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Abstract

The volume of data that is currently collected and stored was unthinkable a few years ago.

This amount of information makes data and all phases of the process of collecting, storing

and making sense of it, extremely important. Both academia and industry are working in

this process. Data mining is a key component to help users to make sense of this huge

amount of data. This research field includes a large set of tasks. This thesis addresses the

problem of prediction using spatio-temporal data, i.e. data that are indexed both in time

and in space.

The work presented in this thesis is driven by several real world applications: (i) monitoring

and controlling water quality parameters within the water distribution network at Porto,

Portugal; (ii) forecasting water consumption for a water distribution company in Spain;

(iii) forecasting wind speed in some wind farm in the US; and (iv) filling in missing pixels

of images.

Our work is organized in an incremental fashion by addressing different particularities of

our applications. Concretely, we first address temporal prediction problems, then spatial

prediction tasks and finally we focus on spatio-temporal data sets.

For temporal data we propose a new class of forecasting tasks that we name 2D-interval

predictions, which consists on trying to obtain a forecast of the expected range of values

for a future time interval. We formalize this task, propose a solution to it and establish the

correct way of evaluating models for these tasks. Our extensive experimental tests show

the advantage of our proposal for these tasks.

Regards, spatial data we address the problem of spatial interpolation by proposing a new

methodology based on two key ideas: (i) transforming the problem into a regression

task and (ii) describing the spatial dynamics by spatial indicators. This methodology



differentiates itself from the state of the art in that it allows the use of data from non-

nearby regions to forecast the value for a certain location, thus somehow contradicting the

first law of geography. We have extensively evaluated this methodology in problems of

filling in missing pixels in photos. Our results show a clear advantage of our proposal when

compared to the state of the art in spatial interpolation.

Finally, we proposed a new technique to improve the prediction accuracy in spatio-temporal

data. Our technique differs from the most common approaches, in that is uses spatio-

temporal properties of the data to improve the predictive accuracy. Namely, we propose a

series of spatio-temporal indicators whose goal is to describe the spatio-temporal dynamics

of the data for each location. We extensively test our technique using real world wind

speed data, and we observed a clear advantage of our proposal when compared to several

alternative methods that can be applied to these problems.

iv



Resumo

O volume de dados recolhido e armazenado atualmente era inimaginável alguns anos atrás.

Esta grande quantidade de dados faz com que o processo de recolha, armazenamento e

extração de informação, seja fundamental. Tanto a academia como a indústria estão a

trabalhar arduamente em todas as fases deste processo. A extração de conhecimento de

dados é a componente chave para auxiliar os utilizadores na compreensão deste grande

número de dados. Esta linha de investigação inclui um grande número de tarefas. Esta

tese tem como foco o problema de previsão de dados espácio-temporais, ou seja, dados que

são indexados tanto no tempo como no espaço.

O trabalho desenvolvido nesta tese foi guiado por várias aplicações reais: (i) a monitoriza-

ção e controlo de parâmetros de qualidade de água, da companhia de distribuição de água

do Porto, Portugal; (ii) a previsão do consumo de água, de uma companhia de distribuição

de água em Espanha; (iii) a previsão da velocidade do vento de um parque eólico nos

Estados Unidos; e (iv) a previsão de pixels ausentes em imagens.

Este trabalho foi organizado de maneira incremental, abordando particularidades das

diferentes aplicações descritas. Concretamente, primeiro abordamos problemas de previsão

de dados temporais; em seguida, previsão de dados espaciais; e finalmente, concentrámo-

nos na previsão para dados espácio-temporais.

Na previsão de dados temporais propusemos uma nova classe de tarefas, denominada “2D-

interval predictions”, que consiste na tentativa de obter a previsão de um intervalo plausível

de valores para uma janela temporal futura. Foi formalizada a tarefa, proposta uma

solução para a mesma, e estabelecida uma maneira de avaliar os modelos para essa tarefa.

Realizámos um extenso conjunto de testes experimentais, que mostram uma clara vantagem

da nossa abordagem a este tipo de tarefas.
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Em relação aos dados espaciais, propusemos uma solução para o problema de interpol-

ação espacial através de uma nova metodologia baseada em duas idéias principais: (i)

transformar o problema numa tarefa de regressão e (ii) descrever a dinâmica espacial

dos dados através de indicadores espaciais. Esta metodologia diferencia-se do estado da

arte, na medida em que permite a utilização de dados de regiões afastadas na previsão,

contradizendo, dessa forma, a primeira lei da geografia. Nós testámos extensivamente

esta metodologia em problemas de preenchimento de pixels ausentes em fotografias. Os

resultados obtidos mostram uma clara vantagem da nossa abordagem, quando comparada

com o estado da arte em interpolação espacial.

Finalmente, propusemos uma nova técnica que tem como objetivo melhorar a precisão

da previsão em dados espácio-temporais. A técnica proposta difere das abordagens mais

comuns, pois utiliza as características espácio-temporais dos dados para melhorar a precisão

da previsão. Nomeadamente, propusemos uma série de indicadores espácio-temporais, cujo

objetivo é descrever a dinâmica espácio-temporal dos dados para cada região. Testámos

extensivamente o método proposto em dados reais de velocidade do vento. Observou-se

uma clara vantagem da nossa proposta quando comparada com métodos alternativos que

podem ser aplicados a este problema.
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Chapter 1

Introduction

The volume of data that is generated every day is growing exponentially. More data

(photos, videos, web traffic, etc.) are produced than ever before. The amount of data

stored in the world doubles every 20 months [Witten and Frank, 2005]. This huge volume

of data creates several challenges in terms of methods for the collection, storage and analysis

of the data.

Data analysis, also known as data mining or knowledge discovery in databases, is the

process of extracting useful information from data. Data mining is at the intersection of

several research fields - statistics, artificial intelligence, computer science, machine learning,

data visualization and databases. According to Witten and Frank [2005] “data mining is

the extraction of implicit, previously unknown, and potentially useful information from

data”; Rokach and Maimon [2008] refer that “the science and technology of exploring

data in order to discover previously unknown patterns, is a part of the overall process of

knowledge discovery in databases”; whilst for Torgo [2010], “data mining has to do with

the discovery of useful, valid, unexpected, and understandable knowledge from data”.

Kantardzic [2011] defines two general classes of data mining problems: description and

prediction. Description has the goal of providing better insights on the data, by finding

hidden patterns that describe interesting properties of the data. Prediction has two general

goals: (i) forecasting the expected value of a variable of interest given a set of explanatory

variables (predictors); and (ii) providing a better understanding of the relationship between

the predictors and the target variable. Several data mining techniques were developed to
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solve these two data mining problems. Fayyad et al. [1996] classified these data mining

techniques in six main tasks: classification, regression, clustering, summarization, change

and deviation detection, and dependency modeling.

Classification - discover a predictive function that can be used to forecast to which class

(set of categories) a new observation belongs to based on a set of values of other

variables (the predictors);

Regression - differs from classification on the type of variable of interest, which in re-

gression is continuous;

Clustering - find the “natural” groupings (clusters) of the cases in the data;

Summarization - is used to describe key properties of a data set (e.g. variability,

centrality, etc.);

Change and deviation detection - identify when significant changes in behavior have

occured in the data;

Dependency modeling - search for dependencies between variables, identifying correl-

ation between items (variables) in the data.

These and other data mining techniques are being applied to solve several real world

problems: from spam classification [Benevenuto et al., 2010; Boykin and Roychowdhury,

2005; Drucker et al., 1999] to financial markets [Kim, 2003; Tay and Cao, 2001]. Several

new data mining challenges are emerging, with new types of sensors (cheaper and more

advanced) collecting more data and new domains being monitored.

In this thesis we focused on applying data mining techniques to solve real world problems

described by data that has a temporal, spatial or spatio-temporal nature. The main par-

ticularity of these types of data sets is the fact that each data point is index by time, space

or space-time. Forecasting methods for these types of data need to consider the temporal,

spatial or spatio-temporal correlation between data points. Spatio-temporal forecasting

methods, in particular, have received little attention from the scientific community. Spatio-

temporal applications have as distinguishing characteristic the fact that it is expected that

there is some form of unknown spatio-temporal correlation between data points and this

fact should not be ignored by any method that is applied to these problems.
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1.1 Problem Definition and Motivation

The work carried out in this thesis was driven by the requirements of several real world

applications, namely:

Monitoring Water Quality Parameters: the company (AdDP - Águas do Douro e

Paiva) managing the water distribution network of the city of Porto in Portugal, must

have a tight control over several water quality parameters. Ensuring the quality of

the water distributed to the population of the second largest city of Portugal is of key

importance. For each water quality parameter the company has to guarantee that

the values are acceptable, and inside the legal limits imposed by the government. If

the company fails, severe penalties are applied.

Water Consumption Prediction: the water distribution network company of a city in

south-eastern Spain must supply clean water at the right pressure to the consumers.

To ensure that supply and demand are balanced, the company must known in advance

the expected consumption. With that information the company can be more prepared

to possible vulnerabilities in the system and can plan the best pumping scheme to

minimize its costs.

Fill in Missing Pixels: automatically fill in the missing pixels in a image is important

in many domains: surveillance, security, restoration, etc. An image is composed by

several pixels indexed in a cartesian system (coordinates x and y). Several factors

may lead to absence of information on some of these pixels. Filling in these missing

pixels is an important task that tries to predict unknown pixels at several locations

based on the known pixels of the image.

Wind Speed Forecasting: the wind farm in the eastern region of the US needs accur-

ate predictions of the expected future wind speed. That information is crucial to

negotiate in the electricity market. The electricity market is similar to an auction,

where the participants buy and sell energy. The expected future power production

is crucial to define the best bidding strategy to maximize the profit and avoids any

penalties from missing delivering energy.
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In the first application the AdDP company has to maintain a tight control of several water

quality parameters, on the entire distribution network throughout the year. This necessity

derives from the fact that there are legal limits that must not be crossed. As a cautious

measure the AdDP company created internal limits that are tighter than the legal ones and

serve as internal alarms that lead to inspection activities. These activities have costs to the

company and thus setting these internal limits is a big challenge for the company because

of the trade-off between these costs and the fines that need to be payed if the legal limits

are crossed. If the limits are too narrow, too many false alarms are generated, while if

they are nearer the legal limits, when alarms are generated it may be too late for a proper

corrective action to be taken. This task can be classified as prediction problem, more

specifically forecasting an interval where the values of certain water quality parameters

are expected to be. According to the AdDP company this intervals of “normality” of the

values will vary along the year as the parameters are influenced by several external factors

to the water distribution network. Still, these changes are not on a daily basis and thus

for the company it is important to have a forecast of the expected interval of values of

each parameter for a certain future time window (e.g. the next month). Such intervals

can then be used to drive their alarm generation (and thus inspection activities), with the

goal of minimizing their operational costs without incurring the risk of paying heavy fines

due to breaking the legal limits. In summary, the problem we are facing in this concrete

application is that of providing a forecast of an interval of values for a certain future time

interval.

A similar problem is faced in the second application - Water Consumption Forecasting.

More important than having the prediction of the consumption distribution for a single

point in the future, is to have the prediction of the consumption distribution for a certain

future time interval, e.g. with high confidence the water consumption will be inside the

interval [X,Y ] in the next 24 hours. The reason here is related with production planning.

It is very bad for a water distribution company that they are not able to satisfy demand,

so having the plausible distribution of the consumption values in a certain future time

window is very useful as it allows for an timely preparation in terms of making sure this

demand will be satisfied.

The third application consists in trying to fill in the missing pixels of an image using

neighboring pixels. An image can be treated as spatial domain considering each pixel
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location as a position in a cartesian system. Filling in the missing pixels of an image can

be seen as a spatial interpolation problem.

The fourth application has to do with the electricity markets and wind power generation.

These applications require accurate short term wind speed predictions. However, this

problem differs from traditional time series forecasting tasks because wind farms are spread

in space and thus the data that is collected is typically indexed in both time and space.

The way wind travels provides clear evidence that there should exist some form of spatial

correlation among the data that is collected, on top of the obvious temporal correlation.

In this context, the problem we are facing in this application can be classified as spatio-

temporal prediction task.

1.2 The Thesis Hypothesis and Main Contributions

The main connecting point between the different applications and problems tackled in

this thesis is the fact that the observations in the used data sets are not independent.

In all problems we address there is some form of correlation between the individual

observations. This correlation is either temporal, spatial or spatio-temporal. Moreover,

all the problems we tackle are numeric forecasting problems. Numeric predictions tasks

are usually addressed using multiple regression approaches. However, standard regression

techniques do not cope with the correlation among data observations.

In this context, the main driving hypothesis of the work in this thesis is that it is possible

to use existing out-of-the-box data mining modeling techniques to solve problems involving

spatio-temporal data, provided carefully selected data pre-processing steps are carried out

with the goal of providing the models with information on the spatio-temporal correlation

between the data points.

The main advantage and motivation for this approach lies on the fact that if this hypothesis

holds as true we are able to apply a large, well-known and tested set of regression techniques

on a range of relevant application domains. In this thesis we address a set of real world

applications using this approach. Our goals are: (i) to develop pre-processing methods that

allow incorporating relevant information on the spatio-temporal properties of the data, and

(ii) to show that with the resulting data sets and standard out-of-the-box regression tools
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we can obtain competitive performance with state of the art on these areas.

The work carried out in this thesis as lead to the following main contributions that can be

categorized in three main topics:

Temporal prediction: we propose a new time series forecasting task. The two most

common types of forecasting tasks in time series are point prediction and interval

forecasting. Point prediction is by far the most frequent, and consists on the pre-

diction of the future value of a time series variable for a given forecasting horizon

(next h steps). The main limitation of point prediction is solved by interval forecast.

Point prediction gives no information about the future variability of the prediction.

Interval forecasting predicts an interval of values for the given forecasting horizon,

where the future value is expected to be with a certain probability. However, interval

forecasting does not solve all problems related with the future values of the variable

of interest. For some domains, more important than having the expected interval for

a future time point, is to have an expected interval for a future time interval (e.g.

given a time series of the daily demand for a product, the production department

may be interested to know that the value of the future demand for the product is

expected to be between a and b in the next 15 days). We call this task “2D-Interval

Prediction”. We formalize this new forecasting task, propose a solution to it and

describe means of evaluating solutions for these problems.

Spatial prediction: we proposed a new technique for spatial interpolation problems.

Spatial interpolation is the process of filling the values of a variable at unsampled

locations based on sampled ones. The research on spatial interpolation is based in

some variation of the first law of geography that states that “everything is related

to everything else, but near things are more related than distant things” [Tobler,

1970]. These techniques limit the influence of the sampled locations based on the

neighborhood distance, and do not consider the values from far away regions. Our

approach extends this notion by allowing the use of both types of data, the nearby

values and values from far away regions. Our extensive set of experiments show that

our proposed technique outperforms the compared techniques representing the state

of the art on spatial interpolation.

Spatio-temporal prediction: the vast majority of the research carried out in spatio-
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temporal applications generated by sensor networks consider only one dimension

of the problem, usually the temporal dimension. In our opinion the use of only one

dimension significantly limits the correct understanding of the problem. We proposed

a new technique that is able to embed both dimensions, spatial and temporal. We

carried out an extensive set of experiments using real data from wind farms in the

US. The results of these experiments have show the advantages of our proposal.

1.3 Organization of the thesis

The organization of this thesis is driven by the three main contributions described in the

previous section. The work carried out during the thesis is presented in five chapters:

Chapter 1 - Introduction

In this chapter, we contextualize the work developed in this thesis within the data

mining research field. We also describe the organization, motivation and main

contributions of this work.

Chapter 2 - 2D-Interval Predictions for Time Series

In the next chapter, we describe the work developed in the context of the analysis

of temporal data. We propose a new data mining task motivated by a real world

application. We also propose a new technique to solve these tasks and error metrics

to evaluate approaches to these problems.

Chapter 3 - A Multiple Regression Approach for Spatial Interpolation

In Chapter 3, we present a new approach to the spatial interpolation problem. The

proposed technique outperformed the state of the art in spatial imputation of missing

pixels in photos.

Chapter 4 - Sensor Network Prediction through Spatio-Temporal Indicators

In Chapter 4, we describe a new technique to improve the prediction in spatio-

temporal applications, that embeds both the spatial and the temporal characteristics

of the data. We test our hypothesis using real world wind speed data measured on

wind farms in US.

Chapter 5 - Conclusions and Future Directions
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Chapter 5 summarizes the conclusions of this thesis and presents possible future

research directions.

1.4 Publications

The work presented in this thesis was published at several international research confer-

ences, namely:

Chapter 2

- Ohashi, O., Torgo, L., and Ribeiro, R. P. (2010). Interval forecast of water quality

parameters. In 19th European Conference on Artificial Intelligence - ECAI’2010,

pages 283-288. IOS Press.

- Torgo, L. and Ohashi, O. (2011). 2D-Interval Predictions for Time Series. In

Proceedings of the 17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 787–794. ACM.

Chapter 3

- Ohashi, O. and Torgo, L. (2012). Spatial Interpolation using Multiple Regression.

In 12th IEEE International Conference on Data Mining - ICDM’2012, pages 1044-

1049. IEEE Computer Society.

Chapter 4

- Ohashi, O. and Torgo, L. (2012). Wind speed forecasting using spatio-temporal

indicators. In 20th European Conference on Artificial Intelligence - ECAI’2012, pages

975-980. IOS Press.



Chapter 2

2D-Interval Predictions for Time

Series

This chapter presents a new class of time series forecasting task - predicting the range of

plausible values of a time series variable within a future time interval. The definition of this

task was driven by a particular real world application - anticipating whether certain water

quality parameters will be within certain acceptable ranges of values in the near future.

We define this new class of forecasting tasks and describe a series of possible approaches to

solve it. Finally, we carry out an extensive set of experiments that show that our proposals

outperform the alternatives that were considered.

2.1 Introduction

The study of time series started in the 1800’s, with the publication of Lexis “On the theory

of the stability of statistical series” in 1879. This paper is the first study on the field of time

series analysis [O’Connor and Robertson, 2012]. Other publication from the same period

is the publication of Thiele in 1880, which applies time series techniques in astronomical

geodesy, defining the distance between Copenhagen and Lund in Sweden [Lauritzen, 1981].

The notion of order among data observations distinguishes time series analysis from others.

In time series the order (the time) that an event occurs is crucial for the analysis. A time

series is a sequence of measurements of the variable of interest, usually collected at regular



TIME SERIES FORECASTING 10

time intervals,

X = {xt, xt+1, xt+2, . . . | t ∈ N} (2.1)

where xt is the value of a variable measured at time t

The main goal of time series analysis is to identify patterns on the series. These patterns

can be used to explain some phenomenon underlying the time series measurements or to

anticipate future values of the series, i.e. forecasting. The work described in the chapter

is focused on forecasting.

In Section 2.2 we formalize the task of time series forecasting. Section 2.3 describes the

existing types of time series forecasting techniques. In Section 2.4 we present a new type

of time series forecasting task, we describe some possible approaches to solve this task,

and we propose a new approach as well as metrics to evaluate approaches to this task. In

Section 2.5 we describe the experimental methodology used to extensively test our proposal

in three different problems (two real world applications). We end this chapter in Section 2.6

with the conclusions.

2.2 Time Series Forecasting

Time series analysis is a solid research area with a vast number of contributions in many

sub-fields: indexing, classification, clustering, segmentation and forecasting. In this thesis

we are interested in the latter. Time series forecasting is a key modeling task with direct

applicability in many real world domains: forecasting the future demand of electricity [No-

gales et al., 2002], water consumption [Hipel and McLeod, 1994], wind speed [Brown

et al., 1984], internet traffic [Basu et al., 1996], tourism demand [Lim and McAleer, 2002],

the future value of stocks [Akgiray, 1989], etc. Time series forecasting is based on the

assumption that the next observations of a series have some form of dependency on the

previous values, and moreover that these dependency patterns repeat over time.

Time series forecasting is one of the most common forms of time series analysis and

extremely used in several domains. According to Chatfield [2001] time series forecasting can

be classified into three main groups: judgemental forecasters, univariate and multivariate
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methods. Judgemental forecasting is a subjective technique, based on experts knowledge

and/or intuition on the domain of interest. The general idea is to extract the experts

knowledge. The most famous judgemental method is the Delphi technique, that proposes to

identify a consensus between experts applying questionnaires [Chatfield, 2001]. Univariate

methods forecast the expected future value of the time series looking only to the historical

information of the series. The main motivation behind these techniques is that by looking

at the past values of the series the model will be able to identify behavior patterns

and use these patterns to forecast the expected future value of the series. Multivariate

methods extend univariate methods by adding more variables in the analysis. Instead

of just looking at the historical information of the target series, these techniques also

look at other variables that are relevant for the domain. The key idea is to extend the

search for patterns with one or more variables to improve the prediction of the variable of

interest. These variables are usually named “predictor variables”. In this thesis we focus

on univariate methods.

The goal of time series forecasting is to discover the best patterns to describe the series.

Chatfield [2001] classifies the behavior patterns of a time series in four groups:

Seasonal Variation - is a cyclic variation that occurs at regular periods of time, a year

or less: quarterly, monthly or weekly;

Trend - this type of variation consists on a upward or downward behavior of the series;

Other cyclic variation - cyclic variations occurring at regular periods not related with

the calendar, e.g.: business cycles or biological behaviors of living creatures;

Irregular fluctuation - random behavior that is not characterized by any of the previous

variations.

The main goal of time series forecasting models is to be able to accurately forecast the

future expected value of the series. In the analysis of a series X at the instant of time t

(represented by xt), the forecasting model makes a prediction of the expected future value

xt+h, where h is the forecast horizon (c.f. Equation 2.1). The difficulty of this task depends

on the domain and on the type of patterns exhibited by the time series. One example of

an extremely difficult domain are time series from financial markets [Cowles, 1933; Dokko
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and Edelstein, 1989]. One famous quote from Box et al. [1976] - “All models are wrong but

some are useful”, describes the difficulty of modeling time series forecasters.

Box et al. [1976] in the 1970’s presented what is considered one of the most traditional

time series forecasting model, the Autoregressive Integrated Moving Average (ARIMA)

or Box and Jenkins model. This work was pioneer in time series analysis, and served as

the foundation to a vast number of scientific contributions in several domains, such as

for instance: forecast the next day electricity prices [Contreras et al., 2003], forecasting

the day-ahead wind speed [Kavasseri and Seetharaman, 2009], forecasting tourism travel

demand for Australia [Lim and McAleer, 2002], forecasting network traffic [Zhou et al.,

2005], etc.

Time series forecasting is not limited to the Box and Jenkins model and/or its variations.

One of the most recent trends in time series forecasting is to apply machine learning

techniques, or a combination of models to solve these tasks, e.g. Lu et al. [2009] applied

support vector regression to forecast financial time series, Khashei et al. [2008] proposed a

hybrid system using neural networks and fuzzy systems to forecast financial markets, Sap-

ankevych and Sankar [2009] described several implementations of support vector machines

applied in time series forecasting, Khashei and Bijari [2011] combined neural networks

with ARIMA to forecast Canadian Lynx time series data, etc. Time series forecasting is

a vast research area with many contributions, however the majority are focused on the

analysis of point prediction, i.e. in forecasting the expected value of the series for a certain

forecasting horizon (future time interval). In this chapter we will describe a novel and

different type of forecasting task.

2.3 Types of Time Series Predictions

Chatfield [2001] classifies the univariate time series forecasting tasks in two main types:

point predictors and interval forecasters.
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2.3.1 Point Prediction

The most common form of prediction in times series analysis is point prediction. The goal

of point prediction is to forecast the expected value of the series for a specific future instant

of time; at the time instant t forecast the expected future value of the series for the instant

of time t+h (where h is the forecasting horizon). The most common approach (univariate

time series models) uses the previous historical values of the series to obtain the models. At

time t the previous [t− n, t] values are then used as the quantity of information necessary

to obtain a forecast for t+ h (c.f. Figure 2.1), i.e. the models make an assumption on the

size of the past window of influence on the future values of the series. For instance, in a

context of stock market forecasting, we could be interested in predicting the expected next

day closing price of some stock to assist the decision concerning possible trading actions:

sell, buy or keep the stock. The forecaster “A”, using some previous historical information

(previous n days) of the stock, makes a prediction of the expected next day stock price

(h = 1 day). That information may help the analyst in the decision making process.

Point Prediction

●

?

t t+h

Figure 2.1: Point Prediction.

There is a vast amount of scientific contributions on point predictions in time series analysis.
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We highlight some recent works in this research field. [Jain and Kumar, 2007] and Zhang

[2003] proposed an hybrid approach using an ARIMAmodel and neural networks to forecast

time series. This hybrid approach was used to forecast the next month streamflow data

at Colorado river, USA. On the other hand Zhang [2003] tested the approach in three

different datasets with three different forecasting horizons - Wolf’s sunspot, Canadian

Lynx and British pound US dollar exchange rate, with the forecasting horizons of 1, 6 and

12 months. Kim [2003] compared support vector machines and neural networks in the task

of forecasting the next day return of the S&P 500 stock market index. Lu et al. [2009]

proposed a support vector regression model to detect and remove noise from financial

time series data - the Nikkei 225 opening cash index and TAIEX (Taiwan Stock Exchange

Capitalization Weighted Stock Index) closing cash index. Lee and Tong [2011] and Shi

et al. [2012] compared a combination of models in the task of forecasting time series.

Lee and Tong [2011] compared a hybrid approach of ARIMA and genetic programming

against two commonly used approaches ARIMA + neural networks and ARIMA + support

vector machines. This work was carried out using two different time series datasets, the

Canadian Lynx from 1821 to 1934 and the energy consumption, in China from 1957 to

2007. Shi et al. [2012] compared ARIMA + neural networks, ARIMA + support vector

machines, ARIMA, neural networks and support vector machines in the task of forecasting

multi-steps ahead (1, 3, 5, 7 and 9 hours) wind speed and power generation, using data

from Colorado, USA, ranging from 2005 to 2007. Weron and Misiorek [2008] compared

parametric and semi-parametric models in the task of forecasting 1-day ahead spot price

in auction type electricity markets, in the California and Nord Pool markets. Bermolen

and Rossi [2009] compared support vector regression against moving averages (MA) and

auto-regressive models (AR) in the task of forecasting the load in network links. Matteson

et al. [2011] analyzed Toronto’s emergency calls (from january 2007 to december 2008), and

proposed a forecaster based on GARCH models to predict the calls arrive volume. Assaad

et al. [2008] proposed a boosting algorithm with recurrent neural networks to improve

time series prediction in single step and multi steps ahead predictions, using a dataset

concerning sunspots that describes the number of dark spots in the sun from 1700 to 1979.

As we have mentioned before, point prediction is the task that is most frequently addressed

in time series forecasting research. However, point prediction has serious limitations for

some types of real world problems. Namely, there are domains where on top of a particular
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predicted value, it is of key relevance to have a confidence interval around this value, i.e.

to forecast an interval where there is a high probability the future time series value will

be.

2.3.2 Interval Forecasting

Interval forecasting, also known as, confidence intervals or confidence bounds, focus on the

key limitation of point prediction, the variability/uncertainty around the point prediction.

Point prediction, as the name suggest, produces a single value for the given forecasting

horizon, giving no information about the uncertainty or variability of that prediction.

Interval forecasting, instead of predicting a single value in the future produces an interval

supported by a probability. This interval is defined by two values, lower and upper limits

where the expected value is suppose to be in. Chatfield [2001] defines interval forecasts as

“an upper and lower limit between which a future value is expected to lie with a prescribed

probability”. The goal of the interval forecasting is thus to obtain a prediction at time t

of the interval where the expected value of the series for the future time t+ h (where h is

the forecasting horizon) is supposed to lie with a certain probability. In univariate analysis

the forecaster uses only the previous historical information of the time series [t − n, t],

where n is the size of the historical window used (c.f. Figure 2.2). For instance, in the

area of manufacturing, a point forecaster would make predictions of the expected future

consumption, whilst an interval forecaster would make predictions of the probable interval

(upper and lower limits), where this expected future consumption is supposed to be in,

with some probability.

The number of scientific contributions on interval forecasting is smaller when compared

to point prediction. Still, there are several significative contributions for a considerable

number of application domains. Khosravi et al. [2011] and Mazloumi et al. [2011] applied

interval prediction in the analysis of bus travel time duration in Australia. Khosravi

et al. [2011] applied neural networks to prediction of the bus travel time and applied two

forecasting techniques, “the delta” and “Bayesian” in the prediction of the intervals. This

methodology was applied in two datasets, six months of bus routes in Melbourne Australia

and 95 days bus routes in the Netherlands. Mazloumi et al. [2011] also applied neural

networks to forecast the bus travel time in Melbourne. Wu et al. [2006] proposed a quantile
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Interval Prediction

?

t t+h

Figure 2.2: Interval Prediction.

regression approach to forecast the interval of transactions per hour in a network traffic

domain. Nielsen et al. [2006] applied quantile regression, more specifically the quartiles

Q1 and Q3 to forecast an interval of wind power production in the Nordpool market.

Pinson and Kariniotakis [2010] also worked with the domain of wind power generation

in Denmark (from March 2001 to May 2003). However, a different approach was used,

as the intervals were calculated based on the past errors made by the point predictors.

Isengildina-Massa et al. [2008] used quantile regression to forecast prices interval variation

of corn and soybeans in the US. Within the financial market research area, Andersen et al.

[1999] proposed to forecast one month ahead financial market volatility using GARCH

models. Serguieva and Hunter [2004] proposed a hybrid approach applying a fuzzy method

combined to neural networks in the prediction of price intervals for 35 UK companies in

the London stock exchange market. Zhang and Luh [2005] applied a hybrid approach

to forecast intervals of market closing prices, using neural networks combined to Kalman

filter.

Density forecasting is considered an extension of interval forecasting, where the entire
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probability distribution of the expected value is calculated [Chatfield, 2001]. Taylor et al.

[2009a] proposed to apply ensemble models for density forecasting in the task of predicting

10 days ahead variability of wind power at five UK wind farms. Hall and Mitchell

[2007] proposed an approach that combines different density forecasters to produce a more

accurate density forecast (applying weights according to the accuracy of the forecasters)

in the analysis one-year ahead RPIX inflation in UK.

2.4 2D-Interval Predictions

Although point prediction and interval forecasting (or density forecasting) may cover

a considerable area in time series predictive modeling, for several domains these tasks

are not sufficient. In these domains more important than having a prediction (point or

interval) for a particular future instant of time, is to have a prediction of the expected

variability/uncertainty for a future interval of time (a future time window). This means

that instead of generating an interval for a single point in the future, the goal is to have

an interval of values for a interval of time, e.g. for the next 30 days (assuming a daily time

series). More specifically, the main goal at time t is to forecast the expected interval of

values of the time series for a future time interval [t+h, t+h+k], where h is the forecasting

horizon and k is the size of the target time interval, c.f. Figure 2.3. We call this type of

prediction tasks 2D-interval prediction, as we have a two-dimensional (time and values)

interval.

As mentioned before, existing work on time series forecasting is essentially focused on: (i)

point predictions (e.g. [Chatfield, 2004]), (ii) interval predictions (e.g. Chatfield [2001]),

or (iii) density forecasting [Tay and Wallis, 2000]. However, to the best of our knowledge

there is no established methodology for forecasting an interval of values for an interval

of time. Addressing this limitation is one of the main goals of this thesis. The lack of

a methodology to handle this problem is rather surprising given the amount of relevant

applications that could benefit from this type of prediction. For instance, any application

requiring some form of production planning for a certain demand scenario, will find this

type of prediction of high utility. This includes areas like manufacturing in general,

energy production, water distribution, etc. For example, in wind power production it

is important to predict the future wind variability in order to ensure that supply and
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2D−Interval Prediction
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Figure 2.3: 2D-Interval Prediction.

demand are balanced [Bremnes, 2004; Taylor et al., 2009b]. In power production (electricity

market [Taylor, 2006]) it is common to place bids for the future production. In this

context, the prediction of the future wind variability must be accurate, to avoid penalties

resulting from any deviation between production and demand. To make optimal decisions,

a model that is able to predict the quantiles of the distribution gives much more information

than single point predictors [Bremnes, 2004]. In inventory management, over-production

may lead to inventory costs while under-production may originate unsatisfied demand and

lost of profits [Chatfield, 1993]. Other relevant application areas include customer wallet

estimation [Perlich et al., 2007] or computer network traffic analysis [Wu et al., 2006].

Several investment-related applications (e.g. financial markets) will also find this type of

forecasts of great use.

From a theoretical perspective we are talking about forecasting the distribution of the

values of the target time series for a future time interval. The key difference from existing

work on interval prediction and density forecasting (e.g. [Tay and Wallis, 2000]) is the fact

that we want to estimate this interval for a future interval of time and not for a single
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point in time, see Figures 2.2 and 2.3. The applicability to real world scenarios motivates

this difference. In this work we restrict this general scenario to the prediction of some

descriptive statistics of this distribution. Namely, we will focus on forecasting a kind of

interval of “normality” of the values of the series for a certain future time interval. We will

represent this interval of normality by the 1st and 3rd quartiles of the variable distribution,

though our proposal could be applied to any quantile.

The main contributions of the work presented in this chapter are: (i) to increase the

awareness of the research community to a high-impact task that was not addressed with

specific methods before; and (ii) to propose a general method for addressing this class of

time series forecasting problems. In the context of the presentation of our proposal we

will describe an extensive set of experiments that we have carried out to demonstrate the

validity of our approach under a wide range of scenarios.

A 2D-interval was defined as an interval of values for a future interval of time (a time

window). This interval is defined by two limits - upper and lower. The future values

of the time series within the selected time interval are expected to be included in (c.f.

Figure 2.3) within these limits. It is thus a form of summary statistic of the unknown

future distribution of the values of the series for the target forecasting horizon. We will

address this general problem by simplifying it into predicting two quantiles that will define

the upper and lower boundaries of the interval, the 1st and 3rd quartiles of this unknown

distribution. These two summary statistics provide an interval where a significant number

of the values should be contained (assuming a near-normal distribution of the values of the

target variable).

2.4.1 Possible Approaches to the Problem

As mentioned before, we are not aware of any existing approach to the previously described

2D-interval prediction problem. Nevertheless, we can try to adapt some existing time series

forecasting techniques to obtain this type of forecasts.

Point prediction can be iterated to obtain predictions for more than one point in the future

(known as iterated predictions e.g. [Chatfield, 2004]). At time t we obtain a prediction for

time t+1. This prediction can be incorporated into the training data available to the model

as if it was true, and a new step ahead prediction can be obtained, which in effect would
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correspond to a prediction for time t+2. These iterations can continue until we get a point

prediction for all the forecasting time interval [t+ h, t+ h+ k]. Using these k predictions

we can obtain the summary statistics we want to have a 2D-interval prediction. This is a

simple approach that can be applied to any existing time series modeling technique. The

main drawback of this strategy is that by incorporating the one-step ahead predictions

into the training data we are potentially amplifying the prediction errors of the models as

we move further in time. In the comparative experiments that will be described in this

chapter we will call this approach the iterated predictions method.

A second plausible approach to the 2D-interval problem is decompose it into several

prediction tasks (k-models). If we want a 2D-interval for a future time window of length k,

then we can transform this into k prediction tasks with each being addressed by a different

model designed to obtain a point prediction for t+i, where i ∈ [1, k]. Given these k models,

to obtain a 2D-interval prediction at time t we use the k models predictions and calculate

the necessary statistics to obtain the 2D-interval. The main drawback of this approach is

the computational cost of obtaining k different models. This may be a critical issue with

high-frequency data as it is often the case in time series problems. In our experiments we

will call this approach the k-models method.

The two strategies described above, iterated predictions and k-models, can be easily used

with interval forecasting models. The main difference is that instead of forecasting a

single value for a time point, the models predict an interval. Then to get the 2D-interval

prediction we can average the values of the limits (upper and lower) of the k predicted

intervals.

In our experiments we will also consider a naive approach as a kind of baseline method. A

2D-interval forecast at time t for the interval [t+h, t+h+k] will be obtained by using the

summary statistics calculated with the most recent past values of the series in the interval

[t− k, t]. This can be regarded as a kind of random walk approach to our problem and we

will expect other alternatives to clearly outperform this baseline method.

2.4.2 Our Approach

The goal of 2D-interval predictions is to have an estimate of the way the values of the target

time series will be distributed on a future time window. As we have mentioned before, we
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will constrain this general goal to the task of obtaining some summary statistics of this

future distribution of the values. More specifically, we will have as goal to estimate the

future interval of “normal” values of the distribution and we will estimate this “normality”

by means of two quantiles of the distribution that by definition form an envelop that

includes the most frequent values of a variable that follows a near-normal distribution -

more specifically an unimodal distribution.

The key idea of our proposal is that instead of obtaining these summary statistics from

predictions of the values of the time series (as done in the approaches described in Sec-

tion 2.4.1), we propose to directly forecast some summary statistics of the distribution of

the time series values, in a future time window.

Let Qkα and Qkβ be the α and β unknown quantiles of the time series values for a future time

window of length k, respectively. These two values establish an interval where |β−α|×100%

of the series values are supposed to be included in. The interval between the 1st and 3rd

quartiles (Q0.25 and Q0.75) will contain 50% of the values of the series. We will use the

predicted values for these two distribution statistics as the source for obtaining 2D-interval

predictions. This means that we will directly forecast these quantile statistics instead of

calculating them from predictions of the target time series. Our proposal is thus to define

the two following prediction problems:

Definition 2.1. The prediction tasks we will use to obtain 2D-interval predictions are

defined by the following equation,

Qkα = f(v1, · · · , va) and Qkβ = f(v1, · · · , va) (2.2)

where v1, · · · , va are a set of descriptor variables, and Qkα (Qkβ) are the target variables,

and the α (β) are the quantiles of the time series variable for the next k time points, i.e.

the estimated quantile for the time interval [t+ h, t+ h+ k], (c.f. Figure 2.3).

In order to be able to obtain models to forecast these quantiles we need to have a set of

training data where these values are known. Thus for “preparing” the training sample at

time t we will need information on both the selected predictor variables but also on the

target time series values in the period [t+ h, t+ h+ k], where k is the time length of the

target 2D-intervals.
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Tables 2.1 and 2.2 present an illustrative example of the type of pre-processing we carry

out. Table 2.1 shows an example time series, while in Table 2.2 we present the data set

obtained to apply our proposed method. In this example we have used a future time window

of size 5 (k = 5) and the 1st and 3rd quantiles [Q.25, Q.75] to define the 2D-interval. The

prediction tasks are represented by two functions (i.e. two target variables), one for each

quantile: Qk=5
α=.25 = f(v1, v2, · · · , vp) and Qk=5

β=.75 = f(v1, v2, · · · , vp). The pre-processing

steps we need to carry out to obtain the data set consist of: (i) selecting a date with at

least five observations in the future (in the table we illustrate with 2013-01-25); (ii) with

the five observations in the future (represented in light blue) calculate the quantiles Q.25

and Q.75, thus obtaining the values of the target variables (Q5
.25 and Q5

.75, respectively);

(iii) with the data in the past (represented in dark blue) calculate the predictor variables

(columns v1, · · · ); (iv) increment the date and repeat the process, until no more data is

available.

time Y
2013-01-20 444.40
2013-01-21 410.03
2013-01-22 450.45
2013-01-23 400.07
2013-01-24 388.15
2013-01-25 390.89
2013-01-26 389.12
2013-01-27 413.34
2013-01-28 390.45
2013-01-29 400.07
2013-01-30 410.15

...
...

Table 2.1: Time Series

time Q5
.25 Q5

.75 v1 · · ·
2013-01-25 390.45 410.15 418.62 · · ·

...
...

...
...

. . .

Table 2.2: Regression Data

Using this type of pre-processing process we obtain a data set that can be used to obtain

models to address the two predictive tasks mentioned in Equation 2.2.

The methods presented in Section 2.4.1 are all based on predicting the values of the target

time series for a future time interval. This is done either by iterated predictions or by

obtaining k different models. Either way it is based on these predictions that we calculate

the summary statistics to forecast the 2D-intervals. In our approach we directly predict

these statistics. The main motivation for our proposal is that forecasting these statistics
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directly is an easier prediction task as quantile statistics have a distribution that is smoother

than the original variables from which they are calculated. In effect, quantiles are known to

be robust to a few extreme values, thus smoothing-out these variations on the original time

series. This means that the distribution of the quantile variables that we use as targets

is clearly more “well behaved” than the distribution of the original series. In this context,

we expect this prediction task to be easier to solve than the original of forecasting the

time series values for a future time window. Our hypothesis is that by solving an easier

prediction task we will be able to have more accurate predictions of the 2D-intervals. The

experiments described in Section 2.5.1 were designed to test this hypothesis.

The choice of the most appropriated predictor variables v1, · · · , va is not part of our

proposal. They should be selected with the goal of optimizing the performance of the

selected modeling tool in the task of forecasting the quantiles. This decision is not different

from what is necessary on any other time series prediction task - it is a standard feature

selection problem for which many existing approaches exist [Guyon and Elisseeff, 2003; Kira

and Rendell, 1992]. Our proposal only changes the target variable. In our experiments we

will include as predictors recent past values of the time series and also past values of some

distribution statistics as we will see in Section 2.5.1.

2.5 Experimental Evaluation

In this section we evaluate our proposed method for obtaining 2D-interval predictions under

a large set of experimental setups. In the previous sections we have formalized the 2D-

interval prediction task, have presented possible approaches to this task using existing time

series forecasting methodologies, and have proposed an alternative approach to this task.

Our hypothesis is that our proposal is an easier forecasting task and thus the resulting 2D-

interval predictions will be more accurate. The main goal of the experiments we describe

in this section is to check the validity of this hypothesis.

We will test our hypothesis under different experimental conditions. Namely, we will try:

i) different time series data sets; ii) different forecasting models and variants within these

models; and iii) different evaluation metrics. The overall goal is to test the hypothesis

under a diverse and large set of experimental settings. Obviously, these settings are far
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from exhaustive but we are convinced that they are a good sample of real world prediction

settings.

2.5.1 Experimental Methodology

At the core of any experimental comparison is the method used to obtain reliable estimates

of the selected evaluation metrics. Our data set contains time series which means that

there is a implicit order (time) among different observations in the data set. This fact

precludes the use of any standard experimental methodology based on resampling strategies

that involve changing the order among data points. In this context, we have used as

experimental methodology for the three prediction problems we will consider (artificial

data, water quality parameters and water consumption) a Monte Carlo simulation [Torgo,

2010]. Namely, we have randomly selected 10 time points within the available periods of

time for each data set. For each of these 10 points we have used the previous m values

of the series to obtain the models that were then used to make 2D-interval predictions for

the next n points using a sliding window approach. The values of m and n are domain

dependent. At each of these n prediction points the goal was to estimate the 2D-interval

for a future time window of k time points. We will try more than one value of k. The

results we present for each k value (the time length of the 2D-intervals) are averages over

these test sets with n points, on the 10 Monte Carlo repetitions (i.e. at randomly selected

points of the full time series).

For instance, for the water quality parameters at time t we use 365 days of training data to

obtain a model that is used to forecast a 2D-interval ([Q0.25, Q0.75]) for the next 30 days,

i.e. for the time interval [t + 1, t + 1 + 30]. After this prediction is made, the training

window is slided one day forward and another model is obtained. This model, obtained at

t+1, is again used to obtain a 2D-interval prediction for the next 30 days, i.e. a 2D-interval

prediction for the time interval [t+ 2, t+ 2 + 30]. This sliding window process is repeated

until we have made predictions at all time points in the next 90 days, the size of the test

window. All model variants are evaluated using the same data.

The goal for all alternatives is to obtain an estimate of the 1st and 3rd quartiles for the

target time interval k, i.e. a 2D-interval prediction for a future time window of length

k. However, depending on the approach followed, these estimates are obtained using a
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different method. This means that the target variable(s) will always be the same - Qk0.25,t

and Qk0.75,t; although the method used to reach predictions for these two targets will be

different depending on the used approach. As we have seen (c.f. Section 2.4.1) some

methods obtain these predictions by first forecasting the values of the time series, while

our approach predicts these statistics directly.

Independently of the methodology used to obtain the predictions for the target variables,

all compared approaches will use the the same predictor variables that were selected with

the goal of trying to provide useful information on the recent dynamics of the time series

and also past values of k-length descriptive statistics. Specifically, in our experiments we

will obtain alternative models whose goal is to solve prediction tasks described by the

following general equation,

TGT = f(Yt−1, · · · , Yt−p, Q−kα,t, Q
−k
β,t , Ȳ

−k, σ−kY ) (2.3)

where Q−kα,t is the value of the α quantile calculated using the past k values of the series at

time t, Ȳ −k is the average time series value on the same past window, σ−kY the respective

standard deviation, and Yt−1, · · · , Yt−p are the last p values of the series.

The target variable (TGT) will be different depending on the approach. For the iterated

point predictions this will be the next value of the series, Yt+1. For the iterated interval

prediction will be Qt+1
α,t (Qt+1

β,t ). For the k-models the targets will be Yt+i where i ∈ [1, k]

for each of the k models for point prediction, and Qiα,t (Qiβ,t) for interval prediction. For

our proposal there will be two models, one predicting the 1st quartile on the 2D-interval,

Qk0.25,t, and the other the 3rd quartile, Qk0.75,t.

To ensure a fair assessment of the hypothesis driving our experiments all alternatives that

will be compared will be given exactly the same data in the context of the Monte Carlo

simulation, with the exception of the target variable.

All data, code and extra results are provided in a web page 1 to ensure that our work is

replicable.

1http://goo.gl/hRBMd

http://goo.gl/hRBMd
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2.5.2 Models

For each of the considered prediction tasks we have tried a wide range of modeling ap-

proaches to test our hypothesis. The idea is to confirm its validity independently of the

technique used to forecast the Qkγ quantiles. All the used tools are freely available in the R

software environment [R Development Core Team, 2010], which ensures easy replication of

our work. The following is a list of the methods used in our experiments and the variants

of these models that were considered:

Random Walk (RW) - a simple baseline method that uses the quantiles estimated with

the last k time series values as predictions for the quantiles of the next k time points;

Regression Trees (RT) - a regression tree (e.g. [Breiman, 1984]) based on the R package

rpart [Therneau and port by B. Ripley., 2009]. In our experiments we have used

an interface to the rpart function provided in package DMwR [Torgo, 2010] and have

tried 4 different variants by using the parameter se that controls the level of pruning

with values 0, 0.5, 1 and 1.5.

Support Vector Machines (SVM) - an implementation of SVMs (e.g. [Cristianini and

Shawe-Taylor, 2000]) available in the R package e1071 [Dimitriadou et al., 2009].

We have tried 20 variants by using the parameter cost that represents the penalty

associated with errors, with the values 1, 5, 10, 50, 100 and the parameter gamma

which the used radial based kernel, with the values 0.001, 0.01, 0.05 and 0.1.

Random Forest (RF) - an implementation of random forests [Breiman, 2001] available

in the R package randomForest [Liaw and Wiener, 2002]. We have used 3 variants

of the parameter ntree that controls the number of trees in the forest (ensemble),

with the values 500, 1000 and 1500.

Quantile Regression Forests (QRF) - a random forest variant [Meinshausen, 2006]

designed to optimize the prediction of quantiles (interval forecasting). We have

used the implementation of these models available in the R package quantregForest

[Meinshausen, 2007]. We have tried 3 variants of the parameter ntree that controls

the number of trees in the forest (ensemble), with the values 500, 1000 and 1500.
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2.5.3 Evaluation Metrics

There is an extensive literature on evaluation metrics for single point prediction models.

Most measures compare the true and predicted values and eventually contrast the perform-

ance of the model being evaluated against some baseline. Our prediction task is different

as we have mentioned before. We are addressing the prediction of a 2D-interval by means

of the 1st and 3rd quartiles, which means there are some similarities with the goals of

quantile regression [Koenker, 2005]. However, in quantile regression the goal is to obtain

point predictions of the quantiles. The evaluation of quantile regression models is usually

carried out with the help of Equation 2.4. It can be easily shown that the value of Lα(y, ŷ)

is optimized by predicting the quantile Qα (i.e. ŷ = Qα).

Lα(y, ŷ) =

 α · (y − ŷ) ify ≥ ŷ

(1− α) · (ŷ − y) otherwise
(2.4)

Table 2.3 presents an illustrative example of how Lα(y, ŷ) is calculated. In the first column

we have the true values of the series (y), in the second column we have the predicted

values (ŷ), and in the third and fourth columns we have the loss functions L0.25 and L0.75

calculated using Equation 2.4 for the quantiles Q0.25 and Q0.75, respectively.

y ŷ L0.25 L0.75

2 2 0 0
2 3 0.75 0.25
3 2 0.25 0.75
4 2 0.5 1.5
2 4 1.5 0.5

Table 2.3: An illustrative example of calculating the Lα(y, ŷ).

In this context, if we want to estimate the values of Q0.25 and Q0.75 for a certain period of

time k, we can evaluate the predictions of our models (Q̂k0.25 and Q̂k0.75) using Equation 2.4,

given the true target variable values yt+1, · · · , yt+k. Moreover, if we are given a test set we

can calculate the total quantile error (TQE) of our 2D-interval predictions as follows,

TQE =
n∑
i=1

i+k∑
j=i

L0.25(yj , Q̂
k
0.25,i) +

i+k∑
j=i

L0.75(yj , Q̂
k
0.75,i)

 (2.5)
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where Q̂kα,t is the α quantile prediction for the future k-length interval starting at time t.

We have also compared our alternative models using the mean absolute quantile (MAQ)

deviation of the model predictions, i.e.

MAQ =
1

2n

[
n∑
i=1

|Qk0.25,i − Q̂k0.25,i|+ |Qk0.75,i − Q̂k0.75,i|

]
(2.6)

This evaluation metric can be easily obtained by calculating the observed 2D-interval

quantiles and comparing these with the predictions of our models. This statistic will

measure the average absolute error of our quantile predictions when compared to the true

observed quantiles.

The real world applications that we target with this proposal of 2D-interval predictions

have some particularities that are not completely captured by the statistics of Equations 2.5

and 2.6. Namely, there are usually costs and benefits associated with the predictions of

the models. In effect, the predicted intervals are frequently used to carry out some actions

(e.g. production planning) that may result in costs or benefits depending on the accuracy

of the predictions. We will also evaluate the 2D-interval predictions taking these factors

into account. The predicted intervals divide the values in three classes: unusually high or

low values, and normal values that are within the interval limits. This means that given

the predictions Q̂k0.25 and Q̂k0.75, we can discretize the series values into these three classes.

Accordingly, we can look at the observed values in the k-length interval and calculate the

true observed Qk0.25 and Qk0.75 values. Using these values we can calculate the true class

labels of each value in the k period. Elkan [2001] has established the theoretical grounds for

cost-sensitive learning. The proposed framework is based on the concept of benefit matrix.

This matrix sets the benefits of all accurate predictions, as well as the costs (negative

benefits) of the errors. We will also use this setup to evaluate the 2D-interval predictions

of our models. We discretize the continuous values of the target time series using the

method described above and then calculate the Utility of the predictions as the total

sum of benefits using the matrix in Table 2.4.

Figure 2.4 describes an example of how the Utility is calculated for a concrete 2D-interval

prediction. The figure shows the real time series values for a certain k length interval.

The black lines (25% and 75%) represent the 2D-interval prediction of a hypothetical
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Table 2.4: Benefit matrix.

low normal high
ˆlow 2 -1 -2
ˆnormal -1 1 -1
ˆhigh -2 -1 2

model for this k length interval. According to this prediction any value of the series above

the predicted upper limit (black line tagged with Q̂3), should be considered “unusually

high”. Accordingly, any value below the black line tagged with Q̂1, should be considered

“unusually low”, while values in between these two lines are considered “normal”. If we

calculate the effective true interval using the observed time series values in that k length

interval, we may reach a different interval - the blue lines in the figure. Using these blue

lines we can calculate the true class labels of each value in this time interval. Proceeding

this way we will conclude that there were some labeling errors induced by the predicted

interval, because the predicted interval is narrower. For instance, the green dot was tagged

as “unusually high” by the model, but is considered “normal” in reality, while the red dot

was tagged as “unusually low” but was also “normal”. Using these 3 possible classifications

originated by the intervals we can produce a benefit matrix as show in Table 2.4. In this

table we can check that the costs associated with both the green and red dots would be -1.

2.5.4 Experimental Results

We now describe the experimental results of our experiments with three different time series

tasks: i) a set of artificial time series; ii) time series data from a water quality monitoring

application; and iii) data from a water consumption domain.

2.5.4.1 Experiments with Artificial Data

The first set of experiments that we will describe involves the use of artificially created data

sets. The goal was to test our hypothesis on a diverse range of time series with different

dynamic regimes. Figure 2.5 shows the seven artificial time series we have generated

and used in our experiments, each with 3000 values. The gray lines on each graph try

to describe the type of regimes in terms of trend and variability that have guided the

generation process. As you can observe these series have rather different dynamic regimes
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ŵ

no
rm

al
^

hi
gh^

Q1

Q3

lo
w

no
rm

al
hi

gh
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Figure 2.4: An illustrative example of calculating the Utility.

in terms of these two important properties.

We have applied the models described in Section 2.5.2 to these 7 problems, using 3

alternative methods for obtaining 2D-intervals: (i) iterating the model over the k window;

(ii) obtaining k different models; or (iii) our proposed method of predicting directly the

distribution statistics defining the intervals. Our goal is to check which is the best method

for obtaining this type of predictions.

For each experimental setup, we have estimated the values of the 3 evaluation metrics

(TQE, MAQ and Utility) described in Section 2.5.3 using 10 repetitions of the Monte Carlo

simulation process described in Section 2.5.1. We have used the previous m = 365 values

of the series to obtain the models that were then used to make 2D-interval predictions for

the next n = 90 points using a sliding window approach. At each of these 90 prediction

points the goal was to estimate the 2D-interval for a future time window of 10, 20 and 30
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(e) (f) (g)

Figure 2.5: Seven artificial time series problems.

k time points, using h = 1.

Figures 2.6, 2.7 and 2.8 show the results for 3 different setups evaluated by 3 different

measures. The complete list of the results is provided in the web page 2 in the file

ch2ArtificialExps.pdf. We have selected one graph for each series, metric and interval

length. The graph on the Figure 2.6 shows the TQE scores of all model variants on the

first time series when predicting a 2D-interval of length 10. The results of the models are

grouped in three batches, one for each different approach we are comparing: the iterated

approach (“iterated” on the graphs), the use of several models (“k-models” on the graphs),

and our proposal of directly predicting the quantiles (“quantiles” on the graphs). On each

of the three batches we have one bar for each predictive model variant: 3 for Quantile

Regression Forest (QRF); 3 for Regression Forests (RF); 20 variants of Support Vector

Machines (SVM); and 4 variants of Regression Tress (RT). To facilitate distinguishing

among each model, the bars of the respective parameter variants are represented by the

same color. For the complete description of the model parameter variants, see Section 2.5.2.

A vertical dashed line marks the best score on each graph and the result of the baseline RW

model is given as a sub-title of the graphs. The model QRF is the only interval forecasting

2goo.gl/hRBMd

goo.gl/hRBMd
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model used in our experiments.

The graph in the Figure 2.7 shows the same type of results this time for the MAQ metric,

4th time series and k = 20, while the graph on the Figure 2.8 presents the results in terms

of Utility on the 7th series for k = 30. Note that while for the first two metrics lower scores

are better, for utility it is the opposite.

TQE for Series=1, k=10
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Figure 2.6: The results on stream 1 with k = 10.

We have observed that the “k-models” and “quantiles” approaches have rather similar results

on these problems. Still, when there is some slight difference this is more frequently

favorable to our approach. The “iterated” approach on the contrary is most of the times

the worst in terms of scores, although all models typically outperform the baseline RW

model, as expected. This pattern of results is similar over all experimental setups we

have tried with these 7 problems. These results show that the prediction accuracy of our

approach is highly competitive with the existing alternatives. Moreover, these scores are

obtained with a significant advantage in terms of computational efficiency. In effect, while

our approach requires two models to be obtained (one for each quantile), the “k-models”

approach requires as many models as the length of the interval, i.e. k models. This is
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Figure 2.7: The results on stream 4 with k = 20.

a significant difference as shown in Figure 2.9. This figure shows the ratio between the

computation time of “k-models” over our approach. We can observe that, depending on

the size of the interval, the “k-models” approach can take from 5 to 30 times more time

to be obtained. On dynamic environments where new data is constantly being collected,

eventually requiring new models to be obtained, this margin can be rather significant. We

do not show the results for the “iterated” approach as they are essentially similar to our

proposal.

Summarizing, the experiments on these artificial problems show that our proposal is able to

achieve a rather competitive prediction accuracy with a significantly smaller computational

cost.

2.5.4.2 Experiments with Water Quality Parameters

The first real world application of 2D-intervals we describe is related with water quality

control in the distribution network of the metropolitan region of Porto, Portugal (serving

roughly 1 million people). The company (AdDP) that manages this network has legal
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Figure 2.8: The results on stream 7 with k = 30.

limits that must not be crossed for several water quality parameters that are monitored.

With the goal of avoiding the danger of crossing these limits (and paying the respective

high fines) the company internally establishes tighter limits that if broken generate an

alarm that leads to several control actions over the network. These actions have associated

costs and thus having these internal limits too tight will lead to a high operational cost of

the network. However, having wider internal limits, possibly too near the legal ones, will

increase the risk of when the alarms are fired being too late for the control actions to have

any effect to avoid breaking the legal limits. This means that establishing the intervals

of acceptable (normal) values of a large set of water quality parameters is a problem with

high socio-economical impact for the company and the region.

According to the company know-how of the problem these intervals that establish a range

of normality for each parameter change along the year as the rivers from where the water

is collected are very dynamic and change a lot during the seasons of the year. This means

that this notion of normal parameter values is dynamic, though the legal limits are fixed.

Still, the changes on the expected normal values for each parameter do not occur on a daily
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Figure 2.9: The relative computation times of “k-models” vs “quantiles” on the 7 artificial
time series.

basis, but are expected to potentially change within a slower time frame. According to

the company, it would be of the foremost usefulness to have information on the expected

range of normality for each parameter on a monthly basis.

The AdDP company has provided us daily data concerning a large set of water quality

parameters along several years (2000 till 2008). We will focus our analysis on the task

of trying to forecast a 2D-interval of normal values for a small set of parameters (pH,

iron, turbidity and aluminium) using this data set. This is a task similar to the ones

described in Section 2.5.4.1. The interval of “normal” values can again be approximated

by the expected 1st and 3rd quartiles on a future time window, i.e. a 2D-interval. We

have used exactly the same prediction tasks and predictors as in the artificial problems

(c.f. Equation 2.3). However, following the company requirements, we have only applied

our method for a 2D-interval of the next 30 days (i.e. k = 30 and h = 1).
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The results we report are again estimates of the 3 evaluation statistics using 10 repetitions

of a Monte Carlo simulation. We have used the previous m = 365 values of each of the

four time series and tested the models along a n = 90 days window, again using a sliding

window approach.

The Figures 2.10, 2.11 and 2.12 show the results for 3 different setups using the same schema

as before (the complete list is available in the web page 3 in the file ch2WaterQualityExps.pdf).

On Figure 2.10 we have the TQE scores for the Iron time series. Figure 2.11 illustrates the

results in terms of MAQ for the pH parameter, while Figure 2.12 shows the Utility results

for Turbidity. The overall pattern is similar to the results on the artificial problems.

The “iterated” approach is clearly the worst method, while our approach and “k-models”

get similar scores. Still, compared to the results on the artificial data, we observe a more

marked advantage of our proposal. The exception is the QRF model variants where the

“k-models” approach achieves better results whilst not the best overall scores.
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Figure 2.10: The results on Iron with k = 30.
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Figure 2.11: The results on pH with k = 30.

In terms of computation times the results are shown in Figure 2.13. Again we observe a

significant overhead of the “k-models” approach when compared to our proposal.

The experiments on water quality parameters show similar results as the experiments with

artificial data. Our proposal achieved competitive prediction accuracy with a significative

smaller computational cost.

2.5.4.3 Experiments with Water Consumption

The second real world problem concerns again a water distribution network, this time in

the south of Spain. The problem here is related to production planning in order to face

the varying demand in terms of water consumption. We have hourly data concerning the

water consumption in a residential area of the water distribution network from January,

2005 till April, 2005. Our goal is to forecast a 2D-interval for the next 12 and 24 hours (i.e.

k = 12 or k = 24, h = 1). The distribution of the water demand values has very marked



EXPERIMENTAL EVALUATION 38

Utility for Turbidity, k=30

0 5 10 15 20

RW score=16.93

qu
an

til
es

ite
ra

te
d

k−
m

od
el

s

QRF RF SVM RT

Figure 2.12: The results on Turbidity with k = 30.

seasonal properties not only along the different periods of the day, but also across similar

weekdays. Because of this, we use a slightly different approach in terms of predictors

with the goal of providing the models with information on this weekly seasonal effects,

c.f. Equation 2.7. For k = 12 we have used the last 6 values of the demand (p = 6

on Equation 2.7), the same information as on previous problems regarding the quartiles,

mean and standard deviation on the past k values, but also the quartiles that we want

to forecast measured in the previous week (i.e. on the same weekday/hour) to provide

information on this observed weekly seasonality (Q−kpwα,t and Q−kpwβ,t ). In the case of k = 24

we have increased the number of past values of the series from 6 to 12 (p = 12), while the

other predictors stayed unchanged.

TGT = f(Yt−1, · · · , Yt−p, Q−kα,t, Q
−k
β,t , Q

−kpw
α,t , Q

−kpw
β,t , Ȳ −k, σ−kY ) (2.7)
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Figure 2.13: The relative computation times of “k-models” vs “quantiles” on the water
quality problem.

The main difference from Equation 2.3 is the addition of two new predictor variables,

Q
−kpw
α,t and Q−kpwβ,t that represent the quantiles (α and β) in the previous week.

Regards the experiments we have used again 10 random repetitions of a Monte Carlo

simulation this time with a training window of m = 1344 values (8 weeks) and a test

window of n = 336 values (2 weeks), for which predictions were obtained using a sliding

window approach. The size of the 2D-intervals (k) was set to 12 and 24 hours (the complete

list of results is available in the Appendix A).

The results of 3 different setups of these experiments are show in Figures 2.14, 2.15 and

2.16. The pattern of results is similar to the one observed in the water quality problems.

Both “k-models” and our approach have similar results with a slight advantage of our

method, while the “iterated” approach clearly lags behind. Once again we have observed

that the QRF models achieve better results with the “k-models” approach. We should note
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Figure 2.14: The TQE results on water consumption with k = 12.

that the Utility score is particularly relevant for this type of applications where serious

mistakes may have significant financial costs.

In terms of computation times the scores are shown in Figure 2.17, and reveal the same

type of advantage of our proposal over the “k-models” alternative.

This experiment showed a similar outcome as the previous two experiments. Our pro-

posed approach achieved competitive results in terms of prediction accuracy together with

reduced computational costs.

2.6 Conclusions

We have described a new type of time series forecasting task - 2D-interval predictions. This

type of forecasting problems has high relevance for several application domains. To the

best of our knowledge there is no established methodology to handle these problems across
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Figure 2.15: The MAQ results on water consumption with k = 12.

the several disciplines that address time-dependent data. In this context, our main goals

were: (i) to raise the awareness of the data mining community to these relevant problems,

and (ii) to propose a new methodology to address these tasks that can be used with any

time series modeling technique. The key idea of the proposal is to directly predict the

distribution statistics for the target time interval. As a concrete instance of this approach,

we have focused on tasks of forecasting the range of plausible values for a future time

period. We have approximated this range by means of an interval formed by two standard

non-parametric statistics - the first and third quartiles.

We also proposed three evaluate measures adapted to this new class of problems, the

prediction of 2D-intervals: (i) the TQE function which is an adaptation of existing measures

on quantile regression, (ii) the MAQ which is based on the absolute distance between the

predicted and real quantiles, and (iii) the utility metric motivated by the cost-sensitive

learning, which maps the problem to a classification task and uses a benefit matrix to
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Figure 2.16: The Utility results on water consumption with k = 24.

calculate the total utility of the 2D-interval predictions.

We have described our proposal and have carried out an extensive set of experiments

designed with the goal of checking the validity of the proposal when compared to existing

alternatives. This comparison was carried out from two perspectives: (i) the perspective

of prediction accuracy of the 2D-intervals, and (ii) the perspective of the computational

cost of the alternatives. This latter issue may be particularly relevant in dynamic contexts

where new data arrives at a high pace, like data streams. The question of the accuracy

of the predictions was also addressed from different perspectives trying to capture charac-

teristics that are important to this type of applications (e.g. the costs and benefits of the

predictions).

The results of our experiments with several artificial time series and also two real world

problems provide clear evidence on the validity of our proposal. It achieves a prediction

accuracy that it is highly competitive with the best alternatives in the hundreds of different
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Figure 2.17: The relative computation times of “k-models” vs “quantiles” on the water
consumption problem.

experimental setups that were considered, but with a significantly lower computational

cost. This makes the proposal particularly adequate for high-frequency time series where

2D-interval predictions may be of use.



Chapter 3

A Multiple Regression Approach for

Spatial Interpolation

In this chapter we propose a new spatial imputation method based on machine learning

algorithms and a series of data pre-processing steps. The key distinguishing factor of this

method is that allows the use of data from faraway regions, contrary to the state of the art

on spatial data mining. We evaluate our methodology in the domain of image inpainting,

by filling in unknown pixels on several images. We compare it to state of the art methods

and provide strong experimental evidence of the advantages of our proposal. We also

compared our approach against specific image inpainting algorithms, which resulted in

observing a significant advantage of our method.

3.1 Introduction

Many real world data mining applications involve analysing geo-referenced data. These

data are frequently obtained from measurements of real systems, e.g. wind speed, oil

resources analysis, water quality assessment, satellite images, pictures and/or paintings

repair, etc. The process of data collection is not fully controllable and it is prone to failures.

Frequently, incomplete data sets are generated, in the sense that not all geographical

coordinates have measured values of the variable(s) of interest. This incompleteness may

be caused by poor data collection, measurement errors, costs associated with the collection
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or with the analysis of the measurements and many other factors. These missing values

may cause several difficulties in many applications based on these data, seriously impacting

on the posterior data analysis. Moreover, other constraints, e.g. financial and human

resources, may even increase the amount of missing data. Spatial imputation/interpolation

methods try to fill in these unknown values in geo-referenced data sets. In this context,

it is of key importance to have methods to accurately fill in these missing values, which is

confirmed by the amount of literature and methods available for spatial interpolation. For

a detailed comparison between different spatial interpolation methods see [Li and Heap,

2010].

In this chapter we propose a new spatial imputation method based on machine learning

algorithms and a series of data pre-processing steps. The key distinguishing factor of this

method is the possibility of using the data from faraway regions, contrary to the state of

the art on spatial data mining. This technique also allows the use of advanced non-linear

machine learning algorithms in the solution of this problem. Specifically, we may use any

regression model with this solution, such as: regression trees, support vector machines,

random forests, etc. These algorithms are considerable more advanced when compared

with the state of the art in the spatial interpolation research area.

Pixels from images (e.g. from a satellite or video surveillance cameras) are an example of

data that may also suffer from this incompleteness where some pixels are missing, which

again may be caused by many factors. An image can be seen as a spatial data set in a

Cartesian coordinates system, where each pixel (location) registers some value (e.g. degree

of gray on a black and white image). Being able to recover the original image from a partial

or incomplete version of the reality is a key application in many domains (e.g. surveillance,

security, etc.). In this chapter we evaluate our general methodology for spatial interpolation

on this type of problems. Namely, we check the ability of our method to fill in unknown

pixels on several images. We compare it to state of the art methods and provide strong

experimental evidence of the advantages of our proposal.

The main idea behind any approach to spatial imputation is the assumption that the value

at any location has some form of dependence on the values on neighbouring locations.

This is supported by the First Law of the Geography that says that “everything is related

to everything else, but near things are more related than distant things” [Tobler, 1970].
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Our work is also based on this assumption. However, the fundamental difference of our

proposal when compared to the state of the art, is the fact that we also allow the use of

data from faraway regions provided these neighbourhoods have similar spatial dynamics to

the target location for which we want to fill in a value. The fact that two neighbourhoods

are distant from each other does not preclude them from having similar spatial behaviour.

Ignoring these similarities and data seems a waste. The main contribution of our work is

to provide means to uncover these similarities and allowing the use of this extra data from

distant apart regions. This means that our methods will tend to use much more data than

existing methods to estimate the unknown values. The hypothesis driving our work is that

this extra information will lead to gains in terms of the precision of the imputation.

We have tested and compared our proposal against a series of alternative state of the art

methods on a particular task of filling in the missing pixels on pictures. Still, the approach

is by no means restricted to this particular application and can actually be seen as a

general approach to spatial imputation and even to the problem of formalising prediction

tasks in the context of spatial data. Our experiments show that our approach significantly

outperforms the most common techniques used for spatial interpolation - Inverse Distance

Weighted (IDW) and Kriging according to Li and Shi [2010]). The particular application

of filling in gaps in images is also handled within the research area of image processing.

On this research area other approaches exist to this problem. One of the most used

approaches is the Inpaint technique [Agrawal et al., 2010; Bertalmio et al., 2000]. We

have also compared our approach against the Inpaint method and the results show a clear

advantage of our technique.

In Section 3.2 we describe the most common techniques used for spatial interpolation.

Section 3.3 describes our proposed approach and Section 3.4 the particular application

used to test and compare our method. Section 3.5 presents the experimental evaluation

of our proposal, including the data and experimental methodology that were used, as well

as the presentation and discussion of the results. Finally, on Section 3.6 we draw the

conclusions of this work and describe possible future research directions.
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3.2 Spatial Interpolation

Forecasting the missing values in spatial data sets is not a new problem and it is usually

known as spatial imputation or interpolation. Spatial interpolation methods address the

problem of estimating unknown values of a variable of interest, Z, on certain geographical

locations, based on a spatial data set Z = {z1, · · · , zn}, where zi is the value of the variable

Z at location i.

Many different approaches have been developed to solve the spatial interpolation problem.

Existing approaches are usually motivated by the first law of the geography [Tobler, 1970]

that prescribes that nearby points should have strongly correlated values. Li and Shi

[2010] classifies spatial interpolators in three main classes: non-geostatistical interpolators,

geostatistical interpolators and combined procedures that integrate approaches from the

two former classes.

Non-geostatistical interpolators are based on the distance between the neighbours. The

simplest method is the Distance Interpolator (DI) that consists on the use of the average

value of the spatial neighbours as an approximation to the value at the missing location,

DIβ(o) =
1

|N β
o |

∑
zi∈Nβo

zi (3.1)

where N β
o are the values in the neighbourhood of the target location o defined as,

N β
o = {zi ∈ Z : d(o, i) < β} (3.2)

where d() a distance function between locations and β the threshold that limits the size of

the neighbourhood region.

The Inverse Distance Weighted Interpolation (IDW) [Isaaks and Srivastava, 1989] is a

simple improvement of the DI method. It is based on the assumption that the values that

are farther apart within the neighbourhood of a point should contribute less to the average

calculation. In this context, this method approximates the value at an unknown location as

the weighted average of the known neighbourhood values, where the weights are inversely
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proportional to the distance from the target location,

IDWβ(o) =
∑
zi∈Nβo

wo,i · zi (3.3)

where wo,i = 1
d(o,i) and the weights must satisfy

∑
zi∈Nβo

wo,i = 1.

The second class of existing methods are geostatistical interpolators that have origin in the

work of Krige [Krige, 1951]. Kriging is a generic name for a family of generalised spatial

interpolation models. According to Mitas and Mitasova [1999] kriging assumes that the

spatial distribution of a geographical region can be modeled by the realisation of a random

function, using a statistical technique to analyse the data. Kriging uses the same basic

principal behind the inverse distance weighting technique - it approximates the unknown

value at a location by interpolating the values at known locations given more importance

to the closer neighbours. However, the way the weights are calculated is different as

kriging uses the covariation between known data at various spatial locations [Krige, 1951].

There are several variants of kriging most of which differ on the way these weights are

approximated. Frequently used variants include ordinary kriging and co-kriging. In this

chapter we have only considered ordinary kriging because co-kriging requires an auxiliary

variable (covariable) [Isaaks and Srivastava, 1989], which was not available in the domain

considered in this chapter.

To compute the krige method, it is necessary to define a metric for the statistical distance.

A common used distance is the empirical semivariogram γβr [Isaaks and Srivastava, 1989],

γβr =
1

2|N β
r |

∑
zs∈Nβr

(zr − zs)2 (3.4)

To calculate the krige method it is also necessary to have information about the spatial

correlation on locations where no samples are available. This is calculated by fitting a curve

into the computed values of the empirical semivariogram (typical choices are: spherical,

gaussian, exponential, etc.). The resulting semivariogram model is then used to find the

correlation between the values at unsampled locations. Once a semivariogram model is

defined, it can be applied for spatial interpolation using kriging. The ordinary kriging
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interpolator for variable Z at the location o is given by,

OKβ(o) =
∑
zi∈Nβo

γβi · zi (3.5)

where the weights must fulfil the unbiasedness condition, i.e.,
∑

zi∈Nβo

γβi = 1 and the

expected error is E[ẑi − zi] = 0 [Isaaks and Srivastava, 1989].

On top of these standard approaches to the spatial interpolation problem, many other

variants exist on the vast research literature on this topic. The following is a brief overview

of some of the most representative.

Lu and Wong [2008] proposed a variation of the inverse distance weighting (IDW) method

to forecast the missing precipitation values in the center region of Taiwan. The main

contribution of this work was the development of an adaptive inverse distance weighting

(AIDW) model. This model uses different neighbourhood sizes based on the density of the

unsampled location. For unsampled locations with high concentration of points a smaller

neighbourhood is used and a larger one is used in dispersed locations. This model was

compared against standard IDW models with different neighbourhood size and ordinary

kriging. The proposed method outperformed all variants of traditional IDW and was better

than ordinary kriging in some experiments.

Goovaerts [2000] compares two classes of spatial interpolation methods, in the prediction of

precipitation values in the region of Algarve, Portugal. Univariate interpolation methods

(Thiessen polygon, inverse square distance and ordinary kriging) against multivariate

methods (linear regression, simple kriging with varying local means, kriging with external

drift and co-kriging). The external variable used by the multivariate methods was the

elevation map of the region in analysis. In this comparison the multivariate methods

outperformed the others interpolators. Linear regression was the best model. However,

ordinary kriging outperformed linear regression when the correlation between rainfall and

elevation is moderate (less than 0.75).

Rigol et al. [2001] propose a neural network approach for the spatial interpolation of the

daily minimum air temperature in the region of Yorkshire, UK. The proposed methodology

used terrain variables of the predicted location and temperature observations of the neigh-
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boring locations as inputs for the neural network. The authors claim that the proposed

technique achieves similar accuracy to the state of the art methods. However, they highlight

the advantage of not requiring any linear characteristics in the data to achieve these results.

Umer et al. [2010] proposed a distributed kriging algorithm for spatial interpolation in

wireless sensor networks. The main challenge of this domain was to accurately interpolate

the unsampled locations respecting the limitation of energy consumption. The proposed

technique was shown to be significantly more efficient in terms of energy consumption than

a global implementation and more accurate than simple averaging.

Xie et al. [2011] applied spatial interpolation techniques in the task of forecasting the

presence of heavy metals pollution in Beijing, China. The main motivation of this work

was to reduce the costs in the analysis of soil samples. In this work several interpolators

were compared: inverse distance weighting (IDW), ordinary kriging (OK), radial basis

functions (RBF) and local polynomial interpolation (LP). All the methods tested had a

high prediction rate, however OK and RBF had better performance in lower size polluted

areas.

Lin and Chen [2004] proposed a hybrid model, which was a combination of a radial

basis function network with a semivariogram model. This new model was denominated

improved radial basis function network (IRBFN). The proposed model was compared

against ordinary kriging (OK) and standard radial basis function network (RBFN), in

the prediction of precipitation in Tanshui River Basin in northern Taiwan. The proposed

technique outperformed the other two models. The authors also claim that the new model

is considerably faster than ordinary kriging on large data sets.

Robinson and Metternicht [2006] tested four spatial interpolation techniques (inverse dis-

tance weighting, ordinary kriging, lognormal ordinary kriging and splines) in the analysis

of three soil properties: pH, electric conductivity and organic matter. There was no single

interpolation technique that outperformed others in all setups analysed. Ordinary kriging

had the best results in the analysis of the property pH, splines outperformed kriging

and inverse distance weighting in the analysis of organic matter, and lognormal kriging

outperformed the others in the analysis of electric conductivity.

Malerba [2008] presents the area of spatial data mining and summarizes the challenges of

this area in the context of relational approaches in database management systems.
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Malerba et al. [2005] propose a new algorithm (Mrs-SMOTI) that creates a spatially

adapted regression tree model that is able to integrate with a spatial database. They

highlight three main characteristics of the proposed approach: (i) the proposed model

is able to capture both global and local spatial effects from explanatory attributes; (ii)

the model is not limited to a single layer analysis to find patterns between explanatory

attributes and the response attribute; and (iii) the definition of the spatial relationships

and attributes is influenced by the geometrical representation and relative positioning of

the spatial objects. They evaluated the proposed algorithm using a real world spatial

data set, the census data of Stockport metropolitan district in Greater Manchester (UK),

showing a clear advantage of the proposed method.

Ceci et al. [2010] propose a transductive learning approach for spatial classification, trans-

forming the spatial database into a relational database with multiple relations. The

proposed solution is based on an iterative K-nearest neighbors algorithm for re-classification

of labelled and un-labelled data. The method was evaluated with success using two real

world datasets: census information from the Greater Manchester (UK) and Munich rental

guide (DE).

3.3 Our Proposal - Multiple Regression Spatial Interpolation

Spatial interpolation aims at filling in the values of a variable of interest at geographical

locations for which they are unknown. This problem is usually solved by assuming that

the unknown values can be filled in by using the information of the known values in their

vicinity. It is possible to look at this task as a prediction problem where the target variable

is the variable of interest at a certain geographical location and the predictors are the values

of this variable within the respective neighbourhood. We have taken this approach by

mapping the spatial interpolation problem into a numeric forecasting task, i.e. a multiple

regression problem. The main motivation for this transformation came from times series

forecasting using machine learning models. Typically, these tasks are addressed as standard

multiple regression problems using the technique of time delay embedding [Takens, 1981].

This technique consists on setting the future value of the time series at time t + h as the

target variable and then using a certain number of previous values (the embed size) of

the time series as predictors. The key idea is to provide the modelling techniques with
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information on the recent dynamics of that time series by means of the most recent values.

Our proposal can be seen as applying the same idea in the spatial dimension by trying

to forecast the value of a variable at a certain location as a function of the values in the

spatial vicinity (a kind of spatial embedding).

Other authors have addressed the use of regression tools with spatial data (e.g. [Brunsdon

et al., 1998]). Still, to the best of our knowledge all these works constrained the use of

data to make predictions for a certain location to the neighbouring data (e.g. through

kernels [Brunsdon et al., 1998]). These approaches are in accordance with the already

mentioned first law of geography. The main distinguishing feature of our proposal is

letting the models and their search criteria to select which observations are useful from

the perspective of predictive accuracy. As we have mentioned before, the fact that an

observation is faraway from the target location does not mean that it does not have the

same type of spatial dynamics.

In financial time series forecasting it is common to extend the idea of time delay embedding

by adding other predictors. Examples include “technical indicators”, which provide inform-

ation concerning the recent dynamics of the target time series. This information takes the

form of summary statistics (the indicators) of several properties that are deemed interesting

in terms of understanding the time evolution of the series. Examples include indicators

of tendency, acceleration, momentum, volatility and so on. Adding these indicators as

predictors to the “standard” time delay embedding values usually results in improvements

on the predictive accuracy of the obtained models. We will import this idea into spatial

data sets by proposing a series of spatial indicators.

Summarising, our proposal for the spatial interpolation problem consists of two key pre-

processing ideas:

• Mapping the spatial interpolation problem into a multiple regression task;

• Propose a series of spatial indicators to better describe the spatial dynamics of the

variable of interest.

The first idea has two main advantages: (i) allows the use of the large number of sophistic-

ated function approximators that are available; and (ii) allows the use of data from faraway

neighbourhoods if the models find them similar to the region being interpolated, in terms of
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the predictor variables that are selected for a given task. Regards the second idea, we have

considered three classes of properties to describe the spatial dynamics between the variable

values in a neighbourhood: i) properties describing the typical value of the target variable;

ii) properties describing the variability of the variable; and iii) properties describing the

tendency (in spatial terms) of the variable. Among these, the third class is the one that

differentiates more our work from the information used in standard approaches to spatial

interpolation. Still, we should remark that standard approaches use these indicators to

directly forecast the unknown values, while we are using them as predictors in a regression

model, thus allowing for the discovery of possible non-linear interactions between the

properties.

The typical value of the target variable within a neighbourhood can be captured by both

the Distance Interpolator (Equation 3.1) and the Inverse Distance Weighted Interpolation

(Equation 3.3), the difference being that the latter weights the contribution of the points

by the distance to the target. In this context, we will use these values as predictors in our

models. To simplify our notation we will use z(N β
o ) for the standard averages (= DIβo ),

and z̃(N β
o ) for the weighted averages (= IDW β

o ).

To capture the notion of spread of the values within a certain vicinity we have used the

standard deviation calculated with the values in this neighbourhood,

σz(N β
o ) =

√√√√ 1

|N β
o |

∑
zi∈Nβo

(zi − z(N β
o ))2 (3.6)

In financial forecasting it is common to describe the tendency of a time series by means

of a ratio between two moving averages calculated using two different embed sizes. If the

value of the moving average with shorter embed size surpasses the longer moving average

we know that the time series is on an upwards tendency, while the opposite indicates a

downwards direction. We have imported this idea into the spatial dimension. The ratio

between two averages calculated on two spatial neighbourhoods with different sizes around

the target location provides us with information on how the target variable values evolve

in the vicinity of this location. If the shorter average is above the longer, then we know

that values are increasing as we approach the target location, while the opposite occurs if

the shorter average is smaller. This ratio can be defined as follows,
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Z
β1,β2
o =

z(N β1
o )

z(N β2
o )

(3.7)

where β1 and β2 are two neighbourhood sizes (β1 < β2) and z() is the average of a set of

points in the neighbourhood of o.

A variation of this indicator can be easily obtained by using weighted averages of the values

within the spatial neighbourhood,

Z̃β1,β2o =
z̃(N β1

o )

z̃(N β2
o )

(3.8)

where z̃() is the weighted average of a set of points in the neighbourhood of o.

Having defined a series of spatial indicators, we can proceed to map the spatial interpolation

problem into a multiple regression task. The target variable of this task is the value of the

variable Z at a geographical location. As predictors we propose to use several variants of

the spatial indicators we have described above. Namely, we will estimate the value of Z at

a target location o as a function of the following predictors,

ẑo = f(z(N k1
o ), z(N k2

o ), z(N k3
o ), Z

k1,k2
o , Z

k2,k3
o ,

z̃(N k1
o ), z̃(N k2

o ), z̃(N k3
o ), Z̃k1,k2o , Z̃k2,k3o ,

σz(N k1
o ), σz(N k2

o ), σz(N k3
o ))

(3.9)

where f() is the unknown regression function we are trying to model using a set of training

data Z, and k1, k2 and k3 (with k1 < k2 < k3) are spatial neighbourhood sizes. In the

experiments described in this chapter we have used the values 10, 30 and 50, respectively,

for these spatial neighbourhood sizes, but this is something that obviously is domain-

dependent.

It is important to remark that several other indicators/predictors could have been used.

The same can be said regards the sizes of the spatial neighbourhoods. Which predictors to

use is a well-studied problem on predictive data mining. Several established methods exist

to search and select the best predictors for a given data set and learning algorithm [Guyon
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and Elisseeff, 2003; Kira and Rendell, 1992]. It is not the goal of this work to address

this well-studied subject. Our contribution is the idea of mapping the problem of spatial

interpolation into a multiple regression task and also to provide some new predictors that

capture the spatial dynamics on a certain vicinity.

Tables 3.1 and 3.2 summarize the spatial pre-processing technique proposed in this thesis.

Table 3.1 represents a spatial data set to be transformed to a regression data set (Table 3.2),

applying our proposed technique. For instance, to obtain the data for the location (44, 39)

(in black on both tables), we will need to look for data points in its vicinity. In this

illustrative example we defined two spatial neighborhoods, N k1
o and N k2

o , with k1 < k2.

The first spatial neighborhood of our location
(
N k1

(44,39)

)
is represented by the observations

in light blue, while its second (larger) spatial neighborhood
(
N k2

(44,39)

)
is composed by the

observations in light and dark blue. The pre-processing phase is the iterative process of: (i)

selecting a location (e.g. (44, 39)); (ii) define its neighborhoods; (ii) calculate the values of

predictor variables using the target variable values inside these neighborhoods; (iv) select

a different location and repeat the process, until all locations are mapped.

location Zo
(44, 39) 390.89
(45, 39) 410.15
(45, 38) 400.07
(55, 42) 780.45
(25, 32) 800.34

...
...

Table 3.1: Spatial Data

location Zo z(N k1
o ) z(N k2

o ) · · ·
(44, 39) 390.89 405.11 597.75 · · ·

...
...

...
...

. . .

Table 3.2: Regression Data

Using this pre-processing method we are able to build a data set that can be used to obtain

models that solve the predictive task show in Equation 3.9.

In summary, our proposal for the spatial imputation problem using a spatial data set

Z consists on: (i) use these data to build a new multiple regression data set where the

target variable is the value of Z on a location and the predictor variables are calculated

using the values in the vicinity of this location (an example are the variables mentioned

in Equation 3.9 but others could be used); (ii) use this new data set to build a regression

model with some existing algorithm; (iii) apply this model to locations where the value of

the target variable is unknown.
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3.4 A Concrete Application - Image Inpainting

The hypothesis driving our proposal can be described by the following assertions:

• there are regions that are far from each other from a geographical perspective and

yet may have similar spatial dynamics in terms of the variable of interest;

• this similarity can be exploited by standard multiple regression models provided good

descriptors of the spatial dynamics within a neighborhood are provided to the models

as predictor variables;

• the potential use of this extra information (from distant regions) by the models will

increase their predictive accuracy on spatial interpolation tasks.

This section describes a real world application used to validate our hypothesis. The

application consists on filling in missing pixels on a image. An image can be seen as a

spatial data set, given that each pixel has a different location in a system of Cartesian

coordinates. At each location one or more values may be measured. In our problem it is a

single degree of gray (a value in the interval [0, 255]) that is measured. In the research area

of image processing this type of problems are referred to as “image inpainting” [Agrawal

et al., 2010; Bertalmio et al., 2000; Shih and Chang, 2005]. The term “inpainting” has its

origin in the manual task of restoring damaged paintings and/or photos by professional

restorers [Bertalmio et al., 2000]. Digital inpainting is a relatively new research area

with the goal of developing tools that automatically restore damaged images. Examples

of damages include: noise (missing pixels caused by some equipment failure), unwanted

objects (persons, cars, red-eye, etc.), logos, stamps, scratches (old pictures), etc.

Hays and Efros [2007] classify the image inpainting techniques in two main groups. The

first uses additional information besides the source image, in an attempt to accurately

reconstruct the damaged region; e.g. using a sequence of frames in a video [Irani et al.,

1995] or multiple photographs of the same physical scene [Hays and Efros, 2007; Snavely

et al., 2006]. The second group, uses only the information provided by the source image to

restore the damaged region. The most common techniques apply some form of interpolation

of the surrounding pixels (e.g. [Bertalmio et al., 2000]). Another example of this latter

approach is the work by Shih and Chang [2005] that proposed an algorithm to restore a
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(a) Dog face (260x222) (b) Coliseum (320x240)

Figure 3.1: Original pictures.

damaged region in a Chinese painting using several layers (based on the colors difference

algorithm). Our approach also belongs to the latter group that only uses information from

the given image.

Since the target application of this work is the repairing of images, we have also compared

our approach against one successful implementation of an image inpainting algorithm based

on the “exemplar based approach” [Agrawal et al., 2010; Bertalmio et al., 2000]. In our

experiments we have used an open source implementation1 of this inpainting algorithm.

Figure 3.1 shows the two original images that were selected to evaluate and compare

our proposal. The first picture (Figure 3.1a) is a dog face with 260x222 pixels, and the

second picture (Figure 3.1b) is the Coliseum of Rome, with 320x240 pixels. The pictures

are rather different in several aspects, though both are described by a degree of gray

in the [0, 255] interval. Based on these images we will generate several data sets with an

increasing number of these original pixels removed for evaluating the alternative imputation

methodologies.

1Publicly available at http://sourceforge.net/projects/imageinpainting

http://sourceforge.net/projects/imageinpainting
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3.5 Experimental Evaluation

3.5.1 Experimental Methodology

The main goal of our experiments is to check the validity of our proposal for spatial inter-

polation. We have carried out an extensive set of experiments under different conditions.

To ensure a fair comparison between all the spatial interpolation models we have considered

several setups in terms of the amount of missing pixels. Namely, we have created 9 different

data sets from each original image (Figure 3.1) with an increasing number of pixels being

randomly removed2: 10%, 20%, · · · , 90%. Moreover, to ensure the statistical significance

of the results we have repeated this random selection 10 times for each of the 9 settings.

This means that we have compared the models on 180 different data sets generated from

the two original images.

For each of these 180 different data sets, formed by the known gray levels of a sub set of

pixels, we have compared different alternatives in the task of forecasting the target variable

(degree of gray) at the missing pixel locations. The predictions were compared against the

true values (Figure 3.1) using the Mean Absolute Error metric,

MAE =
1

n

n∑
i=1

|ẑi − zi| (3.10)

where, n is the number of missing pixels, ẑi is the level of gray predicted by the models,

and zi is the real value according to the pictures in Figure 3.1.

In all setups the alternative models were given the same exact pixel data to ensure a fair

comparison. Still, for the different variants of our approach that were tried, we had to

develop a regression training set from this pixel data. This regression training set was

created using the formula given on Equation 3.9 (cf. Section 3.3).

All data, code and extra results are provided in a web page 3 to ensure that our work is

replicable.

2We should remark that the values at these locations were actually removed, i.e. set as unknown, and
not set as white pixels as the graphical representations of the data sets we will see later, may indicate.

3goo.gl/hRBMd

goo.gl/hRBMd
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3.5.2 Models

Our methodology is based on the use of a regression algorithm to obtain the models that

are then used to carry out the spatial imputation of unknown values. In order to fully test

our ideas we have selected a diverse range of modeling approaches to test our hypothesis.

The idea was to confirm its validity independently of the technique used to forecast. In

this context, we have used the following regression algorithms:

Regression Trees (RT) - a regression tree (e.g. [Breiman, 1984]) based on the R package

rpart [Therneau and port by B. Ripley., 2009]. In our experiments we have used an

interface to the rpart function provided in package DMwR [Torgo, 2010] and have tried 4

different variants by using the parameter se that controls the level of pruning with values:

0, 0.5, 1 and 1.5.

Support Vector Machines (SVM) - an implementation of SVMs (e.g. [Cristianini and

Shawe-Taylor, 2000]) available in the R package e1071 [Dimitriadou et al., 2009]. We have

used 6 variants of the parameters cost that represents the penalty associated with errors

and the parameter gamma which the used radial based kernel. For the parameter cost we

used the values: 1, 10, 100 and for the parameter gamma the values: 0.1 and 0.5.

Random Forest (RF) - an implementation of random forests [Breiman, 2001] available

in the R package randomForest [Liaw and Wiener, 2002]. We have used 3 variants of the

parameter ntree that controls the number of trees in the forest (ensemble), with the values:

500, 1000 and 1500.

Regards the competitive approaches for spatial imputation we have selected a series of

techniques that are a good representation of the state of the art on this area:

Distance Interpolator (DI) - a simple baseline method that uses the mean value of a

circular neighborhood region. We have considered 3 neighborhood sizes: 10, 30 and 50.

Inverse Distance Weighted Interpolator (IDW) - a variation of the previous method

that uses the weighted average value within the neighborhood region as the approximation

for the unknown location. The weights are inversely proportional to the distance. We have

considered the same neighborhood sizes as in DI.

Ordinary Kriging (OK) - we have used an implementation of this method available on
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the R package automap [Hiemstra et al., 2008]. The implementation in this package auto-

matically selects the best parameters for the kriging method, including the neighborhood

size and the function used in the calculation of the semivariograms (it considers spherical,

exponential, Gaussian and two variants of the Matern family). To limit the search space,

in our experiments we have set the maximum neighborhood size to 90.

All the used tools are freely available in the R software environment [R Development Core

Team, 2010], which ensures easy replication of our work.

3.5.3 Results

Figures 3.2 and 3.3 summarize the results obtained by all alternatives using the experi-

mental settings described before. Each bar represents the estimated MAE value averaged

over the 10 repetitions of a model variant on each of the 9 data sets. These 9 data sets

are images with an increasing number of pixels randomly removed from the respective

original image. The different approaches are presented in 6 groups. The first group

is composed by the base line distance interpolator (DI) approach, obtained using the 3

selected neighborhood sizes: 10, 30 and 50 (the β in Equation 3.1). The second group

contains 3 similar variants but this time using the IDW technique with the same spatial

neighborhood sizes. Then we have all the parameter variants of regression trees (RT),

SVMs and random forests (RF). The last group includes the ordinary kriging approach,

whose parameters are automatically tuned by the used software package.

The results of Figures 3.2 and 3.3 show an overwhelming advantage of our approaches

when compared to these state of the art methods. In particular, both the SVM and

RF variants achieve remarkably good scores, although even with the simple RT approach

the results are superior. The typical error of our approaches is around 5 in a scale of

[0, 255] gray levels. It is also remarkable that even at the highest level of noise (90% of

the pixels removed), the scores of our approach are competitive with the existing methods

when given a data set with only 10% of the pixels removed. These experiments provide

clear evidence of the advantage of: (i) using more sophisticated function approximates;

(ii) using more elaborated information concerning the spatial dynamics through spatial

indicators; and (iii) allowing the use of data from distance points in space provided the

regression models find this useful in terms of accuracy. Another noticeable observation
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Figure 3.2: Estimated MAE of the different approaches for the Figure 3.1a.

is the surprisingly bad scores obtained by the used ordinary kriging method, which was

unable to beat even the simple DI variants. This may indicate that the automatic tuning

provided by the used software package may not be adequate for all situations and that these

particular problems could require a more careful hand-tuning of the kriging parameters.

Our approach, however, did not require any tuning at all, and it may even be the case

that with different variants of our spatial indicators, for instance through the use of some

feature selection algorithm, the performance could be further improved.

In order to better understand what the methods are doing in terms of approximating the

original image, we have selected one of the ten repetitions and represented graphically

both the original data and the approximations provided by the competing methods. These

results are show on Figures 3.4 and 3.5, respectively. The first row of graphs shows the 9

original data sets with an increasing number of pixels removed. The remaining rows show

the approximations provided by the predictions of each of the alternative approaches.

Regards our approaches we have selected the best approximations for each algorithm,

which were a regression tree model (RT) with se = 0, the SVM model with the cost = 1

and gamma = 0.1, and the random forest (RF) model with ntree = 500. These graphs

illustrate the remarkable job that our approaches are able to achieve in terms of recovering

the original image, even at very high levels of noise. The quality of the pixel imputation
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Figure 3.3: Estimated MAE of the different approaches for the Figure 3.1b.

even with 90% of the pixels removed is impressive.

With the goal of evaluating the performance of the models in different conditions we have

carried out another experiment where we have artificially created larger areas with no

pixels available. Namely, starting from an image with 60% of the pixels randomly removed

(DS60%, Figure 3.4 first row sixth column), we have artificially added 24 circular holes with

different radius (8, 10, 15 and 20). On these 24 regions all pixels were removed. This new

data set was denominated DSholes, and you can see the resulting image on Figure 3.7a. We

have applied all competitive methods to this data set and the resulting MAE values are

show on Figure 3.6. Once again we have observed a marked superiority of our approach.

We should note that this is a situation where the ability to use data from faraway vicinities

should give an extra advantage to our methods when trying to approximate pixels inside

the circles. These experiments confirm this intuition as our models are able to provide

reasonable approximations even on these areas where limited information on nearby pixels

is available, as it can be confirmed in Figure 3.7 where we have the pictures recovered

by each alternative method. We should remark that for some neighborhood sizes it may

happen that no value is available in the vicinity of a target location. On these locations

we have allowed the DI and IDW to dynamically increase the neighborhood size until a
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Figure 3.4: The used data sets and the resulting approximated images for Figure 3.1a.

reasonable amount of values exist to calculate their averages. On kriging this adaptation

should be carried out automatically by the parameter tuning of the used function.

3.5.4 Comparisons with Inpainting Algorithms

As mentioned before, the problem we are addressing is named image inpainting within the

image processing research area. We have compared our best variant (RF ntree = 500) to

one of the most common methods in image inpainting (see Section 3.4). We were not able

to compare these two techniques on the 9 data sets with increasing percentage of removed
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Figure 3.5: The used data sets and the resulting approximated images for Figure 3.1b.

pixels from Figure 3.1a, because the used inpaiting software crashed on data sets with too

many unknown pixels. In this context, we were only able to collect results for the DS10%

and DS20% data sets.

Figure 3.8 shows the results of this comparison. We show the original data sets; the approx-

imations provided by two variants of the inpainting algorithm4: the fast implementation

(Figures 3.8b and 3.8f) and the standard implementation (Figures 3.8c and 3.8g); and the

results of the random forest in Figures 3.8d and 3.8h. Although the inpainting algorithm is

able to achieve similar results on the data set with a lower level of unknowns (particularly

in the standard implementation), in the data set with 20% of removed pixels we already

see a marked advantage of our approach.

4To apply our missing dataset variant to the inpaint software we need to convert the missing pixels to
the RGB green color.
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Figure 3.6: Mean Absolute Error on the DSholes data set.

(a) DSholes (b) DI10 (c) DI30 (d) DI50

(e) OK (f) IDW10 (g) IDW30 (h) IDW50

(i) RT (j) SVM (k) RF

Figure 3.7: The DSholes data set and the approximated pictures of the methods.
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(a) DS10% (b) Inpaint Fast (c) Inpaint (d) RF

(e) DS20% (f) Inpaint Fast (g) Inpaint (h) RF

Figure 3.8: Random Forest vs Inpaint Technique

3.5.5 The Usage of Data from Faraway Regions

One of the distinguish factors between our approach and the state of art spatial imputation

methods, is the fact that our approach allows the use of data from faraway regions

provided these regions have similar neighborhood dynamics. We believe that this additional

information provides a significant advantage in favor of our proposed technique, for the task

of spatial interpolation. To support this claim we selected our most interpretable model,

regression trees, and learned two models, one for each picture in analysis (see Figures 3.1a

and 3.1b). Regression trees are learned by trying to group training cases that have similar

values on the target variable and which share some properties in terms of the predictor

variables. The goal of this experiment was to analyze which training cases were put on

each leaf of the learned trees. If our hypothesis is right we should expect to observe leaves

with training cases that are distant apart from the perspective of the Cartesian coordinates

of each picture. There are two possible outcomes for this experiment: in the first, i) the

leafs have only cases from the same spatial neighborhood, which would be in accordance

with the first law of geography and the approaches followed by the standard state-of-art

methods; in the second ii) the leafs have cases from multiple spatial locations, supporting

our claim that the model find useful to use data from faraway regions.

We have carried out this experiment by creating two regression data sets with the meth-

odology described in Section 3.3, one for each photo. Using each of these regression data

sets we have obtained a regression tree and have analyzed the cases that were put by the
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(a) Dog Face
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(b) Leafs Map

Figure 3.9: Leaves Map - Dog Face (see Figure 3.1a)

models on each leaf. Both trees were learned with the parameter se = 1.5, to generate

small trees and avoid overfitting.

Figures 3.9 and 3.10 show the results of this experiment. On each figure we shows the

original picture and a colored map where each color represents the pixels on a tree leaf.

To facilitate the visualization of the results the maps only show the geographical location

of the pixels in the 10 leaves with a higher number of cases. As we can see, in both cases

the leaves contain cases from faraway regions. This provides clear evidence that these

regression models find similarities, both in terms of the target variable values and in terms

of the descriptors of the neighborhood spatial dynamics, between pixels that are distant

from each other. Given the predictive accuracy of these models we claim that the usage

of information from faraway regions is providing advantages to these models in terms of

spatial interpolation.

In the Coliseum picture the usage of data from faraway regions is even more marked as can

be observed in Figure 3.10. However, we can also observe a leaf (darker blue region) where

all cases belong to a nearby vicinity. This means that our approach does not force the

usage of data from distant regions. This decision is left to the criteria guiding the model

construction which is typically related to some predictive accuracy optimization process.
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(a) Coliseum
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(b) Leafs Map

Figure 3.10: Leaves Map - Coliseum (see Figure 3.1b)

3.6 Conclusions

This chapter describes a novel approach to the problem of spatial interpolation. Our general

methodology is based on the idea of transforming this problem into a multiple regression

task and then applying standard algorithms to a data set that is constructed from the

original spatial data using a series of spatial indicators designed to better describe the

spatial dynamics of the variable of interest. The key distinctive feature of this methodology

is the data that is used to obtain the approximations of the unknown values of the variable

of interest. Existing state of the art methods use only values within a certain neighborhood

of the target location for which we want an estimate. Our proposal is based on the

assumption that other distant vicinities may be used provided they show a similar spatial

correlation pattern. The decision to use this extra data is left to the the optimization

process of the regression models. With the goal of improving the discovery of similar

neighborhoods we have also introduced the notion of spatial indicators. These are features

constructed from the original data that try to provide useful information on the spatial

correlation dynamics within a neighborhood. Their goal is to help the models in uncovering

similarities among different regions of the space.

Although the described methodology is a general spatial imputation method, in this thesis

we have tested it on a particular task with strong impact in several application domains:
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image repairing. We have tested and compared our method under different setups in terms

of missing information on the given images. On all setups we have observed a strong

advantage of our approach that has achieved impressive results in terms of recovering an

image even at high levels of noise. These results are very encouraging and provide strong

empirical evidence towards the advantages of our approach to spatial imputation.



Chapter 4

Sensor Network Prediction through

Spatio-Temporal Indicators

In this chapter we propose a new technique to improve short term prediction in sensor

networks. The vast majority of the work developed in spatio-temporal sensor networks

uses just one dimension of the problem. Our approach is based on the assumption that by

incorporating both dimensions (spatial and temporal) will improve the predictive models

accuracy. Our approach is based upon the definition of a spatio-temporal neighborhood.

Within this neighborhood a series of spatio-temporal indicators are applied to provide

information to the models on the spatio-temporal dynamics of the target variable. This

approach is a natural follow-up of the approaches taken in the previous chapters, to both

space and time. Once again our approach to tackle these problems is based on data

pre-processing techniques that try to provide the models with useful information on the

dynamic properties of the target variable. This approach was evaluated using real world

wind speed data collected at wind farms in US. Our extensive experiments show that our

proposal has clear advantages in most setups over a series of alternatives.

4.1 Introduction

Spatio-temporal data mining focus on spatial applications that evolve over time, e.g.

traffic management, route planning, electric power systems, GPS based systems, water
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distribution networks, etc. Most of the research effort on mining geo-referenced data

has been based on segmenting the analysis of the problem; analyzing only the spatial

information ignoring the temporal characteristics of the data, or otherwise, and treat the

problem as a time series task. More elaborate approaches tries to combine two isolated

approaches. However, in our opinion treating both dimensions separately significantly

limits the understanding of the problem. The majority of the geographic phenomena

evolve over time, so both spatial and temporal correlation information are key points in

this analysis [Yao, 2003]. In this thesis we propose an approach that uses both dimensions

for spatio-temporal forecasting tasks.

Spatio-temporal data mining is an emerging research area. It can be considered as a

natural evolution of two established and well studied research areas: temporal data mining

(time series) and spatial data mining. The main challenges in spatial domain are: the

data representation (point, lines, and polygons), that are more complex than non-spatial

representation; and the influence/correlation between spatial objects. In the temporal

domain the challenge is to identify patterns on sequences of spatial objects, which is more

complex given the complexity of these objects. The need to investigate both “spatial”

and “temporal” relations at the same time complicates even further the data mining

process. Most of the spatio-temporal application domains have the spatial and temporal

characteristics explicitly defined. However, in some domains, like sensor networks, the

spatial information is usually not embedded in the data. This information can be extracted

from the domain, based on the sensor locations. This class of applications needs an

extra step in the data preparation phase. In this chapter we address this sub-group of

the spatio-temporal applications - data originated from sensor networks. This group of

applications has been receiving substantially more attention from the scientific community,

pushed by the growth of sensor networks applications in key areas of our society, like:

water distribution network, power distribution network, power generation, traffic control,

TV/Internet providers, etc.

The main goal of our work is to improve the ability to forecast sensor network data by

using a spatio-temporal approach. Data mining research is frequently application-oriented.

Our work was also be driven by a concrete application - forecasting wind speed at different

locations of a wind farm, in US. Namely, our target was to forecast the next 2 hours wind

speed. Although driven by a particular application, our proposed method is generic and
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can be applied to a wide range of spatio-temporal forecasting scenarios.

In the Section 4.2 we describe the recent advances in spatio-temporal data mining research.

In Section 4.3 we describe our proposed formalization of the prediction problem that

includes the definition of spatio-temporal indicators. In Section 4.4 we describe the real

world application focus of this chapter, wind speed forecasting. Section 4.5 describes

the experiments, namely the data and the experimental methodology that were used; we

also present and discuss the results of our experiments. In Section 4.5.4 we analyzed

20 parameters variants for the SVM model. And in the Section 4.5.5 we analyzed the

performance of the best model (random forest with ntree = 500) with four new spatio-

temporal neighborhood sizes, while on Section 4.6 we draw the conclusions of the work

and describe our future research agenda.

4.2 Spatio-temporal Data Mining

According to Andrienko et al. [2006], “spatio-temporal data mining is an emerging research

area, dedicated to the development and application of novel computational techniques for

the analysis of large spatio-temporal databases”.

For Koperski et al. [1998], “spatio-temporal data mining refers to the extraction of implicit

knowledge, spatial and temporal relationships, or other not explicitly stored in spatio-

temporal databases”.

Spatio-temporal data mining is a sub-field of data mining addressing data analysis tasks

related with spatio-temporal applications. Spatio-temporal applications are domains where

data is collected on different spatial (geospatial) locations at different points in time.

Despite being a recent research area, there are already a considerable number of interesting

contributions in spatio-temporal data mining. One of the application domains to which

spatio-temporal data mining can be applied is on the identification of patterns on moving

objects. The basic assumption is that objects follow the same approximate routes over

regular time intervals, e.g. people wake up at the same time and follow approximately the

same route to their work everyday. Cao et al. [2005] proposed an approach that transforms

the objects trajectories (GPS movements) into a sequence of events using a line segment

approach, and applied a mining algorithm based on a sub-string tree, looking for patterns
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that identify interesting movement behavior. These patterns could be used to forecast

the next location of objects. Mamoulis et al. [2004] proposed other approach to the same

problem. They transformed the movement of the objects in a sequence of events using a

grid approach, and proposed a fast mining algorithm to identify the maximum number of

patterns and an index structure for efficient execution of spatio-temporal patterns queries.

Compieta et al. [2007] developed a system for exploratory spatio-temporal data analysis

within in a visualization tool. The system has two main components, the spatio-temporal

engine miner and the visualization engine. The spatio-temporal engine miner is based

on a variation of the Apriori algorithm to generate spatio-temporal association rules. The

visualization engine uses Google Earth to add a layer developed in Java3D for visualization

of the patterns identified by the spatio-temporal engine miner. The system has a strong

visual component, that enables high levels of interaction in the analysis of the domain.

The case of study adopted in this work was the data set of the Hurricane Isabel, which

struck the US east coast in September 2003.

Ciampi et al. [2010] proposed a new technique that combines spatial clustering with trend

discovery in spatio-temporal sensor network data. The technique is composed of two

phases: (i) in the first an online process continuously takes snapshots of the current status

of the sensor network, with the aim of generating a spatial cluster of each snapshot, and

then storing the cluster information; (ii) the second phase consists in discovering trends

based on the generated clusters, using a time window approach (only the most recent

clusters are analyzed). This technique was tested using synthetic and real world data

streams: the temperature measurements collected at Intel Lab and South America climate

streams.

Yao [2003] classifies spatio-temporal problems in five main tasks: segmentation, depend-

ency analysis, deviation and outlier analysis, trend discovery, and generalization and

characterization. Segmentation is the process of classifying or creating clusters using

the spatio-temporal data; dependency analysis is the task of finding association rules

between the spatio-temporal objects; deviation and outlier analysis identifies spatio-

temporal objects that deviate from the normal behavior in the data set; trend discovery

is related to the prediction of the expected future value (regression) in spatio-temporal

context, discovery of current trends, and with the discover of correlation between events;
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and generalization and chracterization of the data that transforms it in order to

compact the information or better describe the properties of the data.

In this thesis we are interested in spatio-temporal prediction tasks. Spatio-temporal

prediction consists in trying to forecast the future value of the target variable for some

location, based on information on past values of this variable at that same location as

well as on nearby locations. The existing approaches for forecasting spatio-temporal data

usually analyze each dimension (space and time) individually. For instance Cheng and

Wang [2008] proposed an integrated spatio-temporal framework for forest fire prediction

in Canada. The proposed framework splits the problem in three prediction tasks: (i) use

a time series arima model for the temporal prediction; then (ii) apply a recurrent neural

network for the spatial prediction; and finally (iii) combine these two predictions with a

linear regression model. Contrary to these approaches, our proposal in this thesis is to

integrate in a single modeling task both the space and time dimensions.

4.3 Our Proposal - Spatio-temporal Indicators

The task being addressed in this chapter consists on trying to forecast the future value of

a variable evolving in time on a certain geographical location, based on historical data of

this variable collected on both this and other geographical locations, across a past time

period.

If we forget the fact that we have measurements of the target variable on nearby locations

and that there may exist spatial correlation between the values on these locations and the

current target location, we would be facing a time series forecasting problem. The most

common approach to time series forecasting using machine learning models consists in

transforming the original problem into a multiple regression task, where the target variable

is the future value of the series, while the predictors are previous past values of the series

up to a certain p-length time window. For instance, using the time series shown in the

Figure 4.1, and assuming we want to forecast its future value, we can transform this time

series into a regression data set using the schema outlined in Table 4.1. This consists on

iteratively applying the rule: the target variable value is the next value of the

series and the predictors are the previous p values of the series. This trans-
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t−n t−2 t−1 t

Figure 4.1: Time Series - time delay embedding

formation technique is usually known as time delay embedding [Takens, 1981]. The

motivation for time delay embedding is the assumption that future values of the series

depend at most on the past p values, with p being known as the embed size. The value of

p needs to be determined and is clearly domain-dependent but Takens has shown [Takens,

1981] that with the correct embed size determined, we can approximate any dynamic

system using this strategy. The idea behind time delay embedding is actually simple -

we should provide the models with sufficient information for them to be able to uncover

the mechanism generating the time series values. This mechanism is assumed to be non-

random in the sense that future values of the series depend (in an unknown way) on the

previous values of the series. Moreover, it is sensibly assumed that the length of this

window of dependency on the past is limited in size.

The simplest form of using the idea of time delay embedding is to provide the models with

the most recent values of the target time series as illustrated in Table 4.1. An improvement
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target predictors (e.g. last 10)
Wt Wt−1 · · · Wt−10
Wt−1 Wt−2 · · · Wt−11
Wt−2 Wt−3 · · · Wt−12

Table 4.1: Regression - time delay embedding

over this simple strategy is frequently used within financial forecasting. In this field it is

frequent to also use as predictors what are known as technical indicators. According

with the financial dictionary1 technical indicators are “statistical information that is used to

determine future trends in security prices and to make or recommend investment decisions

based on those trends.” These variables are nothing more than statistical summaries

of certain properties of the time series. These properties include effects like tendency,

acceleration, momentum and so on. Different indicators were developed to express these

features of a time series. These indicators can be regarded as “sophisticated” descriptors

of the recent dynamics of the time series we want to forecast. In a way they provide a

synthesis of important properties of the recently observed values of a time series. Including

them as predictors should provide the models with more information on the recent behavior

of the time series.

The assumption behind our proposal is that the future value of the target variable at

a location i depends not only on the previous past values of the variable at this same

location, but also on the past values on nearby locations. This means we assume and

try to model both the temporal and spatial correlation among the values of the target

variable. Ignoring any of these two important forms of correlation seems limiting in terms

of predictive accuracy. This is the case in the domain that has driven our work - wind

speed forecasting. The future values of the wind speed depend not only on the recent past

values at the same location but also on the neighboring locations. This spatio-temporal

dependency is not particular to wind speed forecasting. Several real world domains have

similar forecasting problems with the same type of spatio-temporal correlation. In effect,

with the profusion of mobile computing devices with GPS capabilities, the demand for the

analysis of spatio-temporal data is increasing at a very high rate.

Our approach is essentially a form of data pre-processing methodology. The key idea behind

1http://financial-dictionary.thefreedictionary.com/
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our proposal is to try to develop predictors that are able to describe the spatio-temporal

dynamics of the time series we aim to forecast. More precisely, we plan on mapping the

concept of technical indicators used in financial forecasting to a spatio-temporal context.

With this purpose we derive a series of spatio-temporal indicators that can be used as

predictors in the task of developing forecasting models. Our assumption is that these extra

information will provide the models with important characteristics on the recent spatio-

temporal dynamics of the time series, which in turn will improve the model prediction

accuracy. In this context, we plan to formalize the prediction problem in such a way that

the future values of the target time series are predicted using not only previous values of the

series and summaries of its temporal dynamics, but also with spatio-temporal indicators

that summarize the dynamics of the series within the neighborhood.

The first question we need to address is how to describe the behavior of the time series

within the neighborhood of the target location. Our proposal is based on the notion of

spatio-temporal neighborhood. In this context, we need to define a function to calculate

the distance between any two points in the space-time dimension.

In this work a point in space-time is the value of a variable (in our application the wind

speed) at a time t in a certain geographical location. In Chapter 3 we have proposed the

notation zi to represent the value of a variable Z for a geographical location i. Here we will

extend this notation by including the time dimension as an exponent. This means that zki

will denote the value of the variable Z on location i at time k. Let x and y be two points

in space-time (i.e. two measurements zki and zlj of the variable under study). We define

the spatio-temporal distance between these two points in a similar way to Ming-yao et al.

[2009], namely,

Dx,y = di,j × α+ tk,l × (1− α) (4.1)

where di,j is the spatial distance between the locations of the objects (zki and zlj), tk,l is

the time distance between the objects, both the di,j and the tk,l are normalized (divided

by the respective maximum value) to have the values between [0, 1], and α is a weighing

factor between time and geographical distances.

The spatial distance can be calculated using a standard metric, like for instance the
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Figure 4.2: Defining spatio-temporal neighborhoods with different sizes.

Euclidean distance, or more sophisticated versions for geographical data like the great-

circle distance [Bridson and Haefliger, 1999]. In our experiments we have use this latter

alternative given that our data is geographically indexed. The time distance is simply the

absolute difference between the two time tags in some adequate time unit (e.g. hours).

Having defined the spatio-temporal distance between two objects we can define the spatio-

temporal neighborhood of a point o as the set of points within a certain spatio-temporal

distance,

N β
o = {k ∈ D : Do,k < β} (4.2)

where D is the available spatio-temporal data set.

Given the above definitions we can look at the spatio-temporal neighborhood of a point as

a kind of cone within space-time. Different settings for α and β lead to cones of difference

sizes as shown in Figure 4.2.

Each cone defines a neighborhood around a central location. These cones can be seen as

defining the points in space-time that most influence the values of the target variable at

that location. The cones can be regarded as the spatio-temporal equivalents of the idea

of time-delay embedding. Increasing the size of the cone will increase the spatio-temporal

embed size.
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As we have mentioned before, in financial time series forecasting it is common to summarize

the dynamics of a time series by means of technical indicators. Different indicators capture

different properties of the dynamics of the time series. In this thesis we propose three

examples of spatio-temporal technical indicators capturing three different and important

properties of the spatio-temporal dynamics of the target variable: (i) the typical value; (ii)

the spread; and (iii) the tendency.

The typical value is a centrality statistic that tries to estimate the most common value

of a variable. In this case we are using the average value of target variable within the

spatio-temporal neighborhood of the target location as the value of this spatio-temporal

indicator, namely,

w(N β
o ) =

1

|N β
o |

∑
x∈Nβo

x (4.3)

where N β
o was defined in the Equation 4.2.

Other variation of a typical value is the weighted version, where the weights are inversely

proportional to the spatio-temporal distance, more weight is given the “closer” location,

namely,

w̃(N β
o ) =

1

|N β
o |

∑
x∈Nβo

wo,x · x (4.4)

where wo,x = 1
Do,x

, Do,x was defined in the Equation 4.1 and the weights must satisfy∑
x∈Nβo

wo,x = 1.

The second spatio-temporal indicator we propose tries to capture the notion of spread of

the values within the spatio-temporal vicinity of the target location. We have used the

standard deviation calculated within this neighborhood as the value of the indicator,

σz(N β
o ) =

√√√√ 1

|N β
o |

∑
x∈Nβo

(x− w(N β
o ))2 (4.5)

where N β
o was defined in the Equation 4.2 and w(N β

o ) was defined in the Equation 4.3.
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The third proposed spatio-temporal indicator was developed to describe the tendency of

the target variable as it approaches the target location, e.g. is it increasing its values

or decreasing them? The notion of tendency can be captured by the ratio between two

averages calculated with different neighborhood sizes. If the value of the average with

shorter neighborhood surpasses the longer average we know that the variable is on an

upwards tendency as it approaches the target location, while the opposite indicates a

downwards tendency. While originally this idea was developed for time series (i.e only the

temporal dimension) we have imported this idea into the spatio-temporal dimension. The

ratio between two spatio-temporal averages provides us with information on how the target

variable values evolve in the space-time dimension. This ratio can be defined as follows,

W
β1,β2
o =

w(N β1
o )

w(N β2
o )

(4.6)

where β1 and β2 are two neighborhood sizes and w() is the average of the target time series

values for a set of points in the neighborhood of o, defined in Equation 4.3.

A variation of this indicator can be easily obtained by using weighted averages of the

values within the spatio-temporal neighborhood. If we set the weights to the inverse of the

spatio-temporal distance to the point o we have the effect that “closer” (in spatio-temporal

terms) points are given more importance within the averages,

W̃ β1,β2
o =

w̃(N β1
o )

w̃(N β2
o )

(4.7)

where w̃() is the weighed average of target time series for a set of points in the neighborhood

of o, defined in Equation 4.4.

Having defined a series of spatio-temporal indicators, our hypothesis is that they provide

useful information for the target prediction task. In this context, given the goal of

forecasting the value of the target variable for k time steps ahead at location o, we propose

to tackle this problem using the following formalization,
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W t+k
o = f(W t

o ,W
t−1
o , · · · ,W t−m

o ,

w(N k1
o ), w(N k2

o ), w(N k3
o ),W

k1,k2
o ,W

k2,k3
o ,

w̃(N k1
o ), w̃(N k2

o ), w̃(N k3
o ), W̃ k1,k2

o , W̃ k2,k3
o ,

σz(N k1
o ), σz(N k2

o ), σz(N k3
o ))

(4.8)

where f() is the unknown regression function we are trying to model using a set of training

data D, m is the size of a temporal embed, while k1, k2 and k3 (with k1 < k2 < k3) are

spatio-temporal neighborhood sizes.

We should note that this is simply one among many possible setups including spatio-

temporal indicators as predictors. The decision of using 3 spatio-temporal neighborhood

sizes was arbitrary and other setups could make more sense depending on the application.

Still, this was the setup used in our experiments with wind speed forecasting.

Figure 4.3 and Tables 3.1 and 3.2 present an illustrative example of the spatio-temporal

pre-processing technique proposed in this thesis. This example was applied in the context

of wind speed forecasting, with the goal of forecasting the next step ahead wind speed

for a certain location. Figure 4.3 and Table 4.2 represent a spatio-temporal data set

to be transformed to a regression data set (Table 4.3). In this example we used two

spatio-temporal neighborhoods defined by N k1
C and N k2

C , where k1 < k2 (cones defined by

the red lines in Figure 4.3). The spatio-temporal neighborhood N k1
C for the location C

includes the values of wind speed measured in the turbines B, C and D, that are inside the

spatio-temporal neighborhood defined by the Equation 4.1 (the smaller cone). The (larger)

spatio-temporal neighborhoodN k2
C also includes locations A and F, as well as values further

back in time as shown by the larger cone in the figure. In our example where the goal

is to forecast the next value of the wind speed for location C (i.e. W t+1
C ), the necessary

pre-processing steps are: (i) for each time step t, check the next value of the wind speed at

location C to fill in the column W t+1
C in Table 4.3; (ii) define the neighborhoods, N k1

C and

N k2
C , of this point in space-time; (iii) calculate the predictor variables using the values of

wind speed inside these neighborhoods and fill in the corresponding columns in Table 4.3;

(iv) iterate to different values of t.
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space

time

A B C D F

Figure 4.3: A spatio-temporal neighborhood for the wind farm problem.

time A B C D F
1 700.00 390.89 410.67 400.32 800.23

2
...

... 390.89
...

...
...

...
...

...
...

...

Table 4.2: The original spatio-temporal data.

4.4 Concrete Application - Wind Speed Forecast

The importance of wind power production is continuously increasing, as countries are

looking for more sustainable alternatives for their power grid. Wind power generation

is an excellent option given that it is a continuous resource of clean energy. The main

drawback of this technology is the large variability in production, which makes almost

impossible to rely solely in the wind energy. Generally, wind energy is used in conjunction

with other types of technologies, like: thermal, hydraulic, natural-gas, etc. Wind power

generation is also crucial in small remote autonomous locations, where it can be used as a

fuel saver to reduce the operational costs. Some countries like the US [Joskow and Kahn,
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time W t+1
C z(N k1

C ) z(N k2
C ) · · ·

1 390.89 405.11 597.75 · · ·
...

...
...

...
. . .

Table 4.3: The generated regression data set.

2001], China [Zhao et al., 2011] and UK [Barthelmie et al., 2008] have electricity markets,

which work similarly to an auction. Market participants rely on the expected future power

production and on the market price to decide their bidding strategy. These expectations

are usually considered for a short period of time, from a couple of hours to a day ahead. All

these factors contribute to the crucial importance of having accurate prediction models of

future power production. For wind energy this is even more relevant given its dependency

on other sources of energy when the wind speed is low. Having an accurate forecast of the

wind speed in the next hours is of key importance to estimate wind power production and

define the best bidding strategy that maximizes the profit and avoids the penalties from

missing delivering energy.

According to Alexiadis et al. [1999] wind power production is a function of the wind speed.

This means that the accurate forecast of wind speed allows a better estimate of future

wind power production. The wind is considered one of the most difficult meteorological

parameters to forecast [Sfetsos, 2000]. The wind speed behavior is influenced by several

factors like: the topographical properties of the land, the rotation of the earth, temperature,

pressure, obstacles, the height of the anemometer, etc. [Kusiak et al., 2009; Sfetsos, 2000].

Lei et al. [2009] classify wind speed prediction models in four classes: physical models,

conventional statistical models, spatial correlation models and artificial intelligence models.

The physical models consider only characteristics like: terrain, obstacles, pressure and tem-

perature to estimate the future wind speed. They generally have poor results in short term

prediction. Conventional statistical models are based on time series techniques (ARMA,

ARIMA, etc.) to forecast the future wind speed. Spatial models use the neighborhood

information as predictors of the wind speed, usually applied to locations where the wind

speed measurement is not available. Artificial intelligent models use historical data to

obtain machine learning models that can be used to forecast the future wind speed. The

method proposed in this chapter is an artificial intelligence approach that incorporates

spatio-temporal predictors to forecast the future wind speed on any location.
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The most frequent approach uses machine learning models to predict the expected wind

speed considering as predictors the previously observed values of this wind speed [Kusiak

et al., 2009; Mohandes et al., 2004; Sfetsos, 2000; Zhao et al., 2011]. Similar approaches are

adopted by time series models [Kavasseri and Seetharaman, 2009]. All these approaches

assume that the future wind speed depends on the recently observed wind speed on the

same location. Given the fact that wind travels through the landscape this might be

limiting for the models as they are being feed only with values from the same location for

which a future prediction is required. These models ignore the spatial dependency that

exists on this domain, where the wind speed at a certain location is clearly correlated

with the wind speed at neighboring locations. There are some attempts to use the spatial

information of the domain. In the work of Bilgili et al. [2007], they propose to use the

monthly average wind speed at 4 neighboring locations as inputs for a neural network model

to forecast the monthly average at the target location; and in the work of Alexiadis et al.

[1999] that tries to identify the temporal relationship of the wind speed between spatial

locations. They try to identify a pattern of the wind speed measured in two different

locations, based on the travel time of the wind from one location to the other. The

authors use this relationship to forecast the wind speed in a sub-sequent location. The

main drawback of this approach is that it limits the neighbors used in the analysis and

requires the information of the wind direction between the locations. In situations where

this information is not available or is unreliable we can not use this technique.

In this chapter all the experiments were carried out using real world data publicly provided

by the DOE/NREL/ALLIANCE2. The data consist in wind speed measurements from 1326

different locations at 80m of height in the eastern region of the US. The data were collected

in 10 minutes intervals during the year of 2004. This wind farm is able to produce 580

GW, and each site produces between 100 MW and 600 MW. For our experiments we have

selected two locations (A and B) as our targets in terms of forecasting the future wind

speed. This selection was guided by the availability of a larger number of neighboring sites

at these places. Figure 4.4 shows the geographical location of the data collection sites.

In the Figure 4.5 we can visualize the wind speed variation during the year of 2004 for one

of the 1326 locations.

2http://www.nrel.gov/
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Figure 4.4: Wind Farm at Eastern US.

Figure 4.5: Wind Speed Variation
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4.5 Experimental Evaluation

In this section we evaluate our proposed approach. The main goal of our experiments is

to test the hypothesis that motivates this work: using information on the wind speed of

nearby locations in recent time will improve the predictive accuracy of our models when

forecasting the future wind speed at a certain location.

4.5.1 Experimental Methodology

With the goal of collecting experimental evidence towards this hypothesis we have designed

an experiment where we have compared different models that tackle this prediction task

using different predictors. Namely, we have compared our approach that includes spatio-

temporal indicators as shown in Equation 4.8, with other approaches where the predictors

do not include data from this spatio-temporal vicinity. In order to exclude eventual de-

pendencies of the outcome of the experiments on the used modeling tools, we have repeated

the comparisons using several learning algorithms with different parameter settings.

Each of the model variants that we will describe in Section 4.5.2 was applied to 6 different

prediction tasks. These tasks have exactly the same target variable (the wind speed at

time t+ 2h), but differ in the way they use the available past data to obtain the predictors

used in the modeling task. One of these 6 tasks only uses data from the same spatial

location, i.e. it only uses information from the past values of the wind speed measured on

the site for which we want a forecast. This means that this task only considers the eventual

time correlation among the values of the target variable, completely ignoring the spatial

correlation. The other 5 variants use the formalization we have proposed in Equation 4.8,

with different configurations for the sizes of the 3 neighborhoods. As we have seen these

neighborhoods are cones defined by Equation 4.2. The formalization in Equation 4.8 uses

three of these cones. An alternative way of defining a cone is by its maximum radius and

its height from the base. This equivalent specification of the neighborhood is more intuitive

in our application. For instance, the cone with maximum radius of 10km and height of

10 days, defines a neighborhood that for the current time uses data points that are at

most 10km away from the target location, and goes back in time at most 10 days. Using

this alternative specification of neighborhoods (cones) we can describe the remaining five
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variants of the problem specification as follows: i) [50km, 10 days], [100km, 20 days] and

[150km, 30 days]; ii) [140km, 10 days], [350km, 20 days] and [730km, 30 days]; iii) [75km,

10 days], [150km, 20 days] and [300km, 30 days]; iv) [100km, 10 days], [500km, 20 days]

and [900km, 30 days]; and v) [150km, 10 days], [675km, 20 days] and [1200km, 30 days].

Regards the first variant using only data from the same location we have used exactly the

same predictors as in Equation 4.8. However, all indicators are calculated using only the

wind speed values of the target location, i.e. the spatial neighbors are ignored. It is like

we were using a cylinder of spatial radius near zero, instead of the cones.

The predictions of the different model trials that we will describe were evaluated using the

mean absolute error (MAE),

MAE =
1

n

n∑
i=1

|ŷi − yi| (4.9)

where ŷi is the predicted wind speed value (for t+ 2h) for a true value of yi.

With the goal of obtaining statistically reliable estimates of this error measure we have used

a Monte Carlo simulation. The simulation was designed to provide estimates of the MAE

at predicting the wind speed for two hours ahead of the different alternatives considered in

our experiments. To increase the statistical reliability of the experiments we have repeated

the process 10 times at randomly selected time points within the available data interval (10

minutes measurements throughout all 2004). For each of these 10 randomly selected time

points, and for each of the two sites, the alternatives were learned using the data from the

previous month and the respective MAE calculated using the respective predictions for the

following day (144 predictions given that the periodicity of the data is 10 minutes and the

test window is a full day). The predictions for the next day were obtained using a sliding

window approach. For instance, at time t and site A we use the available training data to

obtain a model that is used to forecast the wind speed at time t+2h. After this prediction

is obtained, the training window is slided one time step (i.e. 10 mins) and another model is

obtained to forecast the value of wind speed at time t+ 2h+ 10mins. This sliding window

process is repeated until we have predictions for all time points in the next day. All model

variants are evaluated using the same data.
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All data, code and extra results are provided in a web page 3 to ensure that our work is

replicable.

4.5.2 Models

We have tried to select a wide range of modeling approaches to test our hypothesis. The

idea is to confirm its validity independently of the technique used to forecast. All used

tools are freely available in the R software environment R Development Core Team [2010],

which ensures easy replication of our work. The following is a list of the methods used in

our experiments as well as the considered parameter variants:

Random Walk - a simple baseline method that uses the last wind speed measurement

as prediction for the 2 hours ahead wind speed;

Arima - a time series Box-Jenkins model [Pankratz, 1983] based on the R package forecast

[Hyndman, 2011]. The function auto.arima automatically selects the best paramet-

ers for the algorithm;

Regression Trees (RT) - a regression tree (e.g. [Breiman, 1984]) based on the R package

rpart [Therneau and port by B. Ripley., 2009]. In our experiments we have used

an interface to the rpart function provided in package DMwR [Torgo, 2010] and have

tried 4 different variants by using the parameter se that controls the level of pruning

with values: 0, 0.5, 1 and 1.5.

Support Vector Machines (SVM) - an implementation of SVMs (e.g. [Cristianini and

Shawe-Taylor, 2000]) available in the R package e1071. Six variants were tried by

using the parameter cost that represents the penalty associated with errors, with the

values 10 and 100, and the parameter epsilon determines the level of accuracy of the

approximated function, we used the values 0.1, 0.3 and 0.5.

Random Forest (RF) - an implementation of random forests [Breiman, 2001] available

in the R package randomForest [Liaw and Wiener, 2002]. We have used 3 variants of

the parameter ntree that controls the number of trees in the forest (ensemble), with

the values 500, 1000 and 1500.

3goo.gl/hRBMd

goo.gl/hRBMd
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4.5.3 Results of All Model Variants
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Figure 4.6: Results for site A.

Figures 4.6 and 4.7 summarize the results of all experiments describe in the Section 4.5.1.

They present the Monte Carlo estimates of the MAE of all considered variants for the sites

A and B, respectively. Each bar is the MAE estimate of a variant. There are four groups

of model variants. The first group includes the baseline approaches: the random walk and

the arima model. Then we have all variants of the regression trees, SVMs and random

forests. For each of the parameter settings we have considered (c.f. Section 4.5.2) we show

6 bars, corresponding to each of the 6 alternative problem formulations we have described

in Section 4.5.2. Recall that the main goal of our experiments is to compare the use of the

spatio-temporal indicators as predictors against the use of indicators built with data from

the same location only. This means we want to compare the 5 last bars of each variant

against the first bar (darkest bar of the six). On top of the last five bars we may have one

or two symbols (+ or −). They represent the statistical significance of the difference in

performance against the first bar according to a paired t-test. A single + (−) means that

the respective bar is better (worse) than the first bar with 95% confidence. Two symbols

increase the confidence to 99%.

In general, with the exception of some SVM variants, we can say that these experiments
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Figure 4.7: Results for site B.

confirm our hypothesis that the use of predictors based on data from a spatio-temporal

neighborhood is advantageous in terms of predictive performance. Moreover, for the best

models in the set we have considered (Random Forests), this advantage is even more

marked. As shown in the graphs the best overall predictive performance is always obtained

by some random forest variant using our spatio-temporal indicators. Regression trees have

achieved a performance surprisingly competitive with SVMs, and they have also taken

advantage of the use of our indicators. The results with SVMs are a bit contradictory and

their generally poor performance may provide indications that further parameter tuning

may be required for improving their performance, which we will check in Section 4.5.4.

Figure 4.8 summarizes the results on the number of significant paired differences between

the spatio-temporal neighborhood variants and the strategy of using only the temporal

information. Each bar represents the number of significant wins (+’s) or losses (−’s)

of the spatio-temporal variants for the different experimental configurations, one symbol

(+ or −) represents 95% of confidence and two symbols represent 99%. We have six

combinations of experimental configurations, three models (RT, SVM and RF) on two

locations (A and B). The rows of the graph represent the locations A and B, and the

columns the models. Looking at the results we can observe that for both the RT (Regression
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Figure 4.8: Significant Wins vs Losses

Tree) and RF (Random Forests) models there is a significant advantage in using spatio-

temporal indicators as predictors. For the SVM model the results are contradictory with

this observation. One possible explanation was the bad choice of parameters for the SVM

model. In Section 4.5.4 we explore this hypothesis.

4.5.4 Variation of the SVM Model Parameters

SVMs are known for frequently requiring a lot of parameter tuning before their performance

is optimal. In our initial set of experiments reported on the previous section, we have

observed that the performance of the variants of SVMs that were considered was rather

disappointing. In this context, we have decided to check if these results were a con-

sequence of insufficient parameter tuning or of a fundamental flaw of our spatio-temporal
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approach. With this goal we have tried 20 extra variants of two SVM parameters, the

parameter cost with values: 1, 5, 10, 50, 100 and the parameter gamma with the values:

0.001, 0.01, 0.05, 0.1. To evaluate these new variants we applied the same methodology

described for the previous experiment (c.f. Section 4.5.1). The main difference was the

fact that we limited the analysis to one site, the location A.

Figures 4.9 and 4.10 summarize the results of this experiment. They present the Monte

Carlo estimates of the MAE for these 20 variants of the SVM model at location A. Each

group of 6 bars represents the mean absolute error (MAE) of one model variant in all 10

Monte Carlo runs, where the first bar (the darkest) represents the temporal approach and

the remaining are the 5 spatio-temporal variants. Based on these results we can draw three

main conclusions:

1. A significant improvement on the prediction accuracy of the SVM models in com-

parison with the previous experiment. In the previous analysis, all the SVM variants

had terrible results, with larger errors than Regression Trees. In this new experiment

some of the variants (the majority presented in the Figure 4.10), had a substantial

improvement in the prediction accuracy, clearly outperforming Regression Trees and

getting closer to the best model on the previous experiment, the Random Forest.

2. Generally SVMs take advantage of the spatio-temporal neighborhood strategy. A

considerable number of SVM variants had improvement in the prediction error when

using spatio-temporal neighborhood information.

3. However, the best result was achieved using the parameters cost : 50 and gamma: 0.1,

with the temporal only neighborhood variant. Still, this score was followed closely

by some of the respective spatio-temporal variants.

4.5.5 Sensitivity Analysis for the Best Model Configurations

In Section 4.5.3 we compared the use of different spatio-temporal neighborhoods against the

use of only temporal neighborhoods, in the task of forecasting the next 2 hours ahead wind

speed. The goal of that experiment was to validate the advantages of using predictors that

try to capture the spatio-temporal correlation between locations against using predictors
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Figure 4.9: Results of Further Variants of SVMs (first 10 extra variants).
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Figure 4.10: Results of Further Variants of SVMs (second 10 extra variants).
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that capture only the temporal correlation. To allow for fair paired comparisons all the

spatio-temporal configurations were based on neighborhoods with the same temporal size

(10, 20 and 30 days).

In this section we peek the two best configurations in terms of spatial neighborhood sizes:

(1) 100, 500 and 900 km (config 4); and (2) 150, 675 and 1200km (config 5); and checked

the impact on their performance when we vary the temporal size (i.e. the height of the

cones). More specifically, we have used the spatial configurations of the configs 4 and 5:

(i) (100, 500 and 900 km) and (ii) (150, 675 and 1200km), and combined them with the

following temporal dimensions: (i) 10, 30 and 60 days; and (ii) 7, 15 and 30 days. This

leads to the following four new spatio-temporal configurations:

config 4_i: [100 km, 10 days], [500 km, 30 days] and [900 km, 60 days];

config 4_ii: [100 km, 7 days], [500 km, 15 days] and [900 km, 30 days];

config 5_i: [150 km, 10 days], [675 km, 30 days] and [1200 km, 60 days];

config 5_ii: [150 km, 7 days], [675 km, 15 days] and [1200 km, 30 days].

We have used the same experimental methodology as before to evaluate these four spatio-

temporal configurations. However, this new set of experiments was limited to the location

A. Once again the results we present are obtained with 10 repetitions of a Monte Carlo

simulation, with a train size of one month and test size of the next day. As modeling

technique we have selected the model that achieved the best results on the previous

experiments: the Random Forest with ntree = 500.

Figure 4.11 summarizes the results of this experiment. Each bar represents the Mean

Absolute Error estimated by the 10 repetitions of the Monte Carlo simulation. The black

bar represents the results of config 4, while the dark grey bars the new variants (config

4_i and config 4_ii). The white bar represents the results of the variant config 5, and

the light grey bars the new variants config 5_i and config 5_ii.

The results of these experiments reveal some degree of variability when we change the tem-

poral neighborhoods of the two best variants of the previous experiments. This indicates

that there is potentially some sensitivity to the correct choice of this neighborhood. Still,

in general we have confirmed the good results obtained by these two variants. In effect,
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Figure 4.11: Results of the Random Forest for the new configurations at site A.

some of the new variants where even able to outperform the previous scores, although for

config 5 one of the new variants lead to a slightly worse MAE score.

4.6 Conclusions

This chapter has described a new methodology for short-term wind speed prediction, a class

of problems with extreme relevance for electricity markets and wind power production. We

proposed a new formalization of this spatio-temporal prediction problem, which includes

the definition of spatio-temporal indicators. These predictors provide information on the

spatio-temporal dynamics of the target time series. Our proposal is general and can be

applied to any spatio-temporal prediction task. These type of prediction problems are

becoming more and more relevant with the prevalence of mobile computing devices with

localization features. In this chapter we have tested our proposal on the task of forecasting

the wind speed for a two hours ahead horizon in the eastern region of the US. Our

experimental results confirm the advantages of the use of spatio-temporal information on

this prediction task. Models using our spatio-temporal indicators have generally obtained

superior performance.



Chapter 5

Conclusions and Future Directions

In this chapter we summarize the main contributions and results achieved in this thesis,

and we describe some future research topics.

5.1 Summary

This thesis was driven by several concrete real world applications. The connecting link

between these problems is that they require handling forecasting tasks with data that has

a temporal, spatial or spatio-temporal nature. This means that for all applications that

were tackled there was some form of correlation between the available data points. The

main hypothesis driving our thesis was that it is possible to transform these prediction tasks

into standard regression tasks, provided we find means of giving the models information

on the temporal, spatial or spatio-temporal correlation between data points. The main

advantage of proceeding this way is on the fact that we are able to take advantage of the

wide range of existing modelling tools without having the need to develop special-purpose

tools. In this context, our work was mainly centred on the question of how to properly

convey this spatio-temporal correlation information to the models. This has lead to the

development of a series of pre-processing steps that are able to provide this information to

the models.

The first tasks we have addressed have a temporal nature, i.e. they belong to the field of

time series analysis. The concrete tasks of water quality monitoring and water demand
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forecasting, have lead us to propose a new type of time series prediction tasks: 2D interval

predictions. This task addresses problems where one wants to forecast a range of plausible

values of the target time series for a future time interval. To the best of our knowledge

this task was never formally defined/proposed and applications requiring this type of

predictions would typically be solved using an indirect approach (e.g. iterated predictions).

Our main goal was to alert the data mining community to this new task, given the large

number of important potential applications. We proposed a new methodology to address

this task. This methodology consists in transforming the problem into the problem of

forecasting the future value of some descriptive statistics. We have also proposed a series of

error metrics to properly evaluate models in these tasks. We have tested our proposal on an

extensive set of experiments, considering both its predictive accuracy and its computational

costs. The results of these experiments have show that our proposal is highly competitive

with the best alternatives in the different experimental set-ups considered, but with a

significantly lower computational cost. This makes the proposal particularly adequate for

high-frequency time series.

The second task we have addressed has to do with spatial imputation or interpolation. Spa-

tial interpolation techniques are typically based on some variation of first law of geography,

that gives more importance to neighbors in the prediction of unsampled locations. Once

again our approach was to transform the spatial interpolation problem into a standard

multiple regression task. This transformation was accomplished by deriving a series of

spatial indicators with the goal of incorporating the information on the spatial correlation

between neighboring locations into the predictors of the regression task. This procedure has

two main advantages: (i) firstly we are able to use the wide range of regression tools that

are available; (ii) secondly, and more importantly, this allows the use of data from far away

regions when predicting the value for a certain location provided the models judge these

locations as having similar spatial dynamics (as described by our proposed indicators). We

have extensively tested our approach against state of the art spatial interpolation method

on a real world task: filling in the missing pixels on several images. On all set-ups we

have observed a strong advantage of our approach in recovering the missing pixels of the

images even at high levels of noise. These results are very encouraging and provide strong

empirical evidence towards the advantages of our approach to spatial interpolation.

The final application domain we have addressed is wind speed forecasting. This is a very
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relevant application for wind-based energy production. The task in this case consisted

on forecasting the near future (2 hours ahead) wind speed on some location, having

information on historical wind speed values on both this location and nearby locations.

This means that it is a spatio-temporal forecasting task. Given the spatio-temporal

correlation among data points we have tried to solve this problem again using a pre-

processing approach that allows its transformation into a standard regression problem.

Our strategy consisted in developing a series of spatio-temporal indicators that convey

relevant information on the spatial and temporal dynamics of the target variable in the

nearby regions to the target location. We tested our approach against the most common

approach that considers only the temporal dimension, thus handling the problem as a time

series task. The experimental evaluation was carried out using a real world wind speed

data set collected at wind farms in the US. On the majority of the experimental set-ups

we have considered our technique has shown significant advantages. These results provide

strong empirical evidence to support the claim that by combining information on both the

spatial and temporal correlation of data points better predictive accuracy is achievable.

The work carried out on this thesis has shown that complex problems can often be handled

by carefully chosen pre-processing steps, allowing the use of standard of-the-shelf tools with

given proofs. Our contributions and the results achieved on several concrete domains of

application provided strong evidence on the validity of these approaches on the case of

data sets with temporal, spatial or spatio-temporal correlation among data points.

Although the approaches presented on this thesis were driven by concrete real world

applications, they are general methodologies that can be applicable to other domains. In

this context, the work carried out in the thesis can be regarded as a general methodology for

addressing spatio-temporal prediction tasks, which are key applications given the current

trends on data collection devices.

5.2 Main Contributions

The thesis has described a series of work on several real world applications. The following

is a list of what we think are the main contributions of our work:

The definition of a new task in time series forecasting: motivated by real world ap-
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plications, we have defined the task of 2D-interval prediction. This task consist on

forecasting the range of plausible values of a time series variable for a future time

window.

A new method for handling 2D-interval predictions: we have described a pre-processing

method that transforms this task into two standard regression tasks where the target

variables are statistics of the the distribution of the target time series for a certain

time window. We have used the 1st and 3rd quartiles as good representative statistics

of the plausible range of values.

Error metrics for 2D-interval prediction tasks: we have proposed three new error

metrics (TQE, MAQ, Benefit Matrix) for 2D-interval prediction tasks.

A new methodology for spatial interpolation: we have described a new method for

spatial interpolation based on a series of pre-processing steps designed to provide

information on the spatial dynamics of the neighborhood of the target locations,

which allows handling this task as a standard regression problem.

A new methodology for spatio-temporal prediction: we have proposed a new method

for solving spatio-temporal forecasting problems. This method is again based on a

series of pre-processing steps that produce indicators of the spatio-temporal correla-

tion between data points, allowing the use of standard regression tools.

5.3 Future Research Directions

This thesis has presented several new approaches that were designed to address concrete

real world data mining tasks. In spite of this, these new approaches are general methods

for some classes of spatio-temporal prediction tasks. In the context of these proposed

methodologies, several paths for future research exist. Still, given that all methodologies

are strongly based on pre-processing steps designed to create new variables used in the

modeling tasks, a common topic that deserves further research is that of analyzing more

extensively further alternatives in terms of these created variables.

Regards 2D-interval predictions one obvious extension of our work is to study our approach

for a more theoretical perspective. Namely, the key issue in our proposed method is that we
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are directly forecasting distribution statistics instead of calculating them from predictions

of actual values. Our experiments have shown advantages in terms of the used predictive

metrics, however it should be interesting to study whether there is some theoretical reason

justifying these results. We have suggested the hypothesis that forecasting robust statistics

like the quartiles is easier than forecasting the variable values, as the distribution of the

quantiles is smoother than the distribution of the actual variables. Still, this requires a

deeper study to be confirmed and/or proved.

With respect to spatial interpolation the results of our method were extremely interesting

when compared to state of the art methods. However, future work should extend these

comparisons to other domains, namely outside of image analysis. Additionally, we plan to

study more deeply the reasons for the success of the proposed methodology and its eventual

impact on the way spatial data analysis is usually carried out, which is mostly based on

the use of data from a certain vicinity supported by Tobler’s first law of geography.

Finally, regards spatio-temporal prediction tasks further work should also extend the

experiments to other domains. Moreover, we should also explore other possibilities regards

spatio-temporal indicators that describe the spatio-temporal dynamics within each region

and also further tests regards the neighborhood sizes.
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Appendix A

Water Consumption Results

A.1 Window Size 12

This section presents the results for the water consumption problem for the window size

of 12 values, k = 12.

A.1.1 MAQ - Mean Absolute Quantile Deviation

Figure A.1 shows the results using the MAQ error measure for all different setups.

Table A.1 shows all setups order by the MAQ error.

MAQ.Q1 MAQ.Q3 MAQ

Quantile RF ntree 1500 2.15 3.15 2.65

Quantile RF ntree 1000 2.15 3.15 2.65

Quantile RF ntree 500 2.15 3.15 2.65

Nmodels QRF ntree 1500 2.33 3.12 2.72

Nmodels QRF ntree 1000 2.33 3.12 2.72

Nmodels QRF ntree 500 2.33 3.12 2.72

Quantile SVM cost 1 gamma 0.05 2.39 3.37 2.88

Quantile SVM cost 1 gamma 0.001 2.45 3.36 2.9
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Quantile SVM cost 10 gamma 0.01 2.39 3.46 2.93

Quantile SVM cost 50 gamma 0.01 2.42 3.46 2.94

Quantile SVM cost 5 gamma 0.001 2.46 3.43 2.94

Iterated QRF ntree 500 2.73 3.16 2.95

Quantile SVM cost 5 gamma 0.01 2.4 3.49 2.95

Iterated QRF ntree 1500 2.72 3.17 2.95

Iterated QRF ntree 1000 2.73 3.17 2.95

Quantile SVM cost 1 gamma 0.1 2.42 3.48 2.95

Quantile SVM cost 1 gamma 0.01 2.4 3.5 2.95

Quantile SVM cost 10 gamma 0.001 2.47 3.47 2.97

Quantile SVM cost 100 gamma 0.01 2.44 3.52 2.98

Quantile SVM cost 50 gamma 0.001 2.46 3.52 2.99

Quantile SVM cost 5 gamma 0.05 2.49 3.52 3.01

Quantile SVM cost 100 gamma 0.001 2.46 3.55 3.01

Quantile SVM cost 10 gamma 0.05 2.56 3.62 3.09

Quantile SVM cost 5 gamma 0.1 2.52 3.73 3.12

Quantile SVM cost 10 gamma 0.1 2.58 3.84 3.21

Quantile RT se 0 2.77 3.87 3.32

Quantile SVM cost 50 gamma 0.05 2.69 3.96 3.32

Quantile RT se 0.5 2.72 3.96 3.34

Quantile RT se 1.5 2.63 4.06 3.34

Quantile RT se 1 2.66 4.04 3.35

Nmodels SVM cost 5 gamma 0.05 2.97 3.89 3.43

Nmodels SVM cost 1 gamma 0.1 3.02 3.86 3.44

Nmodels SVM cost 50 gamma 0.01 3.06 3.82 3.44

Nmodels SVM cost 100 gamma 0.01 3.06 3.85 3.45

Nmodels SVM cost 1 gamma 0.05 3.02 3.89 3.45

Nmodels RF ntree 1500 3.54 3.43 3.49

Nmodels RF ntree 1000 3.55 3.43 3.49

Nmodels RF ntree 500 3.54 3.44 3.49

Nmodels SVM cost 5 gamma 0.1 3.01 3.97 3.49
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Quantile SVM cost 50 gamma 0.1 2.82 4.2 3.51

Nmodels SVM cost 10 gamma 0.05 3.01 4 3.51

Quantile SVM cost 100 gamma 0.05 2.78 4.24 3.51

Nmodels SVM cost 10 gamma 0.1 3.03 3.99 3.51

Nmodels SVM cost 10 gamma 0.01 3.18 3.92 3.55

Quantile QRF ntree 500 3.59 3.56 3.57

Iterated SVM cost 5 gamma 0.1 2.91 4.23 3.57

Quantile QRF ntree 1000 3.59 3.55 3.57

Quantile QRF ntree 1500 3.59 3.56 3.57

Iterated SVM cost 1 gamma 0.1 2.97 4.21 3.59

Iterated RF ntree 1000 3.76 3.43 3.6

Iterated RF ntree 1500 3.77 3.44 3.6

Iterated RF ntree 500 3.77 3.45 3.61

Nmodels SVM cost 5 gamma 0.01 3.24 4 3.62

Nmodels RT se 0 3.38 3.94 3.66

Iterated SVM cost 5 gamma 0.05 3.1 4.24 3.67

Iterated SVM cost 1 gamma 0.05 3.13 4.22 3.68

Nmodels SVM cost 50 gamma 0.1 3.17 4.2 3.68

Iterated SVM cost 10 gamma 0.05 3.07 4.3 3.69

Iterated SVM cost 100 gamma 0.01 3.32 4.06 3.69

Nmodels SVM cost 50 gamma 0.05 3.24 4.14 3.69

Quantile SVM cost 100 gamma 0.1 2.92 4.5 3.71

Iterated SVM cost 10 gamma 0.1 2.98 4.46 3.72

Nmodels SVM cost 100 gamma 0.001 3.43 4.08 3.76

Iterated SVM cost 50 gamma 0.01 3.37 4.16 3.77

Nmodels SVM cost 1 gamma 0.01 3.33 4.21 3.77

Nmodels SVM cost 50 gamma 0.001 3.43 4.11 3.77

Iterated SVM cost 5 gamma 0.01 3.24 4.3 3.77

Iterated SVM cost 10 gamma 0.01 3.31 4.27 3.79

Nmodels SVM cost 100 gamma 0.05 3.39 4.24 3.81

Iterated SVM cost 1 gamma 0.01 3.24 4.42 3.83
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Nmodels SVM cost 10 gamma 0.001 3.46 4.2 3.83

Nmodels SVM cost 5 gamma 0.001 3.5 4.23 3.86

Nmodels RT se 0.5 3.7 4.09 3.9

Iterated SVM cost 100 gamma 0.001 3.5 4.31 3.9

Nmodels SVM cost 100 gamma 0.1 3.33 4.49 3.91

Iterated SVM cost 50 gamma 0.001 3.49 4.37 3.93

Iterated SVM cost 50 gamma 0.05 3.13 4.78 3.95

Nmodels SVM cost 1 gamma 0.001 3.67 4.32 4

Iterated SVM cost 1 gamma 0.001 3.44 4.63 4.03

Nmodels RT se 1 3.95 4.16 4.06

Iterated SVM cost 10 gamma 0.001 3.53 4.59 4.06

Iterated SVM cost 5 gamma 0.001 3.5 4.7 4.1

Iterated SVM cost 50 gamma 0.1 3.57 4.69 4.13

RW 2.94 5.33 4.13

Nmodels RT se 1.5 4.12 4.18 4.15

Iterated SVM cost 100 gamma 0.05 3.46 5.01 4.24

Iterated SVM cost 100 gamma 0.1 4 4.85 4.42

Iterated RT se 1.5 5.73 5.34 5.54

Iterated RT se 1 5.73 5.53 5.63

Iterated RT se 0 5.8 5.61 5.71

Iterated RT se 0.5 5.8 5.62 5.71

Table A.1: All setups, k = 12 and MAQ
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Figure A.1: Water Consumption, k = 12 and MAQ
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A.1.2 TQE - Total Quantile Error

Figure A.2 shows the results using the TQE error measure for all different setups.

Figure A.2: Water Consumption, k = 12 and TQE

Table A.2 shows all setups order by the TQE error.

QTE.Q1 QTE.Q3 QTE

Quantile RF ntree 1500 24.93 28.88 53.81

Quantile RF ntree 1000 24.93 28.88 53.81

Quantile RF ntree 500 24.93 28.89 53.82

Nmodels QRF ntree 1000 25.4 28.79 54.19
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Nmodels QRF ntree 1500 25.4 28.79 54.19

Nmodels QRF ntree 500 25.4 28.79 54.19

Quantile SVM cost 1 gamma 0.05 25.41 29.22 54.63

Quantile SVM cost 10 gamma 0.01 25.46 29.51 54.97

Quantile SVM cost 1 gamma 0.1 25.48 29.51 54.99

Quantile SVM cost 50 gamma 0.01 25.58 29.49 55.08

Quantile SVM cost 1 gamma 0.001 25.52 29.57 55.09

Quantile SVM cost 5 gamma 0.01 25.45 29.68 55.14

Quantile SVM cost 5 gamma 0.001 25.55 29.73 55.27

Quantile SVM cost 100 gamma 0.01 25.67 29.66 55.33

Quantile SVM cost 1 gamma 0.01 25.4 29.96 55.35

Quantile SVM cost 5 gamma 0.05 25.71 29.65 55.36

Quantile SVM cost 10 gamma 0.001 25.55 29.85 55.4

Quantile SVM cost 50 gamma 0.001 25.55 29.98 55.53

Quantile SVM cost 100 gamma 0.001 25.57 30.02 55.59

Quantile SVM cost 10 gamma 0.05 25.94 29.92 55.86

Quantile SVM cost 5 gamma 0.1 25.82 30.25 56.07

Iterated QRF ntree 500 26.82 29.39 56.21

Iterated QRF ntree 1500 26.81 29.41 56.22

Iterated QRF ntree 1000 26.81 29.41 56.23

Quantile SVM cost 10 gamma 0.1 26.05 30.56 56.61

Quantile SVM cost 50 gamma 0.05 26.37 31.1 57.47

Quantile RT se 1.5 26.5 31.6 58.1

Quantile RT se 1 26.76 31.67 58.43

Quantile SVM cost 50 gamma 0.1 26.93 31.74 58.67

Quantile RT se 0.5 27.07 31.61 58.68

Quantile SVM cost 100 gamma 0.05 26.78 31.98 58.75

Quantile RT se 0 27.58 31.66 59.24

Nmodels SVM cost 10 gamma 0.1 28.09 31.51 59.6

Nmodels SVM cost 5 gamma 0.1 28.07 31.55 59.62

Nmodels SVM cost 5 gamma 0.05 27.98 31.89 59.86
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Nmodels SVM cost 1 gamma 0.1 28.05 31.84 59.89

Nmodels SVM cost 10 gamma 0.05 28.1 31.99 60.08

Nmodels RF ntree 1500 30.03 30.13 60.16

Nmodels RF ntree 1000 30.04 30.12 60.16

Nmodels RF ntree 500 30.03 30.14 60.16

Quantile SVM cost 100 gamma 0.1 27.31 32.86 60.17

Nmodels SVM cost 50 gamma 0.1 28.44 31.89 60.34

Nmodels SVM cost 50 gamma 0.01 28.33 32.01 60.34

Nmodels SVM cost 100 gamma 0.01 28.35 31.99 60.34

Nmodels SVM cost 1 gamma 0.05 28.17 32.23 60.4

Quantile QRF ntree 500 29.91 30.53 60.44

Quantile QRF ntree 1000 29.93 30.52 60.45

Quantile QRF ntree 1500 29.93 30.53 60.45

Iterated SVM cost 5 gamma 0.1 27.5 33.06 60.56

Nmodels SVM cost 50 gamma 0.05 28.78 31.99 60.77

RW 27.6 33.48 61.08

Nmodels SVM cost 10 gamma 0.01 28.82 32.48 61.3

Nmodels RT se 0 29.52 31.81 61.33

Nmodels SVM cost 100 gamma 0.05 29.2 32.17 61.37

Iterated SVM cost 1 gamma 0.1 27.87 33.53 61.4

Iterated SVM cost 10 gamma 0.1 27.73 33.71 61.44

Nmodels SVM cost 100 gamma 0.1 28.79 32.67 61.46

Iterated RF ntree 1000 31.13 30.47 61.6

Iterated SVM cost 10 gamma 0.05 28.34 33.33 61.67

Iterated RF ntree 1500 31.19 30.52 61.71

Iterated RF ntree 500 31.19 30.55 61.75

Iterated SVM cost 5 gamma 0.05 28.57 33.25 61.82

Nmodels SVM cost 5 gamma 0.01 29.07 32.84 61.92

Iterated SVM cost 100 gamma 0.01 29.44 33.05 62.49

Iterated SVM cost 1 gamma 0.05 28.76 33.91 62.67

Nmodels SVM cost 100 gamma 0.001 29.84 33.25 63.09
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Iterated SVM cost 50 gamma 0.01 29.66 33.43 63.09

Iterated SVM cost 5 gamma 0.01 28.89 34.29 63.19

Iterated SVM cost 50 gamma 0.05 28.54 34.66 63.21

Nmodels SVM cost 1 gamma 0.01 29.59 33.69 63.28

Nmodels RT se 0.5 30.87 32.42 63.29

Nmodels SVM cost 50 gamma 0.001 29.92 33.38 63.3

Iterated SVM cost 10 gamma 0.01 29.25 34.1 63.36

Iterated SVM cost 1 gamma 0.01 28.88 34.91 63.79

Nmodels SVM cost 10 gamma 0.001 30.18 33.65 63.83

Iterated SVM cost 50 gamma 0.1 29.58 34.32 63.9

Nmodels SVM cost 5 gamma 0.001 30.36 33.75 64.11

Iterated SVM cost 100 gamma 0.001 29.85 34.41 64.26

Iterated SVM cost 50 gamma 0.001 29.86 34.6 64.47

Iterated SVM cost 100 gamma 0.05 29.27 35.44 64.71

Nmodels RT se 1 32.03 32.7 64.73

Nmodels SVM cost 1 gamma 0.001 31.07 34.18 65.24

Iterated SVM cost 100 gamma 0.1 31.1 34.39 65.49

Iterated SVM cost 1 gamma 0.001 29.67 35.86 65.52

Nmodels RT se 1.5 32.83 32.75 65.58

Iterated SVM cost 10 gamma 0.001 30.05 35.55 65.6

Iterated SVM cost 5 gamma 0.001 29.92 36.05 65.97

Iterated RT se 1.5 43.71 37.8 81.51

Iterated RT se 1 43.66 38.96 82.63

Iterated RT se 0 43.64 39.16 82.81

Iterated RT se 0.5 44.01 39.54 83.54

Table A.2: All setups, k = 12 and TQE
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A.1.3 Utility

Figure A.3 shows the results using the Utility error measure (larger is better) for all different

setups.

Figure A.3: Water Consumption, k = 12 and Utility

Table A.3 shows all setups order by the Utility.

utility

Quantile RF ntree 1000 10.4

Quantile RF ntree 500 10.39

Quantile RF ntree 1500 10.39
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Nmodels QRF ntree 500 9.88

Nmodels QRF ntree 1500 9.87

Nmodels QRF ntree 1000 9.86

Quantile SVM cost 1 gamma 0.05 9.5

Quantile SVM cost 1 gamma 0.1 9.49

Quantile SVM cost 10 gamma 0.01 9.32

Quantile SVM cost 1 gamma 0.01 9.3

Quantile SVM cost 5 gamma 0.05 9.23

Quantile SVM cost 5 gamma 0.01 9.18

Quantile SVM cost 50 gamma 0.01 9.17

Quantile RT se 0 9.12

Quantile SVM cost 100 gamma 0.01 9.1

Quantile SVM cost 10 gamma 0.001 9.09

Quantile SVM cost 50 gamma 0.001 9.07

Quantile SVM cost 5 gamma 0.1 9.06

Quantile SVM cost 10 gamma 0.05 9.03

Quantile SVM cost 5 gamma 0.001 9.02

Quantile SVM cost 100 gamma 0.001 9.02

Quantile RT se 0.5 8.96

Quantile RT se 1.5 8.96

Quantile RT se 1 8.92

Quantile SVM cost 1 gamma 0.001 8.89

Quantile SVM cost 10 gamma 0.1 8.87

Quantile SVM cost 50 gamma 0.05 8.67

Iterated QRF ntree 500 8.63

Iterated QRF ntree 1500 8.6

Iterated QRF ntree 1000 8.6

Quantile SVM cost 50 gamma 0.1 8.31

Quantile SVM cost 100 gamma 0.05 8.23

Quantile SVM cost 100 gamma 0.1 8.02

Nmodels SVM cost 10 gamma 0.1 7.75



WINDOW SIZE 12 113

Nmodels SVM cost 5 gamma 0.1 7.62

Nmodels SVM cost 50 gamma 0.1 7.62

Nmodels SVM cost 100 gamma 0.1 7.62

Nmodels SVM cost 5 gamma 0.05 7.5

Iterated SVM cost 5 gamma 0.1 7.48

Iterated SVM cost 10 gamma 0.1 7.46

Nmodels SVM cost 10 gamma 0.05 7.43

Nmodels SVM cost 50 gamma 0.01 7.43

Nmodels SVM cost 50 gamma 0.05 7.39

Nmodels SVM cost 100 gamma 0.05 7.38

Nmodels SVM cost 1 gamma 0.05 7.32

Nmodels SVM cost 1 gamma 0.1 7.3

Nmodels SVM cost 100 gamma 0.01 7.27

Iterated SVM cost 50 gamma 0.05 7.14

Iterated SVM cost 50 gamma 0.1 6.97

Iterated SVM cost 100 gamma 0.05 6.97

Nmodels SVM cost 10 gamma 0.01 6.91

Iterated SVM cost 1 gamma 0.1 6.9

Nmodels RF ntree 1500 6.76

Iterated SVM cost 10 gamma 0.05 6.76

Nmodels RF ntree 500 6.75

Nmodels RF ntree 1000 6.75

Quantile QRF ntree 1000 6.72

Quantile QRF ntree 500 6.71

Quantile QRF ntree 1500 6.69

RW 6.69

Iterated SVM cost 5 gamma 0.05 6.68

Nmodels RT se 0 6.68

Nmodels SVM cost 5 gamma 0.01 6.56

Iterated SVM cost 1 gamma 0.05 6.54

Iterated RF ntree 1500 6.53
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Iterated RF ntree 1000 6.51

Iterated SVM cost 10 gamma 0.01 6.48

Iterated RF ntree 500 6.47

Iterated SVM cost 100 gamma 0.1 6.46

Iterated SVM cost 100 gamma 0.01 6.44

Iterated SVM cost 5 gamma 0.01 6.4

Iterated SVM cost 50 gamma 0.01 6.39

Nmodels SVM cost 1 gamma 0.01 6.1

Nmodels SVM cost 100 gamma 0.001 6.08

Nmodels SVM cost 50 gamma 0.001 6.07

Nmodels SVM cost 10 gamma 0.001 6

Nmodels RT se 0.5 5.93

Iterated SVM cost 100 gamma 0.001 5.93

Iterated SVM cost 1 gamma 0.01 5.92

Nmodels SVM cost 5 gamma 0.001 5.86

Iterated SVM cost 50 gamma 0.001 5.85

Nmodels RT se 1 5.45

Nmodels SVM cost 1 gamma 0.001 5.38

Iterated SVM cost 10 gamma 0.001 5.38

Iterated SVM cost 1 gamma 0.001 5.38

Iterated SVM cost 5 gamma 0.001 5.24

Nmodels RT se 1.5 5.16

Iterated RT se 0 2.56

Iterated RT se 1.5 2.54

Iterated RT se 1 2.46

Iterated RT se 0.5 2.4

Table A.3: All setups, k = 12 and Utility
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A.2 Window Size 24

This section presents the results for the water consumption problem for the window size

of 24 values, k = 24.

A.2.1 MAQ - Mean Absolute Quantile Deviation

Figure A.4 shows the results using the MAQ error measure for all different setups.

Figure A.4: Water Consumption, k = 24 and MAQ

Table A.4 shows all setups order by the MAQ error.
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MAQ.Q1 MAQ.Q3 MAQ

Quantile RF ntree 1000 1.25 1.99 1.62

Quantile RF ntree 1500 1.25 1.99 1.62

Quantile RF ntree 500 1.25 1.99 1.62

Quantile SVM cost 1 gamma 0.05 1.48 2.21 1.85

Quantile SVM cost 1 gamma 0.1 1.51 2.25 1.88

Quantile SVM cost 50 gamma 0.01 1.51 2.27 1.89

Quantile SVM cost 10 gamma 0.01 1.5 2.35 1.93

Quantile SVM cost 5 gamma 0.05 1.56 2.33 1.95

Quantile SVM cost 5 gamma 0.01 1.51 2.43 1.97

Quantile SVM cost 100 gamma 0.01 1.55 2.4 1.97

Quantile SVM cost 5 gamma 0.1 1.6 2.43 2.01

Quantile SVM cost 1 gamma 0.01 1.56 2.48 2.02

Quantile RT se 0.5 1.48 2.7 2.09

Quantile RT se 0 1.47 2.71 2.09

Quantile SVM cost 10 gamma 0.05 1.64 2.55 2.09

Quantile SVM cost 10 gamma 0.1 1.69 2.54 2.11

Nmodels QRF ntree 1500 1.88 2.36 2.12

Nmodels QRF ntree 1000 1.88 2.36 2.12

Nmodels QRF ntree 500 1.88 2.36 2.12

Quantile SVM cost 100 gamma 0.001 1.63 2.62 2.12

Quantile SVM cost 1 gamma 0.001 1.76 2.51 2.13

Quantile SVM cost 50 gamma 0.001 1.64 2.62 2.13

Quantile SVM cost 10 gamma 0.001 1.67 2.59 2.13

Quantile SVM cost 5 gamma 0.001 1.7 2.58 2.14

Quantile RT se 1 1.5 2.82 2.16

Quantile RT se 1.5 1.52 2.84 2.18

Quantile SVM cost 50 gamma 0.1 1.81 2.8 2.31

Nmodels SVM cost 5 gamma 0.05 2.08 2.67 2.37

Quantile SVM cost 100 gamma 0.1 1.82 2.93 2.38

Nmodels SVM cost 5 gamma 0.1 2.2 2.57 2.39
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Nmodels SVM cost 10 gamma 0.1 2.2 2.57 2.39

Iterated QRF ntree 1500 2.38 2.41 2.4

Iterated QRF ntree 1000 2.38 2.41 2.4

Iterated QRF ntree 500 2.38 2.42 2.4

Nmodels SVM cost 1 gamma 0.1 2.28 2.63 2.46

Nmodels SVM cost 10 gamma 0.05 2.19 2.74 2.47

Nmodels SVM cost 100 gamma 0.01 2.15 2.81 2.48

Quantile SVM cost 50 gamma 0.05 1.97 2.99 2.48

Nmodels SVM cost 1 gamma 0.05 2.18 2.8 2.49

Nmodels SVM cost 50 gamma 0.1 2.23 2.76 2.5

Nmodels SVM cost 50 gamma 0.01 2.22 2.84 2.53

Nmodels SVM cost 100 gamma 0.1 2.3 2.8 2.55

Nmodels SVM cost 10 gamma 0.01 2.33 2.92 2.62

Quantile SVM cost 100 gamma 0.05 2.13 3.16 2.64

Nmodels RF ntree 500 2.95 2.4 2.67

Nmodels RF ntree 1500 2.95 2.4 2.67

Nmodels RF ntree 1000 2.96 2.4 2.68

Nmodels SVM cost 5 gamma 0.01 2.38 2.98 2.68

Nmodels SVM cost 100 gamma 0.001 2.49 3.14 2.81

Nmodels SVM cost 50 gamma 0.05 2.63 3.02 2.82

Nmodels SVM cost 1 gamma 0.01 2.46 3.25 2.86

Nmodels SVM cost 50 gamma 0.001 2.48 3.23 2.86

Nmodels RT se 0 3.05 2.71 2.88

Nmodels SVM cost 10 gamma 0.001 2.54 3.35 2.94

Nmodels SVM cost 100 gamma 0.05 2.77 3.21 2.99

Nmodels SVM cost 5 gamma 0.001 2.61 3.38 2.99

Iterated SVM cost 1 gamma 0.1 2.95 3.1 3.03

Nmodels RT se 0.5 3.4 2.66 3.03

Nmodels RT se 1 3.57 2.61 3.09

Iterated SVM cost 10 gamma 0.1 2.94 3.36 3.15

Iterated SVM cost 5 gamma 0.1 3.02 3.33 3.17
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Nmodels RT se 1.5 3.74 2.62 3.18

Nmodels SVM cost 1 gamma 0.001 2.93 3.43 3.18

Iterated SVM cost 100 gamma 0.1 2.88 3.63 3.26

Iterated SVM cost 50 gamma 0.1 2.92 3.69 3.3

Iterated SVM cost 5 gamma 0.05 3.38 3.26 3.32

Iterated SVM cost 1 gamma 0.05 3.25 3.39 3.32

Iterated SVM cost 10 gamma 0.05 3.37 3.4 3.38

Iterated RF ntree 1000 4.04 2.82 3.43

Iterated RF ntree 500 4.03 2.82 3.43

Iterated RF ntree 1500 4.05 2.83 3.44

Iterated SVM cost 50 gamma 0.05 3.31 3.67 3.49

Quantile QRF ntree 1000 3.78 3.25 3.51

Quantile QRF ntree 1500 3.78 3.25 3.51

Quantile QRF ntree 500 3.78 3.25 3.51

Iterated SVM cost 50 gamma 0.01 3.63 3.57 3.6

Iterated SVM cost 100 gamma 0.01 3.66 3.67 3.67

Iterated SVM cost 10 gamma 0.01 3.66 3.71 3.68

Iterated SVM cost 100 gamma 0.001 3.37 4.11 3.74

Iterated SVM cost 100 gamma 0.05 3.62 3.86 3.74

Iterated SVM cost 5 gamma 0.01 3.63 3.87 3.75

Iterated SVM cost 1 gamma 0.01 3.14 4.44 3.79

RW 2.7 4.89 3.79

Iterated SVM cost 50 gamma 0.001 3.31 4.28 3.8

Iterated SVM cost 1 gamma 0.001 3.31 4.63 3.97

Iterated SVM cost 10 gamma 0.001 3.22 4.78 4

Iterated SVM cost 5 gamma 0.001 3.2 4.84 4.02

Iterated RT se 0 5.35 5.28 5.32

Iterated RT se 1.5 5.67 5.02 5.35

Iterated RT se 1 5.61 5.2 5.4

Iterated RT se 0.5 5.52 5.29 5.41

Table A.4: All setups, k = 24 and MAQ
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A.2.2 TQE - Total Quantile Error

Figure A.5 shows the results using the TQE error measure for all different setups.

Figure A.5: Water Consumption, k = 24 and TQE

Table A.5 shows all setups order by the TQE error.

QTE.Q1 QTE.Q3 QTE

Quantile RF ntree 1000 47.09 55.25 102.34

Quantile RF ntree 1500 47.09 55.25 102.34

Quantile RF ntree 500 47.09 55.26 102.35

Quantile SVM cost 1 gamma 0.05 48.06 55.62 103.68
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Quantile SVM cost 1 gamma 0.1 48.15 55.6 103.75

Quantile SVM cost 50 gamma 0.01 48.19 55.78 103.97

Quantile SVM cost 5 gamma 0.05 48.32 55.94 104.26

Quantile SVM cost 10 gamma 0.01 48.06 56.31 104.37

Quantile SVM cost 5 gamma 0.01 48.06 56.6 104.66

Quantile SVM cost 5 gamma 0.1 48.53 56.23 104.76

Quantile SVM cost 100 gamma 0.01 48.35 56.42 104.76

Quantile SVM cost 1 gamma 0.01 48.23 56.77 105

Quantile SVM cost 10 gamma 0.05 48.61 56.83 105.44

Nmodels QRF ntree 1500 49.57 56.05 105.62

Nmodels QRF ntree 1000 49.57 56.06 105.62

Nmodels QRF ntree 500 49.57 56.06 105.62

Quantile SVM cost 10 gamma 0.1 48.95 56.68 105.63

Quantile SVM cost 1 gamma 0.001 49.04 56.6 105.64

Quantile SVM cost 5 gamma 0.001 48.86 56.91 105.77

Quantile SVM cost 10 gamma 0.001 48.75 57.05 105.81

Quantile SVM cost 100 gamma 0.001 48.55 57.32 105.87

Quantile SVM cost 50 gamma 0.001 48.61 57.32 105.93

Quantile RT se 0.5 48.5 58.73 107.23

Quantile RT se 1 48.52 58.95 107.47

Quantile RT se 1.5 48.59 59 107.59

Quantile SVM cost 50 gamma 0.1 49.56 58.14 107.7

Quantile RT se 0 48.51 59.19 107.7

Quantile SVM cost 100 gamma 0.1 49.65 58.83 108.48

Nmodels SVM cost 10 gamma 0.1 51.38 57.18 108.56

Iterated QRF ntree 1500 52.04 56.61 108.65

Iterated QRF ntree 1000 52.05 56.6 108.65

Nmodels SVM cost 50 gamma 0.1 51.1 57.59 108.69

Iterated QRF ntree 500 52.06 56.63 108.69

Nmodels SVM cost 5 gamma 0.1 51.63 57.3 108.93

Quantile SVM cost 50 gamma 0.05 50.09 58.86 108.95
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Nmodels SVM cost 5 gamma 0.05 51.29 57.77 109.06

Nmodels SVM cost 100 gamma 0.1 51.37 57.75 109.12

Nmodels SVM cost 10 gamma 0.05 51.67 57.73 109.4

Nmodels SVM cost 100 gamma 0.01 51.41 58.14 109.55

Nmodels SVM cost 1 gamma 0.1 52.08 57.88 109.96

Nmodels SVM cost 50 gamma 0.01 51.65 58.42 110.06

Nmodels SVM cost 1 gamma 0.05 51.61 58.65 110.25

Quantile SVM cost 100 gamma 0.05 50.95 59.87 110.81

Nmodels SVM cost 10 gamma 0.01 52.23 59.11 111.34

Nmodels SVM cost 50 gamma 0.05 53.21 58.3 111.52

Nmodels RF ntree 500 55.46 56.56 112.02

Nmodels RF ntree 1500 55.49 56.55 112.04

Nmodels RF ntree 1000 55.51 56.55 112.06

Nmodels SVM cost 5 gamma 0.01 52.56 59.56 112.13

Nmodels SVM cost 100 gamma 0.05 53.78 59.14 112.92

Nmodels SVM cost 100 gamma 0.001 53.2 60.28 113.49

Nmodels SVM cost 1 gamma 0.01 52.92 61.06 113.98

Nmodels SVM cost 50 gamma 0.001 53.21 60.8 114.02

Nmodels RT se 0 56.26 57.89 114.15

Nmodels SVM cost 10 gamma 0.001 53.42 61.48 114.91

Nmodels SVM cost 5 gamma 0.001 53.8 61.69 115.48

Iterated SVM cost 1 gamma 0.1 55.89 60.02 115.91

Nmodels RT se 0.5 58.49 57.66 116.15

Iterated SVM cost 10 gamma 0.1 56.28 60.41 116.69

Nmodels RT se 1 59.55 57.46 117.01

Iterated SVM cost 100 gamma 0.1 55.62 61.46 117.08

Iterated SVM cost 5 gamma 0.1 56.64 60.55 117.19

Iterated SVM cost 50 gamma 0.1 55.97 61.83 117.81

Nmodels SVM cost 1 gamma 0.001 55.62 62.22 117.84

Nmodels RT se 1.5 60.61 57.54 118.14

RW 53.79 65.37 119.15
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Iterated SVM cost 5 gamma 0.05 58.78 60.64 119.43

Iterated SVM cost 10 gamma 0.05 58.71 61.41 120.11

Iterated SVM cost 1 gamma 0.05 58.32 61.93 120.25

Iterated RF ntree 500 62.12 58.86 120.97

Quantile QRF ntree 500 60.27 60.72 120.99

Quantile QRF ntree 1500 60.27 60.73 121

Quantile QRF ntree 1000 60.29 60.71 121

Iterated RF ntree 1000 62.17 58.85 121.02

Iterated RF ntree 1500 62.23 58.89 121.11

Iterated SVM cost 50 gamma 0.05 59.36 62.36 121.72

Iterated SVM cost 50 gamma 0.01 60.41 62.59 123

Iterated SVM cost 100 gamma 0.05 60.14 63.25 123.39

Iterated SVM cost 100 gamma 0.01 60.51 63.35 123.86

Iterated SVM cost 10 gamma 0.01 60.83 63.64 124.47

Iterated SVM cost 5 gamma 0.01 60.87 64.85 125.71

Iterated SVM cost 100 gamma 0.001 59.25 67.47 126.72

Iterated SVM cost 1 gamma 0.01 57.91 69.21 127.12

Iterated SVM cost 50 gamma 0.001 59.38 68.66 128.04

Iterated SVM cost 1 gamma 0.001 59.37 70.69 130.05

Iterated SVM cost 10 gamma 0.001 59.37 71.86 131.23

Iterated SVM cost 5 gamma 0.001 59.22 72.6 131.82

Iterated RT se 1.5 84.76 72.1 156.86

Iterated RT se 0 81.65 75.58 157.23

Iterated RT se 1 84.53 74.31 158.84

Iterated RT se 0.5 83.64 75.4 159.04

Table A.5: All setups, k = 24 and TQE



WINDOW SIZE 24 124

A.2.3 Utility

Figure A.6 shows the results using the Utility error measure (larger is better) for all different

setups.

Figure A.6: Water Consumption, k = 24 and Utility

Table A.6 shows all setups order by the Utility.

utility

Quantile RF ntree 1000 26.13

Quantile RF ntree 1500 26.12

Quantile RF ntree 500 26.06
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Quantile RT se 0.5 24.89

Quantile RT se 0 24.87

Quantile RT se 1 24.5

Quantile SVM cost 1 gamma 0.05 24.4

Quantile RT se 1.5 24.25

Quantile SVM cost 10 gamma 0.01 24.17

Quantile SVM cost 1 gamma 0.1 24.11

Quantile SVM cost 50 gamma 0.01 24.11

Quantile SVM cost 5 gamma 0.05 24.01

Quantile SVM cost 5 gamma 0.01 23.88

Quantile SVM cost 100 gamma 0.01 23.66

Quantile SVM cost 5 gamma 0.1 23.64

Quantile SVM cost 1 gamma 0.01 23.43

Quantile SVM cost 10 gamma 0.05 23.1

Quantile SVM cost 10 gamma 0.1 22.92

Quantile SVM cost 5 gamma 0.001 22.88

Quantile SVM cost 10 gamma 0.001 22.87

Nmodels QRF ntree 1000 22.87

Quantile SVM cost 1 gamma 0.001 22.87

Nmodels QRF ntree 500 22.86

Nmodels QRF ntree 1500 22.85

Quantile SVM cost 100 gamma 0.001 22.85

Quantile SVM cost 50 gamma 0.001 22.75

Quantile SVM cost 50 gamma 0.1 22.13

Nmodels SVM cost 5 gamma 0.05 21.89

Quantile SVM cost 100 gamma 0.1 21.73

Nmodels SVM cost 5 gamma 0.1 21.66

Nmodels SVM cost 10 gamma 0.1 21.56

Nmodels SVM cost 50 gamma 0.1 21.51

Nmodels SVM cost 100 gamma 0.1 21.29

Nmodels SVM cost 10 gamma 0.05 21.28
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Nmodels SVM cost 100 gamma 0.01 21.24

Nmodels SVM cost 1 gamma 0.05 21.17

Nmodels SVM cost 50 gamma 0.01 21.11

Quantile SVM cost 50 gamma 0.05 21.07

Iterated QRF ntree 1500 21.05

Iterated QRF ntree 1000 21.04

Iterated QRF ntree 500 21.03

Nmodels SVM cost 1 gamma 0.1 20.85

Nmodels SVM cost 10 gamma 0.01 20.6

Quantile SVM cost 100 gamma 0.05 20.41

Nmodels SVM cost 5 gamma 0.01 20.14

Nmodels SVM cost 50 gamma 0.05 19.87

Nmodels SVM cost 100 gamma 0.05 19.6

Nmodels RF ntree 500 19.41

Nmodels RF ntree 1500 19.4

Nmodels RF ntree 1000 19.37

Nmodels SVM cost 100 gamma 0.001 19.29

Nmodels SVM cost 1 gamma 0.01 19.04

Nmodels SVM cost 50 gamma 0.001 18.95

Nmodels RT se 0 18.32

Iterated SVM cost 100 gamma 0.1 18.32

Iterated SVM cost 1 gamma 0.1 18.31

Iterated SVM cost 10 gamma 0.1 18.23

Nmodels SVM cost 10 gamma 0.001 18.15

Iterated SVM cost 50 gamma 0.1 18.05

Iterated SVM cost 5 gamma 0.1 17.97

Nmodels SVM cost 5 gamma 0.001 17.88

Nmodels RT se 0.5 17.38

Iterated SVM cost 50 gamma 0.05 17.11

Nmodels RT se 1 16.94

Iterated SVM cost 100 gamma 0.05 16.85
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Iterated SVM cost 10 gamma 0.05 16.81

Iterated SVM cost 1 gamma 0.05 16.79

Nmodels SVM cost 1 gamma 0.001 16.77

Iterated SVM cost 5 gamma 0.05 16.73

Nmodels RT se 1.5 16.35

RW 15.72

Iterated SVM cost 50 gamma 0.01 15.37

Iterated SVM cost 100 gamma 0.01 15.06

Quantile QRF ntree 500 15

Quantile QRF ntree 1000 15

Iterated RF ntree 500 15

Iterated RF ntree 1000 15

Quantile QRF ntree 1500 14.99

Iterated RF ntree 1500 14.91

Iterated SVM cost 10 gamma 0.01 14.33

Iterated SVM cost 5 gamma 0.01 13.63

Iterated SVM cost 100 gamma 0.001 13.34

Iterated SVM cost 1 gamma 0.01 13.03

Iterated SVM cost 50 gamma 0.001 13.02

Iterated SVM cost 1 gamma 0.001 12.34

Iterated SVM cost 10 gamma 0.001 11.8

Iterated SVM cost 5 gamma 0.001 11.77

Iterated RT se 0 8.07

Iterated RT se 1.5 7.52

Iterated RT se 0.5 7.41

Iterated RT se 1 7.28

Table A.6: All setups, k = 24 and Utility
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