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Resumo 

Nesta dissertação, é feito um estudo acerca de descritores de imagem para contagem de pessoas em ambientes 

urbanos. O algoritmo de contagem desenvolvido não requer calibração da camera de vídeo, pois usa um mapa 

com informação de escala para pesar os pixels da imagem, de modo a tornar o método invariante à perspetiva. 

Este mapa foi também utilizado para modificar um descritor notável na área de deteção humana, da autoria de 

N.Dalal e B.Triggs, de modo a torná-lo mais robusto para contagem de pessoas. Assim, é proposto um novo 

descritor denominado Perspective invariant Histograms of Oriented Gradients (HOGp). A relação entre as 

características dos histogramas e o número de pessoas presentes na imagem permite inferir contagens para 

novas imagens, através de modelos de regressão. Os resultados experimentais com os datasets UCSD e FC 

demonstram o potencial do método seguido bem como o valor do descritor proposto. 
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Abstract 

In this thesis is made a study on image descriptors for people counting in urban environments. The proposed 

counting algorithm does not require camera calibration. Instead it uses a map with scale information to weight 

image pixels, in order to make the algorithm perspective invariant. This map was also used to extend a 

remarkable descriptor in human detection, proposed by N.Dalal and B.Triggs, making it more robust for people 

counting purposes. Therefore, in this thesis is proposed a new image descriptor that was called Perspective 

invariant Histograms of Oriented Gradients (HOGp). The relation between histograms’ features and the 

number of people in the image allows the counting inference for new images, by using regression based models. 

Experimental results with UCSD and FC datasets demonstrate the potential of the followed method as well as 

the value of the proposed descriptor. 
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Chapter 1 

Introduction 

The ability to know the number of people crossing a determined space has always emerged interest in 

several application areas such as transportation, commerce, education, robotics, etc. Creating resources that 

allow this type of data acquisition is a current engineering challenge, as it can be made using different sensor 

systems in order to achieve almost the same results. 

In recent times, the usage of vision based systems has gained importance and visibility across many 

applications, and R&D groups are increasing their resources on developing technology based on this type of 

sensors. This is mainly due to its vast applicability and flexibility allied with a relative low-cost, when 

compared to other sensor solutions. 

Using image processing techniques, the input data acquired from a video camera can be processed 

according to users’ interest, producing output results in the desired format. This processing chain brings up 
many challenges for the developer. For instance, the input data is a sequence of images with high noise values 

and irrelevant data elements. Also, the image processing algorithms may have to adjust to different 

environments and, in some cases, learn and adapt. 

Automated people counting has become an active field of computer vision research in recent years (e.g. 

[1]–[3]). From a technological standpoint, computer vision solutions typically focus on detecting, tracking, and 

analyzing individuals. These approaches are not scalable for people counting on urban outdoor scenarios. With 

large and dense crowd sizes, where occlusion happens frequently and each pedestrian is depicted by a few 

image pixels, both individual detection and tracking becomes a nearly impossible task. Furthermore, if the 

solution is based on individual detection and tracking, the computational requirements and system’s cost are 
elevated. 

Other approaches focus on analyzing images as whole, holistically or globally. These methods rely on 

crowd properties or individual’s deviation from the crowd, to estimate the number of people that constitute 
said crowd. Although a number of holistic approaches have been proposed, its viability for outdoor 

environments has not been fully established, due to the inability to control scene illumination, crowd dynamics 

and crowd density. 

The method that is followed in this thesis is different from both the “individual-centric” and “crowd-

centric” approaches. Crowd is segmented into individuals or groups of people, and each segment is analyzed 
separately, in order to infer the number of people that constitutes each segment. These local estimations are 

summed to retrieve the total crowd size of a given image. 

Segment analysis is done using image descriptors, which can be described as methods to extract 

characteristics, statistics and features of an input image. In this work, several low-level image descriptors are 
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used, in order to determine which ones are best suited to describe image segments for people counting retrieval. 

Furthermore, the cameras that are used in this work are not calibrated, so it is proposed an extension to an 

image descriptor that has remarkable value in human detection, with the objective to account for perspective 

effects in its calculation. 

1.1 Motivation 

Crowd counting and density estimation contributes to crowd management for safety and surveillance such 

as deployment of law enforcement activity and unusual behavior detection. It is also helpful in finding the 

number of pedestrians or commuters, which can be important for planning and developing public 

infrastructures. Furthermore, it can be used to gauge political significance of rallies and social impact of cultural 

events. 

In order to calibrate a video-camera the user must have access to camera specifications. This can be a 

problem if the video is, for instance, historical, or simply because there is no way to know camera model. In 

this thesis this problem is addressed by focusing on an algorithm that doesn’t rely on video camera calibration.  
Privacy is a major theme is this dissertation. When the technology involves video recording or streaming 

of human individuals it usually brings up a lot of skepticism among persons. Also, video-streaming requires a 

significant bandwidth or high cost infra-structures. If the developed work manages to perform well with low 

quality videos, where individuals cannot be recognized, some of these inherited privacy concerns would be 

surpassed. 

Furthermore, using a single camera per scene and focusing on algorithms that don’t require high processing 
power or memory, this work could open the possibility to be implemented as an embedded solution, which 

could count people on-site and, for instance, send exclusively statistical data on crowd density to a network. 

This dissertation is driven by the chance to overcome some of the inherited difficulties in counting people 

with computer vision, creating a low cost, low resource, privacy preserving system that can be used in different 

urban environments. 

1.2 Context 

The proposed dissertation is being developed under the Future Cities Project [4], a Seventh Framework 

Programme (FP7) [5] funded project. This is a WIP project by Universidade do Porto (UP) that involves 

research groups from several faculties such as Engineering (FEUP), Psychology (FPCEUP) and Sciences 

(FCUP). The main goal is to turn the city of Porto into an urban-scale living lab, creating resources that can be 

used by companies, start-ups and researchers, to develop and test their technologies, products and services.  

In order to achieve the desired goal, several data acquisition systems will be installed in strategic areas of 

the city as well as mobile spots such as STCP buses. These sensor based systems form a network that can 

upload data into a cloud service or other database formats. Using the data provided by the network, future users 

will be able to develop technology based on urban information and statistics. 

The Future Cities Project aims to reverse the deterioration of urban cities’ facilities and to improve 
citizens’ quality of life. By working with teams from different scientific areas, all focused on the same goals, 
this project strengthens the overall interdisciplinary research in Portugal. 
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1.3 Objectives 

The main goal of the dissertation is to design, implement and test a system to detect and count the number 

of people on outdoor urban environments. The following objectives are expected to be accomplished by the 

end this dissertation: 

O1.  To design a vision-based algorithm for counting people. 

O2.  To design a method to adapt the algorithm for uncalibrated cameras. 

O3.  To evaluate different image descriptors for people counting purposes. 

O4.  To propose an image descriptor focused on people counting in urban environments. 

O5.  To evaluate different regression based models for people counting systems. 

1.4 Document outline 

This chapter provides a brief background of the Future Cities Project, describes the thesis motivation, main 

challenges and objectives. Chapter 2 presents the State of the Art on the dissertation theme. Chapter 3 describes 

the followed methodology for achieving the desired objectives. Chapter 4 presents the obtained results and a 

final discussion on said results. Finally, Chapter 5 presents the conclusion for the proposed thesis and possible 

future work extension. 
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Chapter 2 

State of the Art 

Work on the problem of counting people using computer technology ranges from prototype systems tested 

only in controlled labs to full functional solutions that are used in real-world environments. 

The Spanish Railway Company did a market survey of several methods for counting people as reported by 

Albiol et al. [6]: 

 Mechanical counters, such as those used to validate the tickets on a train station, are the most accurate, 

but they require specific environment customization and they involve a physical obstacle to the person passing 

through.  

 Light beams are fairly accurate, as long as only one person blocks the beam at a given time. In other 

words, this method doesn’t do well with crowd counting and occlusion, which are very common in urban 
everyday life. Also it is not appropriate to determine the direction of passing, which might be of valuable 

knowledge, for example to know exactly the number of people going in and out of a certain building.  

 Differential weight system is another counting method that uses load cells in order to evaluate the 

weight variations at a given space and count the number of people from those variations. This is especially 

useful for carriage environments, like subway or train, because the cells can be installed at the carriage 

suspension.  

 Sensitive carpet is another accurate system for counting people. However, sensorial carpets are prone 

to wear and they involve severe modifications of the “counting” environment.  
 Computer vision based systems for counting people offer an alternative to these methods. They 

provide the necessary accuracy without heavy modification of the environment or impeding traffic. Also, this 

method generally solves the problem at a much lower cost, when compared to the methods described above. 

One of the main issue with computer vision systems is the need to separate objects of interest from the 

remaining pixels. Several proposed counting systems, like the ones described in [7]–[9], use two cameras to 

help with this process, a method also known as stereovision. Another common procedure is to use background 

subtraction, as seen for example in [9]–[12]. Using this method, the acquired images are subtracted to a 

previously saved background of the same capture scene and the resulting image contains the pixels of newer 

objects which might be people. In uncontrolled environments, such as outdoor urban areas, the background 

should be updated in function of natural light variations and other climatic factors. Also, recording successive 

background images enables the detection of permanent background changes, like an object that has left the 

environment. Fewer systems use other approaches that don’t have the need to separate people from the rest of 
the image, some of which will be discussed later on this chapter. 
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Another major problem in people detection and counting is the inherent occlusion that increases as the 

number of individuals in the scene rises. Occlusion consists on the visual obstruction of objects of interest, 

from the camera view-point. For example, occlusion happens when a group of people is moving within the 

scene and the individuals leading the crowd block camera vision from the individuals on the back. One good 

starting point to handle this problem, is to choose a proper camera position according to the counting 

environment. However, in most of the cases this is not sufficient, and the algorithms should include occlusion 

handling. 

As stated by many authors such as Aziz et al. [13] or Chan et al. [14], various methods that estimate the 

number of people in input image sequences have been proposed and they can be divided into three main 

paradigms: 

 Trajectory clustering approach 

 Feature-based regression approach 

 Individual pedestrian detection  

2.1 Trajectory clustering 

In this approach people are counted by tracking and identifying visual features over time. The resulting 

feature trajectories exhibit coherent motion over time, which enables the opportunity to cluster them and 

estimate the number of people based on the number of clusters. The main downside of this approach is that 

real-time processing is nearly impossible. However, the system could record trajectories in short periods of 

time, while analyzing the last saved clusters, achieving a minor time offset in comparison with real-time 

systems. 

Using stereo differencing and an overhead camera view, Terada et al. [7] developed a system that can 

count people and determine the direction of movement as they cross a measurement line. The top-down view 

avoids the occlusion problem, when groups of people cross the camera’s field of view. Their system generates 
space-time images to help determine directionality. However, they only tested the system in a controlled 

environment – a lobby of an office building – with a small sample of 43 people and no error data was given. 

Additionally, occlusion is dealt with by requiring the specific overhead top-down camera angle. 

Beymer and Konolige [8] relax the camera position restrictions of Terada et al. [7], while using the same 

stereo vision approach. To handle occlusion problems, their system uses continuous tracking and detection. 

This method is able to drop detection of a person whenever he becomes occluded but, if this person returns to 

the capture field, the system acknowledges this as a new instance, leading to duplicates and counting multiple 

times the same person. As a matter of fact, the performance of this system drops significantly as the number of 

people and occlusions increase in a scene. With a small test setup of 5 people and 28 occlusions they achieved 

a 70% tracking rate. 

Sexton et al. [15] use a simplified algorithm for counting people. The usual overhead camera position was 

used, in order to deal with occlusion. They constantly update the background reference, used for background 

subtraction and consequent people segmentation and detection. Then, the resulting blobs are tracked frame by 

frame, simply matching each blob to its closest one, using centroid feature. This system was tested on a Parisian 

railway station, and they achieved results with counting accuracy ranging from 79% to 99%. Larger crowds 

cause processing speed to drop, leading to higher error results. Newer, faster processors in today use would 

probably handle these situations with a much higher performance. 

Segen [16] uses a similar approach as Sexton’s [15], based on feature extraction and path generation. He 

uses standard background segmentation techniques to identify areas of interest. Then it extracts features from 

these blobs and track those features across moving frames. This generates feature paths that are merged into 
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clusters, representing the movement of a person over time. Those paths can be used to count the number a 

people that cross a measurement line and their directionality. However, experimentation was lackluster, as the 

system was only tested to run in real-time with up to 8 people in the scene. Additionally, this system doesn’t 
make any attempt to deal with occlusions. 

Albiol et al. [6] developed a system to count people entering and leaving a Spanish public train. The camera 

was fixed above the door mechanism on the train itself. When the door opens, the system notices a sudden 

change in light and starts capturing images that are reduced into stacks. These stacks represent space-time 

images and some examples are illustrated in Figure 2.1. The horizontal axis of the stack has the same horizontal 

dimension of the original images, while the vertical axis of the stack represents time. To perform segmentation 

from the background, they use a gradient function instead of background subtraction. Once the door the closes, 

the system starts analyzing the stored stacks as the train moves to the next station. A trained algorithm uses 

these stacks to determine how many people crossed the threshold of the door. To complete the process, an 

optical flow algorithm was used to determine direction of passing. With over 149 test stops, this system counted 

318 incoming passengers and 379 outgoing passengers when the real was 321 and 385 respectively for an 

overall accuracy of 98.7%. 

 

Figure 2.1 – Example of stacks used on [6]. Horizontal axis corresponds to horizontal dimension of the original images. 
Vertical axis corresponds to time in the original sequence. Source: extracted from [6]. 

2.2 Feature-based regression  

This approach estimates the number of people by a regression of features previously extracted from input 

images. Some examples of common regression models are neural networks, linear and piece-wise linear. These 

methods usually are divided into stages, being: 

1. Background subtraction 

2. Feature extraction 

3. Estimating the crowd density or count by a regression function 

Although feature-based regression first appeared on a subway platform monitoring, in the recent days is 

has also been applied to outdoor environments. 

Kong et al. [12] developed a view-point invariant system to count pedestrians, which can be deployed with 

minimal setup. The method starts with feature extraction and normalization, which include foreground regions 

given by a background subtraction algorithm and the edge orientation map generated by an edge detector. They 

compute a blob size histogram using foreground masks generated for each frame with an adaptive background 

mixture modeling, developed by Stauffer et al. [17]. Combining this histogram with the edge orientation 
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histogram they achieve a much “cleaner” image, as illustrated in Figure 2.2. For density estimation, they 
assume that all the pedestrians in the scene have similar size and that they all lie on a horizontal ground plane. 

Then, they calculate the ROI and its weights density map, using homography allied with relative pixel density 

calculation. Additionally, the algorithm does feature normalization in order to give a measure of the features 

that is approximately invariant to the translations of pedestrians on the ground plane and under different camera 

viewpoints. The system was trained offline to find the relationship between the features and the number of 

pedestrians in the image, with a method based on neural networks. Experimentation was conducted under two 

different camera orientations, within two different sites. The experimental results demonstrate the reliability 

and accuracy of the system, which proves the importance of using feature histograms instead of raw edge and 

blob features, as illustrated in Figure 2.3. 

 

Figure 2.2 – Features used in [12]: (a) original image, (b) foreground mask image, (c) edge detection map, (d) the edge 
map after de "AND" operation between (b) and (c). Source: extracted from [12]. 

 

Figure 2.3 – Crowd counting results for site A with 30o camera angle, from [12]. Above – fitting with histograms. Below 
– fitting without histograms. Source: extracted from [12]. 

Kilambi et al. [11] propose a method that tackles people counting in a group-based approach, without 

constraining themselves to detection of individuals. A flowchart of the whole system can be seen in Figure 2.4. 
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They start by segmenting the foreground regions using the adaptive mixture of Gaussian method proposed by 

Atev et al. [18]. Objects shorter than a human being are filtered, through projections on the real world ground 

plane. They track the foreground regions using and EKF pedestrian tracker proposed by Masoud and 

Papanikolopous [19], in order to classify these regions as either individuals, groups, or vehicles. Two methods 

were used to estimate the number of people in each tracked group. The first consists in a Heuristic-based 

method, which uses the area occupied by the projections on the ground plane in conjunction with previous 

algorithm training. This method provides a simple yet efficient solution to group counting. However it performs 

poorly when the groups are more spread out, when the group configuration or dynamics changes and when the 

height of a group differs significantly from the fixed head plane value of 160cm. The second is a shape-based 

method, which uses the shape of a group’s intersection of ground and head plane projections, and a cost 

function minimization to approximate the shape of the group. Additionally, their system handles group merging 

and splitting. Experiments were performed in real-time, on a Pentium IV 3.0 GHz PC, differing camera heights 

and tilt angles, within distinct locations and illumination conditions. During evaluation, it was noticed that they 

couldn’t get accurate measures in a region far away from the camera, a problem that can be suppressed by 
using a ROI approach, which neglects any group in a region beyond a certain limit of distance. Both methods 

show fairly accurate count results, while the shape-based estimator is slightly more accurate than the heuristic-

based one. On group estimation, heuristic count obtained an average error of 11.9% while shape count obtained 

10.9%. On group size estimation, heuristic count obtained an average error of 15.1% while shape count 

obtained 11.2%. However, the heuristic-based method is less computationally expensive, achieving higher 

processing speeds. 

 

Figure 2.4 – Flowchart of the whole system from [11]. Source: extracted from [11]. 

Privacy is a common issue in vision systems involving humans, so Chan et al. [20] present a privacy-

preserving system to estimate the size of crowds, as illustrated in Figure 2.5. This system doesn’t depend on 
object detection or feature tracking, and also it does not produce a visual record of the people in the scene. 

Instead, they adopt the mixture of dynamic textures [21] to segment the crowds moving in different directions. 

Before extracting features from the segmented regions, they consider the effects of perspective, by linearly 

interpolating between the two extremes of the scene. They then proceed to extract segment features such as 

area, perimeter, perimeter edge orientation and perimeter-area ratio, as well as internal edge features such as 

total edge pixels, edge orientation and Minkowski dimension, and also texture features, like homogeneity, 

energy and entropy. In order to achieve the number of people per segment they use feature vector regression 

based on a Gaussian process. In the experiments they used a dataset that contains a total of 49,885 pedestrian 

instances. First, they trained the system with 800 training frames, and then tested on the remaining 1200 frames. 

The count results are within 3 people deviation from the ground-truth 91% of the time for crowds moving away 
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from the camera, and within 2 people 98% of the time for crowds moving towards the camera. Additionally, 

they demonstrate the importance of using multiple different feature subsets for improving the performance of 

the system. 

 

Figure 2.5 – Crowd counting system: the scene is segmented into crowds with different motions. Normalized features that 
account for perspective are extracted for each segment and the crowd count for each segment is estimated with a Gaussian 
process. Source: extracted from [20]. 

Ryan et al [3] propose a novel scene-invariance crowd counting algorithm that uses local features to 

monitor crowd size. This work distinguishes itself from the others because they scale the solution to different 

environments turning it scene invariant. Using camera calibration, they allow the system to be trained on one 

or more viewpoint and then deployed on any number of new cameras for testing without further training. They 

use a foreground segmentation technique proposed by Denman [22] which operates in the YCbCr 4:2:2 colour 

space and provides some invariance to lighting changes. Before extracting features from segmented regions, 

they use camera calibration to compensate for changes in camera position. Local features like area, perimeter, 

and HOG are computed in order to estimate the number of people in the group. Finally, they adopt a Gaussian 

Process regression to infer the crowd density. This work presents results with several crowd counting datasets 

such as UCSD, PETS 2006/2009 and QUT. 

2.3 Individual pedestrian detection  

In this approach, each individual is detected separately from the input images and the algorithm estimates 

the number of people based on the number of detected pedestrians. Individual detection and classification can 

be achieved by boosting appearance and motion features, Bayesian model-based segmentation, or integrated 

top-down and bottom-up processing. With the need to detect whole pedestrians, these methods tend to lower 

performance in very crowded scenes with significant occlusion rates. This problem has been addressed to some 

extent by adopting part-based detectors. 

Schofield et al. [23] used yet another approach to handle background subtraction and people segmentation. 

They perform background segmentation by training RAM based neural networks, resulting in images ready to 

be processed and analyzed. This method only applies to people detection and background segmentation on 

single specific images. Tracking or counting people on a sequence of frames was not considered. However, 

this method enables the algorithm to deal with varying lighting conditions. 

Haritaoglu and Flickner [24] developed a system to determine shopping groups in stores. For background 

segmentation they used a background subtraction model that utilizes color and pixel intensity values over time, 

in order to classify pixels as foreground, background or shadow. Foreground pixels are then segmented into 

individual blobs representing people, using temporal and global motion constraints. These individuals are 
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tracked over-time using a model based on color and edge densities. Experimentation was focused on 

determining how many individuals make a shopping group and detecting these groups. Similarly to other 

systems that involve time to help on segmentation, if groups move on the same direction with the same speed, 

the system’s algorithm wouldn’t perform well. 
Hashimoto et al. [25] designed their own specific imaging system for their people counting system. Using 

IR sensitive ceramics, mechanical chopping parts and IR-transparent lenses, they developed a highly accurate 

system that could count passers at a 95% precision rate. They use background subtraction to create thermal 

images that are then processed to achieve the people counts. The downsides of this system are mainly the lower 

performance with larger crowds and the strict overhead camera position. Additionally, this approach doesn’t 
handle the occlusion problem as it needs at least 10cm between individuals to count them properly. Within 

public urban scenes, where crowd counting and occlusion are fairly common, this system would lead to high 

error counting rates. 

Tesei et al. [26] use image segmentation and “long-memory” to track people while handling occlusion. 
They use background subtraction to achieve areas of interest, followed by thresholding the result to highlight 

these objects of interest. Using feature extraction on the resulting blobs, such as area, perimeter, bounding box, 

height, width and centroid, the systems tracks them from frame to frame, while keeping track of all the tracking 

information. By storing tracking data for each blob, this system manages to handle occlusion fairly well. When 

two individuals, each one with a blob assigned to a label, occlude themselves, their corresponding blobs result 

in one single instance. However, when they become separated again, the system manages to label each person 

correctly to their original labels, by using stored tracking information, as illustrated in Figure 2.6. This system 

loses efficiency as the number of people increases. Additionally, if the occlusion lasts until the person leaves 

the field of view, the system couldn’t handle this situation, resulting in error counting. 

 

Figure 2.6 – A sequence of images showing critical cases of blob splitting, merging and displacement. Source: extracted 
from [26]. 

Shio and Sklanksy [27] use extra cues to simulate the perceptual grouping that occurs in human vision, in 

order to improve on background segmentation algorithms. First, it calculates motion estimations from 

consecutive frames to determine the boundaries between people and to improve people segmentation. They 

noticed that, over a few seconds of time, all parts of the same person move as a group in the same direction, 

even if these parts move in different directions between consecutive frames. This leads to the actual 

segmentation, which uses a probabilistic model to segment individual people in a moving frame sequence. 

However, this system would likely fail or at least not perform well when the scene involves a large group of 
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people all moving in the same direction at the same speed. The paper proves that using extra information such 

as probabilistic object model can improve segmentation and provides a possible way to handle occlusion. 

Conrad and Johnsonbaugh [28] use again the overhead camera position in attempt to simplify the process 

of segmentation and counting. Instead of using background subtraction they use frame differentiation, which 

handles much better illumination changes in the scene. This system considers only a small window of the full 

scene, perpendicular to people’s motion flow. They make assumptions of minimum and maximum width for a 
person and the amount of noise in their images to determine the number of people present on the window, at a 

given time. To determine direction of movement, they consider the position of each person’s center of mass 
through consequent frames. This system, with simplified image processing algorithms, achieved highly 

accurate results with a 95.6% performance rate with a sample of over 7491 people. However, it again uses the 

strict overhead camera position and the performance would surely drop with higher people traffic. 

2.4 Other approaches 

Aziz et al. [13] developed a method that uses skeleton graphs for people counting in crowded 

environments, as illustrated in Figure 2.7. An input image is segmented into blobs of moving objects, using a 

forward-background approach developed by Ge et al. [29] For each detected region (individual/group) they 

compute each graph skeleton using the method developed by Thome et al. [30], achieving fast and accurate 

results. The skeleton points are then classified on their neighborhood degree. For head detection they consider 

the points’ set having a single neighbor, the segment corresponding to the extreme node is subsequently taken 

and its inclination degree is compared to the vertical axis, in order to determine if it can be classified as a head 

of a person or not. To validate each detected head, they estimate the distance between the local reference model 

of a head in the world coordinate system and a reference detection in the camera coordinate system. In order 

to reduce the error due to occlusions they finally proceed to head tracking, adopting a framework based particle 

filter. The experiments were conducted using different videos from CAVIAR dataset. The results were very 

promising, as they achieved counting accuracies ranging from 75% to 100%, even with crowded and highly 

human groupings scenes, which have inherently higher occlusion and noise values. 

 
Figure 2.7 – The counting people system from [13]. (a) Input image, (b) Background subtraction, (c) Skeleton graph, (d) 
Head detection and pose estimation, (e) Head tracking. Source: extracted from [13]. 

 

Idrees et al. [1] try to solve people counting in extremely dense crowd images. The main difference from 

the other approaches is the crowd density on which they tested their system, containing between 94 and 4543 

people per image, with an average of 1280 people over fifty images in the dataset. The proposed framework 

starts by counting individuals in small patches uniformly sampled over the images. Given a patch P, they 

estimate the counts from three complementary sources, which are later combined to obtain a single count 

estimate for the patch. Images of dense crowds reveal that the bodies are almost entirely occluded, therefore, 

they rely on HOG based head detections for the first count estimation. Secondly, they noticed that a massive 

crowd is inherently repetitive in nature, giving the opportunity to capture the crowd density by Fourier 
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Transform. Additionally they use interest points not only to estimate counts but also to get a confidence whether 

the patch represents a crowd or not. Finally, different fusion patches are placed into a MRF framework with 

grid structure, in order to smooth the counts. This paper demonstrates a different approach to people counting 

in extremely dense crowds, on a scale not tackled before. They achieved errors as minimum as 0% for an image 

with 426 individuals and 61% for an image with 3333 individuals, claiming that the algorithm performs better 

for middle range samples, between 1000-2500 individuals per image. 

2.5 Summary 

In this chapter were described the most relevant works from the studied literature. After getting acquainted 

with various methods for counting people it is now possible to evaluate their major advantages and 

disadvantages and contextualize them considering the proposed dissertation. 

The existing work on counting people with computer vision is relatively recent. As such, there are still 

several issues that need to be addressed. More than that, there are few works that specifically focus on 

computational resources and memory usage. 

Systems that use stereovision [7]–[9], [31] can perform with better overall accuracy. However, this 

increases system’s cost, as two cameras are required instead of one and the computational demand gets higher 
which may require fast processing units to run the algorithms. 

The trajectory cluster approach, seen in [7], [8], [15], [16], extracts features over time and aggregates them 

for eventual analysis. Feature data must be recorded sequentially, which may require higher memory capacity. 

Furthermore, this method relies on people movement dynamics to maintain relatively predictable. This can be 

applicable to some counting environments, like an entrance of a subway station or a corridor, but can lead to 

high error results in outdoor urban environments, where crowds move in different directions at variable speeds. 

Individual pedestrian detection, seen in [23]–[28], requires single segmentation of each person. This leads 

to an overall better classification of human individuals and the system should be less vulnerable to non-human 

objects like bicycles or animals. However, this involves full human detection, which brings up privacy issues 

that should be avoided in this dissertation. Additionally, this method need precise individual segmentation 

which is difficult to secure under urban environments, where occlusion and crowd densities are higher. 

Feature-based regression, seen in [10]–[12], [14], [32]–[35], is a method with large versatility that has 

recently been adopted in various urban systems for counting people. The computational cost of a system based 

on this approach depends on different factors, such as the number of extracted features and the chosen 

regression model. It can preserve privacy and doesn’t rely on individual detection to achieve accurate results. 
Additionally, the camera position is not very restrictive and many authors tested their systems with varying tilt 

angles. 
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Chapter 3 

Image descriptors for people counting 

This chapter presents a perspective invariant approach for people counting in urban scenarios. Perspective 

invariance can be described as counting the same number of people regardless of their relative position to the 

camera point of view. This differs from scene invariance, where the camera can change position, tilt or even 

the capture environment. The presented method uses local features to estimate the number of people within 

each individual group of foreground pixels. The resulting sum of estimates returns the final count for a given 

frame. This approach offers some advantages against the largely used (e.g. [32], [36], [37]) holistic systems, 

which extract holistic features of the scene in order to evaluate its crowdedness level. Using local features 

requires less training frames to achieve reliable estimates, as opposed to holistic features, which may need 

hundreds [12] or even thousands [37] of frames, due to the wide inconsistency in crowd behaviours, distribution 

and overall size. Additionally, the count estimation can be done for a specific region of the capture scene, 

unlike holistic approaches that can only provide a density for the whole scene. 

In order to evaluate image descriptors for people counting, it was required to design and construct a 

complete pipeline system to infer the crowd density within a scene, using said image descriptors. The regression 

model must be capable of estimating the number of people given a specific set of calculated features. In order 

to do this, the system must be previously trained with ground truth annotated instances. The proposed pipeline 

can be summarized into the following sequence of steps: 

1. Dataset selection 

2. Background subtraction 

3. Perspective normalization 

4. Ground truth annotation 

5. Feature extraction 

6. Regression models 

Although the main focus of this thesis consists of feature evaluation and optimization for people counting, 

this chapter presents all the methods utilized that lead to final results. The remainder of this chapter is structured 

as follows: Section 3.1 discusses the dataset selection stage; Section 3.2 describes the background subtraction 

algorithm and the postprocessing routine; Section 3.3 explains the perspective normalization and how this 

relates to scene invariance; Section 3.4 presents the ground truth annotation method utilized; Section 3.5 details 

the feature extraction process; Section 3.6 proposes an extension to a powerful image descriptor; Section 3.7 

presents the chosen regression models; Section 3.8 explains the utilized measurement metrics; and Section 3.9 

presents the summary for this chapter. 
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3.1 Dataset selection 

The starting point of the proposed system consisted of dataset selection for people counting purposes. A 

dataset provides video or image data with additional annotations, in this case the number of people, which can 

be used as workbench for computer vision applications. Analyzing the existing literature on the theme, 8 

datasets were considered (Table 3.1). 

Table 3.1 – Nine dataset were considered to develop the proposed crowd counting algorithm. A subset of the 
total number frames was annotated at constant frame spacing indicated by the column interval. FC dataset was 
constructed on a later development stage of the thesis. 

Descriptor # Frames # Annotated Interval Max crowd 

PETS 2009, View 1 460 46 10 32 

PETS 2009, View 2 460 46 10 32 

PETS 2006, View 3 3000 120 25 5 

PETS 2006, View 4 3000 120 25 6 

QUT, Camera A 10400 50 200 8 

QUT, Camera B 5300 50 100 23 

QUT, Camera C 5300 50 100 10 

UCSD 2000 2000 1 45 

FC 408 408 1 19 

 

As the focus of this system is crowd counting in urban outdoor environments the 5 datasets of PETS 2006 

[38] and QUT [39] were excluded. This leaves both views from PETS 2009 dataset and UCSD dataset. The 

UCSD crowd counting dataset [40] consists of 2000 fully annotated frames and provides the maximum crowd 

density of all the considered datasets. This was a valuable asset that lead to its choice, as it was preferable to 

have a high number of annotated frames on the dataset, in order to evaluate image descriptors performance 

with different training and test sets, and PETS 2009 [41] only provided 46 annotated frames for each view, 

which narrows the possibilities for this type of experimentation. 

Later on, a newly made dataset from the Future Cities team, denoted FC, was made accessible for the 

development of this thesis. This dataset was also captured on an outdoor urban environment, with a maximum 

crowd density of 19 people and provided 408 fully annotated frames. The annotation process is further detailed 

in Section 3.4. FC dataset was used on later experiments, when the counting algorithm was already built, in 

order to evaluate its performance on a different scene. 

3.2 Background Subtraction 

For this counting approach it is considered a static camera that retrieves visual data of the capture scene 

over time which, in this case, was already assembled into UCSD dataset as a sequence of frames. Once the 

capture subsystem is established, it is essential to detect people in each frame, which can be done using the so 

called background subtraction. This process is based on the assumption that the images of the scene without 

disturbances show some regular behavior that can be described by a statistical model. If this statistical model 

of the scene is achieved, an intruding object can be detected by finding the areas of the image that don’t fit the 
statistical model. 



Background Subtraction  17 

 
 

The foreground mask is obtained using a background subtraction algorithm proposed by Z.Zivkovic in 

[42], which improves the Gaussian Mixture Model (GMM) proposed in [43]. This algorithm constantly updates 

the parameters of the GMM and the number of components for each pixel in an on-line procedure, resulting in 

an auto adaptation to the capture scene in real-time. This is useful for the proposed counting system as it is 

focused on outdoor environments, where daytime or weather conditions can cause gradual changes in the 

illumination of the capture scene. The background subtraction algorithm is available in the OpenCV method 

MOG2 [44]. 

The input images used for background subtraction use 8-bit grayscale, which is composed solely of varying 

pixel intensities, where black is the weakest intensity (0) and white is the strongest (255). Using this pixel 

intensity range, the processing time of the algorithm is reduced, when compared with colour spaces like RGB, 

YCbCr or HSV. UCSD dataset videos have 238 x 158 resolution at 10 fps. FC dataset video has 320 x 240 

resolution, at 1 fps. 

The output masks from the background subtraction algorithm, for both UCSD and FC datasets, were 

provided by thesis’ supervisor and the rest of the involved team from the Future Cities Project. The parameters 
used are detailed on the following table. 

Table 3.2 – Parameter values used in MOG2 method, for both UCSD and FC dataset. 

Parameter Dataset 

type name UCSD FC 

int nMixtures 2 5 

bool detectShadowsMOG2 false false 

int historyMOG2 1000 1000 

float thresholdMOG2 4.0f*8.0f 4.0f*8.0f 

float varThresholdGen 3.0f*3.0f 3.0f*3.0f 

float backgroundRatio 90.0 90.0 

 

The foreground masks determined by Zivkovic algorithm are tested to determine which 1-valued pixels 

are contained in the desired ROI (Figure 3.1). Those are stored as binary images with 0 and 1 pixel intensity 

values, where groups of 1-pixels represent an object that doesn’t belong to the background of the capture scene. 
These objects may or may not be people so it is necessary to determine whether they should be accounted as 

such. 

3.2.1 Postprocessing 

As the proposed counting algorithm is based on local features of foreground regions, it is necessary to 

divide obtained foreground masks into individual submasks. Individual blobs from the original foreground 

mask are labeled considering connected pixels with 8-connectivity and each labeled region is subsequently 

stored as a new mask. 

It was observed that many of the segmented masks did not contain all the expected pixels from its 

corresponding grayscale image. This was not desirable as it would crop groups of people and could lose 

important pixel values for further feature extraction. To avoid this situation, following foreground 

segmentation, a morphological dilate operation is applied to each binary mask in order to obtain a slightly 

larger binary mask (Figure 3.1). This method is not optimal as it may introduce pixels that belong to background 

or overlap binary masks doubling the counting region. However, using a flat, diamond-shaped, 1 pixel radius 
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structuring element for dilate operation, this negative effect was minimized. Further experimentation confirmed 

that this postprocessing procedure had positive impact on overall system’s accuracy. 

 
Figure 3.1 – Background Subtraction algorithm. (a) Example frame of the UCSD dataset. The ROI for this is scene is 
marked by the green line. Yellow box marks the considered blob for (c) and (d). (b) Corresponding foreground mask with 
ROI obtained by the BS algorithm. (c) Foreground submask for one segmented blob. (d) The same blob after dilate 
morphological operation. 

Some of the descriptors discussed in Section 3.5 are calculated directly on binary masks such as the one 

illustrated in Figure 3.1(d). Other descriptors need full grayscale images to extract and calculate its 

corresponding features. To generate these grayscale images it was determined the Bounding Box for each 

connected submask and subsequently cropped the original grayscale frame into a smaller image limited by the 

Bounding Box coordinates (Figure 3.2). 

 
Figure 3.2 – Example of images for feature extraction. (a) Foreground binary mask. Yellow line marks blob Bounding 
Box. (b) Grayscale image for the corresponding blob of (a). 

3.3 Perspective normalization 

Before extracting features from the foreground regions it is important to consider perspective effects as 

well as camera distortion. Although the proposed system is designed to operate over a single viewpoint and a 

static capture scene, perspective issues are also important to take into account for systems with multiple 

viewpoints and variable scenes. 

Objects that are closer to the camera appear larger than more distant objects. Consequently, features 

extracted from closer objects would account for a larger portion of the foreground mask than ones extracted 

from an object that is farther away. Therefore, it is important that extracted features are normalized 
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appropriately so that the trained algorithm can effectively count people, independently of their relative position 

to the camera. 

The method that was used for perspective normalization was the one proposed by Chan in [14]. This 

approach uses a perspective normalization map to weight each foreground pixel, with larger weights given to 

farther objects. In order to calculate the perspective map, they linearly interpolate the two extremes of the 

scene, following the sequence of procedures: 

1. A ground plane is marked in the scene (Figure 3.3a) and the distances |ܾܽ̅̅ ̅| and |ܿ݀̅̅ ̅| are 
measured; 

2. A reference pedestrian is selected and the heights h1 and h2 are measured when the center of 
the person is on |ܾܽ̅̅ ̅| (Figure 3.3a) and on |ܿ݀̅̅ ̅| (Figure 3.3b); 

3. The pixels on |ܾܽ̅̅ ̅| are given a weight of 1, and the pixels on |ܿ݀̅̅ ̅| a weight of 
ℎభ|௔௕̅̅ ̅̅ |ℎమ|௖ௗ̅̅̅̅ |; 

4. The remaining pixels weights are calculated by linear interpolation between the two lines 
(Figure 3.3c). 

 
Figure 3.3 – Perspective map for the UCSD dataset. a) Reference person at the closer extreme of the scene, and (b) at the 
distant extreme. b) The perspective map which scales pixels by their relative size in the true 3D scene. Source: extracted 
from [14]. 

Figure 3.3c illustrates the perspective map of this scene, obtained by following the above steps. The 

perspective map will be denoted as D2. For 2 dimension features, such as area, the weights of the map are 

directly applied to each pixel, while for 1 dimension features such as perimeter and edges, each pixel is 

weighted by the square-root of the original map, denoted as D1: 

,ଵሺ݅ܦ  ݆ሻ = ,ଶሺ݅ܦ√ ݆ሻ (3.1) 

This method provides a simple solution to account perspective effects on feature extraction, even when 

camera calibration is not available. However, it does not compensate different camera positions or changeable 

capture scenes. Because this approach utilizes reference pixels instead of real world reference, it is not 

appropriate for scene invariant people counting. To surpass this issue, the system must be trained and tested on 

the same scene and viewpoint, which would be a negative aspect if it was desired to scale the system to other 

environments. 
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3.4 Ground truth annotation 

Because the system computes local features of each foreground blob obtained by the background 

subtraction algorithm, training must also be performed on a local level. This requires ground truth annotation 

to specify a people count for each segmented blob. However, as foreground segmentation is not perfect, some 

blobs are prone to errors such as splitting, fading and noise, which makes the annotation process more complex, 

when attempting to assign fractional counts. 

The approach that was used for local ground truth annotation follows a method referred to as ‘dotting’ by 
Lempitsky [35], because it only needs the user to click on the center of each object in the image in a GUI. The 

surrounding region of an individual is then estimated by the contour of a rectangle model. Each side of this 

model is divided by the density map D1, determined in the previous section, in order to adjust the rectangle to 

the individual’s dimension, regardless of their relative position to the camera. 
Once ‘dot’ annotations for the desired objects are done, the algorithm performs blob annotations 

automatically, by assigning the annotated individuals to their confined foreground blobs. This is done by 

overlapping foreground blobs and the rectangle bounding regions. This process ensures that fragmented objects 

of the same person are assigned to the same individual ‘dot’ annotation. On the other hand, if multiple persons 
result in a single blob, their corresponding bounding regions will overlap this blob (Figure 3.4). 

 

 
Figure 3.4 – Ground truth annotation process. Manual annotations (left) are overlayed on the foreground segmented objects 
(centre), and the region overlaps are used to automatically determine ground truth counts for each blob (right). Source: 
adapted from [45]. 

Local blob counts are achieved using set notation. Considering the defined regions from Table 3.2, the 

following values are calculated [45]: 

 Qi: the ‘amount’ of person i within the scene’s ROI: 

 ௜ܳ = |� ת ܴ௜||ܴ௜|  (3.2) 

 
 Cin: the ‘contribution’ of person i to blob n: 

௜௡ܥ  = |ܴ௜ ת ௡||ܴ௜ܤ ת |ܤ ݔ ௜ܳ (3.3) 

 
 fn: the total number of people represented by blob n: 

 ௡݂ = ∑ ௜௡௜ܥ  (3.4) 
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Table 3.3 – Considered regions treated as sets of pixels using set notation. 

Notation Description 

M Mask of the scene (ROI). 

F Foreground pixels detected using an adaptive background subtraction algorithm [42]. 

B Foreground pixels within ROI mask, i.e. B=M∩F consists of blobs {Bn}. 

Bn Blob n within B, where B=׫nBn.  

Ri Bounding region of person i. (This may be inside the ROI, partially inside at the edge, 

or outside.) 

Ri∩Bn The foreground pixels inside Ri belonging to blob Bn. 

Ri∩B The foreground pixels inside Ri. 

Therefore, fn value gives the total number of people represented by blob n, which is the local target count 

desirable to train the system. This process is calculated independently from the foreground segmentation stage, 

simplifying the annotation process. This method also has the advantage to allow some tolerance for errors in 

the background subtraction stage, as it assigns zero value count annotations to small blobs generated by noise. 

The holistic ground truth or, in other words, the total annotated count for the whole scene, is measured by 

considering the number of pedestrians whose manual ‘dot’ annotations lie within the ROI, summing local 
annotations for each blob. 

3.5 Feature extraction 

In order to estimate the number of people present in each segmented blob, it is necessary to compute 

various features that describe their respective image segments. Several image descriptors were used to calculate 

different features at a local level, rather the holistic level of the scene. Using statistics given by image 

descriptors, the system can be trained in order to count people in the segmented foreground. However, not all 

the presented descriptors were extended for people count estimation. Instead, a ranking algorithm was 

performed using typical parameters for each descriptor, in order to infer the power of their composing features 

for the proposed algorithm. The feature selection stage was based on the output of the ranking algorithm as it 

is described is Section 4.1. 

Most of the utilized image descriptors were adapted from previous work of thesis’ supervisor D.Moura in 

[46]. This study presents an evaluation of image descriptors combined with clinical data for breast cancer 

diagnosis. These descriptors were used at low-level, to extract local features from masses and calcifications, 

so it was decided to adapt them to this thesis, as the images are also analyzed locally. From this work, 1 novel 

and 10 conventional descriptors were calculated for the obtained foreground regions, in order to evaluate which 

ones could be viable for people counting purposes.  

In addition, features commonly used for people counting purposes were also computed, including ones 

used by Chan [32] and Ryan [45]. 
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3.5.1 Intensity descriptors 

Intensity statistics 

This descriptor calculates statistics over the gray levels of the pixels belonging to foreground patch. These 

features include mean, standard deviation, skewness, kurtosis, minimum intensity and maximum intensity, 

making a total of six features. 

Histogram measures 

This descriptor calculates statistics over the gray level histogram of the foreground patch. Extracted 

features include six statistical measures [47]: average intensity, contrast, smoothness, skewness, uniformity 

and entropy. 

Invariant moments 

This set of seven features is calculated using Hu’s approach [48]. These features are based on statistical 

moments that are invariant to translation, scale, and orientation of the observation. 

Zernike moments 

This descriptor uses Zernike moments [49], which are constructed using a set of complex polynomials that 

describe a unitary disc (radius = 1). The descriptor defines a circular patch by the coefficients of the 

polynomials. The first polynomial (order 0) has only one term with coefficient equal to the average pixel 

intensity. In contrast to statistical moments and invariant moments, Zernike moments have an orthogonal basis, 

which guarantees independent coefficients, and they also remain invariant to translation, rotation, and scale. 

3.5.2 Texture descriptors 

Haralick features 

Haralick features [50], are calculated from the gray level co-occurrence matrix (GLCM), which is a 2D 

histogram that measures the 2nd-order joint conditional probability of two grey levels occurring at a given 

distance d and at a given direction θ. The image is quantized into B gray levels, θ is typically 0°, 45°, 90° and 

135° and d a city block distance ≥ 1 pixel. From this matrix, a set of 14 features is computed. Haralick et al. 
proposed computing these features for the four directions and averaging the results in order to achieve some 

invariance to rotation. Some studies have included Haralick features for estimating the number of people 

(e.g.[11], [14]). 

GLRL 

Gray level run length (GLRL) analysis [51] calculates the occurrence of sets of consecutive collinear pixels 

with given length l and direction θ for a given gray level. Gray levels are quantized in B bins and GLRL 

matrices are computed for four directions (θ is 0°, 45°, 90° and 135°). For each direction, a set of 11 features 

is calculated, resulting in a total of 44 features. 

GLDM 

Gray level difference matrix (GLDM) stores the occurrence of absolute differences between pairs of gray 

levels separated by a given distance d and a given direction θ, with the element GLDM being the number of 

times the grey-level difference is observed at a distance d. Gray levels are quantized in B bins and GLDM 
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matrices are computed for four directions (θ is 0°, 45°, 90° and 135°). For each matrix, a set of 5 features 

(mean, contrast, entropy, angular second moment and inverse second moment) is calculated, resulting in a total 

of 20 features. GLDM has been used for estimation of crowd density by Marana et. al in [52]. 

3.5.3 Multi-scale texture descriptors 

Gabor filter banks 

In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane 

wave. These filters are frequently used for edge detection, as they detect edges according to filter’s orientation 

and frequency. Furthermore, by adjusting the standard deviation of the Gaussian envelope, it is possible to 

adjust the degree of blurring. For a given set of orientation, frequency and envelope values, the following 

features are calculated with the Gabor filter: mean, standard deviation, energy and entropy. 

Wavelets 

In signal theory, a discrete wavelet transform enables decomposition of a discrete signals in two sets of 

coefficients: approximation and detail [47]. Regarding 2D discrete wavelet transform, the decomposition 

originates an approximation image and three detail images (horizontal, vertical and diagonal), all with half the 

width and height of the original image. In order to compute features of the coefficients of each level, it is 

required to define the filters that define the wavelet and the number of levels of decomposition. The same 

features calculated on Gabor filters were computed for each sub-image that originated from the wavelet 

transform. Wavelet transforms have been used in people detection and counting studies (e.g. [30], [53]). 

3.5.4 Shape and size descriptors 

Segment features 

These features describe object’s shape and size. A set of 3 features is calculated: Area, which is the total 

number of pixels in the blob weighted by the 2D perspective map described in Section 3.3 (D2); Perimeter, 

which is the total number of pixels on the blob’s contour weighted by the 1D perspective map described in 
Section 3.3 (D1); and Perimeter-area ratio or circularity obtained by 

4�×�௥௘௔�௘௥௜௠௘௧௘௥మ. 

Internal edge features 

A Canny edge detector is applied to the original image and the resulting image is masked by the foreground 

blob. From the obtained segment, the following features are computed: Edge length, which is the total number 

of edge pixels contained in the segment; Minskowski dimension, which is the Minskowski fractal dimension of 

the edges in the segment, which estimates their degree of “space-filling” [54]. These features are used for 

privacy preserving crowd counting in [14]. 

3.5.5 Spatial distribution of the gradient 

Histograms of oriented gradient 

Histograms of oriented gradients (HOG) describe images through the distribution of the gradient [55]. 

Images are divided into a grid of blocks and each blob is described by a histogram of the gradient’s orientation. 
Each histogram is constructed according to a given number of orientation bins that divides the range of possible 

orientation (from 0 to 2π radians). The value of each orientation bin is calculated by summing the magnitude 
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of the gradient of pixel that have gradient direction within the limits defined by the orientation bin. 

Additionally, histograms can be normalized, with the most common normalizations being the L1 and L2 norm 

[52]. HOG and HOG based descriptors have been commonly used for people detection and crowd counting 

algorithms (e.g. [1], [3], [55], [56]). 

Histograms of gradient divergence 

Histograms of gradient divergence [46] is a rotation invariant image descriptor that measures shape 

regularity. Assuming that the object is centered on the patch, gradient divergence of a pixel P is measured as 

the angle between the vector of the intensity gradient on P and a vector with origin on P pointing to the center 

of the patch. To account for divergence of the gradient, HGD also considers the distance of the pixel to the 

center using R regions, with each region being described by a histogram with B orientation bins. Rotation 

invariance is achieved by using concentric regions and by storing the divergence instead of the orientation of 

the gradient. 

3.5.6 Spatial autocorrelation 

Moran’s I Geary’s C 

In statistics, Moran's I is a measure of spatial autocorrelation developed by P. Moran. Spatial 

autocorrelation is characterized by a correlation in a signal among nearby locations in space. Spatial 

autocorrelation is more complex than one-dimensional autocorrelation, because it is multi-dimensional and 

multi-directional. Moran's I is inversely related to Geary's C, but it is not identical. Moran's I is a measure of 

global spatial autocorrelation, while Geary's C is more sensitive to local spatial autocorrelation. A set of 12 are 

extracted with this descriptor 

3.6 Perspective invariant Histograms of Oriented Gradient 

Quoting W. Schwartz [57],“The work of Dalal and Triggs [55] is notable because it was the first paper to 

report impressive results on human detection. Their work uses HOG as low-level features, which were shown 

to outperform features such as wavelets [58], PCA-SIFT [59] and shape contexts [2].” Additionally, HOG is 

an image descriptor that has proven value in several works on people counting. Furthermore, the performed 

ranking algorithm on the UCSD dataset, placed HOG among the top descriptors for people counting purposes, 

as it can be seen in Section 4.1. In this thesis is proposed a new image descriptor, HOGp, that extends HOG, 

in order to make it invariant to perspective. 

Perspective invariant histograms of oriented gradient, denoted HOGp, introduces weighted votes in HOG 

computation. Because HOG is a gradient based descriptor, it can be normalized using the 1D perspective map 

described in Section 3.3 (D1), in order to normalize the effects of camera perspective across the whole scene. 

The gradient of a grayscale image f is given by the formula: 

 ∇݂ = ݔ߲݂߲ ݔ̂ + ݕ߲݂߲  (3.5) ݕ̂

where 
�௙�௫ is the gradient in the x direction (Gx) and 

�௙�௬ is the gradient in the y direction (Gy). 
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The gradient direction of pixel (i,j) can be calculated by the formula: 

 ∠∇݂ሺ݅, ݆ሻ = ݊ܽݐܽ ቆ�௬ሺ݅, ݆ሻ�௫ሺ݅, ݆ሻቇ  (3.6) 

The gradient magnitude of pixel (i,j) can be calculated by the formula: 

 |∇݂ሺ݅, ݆ሻ| = √�௫ሺ݅, ݆ሻଶ + �௬ሺ݅, ݆ሻଶ (3.7) 

The contribution of each pixel (i,j) to a histogram bin is proportional to the gradient magnitude |∇݂ሺ݅, ݆ሻ|, 
and it is also weighted by the 1D density map D1(i,j) to normalize for perspective. Considering that the value 

of the hth histogram bin is En[h], and the orientation angle for that bin is lower bounded by θh: 

௡[ℎ]ܧ  = ∑ ,ଵሺ݅ܦ } ݆ሻ × |∇݂ሺ݅, ݆ሻ|              ݂݅ �ℎ ≤ ∠∇݂ሺ݅, ݆ሻ < �ℎ+ଵ Ͳ                                             ݐ݋ℎ݁݁ݏ݅ݓݎሺ௜,௝ሻ  
(3.8) 

Figure 3.5 illustrates an example of HOG normalization using HOGp method with an adequate density 

map. The resized image is half the blob area of the original image, while maintaining shape and texture 

characteristics, in order to simulate a closer and a distant object, in terms of perspective. 

 
Figure 3.5 – HOGp simulation. Bottom image has half the blob area of top image. It is observable that, for a perfectly 
resized image, the flat histogram bins from HOGp match the values for the original image, while HOG does not. 

3.7 Regression Models 

Given a set of features and their target value, the regression builds a model that is used to infer the target 

value of new instances described by the same features. In this section are described the models used to infer 

the number of people from feature vectors. To test the proposed system, nine regression models were trained 

using several training sets from both the UCSD and FC datasets. 
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Linear Regression 

Linear regression is a statistical modeling technique used to describe the relationship between a scalar 

dependent variable y and one or more explanatory variables denoted Xi. The general equation for a linear 

regression model is: 

ݕ  = �଴ + ∑ �௜�௜ + �௜ (3.9) 

For the above equation, βi is a parameter vector, which elements are called effects, or regression 

coefficients. Statistical estimation and inference in linear regression focuses on βi. εi, is called the error term, 

disturbance term, or noise. This variable captures all other factors which influence the dependent variable y, 

other than the xi. 

The method used to select features for use in the Linear Regression was M5’s method, which steps though 

the features removing the one with the smallest standardized coefficient until no improvement is observed in 

the estimate of the error. Existing approaches use linear regression for people counting (e.g.[12], [33], [60]). 

The Linear Regression was also enhanced by two Meta-algorithm denoted Additive Regression [61] and 

Bootstrap aggregating [62]. Additive Regression is done by fitting the regression model on each iteration, to 

the residuals left by the regression on the previous iteration. Prediction is accomplished by adding the 

predictions of each regression. The number of iterations was set to 50 and no shrinkage was applied. 

Bootstrap aggregating, also known as Bagging, is an ensemble Meta-algorithm method that creates 

separate samples of the training dataset and generates a regression for each sample. The results of these multiple 

regressions are then combined, in order to improve the robustness and accuracy. Additionally, it also reduces 

variance and helps to avoid overfitting. The sample set size was set to 70% of the training dataset and the 

number of iterations was set to 50. 

REPtree 

Tree-based regression models are known for their simplicity and efficiency, as the final results for 

regression can be summarized into a series of logical if-then conditions (tree nodes). Therefore, there is no 

implicit assumption that the underlying relationships between the predictor variables and the dependent 

variable are linear, follow some specific non-linear link function, or that they are even monotonic in nature. 

Regression trees are obtained using a fast divide and conquer greedy algorithm that recursively partitions the 

given training data into smaller subsets. The use of this algorithm is the cause of the efficiency of these 

methods. However, it can also lead to poor decisions in lower levels of the tree due to the unreliability of 

estimates based on small samples of cases. 

In particular, REPtree is a fast regression tree learner which builds a regression tree using information gain 

as the splitting criterion, and prunes it using reduced-error pruning. Additionally, it considers all the attributes 

to split on at each node. The parameters used were default for Weka version 3.7. This Regression model was 

also enhanced by both Additive Regression and Bagging, using the same parameters set for Linear Regression. 

M5P 

M5P combines a conventional decision tree with the possibility of linear regression functions at the nodes. 

First, a decision-tree induction algorithm is used to build a tree, but instead of maximizing the information gain 

at each inner node, a splitting criterion is used that minimizes the intra-subset variation in the class values down 

each branch. The splitting procedure in M5P stops if the target values of all instances that reach a node vary 

very slightly, or only a few instances remain. Second, the tree is pruned back from each leaf. When pruning, 

an inner node is turned into a leaf with a regression plane. Third, to avoid sharp discontinuities between the 

subtrees a smoothing procedure is applied that combines the leaf model prediction with each node along the 
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path back to the root, smoothing it at each of these nodes by combining it with the value predicted by the linear 

model for that node. 

The parameters used were default for Weka version 3.7. This Regression model was enhanced by Additive 

Regression using the same parameters set for Linear Regression. Bagging was neglected as the computational 

resources were not enough to run it properly. 

Decision Stump 

A decision stump is a machine learning model consisting of a one-level decision tree. That is, it is a decision 

tree with one internal node (the root) which is immediately connected to the terminal nodes (its leaves). A 

decision stump makes a prediction based on the value of just a single input feature. First, a decision-tree 

induction algorithm is used to build a tree, but instead of maximizing the information. 

Decision stumps are often used as components in machine learning ensemble techniques such as Additive 

Regression, which was the one used is this work, using the same parameters set for Linear Regression. 

3.8 Evaluation metrics 

The performance attributes used in the following chapter are expressed by the Mean Absolute Error (MAE) 

of the count estimate per frame, which means that lower MAE values represent higher accuracy rates and vice-

versa. This metric is frequently used on related works, so it was chosen to open the possibility for direct 

performance comparison. For a number of tested frames n, the estimated count for frame i denoted Cei, and the 

ground truth annotated count for frame i denoted Cti, MAE is given by: 

ܧܣ�  =  ∑ ௜݁ܥ| − ௜|௡௜=ଵݐܥ ݊  (3.10) 

3.9 Summary 

This chapter presented all the methods used to fulfill the established thesis objectives. It starts by 

explaining the reasons behind the choice for the two datasets that were used in this work, UCSD and FC (recall 

Section 3.1). Then, Section 3.2 describes the background subtraction method, which is able to extract 

pedestrians from the rest of the scene, producing foreground masks that were postprocessed in order to improve 

final results.  

Because the cameras used in this work are not calibrated, Section 3.3 presents a method to introduce 

perspective effects on the algorithm. 

To estimate the number of people per mask, the system needs to be trained with proper annotated instances 

and a method to do so is explained in Section 3.4. 

Image descriptors are methods used to extract statistics and features from images. Descriptors used in this 

work are described in Section 3.5. Section 3.6 thesis’ contribution: a proposal of an extension to a remarkable 
image descriptor that is vastly used in people detection. The proposed image descriptor was called perspective 

invariant Histograms of Oriented Gradients (HOGp) and it can be summarized as using density maps to weight 

image pixels, in order to normalize HOG for perspective. 

Once the desired features are calculated, a regression model needs to be trained to estimate the number of 

people per segment. Section 3.7 describes the different regression models that were used in this work. 

Finally, Section 3.8 details the evaluation metric that was chosen to access image descriptors’ performance. 
By following this series of methods, it was possible to build a system capable of performing people 

counting experiments on adequate datasets. The implemented algorithms were coded using Matlab, and they 
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can be easily extended to add more image descriptors, properly annotated datasets and Weka based regression 

models. Using this pipeline, a series of experiments were carried in order to evaluate and optimize image 

descriptors for counting people in urban scenarios. The following chapter presents the results for these 

experiments. 
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Chapter 4 

Results 

This chapter presents experimental results of the proposed algorithms and implemented methods. 

Experiments were conducted using two datasets: the UCSD Crowd Counting Dataset, which has 2000 fully 

annotated frames, and FC Dataset which has 408 fully annotated frames. 

The performance attributes used in this chapter are expressed by the Mean Absolute Error (MAE) of the 

estimated number of people per frame, which means that lower MAE values represent higher accuracy rates 

and vice-versa. 

Regarding software, the following experiments were carried using: OpenCV Version 2.4.8 for background 

subtraction; Matlab Version R2013b for image post-processing and feature extraction; and Weka Version 3.7 

for feature selection and regression. 

Regarding computational resources, the following experiments were conducted on a PC with the following 

specifications: Windows 8.1 Pro (64-bit) OS; Intel(R) Core(RM) i7-2630QM CPU @ 2.00 GHz 2.00 GHz 

processor; and 4.00 GB RAM 

Section 4.1 presents results for the image descriptor ranking algorithm. Section 4.2 shows results for 

sensitivity analysis of the descriptors’ parameters. Section 4.3 presents crowd counting results for the full 
UCSD Dataset, along with accuracy comparison of the chosen Regression Models. Section 4.4 demonstrates 

the impact of the training set size. Section 4.5 presents final experimental results on FC dataset. In Section 4.6 

is made a brief summary and discussion of the results. 

4.1 Ranking of image descriptors 

In order to estimate the inferring power of image descriptors for urban crowd counting purposes it was 

used an attribute ranking algorithm, adopting all the descriptors described in Section 3.5 as input. The chosen 

feature selection algorithm was Relief-F proposed by Kira and Rendell [63]. It evaluates the worth of an 

attribute by repeatedly sampling an instance and considering the value of the given attribute for the nearest 

instance of the same and different class. The input consists of 15 image descriptors with varied number of 

features, for a total of 458 features. Although most feature ranks (Table 4.1) are grouped by their respective 

descriptor, segment features (area, perimeter and circularity) and internal edge features (edge length, 

Minskowski dimension) were not grouped, in to order to evidence their individual power, as they are used 

separately in some previous works on people counting. 
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Table 4.1 – Relief-F feature selection algorithm output for the UCSD Crowd Counting Dataset. Ranking results 
for 15 image descriptors with different number of features, for a total of 458 features. Feature attributes are 
grouped by their respective image descriptor and ordered by best to worst score. 

Descriptor Number of 

Features 

Average score Best score Average rank Best rank 

Zernike Moments 66 0.0282623 0.0376845 55 1 

HOG 72 0.0218048 0.0349830 107 6 

HGDn 16 0.0116201 0.0318668 240 20 

Moran Geary 12 0.0084585 0.0301119 277 32 

Minskowski 9 0.0123584 0.0300319 210 35 

Perimeter 1 0.0255154 0.0255154 80 80 

Wavelet 52 0.0043796 0.0204948 327 111 

HGD 16 0.0089171 0.0196184 264 119 

HOGn 72 0.0058322 0.0193435 304 120 

SimpleGL 6 0.0053875 0.0192132 305 121 

GLRL 88 0.0069092 0.0190871 282 123 

Gabor 4 0.0056777 0.0105251 301 215 

Edge Length 1 0.0095432 0.0095432 224 224 

Haralick 13 -0.0104002 0.0094669 387 225 

Area 1 0.0070508 0.0070508 254 254 

GLDM 20 0.0055575 0.0068671 290 255 

Invariant Moments 7 0.0029855 0.0055516 326 294 

Circularity 1 0.0023978 0.0023978 365 365 

 

The achieved ranking results (Table 4.1) give some proof that Zernike moments and Histograms of 

Oriented Gradients (HOG) can be powerful descriptors for crowd counting algorithms. If the average rank of 

each descriptor is considered, it is observable that blob perimeter is placed higher on ranking results, losing 

only to Zernike moments. Nonetheless, blob area and circularity achieved a lower score than expected, losing 

to several other descriptors. 

4.2 Sensitivity analysis of the descriptors’ parameters 

This section presents the analysis of the image descriptors’ parameters and how they influence the counting 
algorithm accuracy. All results shown in this section were achieved using the original training set of the UCSD 

Dataset (frames 601:1:1400), with the first 66% frames as train set and the remaining 33% as test set. These 

results are all relative to Linear Regression model.  

The evaluated image descriptors were: Histogram of Oriented Gradients (HOG) and Zernike moments 

(Zer). Furthermore, at this stage of progress it was proposed a new descriptor based on HOG, which was called 

and referenced as HOGp, with p standing for perspective (recall Section 3.6). In order to evaluate HOGp 

efficiency, it is directly compared with its precursor descriptor – HOG. 

  



Sensitivity analysis of the descriptors’ parameters  31 

 
 

4.2.1 HOG and HOGp parameters 

For HOG and HOGp descriptors three parameters were considered: window size, number of bins and 

normalization type. Eight window sizes were used: 1x2; 2x1; 2x2; 3x3; 4x4; 3x5; 5x3 and 5x5. Four orientation 

bins were used: 4 bins; 8 bins; 16 bins and 32 bins. 

Let v be the unnormalized descriptor vector, ǁvǁk be its k-norm for k=1,2, and ϵ be a small constant. The 

schemes are: (a) L2-norm, ݒ → ݒ ଶଶ‖ݒ‖√ + ߳ଶ⁄  (b) L1-sqrt, ݒ → ݒ√ ሺ‖ݒ‖ଵ + ߳ଶሻ⁄ . Four normalizations were 

used: 

 local (by block), using L2-norm;  

 global (for all blocks), using {Min-Max} → {0-1};  

 global, using L1-sqrt;  

 global, using L2-norm. 

Across all the experiments accessed in this section, the MAE results achieved when using normalization 

were no less than 3 times higher than without normalization. As for that, the results obtained when using 

normalization are not shown nor discussed in this section. 

The best result with HOG descriptor was obtained when using a 1x2 window with 8 bins, with a MAE of 

2.50. Nevertheless, HOGp descriptor got the best result when using a 2x1 window with 16 bins, with a MAE 

of 2.44. Although all 32 possible combinations of window sizes and number of bins were tested, here are only 

presented the combinations were these two descriptors achieved highest accuracies. 

4.2.1.1   Window Size 

The objective of this experiment was to infer the influence of window size parameter on descriptor’s 
accuracy. This was accomplished by fixing the number of orientation bins at 8 while changing window size 

from 1x2 through 5x5 and calculating the MAE for each combination (Figure 4.1). 

 

Figure 4.1 – Experimental results of window size influence on HOG and HOGp descriptors with fixed 8 bins. MAE values 
are obtained by Linear Regression. Considering frames 631-1400 of UCSD dataset, the first 66% were set aside for training 
and the remaining 33% were used for testing. 

It is observable that both descriptors achieve MAE values under 2.62 for smaller window sizes – 1x2, 2x1 

and 2x2. Furthermore, HOG descriptor has the highest accuracy of this experiment, with 2.50 MAE with 1x2 

window size. Comparing HOGp with HOG it is clear that they produce accuracies with a difference factor of 
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0.2–0.7 MAE, for smaller window sizes – 1x2, 2x1 and 2x1. However, for larger window sizes – 3x3, 4x4, 

3x5, 5x3 and 5x5 – this factor goes up to 0.12–0.30 MAE. 

When the number of bins is changed from 8 to 16 (Figure 4.2), a local minimum is introduced on 2x1 

window size for both descriptors, that wasn’t observable before. 

 

Figure 4.2 – Experimental results of window size influence on HOG and HOGp descriptors with fixed 16 bins. MAE 
values are obtained by Linear Regression. Considering frames 631-1400 of UCSD dataset, the first 66% were set aside for 
training and the remaining 33% were used for testing. 

In this scenario it is clear that, for smaller window sizes – 1x2, 2x1 and 2x2 – HOGp achieved better 

accuracies than HOG, with a difference factor of 0.17–0.26 MAE. However, for larger window sizes – 3x3, 

4x4, 3x5, 5x3 and 5x5 – HOG descriptor outstands HOGp with better average accuracy. This experiment 

produced the best accuracy of all the parameters tested – 2.44 MAE for HOGp vs 2.50 for HOG. 

Comparing Figure 4.1 with Figure 4.2, it is observable that the variation of MAE according to window 

size has a similar pattern for different numbers of bins, where lower MAE values are achieved for windows 

1x2, 2x1, 2x2, 5x3 and higher MAE values for 3x3, 4x4, 3x5 and 5x5. 

4.2.1.2   Number of bins 

The next HOG/HOGp parameter evaluated was the number of bins. The presented experiment results were 

conducted with fixed window sizes of 1x2 and 2x1, combined with 4, 8, 16 and 32 bins. 

Figure 4.3 shows accuracy values for both descriptors with a fixed window size of 1x2. In this experiment, 

HOG achieved the lowest MAE value for 8 bins – 2.50 MAE – followed by HOGp also with 8 bins – 2.53 

MAE. 
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Figure 4.3 – Experimental results of number of bins influence on HOG and HOGp descriptors with fixed 1x2 window size. 
MAE values are obtained by Linear Regression. Considering frames 631-1400 of UCSD dataset, the first 66% were set 
aside for training and the remaining 33% were used for testing. 

Figure 4.4 shows accuracy values for both descriptors with a fixed window size of 2x1. In this experiment, 

HOGp achieved the lowest MAE value for 16 bins – 2.44 MAE – which was also the highest accuracy achieved 

for all the parameters’ combinations. The highest MAE value were obtained for HOGp with 4 bins – 3.17 MAE 

– preceded by HOG with 4 bins – 2.82 MAE. 

 

Figure 4.4 – Experimental results of number of bins influence on HOG and HOGp descriptors with fixed 2x1 window size. 
MAE values are obtained by Linear Regression. Considering frames 631-1400 of UCSD dataset, the first 66% were set 
aside for training and the remaining 33% were used for testing. 

Analyzing these results it can concluded that HOGp doesn’t perform well when using 4 bins. However, 
when using 8, 16 and 32 bins HOGp won the accuracy test against HOG five out of six times, losing only for 

1x2 window with 8 bins, by a margin of 0.03 MAE. 
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4.2.2 Zernike Moments parameters 

For Zernike Moments descriptor one experiment was performed ranging the polynomial order parameter 

from 4 to 20 in steps of 2. It was decided to limit this parameter at 20 because, considering n the polynomial 

order, the number of features calculated by the descriptor (Zerfeats) grows according to the quadratic function: 

௙௘௔௧௦ݎܼ݁  = Ͳ.5݊ଶ + ͳ.5݊ + ͳ (4.1) 

and the higher number of features, the higher computation time is required to calculate a count estimate. 

 

Figure 4.5 – Experimental results of Polynomial order variation on Zernike moments descriptor reported by Linear 
Regression model. Considering frames 631-1400 of UCSD dataset, the first 66% were set aside for training and the 
remaining 33% were used for testing. 

Analyzing Figure 4.5 it is clear that the best accuracy achieved within this parameter range was for order 

6 – 11.30 MAE. It can also be concluded that this descriptor alone produces results far worse than those 

obtained with HOG or HOGp, as all the experiments resulted in MAE values over 10.0 while for HOG and 

HOGp none of the experiments went across 4.0 MAE. In the next section this descriptor was combined with 

others in order to retrieve information whether if it was viable or not. 

4.3 Evaluation of different combinations of descriptors 

In this section are presented accuracy results for six combinations of image descriptors: 

 HOGp (2x1 window size, 16 bins); 

 HOG (2x1 window size, 16 bins; 

 Ryan combination of descriptors [45]; 

 HOGp, Area (w/ perspective map), Perimeter (w/ perspective map); 

 HOGp, Zer (order 6); 

 HOGp, Zer, Area (w/ perspective map), Perimeter (w/ perspective map). 

The parameters used for HOGp were the optimal ones on the training set, determined by the experiments 

discussed in Section 4.2 Although HOG parameters are not the optimal, it was decided to use the same values 

used in HOGp to allow further comparison of one another. Both Area and Perimeter are weighted by the UCSD 

dataset perspective maps, explained in Section 3.3. Ryan descriptor computes a combination of features used 
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by Ryan et al. in [45], which also includes Area and Perimeter weighted by the UCSD perspective maps. This 

descriptor was tested in order to compare the results with features used by Ryan. 

These experiments were done using full frame range of the UCSD dataset – frames 631:1400 for training, 

31:600 and 1401:2000 for testing. The starting 30 frames on each set were neglected because they are used for 

background subtraction initialization. Table 4.2 presents MAE values for each descriptor using 9 Regression 

Models.  

Table 4.2 – Experimental results on UCSD dataset. Frames 631-1400 were set aside for training, and frames 
31-600 and 1401-2000 were used for testing. 6 image descriptor combinations were considered and MAE 
values are reported by 9 Regression Models. The lowest MAE value for each Regression Model is bolded and 
the lowest value of all is underlined. 

Regression Model 

 
Image descriptors 

HOGp HOG Ryan HOGp, 
A, P 

HOGp, 
Zer 

HOGp, 
Zer, A, P 

LinearRegression 1.85 2.08 1.98 1.85 1.74 1.86 

REPtree 2.37 2.71 2.10 2.04 2.44 2.12 

M5P 2.01 2.16 1.89 1.77 1.87 1.97 

Additive LinearRegression 1.85 2.08 1.98 1.85 1.74 1.85 

Additive REPtree 2.46 2.77 2.10 2.09 2.43 2.15 

Additive M5P 2.06 2.20 1.81 1.77 1.96 1.96 

Additive DecisionStump 2.17 2.29 2.25 2.13 2.22 2.06 

Bagging LinearRegression 1.85 2.08 1.98 1.85 1.74 1.86 

Bagging REPtree 1.92 2.24 1.95 1.81 1.85 1.81 

 

Analyzing these results, it stands clear that HOGp has better accuracy than HOG, as it achieves lower 

MAE values over each one of the Regression Models. The combination of HOGp and Zernike descriptors 

produced the lowest MAE value of all – 1.74 – when using Linear Regression. Furthermore, in any of the 

chosen Regression Models, Ryan features did not perform better than the combination of HOGp, Area and 

Perimeter. 

Figure 4.6 presents people counting estimates for UCSD dataset, when using the optimized combination 

of HOGp and Zernike descriptors along with Linear Regression. 
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Figure 4.6 – People counting results on UCSD dataset using HOGp and Zernike as image descriptor and Linear Regression. 
Frames 631-1400 were set aside for training, and frames 31-600 and 1401-2000 were used for testing. 

4.4 Impact of training set size 

In this section are presented accuracy results for 3 different training sets, in order to evaluate the impact of 

the number of training frames. The test set remains at frames 1:600 and 1401:2000. The training sets used for 

these experiments were: 

 Full (631:1:1400), for a total of 770 frames; 

 635:5:1400, for a total of 154 frames; 

 640:80:1360, for a total of 10 frames. 

All the chosen 9 Regression Models were tested and these results can be viewed in Appendix A1-3 for 

each training set. Table 4.3 shows MAE for each training subset, considering the Regression Model that 

achieved the best result for each descriptor. Again, the best accuracy was obtained with HOGp combined with 

Zernike moments – 1.68 MAE. This is lower than the results obtained with the same descriptor with full training 

subset. 

Table 4.3 – Experimental results on UCSD dataset with 3 different training subsets: Full, 635:5:1400 and 
640:80:1360. Frames 31-600 and 1401-2000 were used for testing. 6 image descriptor combinations were 
considered and MAE values are reported by the lowest MAE value achieved by the chosen 9 Regression 
Models. The lowest MAE value for each Regression Model is bolded and the lowest value of all is underlined. 

Training subset Image descriptors  

HOGp HOG Ryan HOGp, 
A, P 

HOGp, 
Zer 

HOGp, 
Zer, A, P 

Full  1.85 2.08 1.82 1.77 1.74 1.81 

635:5:1400 1.77 2.01 1.93 1.74 1.68 1.77 

640:80:1360 2.02 2.74 2.18 2.17 1.77 2.08 

 

In Figure 4.7 is presented the same information of Table 4.3 optimized for descriptor visual comparison. 

It stands clear that HOG obtained higher MAE values across all training subsets. Furthermore, the subset 

635:5:1400 (154 frames) achieved optimal results for all descriptors’ combinations except for Ryan. 
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Nonetheless, the subset 640:80:1360 (10 frames) produced the worst accuracy results for all descriptors’ 
combinations. 

 

Figure 4.7 – Experimental results on UCSD dataset with 3 different training subsets: Full, 635:5:1400 and 640:80:1360. 
Frames 31-600 and 1401-2000 were used for testing. 6 image descriptor combinations were considered and MAE values 
are reported by the lowest MAE value achieved by the chosen 9 Regression Models. 

4.5 Evaluation on the Future Cities dataset 

This section presents experimental results for the Future Cities dataset. The counting algorithms were 

tested using 3 different training sets: first 25 frames, first 50 frames and 100 frames. FC dataset has 408 fully 

annotated frames and for each training set, the remaining frames were used for testing. All the chosen 9 

Regression Models were tested and these results can be viewed in Appendix A4-6, for each training set. 

Table 4.4 shows MAE for each training subset, considering the Regression Model that achieved the best 

result for each descriptor. In this dataset, Ryan’s descriptors obtained lower MAE values for the first two 
subsets, while the combination HOGp, Area and Perimeter achieved the best overall result – 0.86 MAE. 

Table 4.4 – Experimental results on FC dataset with 3 different training subsets: first 25 frames, 50 frames and 
the first 100 frames. The remaining dataset frames were used for testing. 6 image descriptor combinations were 
considered and MAE values are reported by the lowest MAE value achieved by the chosen 9 Regression 
Models. The lowest MAE value for each Regression Model is bolded and the lowest value of all is underlined. 

Training set Image descriptors  

HOGp HOG Ryan HOGp, 
A, P 

HOGp, 
Zer 

HOGp, 
Zer, A, P 

first 25 frames 1.37 1.52 0.96 0.98 1.37 0.97 

first 50 frames 1.22 1.41 0.99 1.06 1.16 1.04 

first 100 frames 1.01 1.24 0.98 0.86 1.01 0.89 

 

 Using this dataset, Zernike descriptor does not improve HOGp as it did with UCSD dataset, in fact it only 

decreases MAE by a maximum margin of 0.02, when both are combined with Area and Perimeter. However, 

Area and Perimeter now have a much higher impact when combined with HOGp and Zernike, decreasing MAE 

by a minimum margin of 0.12. 
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 In Figure 4.8 is presented the same information of Table 4.4 optimized for descriptor visual comparison. 

It stands clear that HOG obtained higher MAE values across all training subsets, while descriptor combinations 

that include Area and Perimeter produce lower MAE values. 

 

Figure 4.8 – Experimental results on FC dataset with 3 different training subsets: first 25 frames, 50 frames and the first 
100 frames. The remaining dataset frames were used for testing. 6 image descriptor combinations were considered and 
MAE values are reported by the lowest MAE value achieved by the chosen 9 Regression Models. 

Figure 4.9 presents people counting estimates for FC dataset, when using the optimized combination of 

HOGp, Area and Perimeter along with Linear Regression with Bagging. 

 

Figure 4.9 – People counting results on FC Dataset using HOGp, Area and Perimeter as image descriptors and Linear 
Regression with Bagging. The first 100 frames were set aside for training and the remaining were used for testing. 
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4.6 Discussion 

This chapter reports the most relevant results achieved throughout thesis’ development. Section 4.1 shows 
the starting point to why Zernike moments and Histogram of Oriented Gradients were selected as possible 

image descriptors for the people counting algorithm. However, Relief-F is a feature selection algorithm that 

analyzes features without considering relation between them, so it doesn’t reckon the image descriptor as 

whole. For this same reason, Zernike moments was ranked first with Relief-F, but this descriptor alone retrieved 

MAE values far worse than HOG or HOGp, as depicted in Section 4.2.2. An alternative to the chosen ranking 

method, would be to use Correlation Feature Selection (CFS) or Wrapper. Another possible experiment would 

be to divide feature vectors into smaller ones, by taking out the features that were worse ranked by Relief-F, 

in order to see if the MAE converges for a specific subset of features. Relief-F was ultimately chosen due to 

the large number of attributes considered, because if it was used a selection algorithm based on groups of 

attributes, the computational effort would be unpractical under the thesis circumstances. 

Section 4.2, presents a study of HOG, HOGp and Zernike moments parameters. Using normalization in 

HOG and HOGp, produced results with high MAE values, when compared to unnormalized HOG and HOGp. 

This was somewhat expected because by normalizing gradient vectors they become invariant to multiplications 

of the pixel values. This is beneficial for the original focus of HOG, people detection, in order to make it 

invariant to illumination changes. However, for people counting purposes, normalization has a negative effect, 

because it scales gradients’ magnitude for the ROI, losing information that is important to infer the number of 

people. 

By evaluating HOG and HOGp descriptors with different parameters, it was determined that smaller 

window sizes describe people density better than larger window sizes. This is beneficial because smaller 

windows result in fewer attributes than larger ones, which reduces the processing time of the regression 

algorithms. On the other hand, studying different number of orientation bins did not produce such conclusive 

results. Calculating HOG and HOGp with only 4 bins produced bad results in both situations presented. Using 

8, 16 and 32 bins results were relatively close, so it was chosen to fix number of bins at 8 for further 

experiments, once again because it generates fewer features. 

From Section 4.3 to 4.5, the proposed descriptor HOGp reports better results than HOG in every single 

experiment, winning by an average MAE margin of 0.2, which is a quite significant error decay. For the UCSD 

dataset, with a training set of 10 frames, this margin went as far as 0.72 (recall Section 4.4). 

Table 4.5 compares the best obtained results with State of the Art systems, for the UCSD dataset. The 

proposed approach outperforms Kong [12] and Chan [14] systems and competes with Lempitsky [35] and Ryan 

[45]. Although Ryan reports better results for some training sets, bear in mind that they optimized all the 

components of the algorithm, including background subtraction and inference processes, while this work was 

focused on image descriptors and feature extraction. Replicating Ryan’s descriptors to use with the background 
subtraction and regression models from this thesis, the proposed image descriptors outperformed Ryan’s in 
almost every scenario. 
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Table 4.5 – Testing results on the UCSD dataset. Frames 1-600 and 1401-200 were used for testing. Results 
in bold correspond to the proposed approach. 

Systems Training subset MAE 

Kong, linear All 1.92 

Kong, neural network (5 runs) All 2.47 

Chan, away+towards All 1.95 

Chan, all All 1.95 

Proposed 631:1:1400 1.74 

Lempitsky 605:5:1400 2.02 

Proposed 635:5:1400 1.68 

Lempitsky 640:80:1360 1.70 

Ryan, no tracking 610:80:1330 1.79 

Ryan, no tracking 640:80:1360 1.33 

Proposed 640:80:1360 1.77 

 

Section 4.5, presents the results for the FC dataset. For this dataset, descriptors that use area and perimeter 

achieve better MAE values than those who do not. This is mainly due to the lower number of people per frame 

and their sparse distribution, when compared to UCSD dataset where crowd density is higher and occlusion is 

frequent. When individuals are fully distinguishable (FC dataset), Area and Perimeter gain importance as 

features for people counting. On the other hand, if occlusion and crowded areas are more frequent (UCSD 

dataset), HOG, HOGp and Zernike moments are better descriptors for estimating the number of people. 

Ryan features outperformed the proposed descriptors for the first two training sets of 25 and 50 frames, 

while losing for the third training set of 100 frames. However, one frame from this dataset contributes with 

much fewer training instances than one frame from UCSD dataset, because the crowd density is lower so the 

number of blobs per frame is also low. For instance, 100 FC frames contribute with 480 training instances, 

while the same number of 480 training instances is achieved with only 20 frames from UCSD dataset. In 

conclusion, the proposed algorithm outperforms Ryan features for adequate training sets, because each 

descriptor produces feature vectors with more attributes than Ryan’s descriptor, so more training instances are 
needed in order to surpass Ryan’s descriptor. 
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Chapter 5 

Conclusions and Future work 

In this thesis, a people counting algorithm was successfully implemented, trained and tested and a new 

image descriptor was proposed. Although camera calibration was not used, the algorithm still managed to 

perform well, even under different capture scenes. Several experiments were conducted using this algorithm, 

in order to evaluate its performance with different image descriptors, datasets and regression models. 

Recalling the objectives defined in Section 1.3, the first stage was to design a vision based method for 

counting people. Literature reviewed in Chapter 2, provided deeper knowledge on the theme, that lead to a 

smoother transition to design stage, and better integration with the problem in hands. Adapting methods used 

in some remarkable past works, it was possible to design an algorithm capable of learning and estimating the 

number of pedestrian on a given capture environment. 

The proposed counting algorithm uses image descriptors to extract local features from foreground 

segments. Different regression models were trained with the extracted feature vectors and their corresponding 

ground truth count, in order to infer the number of people in newer test instances. Several image descriptors 

were used in this work, including one distinguishable descriptor proposed by Dalal and Triggs, named 

Histograms of Oriented Gradients. In this thesis is proposed an extension to HOG, using density maps to 

normalize the descriptor for perspective effects. This is especially useful for outdoor scenarios, because the 

camera cannot be placed directly above people’s head and distant pedestrians are segmented into fewer image 

pixels than closer ones. The results presented in Chapter 4, show that this extension, denoted HOGp, was 

indeed a contribution, because the counting error was reduced in several performed experiments. 

Both HOG and HOGp were optimized to achieve the best results. Combining these descriptors with 

Zernike moments, blob area and blob perimeter, the final counting errors were further reduced. The study of 

these descriptors under several experiment conditions and different regression models constitutes another 

contribution of the thesis. In fact, the introduction of Zernike moments descriptor as a local feature extractor is 

by itself a contribution, as it has not been used for people counting in previous works. 

The study of image descriptors for people counting is still and incomplete task. The former work can be 

extended and the algorithm can also be further enhanced. For instance, instead of using Relef-F to for feature 

selection, an algorithm based of grouped attributes could be used, in order to judge descriptors as a whole and 

not by individual feature power. This could lead to new studies, on different image descriptors than the ones 

considered in this thesis. Furthermore, if the computational resources were good enough, a tracking module 

could be implemented and added to the algorithm. This could turn the algorithm more robust and even extend 

its capabilities, by allowing not only accurate crowd size estimations, but also crowd dynamics statistics. 
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The solution presented in this thesis uses a single camera to capture video with low resolution and low 

frame rate. In addition, this approach does not need images with a specific colour space, as it was designed to 

use grayscale images as input. The chosen regression models are also simple, and easy to implement in other 

computer languages. For these reasons, the proposed solution can be implemented in systems with low 

computational resources. 

Another possible way to evolve the thesis would be to implement the code on a device already in use in 

the Future Cities Project, the Raspberry-Pi. In fact, the FC dataset was captured and constructed with a 

Raspberry-Pi, running the background subtraction algorithm described in Section 3.2. This unit is a low-cost, 

mini single-board computer that can perform general tasks as a usual PC with lower processing speed and 

memory capacity, which opens the possibility to estimate the number of people on-site. Because the video 

would be processed locally, without any recording, streaming or even a dedicated server, privacy concerns 

would be minimized and this integrated system could be deployed on strategic urban locations, covering a large 

area of a city. 

The possibilities of using crowd density data are inspiring. For instance, this information can help city 

planners to identify locations in need of public transportation or can provide safety and surveillance by 

detecting abnormal behaviors. In conclusion, it can be used, solely or combined with other statistical data, to 

push the inevitable city growth in the right sustainable direction. 
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Appendix A – Error tables 

A1  MAE for UCSD (631:1:1400 as training set) 

HOGp  HOG 

LinearRegression 1.847552991  LinearRegression 2.077387179 

REPtree 2.34627094  REPtree 2.707197436 

M5P 2.007508547  M5P 2.157246154 

Additive LinearRegression 1.847552991  Additive LinearRegression 2.077387179 

Additive REPtree 2.462930769  Additive REPtree 2.768040171 

Additive M5P 2.062833333  Additive M5P 2.200570085 

Additive DecisionStump 2.175417949  Additive DecisionStump 2.294007692 

Bagging LinearRegression 1.847324786  Bagging LinearRegression 2.084540171 

Bagging REPtree 1.920853846  Bagging REPtree 2.244011966 

     

Ryan  HOGp + A + P 

LinearRegression 1.978618803  LinearRegression 1.848082906 

REPtree 2.100584615  REPtree 2.042478632 

M5P 1.886447863  M5P 1.767767521 

Additive LinearRegression 1.978618803  Additive LinearRegression 1.848082906 

Additive REPtree 2.099810256  Additive REPtree 2.089515385 

Additive M5P 1.815200855  Additive M5P 1.770547863 

Additive DecisionStump 2.250996581  Additive DecisionStump 2.130542735 

Bagging LinearRegression 1.981315385  Bagging LinearRegression 1.848418803 

Bagging REPtree 1.950021368  Bagging REPtree 1.815082906 

     

HOGp + Z  HOGp + Z + A + P 

LinearRegression 1.743624786  LinearRegression 1.864254701 

REPtree 2.43735641  REPtree 2.123483761 

M5P 1.870609402  M5P 1.971094017 

Additive LinearRegression 1.743624786  Additive LinearRegression 1.848082906 

Additive REPtree 2.42842735  Additive REPtree 2.147871795 

Additive M5P 1.960453846  Additive M5P 1.961240171 

Additive DecisionStump 2.220417094  Additive DecisionStump 2.059666667 

Bagging LinearRegression 1.745567521  Bagging LinearRegression 1.859035043 

Bagging REPtree 1.85148547  Bagging REPtree 1.813664103 



 

44 
 

A2 MAE for UCSD (635:5:1400 as training set) 

HOGp  HOG 

LinearRegression 1.790025641  LinearRegression 2.023273504 

REPtree 2.397535897  REPtree 2.855418803 

M5P 1.942987179  M5P 2.302826496 

Additive LinearRegression 1.790025641  Additive LinearRegression 2.023273504 

Additive REPtree 2.713006838  Additive REPtree 2.896762393 

Additive M5P 1.94781453  Additive M5P 2.257013675 

Additive DecisionStump 2.695458974  Additive DecisionStump 2.663902564 

Bagging LinearRegression 1.771168376  Bagging LinearRegression 2.007860684 

Bagging REPtree 1.922037607  Bagging REPtree 2.3763 

     

Ryan  HOGp + A + P 

LinearRegression 1.995119658  LinearRegression 1.832994872 

REPtree 2.470163248  REPtree 2.444381197 

M5P 1.930636752  M5P 1.74354359 

Additive LinearRegression 1.995119658  Additive LinearRegression 1.832994872 

Additive REPtree 2.32757265  Additive REPtree 2.219405128 

Additive M5P 1.934045299  Additive M5P 1.766735897 

Additive DecisionStump 2.47692906  Additive DecisionStump 2.498403419 

Bagging LinearRegression 1.97494188  Bagging LinearRegression 1.825747863 

Bagging REPtree 2.016192308  Bagging REPtree 2.037163248 

     

HOGp + Z  HOGp + Z + A + P 

LinearRegression 1.689715385  LinearRegression 1.865909402 

REPtree 2.374674359  REPtree 2.426689744 

M5P 1.846478632  M5P 1.865909402 

Additive LinearRegression 1.689715385  Additive LinearRegression 1.865909402 

Additive REPtree 2.507968376  Additive REPtree 2.255723077 

Additive M5P 1.806087179  Additive M5P 1.772784615 

Additive DecisionStump 2.57555812  Additive DecisionStump 2.445005983 

Bagging LinearRegression 1.676207692  Bagging LinearRegression 1.85022906 

Bagging REPtree 1.85927094  Bagging REPtree 1.964617094 
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A3 MAE for UCSD (640:80:1360 as training set) 

HOGp  HOG 

LinearRegression 2.455306838  LinearRegression 2.80494359 

REPtree 6.095699145  REPtree 6.095699145 

M5P 2.023722222  M5P 2.741394017 

Additive LinearRegression 2.455306838  Additive LinearRegression 2.80494359 

Additive REPtree 6.095699145  Additive REPtree 6.095699145 

Additive M5P 2.167183761  Additive M5P 2.741394017 

Additive DecisionStump 4.308476068  Additive DecisionStump 4.781047863 

Bagging LinearRegression 2.483764957  Bagging LinearRegression 2.893994872 

Bagging REPtree 2.560554701  Bagging REPtree 3.445828205 

     

Ryan  HOGp + A + P 

LinearRegression 2.182117094  LinearRegression 2.340208547 

REPtree 6.095699145  REPtree 6.095699145 

M5P 2.182117094  M5P 2.16765812 

Additive LinearRegression 2.182117094  Additive LinearRegression 2.340208547 

Additive REPtree 6.095699145  Additive REPtree 6.095699145 

Additive M5P 2.182117094  Additive M5P 2.310951282 

Additive DecisionStump 4.050364957  Additive DecisionStump 4.510918803 

Bagging LinearRegression 2.224895726  Bagging LinearRegression 2.550525641 

Bagging REPtree 3.052439316  Bagging REPtree 2.694694872 

     

HOGp + Z  HOGp + Z + A + P 

LinearRegression 2.451562393  LinearRegression 2.317713675 

REPtree 6.095699145  REPtree 6.095699145 

M5P 1.773703419  M5P 2.079958974 

Additive LinearRegression 2.451562393  Additive LinearRegression 2.317713675 

Additive REPtree 6.095699145  Additive REPtree 6.095699145 

Additive M5P 2.068573504  Additive M5P 2.207398291 

Additive DecisionStump 4.298644444  Additive DecisionStump 4.754211966 

Bagging LinearRegression 2.642125641  Bagging LinearRegression 2.336051282 

Bagging REPtree 2.576911966  Bagging REPtree 2.739491453 
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A4 MAE for FC (first 25 frames as training set) 

HOGp  HOG 

LinearRegression 1.589201044  LinearRegression 1.696023499 

REPtree 1.797958225  REPtree 1.837642298 

M5P 1.437326371  M5P 1.523143603 

Additive LinearRegression 1.589201044  Additive LinearRegression 1.696023499 

Additive REPtree 1.797958225  Additive REPtree 1.813597911 

Additive M5P 1.369809399  Additive M5P 1.659660574 

Additive DecisionStump 1.46313577  Additive DecisionStump 1.519425587 

Bagging LinearRegression 1.453691906  Bagging LinearRegression 1.673143603 

Bagging REPtree 1.714624021  Bagging REPtree 1.78113577 

     

Ryan  HOGp + A + P 

LinearRegression 0.955986945  LinearRegression 1.322798956 

REPtree 1.618093995  REPtree 1.692120104 

M5P 0.955986945  M5P 0.976409922 

Additive LinearRegression 0.955986945  Additive LinearRegression 1.322798956 

Additive REPtree 1.618093995  Additive REPtree 1.646788512 

Additive M5P 0.955986945  Additive M5P 1.06348564 

Additive DecisionStump 1.218010444  Additive DecisionStump 1.641712794 

Bagging LinearRegression 0.96083812  Bagging LinearRegression 1.345610966 

Bagging REPtree 1.571373368  Bagging REPtree 1.674174935 

     

HOGp + Z  HOGp + Z + A + P 

LinearRegression 1.634887728  LinearRegression 1.306569191 

REPtree 1.796553525  REPtree 1.698300261 

M5P 1.370652742  M5P 0.973328982 

Additive LinearRegression 1.634887728  Additive LinearRegression 1.306569191 

Additive REPtree 1.807934726  Additive REPtree 1.624673629 

Additive M5P 1.472399478  Additive M5P 1.118190601 

Additive DecisionStump 1.611430809  Additive DecisionStump 1.565443864 

Bagging LinearRegression 1.641263708  Bagging LinearRegression 1.583644909 

Bagging REPtree 1.733835509  Bagging REPtree 1.692613577 
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A5 MAE for FC (first 50 frames as training set) 

HOGp  HOG 

LinearRegression 1.312254902  LinearRegression 1.466918768 

REPtree 2.153403361  REPtree 2.062078431 

M5P 1.215820728  M5P 1.495344538 

Additive LinearRegression 1.312254902  Additive LinearRegression 1.466918768 

Additive REPtree 2.153403361  Additive REPtree 2.062689076 

Additive M5P 1.296131653  Additive M5P 1.411994398 

Additive DecisionStump 1.792910364  Additive DecisionStump 1.588551821 

Bagging LinearRegression 1.268422969  Bagging LinearRegression 1.488044818 

Bagging REPtree 1.909616246  Bagging REPtree 1.914868347 

     

Ryan  HOGp + A + P 

LinearRegression 0.990294118  LinearRegression 1.066313725 

REPtree 1.960733894  REPtree 2.03167507 

M5P 0.990294118  M5P 1.101386555 

Additive LinearRegression 0.990294118  Additive LinearRegression 1.066313725 

Additive REPtree 1.560915966  Additive REPtree 2.153403361 

Additive M5P 0.990294118  Additive M5P 1.059868347 

Additive DecisionStump 1.425288515  Additive DecisionStump 1.423882353 

Bagging LinearRegression 1.066557423  Bagging LinearRegression 1.119417367 

Bagging REPtree 1.730263305  Bagging REPtree 1.905792717 

     

HOGp + Z  HOGp + Z + A + P 

LinearRegression 1.187941176  LinearRegression 1.039686275 

REPtree 2.142661064  REPtree 2.025789916 

M5P 1.156193277  M5P 1.035380952 

Additive LinearRegression 1.187941176  Additive LinearRegression 1.039686275 

Additive REPtree 2.142661064  Additive REPtree 2.142661064 

Additive M5P 1.159812325  Additive M5P 1.165635854 

Additive DecisionStump 1.523252101  Additive DecisionStump 1.591212885 

Bagging LinearRegression 1.1992493  Bagging LinearRegression 1.147366947 

Bagging REPtree 1.927507003  Bagging REPtree 1.917109244 
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A6 MAE for FC (first 100 frames as train) 

HOGp  HOG 

LinearRegression 1.084814332  LinearRegression 1.298188925 

REPtree 1.344286645  REPtree 1.651214984 

M5P 1.009078176  M5P 1.244061889 

Additive LinearRegression 1.084814332  Additive LinearRegression 1.298188925 

Additive REPtree 1.322032573  Additive REPtree 1.734410423 

Additive M5P 1.027214984  Additive M5P 1.26081759 

Additive DecisionStump 1.42795114  Additive DecisionStump 1.523394137 

Bagging LinearRegression 1.055811075  Bagging LinearRegression 1.305459283 

Bagging REPtree 1.474690554  Bagging REPtree 1.480996743 

     

Ryan  HOGp + A + P 

LinearRegression 1.031211726  LinearRegression 0.884387622 

REPtree 1.531035831  REPtree 1.542188925 

M5P 0.986628664  M5P 0.928550489 

Additive LinearRegression 1.031211726  Additive LinearRegression 0.884387622 

Additive REPtree 1.186403909  Additive REPtree 1.509934853 

Additive M5P 0.983967427  Additive M5P 0.92185342 

Additive DecisionStump 1.133469055  Additive DecisionStump 1.320625407 

Bagging LinearRegression 1.037107492  Bagging LinearRegression 0.862960912 

Bagging REPtree 1.233869707  Bagging REPtree 1.386824104 

     

HOGp + Z  HOGp + Z + A + P 

LinearRegression 1.083254072  LinearRegression 0.957964169 

REPtree 1.491885993  REPtree 1.537091205 

M5P 1.039631922  M5P 1.051003257 

Additive LinearRegression 1.083254072  Additive LinearRegression 0.957964169 

Additive REPtree 1.532478827  Additive REPtree 1.603745928 

Additive M5P 1.007967427  Additive M5P 0.893833876 

Additive DecisionStump 1.521749186  Additive DecisionStump 1.2797557 

Bagging LinearRegression 1.046899023  Bagging LinearRegression 0.914801303 

Bagging REPtree 1.550964169  Bagging REPtree 1.42662215 
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