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Abstract. We present a multi-pass clustering approach to large scale, wide-scope
named-entity disambiguation (NED) on collections of web pages. Our approach
uses name co-occurrence information to cluster and hence disambiguate entities,
and is designed to handle NED on the entire web. We show that on web collec-
tions, NED becomes increasingly difficult as the corpus size increases, not only
because of the challenge of scaling the NED algorithm, but also because new
and surprising facets of entities become visible in the data. This effect limits the
potential benefits for data-driven approaches of processing larger data-sets, and
suggests that efficient clustering-based disambiguation methods for the web will
require extracting more specialized information from documents.

1 Introduction

Realistic named-entity disambiguation (NED) of Web data involves several challenges
that have not yet been considered simultaneously. First, when moving NED to the web
we need to deal with high levels of ambiguity. Since there are so many documents in the
Web, the same name will often refer to hundreds of different entities. This makes the
problem much harder as compared with NED approaches for small collections where
one needs to disambiguate only among a few possibilities. Second, distributions of men-
tions on the web are highly skewed. For each ambiguous name, there is usually one or
two dominant entities to which the vast majority of mentions refer to, even when many
entities share the same name. For example, most mentions of the name “Paris” found
on the web refer to the capital of France (and a smaller number to Paris Hilton), while
there are dozens of well-known entities with that name 4. Table 1 shows hit counts
for five queries sent to Google containing the word “Paris” and additional (potentially)
disambiguating keywords. These values are merely indicative of the orders of magni-
tude at stake, since hit counts are known to change significantly over time. The real

4 See the Wikipedia disambiguation page for “Paris”: http://en.wikipedia.org/
wiki/Paris_(disambiguation)
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challenge is to be able to disambiguate between mentions of the less frequently men-
tioned entities, for which there is proportionally much less information and more noise.
Third, most solutions to NED presented so far involve processing relatively small data-
sets. Realistic NED involves processing web-scale collections (terabyte size), requiring
computationally efficient ways of representing and processing data and, sometimes, in-
volving practical decisions that might affect negatively final results for some cases.

# query # hit count (x106) %
paris 583 100

paris france 457 78.4
paris hilton 58.2 9.99

paris greek troy 4.130 0.71
paris mo 1.430 0.25
paris tx 0.995 0.17

paris sempron 0.299 0.04

Table 1. Number of Google hits obtained for several entities named “Paris”

There are also other fundamental questions that have not yet been investigated.
Many of the solutions to NED involve data-driven techniques, such as clustering. Such
techniques usually benefit from processing larger amounts of data. Therefore, one would
expect to obtain better NED results as the size of the collection to be disambiguated in-
creases. However, as the size of the collection to be disambiguated becomes larger, the
variety of different entities and contexts that have to be dealt with also increases. As
the contexts in which mentions occur become more diverse, data-driven approaches
potentially become harder. The exact balance between these two effects has yet to be
quantified.

In this paper we present a clustering-based approach to disambiguating entities on
the Web. The algorithm we propose is capable of dealing with an arbitrarily high num-
ber of entities types, is scalable to the number of mentions on the web, and can be
distributed over a cluster of machines to process large web collections. For evaluating
the results of the disambiguation procedure we developed a gold standard based on
entity information extracted from Wikipedia. We experimented disambiguating sam-
ples of the web with increasingly large sizes to test how well the algorithm scales and
whether or not more data leads to better results. Results suggest that as the size of the
collection increases, more complex cases of ambiguity emerge, making the definition
of the NED task itself less clear. This seems to be an intrinsic characteristic of highly
heterogeneous document collections, and suggests the existence of fundamental upper
limits on the performance of clustering-based approaches to NED based only on name
co-occurrence information.



2 Related Work

There are currently two main lines of research on NED: (i) clustering approaches based
on information extracted from the documents (e.g., [1–4]) and (ii) approaches that use
external knowledge sources containing information about entities (e.g., the Wikipedia)
to perform disambiguation (e.g., [5–7]).

Mann and Yarowsky [3] present a disambiguation procedure for person names based
on a multi-pass clustering procedure. First, mentions are compared using an all-against-
all strategy, in order to obtain very “pure”, yet small, seed clusters, which should repre-
sent the main entities. Then, the remaining mentions are assigned to these seed clusters
using a nearest-neighbor policy. In a third step, clustering proceeds until no more clus-
tering is possible. The authors experimented using several different features to describe
mentions. Best results were obtained using biographic features in combination with
other statistically obtained features. Another clustering-based disambiguation method
is presented in [1]. Mentions are described by a vector composed of tf-idf weighted
terms extracted using a 55-word window. The authors compare two methods based on
variations of streaming-clustering (which are computational efficient but order depen-
dent and sensitive to outliers) and one agglomerative clustering method (which involves
all-against-all comparisons). Results showed that the agglomerative clustering method
leads to better precision and recall figures and higher stability to changes in parameters
(similarity threshold and data partitioning). Two other methods to disambiguate per-
sonal names, based on clustering and graph partitioning, are presented and compared in
[2]. Again, information about name co-occurrence is used to disambiguate person enti-
ties. The authors conclude that name co-occurrence information provides an advantage
over using other features to achieve disambiguation: However, this method considers
only situations where only one name at a time is ambiguous. The approach presented
in [8] is more sophisticated because it assumes that co-occurring names are themselves
ambiguous. Thus, an iterative clustering approach is proposed that aims at collectively
resolving ambiguity.

In [5], a set of disambiguation vectors is built using information extracted from
Wikipedia. Assuming each entity has its own Wikipedia page, a vector description of
the entity is build using words found inside a 55-word window around mention of the
name in the corresponding page. Wikipedia categories are also added to the vectors, us-
ing a pre-computed word to category index, thus exploiting strong correlations between
words in text (sparse features) and categories (e.g: “concert” is more strongly corre-
lated with category “Musicians” than with “Professional Wrestlers”). Disambiguation
is made by comparing vectors of mention to be disambiguated with the set of dis-
ambiguation vectors. In [6] Wikipedia is also used to build vector representations of
entities. However, the method does not rely on direct comparison between vector rep-
resentations of entities and vector of each individual mentions but, instead, it tries to
maximize the agreement between all the disambiguation hypothesis of all mentions in
a document. In [7] the authors attempt large-scale taxonomy based disambiguation / res-
olution, over a collection 264 million documents (although the number of mentions to
disambiguate was limited to 550 million). The method involved comparing the 10-word
window context around a mention with “typical” contexts that had been previously col-
lected and manually associated with the 24 reference nodes, i.e. largest nodes of the



taxonomy (e.g. city, profession, country). Disambiguation (or resolution) is achieved
by finding which node in the taxonomy that includes the ambiguous name belongs to
the subtree of the reference node with higher similarity with the context of the mention
(based on cosine metric and tf-idf feature weighting). The authors report an accuracy of
82%.

3 A Clustering Approach to NED

In this work we focus on the disambiguation problem, that is the problem of deter-
mining whether occurrences of the same name in different documents refer to the same
entity, or to different ones that share the same lexical representation (following standard
practice – [9] – we assume that a name inside a document can only refer to one entity).
For example, the name “Amsterdam” can be used refer to many different geographic
locations, to a novel, to several songs, to a ship, to a pop music band, and to many
other entities5. We do not address the related problem of conflating mentions that use
different names to refer the same entity (e.g., “George W. Bush”, “George Bush”, “Mr.
Bush”, “president Bush”, “the President”, “Dubya”). Solution to the name conflation
problem can be built on top of the solution provided for the name ambiguity problem
(for an interesting approach to large-scale name conflation check [4]).

NED can be formulated as a clustering task. Let mij represent a mention, i.e., the
occurrence of name ni in document dj , and let Mall = {m11, m21, ...mik} be the set of
all mentions found in a given document collection C = {d1, d2, ...dk}. Disambiguation
can be achieved by clustering together all mentions in Mall that refer to the same entity
ej . The goal is to partition Mall in several disjoint clusters of mentions, M1, M2, M3

... Mn, so that each of them contains mentions that refer to one and only one entity ej .
Also, all mentions of a given entity ej should end up in a single cluster.

3.1 Feature Vector Generation

We start by assuming that a mention of a given name can be disambiguated using infor-
mation about the names with which it co-occurs within the same document. For exam-
ple, mentions of “Amsterdam” that refer to the capital of the Netherlands will probably
co-occur with mentions of “Netherlands”, “Utrecht” or “Rijksmuseum”, while those
mentions of Amsterdam that refer to the novel, will probably co-occur with “Ian McE-
wan” or “Amazon”. Under this assumption, describing mentions using the set of co-
occurring names as features ({“Netherlands”, “Utrecht”, “Rijksmuseum”...} vs. {“Ian
McEwan”, “Amazon”...}) should lead clusters that group mentions that refer unambigu-
ously to one specific entity (the capital of the Netherlands vs. the novel).

Let N(dk) be set of names found in document dk. The mention of name nj in doc-
ument dk, mjk will be described by a feature vector of tuples name - value, (ni, vi):

mjk = [(n1, v1), (n2, v2), (n3, v3), ...(ni, vi)] (1)

with ni ∈ N(dk)\nj , and vi being a value obtained through a generic feature weighing
function (for example TF-IDF or Mutual Information).

5 Check http://en.wikipedia.org/wiki/Amsterdam_(disambiguation)



The input for our clustering procedure is an annotated collection of documents,
Cannot. Therefore, it requires names to be previously identified in each document, al-
though type classification is not needed.

3.2 Clustering Procedure Overview

The procedure we propose for performing NED over a collection of annotated docu-
ments Cannot starts by extracting all names from each document dk to generate men-
tion feature vectors mjk (a mention is the occurrence of a name in a document). Feature
vectors are then grouped by name, so as to have a set of mention feature vectors per
name: M(nj) = {mj1,mj2...mjx}. Vectors inside each set M(nj) are then compared
according a given comparison strategy and similarity metric sim(mnj , mnk) (e.g: Co-
sine or Jaccard Distance). Finally a clustering algorithm is applied to each M(nj), using
information about vector similarity computed in previous step.

The algorithm itself is generic in the sense that it does not establish any specific
strategy for comparing feature vectors prior to clustering, nor a specific choice for the
clustering technique. At this point, we assume only that an efficient algorithm exists
for performing vector comparison and clustering. For example, Min-Hash techniques
[10] provides a efficient way for computing an approximation to the nearest-neighbor
problem, which can be used for computing distances between vectors. Clustering by
Committee [11] and variations of streaming clustering techniques [12] might be an
option for the clustering stage. In any case, one important advantage of this algorithm is
that it provides a natural way for distributing computational load. Since feature vectors
are grouped by name, all information that is required to resolve ambiguity for each name
is aggregated and can be processed separately: both the calculation of vector similarities
and the clustering process can be distributed over a cluster of machines, on a per-name
basis, thus helping scalability.

4 Vector Comparison and Clustering

As explained, the size of the clustering problem at stake - millions of names and thou-
sands of millions of mentions - requires distributed algorithms that can be deployed
on large computer clusters. Right from the beginning our method was designed to be
run on a Map-Reduce [13] platform, a data intensive supercomputing paradigm that
simplifies the distribution of data (hundreds of gigabytes) and tasks over thousands of
computer nodes (typical commodity computers). Map-reduce provides a generic frame-
work for scaling algorithms to very large data sets but in order to choose an appropriate
clustering method for NED, some specific characteristics of the dataset and of the prob-
lem should be taken into account. First, the mention distribution is highly skewed, and
is dominated by the one or two most popular entities. Thus, the clustering algorithm
chosen should be able to handle unbalanced data distributions and still produce correct
clusters both from dominant and non-dominant entities. Second, the number of enti-
ties in which the set of mentions M(nj) should be mapped, and thus the final number
of clusters, is not known in advance. Therefore, the stopping criteria for the clustering
procedure should not depend on a predefined number of final clusters desired, which is



difficult to estimate. Instead, it should depend on parameters related with input data and
cluster properties.

We propose using a graph-based clustering approach. For each name nj , we start
by computing pairwise distances between feature vectors to build the link graph G(nj).
Two mentions are linked in the graph if their similarity is higher than a given threshold
smin. Then, find the connected components of the Link Graph G(nj). The retrieved
connected components represent the clusters we seek. The only parameter of this ap-
proach is smin; there is no need to set the target number of clusters to be produced.
So far we have not yet found an automatic method for estimating the smin parameter.
Values used in our experiments range from 0.2 to 0.4.

When building the link graph for each name G(nj) one only needs to perform
enough comparisons between mentions to build a graph that is sufficiently connected
to allow retrieving the correct components. The fact that the distribution of mentions
among the entities is highly skewed turns out to be advantageous for building the link
graph G(nj). If we pick mentions randomly from the set M(nj), for any of the men-
tions belonging to the dominant entities (one or two) it should be possible to quickly
find another one that turns out have a higher than threshold similarity (because there
are so many of them). Then, for mentions of the dominant entities, we can obtain a sig-
nificant decrease in the number of comparisons while almost surely keeping enough
connectivity to retrieve the connected components. We showed elsewhere [14] that
if each mention is compared to other mentions only until kpos above-threshold sim-
ilar mentions are found, it is possible to build a sufficiently connected link graph in
O(|M(nj)| · C · kpos), with C being the number of true clusters (i.e., different entities
for the name nj) in M(nj). Since the number of entities for each name is expected to
be orders of magnitude smaller than the number of it mentions, this approach leads to
significant savings in computational work as compared to an all-against-all comparison
strategy (i.e. O(|M(nj)|2)).

4.1 Additional Scalability Issues

There are still some important scalability problems that we need to solve. First, there
are so many mentions on the web for the most frequent names that the corresponding
feature vectors cannot be simultaneously fit into the RAM of a single machine to per-
form comparisons between them. For illustration purposes, we present in Table 2 the
number of documents (hence mentions under our definition) found by Google for a few
very frequent, and ambiguous, names (we use the number of possible entities found
in the corresponding Wikipedia disambiguation page for each name as a rough indica-
tor of its ambiguity). Second, even if they did fit simultaneously in RAM, processing
these very frequent names would require much more time than processing less frequent
names (which may have only a few hundred mentions), leading to extremely long tails
in the overall processing time. Therefore, we need to break the set of mentions for each
name into smaller partitions, each with nmax mentions, so that they can be distributed
more evenly across machines.

However, by splitting the data into multiple partitions and placing them in different
machines, we loose the ability to compare all mentions that would be required to find ap-
propriate (i.e. complete) clusters. In fact, for each (frequent) name we are breaking the



name # Wiki Entities Google Hits (×106)
Paris 90 583
Amsterdam 35 185
Jaguar 34 73.4
Pluto 25 13.8

Table 2. An illustration on the number of Google hits found on the web for some frequent names
(hits may change), and the corresponding number of entities found in Wikipedia.

corresponding clustering problem into several independent clustering problems. Many
of these partitions will produce clusters that correspond to the same entity, and so they
need to be merged afterwards. Since after the first clustering pass we should have much
less clusters than mentions, re-clustering these clusters is certainly a more tractable
problem. Clusters can be described by the feature vectors generated from the aggrega-
tion of feature vectors of the mentions they contain (e.g., their centroid). Comparisons
can then be made using any vector distance metric over such vector descriptions, also
on a per-name basis.

After the first stage of clustering, the size of the resulting clusters should also follow
a highly skewed distribution. There will be several larger clusters corresponding to the
few dominant entities, and many smaller clusters corresponding both to non-dominant
entities and to (small fragments of) dominant entities. Taking into account this typical
distribution (that we systematically found in our experiments), we developed a dedi-
cated re-clustering procedure to merge results from partitions. This procedure is ap-
plied independently for each name, and thus it can be trivially run in parallel. For each
name, we group all clusters obtained in each partition and divide them in two groups:
Big Clusters, Cbig and Small Clusters, Csmall. Cbig is composed of the 10% biggest
clusters produced in the first clustering pass, while all others are included in Csmall.
We then use the following re-clustering strategy:

1. Pre-assign Small Clusters to Big Clusters: Start by trying to assign each small
clusters to one big cluster. This assignment is made using a nearest neighbor strat-
egy (with a minimum similarity threshold), and thus tends not to make many in-
correct assignments, while greatly reducing the total number of clusters. Cluster
descriptions are updated accordingly.

2. Merge Small Clusters: Try to merge all the unassigned small clusters with each
other. The main goal here is to make sure that some of the less represented entities
grow into medium size clusters, so they get enough “critical mass” to be kept,
even if we simply filter out the smaller clusters. Cluster descriptions are updated
accordingly.

3. Merge Big and Medium Clusters: Try to re-cluster the medium and big clusters
based on only a few top features. The intuition is that big clusters can usually be
“described” by a small number of features (e.g., their top 3), which will be highly
discriminative for the entity at stake. We thus achieve cluster consolidation, while
reducing the risk of performing incorrect merge operations due to noisy features.

4. Repeat 2 and 3 to reduce fragmentation.



Note that Big clusters and Small Clusters are never compared simultaneously, (i.e. all-
against-all), which avoids the problems that might come from comparing elements of
with significant size differences.

5 Evaluation Framework

Evaluating the results of clustering algorithms is difficult. When gold standard clusters
are available, one can evaluate clusters by comparing clustering results with the existing
standard. Several metrics have been proposed for measuring how “close” test clusters
are to reference (gold standard) clusters. Simpler metrics are based frequency counts
regarding how individual items [15] or pairs of items [16, 17] are distributed among
test clusters and gold standard clusters. These measures, however, are sensitive to the
number of items being evaluated, so we opted for two information-theoretic metrics,
which depend solely on the item distributions.

Given two sets of clusters, the test clusters, T with |T | clusters, and the gold clus-
ters, G, with |G| clusters, we wish to evaluate how well clusters in T , t1, t2,...t|T |
represent the clusters in G, g1, g2,... g|G|. We first obtain the |I| (intersection) matrix
with |T | lines and |G| columns. Elements ixy of |I| indicate the number of items in
common between the test clusters tx and gold clusters gy. Ideally, all the elements in
a given test cluster, tx, should belong to only one of the gold clusters. Such tx cluster
is considered “pure” if it contains only mentions of a unique entity as defined by the
gold standard. If, on the other hand, elements from tx are found to belong to several
gold clusters, then the clustering algorithm was unable to correctly delimit the entity,
and disambiguation was not totally achieved.

To quantify how elements in test cluster tx are distributed over the gold standard,
we use the entropy of the distribution of the elements in tx over all the clusters gy. High
quality clusters should be very pure and thus have very low entropy values. Let It(x)
be the total number of elements of cluster tx that were found in gold clusters. Then:

et(tx) =
|G|∑
y=0

− ixy

It(x)
· ln(

ixy

It(x)
) (2)

Therefore, for all test clusters obtained for name nj we can compute Et(nj) as the
weighted average of the entropy values e(tx) obtained for each test cluster, tx:

Et(nj) =
∑|T (nj)|

x=0 |tx| · e(tx)
∑|T (nj)|

x=0 |tx|
(3)

with |tx| being the number of mentions in cluster tx, including those not found in gold
clusters. |T (nj)| is the number of test clusters obtained for name nj . We are also inter-
ested in measuring how elements from clusters in gold standard are spread throughout
the test clusters we produced. Again, we would like to have all elements of gold stan-
dard clusters in the least number of test clusters possible, ideally only one. Then, for
each gold cluster gy we can also use entropy eg(gy) to measure how the elements of a



gold standard cluster gy are spread over the clusters we are testing. eg(gy) can be com-
puted by a formula similar to that of Equation 2, substituting references to test cluster
by reference to gold clusters, and vice-versa. Similarly, a global performance figure,
Eg(nj), can be obtained by performing a weighted average over eg(gy) for all gold
clusters (similar to Equation 3).

Finally, we need to evaluate recall, i.e., the proportion elements in gold cluster that
are in fact found in any test cluster. If Ig(y) is the total of elements in cluster gy that
were found test clusters, we may define the mention recall metric for gold cluster gy as:

rm(gy) =
Ig(y)

∑|G(nj)|
y=0 |gy|

(4)

An overall Recall figure for this name, Rm(nj), could be obtained again by doing a
weighted average of r(cgk) over all gold clusters:

Rm(nj) =
∑|G(nj)|

k=0 |gy| · rg(gy)
∑|G(nj)|

j=0 |gy|
(5)

Similarly we can compute Re(nj) which measures how many of the entities included
in the gold standard clusters for nj are found in the corresponding test clusters. This
figure is important because mention distribution among entities is expected to be very
unbalanced.

The previous figures are calculated for each name, nj ∈ N . For assessing the global
performance of the clustering-based NED procedure for all names in N , we need to
combine the performances obtained for the individual names, ni. To do so, we use the
arithmetic average of the previous metrics over all names: Et, Eg, Rm and Re.

5.1 Preparing the Gold Standard

We used the English version of the Wikipedia to develop a gold standard for evaluat-
ing NED (although the procedure can be replicated for other languages). We assume
that each article in Wikipedia can be related to one unambiguous entity / concept. Let
Wseed(nj) be the set of Wikipedia articles found for name nj (nj can usually be easily
identified by the article title). If the number of articles for nj is greater than one, then
nj is know to be ambiguous, and each possible entity is unambiguously related to one
of the articles.

The set Wseed(nj) can be used as seed for obtaining more documents that unam-
biguously refer entities mentioned using name nj . For each page in Wseed(nj), which
refers to an unambiguous entity ek, we find all its immediate neighbors in the web link
graph, both inside and outside Wikipedia. These linked pages will probably have men-
tions of the name nj , which can be assumed to refer to the same entity ek described by
the Wikipedia article to which they are linked. The output of the expansion procedure
is a set of gold clusters for each name, nj . These gold clusters are a set of pages that
mention name nj and that can be uniquely assigned to one Wikipedia article (which
stands for a specific entity). A problem arises when such pages are linked to more than
one Wikipedia article that describes entities mentioned by the same name, i.e. to more



than one article from the same seed set Wseed(nj). In those cases, we cannot automat-
ically decide which entity is in fact being mentioned, and thus all occurrences of the
corresponding name in that document have to be considered ambiguous. Thus, those
documents are excluded from the gold clusters for the name at stake (nj). Using such
expansion and filtering procedures, we obtained a gold standard with around 9.3 mil-
lion mentions for about 52,000 ambiguous names. In Table 3 we present the distribution
the gold names in four classes based on the entropy of the corresponding gold clusters.
Low entropy values correspond to names where there is clearly one dominant entity to
which the vast majority of the mentions belong, while high entropy values are related
with names for which mention distribution among entities is less skewed.

Entropy # names % names
0 to 0.1 768 1.5
0.1 to 0.5 7610 14.5
0.5 to 1 29304 56.0
1 or more 14657 28.0

Table 3. Internal entropy of the names in the gold standard

6 Experimental Setup

In order to investigate how scalable our algorithm is and whether or not NED perfor-
mance improves as the amount of data to be disambiguated grows, we experimented
clustering different portions of a large web collection with over a billion documents (in
English). The web collection had been previously analyzed by a wide scope named-
entity recognition system [18], so we were able to use name annotations in each docu-
ment to produce feature vectors for the clustering procedure. We first took a 1% sample
of the complete web collection (randomly choosing 1% of the documents) and we per-
formed the complete NED procedure several times while slowly increasing the value of
the smin parameter, i.e. the minimum similarity for two mention vectors to be consid-
ered linked in the Link Graph. This allowed us to obtain several reference points for the
values of Et, Eg, Rm and Re for a 1% sample. We then proceeded by performing NED
over samples of different sizes - 0.5%, 2% and 5% - so that we could compare the re-
sults with the ones previously obtained for 1%. To allow a fair comparison, we matched
the results obtained for the 0.5%, 2% and 5% samples with those obtained for one of
the 1% samples with the closest value for Et, i.e., similar “purity” values. Results were
evaluated against the gold standard (see Section 5.1).

All code was implemented in the Map-Reduce [13] paradigm and experiments were
run in parallel over 2048 machines. Because of limited RAM and load balancing issues,
names were divided in partitions of maximum size 3000. For very frequent names, this
may lead to a considerable fragmentation, because there can be hundreds of thousand
of mentions for such names. Each mention vector was limited to having, at most, 5000



features (i.e., corresponding to co-occurring names in the same document). We use the
Jaccard Metric to compare vectors (we previously perform filtering of less significant
features based on minimum tf-idf and frequency values). At the end of first stage of
clustering, all clusters with less than 5 elements are filtered out to reduce the total num-
ber of clusters to be processed in the second stage. This can have obvious impacts on
final recall values, if there are too many such small clusters at the end of the first stage.

7 Results and Analysis

Table 4 contains the values for Et, Eg , Rm and Re for the 0.5%, the 2% and the 5%
samples, and corresponding values for the 1% samples with the closest Et obtained. It
also presents the value of smin with which each result was obtained, and the clustering
ratio parameter, Crat, which gives the relation between the number of clusters obtained
(after filtering) and the number of clusters in the gold standard.

%@smin Et Eg Rm(%) Re(%) Crat

0.5@0.3 0.0003 0.0056 0.024 1.16 1.23
1.0@0.4 0.0001 0.0085 0.055 1.74 1.82

1.0@0.25 0.0042 0.0226 0.135 3.70 2.06
2.0@0.3 0.0042 0.0312 0.294 5.43 3.27
1.0@0.2 0.0103 0.0212 0.186 5.00 2.18
5.0@0.3 0.0140 0.0797 0.912 12.4 6.91

Table 4. Performance metrics for three different comparison scenarios.

One first observation is that for keeping the values of Et comparable, the smin

parameter of the larger sample has to be higher than that of the smaller sample. This
was expected, because as the number of mentions to be disambiguated increases, the
corresponding vector space tends to become more dense. Thus, in order to avoid noisy
clusters we need to increase smin to make sure that only mention vectors that are really
close in the vector space actually become linked in the Link Graph, and thus generate
pure clusters. Increasing smin should, however, lead to higher fragmentation and to
producing many small clusters. The Crat parameters increases both when the size of the
sample increases, and when smin increases for the same sample size (the 1% sample),
which confirms that fragmentation does in fact increase.

Recall values, Rm and Re, seem very low. However, one has to take into account
that the number of gold standard documents in the sample is proportional to the sample
size. Thus, for the 1% sample, recall values cannot be higher than 1% (if sampling is
unbiased as we expect it to be). We are primarily interested in observing the relative
changes of recall with sample size. For that, we computed the ratios between the re-
call figures (Rm and Re) obtained for the larger and the smaller samples that are being
compared in each pair of rows. Table 5 shows the value of these two parameters r

+/−
m ,

r
+/−
e for the three comparison situations. For the 0.5% vs 1% and the 1% vs 2% scenar-

ios, we can see that even with better (i.e., lower) values for Et, the mention recall Rm



% vs % r
+/−
m r

+/−
e

0.5% vs. 1.0% 2.28 1.5
1.0% vs. 2.0% 2.17 1.48
1.0% vs. 5.0% 4.9 2.48

Table 5. Ratio between Recall values Rm and Re of larger and smaller samples.

increased faster than the data size; in both cases the recall ratio r
+/−
m is higher than the

data increase ratio (twice as many documents). For the 1% vs 5%, the 5-fold increase
in the number of documents did not lead to a 5-fold increase in Rm, although it almost
did. However, if we look at the r

+/−
e ratio for the entity recall, we see that it is not in-

creasing as fast as the data size is, meaning that we are losing entities (found in the gold
standard) as we process more data. The combination of these two factors indicates that
for the entities being kept we are able to cluster more and more mentions, but we are
losing all the mentions for some more obscure entities. Additionally, recall ratios are
systematically decreasing as we increase the size of the data sets to be disambiguated.
We believe that there are two main reasons for this.

The first reason is a consequence of the compromises we had make in our algorithm
to allow it to process web-scale collections. As we increase the size of the sample, and
thus the number of mentions to be disambiguated, the number of partitions made for
each name also increases (each partition has 3,000 mentions). The overall clustering
problem is thus divided into a large number of smaller independent clustering problems
whose solutions should ideally be merged in the re-clustering stage. However, for less
frequent entities, the partitioning procedure will disperse the mentions over too many
partitions, which, in combination with high values for smin, will lead to generation of
more but much smaller clusters. Chances are that most of these clusters end up being
filtered out after the first stage of clustering and do not even get the chance of being
merged in the second clustering stage. Since our gold standard contains some quite
exotic entities mentioned in Wikipedia that are probably under-represented in the web
collection, the corresponding clusters will be relatively small and will eventually be
completely filtered out. This progressively affects Rt, and also Rm, as we the sample
gets larger, compensating possible positive effects that would result from having more
data and a more dense vector space. These positive effects were only visible when
partitioning was not too problematic (i.e., for the 0.5%, 1.0% and 2.0% samples).

The second reason has to do with a more fundamental issue for NED, and it only
became obvious after manually inspecting the results for very frequent names, such
as “Amsterdam”. As we increased the size of the data to be disambiguated, and smin

accordingly, we noticed that results for such type of names were composed of many
clusters concerning the several possible entities, as expected, but for the dominant enti-
ties at stake (for example Amsterdam, the Dutch capital) there was a surprisingly high
number of medium and large clusters. These clusters should have been merged together
into a single very large cluster since they all rather obviously (based on inspection of
their features) seemed to refer to the same (dominant) entity.

However, each of these clusters appeared to contain mentions that referred to spe-
cific scopes to which the entity occurs, or to different facets that the entity could as-



sume. For example, some clusters referred to “Amsterdam” as world capital, for which
the typical features of the clusters (co-occurring names) were other large cities of the
world, such as “Paris”, “New York” or “London”, while others clusters would refer to
“Amsterdam”, a city in the Netherlands, and would have as typical features names of
cities in the Netherlands. In other cases, the clusters produced had features that appar-
ently were not related to the entity, but that were in fact associated with specific contexts
of the entity at stake. For example, since there are many scientific editors based in Am-
sterdam, we found relatively large clusters whose typical features are names of editors
(such as “Elsevier” or “Elsevier Science”), and other names related to scientific con-
ferences and societies. There are many other similar examples, where the clusters refer
to distinct possible facets of the entities, such as different geographic scopes or differ-
ent times in history (“Paris” nowadays v.s during the French Revolution). Interestingly,
most clusters corresponding to different and highly specialized facets of a dominant en-
tity contained many more mentions than the “main” clusters of non-dominant entities
(e.g. “Amsterdam” the novel, or “Paris” of Troy from Greek mythology).

From a clustering point of view, the different, yet consistent, name co-occurrence
patterns that dominant entities are seen as distinct “sub-entities”, leading to smaller
clusters in both clustering stages. The resulting fragmentation effect only becomes ob-
vious when one tries to disambiguate very large and heterogeneous data-sets such as the
web: as the size of the corpus increases, more facets of the same entity tend to emerge
and make this fragmentation effect more visible. The key point is that, even if we had
enough RAM and CPU resources to avoid the partitioning of mentions, fragmentation
for these dominant entities would probably still occur. The problem arises from the fea-
tures used to describe each mention, i.e., the set of co-occurring names, which does not
carry sufficient information for merging the existing facets.

Conceptually, this situation is close to the homonymy vs. polysemy problem ([19]),
which is often encountered in word-sense disambiguation tasks. While homonyms have
no related senses (“river bank” vs. “bank account”), polysemous words do share some
relation (“the Stoic school” vs. “the school room”). In our case, different entities with
the same name (“Amsterdam” the city vs. “Amsterdam” the novel) should be seen as
homonynmy, while the multiple “facets” found for the same entity can be seen as the
multiple “senses” of a polysemous name (“Amsterdam” a world capital vs. “Amster-
dam” a city in the Netherlands). Recently, some Named-Entity Recognition (NER) eval-
uation programs, such as ACE [20] and HAREM [21], have recognized the existence of
inherently ambiguous situations, specially those that exhibit a more or less systematic
pattern. For example, ACE introduced the notion of geo-political entities for entities
such as countries, that contain a population, a government, a physical location, and a
political existence, and that can thus be mentioned by several different facets. However,
the large number of possible facets that we observed in our experiments, some quite
specialized (e.g. “Amsterdam” as an important city in the field of scientific publishing),
does not allow a simple and systematic identification of all relevant cases.

Ideally we would want to merge all facets belonging to the same entity but still
keep information about the distinct facets (whose meaning might be understandable
at a later stage). What our results show is that name co-occurrence information is not
sufficient for merging facets and that more specialized information is required. For in-



stance, e-mail addresses or biographic features might help merging different facets of
people entities, as geographic related information (geo-codes) might help in the case of
locations. More generally, web link information might provide good clues for merging
facets of arbitrary types of entities. Mentions of the same name in highly connected
parts of the web graph indicate that we are probably dealing with the same entity, even
if the corresponding mentions have been placed in different clusters. All this additional
information might be used in a third clustering stage to merge all possible facets (i.e
clusters) of the same entity.

8 Conclusion and Future Work

We have presented a wide-scope NED algorithm that is scalable and explicitly handles
the power law distribution of entities in the web, allowing us to cluster a billion men-
tions. We also presented a novel evaluation strategy that uses information extracted from
Wikipedia to automatically generate a gold-standard. Our experiments do not provide a
complete solution to web-scale NED. Instead, they raise several fundamental questions
(both theoretical and practical) that have so far been neglected by most approaches to
NED. We showed that NED on the web involves dealing not only with obvious scaling
issues, but with less obvious and more fundamental problems related to the intrinsic
variety of web data. As the data volume grows, new facets of entities become apparent,
making NED a more complex and less clearly defined task. We showed that name co-
occurrence information is not sufficient for merging distinct facets of the same entity.
Future work will include investigating potential features such a document links, email
addresses, and geocodes that can serve to merge different facets of entities.
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