cartesian with respect to G — Gy iff
it is 1-locally an isomorphism of categories, i.e. given two parallel 1-cells the
map is bijective on the intervening 2-cells and in turn bijective on the 3-cells
between parallel such. O

Definition 13 We define a map of Gray-categories to be an n-isomorphism
if it is Cartesian with respect to (_)n. It is n-faithful if fillers of factorizations
under (), are unique, and n-full is there (not necessarily unique) fillers for
all factorizations under ().

With this definition O-fidelity is ordinary fidelity of functors, 1-fidelity is
local fidelity, and so on.

Remark 14 One property of Cartesian maps in a fibration p that we are going
to exploit in the proof of the following theorem is that for three arrows upstairs,

— (3.20)
with f Cartesian, p(r) = p(s) downstairs and fr = fs upstairs imply r = s, on
account of f being p-faithful.

Lemma 15 If fg is Cartesian with respect to a given fibration p and f is
p-faithful, then g is p-Cartesian.

PROOF Assume k and u such that p(g)u = p(k), then p(fg)u = p(fk) and
hence by fg being p-full there is a filler (u) such that fg (u) = fk. Then by f
being p-faithful g (u) = k.

By fg being p-faithful (u) is the unique such filler. a
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3.2 Comonad Liftings

Definition 16 In a arbitrary 2-category a comonad on an object A is given
by an endomorphism

A*T>A (3.21)
and 2-cells
T
O\
A ﬂe A (3.22)
A
and
T
m (3.23)
A—A— A
T T
such that
T T
T
ﬂé O\ ﬂg
. — A H/T A = . (3.24)
Y N
A—LToa | A \T/ A e AT 4
VA VA
A A
and
T T
/5 r = T \f . (3.25)
{s m
A A A A A A A A
T T T T T T

See, for example, |[Mac Lane [199§].

If A is a category, T a functor and ¢ and § natural transformations these
equations of course amount to the usual equations objectwise:

Tx (3.26)

and

To — s TTx

A e oo

TTx T> TTTx
Tx
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Theorem 17 Given a fibration of categories p: E — B, a comonad (Q,0,¢)
on B can be lifted to a comonad (K,d,e) on E such that (K,Q): p — p is a
comonad in the 2-category of all fibrations.

PRrROOF Let (_)*: B> — Cat be a chosen cleavage. For every A € E, we let
ea: (KA =efA) — A be the chosen Cartesian lift of ,: Qv — x. For a
morphism f over j in

KA A (3.28)
" I
Kf"'.,l
KB——B

Qx g

RN

QyT)y

the dotted arrow is the unique filler induced by the factorization below. This
makes K a functor and e: K — idg a natural transformation.
We define a family of co-multiplication maps d 4 as the unique fillers in

KA (3.29)

EKA

where the triangle below commutes because is ) co-unital.
In the diagram

KA — (3.30)
da o "Kea
KKA—=XKA——A
EKA
Qx £x
Qx
Ss 0
QQx :I§ Qr ——=x



24 CHAPTER 3. RESOLUTION IN DIMENSION ONE

we see that eqexada = eaKeads by the naturality of e, and p(exada) =
p(Keada) by @Q being a monad. Hence by [14] the three endomorphisms of KA
above have to coincide, meaning d is co-unital component wise.

The naturality of d, that is, that dgKf = KK fda is the unique filler
making the left-hand upstairs square commute

KA KKA (3.31)

KB— 3SKKB— KB
dp eKB

Qr —25 QQx

Qy T QQy ooy Qy

is obtained by observing that expdpKf = KF = Kfexada = exg KK fda,
from e being natural and a retraction. Also, p(dpK f) = p(KK fd,) by natu-
rality of §. We apply [14] again.

Finally, we show that d is co-associative:

KA—"5 KKA (3.32)

KKA— S KKKA— KKA
Kda EKKA

6m
Qr —— QQx
50=
617

RQx W RQQx ~eo0s QQx

we calculate that exxaKdadas = daegada = da = exxadiada, again by
naturality of e and its retractiveness. Moreover, § is co-associative, hence we
can apply [14] once more. O
We observe that K preserves Cartesianness of maps, hence in particular Ke
is Cartesian component wise.
Finally we can define our resolution comonad. Let (Q,d,¢e) = (FU, FnU,¢)
be the comonad that arises from the adjunction

F
RGrph 1 ~Cat . (3.33)
U

Then, according to theorem [17| we obtain the comonad (Q!,d,e) on GrayCat
induced by lifting @ along (_)1. The exponent reminds us that this provides a
resolution of the 1-dimensional structure of Gray-categories. See [§] for a more
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abstract point of view on this construction. In section [3.3] we will show explicitly
how this comonad acts.

Corollary 18 By the above theorem there is a comonad Q' on GrayCat that
pulls back the Gray-structure onto the free category on the underlying 1-graph.

Definition 19 The category of Gray-categories and pseudo Gray-maps is the
co-Kleisli-category GrayCatq: of the comonad Q'.

This category has Gray-categories as objects, and morphisms

G—/sm are morphisms QG m (3.34)

in GrayCat. Composition of two maps

G—JHF5K (3.35)
is defined by
~ 1
QlG dg QlQlG Qf QlH 9 K. (336)
Identities are of the form
G5 G6 = QI6—25G. (3.37)

By way of notational convenience in diagrams in GrayCatg: we use unslashed
arrows f: G — H to denote a strict arrow that is included in GrayCatqg: as
fe: G —» H.

The comonad axioms make sure this is a category; c.f. e.g. |[Mac Lane
199g].

There is an adjunction

R
—
GrayCat ‘1; GrayCatq: (3.38)

The functor R takes a strict map f: G — H to a pseudo map fe: G -~ H
where e is the co-unit of Q. Moreover, since e is an epimorphism, R is faithful,
and it is bijective on objects, hence R is actually an inclusion.

We note that the composite of a strict map after a pseudo map is particularly
simple:

e dl@ 1
G—Asm—¥5K = Qc—5qqc L qQH

ET

QG ——H

ge

K . (3.39)

Lemma 20 The category GrayCatq: has all limits of diagrams of strict maps,
that is, those in the subcategory GrayCat, that is, GrayCat is complete and the
inclusion GrayCat — GrayCatq: preserves all limits.



26 CHAPTER 3. RESOLUTION IN DIMENSION ONE

PROOF Let D be a diagram in GrayCat, let (¢;: L — D;); be a limiting
source in GrayCat, we claim its embedding into GrayCatq: is a limiting source
there as well.

Let (¢;: C - D;); be a source over D in GrayCatq:. Thus there is a source
(ci: Q*C — D;); in GrayCat, which induces a map {c): Q'C — L and this is
of course a map (c): C' - L. The diagram

C (3.40)

P

commutes for all ¢ by the co-unit axiom of Q' and the naturality of e; c. f. also
(13.39). Because e is an epimorphism (c) is the unique filler. O

In particular, the pullback of two strict maps in GrayCatq: is the same as its
pullback in GrayCat. Products are obviously simply the same in both categories
since their diagrams do not include any nontrivial morphisms.

Remark 21 For two diagrams {ar: G, — G;}, {bx: H; — H;} of strict
maps of the same type in GrayCatgr and a natural transformation f;: G; - H;
between them there is an induced map Uim{f;} such that:

lim{Gy, ar,} —574 i {H;, by}

pl J”;’ . (3.41)

We unravel this diagram in terms of maps in GrayCat and obtain
lim f;

Q'pi im f;
Ql lim{Gi, ak} <*pghIn{Ql(Gz7 Qlak}l$ lim{]HIi, bk}

(3.42)
1 lr"’ ll’;
Q'pi

Q6 ———— H;

where the map liinfi is induced by the universal property of the source {fiQ'p;}
in GrayCat, that is, li.rn{fi} = <fiQ1pi>, which then is the appropriate map in
GrayCatgq:. On the other hand, lim f; is induced by the cone fir;. By universality
limf; = lim f;(Q'p;).

In particular this applies to pullbacks, that is, there is a canonical map

fﬁ(g:GXKH—HG/ XK’ H/ (343)
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determined by f,g,h in

H

g H/
G ! / G’ / . (3.44)
K s K’

3.3 Special Cells in the Resolved Space

We now take a closer look at the structure of Q'G. By definition 1-cells here are
non-empty lists [f1, ..., fn] of composable G-1-cells modulo insertion or removal
of identity 1-cells of G; composition is concatenation. For composable 1-cells
in G, say, fi,..., f, we have several 1-cells in Q'G, in particular [f1,..., fu] =

[f1]#0 -+ #olfu] and [fi#fo - - - #0fn] and e maps all of these to fi#o - - - #0 fn-
Between [f1,. .., fn] and [fi1#0o - - - #0fn] we have a 2-cell

Kfyoisfn = (idf1#0~~#ofn§ [f1,- s fuls [f1#Fo - #o fl) (3.45)
that is the pulled back identity 2-cell of f1#q - #ofn. In particular we have

_ (3.46)

[f1#0f2]

for all for all pairs fi, fo of 1-cells of G. Whiskers and composites of higher
cells in Q'G are simply carried out in G, hence for example

K fr fo7r0lf3] = (id g, 40 fo #0.f3; [f1, fol#ol ], [f1#ko fol#olf3]) (3.47)
= (id g, 0 fatto 5 Lf15 f2, f3], [f1#0 f2, f3]) (3.48)

and

Hfl#ofmfs#l (Hflaf2#0[f3]) = (idf1#0f2#of3; [flv fe, fS]a [fl#OfQ#OfS]) = Kf1,fa,fs5 -

(3.49)
Hence we obtain that
[f1l#ok sy, 55
[f1]#olf2]#0 (/3] [f1]#olf2#0 /3] (3.50)
Ky faFrolf3 Kf1.fo,f3 Kf1,.fa#0f3

[f1#0f2]#0 (/3] [f1#0 fa#2f3]

Kfi1#o0f2.f3
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commutes.
We consider the possible horizontal composites of ¢, r, and sy, r, and their
tensor:

[f3,fa] [f1,f2] [f3,fa] [f1,f2]
K ®n
[f3#0fal f1#0f2] [f3#0fa [f1#0f2]

(3.51)
By (3.18) we obtain

Ky fa @K fy gy = (dyg a0 100 [f1, fol, (1o fo])@(d py s 10 [f35 fal, [f3#0fa])

id.fl#OfZ ®idf3#of4;
(idf1#of2#0€[f3#0f4])#1(e[fla f2]#01df3#0f4)7
(e[fl#OfQ]#Oidfs#ale)#l(idfl#ofz#oe[fi‘w f4]);
[f1, f2, f3, fal, [f1#Fo f2, f3#o fal
ididh #0 fa#0 f3#0fa )

(id g, 40 fo Fro faFFo fa) #1 (f1#o foFFoid a0 14)s
(fl#OfQ#Oidfs#of4)#1(idf1#of2#0f3#0f4)§
[f1, f2, [3, fal, [f1#Fo fa,s f3#0 fa]

ididy, g 1y 0 20540
(idf1#0f2#0f3#0f4)#1(idf1#0f2#of3#of4)v
(idf1#0f2#0f3#0f4)#1(idf1#0f2#0f3#0f4);

[f15 f2, f3, fal, [fi#to f2, fa#o.fa]
l_didfl#ofg#gfg#om;
— id g, 40 fatto fstho fas (3.52)

idf1#0f2#0f3#0f4; ’
[f1s f2, f3, fal, [fi#o f2, fa#o fa]

meaning that this tensor is the identity of the two possible horizontal composites
of Kf1,f2 and Kfs,fa
Finally, note that by construction the k¢, .. ¢ are all invertible.

3.4 Pseudo Maps Explicitly

We provide an elementary characterization of pseudo Gray-functors.

Definition 22 A pseudo Q' graph map F: G — H between Gray-categories
is a map of 3-globular sets, together with a function F?: Gy xg, G — Hy,
such that the following conditions hold:

1. the restriction of F to G(xz,y) is a sesquifunctor for all 0-cells xz,y of G,

2. F? is a normalized 2-cocycle, that is, the F]?hf2 are invertible 2-cells
F}? 1. F(f1)#0F (f2) = F(f1#of2) with

Ffl,f2#of3#1(F(fl)#OFjgzyfs) = F?1#0f27f3#1(F;11f2#0F(f3))’ (3'53)

and for f1 or fo an identity 1-cell we have

F?17f2 = idfy %02 (3.54)
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3. left and right whiskers of 2-cells by 1-cells along 0-cells are coherently
preserved:

Flagtof)#1F, s = Fo j#1(FagoF f) (3.55)
F(g#o0B)#1F, ; = Fo p#1(Fg#0FB)

4. left and right whiskers of 3-cells by 1-cells along 0-cells are coherently
preserved.:

F(T#of)#1F, f = Fo j#1(FT#oF f) (3.56)
F(g#0A)#1F, f = Fo p#1(Fg#oFA)

5. the tensor is coherently preserved:
6. the tensors of compositors are trivial:

2 2 Ff21=f2®FJg3‘f4 2 2 .
E = .
Fy 5 9 F 1 Ff 1% Freg g id (3.58)

7. tensors of 2-co-cycle elements with images of 2-cells vanish:

2 F(E@F;f 2 .
Fa<F}, == FavF;, | =id (3.59)
Fp AFf=——=F; v Fp | =id (3.60)

for all suitably incident cells.

Note how this definition implies that the horizontal composites are also
coherently preserved as a consequence of (3.55):
Fla<aB)#F) ;= Fy ##1(FaaFp) (3.61)
FlavB)#1Fr ;= Fo p#1(Fas Fp).

Lemma 23 There is a canonical correspondence between the set of pseudo Q!
graph maps G — H and GrayCatq: (G, H).

PROOF Given a Q! graph map F: G — H we define a Gray-functor F: Q'G —
H as follows

1. O-cells:
F(z) = F(x), (3.62)

2. 1-cells: ~
F[fh"')fﬂ]:Ffl#o"'#Oana (363)
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3. 2-cells:
F(O&; [fh B fn]’ [gl, s ang = FK‘Ql,-u,_l]m#1F0‘#1F’€fl7---,fn (364)

where for n = 2 the 2-cell anh 7, is defined as F? s, and for n > 3 as

the unique extension due to (3.53)), (3.58]), '
4. 3-cells:
F(F;O{,ﬂ; [flv"’vfn},[glv"wgm]):F"{gl ..... gm#lFF#lﬁﬁfl ..... fn+

To elucidate, we show that 1-2-whiskers are preserved by F. For whiskerable
cells

(975900

the equation

Fgi#to-#oFgm

\U/Frcgl

F(g1#0--#09m)

gm

F[flr"yfn] /\U/,,_\ Ffl#O"'#Oan
N Ja —

Flg},....q’, /]

Fgi#o-#o0Fg,,,

Fgi#o-#oF gm#oF fi#to#oF fn

F([gl7'“7gm]#0[fl;<-~7fn])

N
- F((/B;"')#(][flw")fn])
N/

F([g1ses g1 #olf1s e fn])-

Fgi#o-#0Fg, 1#0F fi#o-#0F fn

(3.67)

is a consequence of (3.64)).

Similarly, we can verify that F' preserves tensors:

F(ﬂ7 [glw"vgm]?[957""9%’})(8(04; [flv'“vfn}v[f{)"'7f1;’])
:F(ﬂ®a,B<a,ﬂl>a, [gla"'aQM7f1a"'7fn]7[glla"'?g;n’?fif"?fvlﬂ])

= Frg, g s, FIF(BOQH#IFyy g frrefi
f;/)#l(Fﬂ(g)Fa)#l(Fgl ----- Qm®pf1 ----- f’n.)

»»»»»»
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:(F”% 77777 g:n,#lFﬁ#lﬁgl ,,,,, G )@ (F/‘éf1 ..... £, #1Fad Fy, o p)
F(ﬂa[glv7gm]7[gllaag;n’]) ( a[fla-~'afn]7[f17"'7fnD (368)

using and . Preservation of the remaining operations is equally
simple to verify.

Conversely, given a Gray-functor G: Q'G — H we define a pseudo Q!
graph map G: G — H as follows:

1. O-cells: G(z) = G(z)

2. 1-cells: G(f) = G[f]

3. 2-cells: G(a) = G(o; [f], [f'])

4. 3-cells: G(T') = G(T; e, B; [, [£])

5. 2—CO—CyC1€: Gfl,fz = GK’fl,fz = G(ldf1#of27 [fl#OfQL [fly f2])

This is obviously locally a sesquifunctor. We check the co-cycle condition:

G?‘hfz#ofs#l(Gfl#OGQQ’fB))
= Glid y o oo L1 Fotbo ), Lo fotto fa) #1 (GLAN#0G i o s [F2s i, [Fo#bo fs])
= G(idpy g fottots: [f15 foFo f3], [fr#fo fotto f3])#1G (1 py 0 fatto 155 [f1s fos f3]s [f1, fa#fo f3])
= G(idf, 4 fatto a5 15 f2, 3], [F1#0 f2#0 f3])
= G(idp, g0 fottots: [[1#0 f2, f3], [frFo fotto f3]))FE1G (1 gy 0 fatto 155 15 Sos f3]s [f1#Fo f2, f3])
= G(idf, g0 fotto fs: 170 f2, f3], [Fi#o fo#o f3])#1 (G (1 gy 40 125 [f1, fol, [f1#F0 f2])#0Gf3])
= Ghota s #1(Gh 1 #0G f3)  (3.69)

Furthermore, we check the coherent preservation of whiskers:

G(Q#Of)#léaf
= G(a#of; [g#of), [9'#0f)#1G (idgs, 13 19, £, [9F0 f])
= G(adtof3 g, f]. 9 #0f])
= G(idggor; (9" f, [9'#of))#1G(ao; 19, f1, 19, f])
= G(idgsor; 9, f1, 9 #o 1) #1(G (e 9], [9')#0G[f])
= G s#1(GaoGf)  (3.70)

The remaining axioms are verified just as easily.
We verify briefly that G = G, for 1-cells we have

Gy fal = Chitto .. #0C fu = GLAl#o - . #0G1fa] = Glf1, .- {] )
3.71
and for 2-cells:

G(a; [fh'- n ’[f{>7fr/L’]) :G"ﬁf{ ,,,,,, f ,:L/#lé#lénfl:wan
[
1

o)
( Glid gy o port s Fit0 - ool s £1) )
#

#1G (o [f1#0 - Fo Sl [f1#ho - - Fofnl)
G(idfl#om#ofn? [fl» SRR fn]7 [fl#O T #Ofn])
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G(a;[flv"'7fﬂ}’[f{7"'af7/ﬂ]) (372)
Finally, F = F. 0

Remark 24 Given two pseudo Q' graph maps F: G — H and G: H — K
their composite GF is simply the composite of the underlying globular maps
with cocycle

(GF)?Chfz = GFf21;f2#1G2Ff1,Ff2 : (373)



Chapter 4

Path Spaces

We construct a path space for Gray-categories and prove some essential properties.
We derived the idea for this construction from [Bénabou| [1967].

Definition 25 Given a Gray-groupoid H we define the path space ﬁ where
the cells in each dimension are diagrams in H:

Ho={ — } (4.1)
_f,
ﬁ1 =1 (92: 90,91, f, f) g‘i /QQJ‘“ (4.2)
—
f/
f f
H, = as; a1, 02, 2, ha; hl <= 4o an =% }LQ//JU <~ an
2 <907glah07h17f7f/> Qi”g ! v J, 22 ’
f i
(4.3)

I'1, T2, a3, B35 92, ha, , ] /
ﬁg ar, az, i, Ba; (FF; Zlgz%;) such that Batt2((F'#oT1)#192)

907glah0;hlaf7 f/
(4.4)

Compositions and identities arise canonically from pasting of diagrams in H, as
detailed below.

33

= (hy#1(Ta#of))F#o0s
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The condition in (4.4) on the 3-cells is the commutativity of the following
diagram

/ f f
hoéi%oygg lgl — h{ ﬂhQ// \lf <az= (4.5)
I’ I’
(f'#o0T1)#19 ha#1(C2#0f)

f

ﬁ,
> 3 _
f/ f/

f
Gt | | S

The identities in each dimension are obviously the ones consisting of identity
cells.

Remark 26 By construction the map (do,d1): ﬁ — H x H is 2-faithful in
the sense of definition[I3, but in general not full.

Remark 27 The map i: H — ﬁ is 2-Cartesian and 1-faithful, but not in
general 1-full.

4.1 Path Spaces and Cartesian Maps

Lemma 28 The path space construction Cs of Gray-categories preserves 1-
Cartesianness of maps.

PROOF Assume a situation

dof |dv  dof |d1 | (4.6)

assume a pair of parallel 1-cells in @

*f> —f> (4.7)
gﬁ/ /gQ ng h{ /h2lh1
I’ I’

we need to show that ? is bijective on the intervening 2-cells. That means
given

Bi: F(go) = f(ho) B2: F(g1) = F(h1) Bs: F(go2#1(Ba#t0f)) = F(({/ 3)51)#192)
4.8
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there are unique

arigo=ho ao: g1 = h1 a3 g#i(H#of) > (f#oa1)#1g92  (4.9)

with F'(c;) = B;. But these exist uniquely by the 1-Cartesianness of F'.
The same kind of argument can be applied to parallel 2-cells in @ O

Remark 29 The functor Cﬁ preserves 2-Cartesian maps.
Lemma 30 A pullback of a Cartesian map is Cartesian if p preserves pullbacks.

PrOOF Let F be p-Cartesian, and G*F' the pullback of F' along G.

(4.10)

Let H factor through G below as p(H) = p(G*F)u, then GH factors through
F below as p(GH) = p(GG*F)u = p(F)p(F*G)u, hence there is a unique lift
(p(F*G)u). Hence there is a universally induced (u) with G*F(u) = H.

The functor p preserving pullbacks ensures that p(u) = u. O

4.2 Vertical Composition Operations in the Path Space

We need to describe the vertical composition of 1-; 2-; 3-cells along 0-, 1-, 2-cells
respectively.

We designate the composition in H by #; and the interchange by ®, in ﬁ
we define the respective operations [J; and X as follows:

(ha#090)#1 (h1#og2)§>
ho#o90, hi#og1, f, 1
(4.11)

h':l()g = (hQ;hOahlaf//7fl)|:‘0(92;90aglaf7 f,) = (

This is just the vertical pasting

_f
gﬂ ﬂgg lm
— (4.12)

hﬂ ”hg// lhl

—
'f//

Obviously this composition is associative and unital.
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Remark 31 Considering we note that if the 1-cells in H are invertible,
with inverse (_), then the 2-cell

(ha#togo)#1(h1#092) (4.13)
m can also be written as a horizontal composite in two different ways:
(ha#o ") < g2 = ha < (f'#092) (4.14)
There is of course also the opposite horizontal composite
(ha#of') > g2 = ha > (f'#092) (4.15)
and a 3-cell o o
(ha#tof")@g2 = ha®(f'#0g2) (4.16)

going from (4.14) to (4.15)). The picture (4.12)), however, always means (4.14)).

The vertical composite of two 2-cells is

_{ B3;B1, B2, ha, ka; asz;aq, g, go, ha;
ﬁDla B <h07h17k07k1afa f/) Dl (goaglah()ahlafa f/)
_ ( (Bs#1(catto f))F#2((f #0B1)#103); ) (4.17)
Bi#ion, Bat102, g2, has 9o, 91, ko, kv, f, f '

which has as its first component the following composite of H-3-cells

f ! f
—

_— E—— —
o l U toiires oo o 1 hucasi Lutilasiol) ,{ & Lo

e } o |
—=l7 7 L)

f f f

(4.18)
We shall henceforth argue mostly diagrammatically in terms of such 3-cell
diagrams, as it is fairly obvious what the lower dimensional components are.

Vertical composition of H-3-cells is particularly simple:

ACLT — (B Br=70)\ o (Lirar = B L (Aigeliran =,
2 Ag: B2 = 7o \Myraw = B Ao#ol'a: ap = 72

(4.19)
the condition [4.5]is obviously satisfied, since we just paste two instances of the
commuting square vertically.

4.3 Whiskers

We need to define three whiskering operations, 102, 1003, 2003, where the raised
indices indicate the dimension of the operands, the lower one the dimension of
the incidence cell. Their symmetry partners are then obvious.

We define right whiskering of a 2-cell by a 1-cell as:

kIDQ _ :ZC k k / 1" IDZ( Qa3; 01, 2] )
0% (27 0 hf’f) 0 gOagl7h07h17f7fl
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((ko#oho)#1(k1#003))
— #2((/{2@0&1)#1(/€1#092)); (4 20)
ko#oar, ki#oas; ' )
ko#og0, k1#191, ko#oho, kr#oha, f, f”
Diagrammatically this is the following composite:
hoé(p oygg g1 (k2®ar) hoé(p oygglgl (k2#0ho) hﬂ ”hg// i‘néﬂéﬁ 1
f’% #1(k1#092) ol #1(k1#oas) i
_ =T V= T—f=
ko kQ/ ko kg// k1 ko kz// k1
K/ V4 V4
— —
f// f// f//
(4.21)
For reference (31, B2, 83)0o(ho, k1, he) is
f f
— —
h{ lhl (ha#tok1) h{ K/h// h1 (ma#oho) hﬂ h2//
#1( h0#053) ,

#1(h2®B2) -
_ f

sl l mﬂ;/ 1 o] 2 N,
\ SN Z

The action of 1-cells on 3-cells is as follows:

I'y,Ta, a3, B3;
mlljgf = (mg;ml,mg,f’,f”)ng ai, @z, B1P2, g2, ha;
90,91, ho, ha, fo f'
moFol'r, mi#ols,
((ma#oho)#1(miFoas))#2((Mme®ar )#1(mi1#0g2)),
((ma#toho)#1(mi#oB3))#2((M2®pB1))F#1(Mm1#0g2));
mo#ocur, moF10a, MmoFoB1, mi#oSz,
(ma#togo)F#1(mi#o0g2), (MaFtoho)#1(mi#ohe);
mo#ogo, mi1#Fog1, moFFoho, mi#ohi, f, f”

(4.23)

We claim this is again a proper 3-cell in ﬁ, that is, the whisker satisfies (4.5]),
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as can be easily seen:

f !

—— / - -
ho<a= Jgo gg g1 (m2®ay) ho<a= go g/ g1 (ma2#oho) hol hg// }‘Lléaﬁ 1
% Z z, 1
#1(mi1#og2) #1(mi#oas) SEPVAN
—_— —_—

|-

> o
— — —
f// f// f//

o HL |
(f""#omo#ol'1) (ma#oho (ma#oho)
#1(m2#09o) (2.83) #1(mi#of #oT1) (4.5) #1(mi#oh2)
#1(m1#09g2) #1(m1#092) #1(maFola#of)

U w
f f f
o o b |o 7 ¢§
i _ — _ —
m ”// m (m2®51) m. / m (M2#Oh0) m ﬂ/ m
ﬂ/ 2 J 1 s (o) 0 /”2 1 o (ma#0B3) 0 / 2 1
— — —
f// f// f//
(4.24)

Finally, we define 3-2-whiskering:

ar, az, i, Ba;
907g17h07h17f7.f/

#1101, 2 #1002,
(v3#1(cattof))F#2((f' #ov1)#103),
= | (wa#1(BaFfof))F2((f' #ov1)#153); (4.25)
92, ko, yiFF1001, Yo FF 102, Y1 81, Y2 B2;
gOaglak()aklafa f/

")/2|:|?1_‘ _ < 73;’717727]7*27]{:2;

F17F27 0[3,53;92, h27
2D3
h07h17k07k1afﬂf/ !
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It gives a 3-cell in ﬁ again.

*f> (f'#o0m1) *f> V3 *f>

ké"/l:/hoéa;:ioyg{ lgl % koééhoyhg lbléap #1(0[2#0]‘%{ :%1
— z P 2

(f'#071) (f'#ol'1) ko
#1(f’#gF1) " #1h2 func. #1(F2#0f)
#1992 #1(aa#of) #1(ax#of)

f f f
— —
k<<= ho<<B+ 0”9 91 =———= ko= zoﬂlw iléﬁ% I“VE ko ”kz \Llé'YZ 1<Bz= 91
7 3
\\} (f'#071) \ (Gt
Iz #4183 Iz 1(B2#0 #
(4.26)

4.4 Horizontal Composition of 2-Cells

We shall use the following slightly abbreviated notation for the higher cells of
the mapping space, for example writing (4.20) as:

%L 4k> = lega = (kZa kOa klvflvf//)llz% (a3;a17a2‘gan)

n

Qw

_ (((’fz#ono)#1(k1#oa3))#2((k2®ﬂ1)#1(kl#ogz));) (4.27)
ko#oon, ki#oaz |kDog, kOon : :

In the same spirit we write the opposite whiskering:

O
N

m

n
—

= /82|:|(%n = <ﬁ37 51,52‘]6,’”1)
—(((ma#tono) #1(B2@n2))F#2(Ba#1 (k1#on2)); (4.28)
B Br#ono, Battons [kKOon, mCon B

So now we can define the left horizontal composite:

((ma#ono)#1(B2@n2)) ((k2#ono)#1(k1#00a3))

% =pfla= #2(Bs#1(k1#on2)); O [ #2((k2®@an)#1(k1#092));
NSNS Bi#ono, BaFtona |[KDon, mOon ko#oar, ki#oaz |kOog, kOon
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(i) mason)

((ka#tono)#1(ki#ocs)) >) | (429

#2 ((f//#oﬁl#OnO)#l (#2((k2®0&1)#1(/€1#092))
a1 < B, ag < B2 [kDog, mOon

Conversely

/g%i\/ ( ((ma#fono)#1(B20nz2)) ) ( ((k2#ono)#1(k1#003)) )

Y =pHda= #2(B37F1(k1#on2)); Uh | #2((ke®an)#1(ki1#092)):

NSNS Br#ono, Battons [kKOon, mCon ko#oa, k1 #ocz [kDog, kon
((ma#ono)#1(B2@n2))

( #2([33#1(141#0712)) )#l(kl#OQQ#Of))

((ka#ono)#1(ki#ocs)) >> | (4.30)

(F#obrtono)s (#2((1{:2@@1)#1(/@1#092))
o < B, ag < B2 [kDog, mOon

n m

YRS

#2

o\

4.5 Tensors

Finally, in
g k g k
oo
= 4.31
CERIC @

letting SR = (81 @, f2®as) makes ﬁ a Gray-category. This is a well defined
3-cell.

4.6 Identities

4.7 Inverses
If H has invertible 1- and 2-cells the inverse of of a 1-cell

! (4.32)

in ﬁ is given by

90 {t /J(f/ o1 - (4.33)
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4.8 Axioms

This composition of ﬁ—2—cells is associative: Given three 2-cells

f f
—

o = hoé(; 0 Qg g1 é ho| hz// JLQI (4.34)
A N /g
5 '
AN _I,
— k@ io W e 2w L )c@l 4.35
p= Ky e
T N

f f
— —
N = V@Jgoﬂkz// Jkl == mﬂ/n{/f@n (4.36)
we use (4.17)) and the functoriality of the whiskerings in H to compute:

(va# 1 (Ba#of)) F#2((f' #ov1)#163);
(’)/DlB)DlOé = |:|10[
f/

w3
MF#181, vo#1B2, ha,ma; ho, b1, mo, ma, f,

(w1 (c2#of))
= F#Ho((f'#o(i#161))#103);
n#1P1# 1o, Vo Ft 1 PaF 102, g2, M5 go, g1, Mo, M, | f
((rstts (Baeo F)) o (F 0 )41 5)) el as i)
/ ) 2(((f' #ov)#163)#1(z#of))
_ #1(052#0f))#2((f #0(71#151))#1043)7 _ # ((f/# ( # 6 ))# o )
nF#LB1FF1O0, Yo FE1 BaFFr 2, > O\IITFLIL 7108 );

MFLB1FF1O0, VoFF1 BaFFr02, G2, Miy;
gO7gl7m0uml7f7 f/

(v3# 1 ((Ba#tra2) o f))F2((f' #ov)#1Bs#1 (aaFo f))
= Fo((f'Hon)#1(f #ob1)#103);
N#1B1F# 101, Yo F1 BeF 102, g2, M2 Go, g1, Mo, M, f, f
(va3#1(Be#ra2)F#of))F#2((f'#o1)
#1 ((Bs#1(ao#tof))#2((f'#0b1)#103)));
(3
N#1B1# 101, Yo F1 BeF 102, g2, M2; Go, g1, Mo, M, | f
(v3#1((BaF1a2)#0 f))
= F#o((f'#om)#183)s
n#1P1# 1o, Vo Ft 1 PaF 102, g2, M5 go, g1, Mo, M, f f

=10, (gf‘q’,;flgfl;l ’,{f 27,?11?2},) =0y (f0h0) . (4.37)

. !
927m27907gl7m07m17f7f

We check that 2-1-whiskering in ﬁ is functorial, that is, mOy (0 a) =
(mOoB)01(mOpa). In diagram (4.38) the diagonal is mOg (80 ) and left and

down is (myS)01 (mOpa). 1-2-whiskering in H is functorial by duality.
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It is obvious that 3-1-whiskering is 2-functorial, that is,

(mo, m1, m2)0o((A1, Ag)a(I',I'2))
= (mo, m1, m2)0o(A1#£21'1, Ag#fal's)
= (mo#o(A1#21), mi#o(Ao#al'2))
= (((mo#oA1)#2(mo#ol'1)), (M1#0d2)#2(mi#ol2)))
= ((mo#0A1), (m1#0A2))02((mo#ol'1), (Mi#ol2))
= ((mo, m1, m2)do(A1, Ag))Ta((mo, my, mo)Do(T1,T2)) . (4.39)
By duality, 1-2-whiskering in ﬁ is functorial as well. And the 3-2-whiskering

thus defined is functorial with respect to vertical composition of 3-cells, that

is, y0;(TO2A) = (WO T)Oa(y01A), as can seen by inspecting the following
diagram.

f

' I f
/ —_— (f'#0v1) — Vs —
kgeVE Ho<we= %[o ”g{ ng % Ko<ce= }LoﬂhZ// )-Lléwp 1%’0 Lﬂ ”1@// L%1
—=_ 7 7 l
f/ f/ f/
(f #0m1) (f'#0A1) ka2
#1(f #0A1) ({4.5) #1ho func. #1(A2#o0f)
#192 #1(waFof) #1(wa#of)
f

/ — (f'#0m1) / 4f) V3 4f)
k%ioﬂg{ lgl%koé'\/ﬁ i‘m 4 luéaz 1%’0% W Lm 1

— T LAy

f/
(f'#o0m1) (f'#ol'1) ko
#1(]"/#01—‘1) (4.5) #1ho func. #1(T2#0f)
#192 #1(a2#0f) #1(a2#of)
k@f% | o o b ] 4 b
(f #om) e /
¥ #1585 ¥ #1(B2#0f) Iz
(4.40)

We see that 2-3-whiskering is functorial:

(AO; B)0y (yO4 )
= (A1#161, Do#162) o (m#1T1, 12 #12)
= ((Ar#181)F#2(m#1T1), (Ao#1B2)F#2(ve#112))
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= ((01#.1 1) #2(Ar#1a1), (62#1T2) F#2(As#aa))
= (017111, o1 T2)Oa (A1 #1001, Do #rap)

So we can conclude that ﬁ is locally a 2-category.
That interchange X is natural and functorial in both arguments follows
immediately from the respective properties of ® in H. Thus we have:

Lemma 32 The path space ﬁ for a Gray-category H is again a Gray-category.
O

Lemma 33 Given a Gray-functor F: G — H there is a canonical Gray-functor
—

PrOOF The Gray-functor ? acts by applying F' to all components of the

cells of G:
! Ff
r——y | = | Fr——Fy (4.42)
f Ff
— —
gﬂ Z,, ng — Fg{ /FQJ/FQI (4.43)
— —
I Ff!
f f Ff Ff
— —>‘ — —
V4 o v a Fag 7
h0€foyg/ J{gl é h{ ”hz z} g1 | — Fho@ig%fgz ngl = Fh{ [hﬂihl F¢ Fgy
— — — —
I’ f! Ff! Ff!
(4.44)
_r _r LN _Fr
o ho A |02 ] 7 o oy | ron L2 en] pfldnrony
0<&ar—= Oﬂg N ho ﬂhz jb/léap 1 Fh&Faxs gOﬂng Fgp = Fho [hz \LhﬁFa% g1
£ £ Ff Ff
(f’#o@l)#lw ha#t1(La#of) — (Ff'#0FT1)#1Fg2 Fho#1(FTo#0F f)
7 7 |7 et
0<=B= Uﬂg 91 ———= ho ﬂhz hi@/%gl Fho<FBE goﬂng Fg1 % Fho K/FhQ h&FB= Fg1
T R T B

(4.45)

This preserves the structure of @ since F' preserves all commting diagrams on
the nose. g
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Theorem 34 Furthermore (73 is canonically an endofunctor of GrayCat.

PROOF Obviously GF = G F. 0
We finally note the following:

Lemma 35 The functor (TS: GrayCat — GrayCat preserves limits.

PRrOOF This is obviously true for products.
For the equalizer E of two strict maps F, G we remember that the action of

and G is defined by the component wise action of F' and G, that is, a cell of
ﬁ is equal under ? and 8 iff its components are so under F and G. |
A straightforward calculation shows how this forms part of an adjunction

O
GrayCat , T " GrayCat (4.46)
Q1

where I is the free Gray-category on a single 1-cell (01): 0 — 1 and ® is Crans’
tensor of Gray-categories.






Chapter 5

Composition of Paths

We want to turn the path space that we constructed in the previous section into
the arrow part of an internal category, which requires us to define a composition
map as follows.

Definition 36 We define the composite of paths as a pseudo Q' graph map

m: H xyg H - by horizontal pasting as follows:
1. O-cells
<y4>f z,x%’f y)}_)<x¢>z> (5.1)
2. 1-cells
7 f f 7
%_ﬂ”glﬁ’ gi%{}h — ﬂ g/ffz li
— — — 5
! f f f/
F#of
. =
_ (f'#092) = _
= 90 N g1 (52)
#1(g2#0f)

=

Fi#tof

3. 2-cells

=, joyfh Jl #V e h> <0 g{ ”

47

_r.
h{ ﬂhz// \%E g1
f/
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f> fA> (F'#oas) N f> (F'#oh2) f> fA>
a s tal@ten |y / 4| . #Ggo | | 7| 2
— ho % 0 g K/qz T zhlé qu g1 =——  ho ha h1 <= ) ho
Y/ E V4 \L/ﬁ/ o

*> — = — *>
f 7 f F il 7

4. S-cells

\f f\ f/

_ L 7] & - P o A | o

Kb o B A D0 b A
— — —
F F s

AN
| f} o
f/

Frat TV 6 D )
S(;;O?j;:fgﬂl th#l(m#of) R (f #OFI)#lgw th#l(FQ#Of)
f 7 f f
| 7 7| v Va J
ol 70 7 Ty i h <= g g h h <=
oAl AL D &b = A D
— — - -
7 7 f i
*ﬁ L (P#oos) Lo F o (Paohs) !, f}
7\ 5 faldten) |y / U #1(@#of) R
ho q ﬂqQ T— h ]//}12 h1 §2 ¢ 11/}92 T_— hy ” ‘L h2 hl % ho
—> — *\7‘ “— — *&
! 7 f F ! 7
(F'#0f #oT1 Il (f'#0h2)
— #1(J" #092) (F'#oh2)#1 (F #oTa#to f)#1(G2#0 f) m #1(ha#tof)
#1(G2#0f) U #1(Ta#tof#of)
! 7 f
—_— —— /
ho{ <= 0 gg 1yq2/ I h/é h1 1g2 a1 hz lb h2 h1 ho
17 (Forn Foor) 1
— 7 = , H %

P #1(g2#0f)

f/ #1(/@3#of) f f’

5. the 2-cocycle: for a (vertically) composable pair in ﬁ XH ﬁ we have the

(5.3)

g1

(5.4)
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composite of the images and the image of the composites under m:

7 N
go 7| Y
m _gi ygz J’ 1, g(\{ ”q{J/ f f
—~ ! { 71
F f go ”g 1/2 g1
A A A A |
m g() ”/ g g 2 91 f 7
R e f
—_— -
7 f
F f
—_— e
9 Qz/ A g gg a1 ! U
=g ¥ /4 —
F f’ g g 1 /2/ gAl
Z\]¥
m 0o, O Y A I (5.6)
7 f / e ar
T 4 2 i |9
95 / 7 g4 g2/ 91 Iz =
—g| 7 |9 4 f
—_—
‘?-,\, f//

And the 2-cocycle going between them is:

7 f

g:o J{/{ lﬁ , gﬂ( ygg lgl 7 4f> *f> (f’\’#fogé#ogo)

=91 i gz/ & #1(989)

, > I Z QN Y #1(gl#o T #0f)
m R . —f — —_—

7 ! J LN 7 JA

R 9 92 91,9 |9

A A Ay z

7 J{ ﬂgQ lgi ) gi ygg/ J{gl 1 Jf =

=9, f I
?‘/\/ f//

For completeness’ sake we give it in the algebraic notation:

(F7#0gb#090)#1(950g) #1 () #odHo f);
id /#090’ dq 1#0g1’
(f”#ogg#ogo)#l(gz g 92)#1(91#092#0f) (5.8)
(f"#ogz#ogo)#1(92 > g2)#1(91#092#0f)
Go#090, G #0d1, Go#0d0, G #odn, [Hof, F#0f"

Lemma 37 The map m: ﬁ XH ﬁ > ﬁ is a pseudo Q' graph map and hence
by lemma[23 uniquely defines a pseudo Gray-functor.
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PROOF As defined above, m is obviously a 3-globular map. We verify that it
is loca%r a sesquifunctor: Let (81, 3?) and (a!,a?) be two pairs of 2-cells in

xg H composable along a pair of 1-cells. Then

m((6%, 8%)0i(a',a?) = m((8'Diat), (8°01a%)) = m(B', ) 0im(a’, o?)
(5.9)
follows obviously from the fact that in H 3-cells compose along a 2-cells in-
terchangeably. Let (A'; A%) and (T'',T?) be two pairs of 3-cells in H XH H
composable along a pair of 2-cells. Then

m((AY, A2)T, (T, T2)) = m((AT,T), (A20,T2))
= m((A1#al], Ag#aly), (Al#DT, Ad#o13)) = (Aj#al'], Aj#13)
= (A}, AD)D2(T7,13) = m((A], Ay), (AT, A3))Dzm((I'1, Ty), (T,T3))
=m(A, AHOym(TH,T?).  (5.10)

For the vertical composition of 3-cells see , their images under m are
pastings of commuting diagrams, so preservation is immediate. Preservation
of whiskers of 3-cells by 2-cells given for each component of ﬁ X ﬁ in ,
again according to [36]d] m pastes two such commuting diagrams horizontally.
Preservation of units is trivially satisfied. This concludes verification of 22J[I]

We verify that m? is a 2-cocycle in . Note that in the last column
(5.11])

(fmz#olﬁ#ohé#ogé) (f"Hoki#ohd#ogd)

#1(f/l/2#ﬁ€% #oh%#ogé) (fmzl#()((‘lfé#ohél)

(30 bigragd) | _ | 1B thobl o ag)) | _ | LAk o)

#i(Hohdegh) | T | #i s P HohlHegd) | T | T 0%

- (B ohdttogltorn) | | 1 (o (o))

(ot togito V) \ (Kot togittor) ) T1(iHgR)H#SY)
(5.12)

showing how the multiple horizontal composites of squares can be simplified.
And the left hand rectangle in commutes by local interchange. Also, m?
is normalized by the unitality of the tensor in H.

We check the coherent preservation of whiskers of 2-cells by 1-cells on the
left, that is,

m%,gml(m(@)mom(g)) = m(aDog)Dlmiyg (5.13)

in (5.14)), where the parts commute by the naturality of the tensor and the local
interchange. The corresponding condition for right whiskers is verified similarly.

Coherent preservation of whiskers of 3-cells by 1-cells is checked in the same
way using in addition the naturality of the horizontal composition of a 3-cell by

a 2-cell along a 0-cell. This proves conditions (3.55) and (3.56).
We verify the coherent preservation of tensors, i. e. that

m(BRa)Oymj, ), = m%ﬁDl(m(ﬁ) X m(a)), (5.16)
where «, 3, k, h,l},/} are 2- and 1-cells respectively in ﬁ XH ﬁ In terms of

constituent cells (5.16)) can be drawn as (5.17)), where the pasting of the center
and right squares corresponds to the right hand side of the equation (5.16)),



(1T°9)

o1

—
A A A 7
2| S Sy |0y 2| oo Ty |0y
4 %x J \% i z \\ J \\vx i
A’N: A’H: . A’N: WA’H: . £)u 04—
Ty | oy N:Q 0y Iy Nxﬁﬁc Ncﬁ 0y atinhy
S PN ! ([ £ OF B0 Ly Ot [oy) T 4 : ! (£ OFEEOOFE Ly O Loy ) T
<ud J— (B6@Ty0# L) 14 2\ (Fo0guo# ) 1#
16 \NR&E \NR& 05 (V607 Fuag) 14 15 NRMK \N\& 05 (PB9#5y® o) 1
| (O60#0yO# YO _,,,F) | (OB0# 0y OH# 4O _,,,f)
f § f §
4 T z T
(1 FO#(EBOH L) #
N:\\. Af T:.\. Awb‘cw‘nwtvwo&mwv\v TH# N:Eﬁ. Af T:% AH.\.O#MQQ#WQO#MQVA# N\:.\. \ﬁ T:x_ AH%O#MMO#MQO%MQVH%
(FB0#u@g) 14 T o1y o7 o (B6aCy O Lay) 1 T m.\ﬁ e o (36@Ey O Loy) 1
050 Ty 04 Tag) T 2 LR A ) LS A M )
(P (Guost ) 7'\ 7 (9504 @ Ey) 14 7'\ 7 (9504 3> ) T
(Ruo# B # 21 f ) o TV (950 Q0% 84 % /) w@%v (950 Q0% 303 1, )=
o z o
Y
i

T (4 14 T T 4
AP IN PN w0 (i) w
ek I— VAN Vil
15 N\Mﬁm oz 05 5| w715 e? s
Ve 4
o i of J

0
6 _H_:.ME




(¥1°9)

((FOHEEOH Ly 14 ([ FOFHE60H Ly) 1
(36@( (4,4 OF#Z0) V#LY)) 14 (C6QR(Sy1# (%00, 1)) 1#
(0504#2y0% , f) (05042y0% [
JOHLBOH Ly) 14 JOHLE0F Ly) 14
(o) M Fosin %W\@WH . M rosin #W@w # (B0
(B6ay) 1# (S0 Tyos. [)ig (BT [ ?‘mAmS:ﬂ ((JO#EE0HLy) T
(960480, [) e e : Lol (960400 [) (S6@Ty) T4
(2604240, 1) (P6O# Sy 0%, f) e
- A..m,o_H_dvE - Ammcuﬁf%c%mdcﬁwmt%vﬂ%
: (96042y0%  [)
i

AT
4 T
(FOHLE0Hy) T4
(L JOH#EBaE0) T4 ) FOHEBOHL
(6@%y) 1# |1 (f Ot fhago) 1 (Eagn) #.,

(F6RZY) Y9607 7y 0%, f)

0604£%9/0 1 4
(9604 Sy 03t [)= E (BO#TUOH o, ) H#

(96041004, JO4 ., f)=

N\T\. H\\.K,
e

i e/ oo o

0
4 o7

1
I
ul 7 ]

Hix HU.
—
iz o
(B)wory(v)w
(SO TEOHTY) T ([ SOHEEOHTY) T
((fO#EERT0) T# (6@, [o4T0) 4 (604 fogely) i ((FOFT60H Ly) T
(202y) 4 AN e T (3605u) 4
e (0504, fO4Ey) T4 (0504, foE0) T4 v
(950#Zy 0% f) - (960#F00% . [)

(P00# 4% ¢, f) (060#540# ,,f)

52



(¢T°9)

m: H: N:x. T\k. N: H:

ﬁ\ oY ;% N \T ﬁ\ Gl

1 FO>0 : o Ly ¢
/ V\ H \ / V\ H
A’N\ m A’m GVNQHV A’T.H‘ m A’m\ %
” \\: y Zosky Ao: Ly | &y / 0y A 2oy A
/AN v SV RN \\ - S v
mx H mk ?s mx H
N:A\. H:x.
ML N&A\\:/Q \\AT
=/ "N\ Va
zd— patg= i —
:% 7Ny e T
14 \ T / \\r L
of o
N:\. T\.ws m:k, TZ«. N:.ws H:\.
A w \Ma \&% &e \&a
Loy | Ty 0y Loty By [Ty Lo Oy Lg% Oy g0y
14 W\ a w\ (4 & i % ﬁi T T2 % % ﬁi T T2
A/A’N\ .\.‘ m HA’N\%%\% m A’NT\. \%‘
% \M \& \M 7A i
AR S T AR U ﬁ w ﬁs& T
T A’. — A‘_
of o o 1/ Nk L
N:.\. T\.\. N:.\. T\.ﬁ Ntk. T\.\.
Ve N S N N 7 a0l Sy
N& w QVA Nv\ %& Hvi\ \\m& avi\ IHQ ﬁW\ No\ % w Hﬂw IHQ HW\
k% e Ti%a = i
o dvm i @V%ﬁ g\l e Oy oy f:\hcvo N: Oy
T % - 127 20 ¢ 7 / ya Ve

muﬁ TR N\. TH Nk H.\.

33



54 CHAPTER 5. COMPOSITION OF PATHS

and the pasting of the left and outer squares corresponds to the left hand side.
Equality in is equivalent to the top and bottom squares commuting, since
the aforementioned ones do so by assumption.

We thus spell out the details of the top and bottom squares in : The
diagram shows the details of the top square of (5.17). The central octagon
of is broken down in . The parts of these two diagrams commute
essentially by the Gray-category axioms and the definitions of 2- and 3-cells in
the path space. The bottom square on would be analogous.

This proves .

Furthermore, we check that tensors of cocycle elements are trivial: We
calculate according to [4-5}

mfcl,.fz X m?s;f4 = ((m?hfz)l@(m?a,le)l’ (m§"17f2)2®(m3£3»f4)2) ’ (5'19)

where according to all the arguments on the right are trivial, hence their
tensors are trivial, that is, holds.

Lastly, images of 2-cells tensor trivially with co-cycle components by the
unitality of the tensor in H and the fact that the 2-cell faces of m? are trivial,

hence verifying (3.59) and (3.60). O

Theorem 38 There is a pseudo Gray-functor m such that

dy
HxyH—P > HEer=2H (5.20)
do

is an internal category object in GrayCatq:.

PRrROOF We need to verify that m is an associative and unital operation. We
need to check first that

ﬁ Xdo,d1 ﬁ XdO;dl ﬁ E/X—m)ﬁ Xdo,dl ﬁ

- fn (521)

ﬁ Xdg,dy ﬁ N ﬁ

where m x ﬁ and ﬁ X m exist by the observation in On the level of globular
maps this is obvious, since it is just pasting according to Proving that the
cocylces both ways around are the same, means drawing a diagram that looks
like with each array transposed.

Unitality is obvious, source and target conditions

H x40, H

0 ¥y

(5.22)

d
0 0 dl/ \do s

L T,



AN H
G 7 ! 8((0 Ry ) w) ¢
SYOF Loy = 1 d—
4 @H Hm A %ME T
N.ﬁ 11 14
— —
Cond OF o, O#E (0 R ) T# Ty
R (F(ORY ) O# 1, d % )
mt.H H:k Nt.\. H:.\.
MH %\N M MN 0y Iy mu\\ @ MQN cﬁ/
1220 [T aeug@w) | |
N\ _ < S\ _
O = aﬁa%\x o %\& 4 ety K
¢e Iy wcﬁﬁc mﬁﬁ 0y Iy miﬁﬂ: mcﬁoﬁ L
Nﬂ \N) ﬁﬂ\\ml L (4 % Ai % Hi
— —
F o 4 o
(1id OF ¢ F O#T(ORY)) T# (1, 4%, §0#2 (oY) T# ((y) w0y (o) we) T4
((yome)w) (()weom(3p)we) H(ORY) OF 1, OF# 21 F)
N:.H T\‘\. N:k. T?\.
% 4 % yid T L i g ) o
N\ _ p—_— _\ _
OH —> > Hﬁk%\x o) g (@)a0) T@x%\x + S YO
e oy 3\? ﬂ\ Oy U ﬁ\s N:\Mo: Y
17° 170 I A 7
F o - o
vid Ot g, OH (0 [ 0) T e
* (10 [59) O# 1, d F o)
mmﬁw o7 by
y 1
MR o A= S CT=D)

N\\.\. H\\.\.
@% %N H m@\ WH
Tx%x | ws\c%f
T/ T 1 L
c\% o7 1y ﬁ\cﬂm ey~
A A
F o
((yoe)we) T4
Y(oRY) OF# 1,4 F ¢ d)
N\\.\. H\\.\.
VAL

0
[ Ton}



N:K. H:.H N\?\ H\\\ 7,
ﬂ’ﬂ’ A‘i’\ﬁ
oy No\w s\ Oy M@% ﬁx&\\, o N@\ T o Q\&K N«\Nk

7N 7| =/ DN VN
A/TN\K A‘T.\.‘ A‘N\\.‘ MNUVMQU\ jiﬁ‘ TN\H A‘T\.‘Af
& MNT,,\ M,\ ? Wﬁ% %s\ /z/ \Q\E\V ? M% WN@ M\?

—— —— —— ——

m.\. H\. N.\. H.\. N.\. H%

Ni.\. T?\. N:.\ T\_\. Ni&. H:.H N:.H T?\.
4N 4 A AN 4T a4 AN 4T a1 a1
o (S o Zgty By o | By Ty Zgsly Sty o | 1 Zgxla Sty S| oo T ST 9y =g
7 Y 7 Y 7 Y V4 V4
QT = TGN AL S ! |
A‘m\ - 13T [ -
T T A
et o>y \N\S MN v g W% TR L L
w1z AN
o o of o
N:.\, ﬁ:.\.

£ g T Y
)
f—

m:\ H:% £
| | H %; Y \4
&

56




hold by In particular, the 2-cell components of m? are trivial,
and dym are strict Gray-functors, even though m is pseudo.
We can define the 1-cell inverse to

with respect to m as

g0

1)

where (_) is the respective vertical inverse in H.

o7

thus dom
O

(5.23)

(5.24)

Lemma 39 The path space 1-cell in (5.24) is a left and right inverse to (5.23)

with respect to m.

PRrROOF

90|
90 g1 92

go
92
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_ __ 99 90
90 g1 g0
g2 T2

(5.25)

And similarly for the right inverse. g
Furthermore these inverses behave well with respect to the internal category
structure:

Theorem 40 Given the situation in (5.20), assume H is a Gray-groupoid, then

there is a Q'-map o: ﬁ 5 ﬁ (“opposite”) such that (5.20) becomes an internal
groupoid in GrayCatq:.

PROOF The action of o on 0- and 1-cells is already given in (5.24)), we need to
give its effect on 2- and 3-cells of ﬁ:

Furthermore, we need to give a 2-cocycle o3, : o(h)Ooo(g) — o(hlyg) the
non-trivial part of which is the following 3-cell:

ho 92 - 7
—_— —
r f ho
E—d
ha fi /Jf” ho

ha

—_—
h1 W
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f f
\ X
g0 9o
—
91 /j /lf’ go g1 i /J{f’ 9o
g2 g2
f T#o 7
— ((hz#of/)®97) —
! #of f v
= —
ho hU
hj fi /Jf” ho Rl fj( /Jf” ho
h2 h2
— T
h1 77 h1 77
f// fll
_ (h2#to f)>2
S =(ha#of)<g2
X =ha<(F #092) _r
ho#0g0 o =(hattogo)#i(hatoga) gﬂ /gQ ng
= hi#og i Ve lf” ho#o90 =0 I3
h h
hi#0g1 i ﬂ /hzl 1
f —
f”
i

(5.26)

For the relationship between horizontal composition and pasting of squares see
remark 311

We check that o? is indeed a 2-cocycle. Given suitably incident 1-cells of H
we need to verify that the analog of hold, that is,

O3 n0ogD1 (0(K) 007 ;) = 0fg,n 401 (0F ,000(9)), (5.27)

hence (5.28]) commutes. O
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60
f f ji
9o 90 g0
— —_— —_—
g1 /j /Jf’ go g1 i /Jf’ 9o 91 ,j/ /Jf’
g2 g2 92
g1 g1 g1
£ i 7
ho ho hg
—
h1 fi /lfﬁ ho —————— M fj/ /J{fﬂ ho = h1 fi /Jf”
h2 h2 h2
— —
i hq h1
7 F 7
k‘() k‘o k()
k‘l f/i /lfﬁl k’O kl f’j{ /lfﬁ/ kO kl f/j /lf”/
kz k?Q kg
— — —
k‘l W k}l W ]Cl W
ﬁ f/// ﬁ
Y Y
7 7 !
9o 9o go
—
9 /j /lf/ 9o 91 i /lf’ 9o 91 /j /lf’
g2 g2 g2
g1 g1 g1
i 7 #
ho ho hg
— —
hl fi 4lf” hO hl fj/ /lf” hD hl fi /Jf//
hg h2 h2
—
1 1 h1
f// 7 W
k}o ko k'()
k1 f/i /lf/// ko k1 f/i /Jf/// ko k1 f’i /Jf///
kz k?2 k}2
— — —
k‘l ﬁ kl Y kl W
ﬁ ﬁ
(5.28)



Chapter 6

Higher Cells

In order to describe higher transformations between maps of Gray-categories
we construct an internal Gray-category in GrayCatg: as a substructure of the
iterated path space.

6.1 Combining Path Spaces and Resolutions

We begin by describing explicitly the action of € : QG — G as follows:

- ( [fh%wfnﬂ) - (flﬁf"f> (6.1)

[f1senfn ] Ji#to-#ofn

(923[91,05--,91,mg, >
fngls [91,050005 go,0#o 91,070

#090,n4, g2 #091,ng,

, [90,05--+5 fiseees
€
B0gol | ol

90,05--+,90, ngo])

91,7191]

[f{,w,f,ﬁf,] f{#o-“#of;,f,
(6.2)

f1 17"'7f{,nf/7h0717"' honho
(a 1, gO 1y ,go,ngOL [h0,17 .. hO nho
(c2; 91 dseeos Gimng, [, nhl]

(0437 g1, 17~-~,g1,ng17f1,1,---’f1 ny >

o aq, 02, g2, ho;

92; 911---91, f1,1---f1
- N nf goa#o - #09o,ngy 0 91,170 F0G1,my,
(& fl17"'7f1,nf,a90,17---aQOnho = h h h h
ho [ 3 I 7 0,1%0 - #ohonn, » Mi#o - Fohin,
27 1,1,- -7/ 1,71}117 1,15+ 17lf fl,l#()"'#()fl,nf7f{71#0.“#()f{,nf/
f117~'~af1,nf/ah0,17~-- hOn;LO

[90.1, - - - 790,7190]7 (91,155 01, nql
[ho,1s- -+ honng b R s h1,nh1}
[f1,17' . '7f1,nf]7 [f{,l? .. '7f{,nf/]

(6.3)

61
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— (Fl;ahﬁla[gOla"'ag()ngOL[hO17~--7h0n;0])7

’ ’ ’ o = (I',T 6.4

¢ ((FQ;O@,ﬂQ,[91,17---791,%1],[hl,l,---,hl,nhl]) (F1.T2) (64)

where for the 3-cells we used the abbreviated notation of ((4.4]).

—. 0le G - -
Lemma 41 The map € : Q' G — is Cartesian with respect (_);.

PROOF ¢ is obviously surjective on 0- and 1-cells and 2-locally an isomorphism.

. . -\ . ole -
Let FF HU: Cat — RGrph be the usual adjunction, then (€);: Q'G; —
@1 has a splitting s: U(al) — U(Q'G1) under U as follows:

%%‘)—(L) (6.5)

[f]
— /
S gﬂ /92 lgl = [90] (92;[91,.7”];[.4;90]) [91] (6.6)
—
f/
(]

Obviously in RGrph we have U(?l)s = idU(@l), taking the transpose 5 we get

FUG) = Q'8 —— Q¢
. Fl , (6.7)
G,

. — . . . — . 1@ T>
since € is Cartesian we can lift 5 through (_); to obtain ¢: Q — Q'G

satisfying

QG ¥, QG
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. . H . . .
Let us consider the action of 5: Qlal — Q'G;. On O-cells it acts just like
s, on 1-cells we have the assignment:

[f"]
f7L
—
gSJ /nlg?
92
— (93 #0g2#0-H#ogl
! Hy
s = | l90+90 #1(g1#0-H#ogsHo - Hogy ) #1 - [975-97]
P #1(g1#0-#ogl ™ #og5);
[g%).”’gI",f"])[fg,g(l)’”.’gg’])
g{ /llgi
gz
fO
(1]
(6.9)

Lemma 42 The family ¢ is natural with respect to maps F: G — H.
ProoF Consider the diagram

ez

G

Q'@ Q¢3¢

Q1% ﬂ J? , (6.10)

QH—— QH——— &

—

°H

since the top and bottom triangles as well as the right hand square commute
we obtain e_ﬁwHQlﬁ = eﬁﬁwg. Since 11 = 5 we need to only verify that
EH(Qlﬁ)l = ((ﬁ)’)ﬁ@,, but this is immediate from the action of U and Q.
Naturality then follows by remark O

It remains to verify that v is compatible with the co-multiplication d: Q! —
Q'Q!, that is,

Q'8 -, Q@ 2% qIQIC (6.11)
1&{ lelg

— —_

Q'G Q'Q'G

&l
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commutes. We will prove this using, again, remark |[14] with ¢ and the commu-

tativity of the underlying diagram of categories

FUG) -2 FUFU(GL) 2Y5 FUQIGY) (6.12)

1 i

Q'G, — 1Q1<Gu
dg1

But because the upper left object is free over the reflexive graph U (@1) it is

sufficient to check for generating 0- and 1-cells.
For 0-cells we compute:

Ba( L) - (1, )-( )
=5( UL, ) =s(Fus) (L, ) =sFUs)(FqU) (L, ) (613)

And likewise for 1-cells:

(f] ([f1]
f
— - ; / (g2 /
deis| o 2z o] =der | ] T Twa | = | e @IV gy
g2 (£ 90 y s[90]])
o J
('] Eg)|
(f]
f f
— —
5| o] Ejgc?jg[g]l)ﬂ 0] | =s(FU3) gﬂ /92&1 =35(FU3s)(FnU) gﬂ /ng(gl
J — -
f f
(]
(6.14)

Furthermore we can check that post-composing (6.11]) with e gives a commuting

diagram:

Q'€ i d 2% QIQic Y QIQic

(6.15)
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using , naturality of ¢ in lemm and the fact that Q' is a comonad.
6.11)

Hence we can cancel € and obtain (6.11
So, we have proved the following

% )
Lemma 43 There is a natural transformation 1 : Qla — QY(_) satisfying
properties and (6.11). We call it a semi-distributive law. a

Remark 44 In terms of formal category theory the pair (U,w) is an endo-
morphism of the comonad (Q,d, e), that is,

GrayCat Q) GrayCat GrayCat g GrayCat

id% 31 % JQl = ic\{ id%@l (6.16)

GrayCat — GrayCat GrayCat —— GrayCat
) )

and

Lemma 45 The functor C; extends canonically to an endofunctor P of
GrayCatq: by

P(o—tom)= (e —Ha2% )= (32LE) 6

Furthermore, it preserves strictness of maps.

GrayCat Q) GrayCat
/ Q' = GrayCat—ﬁ»GrayCat L) .
|
| e

GrayCat —— GrayCat

)

GrayCat *> GrayCat

GrayCat *> GrayCat

(6.17)

PrOOF We use the properties of ¥ to check that this assignment is functorial.
Given two maps f: G - H and ¢g: H - K we compare P(g)P(f) at the top
and P(gf) at the bottom:

w—>7k>

QG —5QIQ'T 24 Q%‘;—)Qlﬁ Q'H

S %%

QlGTQlQlG

. (6.19)

The naturality of ¢ and (6.11) make sure they are equal. Preservation of units

is exactly .
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We remember that a strict map in GrayCatq is given by feg where f: G —
H is from GrayCat and e is the co-unit of Q'. Then by we get

Plfec) = f edv = ?6@ ) (6.20)

Meaning that P acts on strict maps like U, in particular, it takes identities to
identities. U

Lemma 46 The functor P: GrayCatg: — GrayCatq preserves limits of dia-
grams of strict maps.

PROOF Finally, by lemmathe restriction U of P to GrayCat preserves limits:
Let p;: im{H;,b,} — H; be a limit cone in GrayCat, let f;: G = ﬁl be a

cone in GrayCatq:.
» lim{H;, by, ;

\ Lﬁ (6.21)

H;

P7 is a limit cone, hence there is the unique weak map (fi): G - lim{Hj;, by, ; O

Lemma 47 The functor P: GrayCatg: — GrayCatq: preserves induced maps
of limits of strict diagrams, that is, P(limf;) = lim(Pf;).

PRroOOF Consider

—
QUim{G;, ak; v Q1 Um{G;, ay } % hm{H“ b
@ (7) \ 1

1m’Pf1
Q' Q'lim{G;. a1} o,
Q'G; Q'G; —> TH;

(6.22)

— .
using the conventions of Also, note that limf;¢) = P(limf;) by definition.
limf; is the induced arrow for the source f;(Q'p;), imPf; is the induced arrow

for P(f;)Q*(p}). Since

— ?ﬁ

pi (WP £;)Q'(p7) = pjlimfivy (6.23)
and 172 is a limit cone we obtain
. T
(mP £;)Q" (p;) = lim fy1). (6.24)
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If the limit is, for example, a product we may now say that
P(fxg) =PfxPg. (6.25)
From now on however we shall use x for the product of arrows in GrayCatq:.

Lemma 48 The face maps are natural with respect to weak maps, that is

dy
P ]Lf (6.26)

commutes.

PROOF We write (6.26]) in terms of its underlying maps:

Q8 15 QT -2 ¢ =2 g6

QlQlanl(ﬁGéQlG% G (6.27)
Qlﬂ ﬂ Jf
QH —Q H %; H

that is, commuting is equivalent to the outer frame in commuting.
All parts are given by naturality and the co-unit laws of Q', except the upper
right square.

We use remark [14] to conclude dyy) = Q'dy and d17) = Q'dy: By naturality
and semi-distributivity we get edyy = do€v = doe = eQldy, furthermore
(do)1 = (Qldp); is immediate from the definition of . The map d; is
obviously treated in the same way. O

Lemma 49 The degeneracy maps of the path space are natural with respect to
weak maps:

G—IR@

I b o
H

—H

i
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Proor Consider

QlG d QlQlG Qle QlG Qli Ql@
{ L
Q'Q'G g QIG5 QIE (6.20)

Q
=
<;

~

«—
Ei\L

L
=
=

We conclude that then top right square commutes by computing i = ie =
eQli = €¥Q' and checking that (4Q'); = i; and again applying remark
together with lemma, O

The functor P can also be applied to Q'-graph maps by setting P’ = (Pé)v;
see lemma [23] for the notation. For the sake of completeness we describe briefly
the effect of P’ at the level of 1-cells as well as its 2-co-cycle. Let G: G — H

be a Q'-graph map. We take a 1-cell g: f — f’ from G and calculate:

- \V - 4f/>
(P'G)(g) = (G¢> (9) =G gﬂ/g/lgl
—
f/
GIf] L}
A &7
= | Glool E(”;){g“f]’ Gl | = | Gof #iGe  |ca | (6.30)
/go /#1G§1vf
- —_
G[f'] Gf'

Taking two composable 1-cells g: f — f" and h: f/ — f” of @ we get a
2-cocycle with components as shown in 1] where in the end the Gk are
iterated 2-cocycles of G.

6.2 Iterating the Path Space Construction

Remark 50 As a consequence on lemmal[{§ and lemma[f9 The maps i,dy, d;
and m for all Gray-categories H constitute natural transformations with respect
to strict maps.
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Glho#ogol <= Glho,
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Qd

[ho#0g0] ﬁ [ho,
0:90

ho# 090

ho#090 <:d ho#o9
1

4
(h2#090

_

(M#ogo/h
1
#/(hl #092)

091% h1#091
1

69

—
f//
[f] [f]
(d(hy#090)#1 (h1#092)5
(h2#0g0)#1(h1#092),
((h2#0g0) (h2#0g0)#1(h1#092); ((h2#090)
9o #1(h1#092); [h1,91.F)1F" shoFog0]) #1(h1#092);
[h1,91.f], [h1#091,f],
[f",ho,90]) [h1,91] [ho#090] /[f”ﬁo#o!]o])

[£"]

Glf]

Khg,g0

G((ha#090)
#1(h1#092);
[h1,91,f],
[f",ho,90])

4

go]

Gl

Gf

G(ho#togo) s= GhottolGyg

ho,90

7

én#//)hogo
G #1G ((h2#090)
0
#1(h1#092))
#1é“h1=917f

Gf//

[h1 #091]5: [h1,91

]
hi,9

Glhi#og91]<= | Glh1,01]

GkhyJgy

[
) Glf]
G(id(hy#090)#1(h1#092)5
(h2#0g0)#1(h1#092),
(h2#0g0)#1(h1#092); G((h2#090)
[h1,91,FL,If" s ho#090]) #1(h1#092); ~
i ) [hi#tog1,f],
Glh1,91] G[ho#090] /[f”vho#ogo])
Gl
Gf
G((h2#090)
% #1(h1#092);
[hl#oglrf])
Ghi#0Gg1 G(ho#090) [f" ho#090])

G(h1#091)<=| Ghi#0Gg1

GEnylgy

Gl

(6.31)

0 h1#0g1
#/(}h #092)
f
SN —
f f f/ /
7 (h2#090
mid(hz#ogm#ﬂhl #092); hi yhz J/hl gﬂ /g/ lgl ’ ho#odg #/(’n #092)
— _
f i I’
-
f//

h1i#0g1
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For reference, this means that for all f: H — K the following diagram
commutes sequentially:
—— H
L«

K

+|l:

H xg H 2 (6.32)
.

i
4 1]
K xx K —— K

m

1

Iterating the arrow construction yields an internal cubical set, so it allows
us to talk about higher cells in the internal language of GrayCat. But since
we want to construct an internal Gray-category we need to restrict to cubical
cells with certain degeneracies. The general recipe beyond the construction in
section |4] is to apply U and squash the excess faces given by cm so that the
only non-trivial faces of each cubical element are the ones given by dp ;.

This general procedure will canonically yield an internal reflexive n-graph,
we will furthermore have to provide the operations in each degree to actuallty
obtain a Gray-category. We carry out this construction for the degrees 2 and 3

n[6.2] and

2-Paths

We construct the space of 2-paths M over ﬁ and give the vertical composition
of 2-paths and their whiskers by 1-paths.

The O-cells in H are squares, and we want to filter out those square that
are actually bigons, that is, have identity arrows as left and right sides. That is
exactly what we get by forming the double pullback on the left:

i -

where ﬁ is the intersection of the pullbacks of dy and d; along i. Let d{) =dpj
and d} = dqj.

(6.33)

Lemma 51 The diagram
= dj dy
H— H ——H (6.34)
d) do

s a globular object, i.e. dodé = dod{ and dldg = dld{.

PROOF Using the naturality of dy and d; we calculate:

dod, = dodoj = dodyj = doido = dyidy = dydyj = dodrj = didly,  (6.35)
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and similarly for d;. O

To get a unit for H, that is, an identity 2-paths for 1-paths, we consider the
following diagram:

(6.36)

do
dil d() d_l> d(ﬂdl

dy
H%ﬁ:ﬂ-ﬂ
3 d[)

the upper left span is a compatible source by the naturality of ¢. The induced
arrow ¢ is a joint section of d) and d]. Hence we get:

Lemma 52 The diagram

_ 4
He H (6.37)
dy
s a reflexive graph. |

Lemma 53 The mapping ﬁ extends to a sub-functor of (?%: GrayCat —
GrayCat with natural embedding j.

PRrROOF For each H the map j is a monomorphism by construction and ﬁ
extends to morphisms by the universal property. O

Lemma 54 There is a multiplication

H x gy g H—F—H (6.38)
with
dm = djp, (6.39)
dym = dipo

uniquely induced by me .

PRrROOF All we need to show is that m(j x j) factors through j, that is, show
that the two outer rectangles commute:

ﬁ de;,d{ ﬁﬁ) ﬁ Xdg,dy ﬁ (6.40)

Pol | P1 »\:m fm
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that is, we shall verify that

dom(j x j) = idj (6.41)
_>
a

in order to obain T as a universally induced arrow.
First we prove that dopg = dops:

dopo = doidopg = dojojpo = dodojpo = dod}po = dodipy = dodpy = d(op1 :
6.43
which holds by (6.37), (]M[) and (6.33). Similarly dipo = dip;. Thus we may
define d) = dgpo and d} = dypy. Note that j x j is universally induced by
dojpo = d1jps- - -
Furthermore we need that (idy x idy) = (4,4)d{, and (idy x idy) = (i,4)d}.
Consider

b P1

ﬁxdgde

==

(6.44)

\i,i)
Po

B g u B—®

I

H _ L H H

EO [ do

=]

The top and left squares commute by and makes the pair (idopo, idop; )
a Compatible source for lower right pullback square. The universality thus
proves our equation.

Finally we verify that

jom(jxj) 70><7 )(Gx7) 7 ]Xj()] m(idojxidoj) = m(i,i)dy = id}
(6.45)
By the same token dym(j x j) = id} hence we get the desired 7.
To check (6.39)) we calculate:
dyim = dojm = dom(j % j) = dop1(j x j) = dojp1 = dypr
g

Lemma 55 The composition m is unital and associative, that is, it makes

(6.37) a category.

ProOF Obvious since m is so: Using the notation of (6.40) we can formulate
the associativity condition as the two composites in the left hand column being




6.2. ITERATING THE PATH SPACE CONSTRUCTION 73

equal:

ﬁ X i ﬁﬂ) Xdo,d1 ﬁ (646)

whence we conclude that jm(ﬁ x m) = jm(m x ﬁ), and by j mono we get the

desired m(ﬁ x m) = m(m X ﬁ)
For the unit we can argue in the same manner:

H

<.

ﬁ —

(H7) \@z>
i H X 4y 0 ﬁw—> X dody i (6.47)
= / /

O
Lemma 56 Applying P to an internal category
dy
K Xgp.0, K —— K== H (6.48)
do
yields an internal category
4
P 1
K xp 7 K =—=Kxgqua K-35 K =5 H. (6.49)

do

Proor This is true since P is an endofunctor of GrayCatq: that by
preserves pullbacks of strict diagrams. In particular

KX'Pm
K Xzo’jl K X70771 K 4/%@ X70771 R

Pmx Pm (6.50)
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commutes since by (6.25) P(Kxm) = ExPm. O
Lemma 57 There are left and right whiskering maps
Hxgy, H—¥OTH (6.51)
0,01
Hx, B H (6.52)

induced uniquely by P(m).

PROOF We construct a restricted horizontal composition m/.: H x dody H-» ﬁ
in the following diagram:

- ; J

(6.53)
where i x j is universally induced and m;. is defined as the composite P (m)(i x j).
We need to show that m;. factors through H.
Consider the defining pullback for H:

(6.54)

We need to show that jom; = idypo and jlm; = idyp1 to obtain a universal
w,, hence we calculate:

dom!, = deP(m)(i x j) = d ojpo = dopo (6.55)
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71m’r = 717’(m)(i X j)= 712'171 =dip

using the definitions of 7 x j and j as well as the naturality of 4.
For wy there is a corresponding argument.

(0]

(6.56)

O

Lemma 58 Left and right whiskering are compatible and associative, that is,

the diagrams

ﬁ Xdo,dy ﬁ Xdo,al ﬁMﬁ X

d ,Elﬁ
mx% ﬁwr
X gy 7, A ——p—— H
B g B oo B 225, T
H x Xdo,d1 —— H XGd

commute.

(6.57)

(6.58)

(6.59)

PROOF The objects in the above diagram embed into pullbacks of ﬁ by j and
these pullbacks being preserved by P and the monicity of j yield the desired

result.

Lemma 59 wy and w, extend m. That is

ﬁxdodlﬁ*/—”vr H ﬁx%dlﬁ H
ﬁxdé ﬁxd{ dj[ d do x dyxH 1\
i i i 7|
Xdo’dlﬁ*lm—) ﬁxdo,dl ﬁ‘/m—)ﬁ

commute serially, and the outside 0-faces are preserved:

dow, = dop1 dow = dopr
dyw, = dipo diwe = dipo

O

(6.60)

(6.61)
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PRrOOF Considering the proof of lemma [57] we calculate:
B, = dojuw, = dem'. = doPm(ix ) = m(doxdo)(ix§) = m(H xd}) . (6.62)

Similarly for d} and w;.

The equations (6.61]) hold by the construction as given in (6.54)). O
Lemma [59] allows us to define left and right horizontal _composites. Call the

composite along the middle in the following diagram hy: H x - o~ H - H:

= w, =
H x, g H— s T
d{;x%
HxggHootrHxy g H—H (6.63)
de{l
Ty, B W
0,01 wye
and correspondingly h,.: H x— do.dy H - H:
By, B—Y 8
de%\
EX%,TE / >deéd]H%ﬁ ) (6.64)
d{;x%
Hxy g B—t—— H
Lemma 60 Left and right horizontal composites give a globular object
= = hé = d{
Hxp g A A—= | (6.65)
; I a
Proor We calculate:
e O dojm (w, () < ), i x ) (6.66)
O Goum(j x ) (wn(dh > ) wn(F x ) (6.67)
2D gy () = ), i x o)) (6.68)
= dom!.(d} x H) (6.69)
= dyPm(i x j)(d} x H) (6.70)
©29 11(dy x do) (i x §)(d) x H) (6.71)
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= m(dl x d) (6.72)

and by the same token _ _ _
d)h, =m(d) x d})). (6.73)
Analogously for d{. U

3-Paths

We proceed to construct the internal 3-path object and the operations involving
3-cells. Note that the (_) and (_) used in this section is not at all a functor.

We apply the construction in (6.33)) to (6.37)) as follows:

= =2 d =
H— 0 —=H (6.74)
do
dj d] d‘jld_{ d] dJ
d
H = H
K3 dO
By (6.37) we get a reflexive graph
= 4 _
=_“2,=
He— H (6.75)
y
where by (6.34))
= d{ = { dl
A——H——H—H (6.76)
dj dJ do

is a 3-globular object. Furthermore, by applying the reasoning of lemma [54] we
get a vertical multiplication map

deé’di‘H—/—)H (6.77)
arising as a restriction of me
= = 2 =
H deo' djl' H— H Xdo,d1 H (678)

Pﬂpl \ m \}m

dyl | dy H—>H

dtﬂdl XHZ

where djy = dopo and d} = dp;.
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Lemma 61 There are left and right whiskering maps

= I =
Hx, 7. H-Y%H (6.79)
H % gy L H (6.80)

induced uniquely by Pwy and Pw,.

PrOOF We define wy as the universally induced arrow in the following diagram:

= jxi 2
H dodd dy — H xd:;’z
~
| wg Jwe
| b
ol | T - L H| —— X do,ds ﬁ

&
&
Sl

h
H
dn

where rg = m(dig X ﬁ) and 1 = m(d71 X ﬁ) We calculate

L
:

(6.81)

iTO
m(d} xﬁ = Pm(ixi)(d) xﬁ = Pm(id}xi) = Pm(d}jxi) = P(djwe)(jxi)
—
= dPuw,(j x i), (6.82)

—
and likewise for r; and d]. And hence we obtain wy, and w, by analogy. O

Lemma 62 w; and w, extend wy and w, respectively. That is

ﬁ XdO’dld{ H——H H Xdodj7d1 H
C | S| P %ﬂ 7 dﬂd’ (6.83)
ﬁ Xdo,d{ H w, H H Xd{),dl ﬁ we =

commute serially.
PROOF Inspecting (6.81)) we can calculate
g
= dyjwe = dop(wg)(j X ’L) = wgdo(j X Z) = (do X do)(] X Z)
o(d) x H). (6.84)
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And likewise for the other squares in (6.83)). O
Lastly, we need the whiskering of a 3-path by a 2-path along a 1-path. We

can reapply the basic scheme of

Lemma 63 There are left and right whiskering maps

t

==llf
==]lf

X H—— (6.85)
Hx ,—H—+>H (6.86)
dg,dq
induced uniquely by P ().
And these extend m, that is
Ho, =mEAx d)  do, =mHx d) (6.87)
dig =m(d xH)  didy =m(d x H) (6.88)

PROOF The desired map arises as a universal arrow in the following diagram:

|
X
QL
|

Kl

<8

S
o
a

T
3 N
3

j ;) dy =
3 \H s H . (6.89)
do
B -
ﬁ : ¢ H .
7 do
— — — —

liow, we can verify id%go = d)jpo = dpo(i x §) = dyPm(i x j) and idip, =
dijpr = dipa(i x j) = i Pm(i % j).
The equations are now immediate. O

6.3 The Space of Parallel Cells

For a Gray-category H we define the space of parallel 1-cells P!(H) as the
following limit:

H (6.90)
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H (6.91)

Lemma 64 The canonical map <d%, ) H— P%(H) is 1-Cartesian.

~_—

PRrOOF Consider the following cells in "

I = (f1; fa, f35 fo, f1) (6.92)

9 = (943 92, 933 90, 91) (6.93)

h = (hq, hs; ha, hg;ho,h1): f — g (6.94)
k = (kq, ks; ko, ks; ko, k1): f — g ( )
a=(ag;a1,a0): h =k ( )

By construction the map <d%, d{> acts on this data as follows:

[ ((fas fos f1), (f35 fo, f1) (6.97)
g+ ((92: 90, 91), (935 90, 91)) (6.98)
h = ((ha; ha, hs; ho, ha), (hs; he, hs; ho, hi)) (6.99)
k= ((kas ko, k3s ko, k1), (ks; ko, ks; ko, k1)) (6.100)
a > ((as; a1, a2), (as; a1, a2)) (6.101)

where on the right we find parallel pairs of cells from ﬁ, that is, in (6.102f) the
central square, the outer square, and the left and right trapezoids commute by
assumption.

The requisite compatibility conditions for f, g, h, k,a to be cells of T are
displayed in (6.102)). We obverse that the remaining trapezoids at the top and
the bottom commute by naturality of #; and ® in H. Hence we conclude
that given 1-cells h, k in H all higher cells, including 3-cells, between them are
determined by their image under <dé, djl> O
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82 CHAPTER 6. HIGHER CELLS

Lemma 65 The 3-paths compose horizontally along 2-paths, that is,

= <m(de{),wr(d{0x§)>
H

==l]]

deg)’dﬁl- H xdé,d{ H
<u7,~(d{ xﬁ),we<ﬁxd3)> = (6.103)
H Xdé,d{ H = H
commutes. O

6.4 The Tensor Map

Given that by lemma |64| we have a 1-Cartesian map <dé, d{ >ﬁ — P2(H) we

consider the following diagram in GrayCatq:

(6.104)

where hy and h,. are given by (6.63) and (6.64]) respectively. By (6.65)) we know
5.97)

that (he, hy) is a source for hence we obtain (A, k).

There is a map ¢ : (ﬁ Xqodr H); — (H); in Catg: given by:

fo 9o
(9, f) = ((92: 90, 91), (f2; fo, [1)) = /fﬂ\/gﬂ\
N

go#ofo go#ofo

/TN

= (92® fa; 9292, 92 f2; goFo fo, g1#0f1) = 92H<1f2 =il @
\ 7

g1#of1 g1#of1
(6.105)

and
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((h:1): (0.5) — o) = (e F bl ) M<k4,h4)
fo 90

//I ///
ho Pl Jnﬂk% k1

fl

’
91

w1, wa; (ghFoh2)F#1(ka#o fo),
~ ( (g5 #ohs)#1 (ks#of1); ho, ki ) , (6.1006)

where wy and wo are defined as the vertical composites in (6.107), by definition

these constitute the components of a 1-cell in m
such that

Lemma 66 (hy, h,), = <dg,d{>lt1 in RGrph.

PROOF One checks that (hg); = (d?t); and (h,); = (d’t); as graph maps using

definitions (6.63)) and (6.64]). d

Lemma 67 The 3-globular set

Pt 4t dt
P?(H) &—a" H+—= He=H (6.108)
Po do do

is an internal Gray-category.

ProOF We already know that its three lower stages constitute a sesqui-catgory.
The three top parts are trivially a 2-category. The tensor map is given by

H x5 - H —— P%(H) (6.109)
which satisfies the tensor axioms by construction. |
We can finally prove our desired theorem:

Theorem 68 Given a Gray-category H there is an internal Gray-category in
GrayCatq:

==1l]

at — dt dt
—He— H==H (6.110)
do do do

with composition operations m,m, m, we, Wy, Wg, Wy, We, Wy, and tensor t.
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ProOOF We have a globular map

dl

2

=
=y

N
E\H—EH

&
m%m

H
J (6.111)
——H

This globular map is an internal sesqui-functor in the lower and at the upper
degrees, and by ((6.104)) it preverses the tensor:

‘/—)ﬁ

=]
X
EH

<—‘“\

(d,d9) (6.112)
P2(H)

=]
X
9“\
EH

Using the results of 5| and |§| this proves that (6.110)) is an internal Gray-category,
that is, all the axioms of definition [ hold. O






Chapter 7

The Internal Hom Functor

We finally define the internal hom of GrayCatq:
G, H]

dq, di, dy
e = —_—

=\ T — ;
= | GrayCatq: (G, H) <—i=— GrayCatq: (G, H) +—i= GrayCath(G,ﬁ) +—i=— GrayCatq: (G, H)

do * do * d() *

by applying GrayCatq: (G, —) to the diagram , where the lower star means
action by post-composition. This includes the various induced composition
operations My, M, My, We, Wy, and t,. Because GrayCatq: (G, —) by definition
preserves limits in the second variable, it takes internal Gray-categories in
GrayCatg: to such in Set, that is, to ordinary Gray-categories. In analogy with
our earlier notation we write the compositions on [G, H] as ,, where n is the
dimension of the incident cell, we use * for the tensor of transformations incident
on a functor.

Theorem 69 Given a morphism F: G' -+ G in GrayCatq:, the map
F* =[F,H]: [G,H] — [G,H]
acting by pre-composition is a Gray-functor, that is, a strict morphism.

G

b

PROOF Assume a situation ¢/ _f .G +L H then we have

K
F*(Bxo a) = (B*o a)F = m(B, ) I
=m(BF,aF) = (BF) % (aF) = (F*B) %0 (F*a). (7.2)
Also, for identity transformations we have:
F*idg = iGF = idgp, (7.3)

hence F* is a functor. By the same reasoning the higher operations including
the tensor, are preserved as well. O

87
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Remark 70 This way [—,H]: GrayCatg: — GrayCatq: is an endofunctor for
each H.

Remark 71 The Gray-category [G,H] is a Gray-groupoid if H is one.



Chapter 8

Putting it all together

Definition 72 A lax transformation a: F — G between pseudo-functors

F,G: G -» H of Gray-categories is a pseudo-functor a: G - such that
doao=F and dia = G.

Remark 73 Using the definition of path spaces in[25 and the characterization
of pseudo-maps in[29 we note for reference that a lax transformation « is given
by the following underlying data:

1. for each 0-cell x of G a 1-cell a,: Fxr — Gz,
2. for each 1-cell f:x — y of G a 2-cell

Fr—2 Gx

| o Lo o

Y

3. for each 2-cell g: f — f' of G a 3-cell of H

Fz —2% Gz Foz—2% Gz
7 J o J 7 |
<= fo of |of =22 Ff| oF ar af 9
v |/ 7" T & 8.2)
Fy— Gy Fy— Gy
4. for each pair of composable 1-cells f: x —s vy, f': y — 2 an invertible
3-cell
Foz —2 Ga Fz—25 Gz
1L Off/ le
V7 - /
F(f#of| <= Fy—5- Gy Ll F(f'#of f#of)é Gy
R 7
F ! e %4} G ’
V77 J ! JA
Fz — Gz Fz — Gz
(8.3)

89
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Furthermore, these data have to satisfy the following equations:

1. On identities of 0-cells:
aid :idaz (84)

x

2. for each 3-cellT': g — ¢’ the square of 3-cells in H

Fo—2 Ga Frz —2 Gx
N |
Ff<Fg= I‘Lf /af/ JGf =——\ Ffi aff  Gf<Gyg Gf (8.5)
Fy—— Gy Py —— Gy
(cy#oFT)#1 oy #1(GT#oas)
/ Fr —2"% Gz Fz —" Gy
/Jz>i 7 dpory
Ferg= po o7 |ar Ffl  of GrGe= Gf
1 / g/ / 1
Fy — Gy Fy——Gy

commutes. This condition obviously comes from the definition of 3-cells
in the path space.

3. For every pair g: f = f',q': [ = f":

(ay#oFg')#1ay ag#1(Gg#oas)
Fr—2" Gx Fr—2* Gz Fr—2* Gz

F@yﬁtf o7 leEF%/FﬁFf’ o G“f’éb?fg Ff’i a.f/a‘f%mcf
NG I A A Dabica

FyTy>Gy FxTGy FyTy>G’y
(8.6)

and for identity 2-cells idy: f = f we have an identity 3-cell
Qid, = idaf . (8'7)

4. The family of 3-cells has to satisfy a kind of cocycle condition: For
a composable triple f, ', f" of 1-cells &® has to satisfy equation .
furthermore, o has to satisfy the normalization condition:

. if f =id
a3y = der =1 (89)
’ ido, if f=1id,
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94 CHAPTER 8. PUTTING IT ALL TOGETHER

5. The family of 3-cells o has to be compatible with left and right whiskering

according to and .

These conditions are derived from ones in the definition of pseudo-Gray-functors
[23 Note how conditions 4, 5, 6 of[29 are trivially satisfied for transformations.

Definition 74 A transformation a: F — G where the cocycle o has only
trivial components we call a stiff transformation.

Lemma 75 A stiff transformation a: F — G with F and G strict Gray-
functors is a 1-transfor in the sense of [Crans|1999]. O

Remark 76 Given two laz-transformations F *Q>G*B>H their composite
B x a given by m(B,a) and has the following components:

1. for each 0-cell x of G the 1-cell

(B*at)
r—

F Hx = Fm&Gx&Hmv (8.12)

2. for each 1-cell f: x —> y of G the 2-cell

Fx *)(B*a)sz Fr—23 Gx *ng Hx
/l i 7 /l
Ffl (Bxa)f |Hf — F of f B Hf 8.13
i z 7z 17 (8.13)
*Q)y Yy

3. for each 2-cell g: f — f' of G the 3-cell of H shown in (8.14))

4. for each pair of composable 1-cells f: x — vy, '+ y — 2z a 3-cell shown

Definition 77 Assuming « and 3 are as in definition and F and G are
pseudo-functors G - H, a modification A: « — 3: F' — G is a pseudo-

functor A: G - H, such that dyA = « and d1 A = B.

Remark 78 A modification A: oo — 8 according to[77 and[2 is given by the
following data:

1. For every 0-cell x in G a 2-cell

T
Fr A, Gz (8.16)

b

Ba
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2. For every I-cell f: x — y a 3-cell in H

/‘\1 /—\
Fx . Gz Fr 7 Gx
FinGf 4 Fi % o (8.17)
Fy /7 Gy Fy 4, Gy
\\/‘ \\U//
55/ ﬁy

This data has to satisfy the following conditions:

1. Units are preserved:
Aja, =ida, (8.18)

2. Compatibility with the cocycles of F,G,«a, B according to

3. For 2-cells g: f = f' in G the images under F and G as well the data
of A, a and B are compatible as shown in

Lemma 79 A transformation A: o« — 8 where o, 3: F — G are stiff and
F,G are strict is a 2-transfor in the sense of [Crans|1999]. O

Definition 80 Given modifications A, B: a — 3 a perturbation is a pseudo-
Gray-functor o: G - H such that dyo = A and dyo = B.

Remark 81 According to[80 a perturbation is given by a 3-cell in H

/}u\[ /\
Fr A, G === Fz B, Gz (8.21)

L

/Bft BI
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for each 0-cell x in G such that

Fx ‘fL Gr 4

NG Sy o N

5

'

Fz . Gux

(8.22)
74

B /8/1,

Fy /7 Gy Fy /7 Gy
N4 N
By By
Am HJBf
Qg Qg
/\ /\
Fr .7 Gx Fr 7 Gx

©
F e F S et
/j/i\ (oy#oF ) i/\
Fy v Gy H#iag Fy v Gy
Q% NG %
By By

commutes.

Lemma 82 A perturbation o: A — B fulfilling the conditions of [79 is a
3-transfor in the sense of [Crans||1999]. O

Adjunctions

We can embed the ideas developed in section [3]in a more global picture. The
functor Q': GrayCat — GrayCat is part of the following adjunction of fibered
categories:
(D™ (F)
F*(GrayCat) 1 ~ GrayCat (23)

1%
F*((_)lﬂ (U
F

RGrph 1 Cat
U
where F' means “free category over a reflexive graph” and U means “underlying re-
flexive graph of a category”, (_); means “underlying category of a Gray-category.
According to |Hermida)[1999, 4.1] the adjunction F' + U lifts canonically to
an adjunction ((_);"(F),F) - (U,U) of fibered categories. Which means in
particular that (_);"(F) - U is an adjunction and our Q' can be defined as
(L1 ()L

The objects of Graph x GrayCat might be called 1-free Gray-categories.
We can construct a further resolution which we call Q2.

Remark 83 Let P: £ — B be a 2-fibration in the sense of |Hermidd| [1999].
Giwenu: I — PX andu’': I' — PX for X an object in &; and an equivalence
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h: I — I’ such that w'h = u. Then the unique filler h over h is an equivalence
as well.

In particular, given the comparison functor K: Xpy — A for the comonad
induced by F 41U : A — X lifts to a comparison functor K.

Lemma 84 If F is comonadic, then so is ((_)1"(F), F).
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