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Abstract 

 

 

The S mutation of the β-globin gene (HBB*S) is a well-studied example of an 

advantageous allele with a protective role against malaria in the heterozygous carrier 

state. More than 50 years ago, Livingstone proposed that the emergence of tropical 

agriculture provided ideal habitats for the spread of malaria-transmitting mosquitoes 

allowing the rapid diffusion of a single, relatively recent HBB*S mutation. However, the 

concept of a single mutation was challenged by the finding that different HBB*S-linked 

haplotypes predominated in various non-overlapping geographical regions of Africa, 

India and the Arabian Peninsula. Currently, the most favored hypothesis explaining the 

geographic segregation of HBB*S-linked haplotypes is that HBB*S variants originated 

independently by recurrent mutation in each region where a single haplotype 

predominates. However, little work has been done to examine the effects of the spread 

of the HBB*S allele on linked haplotype variation in spatially explicit evolutionary 

settings. Here, we explored a computer simulation framework to assess the evolution 

of HBB*S-linked haplotype variation in time and space, using a wave of advance model 

for the dispersal of an advantageous allele. We found that even assuming a single 

origin for the HBB*S variant, it is possible to observe remarkably low levels of 

haplotype heterogeneity at the edges of variant distribution after as much as 200 

generations. Moreover, we demonstrate that the wave of advance of the S allele can 

mimic the spatial distribution of different S-haplotypes in Africa by creating several 

patches (or sectors) formed by contiguous populations sharing S-linked modal 

haplotypes that are different from those observed elsewhere. The comparison of 

different simulated scenarios with an empirical dataset, consisting of haplotype data 

from different African populations, additionally showed that the overall levels of 

haplotype variation that are generated around each center of origin of a HBB*S 

mutation are too high to be compatible with the predictions of the multicentric 

hypotheses, unless the age of S mutations is unrealistically low (about 60 generations). 

Although our preliminary study allowed the evaluation of the relative consistency of 

different evolutionary scenarios, our limited set of simulation conditions were still 

unable to match all the characteristics of the observed data with sufficient 

approximation. Thus, the simulated framework that was developed in this work should 

be used in the future to evaluate a more comprehensive set of demographic 

alternatives to provide a more robust discrimination of competing evolutionary 

hypotheses. 
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Resumo 

 

 

A mutação S do gene da β-globina (HBB*S) é um exemplo bem estudado de como um 

alelo favorável pode ter uma função protectora contra a malária em portadores 

heterozigóticos. Há mais de 50 anos, Livingstone sugeriu que o desenvolvimento da 

agricultura tropical criou as condições ideais para a disseminação dos mosquitos 

vectores da malária, permitindo a rápida difusão de uma mutação HBB*S de origem 

única relativamente recente. No entanto, o conceito de origem única foi questionado 

pela descoberta de que diferentes haplótipos ligados à variante HBB*S predominam 

em várias regiões não sobreponíveis de África, da Índia e da Península Arábica. 

Actualmente, a hipótese mais aceite para explicar a distribuição geográfica dos 

haplótipos de HBB*S sugere que a cada haplótipo predominante numa dada região 

corresponde uma mutação recorrente. Apesar desta aceitação, não há trabalhos 

suficientemente detalhados sobre os efeitos da difusão do alelo HBB*S na variação 

haplotípica que lhe está associada, usando cenários evolutivos espacialmente 

explícitos. Neste trabalho, procurámos explorar um método de simulação que permita 

estudar a evolução da variação haplotípica no tempo e no espaço, usando um modelo 

de avanço em onda para a difusão de uma mutação favorável. Com esta abordagem, 

foi possível mostrar que, mesmo assumindo uma origem única, se podem observar 

níveis muito baixos de heterogeneidade haplotípica na periferia da distribuição da 

variante, ao fim de 200 gerações. Adicionalmente, verificou-se que a onda de avanço 

da variante favorecida pode originar sectores geograficamente delimitados em que 

predominam diferentes haplótipos, à semelhança dos padrões haplotípicos 

observados em África. A comparação de diferentes cenários simulados com dados 

empíricos recolhidos em várias populações africanas, permitiu ainda mostrar que os 

níveis de variação haplotípica gerados em torno de um determinado centro de origem 

são demasiado elevados para serem compatíveis com as previsões de modelos 

multicêntricos, a menos que se assuma que as mutações recorrentes HBB*S tiveram 

origens irrealisticamente recentes (há cerca de 60 gerações). Apesar deste trabalho 

ter permitido avaliar a consistência relativa de diferentes cenários evolutivos, não foi 

possível obter, com o número limitado de condições demográficas usadas em várias 

simulações, uma aproximação suficientemente satisfatória a todas as características 

dos dados observados. Assim, o enquadramento metodológico agora desenvolvido 

deverá ser usado no futuro para avaliar um conjunto mais vasto de modelos 

demográficos a fim de obter uma discriminação mais robusta das hipóteses 

alternativas. 
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1.  Introduction 

 

 

Elucidating the factors that shaped the geographical spread of advantageous alleles is 

fundamental to understand the current distribution of adaptive traits, including 

resistance to infections (Epperson, 2003). Recent studies have paved the way for a 

better understanding of these factors by examining different models of spatial dynamics 

of advantageous alleles, while accounting for allele interactions (Ralph and Coop, 

2010) or heterogeneous selection intensity (Novembre et al., 2005). 

The S mutation of the β-globin gene (HBB*S) is a classic example of a pathogenic 

genetic variant that can be beneficial in some circumstances (Flint et al., 1993), 

providing an excellent model for studying natural selection in a spatially explicit 

approach. Homozygotes for the HBB*S allele (SS) suffer from a severe disease, called 

sickle-cell anemia, which is usually lethal before the age of 5 in the absence of medical 

care (Piel et al., 2010). However, the HBB*S mutation is not pathogenic in 

heterozygotes (AS), and may confer a protective effect against malaria to its carriers 

(Allison, 1964). It was the heterozygote advantage over both AA and SS homozygotes 

(overdominance) that prevented this mutation to be eliminated and allowed its spread 

to several regions of Africa, Arabian Peninsula and India (Livingstone, 1958; 

Livingstone, 1964). In West and Central Africa the HBB*S gene is especially common 

(Figure 1), reaching frequencies of 16% (Cavalli-Sforza and Bodmer, 1971; Piel et al., 

2010) or even 20% (Livingstone, 1958; Flint et al., 1998). Very high frequencies are 

also known to occur in the Qatif oases of eastern Saudi Arabia and parts of India (Flint 

et al. 1998). The allele is also found at lower to moderate frequencies in other parts of 

the old world, including some Mediterranean areas (Greece and Sicily) (Cavalli-Sforza 

and Bodmer, 1971; Piel et al., 2010). 

Haldane was the first to establish a link between the high frequencies of genetic blood 

disorders and the selective advantage conferred by protection against Plasmodium 

falciparum infection (Haldane, 1949). His suggestion was based on the correlation 

between the distribution of the hemoglobinopathies and the historic incidence of 

malaria (Figure 1). Ever since, much evidence has accumulated in support of the 

HBB*S protective advantage (Beet, 1946; Allison, 1954; Allison 1964; Williams, 2006, 

Weatherall, 2008) and  HBB  AS  individuals  have  consistently  been  shown  to  enjoy 

more than 90%  protection  against  severe  and  lethal malaria and 50% protection 

against mild clinical attacks (Williams et al., 2005). 

According to Livingstone, the HBB*S diffusion has only been possible after the 

adoption of agriculture in the last few thousand years (Livingstone, 1958). Agriculture 

and forest-clearing created the ideal habitat for malaria-transmitting mosquitoes 

(Anopheles), increasing the risk of infection in agricultural communities and leading to 

the rapid spread of HBB*S in areas infested with malaria (Livingstone, 1958; Carter 

and Mendis, 2002). The bio-cultural model of Livingstone is based on the assumption 

that the HBB*S mutation has a single origin and became frequent with the emergence 

of tropical agriculture, about 5000 years ago. This assumption is apparently supported  



4 
 

 

 

 

 

by the positive correlation between HBB*S frequencies and the oldest agricultural 

traditions, and also by the demonstration that the HBB*S allele could have diffused 

from a single place of origin throughout its present distribution area in about 5000 years 

(Livingstone, 1989). 

The idea of a single HBB*S mutation has been challenged when the first results on the 

haplotype variation associated with the HBB*S variant became known. Using 5 
restriction fragment length polymorphisms (RFLPs) it was shown that this allele is 

associated with five major haplotypes that predominate in non-overlapping 

geographical regions (Antonarakis, 1984; Pagnier et al., 1984; Nagel et al., 1985; 

Lapouméroulie et al., 1992). Four major haplotypes are restricted to Africa, and are 

named Senegal, Benin, Bantu and Cameroon; a fifth haplotype, named Arab-Indian, is 

found in the Arabian Peninsula and India (Figure 2a). This spatial pattern, together with 

the high levels of molecular divergence among the different predominant HBB*S-linked 

haplotypes has led to the suggestion that HBB*S variants originated independently by 

recurrent mutation in each region where a single haplotype predominates (Figure 2b) 

(Pagnier et al., 1984; Flint et al 1998; Nagel and Ranney 1990). This hypothesis can, in 

  a 

   b 

Figure 1 - a) HBB*S allele frequency map. b) Historical map of malaria endemicity. Withdrawl from Piel et al., 2010. 
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fact, be traced back to Kurnit (1979), who proposed a multicentric hypothesis for the 

origin of HBB*S on the basis of initial insights about haplotype variation obtained with a 

single linked HpaI restriction site polymorphism. 

However, the low likelihood that at least five independent mutations recurred in a short 

period of time in different lineages was frequently used to argue that the single origin 

hypothesis was still preferable to a multicentric origin (Fullerton et al., 1994). According 

to this reasoning, the observed territorial segregation of HBB*S haplotypes could be 

better explained by the appearance of new haplotype associations through interallelic 

recombination and gene conversion, which could have spread a single mutation across 

multiple chromosomal backgrounds (Flint et al., 1998; Powers and Smithies, 1986). 

This interpretation seemed to be favored by the finding of a recombination hotspot 

immediately 5’ to the HBB*S gene and 3’ to the δ gene (Chakravarti et al., 1984). 

Moreover, Livingstone (1989) outlined a spatial diffusion framework in which different 

haplotypes arising from a single HBB*S mutation could become geographically 

segregated. According to this framework, when an allele is introduced into a population 

with endemic falciparum malaria, its frequency will rapidly increase by selection 

(Livingstone, 1989). Since the diffusion of a highly advantageous allele usually results 

from the introduction of a few migrants into new territories, it is reasonable to think that 

a single HBB*S haplotype will be present in the front of the spreading area 

(Livingstone, 1989; Excoffier and Ray, 2008). As stressed by Livingstone (1989), a 

major implication of this hypothesis is that the regions where a single major haplotype 

predominates are peripheral areas where the HBB*S allele, originating elsewhere, has 

been recently introduced by gene flow. However, in spite of describing preliminary 

simulation analyses, Livingstone (1989) did not provide a thorough quantitative 

examination of this scenario. 

 

 

 

 

 

 

 

 

 

 

Figure 2 - a) Geographical segregation of HBB*S 

haplotypes defined with restriction fragment length 

polymorphisms (RFLP). Areas of highest 

frequencies are represented with different colors. 

Spatial distributions of some haplotypes may 

encompass larger areas. b) Multicentric hypothesis 

of the HBB*S origin. 
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In contrast, the multicentric hypothesis has been strengthened with recent evidence 

indicating that the ability of very large populations to adapt under strong selection is not 

mutation-limited. For example, by studying insecticide resistance in Drosophila 

melanogaster, Karasov et al. (2010) provided an elegant demonstration that the same 

mutations can arise independently several times on different local haplotypes in a short 

period of time, as long as the population size is large enough to counteract the effects 

genetic drift (Karasov et al., 2010). More recently, Ralph and Coop (2010),  by means 

of analytical models and simulations, have shown that patterns whereas recurrent 

mutations predominate in different spatial areas (geographic parallel adaptation) are 

not unlikely in the presence of spatial structure and homogeneous selective regimes, 

provided that the selective advantage is high and population sizes are large. In those 

settings, assuming that each recurrent mutation spreads as an expanding wave with 

constant speed, the likelihood of geographic parallel adaptation critically depends on 

the distance reached by a selected allele before it encounters other successful allele 

arising by recurrent mutation in a different area (also called characteristic distance) 

(Ralph and Coop 2010). Importantly, the authors have shown that, using realistic 

parameter combinations, the characteristic distance associated with the diffusion of 

HBB*S could be sufficiently low for geographic parallel adaptation to be a likely 

explanation for the spatial patterns of HBB*S-linked haplotype segregation. However, 

this study focused exclusively on the spatial reach of putatively different HBB*S 

mutations without addressing their linked haplotype variation, which is a critical aspect 

to assess the likelihood of different models.  

The purpose of this thesis is to explore a computer simulation framework that can be 

used to study the effects of the spread of the HBB*S allele on linked haplotype 

variation, in order to ultimately assess to what extent the current patterns of geographic 

segregation of HBB*S haplotypes are consistent with a single mutational origin, or are 

better explained by parallel adaptation. Our approach consisted in first describing the 

basic properties of simulated haplotype variation, and then comparing the outputs of 

different simulated scenarios with observed data on extended haplotype variation 

linked to HBB*S alleles from various regions of Africa. Although, due to computation 

time restrictions, the data presented here are still preliminary and not sufficiently 

detailed to discriminate between alternative hypotheses, we are confident that our 

attempt provides useful insights into the geographical spread of HBB*S and other 

adaptive traits, as well as into the interdependence between spatial structure and 

evolutionary processes. 
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2. Material and Methods 

 

 

2.1 The empirical dataset 

 

The empirical dataset to which simulated data were compared consists of 330 high 

resolution HBB*S-linked haplotypes, available at the Human Evolutionary Genetics 

group at CIBIO (unpublished), which were sampled from 35 populations in eight 

different African countries (Table 1). The HBB*S bearing chromosomes were initially 

genotyped at four polymorphic restriction sites (HincII 3ʹ, HindIIIγG, HincIIΨβ, 

HindIIIγA) in order to identify the four classical RFLP-defined haplotypes associated 

with each HBB*S allele in Africa (Bantu, Benin, Senegal and Cameroon). After this 

initial classification, the haplotypes were additionally characterized with 11 

microsatellites distributed across a 525 kb region encompassing the HBB gene, which 

is 10-fold larger than the one including the RFLP markers (Figure 3). Haplotypes were 

inferred from genotype data using the Bayesian approach implemented in the Phase 

v2.1 software (Stephens et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Approximate location of microsatellites used in the characterization of haplotype diversity linked to the 

HBB*S mutation. Genes of the β-globin family are represented by black squares. The position of the HBB*S mutation is 

indicated with an arrow. 
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       Table 1 – Provenance of samples used in the study of the HBB*S variant. 

Region Country Ethnic group 

West Africa Cape-verde a) 

Central Africa Cameroon Baka Pygmies 

  
Mbenzele Pygmies 

  
Beti/Ewondo 

  
Bamileke 

  
Bassa 

  
Fali 

  
Foulbe 

  
Ngoumba 

  
Sanga 

  
Podokwo 

  
Uldeme 

 
Central African Republic Sanga 

 
São Tomé a) 

East Africa Sudan b) 

 
Kenya Rendille 

  
Luo 

Southeast Africa Mozambique Chewa 

  
Chibarué 

  
Chuabo 

  
Coti 

  
Lomwe 

  
Macua 

  
Marenje 

  
Sena 

  
Yao 

Southwest Angola Kimbundu 

  
Herero/Kuvale 

  
Kinkongo 

  
Nyaneka-Humbe 

  
Kioko 

  
Umbumdu 

  
Cuanhama 

  
Muhumbi 

  
Mumuíla 

      

 

 

a) The island of Cape Verde and São Tomé were peopled by slaves captured in adjacent 

areas of Africa and may be regarded as typical sink populations. Although the original 

ethnicities and spatial context have been blurred during the peopling of Cape Verde and 

São Tomé, the islands provide the opportunity to collect very divergent haplotypes in 

relatively limited geographic areas. 

b) Samples obtained in hospital environment without specification of ethic group. 
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In cases where a given HBB*S haplotype was collected in populations formed by 

relatively recent migration, we treated that haplotype as belonging to the African 

mainland area from where it likely originated. For example, Bantu and Benin 

haplotypes sampled in São Tomé were assigned to Congo/Angola and Benin/Nigeria 

regions, respectively, because they are likely to have been carried into the island by 

slaves recruited in those areas (Tomás et al., 2002). Likewise, Senegal haplotypes 

sampled in Cape Verde were considered to have originated from the Senegambia 

region, where most slaves that colonized the archipelago were captured (Curtin, 1969). 

In the extended haplotype dataset, each classical, RFLP-defined haplotype constitutes 

a population of chromosomes with a modal haplotype that is distributed across a 

considerably large area, and a series of less frequent haplotypes having more 

restricted distributions, which probably arose from recombination and/or mutation at the 

microsatellite markers. For example, as illustrated in Figure 4, most classical Bantu 

haplotypes sampled in Central-West Africa (São Tomé, Angola, Cameroon) share the 

same extended haplotype consisting of 11 microsatellite loci. Interestingly, the 

predominant Bantu haplotype in samples from Mozambique, differs from the modal 

Central-West African haplotype at the 5’ and 3’ ends of  the  studied  chromosomal  

region, revealing  a  previously undetected  local heterogeneity within Bantu range 

(Figure 4). Thus, we decided to name the two subtypes as Bantu-West and Bantu-

East, and treat them separately in data analyses. 

In addition to the Bantu, Cameroon, Benin and Senegal haplotypes, we found that 

different Afro-Asiatic speaking populations from northern Cameroon shared an atypical 

RFLP profile corresponding to a different modal extended haplotype that is not found in 

other populations. We named this haplotype Afro-Asiatic, although the low number of 

HBB*S-bearing chromosomes sampled in this region (n=14) is not enough to know the 

full range of its distribution. 

 

 

 

 

 

 

 

 

Figure 4 – Schematic representation of haplotype variation within the Bantu haplotype in four different populations. 

Each column represents one chromosome and each line one microsatellite. The modal haplotype is represented in 

green. Microsatellites that have alleles other than the modal haplotype are represented in white or brown. The position 

of the HBB*S mutation is indicated in red. 
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All together, we divided the extended haplotype data into six major groups (Cameroon, 

Benin, Senegal, Bantu-West, Bantu-East and Afro-Asiatic), whose frequencies in 

different sampled countries are shown in Figure 5. Figure 6 depicts the frequencies of 

the different haplotypes belonging to each major group. Note that, with the exception of 

the Cameroon type, which has a flattened distribution, most groups have a single 

predominant haplotype that is much more frequent than the other haplotypes. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Haplotype frequencies of the six major groups from the empirical dataset. Sampled countries are depicted in 

grey, with the exception of Cape Verde and São Tomé that are highlighted with a dashed circle. The number of samples 

(n) obtained in each country is shown together with the pie charts of HBB*S haplotype frequencies. 
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Figure 6 – Frequencies of the different haplotypes found in each major group (Senegal, Bantu-East, Bantu-West, 

Cameroon, Benin, and Afro-Asiatic). 
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2.2 Simulation approach 

 

 

Using a previously developed program (Santos AM, unpublished; appendix 1), we 

explored a forward-in-time strategy to simulate the diffusion of haplotypes linked to a 

favorable mutation. The simulation has two main components, a diffusion component 

representing the increase in frequency of a favorable variant and its dispersal across 

space, and a diversification component representing the generation of haplotype 

diversity.  

 

2.2.1 Diffusion of a favorable variant 

The classical Wright-Fisher model assumes that populations behave as panmitic units 

(each individual of the population is equally likely to interact with any other), with finite 

and constant size and discrete generations (Ewens, 1979). However, natural 

populations are not panmitic and, for species occupying large areas, individuals are 

more likely to mate with their geographic neighbors. To account for this lack of 

randomness in mating across a species range, Wright explored what he called a 

“isolation by distance” model, in which geographic distance limits the exchange of 

migrants throughout space (Wright, 1943). Following Wright’s work, Kimura and Weiss 

(1964) introduced the “stepping stone model” of population structure, in which 

individuals are distributed into discontinuous populations (Kimura and Weiss, 1964). In 

this model populations are arranged on a grid and migration takes place between 

neighboring populations; i.e. in each generation an individual can migrate at most one 

step between populations.  

Here, we simulated the diffusion of haploid individuals across one-dimensional or two-

dimensional grids using a stepping stone model. Each cell of the grid is hereafter 

referred to as “population” or “deme”, interchangeably. Isotropic migration occurs 

between nearest-neighbors in each generation and the size of each deme, N, remains 

constant. In this haploid model, haplotypes (hereafter also referred to as “individuals”) 

that will form the next generation remain in the parental population with probability 1-m 

and migrate to any of the n adjacent demes with probability m/n. The number of 

adjacent demes is 1 or 2 for one-dimensional simulations and 2, 3 or 4 for two-

dimensional simulations, depending on the position of the cell in the grid (Figure 7). 

Grid boundaries are reflective, which means that potential migrants in marginal 

populations are not lost by migration outside the grid. 

Since selection at β-globin gene is overdominant, the relative fitness of AS 

heterozygotes was set to 100% (WAS=1) and the fitness of AA (WAA) and SS (WSS) 

types were parameterized as 1-s1 and 1-s2, with s1 and s2 representing the selection 

coefficients against the AA and SS genotypes, respectively. 
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2.2.2 Evolution of haplotype diversity 

The simulated haplotypes were designed to match the characteristics of the haplotype 

system used to analyze the β-globin haplotype variation in the empirical dataset (Figure 

3). Haplotypes are encoded in a vector of 12 bytes, with positions 1-8 representing 

eight microsatellites 5’ of the β-globin gene, position 9 representing the β-globin gene 

itself, and position 10-12 representing three microsatellites 3’ of the β-globin gene. 

Except for position 9 (which is used to identify mutant and non-mutant haplotypes by 

holding a character value of “A” or “S”), all other positions (bytes), representing 

microsatellite loci, can have a maximum of 256 different allele states. To establish the 

initial assemblage of haplotypes in each deme, the 9th position of all haplotypes is set 

to “A”. For the A-bearing haplotypes, allele states at each locus are drawn from a 

multinomial distribution computed from the observed data. At the microsatellite loci, the 

maximum number of alleles was set to be equal to that observed in the data. 

At the beginning of the simulation the population of haplotypes carrying the ancestral 

“A” allele may have a facultative burn-in period of mixing, drifting and purging. Then, a 

single mutant allele is inserted at just one deme, by randomly selecting a haplotype 

and changing its 9th position to “S”. If this mutant allele goes extinct the simulation 

restarts, and this process is repeated until a predefined number of generations is 

reached without loss of the original mutant allele or any of its derivatives. Hence, all 

results are conditioned on the non-extinction of the mutant allele. 

As the mutant S allele increases its frequency due to selection, and disperses due to 

migration, the haplotype to which the S allele became originally associated can be 

eroded by mutation at the microsatellite loci, recombination between microsatellites 

and/or between microsatellites and the β-globin locus, as well as gene conversion at 

the β-globin locus. In each generation, mutation, recombination and gene conversion 

are followed by a resampling step where the following generation is formed under the 

influence of selection. Random haplotypes are sampled with replacement (simulating 

 

i + 1 i i -1 

m/2 m/2 

 

m/4 

m/4 

m/4 

m/4 

Figure 7 – Representation of the stepping stone 

model of population structure. a) one-dimension. 

b) two-dimensions. m = migration rate. 
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an infinite pool of gametes) until N is reached. In each population, the number of 

haplotypes that mutate, recombine or is converted is determined by a Poisson 

distribution. Note that the events being modeled (mutation, recombination, and gene 

conversion) are actually the outcomes of discrete trials, and would be more precisely 

modeled by using the Binomial distribution. However, when the population size is large 

and the occurrence of a given event is rare (law of rare events), the Binomial 

distribution can be approximated by a Poisson distribution with significant 

computational advantages. 

Microsatellite mutations were modeled using the symmetric stepwise model, where 

copy number changes only by one unit, and increases or decreases in copy number 

are equally likely. The minimum and maximum number of alleles per locus defines a 

lower and an upper boundary. In such bordering conditions, if the allele is hit by a 

mutation event, it undergoes a change in the opposite direction. 

Gene conversion was modeled as double-recombination. 

 

 

2.2.3 Simulation parameters 

The list of simulation parameters is displayed in table 2. In order to reduce the 

parameter space used in each simulation, some parameters were directly estimated 

from the data or from the literature (tables 2 and 3). Due to computation time 

constrictions, variable parameters were chosen from a limited grid of values that were 

considered sufficiently disparate to assess their impact on the outcome of simulations.  

 

 

 

Table 2 –Parameters of the simulation. 

 

a
 Parameters that were fixed in simulations 

b
 Parameters that were variable in simulations 

Parameters Fixed
a
 Variable

b
 

Number of demes  X 

Deme size  X 

Generations  X 

Number of mutants X  

Original deme (deme where mutation arises) X  

AA/ AS/ SS fitness values X  

Microsatellite mutation rates X  

Recombination rates X  

Gene conversion rate X  

Migration rate  X 

Generation at which  migration starts/stops  X 
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Microsatellite mutation rate estimates were based on the variance of repeat number in 

the observed data on the background of the ancestral A allele, which is not affected by 

selection (table 3). Specifically we assumed that the most variable microsatellite (that 

with highest repeat number variance) had a mutation rate µ=0.001 (Weber & Wong, 

1993), and calculated  the mutation rate of the remaining microsatellites according to 

their variance relatively to the most variable microsatellite. Recombination rates were 

interpolated from the HapMap recombination map (http://hapmap.ncbi.nlm.nih.gov/) 

(table 3). Based on Livingstone estimates (Livingstone, 1989), we assumed that AA 

and SS homozygotes have selective disadvantages of s1=0.20 and s2=1 relative to the 

AS heterozygote, respectively. This values are not very different from those assumed 

in Currat et al. (2002), s1= 0.152 and s2 = 1, or in Cavalli-Sforza and Bodmer (1971, 

p.150), s1= 0.15 and s2= 1. 

Table 4 displays the basic set of parameter combinations, based on different deme 

sizes, N, and migration rates, m, in variable one- and two-dimensional grids. Each set 

of parameters (simulations) was replicated 1000 times. In all simulations a single AS 

mutation is seeded at the central deme of the geographic grid, hereafter also referred 

to as the “original deme”. One-dimensional simulations were run for maximums of 200 

or 300 generations. Two-dimensional simulations were run for a maximum 200 

generations. Considering a generation time of 25 years, the maximum number of 

simulated generations corresponds to a period of 5000 or 7500 years, in agreement 

with the hypothesis that the malarial selective pressures favoring the spread of the 

HBB*S mutation only became relevant after the expansion of tropical agriculture across 

Africa (Livingstone, 1989). While older ages for malaria and for the HBB*S mutation are 

entirely possible, and should be evaluated, an increase in the number of generations 

would have required unreasonable computational times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 – Features of microsatellite markers used in simulations of haplotype variation linked to the HBB*S mutation. 

STR 
Physical  

position (bp)
a
 

Maximum number 

of alleles
b
 

Mutation rate Recombination rate
c
 

5’ (TCTA)n 5,501,925 11 0.000232904 0.002006359 

5’ (AG)n 5,416,891 5 0.0000342 0.000512 

5’ (GT)n 5,341,113 23 0.001 0.004003 

5’ (CA)n 5,254,000 7 0.0000815 0.0000753 

5’ (TG)n 5,231,503 17 0.000838 0.0000112 

5’ (TGTA)n 5,220,382 4 0.0000253 0.0000944 

5’ (TG)n 5,207,520 16 0.000865 0.00000189 

5’ (ATTTT)n 5,206,333 5 0.0000389 0.001134 

 HBB 5,204,807 - - 0.002387 

3’ (TG)n 5,094,990 17 0.000694 0.000645 

3’ (TTTA)n 5,017,841 6 0.000101 0.000203 

3’  (GT)n 4,976,041 10 0.000213 - 

a Data from UCSC Genome web browser (http://genome.ucsc.edu). 
b Total number of alleles observed in the sampled populations. 
c Recombination rate between adjacent markers, measured to the right-side of the first marker. 

http://hapmap.ncbi.nlm.nih.gov/
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Table 4 – Parameter combinations and grid size 

 Simulation N M Nm Grid 

1
D

 

1 1000 0.05 50 101 

2 1000 0.1 100 101 

3 2000 0.05 100 101 

2
D

 

4 200 0.05 10 45 x 45 

5 200 0.1 20 70 x 70 

6 500 0.01 5 25 x 25 

7 500 0.05 25 45 x45 

8 500 0.1 50 70 x 70 

9 1000 0.01 10 35 x 35 

10 1000 0.05 50 55 x 55 

11 1000 0.1 100 80 x 80 

 

 

 

 

In addition to the basic set of scenarios displayed in table 4, we explored additional 

parameter combinations that were designed ad hoc to assess the influence of 

particular features in the outcome of the simulations (table 5).  For example in 

simulation 13 we tested the outcome of beginning to spread the S mutation only 50 

generations after its appearance in the original population (table 5). We have also 

analyzed the effect of the gene conversion rate between the A and S alleles, by 

assuming that gene conversion was 7.3 times higher than the recombination rate for a 

mean tract length of 500 bp, as estimated by Frisse et al. (2001) (simulations 12 and 

14, in table 5). To implement the Frisse et al (2001) estimate, we divided the gene 

conversion rate estimated for the 111343 bp track contained between the two 

microsatellites immediately flanking the β-globin gene and then multiplied it by the 

number of possible conversions with tract length of 500 bp involving the A and the S 

alleles. 

 

 

Table 5 - Parameter combinations, grid size and particular features 

 
Simulation N M Nm Grid GC

a
 

Start 

migration
b
 

2
D

 

12 200 0.05 10 45 x 45 0.000115 - 

13 500 0.1 50 70 x 70 - gen 50 

14 1000 0.1 100 80 x 80 0.000115 - 
 

a
 – Gene conversion rate 

b 
– Generation in which migration starts 
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3. Results and Discussion 

 

3.1  Basic properties of the simulation system 

 

 

3.1.1 β-globin S diffusion 

The spatial distribution of the S allele frequency can be described as concentric 

growing rings with the highest frequency at the diffusion center. As shown in figure 8, 

the S frequency increases with time until its equilibrium frequency is reached in each 

population. The wavelike pattern is caused by the delay in the arrival time of the 

favored mutation at populations that are located at increasing distances from the 

center. The simulated equilibrium frequency is in agreement with the predicted 

equilibrium given by s1/(s1+s2)=0.167, a value that seems realistic considering the 

observed frequencies in Africa (Livingstone, 1989). 

Figures 9 and 10 illustrate the speed of the S variant dispersal in one- and two-

dimensional population grids, respectively, using different combinations of deme sizes, 

N, and migration rates, m, for 25 independent runs (cf. Table 4). As predicted by the 

theoretical models of Fisher (1937) and Kolmogorov, Petrovskii, and Piscunov (KPP) 

(Kolmogorov et al. 1937), the spread of the favorable mutation forms a travelling wave 

of constant speed. However, as noticed in a previous simulation study (Ralph & Coop, 

2010),  the constant state is preceded by a brief period of variable speed. Comparisons  
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Figure 8 – Rate of advance of the S allele (average of 1000 runs). a)  Four time slices from one-dimensional 

diffusions using the parameters of simulation 2 (cf. Table 4); b) Two time slices from two-dimensional 

diffusions using the parameters of simulation 11 (c.f. Table 4). In each case a single S mutation was seeded 

in the central population. The numbers in concentric rings refer to S allele frequencies. Gen - generations. 
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of the average wave speed of 1000 runs between different parameter combinations are 

depicted in Figure 11. The wave speed increases with migration (Figure 12a) but is 

less sensitive to variations in population size (Figure 12b). In fact, whereas genetic drift 

associated with low population size seems to retard the spread of the mutant, the effect 

of increasing population size on the speed is characterized by diminishing returns 

(Figure 12b). These observations are in agreement with the theoretical expectations of 

the continuous isolation-by-distance model, which predict that, for sufficiently large 

populations, the wave speed depends exclusively on the migration rate and the 

selection coefficient, according to the relationship (Fisher, 1937; Ralph & Coop, 2010): 

 

                  (1) 

 

where   is the speed (in demes/generation),   is the migration rate,   is the number of 

dimensions and   is the selection coefficient (for details see appendix 2). In the discrete  
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Figure 9 - Spatial reach and wave speed in one-dimensional simulations. (a-c) Proportion of simulation runs 

in which the S variant reached a given population at different time slices, using parameter combinations 

shown in panels d-f. (d-f) Relationship between the range diameter (maximum distance, in demes, reached 

by the variant) and the number of generations in 25 individual runs, using different parameter combinations. 

In all simulations a single S mutation was seeded in the central population.  
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Figure 11 - Relationships between range diameter (in demes reached by the mutation) and number of 

generations.  The lines were obtained by averaging 1000 independent simulation for each of different 

parameter combinations. a) One-dimensional simulations (simulations 1 – 3, cf. table 4); b) two-dimensional 

simulations (simulations 4 – 11, cf. table 4). 

Figure 10- Spatial reach and wave speed in two-dimensional simulations. (a-c) Proportion of runs in which the 

S variant reached a given population at different time slices, with N = 200 and m = 0.05. (d-f) Relationship 

between the range diameter (maximum distance, in demes, reached by the variant) and the number of 

generations in 25 individual runs for different parameter combinations. In all simulations a single mutant allele 

was seeded in the central population. 

N=1000, m=0.1 N=1000, m=0.05 N=200, m=0.05 
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stepping stone model, the relationship also predicts, for the same parameter values, a 

wave of advance faster  in one-dimensional  simulations than in two-dimensional ones.  

This can be observed by comparing Figures 11a and 11b. Despite the general trends 

being in agreement with the theoretical model, the computed speed values were one to 

two times faster than predicted, similarly to previous results by Ralph & Coop (2010). 

As discussed by the authors, the discrepancy may be explained by the discrete nature 

of generations and demes in the stepping stone model, which contrasts with the use of 

continuous time and space of the Fisher-KPP equation, from which equation 1 

ultimately derives. 

 

 

3.1.2 Haplotype diversity in time and space 

 

3.1.2.1  Intrapopulation diversity 

As discussed above, S variants arriving in each population by migration (or mutation in 

the case of the original population) are expected to increase in frequency due to 

selection. During this process, S-bearing haplotypes will also become increasingly 

diverse because of the cumulative effects of microsatellite mutation, recombination and 

gene conversion. However, recurrent sampling associated with migration counteracts 

the accumulation of haplotype diversity during the spread of the variant, generating 

consecutive bottlenecks causing substantial reduction of genetic diversity at the wave 

front. The genetic composition of these edge populations may be regarded as a subset 
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Figure 12 – a) Influence of migration (m) on the wave speed (in demes/generation) for two-dimensional 

simulations (simulations 6 – 11, cf. table 4). b) Influence of population size (N) on the wave speed (in 

demes/generation) for two-dimensional simulations (simulations 4, 5, 7, 8, 10 and 11, cf. table 4). 
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of the diversity generated by mutation, recombination and gene conversion that is 

found in populations that are closer to the diffusion center.  

We have assessed the space-time evolution of S-linked haplotype diversity using a 

number of different summary statistics to assess consistency between different aspects 

of the data. Figure 13 shows how the mean number of different S-linked haplotypes 

within each population (nh) increases with time but decreases in space towards the 

edge of the S variant distribution.  As expected, nh increases linearly with the 

population size, N, (Figure 14a), since genetic drift (inversely related with N) tends to 

eliminate the diversity accumulated in S-bearing chromosomes. Migration also 

increases nh because new haplotype combinations arising in a specific population will 

be exchanged among populations (Figure 14b).  
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Figure 13 – Spatial-temporal variation in the 

number of different S haplotypes (nh). The lines 

are time slices of simulation 1 (cf. table 4), and 

were obtained by averaging 1000 individual runs. 

A single mutant allele was seeded in the central 

population. 

Figure 14 – a) Influence of population size in the number of different S haplotypes (nh) in two-dimensional 

simulations (simulations 4, 5, 7, 8, 10 and 11, cf. table 4). b) Influence of migration in the number of different 

S haplotypes (nh) in two-dimensional simulations (simulations 6 – 11, cf. table 4). The number of different S 

haplotypes was computed by averaging the top 1% nh values for the average of 1000 runs, after 175 

generations. 
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The frequency of the most common haplotype within S-bearing haplotypes, P (here 

also called predominant haplotype), which is inversely related to haplotype variation, 

can also be used to summarize the levels of S haplotype variation within each 

population. As shown in Figure 15, at any given generation, P tends to be highest at 

the edge of the variant distribution (Figure 15a) and this tendency is counteracted by 

the number of migrating gametes (Nm) that are exchanged between populations, which 

reflect the joint effects of N and m in increasing S-linked haplotype variation (Figure 

15b).  

Besides analyzing the frequency of the most common haplotype we have also 

evaluated the behavior of the original haplotype where the S mutation initially arose 

(Figure 16). Characteristically, the average frequency of the original haplotype (Po) 

remained approximately constant through space, except for the most peripheral 

demes, where the number of simulations that were reached by the S mutation and 

could be used to calculate the average is very low (Figure 16a). This behavior is 

predictable since, theoretically, the expectation of Po depends only on the age of the S 

mutation (Stephen et al., 1998). However, due to genetic drift, Po values are expected 

to vary substantially across the different replications of a given simulation, which are 

equivalent to different realizations of the evolutionary process. This property is 

illustrated in Figure 16b, which shows that variance of Po across replications sharply 

increases at the spatial edges of the S variant distribution where, due to serial 

bottlenecks, the effects of genetic drift are more intense.  Another implication of the 

wave-like spread of the S mutation is that the proportion of replications where the  

original haplotype remains the most frequent haplotype (i.e. Po=P) tends to be lowest at 

the edges of the distribution where genetic drift tends to increase the frequency of 

newly generated haplotypes (Figure 16c).  
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Figure 15 – a) Spatial-temporal distribution of the average frequency of the predominant haplotype (P) in 

simulation 3 (cf. table 4). b) Influence of the parameter combination Nm in the frequency (P) of the 

predominant haplotype for two-dimension simulations (simulation 4 – 11, cf. table 4). The predominant 

haplotype (P) was computed by averaging the lowest 1% P values for the average of 1000 runs, after 175 

generations. 
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The behavior of nh, P and Po (Figures 6, 8 and 9) is consistent in showing a progressive 

loss of haplotype diversity towards the wave front. This observation is in pace with 

Livingstone’s hypothesis that the areas where different homogeneous HBB*S 

haplotypes predominate should not be regarded as centers of origin, but as edges 

where the variant has arrived only recently (Livingstone, 1989). However, descriptive 

statistics like nh, P and Po do not provide information on the levels of molecular 

divergence across different haplotypes, which is a critical aspect of the observed S-

linked haplotype distribution that must be addressed by simulations. 

To overcome this caveat, we defined a more sophisticated summary statistic, which 

takes into account the molecular similarity of haplotypes by quantifying the average 

relative length of haplotype tracts encompassing the HBB locus that are shared 

between two HBB*S-bearing chromosomes randomly sampled from a given population 

(Hii) (Figure 17).  Moreover, in contrast to nh, P and Po, this statistic may additionally be 

used to measure levels of interpopulation divergence in haplotype composition (Hij), 

when HBB*S-bearing chromosomes are sampled from different populations. 
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Figure 16 – a) Spatial-temporal distribution of 

the average frequency of the original haplotype 

(Po) in simulation 3 (cf. table 4). b) Spatial 

distribution of the variance of Po across 1000 

individual runs at generation 300. c) Proportion 

of individual runs in which the original haplotype 

remains the most common haplotype in 

simulation 3. A single mutant allele was seeded 

in the central population. 
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Figure 18 illustrates the spatial-temporal patterns of Hii in a one-dimensional scenario. 

Consistent with the previous results, haplotype homogeneity exhibits a sharp increase 

in populations located at the edges of the distribution. For example, the Hii values at 

the edges of the S variant distribution at generation 200 are higher than those 

observed in the population of origin at generation 50 (Figure 18). Two-dimensional 

simulations generated similar patterns (not shown).     
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Figure 17 – Schematic 

representation of Hii calculation for 

a population with 2 different 

haplotypes (A and B). The HBB*S-

linked tract shared by each pair of 

haplotypes is represented in green. 

The homogeneity between two 

haplotypes is computed by 

multiplying the relative length of the 

tracts by the probability of sampling 

a given pair of haplotypes. The Hii 
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Figure 18 – Spatial-temporal distribution of the 

intrapopulation haplotype homogeneity (Hii) obtained by 

averaging 1000 runs of simulation 1 (cf. table 4). A single 
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3.1.2.2  Interpopulation diversity 

To assess the levels of interpopulation differentiation in the haplotype composition of S-

bearing chromosomes, we analyzed how Hij values varied with distance of separation 

between pairs of peripheral populations located in opposite directions from the central 

population, as well as between pairs of central-peripheral populations. Figure 19a 

exemplifies the patterns of Hij variation as functions of the distance of separation 

between populations in a one-dimensional system. The pairwise S-linked haplotype 

similarities decreases as the distance separating two populations increases, and this 

decrease is more marked when the populations are both located at the periphery of the 

distribution than  when  central and  peripheral  populations are compared (Figure 19a).  

Intuitively, this can be explained by the directional flow of haplotypes to each side of 

the wave of advance. While selection increases the number of S haplotypes in central 

populations, the low number of haplotypes that reach the wave front will more easily 

spread in the forward direction than backwards, since the frequency of the S mutation 

is higher in the center of diffusion, where these haplotypes are easily diluted. This 

behavior is again consistent with Livingstone’s suggestion that the differences between 

HBB*S haplotypes predominating in different regions may result from these regions 

being located at the periphery of the S-value distribution (Livingstone, 1989). 
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Figure 19 -  Variation of the interpopulation haplotype homogeneity (Hii) as function of the distance of 

separation between  pairs of populations (in number of populations) . a)  One dimensional simulation 

(simulation 1, cf. table4). b) Two-dimensional simulation (simulation 4, cf. table 4). Per – peripheral 

population, Cen – central population. The points are averages of 1000 independent runs.  
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Figure 19b shows the relationships between Hij and distance of separation in two 

spatial dimensions, which are reminiscent of Moran’s I spatial correlograms obtained 

with the isolation-by-distance framework (Moran, 1950; Epperson, 2003). Interestingly, 

the form of the decrease of Hij with distance in two-dimensional models is quite 

different from that observed in Figure 19a for one-dimension, highlighting the influence 

of the number of spatial dimensions in the patterns of haplotype variation.  

Figure 20 shows that both Hii and Hij are largest when the number of migrating 

gametes is low (Nm), indicating that migrant exchange across populations increases 

the within population diversity and blurs the inter-population differentiation of S-linked 

haplotypes.   

 

 

 

       

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

Figure 20 – Influence of the parameter 

combination Nm in the intra- (Hii) and 

interpopulation (Hij) homogeneity for two-

dimensional systems, using simulations 4-11 

(cf. table 4). Displayed values are averages of 

1000 individual runs after 200 generations 
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3.2 Identifying sectors 

 

The analyses performed in the previous sections using different summaries of the S-

linked haplotype diversity were all consistent in showing that consecutive sampling of 

S-bearing chromosomes results in a noticeable increase of haplotype homogeneity at 

the edges of the variant distribution. This homogeneity is caused by the dramatic 

reduction of the number of S variants reaching populations that are far from the 

location where the S mutation originated. Eventually, the rare “edge haplotypes” will 

increase in frequency due to natural selection and will give rise to S-linked haplotype 

profiles that are different from those observed at the center of the spatial distribution.  

The observed increase in the levels of S-haplotype homogeneity as one moves further 

away from the origin is strikingly analogous to the increase in frequency that can be 

experienced by mutations arising in the wave front of populations expanding into new 

territories (Edmonds, 2004; Hallatschek and Nelson, 2008). This occurrence, termed 

“allele surfing”  (Klopfstein; 2006), has been extensively studied by means of simulation 

and analytical methods, in the context of range expansions, in which new mutants are 

neutral or even deleterious (Edmonds et al., 2004; Klopfstein et al., 2006; Travis et al., 

2007; Hallatschek and Nelson, 2008; Excoffier and Ray, 2008) Moreover, Hallatschek 

et al. (2007), using microbial populations, have experimentally shown that allele surfing 

during range expansions is expected to create temporarily stable sectors where 

alternative alleles become completely fixed in different areas of the geographic range. 

This outcome has been subsequently replicated by simulation (Excoffier & Ray, 2008; 

François et al., 2010).  

In contrast with these studies, individuals in our simulation framework are not 

expanding towards uninhabited territory, and the S variant, although being deleterious 

in homozygotes, behaves like a favored allele. However, the wave of advance of the S 

mutation can still be considered analogous to range expansions, if we focus on the 

dynamics of the populations of S-chromosomes. In this setting, spreading S-

chromosomes may be viewed as haploid individuals entering newly colonized territory; 

overdominant selection is equivalent to logistic population growth, and mutant alleles 

correspond to new S haplotypes resulting from recombination or mutation at linked 

microsatellites.  This analogy, which is supported by our observations on the loss of S-

linked haplotype variation at the wave front, prompted us to assess if large patches of 

the S-spreading area could become occupied by different predominant S-linked 

haplotypes. 

To this end, we looked for groups of populations sharing the same predominant 

haplotype in each replication of the simulations. Figure 21 shows the end results of 

individual realizations of simulation 8, 10 and 11 (cf. table 4) clearly demonstrating that 

the wave of advance of the S allele can create several patches (or sectors) formed by 

contiguous populations sharing S-linked modal haplotypes that are different from those 

observed elsewhere. These sectors are evocative of the currently observed geographic 

segregation of the HBB*S haplotypes in Africa. 
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Figure 21 – Outputs of six independent runs of 200 generations showing the spatial distribution of sectors 

encompassing populations with the same predominant S-linked haplotype. Each color represents a different haplotype. 

Orange stands for areas not reached by the S mutation. Haplotypes that are not shared by a minimum of n populations 

are not displayed (grey areas). Running conditions were according to simulations 8, 10 and 11 (cf. table 4).   

 

 

Importantly, the area close to the diffusion center is devoid of sectors in the majority of 

simulations (eg. Figure 21b). When sectors are formed in this area, they usually involve 

a small number of populations or are characterized by low frequencies of predominant 

haplotypes. This is not unexpected, since haplotype diversity is highest and S-linked 

haplotype frequencies are flatter at the place of origin. 

Figure 22 illustrates how the frequency of the predominant haplotype in each sector 

varies across the whole geographic range of the S mutation, using one realization of 

simulation 11 (cf. table 4). The surfing  phenomenon  is  clearly  shown  by the gradual 

increase of  haplotype frequencies towards the edge of  haplotype distributions, even  

within the limits of each sector (eg. Figures 22a6 and 22a10). Interestingly, sectors 

seem to be quite sharp, as S-haplotypes predominating in a sector seldom reach 

populations that are far beyond the limits of that sector (eg. Figure 22b). Finally, we 

observed that the haplotype with the widest distribution (corresponding to the largest 

sector) is frequently the original haplotype to which the S mutation became associated 

(eg. Figure 22a6). However, this original haplotype may not be the most common one, 

and may even be extinct in the central population after 200 generations (cf. Figure 

16c). 
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Figure 22 – Spatial distribution of S-haplotype frequencies in one replicate of simulation 11 (cf. table 4) after 200 

generations. a1-a10) Spatial variation  of the frequencies of S-haplotypes predominating in each of the sectors 

identified in panel c. b) Frequency distribution of the haplotype predominating in a10 c) Spatial variation of the 

frequency of the S-haplotype predominating in sector 10 (also shown in panel a10) with delimitation of the sector’s 

limits (dashed contour). n – minimum number of populations defining a sector. 
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3.3 Evaluating fitting 

 

In the previous section we have shown that geographic patches dominated by unique 

S-linked haplotypes may arise during the dispersal of a single advantageous HBB*S 

mutation, without being necessary to invoke recurrent mutation. However, a patchy 

distribution of haplotypes is not the only property of the observed HBB*S haplotype 

distribution. In fact, besides displaying geographic segregation, the six different 

haplotype classes discriminated in the observed dataset (cf. section 2.1) are also 

characterized by high levels of haplotype homogeneity (high P and Hii), while modal 

haplotypes from different classes are highly divergent (low Hij). Tables 6, 7 and 8 

quantify the most important characteristics of the haplotype groups found in the 

empirical dataset using the P, Hii and Hij summary statistics (cf. section 3.1), assuming 

that each of haplotype group corresponds to a geographic area (or sector) 

encompassing different populations (cf. section 3.2). 

 

 

 

3.3.1 Pairwise population comparisons in one-dimensional simulations 

 

To further evaluate the extent to which single-mutation simulations could approximate 

the empirical data, we started by qualitatively comparing the observed Hii and Hij 

statistics (Table 6) with the values obtained within and between pairs of populations 

located at different positions of simulated one-dimensional waves of advance (Figure 

23).  

Figure 24 illustrates the influence of the number of simulated generations and the 

relative position of compared populations in the levels of resemblance between 

simulated and observed data. After 50 generations (Figure 24a), when the 

comparisons  involve  peripheric and central  populations, or peripheric populations that  

 

 

 

 

 

 

 

 

 

 
Ba-W Ba-E Ca Be AA Se 

 

Ba-W 0.681 
     

Ba-E 0.599 0.893 
    

Ca 0.103 0.102 0.513 
  

Be 0.113 0.111 0.113 0.708 
  

AA 0.083 0.080 0.084 0.269 0.511 
 

Se 0.022 0.014 0 0.185 0.144 0.867 

Table 6 – Frequency of the intra (Hii) and interpopulation (Hij) homogeneity 

observed in African populations. Hii values are represented in grey. 
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are close to the center, the simulation data displays a strong correlation between the 

levels of haplotype diversity calculated within (Hii) and between (Hij) the populations 

involved in each pairwise comparison, (Figure 24a1-a3 and Figure 23); i.e., the 

decrease of Hii is usually followed by a decrease in Hij. In these cases, there is a 

noticeable separation between the simulated and observed data, as the latter are 

characterized by combinations of high intrapopulation homogeneity (high Hii) and high 

interpopulation divergence (low Hij) values. In contrast, when comparisons involve 

populations situated at opposite edges of the wave of advance (Figure 24a4), the 

correlation between Hii and Hij becomes less pronounced in simulated data and a 

better approximation with observed data is achieved. However, the number of 

simulated data points in these comparisons is low, reflecting the low number of 

simulations in which the HBB*S allele reaches the populations located at the edge of 

the spatial grid. 

After 200 generations (Figure 24b) the simulated and observed data become much 

closer when comparisons involved peripheral populations (Figure 24b3 and 24b4), 

even if these populations are not strictly located at the edges of the grid (Figure 24b3).   

These preliminary assessments show that 50 generations are probably not enough to 

create the level of divergence observed between different haplotypes and that 

populations with high levels of intra-population homogeneity (high Hii) can hardly 

represent a center of diffusion of mutation. For example, if we consider that the area 

where the Bantu haplotype predominates is located in the periphery of a wave of 

advance of a single mutation, it would be very unlikely that this mutation originated in 

any of the regions where other S-haplotype categories predominate. Instead, under the 

hypothesis of single mutation, the most likely interpretation of the observed data is that, 

as proposed by Livingstone (1989), current patches occupied by different haplotypes 

are located at the edges of a spreading area whose center is to be found elsewhere.  
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location of populations compared in figure 24 (simulation 2, 

cf. table 4).  
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3.3.2 Pairwise comparisons of sectors in two-dimensional simulations 

The approach developed in the previous section, although informative about some of 

the factors influencing the distribution of haplotype variation, only provides a poor 

analogy between simulated and real data, because the spread of HBB*S was likely to 

have been two-dimensional, and because well-defined simulated populations are not 

equivalent to large haplotype spatial patches encompassing multiple populations. 

To overcome this limitation, we further attempted to evaluate the fit between simulated 

and empirical data by characterizing the levels of haplotype diversity within and across 

sectors that were defined as discussed in section 3.2. To this end, we first chose the 

minimum number of populations defining a sector, and kept it fixed in each analysis. 

Although this choice is arbitrary, the use of different minimum sizes for a sector has a 

small influence in the results (not shown). Then, for each of 1000 simulation runs, the 

frequency of the predominant haplotype and the intra-population homogeneity were 

computed by averaging P and Hii values (cf. section 3.1) across all sectors. The 

interpopulation homogeneity was measured by averaging pairwise Hij values computed 

between all possible pairs of sectors formed in each run. A set of observed P, Hii and 

Hij were also obtained by applying the same rationale to the six-haplotype groups from 

the empirical data, which are equivalent to six different geographic sectors (Table 8). 

Finally the three summary statistics values obtained for each run of each simulation 

were compared with the averaged observed values by means of Euclidean distances 

computed according to: 

 

               
                   

                 
    (2) 

 Ba-W Ba-E Ca Be AA Se 

P 0.58 0.903 0.222 0.525 0.571 0.867 

Table 8 – Average of the frequency of the predominant haplotype (P), intra 

(Hii) and interpopulation (Hij) homogeneity.  

𝑯𝒊𝒊      𝑯𝒊𝒋      𝑷  

0.695 0.135 0.611 

Table 7 – Frequency of the predominant haplotype (P) observed in African 

populations. 
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In all, a maximum total of 1000 distances between simulated runs and observed data 

were obtained for each simulation. 

To assess the relative consistency between different simulation scenarios and the 

empirical data, we ordered the simulated data sets by increasing distance to the 

observed data and estimated the fraction of datasets obtained with each simulated 

scenario in the nδ smallest distances. Figure 25 displays the fractions of simulated data 

closest to the empirical data for simulation scenarios 4 to 11 (cf. Table 4) for different 

nδ values. Simulation 4 (N=200, m=0.05) is the one that better fits the observed data. 

Simulation 6 (N=500, m=0.01) has also a relatively good fit, especially for low nδ 

values. Differently, simulations 5, 8, 10 and 11, all with high Nm are much more 

discordant from the observed dataset and are not even represented in the range of nδ 

smallest distances. Taken together, the results indicate that conditions where genetic 

drift is high (low N) and migration is low (m), tend to favor spatial patterns with the 

closest resemblance to the observed data. 

In Figure 26 we compare the fit to the observed data of simulations 12 and 14, which 

unlike simulations 4 to 11 also take gene conversion into account (cf. Tables 4 and 

Table 5). The importance of gene conversion has been stressed by several proponents 

of the single-origin hypothesis of HBB*S, since direct A->S gene conversion provides a 

simple mechanisms for the S allele to become associated with haplotypes that are very 

different from the chromosome to which the S mutation was originally associated (Flint, 

1998; Livingstone, 1989). Consistent with Figure 25, simulation 12 with Nm=10 shows 

a much better fit to the observed data than simulation 14 with Nm=100.  

We have additionally compared simulation scenarios 4 and 12 (cf Tables 4 and 5) to 

assess the implications of including or not direct A->S gene conversion in the 

parameter set. As shown in Figure 27 there is no clear discrimination between the best 

gene conversion and non-gene conversion scenarios, suggesting that gene conversion 

does not improve the fitting of simulated to observed data. 
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3.3.3 Preliminary assessment of multicentric origins 

In the previous analyzes, we focused on evaluating the outcomes of different 

simulation conditions, assuming a single origin for HBB*S. In this setting, the spatial 

grid was viewed as a miniaturized (and simplified) model of the African continent, 

where HBB*S haplotype patches were considered to be equivalent to current areas of 

Africa where different HBB*S predominate. However, our simulated grids can be also 

used to assess, at least preliminarily, the implications of multicentric origins. In fact, if 

the HBB*S is considered to have arisen by multiple recurrent mutations, the simulated 

spatial grid can be viewed as the dispersal area of one of the several independent 

mutations. In this setting, to compare the fit between observed and simulated data, we 

merged all populations in the spatial grid into a single metapopulation and computed 

the Euclidean distance between the frequency of the predominant haplotype (P) in the 

meta-population and the observed dataset. 

Figure 28a displays the relative fit to the data of simulation scenarios 4 to 11 (cf. table 

4) using this new approach. In this case simulation 6 is the one that better fits the 

observations, but no marked differences were observed between most simulated 

scenarios. To assure comparability between the muticentric and the single-origin 

scenarios we reassessed the fit of simulations under the single origin scenarios, using 

P as the  only summary statistic (but calculating it as the average of Ps from different 

sectors and not from a single metapopulation). As shown in Figure 28b, the most 

suitable simulation was found again to be simulation 4 (cf Table 4 and Figure 25). 
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Figure 26 – Proportion of simulated datasets 

that are closest to empirical datasets for 

different nδ values. The two compared 

scenarios are implemented in simulations 12 

and 14 (cf. table 5). γ - gene conversion rate. 

 

Figure 27 – Proportion of simulated datasets 

that are closest to empirical datasets for 

different nδ values. The two compared 

scenarios are implemented in simulations 4 

and 12 (cf. table 4 and 5, respectively). 
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Finally, as show in Figure 28c, we compared the two best simulations of the single 

origin and multicentric frameworks and found that the single origin model clearly 

outperforms the muticentric model. The low performance of the multicentric setting is 

most probably due the fact that in each center of diffusion, at least in a wave of 

advance scenario, haplotypes linked to the spreading mutation will tend to become 

very diverse with time, and regions of high homogeneity, like those currently observed 

in Africa, will be difficult to find unless the mutation is very recent. Figure 29 illustrates 

this reasoning by showing the relationship between P at a metapopulation representing 

a center of diffusion, under the multicentric hypotheis and the number of simulated 

generations. Note that to fit some observed values of P which are on the order of 0.6 

(cf. Table 7),  each recurrent mutation had to appear at most about 60 generations ago, 
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Figure 28 – Proportion of simulated datasets 

closest to empirical datasets for different nδ 

values using only the P statistic. a) The 

compared scenarios are implemented in 

simulations 4 to 11 (cf. table 4) and the spatial 

grid was treated as a single metapopulation. b) 

The compared scenarios are implemented in 

simulations 4 to 11 (cf. table 4) and P was 

calculated as the average of different sectors. c) 

The compared scenarios are implemented in 

simulation 4 taking sectors into account and in 

simulation 6 treating the spatial grid as single 

metapopulation. 
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which may be an unreasonably short time interval for each HBB*S independent 

mutations to spread across their current geographic areas. In any case more 

simulations including wider ranges of demographic models (e.g. range expansions) will 

be needed to draw more robust conclusions about this issue. 

 

3.3.4 Hypothesis testing 

In the previous sections we have compared the relative approximation between 

observed and simulated data using a limited set of demographic scenarios. This 

approach was sufficiently informative to discriminate the relative fit of different 

scenarios, but does not assess the extent to which these scenarios could be accepted 

or rejected using more standard hypothesis testing approaches. 

To implement such approaches, we took into account that the observed dataset is 

characterized by high frequency of the predominant haplotype (P), high intra-population 

homogeneity (Hii) and low inter-population homogeneity (Hij), and estimated the 

probability that a single HBB*S mutation generates simulated sectors with the following 

properties: i) P values that are equal or higher than those obtained in the observed 

dataset; ii) Hii values that are equal or higher than observed; and iii) Hij values are 

equal or lower than observed. The models were rejected when the observed summary 

statistics lied on the upper 95% percentile (for P and Hii) or lower 5% percentile (Hij) of 

null distributions obtained by different simulation scenarios (equivalent to p<0.05 in 

one-tailed tests).  

Figure 30 shows how this approach was used to test the single-mutation scenario 

implemented in simulation 4. Note that, even though simulation 4 was considered the 

best-fitting of all compared scenarios, the probability of generating Hii and Hij values 

that resemble the observed data under this simulation (Figure 30b and 30c) is lower 

than 0.05.  
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Table 9 shows the results of the tests applied to all simulated two-dimensional 

scenarios listed in tables 4 and 5. Simulations 4, 12 and 6 appear to generate P values 

that are close to real data with high probability. Simulation 6 was the only one being 

consistent with the observed data for Hii. However, none of the simulations produced 

Hij values that were sufficiently close to the observed data, indicating that the diffusion 

conditions that were used in the present work, although being illustrative of the effects 

of mutation spreading on linked haplotype variation, can still not explain the observed 

patterns of haplotype diversity. 

In the future, the simulation framework that was developed in this work should be used 

to explore a more comprehensive set of demographic scenarios and provide a more 

robust framework for assessing alternative evolutionary hypotheses.   

 

 

Table 9 - Probabilities of obtaining a summary statistic at least as extreme as the one that was observed, assuming that 

the null hypothesis is true. P – Frequency of the predominant haplotype, Hii – intra-population homogeneity, Hij – inter-

population homogeneity.  

 

P Hii Hij 

P α
a

 p
b
 Hii α p

b
 Hij α p

c
 

sim 4 0.644     0.358 0.680     0.014 0.220     0.004 

sim 5 0.508     0 0.565     0 0.221     0 

sim 6 0.662     0.256 0.701     0.057 0.175     0.041 

sim 7 0.453     0 0.534     0 0.379     0 

sim 8 0.371     0 0.476     0 0.211     0 

sim 9 0.538     0.004 0.600     0.002 0.218     0.019 

sim 10 0.360     0 0.477     0 0.217     0 

sim 11 0.296     0 0.436     0 0.210     0 

sim 12 0.652     0.343 0.680     0.023 0.234     0.009 

sim 13 0.293     0 0.433     0 0.203     0 

sim 14 0.365     0 0.465     0 0.198     0 

Observed 0.611 0.696 0.135 

a 
Simulated value corresponding to an alpha of 0.05. 

b
 Estimated probability of obtaining simulated values that are greater than or equal to the observed value.  

c
 Estimated probability of obtaining simulated values that are lower than or equal to the observed value. 
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4. Conclusions 

 

 

In this work, we set up a simulation framework that can be used to study the effects of 

the spatial diffusion of adaptive mutations on linked haplotype variation. Our major 

motivation was to understand to what extent the current geographical segregation of 

different haplotypes linked to the HBB*S variant could be explained by a single 

mutational origin, instead of resulting from multiple recurrent mutations as is currently 

assumed. 

By exploring a limited set of different simulation scenarios under the wave of advance 

model for the dispersal of an advantageous allele, we were able to show that different 

predominant S-linked haplotypes may arise at the edges of spatial distribution of a 

single mutation after as much as 200 generations. The major outcome of this 

phenomenon is the formation of several, relatively homogenous patches (or sectors) 

encompassing contiguous populations sharing S-linked modal haplotypes that are 

different from those observed in other regions. These patterns, which clearly mimic the 

spatial distribution of different S-haplotypes in Africa, show that, as originally proposed 

by Livingstone (1989), when a single mutational origin is assumed, the geographical 

areas where different homogeneous haplotypes predominate must be regarded as 

edges where the variant has recently arrived from elsewhere. 

By comparing the simulated data with an empirical dataset, consisting of haplotype 

data from several African populations, we were able to evaluate the relative 

approximation between observed and simulated data, and discriminate the relative fit of 

different scenarios. However, although this approach was sufficiently informative to 

indicate that the overall levels of haplotype variation are more likely assuming a single-

mutation than multicentric origins, we were still unable to generate simulated single-

mutation conditions matching all the characteristics of the observed data with sufficient 

approximation.  

In the future, we plan to take advantage of the simulation framework developed in this 

thesis to explore additional demographic scenarios, including range expansions of 

populations, in order to provide a more robust discrimination between competing 

hypotheses. 
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6. Appendix 

 

6.1 Program manual 

 

The order of variables in a configuration file is more or less arbitrary. However, note 

that some variables depend on others. In these cases the dependent variables should 

be defined after those on which they depend. In this document dependencies are given 

within parenthesis using the word DEPS. Default values are between square brackets 

([]). Variables are described in a ‘natural’ order that can be broken, provided that all 

dependent variables are defined after those on which they depend. 

The only mandatory variable is POPULATIONS, which also describes the model (one- 

or two-dimensional model). All other variables will assume the default values. If no 

other variable is defined, no right and left STR markers will be used, but the simulation 

still proceeds. This is useful to test the spread of the mutation (S) under several 

migration scenarios and selection models, by manipulating only MIGRATE, 

AAFITNESS, ASFITNESS and SSFITNESS (additionally, POPSIZE and SINIT may 

also influence these). 

POPULATIONS <num> <num> Number of populations to use. SHOULD BE THE 

FIRST THING DEFINED in the configuration file. Note that it is possible to build one- or 

two-dimensional models. For one-dimensional models the second number is optional. 

Therefore ‘POPULATIONS 10’ or ‘POPULATIONS 10 1’ builds a one-dimensional 

model with 10 populations. ‘POPULATIONS 10 4’ builds a two-dimensional model with 

40 populations, defining an area (matrix) of 10 columns and 4 rows. Population 1 is in 

the left upper corner of the matrix, and population 40 is in the right lower corner. 

Hence, in two-dimensional models, populations are read from left to right and from top 

to bottom of a matrix. 

In one-dimensional models the number of populations effectively participating is 

determined by POPULATIONS. For two-dimensional models, the number of 

populations may, or may not be equal to POPULATIONS. In two dimensional models 

POPULATIONS is equal to the product of columns (the first number after keyword 

POPULATIONS) and rows (the second number after keyword POPULATIONS) 

defining a rectangular area (matrix). The variable POPMASK allows one to define 

which cells in this ‘area’ are effective populations and which are not. Hence, in two-

dimensional models the effective number of populations can be less than or equal to 

POPULATIONS. NOTE that many variables should be initialized for *ALL* putative 

POPULATIONS defined by the the ‘area’ and not only for those populations that will 

actually participate in the 2D model.  

SIMULATIONS <num> [1] Define number of simulations. 

POPSIZE <array> [1000] (DEPS: POPULATIONS) Array of POPULATIONS sizes for 

each deme. If no growth rate is specified this is the constant size of each deme. If a 
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growth rate is specified, this is the initial deme size. For multi population simulations 

values are given after keyword, e.g., for a three population simulation, this should be 

‘POPSIZE 1000 1000 1000’. Additionaly, a wildcard ( * ) can follow the first value, 

meaning that all  subsequent values are equal. For any case where POPULATIONS > 

1, ‘POPSIZE 1000 *’ means that all populations have a size of 1000.   

GENERATIONS <num> [100] Number of generations to simulate for each simulation. 

MUTANTS <num> <array> [1,’S’] Defines the number of mutant haplotypes and their 

names. The first parameter is the number of mutant haplotypes (default is one) 

followed by a list of characters (as many as defined by the number of mutants). Default 

mutant haplotype is named ‘S’. Use only single characters to name mutant haplotypes. 

Do not use ‘A’ since it will get confused with background haplotypes.  Note that the 

software is case sensitive, so ‘MUTANTS 2 S s’ is perfectly valid (two mutants, one 

called ‘S’ and the other called ‘s’). 

ORIGINALPOP <array> [1] (DEPS: POPULATIONS, MUTANTS) Defines the 

population where the mutation arises. Should fall between 1 and POPULATIONS. If 

MUTANTS is larger than 1, then there should be as many numbers as MUTANTS. One 

may insert two (or more) different mutants in the same population, each with 

SINIT/POPSIZE. 

SINIT <num> [1] Number of chromosomes carrying the mutant allele at the original 

population. Default is 1 (with frequency 1/POPSIZE) but can be anything from 1 to 

POPSIZE. Note that in multiple mutant injections (MUTANTS > 1), SINIT is the same 

for each mutant. 

LEFTLOCI <num> [0] and RIGHTLOCI <num> [0] Number of marker loci to the left 

(LEFTLOCI) or to the right (RIGHTLOCI) of the mutation. There are no limits for both 

variables, but the fewer the better! 

MAXALLELES <array> [10] (DEPS: LEFTLOCI, RIGTHLOCI) Maximum number of 

alleles per locus. Wildcard notation (*) applies. The maximum number allowed is 220 

(alleles are coded as bytes in a string, which would technically allow 256 different 

alleles; however, the first 32 bytes (0-31) in ASCII represent special codes, with the 0 

(zero or null) representing the end of a string! these are not used, so there remain 256-

32 = 224 ~ 220 alleles. ‘MAXALLELES 10 10 10 10 10’ or ‘MAXALLELES 10 *’ is 

equivalent for a simulation with 5 loci, each with 10 alleles. Note that the first number 

corresponds to the leftmost left locus, followed by all other left loci up to the marker, 

and then from the leftmost right locus up to the rightmost right locus. Hence 

‘MAXALLELES 3 6 7 3 4’ translates into 3-6-7-A-3-4 for a case of LEFTLOCI=3 and 

RIGHTLOCI=2. 

ALLELEFREQS <matrix>    (DEPS: LMAXALLELES) Initial frequencies for each allele 

per locus. If not given, alleles per locus will be equi-frequent [1/(N alleles)]. No wildcard 

notation can be used! In each separate line one should give allele frequencies for each 

locus. For a MAXALLELES of ‘3 4 6’ (2 loci left and one right).  ALLELE_FREQS 

should read: 

 



47 
 

ALLELE_FREQS 

0.2 0.3 0.5          <- for locus 1  (leftmost left one) 

0.1 0.1 0.3. 0.5   <- for locus 2  (rightmost left one) 

0.6 0.4                <- for locus 3  (right one) 

 
 

AAFITNESS <array> [0.8], ASFITNESS <array> [1.0] and SSFITNESS <array> [0.0] 

(DEPS: POPULATIONS) Arrays with fitness values of AA, AS, and SS genotypes for 

each population. For all three cases, the wildcard notation ( * ) is valid. Thus for three 

populations the instructions ‘AAFITNESS 0.8 0.8 0.8’ or ‘AAFITNESS 0.8 *’ are valid 

ways to tell that AAFITNESS is the same (0.8) in all three populations.    

RIGHTMUTRATE <matrix>   (DEPS: POPULATIONS, RIGHTLOCI) A matrix of right 

loci mutation rates (POPULATIONS*RIGHTLOCI). Populations go in each line, and loci 

in each column. The wildcard notation ( * ) can be used but in a different way. Mutation 

rates should be set for all loci at the right side. After the first line, a wildcard means that 

all populations have the same mutation rates at each locus. For a four population 

example, with four loci at the right side, 

RIGHTMUTRATE  

0.01 0.02 0.003 0.002 

0.01 0.02 0.003 0.002 

0.01 0.02 0.003 0.002 

0.01 0.02 0.003 0.002 

and   

RIGHTMUTRATE  

0.01 0.02 0.003 0.002 

* 

mean exactly the same. All population will have mutrates of 0.01, 0.02, 0.003, 0.002 for 

each locus.   

LEFTMUTRATE  <matrix>   (DEPS: POPULATIONS, LEFTTLOCI) A matrix of left loci 

mutation rates (POPULATIONS*LEFTLOCI). Populations go in each line, and loci in 

each column. The wildcard notation ( * ) can be used (see RIGHTMUTRATE). 

RIGHTRECRATE <matrix>   (DEPS: POPULATIONS, RIGHTLOCI) A matrix of right 

loci recombination rates (POPULATIONS*RIGHTLOCI). Populations go in each line, 

and loci in each column. The wildcard notation ( * ) can be used (see 

RIGHTMUTRATE). 

LEFTRECRATE <matrix>    (DEPS: POPULATIONS, LEFTLOCI) A matrix of left loci 

recombination rates (POPULATIONS*RIGHTLOCI). Populations go in each line, and 

loci in each column. The wildcard notation ( * ) can be used (see RIGHTMUTRATE). 

CONVERTRATE <array> [0] (DEPS: POPULATIONS) An array with conversion rates 

for each deme. These are the rates at which A alleles are converted to S. Wildcard 

notation ( * ) applies. For a three population simulation (POPULATIONS=3) 

‘CONVERTRATE 0.01 0.01 0.01’ or ‘CONVERTRATE 0.01 *’ mean the same.    
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MIGRATE <num> [0.05] Define migration rate between adjacent cells. For a linear 

model (rows=1) each cell has a total migration rate of 2*MIGRATE, except the first and 

last cells (for which MIGRATE applies). In a two-dimensional model (rows>1) each cell 

has a total migration rate of 4*MIGRATE, except for 'corners' (where it is 2*MIGRATE) 

and 'marginal cells' (where it is 3*MIGRATE). MIGRATE should be between 0 and 1. 

STOPMIGATGEN <num> [2000000000] Define a generation where migration stops. 

Should be less than GENERATIONS. If it is larger than GENERATIONS it will be 

ignored! 

STARTMIGATGEN <num> [1] Define generation when to start migration. Should be 

less than GENERATIONS. If it is larger, no migration will occur. 

GROWTHRATE <array> [0]  (DEPS: POPULATIONS) An array with growth rates for 

each deme (or population). Wildcard notation( * ) applies. For a three population 

simulation (POPULATIONS=3) ‘GROWTHRATE 0.5 0.5 0.5’ or ‘GROWTHRATE 0.5 *’ 

mean the same.      

MAXPOPSIZE <array> [1000] (DEPS: POPULATIONS) An array of maximum 

population size for each deme. When a growth rate is specified, this defines the 

carrying capacity in the logistic growth equation. The wildcard ( * ) applies. For a three 

population simulation (POPULATIONS=3), ‘MAXPOPSIZE 1000 1000 1000’ or 

‘MAXPOPSIZE 1000 *’ mean the same.  

BURNIN <num> [0] Before each simulation (insertion of a mutant) there may be a 

period of mixing, drifting and purging of background variation of normal haplotypes. 

This is done during a number of generations defined by BURNIN, after which the real 

simulation starts. 

POPMASK <matrix> (DEPS: POPULATIONS) POPMASK allows one to specify in a 

two dimensional model which populations will participate in the model. This is only 

useful if POPULATIONS was given in the form ‘POPULATIONS <cols> <rows>‘ and 

'rows' > 1. For example, in a model with 16 populations where POPULATIONS was 

defined as ‘POPULATIONS 4 4’ variable POPMASK would be defined as, 

POPMASK  

0 1 1 0 

1 1 1 1 

1 1 1 0 

1 1 0 0  

 

to set a scenario where the first, fourth, 12th, 15th, and 16th cells would not be used 

(no populations created there).  

VERBOSE [FALSE]  Produce very verbose output (to stderr) during the  initialization 

of variables. 

OUPUTALL [FALSE]        If this keyword is provided all haplotypes (and not only the 

mutant haplotypes) will be output. Note that this option is essentially for debugging 

purposes, and will produce very large data files. 
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SIMOFFSET <num> [0] Simulations are numbered from 0 (zero) to SIMULATIONS-1. 

There are cases where it is necessary to start output numbering at higher values. If the 

program is run separately in two different machines, each with 500 simulations, using 

SIMOFFSET 500 in one of them will allow subsequent merging of the two files without 

duplicating simulation numbers. The second run will start at simulation 500 up to 999. 

TIME_SLICES <num> [0]   [DEPS: GENERATIONS] Normally, the program only 

outputs results at the end of a full run (after g GENERATIONS). To produce output at 

different times before reaching the desired number of generations one can provide this 

variable. There is, however, a *CATCH* (see below). TIME_SLICES is limited internally 

to 10 slices maximum (since this is the number of files that will be opened for writing 

during the run of the simulation). This can be altered in ‘config.h’ (MAX_TIME_SLICES) 

but implies recompilation of the software. The algorithm is as follows:  

N = GENERATIONS / (TIME_SLICES + 1)       Eq. $1    

M = N                                     Eq. $2 

The simulation starts and runs until the current number of generations (g) is greater 

than M (g > M). It outputs the results to a individual file, increments M by N (M=M+N) 

and continues until g > M. The procedure is repeated until g<(GENERATIONS-1) 

avoiding the duplication of the output of the last iteration. Note that because of the way 

N is computed (Eq. $1), providing a TIME_SLICES of 10 when GENERATIONS is 100 

will produce 10 time slices  plus the final output, meaning that each time slice will span 

~9 generations and not 10 generations.  

With GENEARATIONS 100 and TIME_SLICES 10 the program outputs data at 

generations 9, 18, 27, 36, 45, 54, 63, 72, 81 and 90, and finally at generation 99 (10 

time slices plus the final output). Since generation numbers start at zero (1st 

generation is numbered 0, 100th generation is numbered 99) the first slice spans 10 

and not 9 generations [note that the first output is at generation 9 (10th) and not 8 

(9th)]. To produce slices spanning 10 generations for a simulation with GENERATIONS 

= 100, one should use TIME_SLICES = 9. The output will be at generations 10, 20, 30, 

40, 50, 60, 70, 80 and 90, plus the final output at  generation 99 [Note again that the 

first output spans 11 generations and not 10!]. 

CATCH (IMPORTANT!): The files to output time sliced data are opened at the 

beginning of the run, and remain opened until all simulations are done. This avoids 

excessive opening/closing of files which, in turn, will slow down the  run. The problem 

is that for each individual simulation  there are instances where it has to be reset due to 

loss of mutant haplotypes. However, if this loss happens after some time slices, the 

state results for those time slices will already be written in the corresponding output 

files. Always check for duplicated results of simulation/population in earlier time slices! 

This is more likely for smaller than larger time slices (i.e., time slices spanning less 

generations). To put it in other words, when TIME_SLICES is large (combined with a 

small value for GENERATIONS) each time slice will span less generations and the 

chances of earlier sliced data having duplicated results is higher. 
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6.2 The wave speed of an advantageous allele 

The spread of favorable mutations with the formation of travelling waves was first 

modeled by fisher (1937) and by Kolmogorov, Petrovskii, and Piscunov (Kolmogorov et 

al. 1937), independently. Assuming that the dispersal distance is Gaussian, the 

advantage of the mutation is additive and the population density is large enough so that 

stochastic effects are small, they showed that the wave of advance resulting from the 

evolution of the mutant frequency in time and space moved asymptotically with speed, 

         

where    is the standard deviation of the dispersal distance and   is the selective 

advantage. Under the above assumptions the speed of the advancing wave is constant 

and identical for the one-dimensional case and for radially symmetric waves (two 

dimensions). 

Contrarily to this model of continuous time and space, the simulations presented here 

use discrete generations and discontinuous space. Nevertheless, results obtained with 

the discrete stepping stone model can be adapted to the former model if we consider 

the limiting case in which both generation time and the actual distance between 

adjacent subgroups approach zero (Kimura & Weiss, 1964; Ralph & Coop, 2010). 

Thereby,   must be replaced by            (Ralph & Coop, 2010), where d is the 

number of dimensions, to satisfy the Fisher-KPP equation. 


