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Abstract 
 

This paper presents a predictive study applied to a manufacturing equipment in order to 

predict malfunctions, and consequently enabling predictive maintenance practices. 

ARIMA forecasting methods are successfully compared with neural networks models, 

both used over data obtained from a monitoring system that continuously keeps track of 

the relevant equipment parameters. The results show that both models could detect the 

discs replacement, however The ARIMA model forecasts quite well the increasing of 

the distance between the discs before and after the replacement which is not the case for 

the NN model. 

 

Keywords: Manufacturing equipment, Predictive maintenance, ARIMA, Neural 

network autoregression 

 

 

Introduction 

Globalization and competitiveness in existing markets currently cast an increasingly 

demanding challenge for organizations. The delivery of the product or service desired 

by the customer is becoming less a differentiating factor, but a matter of survival. The 

client demands that the product is produced according to the desired characteristics to 

the first, with guaranteed quality and on time. This increasingly challenge, driven by the 

need to continuously optimize the quality of products, made maintenance began to be 

treated in a different way. Maintenance, here, is seen as the set of technical and 

administrative actions designed to maintain acceptable conditions in manufacturing 

facilities and equipment to ensure regularity, quality and safety in production, with 

minimal total costs. Intelligent methods for collecting and organizing data and predict 

potential failures will contribute greatly to the effectiveness of the machine 

preventive/predictive maintenance. 

From visual inspection, which is the oldest method, yet still one of the most powerful 

and widely-used, predictive maintenance has evolved to automated methods that use 
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advanced signal processing techniques based on pattern recognition, including neural 

networks, fuzzy logic, and data-driven empirical and physical modelling (Hashemian, 

2011). As equipment begins to fail, it may display signs that can be detected by human 

senses (eyes, ears and noses) or by sensors that are currently available to identify the 

onset of equipment degradations and failures. Integrating these sensors with the 

predictive maintenance techniques can avoid unnecessary equipment replacement, save 

costs, and improve process safety, availability and efficiency. 

The prediction of failures and maintenance actions of industrial machines is a 

problem with interesting characteristics. We need to forecast certain rare events, which 

are supposed to be dependent on the recent values of a set of time series values. These 

time series describe the recent values of a set of sensors that monitor several aspects of 

the industrial machines. For each task being handled by these machines (a kind of 

working context), the sensors are expected to have a certain typical behavior. Deviations 

from this typical behavior are good indicators of a foreseen failure or some maintenance 

action. 

A large number of different approaches have been used to develop models for 

predictive maintenance, including Data Mining and Statistical Inference Methods 

particularly nonparametric techniques (Bohoris and Leitão, 1991) (Lopes et al., 2010). 

However, the process of model development is, to a great extent, manual. Indeed, time 

series forecasting models need different preprocessing tasks in order to identify the 

existing seasonalities and impact factors (Makridakis et al., 1998; Pena et al., 2001). 

Also, data mining algorithms need to address different preprocessing tasks and 

parameter tuning (Mendes-Moreira et al., 2012). Therefore, in order to develop 

predictive maintenance models for machines operating in diverse environments requires 

a significant amount of expensive human effort. Furthermore, it is hard to ensure that 

the models remain reliable over time in dynamic environments. Despite the various 

solutions available for the detection of potential failures, predictive maintenance derived 

from a correct failure prediction is not yet a reality. 

The Box-Jenkins approach to modeling ARIMA processes provides a convenient 

framework to find an appropriate statistical model which can be used to make forecasts 

(Box et al., 1994). Zhao et al.(2007) estimates an ARMA model to forecast faults in a 

semiconductor ATM factory, and there are other successful examples. 

Neural networks are a class of flexible nonlinear models that can discover patterns 

adaptively from the data. Theoretically, it has been shown that given an appropriate 

number of nonlinear processing units, neural networks can learn from experience and 

estimate any complex functional relationship with high accuracy. Empirically, 

numerous successful applications have established their role for pattern recognition and 

forecasting (Zhang and Qi, 2005). 

The first step for addressing a predictive study is the construction of a good quality 

data set. Such data set should provide the models with examples of the rare events we 

are trying to forecast. Without a history of failures and maintenance activities it is not 

possible for models to forecast these events. The ideal data set should consist of a time 

tagged sequence of observations of the machine state. The second step is to forecast the 

future values of the sensors of the machine. Regarding this we will use ARIMA and 

neural networks models. The final step of the predictive study is to detect failures and 

maintenance actions based on the forecasts of the sensors future values. 

The rest of the paper is organized as follows. The following section gives a brief 

description of the forecasting models used in this work: ARIMA and neural networks 

models. Next, we present the data and the methodology followed to develop the work. 
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The obtained results are then presented. Finally, we highlight the main conclusions and 

ideas for future work. 

 

Forecasting models 

 

ARIMA modeling 

ARIMA is one of the most versatile linear models for forecasting time series. It has 

enjoyed great success in both academic research and industrial applications during the 

last four decades. The class of ARIMA models is broad. It can represent many different 

types of stochastic seasonal and non-seasonal time series such as pure autoregressive 

(AR), pure moving average (MA) and mixed AR and MA processes (Chatfield, 2000). 

The theory of ARIMA models has been developed by many researchers and its wide 

application was due to the work by Box and Jenkins (1994) who developed a systematic 

and practical model building method. The non-seasonal ARIMA model denoted as 

ARIMA ( ), ,p d q  has the following form (Brockwell and Davis, 1991): 

( ) ( ) ( )2 2

1 2 1 21 1 1 ,⋯ ⋯

dp q

p t q tB B B B y c B B Bφ φ φ θ θ θ ε− − − − − = + + + + +  (1)

where B  is the backward shift operator, d  is the degree of first differencing involved, 

( )2

1 21 ⋯

p

pB B Bφ φ φ− − − −  and ( )2

1 21 ⋯

q

qB B Bθ θ θ+ + + +  are the regular 

autoregressive and moving average polynomials of orders p  and q  respectively, 

1
(1 )⋯

p
c µ φ φ= − − −  where µ  is the mean of (1 )d

t
B y−  process and t

ε  is a normally 

distributed white noise process with mean 0 and variance 
2σ . The roots of polynomials 

( )
p

Bφ  and ( )
q

Bθ  should lie outside a unit circle to ensure causality and invertibility. 

For 1d ≥ , 0c =  is usually assumed because a quadratic or a higher order trend in the 

forecast function is particularly dangerous (Shumway and Stoffer, 2011). 

The main task in ARIMA forecasting is selecting an appropriate model order, that is 

the values of ,p q  and d . Usually the following steps are used to identify manually a 

tentative model (Wei, 2005): 

(1) Plot the time series, identify any unusual observations and choose the proper 

variance-stabilizing transformation. A series with nonconstant variance often needs a 

logarithm transformation. More generally to stabilize the variance a Box-Cox 

transformation may be applied; 

(2) Compute and examine the sample ACF (autocorrelation function) and the sample 

PACF (partial autocorrelation function) of the transformed data (if a transformation was 

necessary) or of the original data to further confirm a necessary degree of differencing. 

Because variance-stabilizing transformations such as the Box-Cox transformations 

require positive values and differencing may create some negative values, variance-

stabilizing transformations should always be applied before taking differences; 

(3) Compute and examine the sample ACF and sample PACF of the properly 

transformed and differenced series to identify the orders of p  and q  by matching the 

patterns in the sample ACF and PACF with the theoretical patterns of known models. 

(4) After identifying a tentative model the next step is to estimate the parameters in 

the model. This quite complex task is usually performed by a software package. After 

identifying an appropriate model the residuals from the model should be checked 

(Ljung and Box, 1978). 
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Neural network autoregression 

Neural networks are the most versatile nonlinear models that can represent both 

nonseasonal and seasonal time series (Chu and Zhang, 2003). The most important 

capability of neural networks compared to other nonlinear models is their flexibility in 

modeling any type of nonlinear pattern without the prior assumption of the underlying 

data generating process. The most popular neural network model for time series 

forecasting is the three-layer feedforward network model which can be written as: 

0 0

1 1

n m

t j ij t i j t

j i

y f yα α β β ε−
= =

 
= + + + 

 
∑ ∑  (2)

where m  is the number of input nodes, n  is the number of hidden nodes, f  is a 

sigmoid transfer function such as the logistic: 1
1 exp( )

( )
x

f x
+ −

= , { }, 0,1, ,…j j nα =  is a 

vector of weights from the hidden to output nodes and { }, 0,1, , ; , 1, ,… …ij i m j nβ = =  

are weights from the input to hidden nodes, 
0α  and 

0 j
β  are weights of arcs leading 

from the bias terms which have values always equal to 1. The neural network expressed 

in (2) is equivalent to a nonlinear AR model. 

For a time series forecasting problem NN model building is equivalent to 

determining both the number of input nodes and the number of hidden nodes. The input 

nodes are the past lagged observations through which the underlying autocorrelation 

structure of the data can be captured. Identifying the proper autocorrelation structure of 

a time series can be done by examining the sample ACF and the sample PACF. 

Although the NN universal approximation theory indicates that a good approximation 

may require a large number of hidden nodes, only a small number is often needed in 

real applications (Chu and Zhang 2003). 

Experiments with different architectures are often performed to identify an 

appropriate neural network model. In fact, the available data is often divided into three 

portions. The first training part is used for model training, i.e. parameter estimation, 

while the second validation part is for model selection. The last test sample is then used 

for true forecasting evaluation. 

 

Data and Methodology 

The predictive maintenance work presented in this paper was carried out over a refiner 

located in one of the Sonae Indústria factories. Sonae Indústria is the current world 

leader in the production of wood derivative panels, being the owner of 27 factories 

distributed by 3 continents. Their products cover the most usual wood derivative panels, 

namely particleboard, medium density fiberboard (MDF), hardboard and oriented strand 

board. 

The refiner is used to mechanically separate wood fibers from pieces of wood that 

are introduced between two metallic discs, one of them rotary, separated by few 

millimeters. Figure 1 illustrates the refiner components. 

The data considered in this work consist on a large set of time series each describing 

a key sensor of the machine under study (the refiner). These sensors describe relevant 

properties of the refiner and their evolution through time being able to provide hints on 

future failures or maintenance needs. 

Our work focus on the maintenance of the defibrator discs, in particular on their 

replacement. Consequently, the sensors analyzed were Sensor 11 which measures the 

defibrator infeed screw motor current (in amperes) and Sensor 20 which measures the 

distance (in millimeters) between the two discs of the defibrator. The Sensor 11 is used 

to detect the periods when the refiner is turned off. These periods were not considered in 



 

5 

 

the time series analysis of this work, i.e., we assume that the refiner is working 

continuously. Thus, the Sensor 20 measurements were only considered when Sensor 11 

is not down. 

 
Figure 1 – Refiner components. 

 

The monitoring time started on 2008-01-02 04:55:54 GMT and finished on 

2011-11-30 23:59:55 GMT. Figure 2 shows the observations from Sensor 11, already 

without the periods where the refiner is turned off. This data set comprises 7062589 

observations, being each measurement taken each 8/9 seconds. Thus, the data set 

corresponds to a total period of around 671 days where the refiner is continuously 

working. 

 

 
Figure 2 – Measurements of Sensor 11 during 671 working days. 
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Figure 3 shows the Sensor 20 measurements taken on the exact time instants of the 

Sensor 11 data set, depicted in Figure 2. It is clear from Figure 3 that the Sensor 20 data 

set is composed by cycles of values between 10 and 30 mm. Each cycle corresponds to 

a pair of discs of the defibrator that are then replaced by new ones, after a working 

period. When the discs are replaced by new ones its distance inside the defibrator 

decreases which is detected in the measurements of Sensor 11 by a jump down. 

Taken the historical data of discs replacements given by Sensor 20, the purpose of 

this work is to predict when the next replacement of the defibrator discs should occur, to 

avoid possible faults in the refiner derived by the use of improper discs. 

 

 
Figure 3 – Measurements of Sensor 20 during 671 working days. 

 

 
Figure 4 – Measurements (one each two days) of Sensor 20 used in the analysis. 

 

Figure 4 shows the plot of the Sensor 20 measurements (one each two days) that were 

analyzed in this work using ARIMA and NN (340 observations). It can be seen that the 

time series has a cyclic behavior and that the cycles have no fixed length. This plot also 

indicates that the time series is stationary in the mean but may not be stationary in 

variance, so a Box-Cox transformation should be investigated. 

Figure 5 shows the sample ACF and the sample PACF for the measurements of 

Sensor 20 time series. It can be seen that the sample ACF decays very slowly and that 

the sample PACF has a large spike at lag 1 and another spike at lag 37. This large 

autocorrelation at lag 37 suggests that a tentative ARIMA model may be an AR(37), 

and that 37 input nodes should be tried when considering the NN architecture. 
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Figure 5 – Sample ACF and Sample PACF for the Sensor 20 measurements. 

 

It was also our purpose to compare the forecasting performance of ARIMA models 

and NN models. It is important to evaluate forecast accuracy using genuine forecasts. 

That is, it is not valid to look at how well a model fits the historical data. The accuracy 

of forecasts can only be determined by considering how well a model performs on data 

that were not used when fitting the model. When comparing different models, it is 

common to use a portion of the available data for fitting – the in-sample data, and use 

the rest of the data to measure how well the model is likely to forecast on new data – the 

out-of-sample data. Following the common practice, we use the cross-validation 

approach to select the best ARIMA model and the best NN architecture (Arlot and 

Alain, 2010). That is, the in-sample data are further split into a training set and a testing 

set. The training set is used to estimate the model parameters and the testing set is used 

to choose the final model. 

In this study, the first 333 observations of the time series are used for model fitting 

and selection (in-sample data) and the last 7 observations are used for forecast 

evaluation (out-of-sample data). The last 7 observations of in-sample data are used as 

validation and testing sample and the rest of observations are used for model estimation 

(326 observations). The model with the best performance in the testing sample is 

selected as the final model for further evaluation in the out-of-sample. All model 

comparisons are based on the results for the out-of-sample. 

In the case of NN models we consider 6 different levels of input nodes: 1, 2, 3, 36, 

37 and 38, and 12 hidden node levels from 2 to 24 with an increment size of 2. Thus, a 

total of 72 different networks are experimented in the model building process. We also 

investigate whether the Box-Cox transforming of the data would enhance neural 

network’s capability of modeling the cyclic variation. 

In the case of ARIMA we consider the models where p can take the values 1, 2, 3, 

36, 37 and 38, q can take the values 0, 1, 2, 3, and 4, and c  can take the values 0 or 1 

giving a total of 60 models. To investigate the stabilization of the variance the Box-Cox 

transformation was also applied. The model with the minimum RMSE value on the 

forecasts of the testing sample that passed the Ljung-Box test with a significance level 

of 5% was selected from all fitted ARIMA models. 

 

Results 

The time series analysis was carried using the statistical software R programming 

language (R Development Core Team, 2013) and the specialized package forecast 

(Hyndman, 2008). 

To evaluate and compare the forecasting performance of the two types of models, we 

use three overall error measures in this study: the root mean squared error (RMSE), the 
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mean absolute error (MAE), and the mean absolute percentage error (MAPE). These are 

the most commonly used forecast error measures among both academics and 

practitioners. 

Table 1 summarizes the ARIMA and NN modeling results for the in-sample data. It 

can be seen that neural networks are able to model and forecast better than ARIMA in 

the in-sample judged by the three performance measures; although it should be 

emphasized that these results should not be used for forecast evaluation. In the testing 

set the RMSE, the MAE and the MAPE are 39%, 29% and 19% smaller, respectively. 

Another important observation is that the Box-Cox transformation was not important 

for improving NN and ARIMA’s ability to model and forecast the cyclic behavior of the 

Sensor 20 time series. 

 
Table 1 – Comparison results for model building (in-sample data). 

Model RMSE MAE MAPE 

Training set    

ARIMA 1.894 1.312 8.010 

NN 1.603 1.105 6.649 

Testing set    

ARIMA 2.963 2.208 11.174 

NN 1.796 1.561 9.101 

 

The out-of-sample forecasting comparison between neural networks and ARIMA is 

presented in Table 2. The results of this table show that the out-of-sample forecasting 

performance of ARIMA models evaluated via RMSE, MAE and MAPE is better than 

NN models. The RMSE, the MAE and the MAPE are 39%, 38% and 35% smaller, 

respectively. Sometimes, different accuracy measures will lead to different results as to 

which forecast method is best. However, in this case, all the results point to ARIMA as 

the best of the methods for this data set. These results also emphasize that a model 

which fits the data well does not necessarily forecast well. 

 
Table 2 – Out-of-sample forecasting comparison between neural networks and ARIMA. 

Model RMSE MAE MAPE 

ARIMA 2.181 1.896 9.814 

NN 3.553 3.048 15.142 

 

To see the individual point forecasting behavior, we plotted the actual data versus the 

forecasts from both NN and ARIMA models in Figure 6. We find that both NN and 

ARIMA models have the capability to forecast the discs replacement (observation 337). 

However the jump down in the ARIMA forecast is more prominent then the jump down 

in the NN forecast. The ARIMA model forecasts quite well the increasing of the 

distance between the discs before and after the replacement which is not the case for the 

NN model. It can be seen a decreasing of the distance between the sensors in the last 

two measurements that does not correspond to the reality. 
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Figure 6 – Out-of-sample forecasting comparison for the Sensor 20 time series (14 days). 

 

Conclusions 

Manufacturing enterprises, particularly SMEs, are quickly evolving according to market 

and products fast changes. Manufacturing machines are a core enabling technology in a 

number of key European industrial sectors which have common requirements for 

increased product customization and improved competitiveness in terms of reduced 

cost, shorter delivery times and improved quality. In order to pursue these increasing 

needs, manufacturing machines should be more and more reliable and available. The 

greater integration between the machine performances and the related parameter 

(technical, environmental and process) becomes also a crucial requirement that the user 

of the machine has difficulties to grasp and control. Intelligent methods for collecting 

and organizing data and predict potential failures will contributes greatly to the 

effectiveness of the machine preventive/predictive maintenance. Despite the various 

solutions available for the detection of potential failures, predictive maintenance derived 

from a correct failure prediction is not yet a reality. 

In this work we compare the forecasting performance of ARIMA and NN models to 

detect failures and maintenance actions based on the forecasts of the sensors future 

values. We concluded that both NN and ARIMA models have the capability to forecast 

the discs replacement detected in Sensor 20. However the jump down in the ARIMA 

forecast is more prominent then the jump down in the NN forecast. The ARIMA model 

forecasts quite well the increasing of the distance between the discs before and after the 

replacement which is not the case for the NN model. 
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