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Resumo

Nas décadas passadas, o setor da eletrónica evoluiu exponencialmente. No nosso dia a dia a
eletrónica está presente em tudo, nos nossos carros, e até em algumas das nossas roupas. A verdade
é que os desenvolvimentos nesse setor aumentaram a qualidade de vida do Homem. No caso de
algumas doenças, apenas com o auxílio de sistemas eletrónicos é possível realizar diagnósticos
e tratamentos apropriados. Problemas do foro muscular e de movimento são uma vasta área na
qual a eletrónica teve grande influência na ajuda a lidar e a tratar essas doenças. A eletrónica
moderna permite uma melhor visão do que se passa ao nivel do músculo. Com instrumentação
de grande precisão é possivel obter o sinal gerado pelas fibras das membranas musculares, o sinal
miográfico. Os sinais miográficos são sinais muito específicos; eles são formados por variações
fisiológicas nas fibras das membranas musculares. A medição e o processamento destes sinais é de
grande importância, dado que eles permitem olhar diretamente para o músculo. Isto é uma análise
importante que precisa de ser feita para :

• Ajudar na tomada de decisão antes/após da cirurgia;

• Permitir a medição do desempenho muscular;

• Ajudar no processo de reabilitação;

Estes são apenas alguns exemplos daquilo que é possível atingir investindo na investigação e
desenvolvimento de sistemas aplicados a esta área em específico. Com isso em mente, a necessi-
dade de um sistema que meça e processe tais sinais surge. No entanto, alta precisão e um elevado
CMRR têm de ser assegurados, fazendo assim o amplificador de instrumentação uma escolha ób-
via para a amplificação destes sinais. Esta tese apresenta o desenho e o desenvolvimento de uma
nova topologia para um amplificador de instrumentação baseado na topologia Fully Balanced Dif-
ferencial Difference Amplifier (FBDDA). O amplificador atinge um CMRR muito elevado de 122
dB, um ruído integrado de 2 µV na gama de 10 Hz a 300 Hz e um offset inferior a 1 mV. Para além
disto, ele atinge muito boa estabilidade e boas caraterísticas em geral, assegurando que o espectro
de aplicações para o amplificador é muito mais largo.
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Abstract

In the past decades, the electronics sector has evolved exponentially. In our everyday electronics is
everywhere, in our cars, in our houses and even in some of our clothes. Truth is, the developments
in that sector have increased the quality of life of the average Man. In the case of some diseases,
only with the aid of electronic systems proper diagnosis and treatments can be made. Muscular
and movement related problems are a wide area in which electronics have a great influence in
dealing with such diseases. Modern electronics allows us to take a better look at what is going on
at the muscle level. With great precision instrumentation we can obtain the signal generated by
muscle fiber membranes, the Myographic signal. Myographic signals are a very specific type of
signals; they are formed by physiological variations in the state of muscle fibre membranes [1].
The measuring and processing of these signals is of great importance, since they allow looking
directly into the muscle [1]. This is an important analysis that needs to be done to:

• Help in decision making both before/after surgery;

• Allow measurement of muscular performance;

• Aid in the rehabilitation process;

These are just a few examples of what we can achieve investing in the research and develop-
ment of electronic systems applied to this specific area. With that in mind, the need for a system
that can measure and process such signals arises. However, high precision and a high CMRR must
be ensured, thus making the instrumentation amplifier an obvious choice for the amplification of
these signals. This thesis presents the design and development of a novel topology for an instru-
mentation amplifier based on the Fully Balanced Differencial Difference Amplifier (FBDDA).It
achieves a very high CMRR of 122 dB, an integrated noise of 2 µV over the range of 10 Hz to
300 Hz, an offset lower than 1 mV. Beside this, it achieves very good stability and overall good
characteristics, assuring that its applications domain is much broader.
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Chapter 1

Introduction

The system responsible for the measuring and processing of myoelectric signals consists of elec-

trodes, an instrumentation amplifier, a filter, a sample and hold circuit and an analog to digital

converter (ADC). Electrodes are an important part of the system, as they allow us to measure the

Myographic signals, when strategically positioned on the patient’s skin. Since the characteristics

of these signals are far from optimal for one to properly process them, the use of the instrumenta-

tion amplifier is justified. It will bring the signal to a range of voltage values that will allow us to

handle these signals with no additional efforts. However, precautions must be taken in the develop-

ment and building of the instrumentation amplifier, to assure that there are no external components

interfering with the signal, such as noise. The goal of this thesis is to develop a new instrumenta-

tion amplifier topology, based on the CMOS 0.35 µm technology, simulate its operation and then

implement it in an integrated circuit.

1.1 Problem Presentation and Challenges

The problems associated with the amplification of myographic signals are mostly noise related.

Putting aside the usual problems associated with multi-stage amplifiers design and development,

in this specific case, noise and common-mode interference are the most relevant ones. The trade-

off between area, gain, bandwidth and other specific characteristics is even more tight, as noise

and THD must be taken into account first upon the developing of the amplifier. This is due to the

signal’s frequency, that is usually very small - a few hundreds of hertz - thus making flicker noise

hold a reasonable value. Also, due to their small amplitudes, noise’s influence is much greater as

its nominal value might be of the same order of the input signal.

Coming from the power-lines, comes the common-mode interference, also known as 50/60 Hz

noise. This is yet another problem, as the instrumentation amplifier must neglect all the common-

mode signals and amplify the differential ones, thus requiring a very high CMRR. Another prob-

lem that was not mentioned before, is the offset. As the instrumentation amplifier is known to be

a high-precision and high stable circuit, the offset level must be very low.
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2 Introduction

As this amplifier is meant to be integrated on a chip, other problems arise, related to power

consumption and area, thus making the choice of the topology and the number of stages a major

trade-off between a lot of characteristics. This is the main challenge, to provide a viable new

topology that offers optimum qualities, and also possessing low power consumption and low area.

1.2 Motivation

With the advances of microelectronics in the past decades, many areas have required more and

more from this sector. One example stands out - Health care. Instrumentation electronics has

provided a lot of possibilities for health care professionals. One of these cases is the diagnosis

of problems related to muscular diseases. These type of diseases can easily be diagnosed by

observing the myographic signals of the patients. This procedure requires a complex circuit,

referred before. But its applications go far beyond the simple diagnostic. Ideally, this circuit

has zero area and zero power consumption. Referring solely to the amplifier, ideally it possesses

zero noise and infinite CMRR, meaning that the differential signal we put at the input, is the signal

we expect at the output multiplied by the gain. Obviously, those characteristics are impossible to

obtain, but we can obtain something that is very close to that, and, that is good enough for the

measuring of these signals.

1.3 Objectives

The main goals of this thesis are:

• Develop a new instrumentation amplifier topology.

• Design and fully simulate the new topology, and perform Monte Carlo analysis.

• Design the layout of the produced amplifier, optimize it for symmetry, and then perform a

post layout simulation, along with its Monte Carlo simulation.

• Send the layout to Europractice and then test the chip produced upon its arrival.

1.4 Structure of the Document

This document presents the following structure:

• Chapter 2 contains the necessary background for one to understand this document mini-

mally, regarding mostly myoelectric signals and differential amplifiers.

• Chapter 3 presents a bibliographic review on instrumentation amplifiers and multi-stage

amplifiers that suit myographic signals.
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• In Chapter 4 the proposed amplifier’s topology is explained, and every stage is thoroughly

analysed and justified. The starting point is also presented, as well as the topology variations

throughout the semester.

• Chapter 5 presents the simulation of the amplifier’s topology, as well as the Monte Carlo

analysis. In the end, results are presented, then the layout is shown, and the post layout

simulation is presented along with its Monte Carlo simulation.

• Chapter 6 is the final chapter of this document that presents the conclusions obtained from

the work developed along with the proposals for future improvement of the proposed topol-

ogy.
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Chapter 2

Theoretical Background

The purpose of this chapter is to enlighten the reader, providing the necessary theoretical back-

ground for him to read the document with clear understanding of what is the topic of discussion.

2.1 Myoelectric signals

2.1.1 What are they?

A myoelectric signal, also called a motor action potential, is an electrical impulse that produces

contraction of muscle fibers in the body. The term is most often used in reference to skeletal

muscles that control voluntary movements. Myoelectric signals have frequencies ranging from a

few hertz to about 300 Hz, and voltages ranging from microvolts to milivolts.

2.1.2 Obtaining and measuring

Myoelectric signals are detected by placing three electrodes on the skin. Two electrodes are posi-

tioned so there is a voltage between them when a myoelectric signal occurs. The third electrode

is placed in a neutral area, and its output is used to cancel the noise that can otherwise inter-

fere with the signals from the other two electrodes. The output voltage is processed using the

differential amplifier. The output of the amplifier has much higher voltage than the myoelectric

signals themselves. This higher voltage, which produces significant current, can be used to control

electromechanical or electronic devices.

2.1.3 Applications

Myoelectric signals are of interest to the developers of prosthetic devices, such as artificial limbs.

The signals can also be used to facilitate the operation of a computer using small voluntary muscle

movements, such as blinking the eyelids. Figure 2.1 contains a summary of applications for

electromyography (EMG).

5



6 Theoretical Background

Figure 2.1: Applications

2.2 Noise

Noise limits the minimum signal level that a circuit can process with acceptable quality. Analog

designers must take into consideration noise when designing circuits, because it trades with power

dissipation, speed and linearity. In this type of systems, the kinds of noise we have to take into

account are thermal noise, and flicker noise, also known as 1/f noise. Noise is a random process,

i.e. we cannot predict any values of noise. To incorporate noise in analog circuits a stochastic

model is done, observing its behaviour for a long time. This allows us to determine some important

characteristics of noise, such as average power. The average power with 1 Ohm as reference is:

Pav = limT→+∞
1
T

∫ T/2
−T/2 v2 dt

In circuits we can easily obtain the power expressed by W, when that same voltage is applied

to a load R, the power is defined as Pav/R. The concept of average power becomes more versatile

if defined with regard to the frequency content of noise. The power spectral density spectrum (

Sx(f) ) shows how much power the signal carries at each frequency, and it is defined as the average

power carried by x(t) in a one-hertz bandwidth around the frequency f .

2.2.1 Thermal Noise

Resistor thermal noise – The random motion of electrons in a conductor introduces fluctuations in

the voltage measured across the conductor even if the average current is zero. Thus, the spectrum

of thermal noise is proportional to the absolute temperature: Sv( f ) = 4kT R, f ≥ 0 Where k is the

Boltzmann constant. MOS thermal noise – MOS transistors also exhibit thermal noise. The most

significant source is the noise generated in the channel. For a long-channel MOS device operating

in saturation, the channel noise can be modelled by a current source connected between the drain

and source terminals with a spectral density: I2
d = 4KT 2

3 gm.
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2.2.2 Flicker Noise

The interface between the gate oxide and the silicon substrate in a MOSFET entails an interesting

phenomenon. Since the silicon crystal reaches an end at this interface, many “dangling” bonds

appear, giving rise to extra energy states. As charge carriers move at the interface, some are ran-

domly trapped and later released by such energy states, introducing flicker noise in the drain. In

addition to trapping, several other mechanisms are believed to generate flicker noise [1]. The

average power of this type of noise cannot be predicted easily, unlike the thermal kind. Depending

on the oxide-silicon interface characteristics, flicker noise may assume considerably different val-

ues and as such varies from one CMOS technology to another. It is modelled as a voltage source

in series with the gate and given by the following equation:

V 2
n =

K
CoxWL

.
1
f

(2.1)

It can also be modeled by a current source, simply by multiplying the above expression by g2
m.

Variable K is a process dependent constant on the order of 10−23. The trap-and-release phe-

nomenon associated with the dangling bonds occurs at low frequencies, since the noise spectral

density is inversely proportional to frequency. This is the reason why this type of noise is also

known as 1/f noise. Since the signals to be measured have low frequencies, this noise must be

taken into account, upon the developing of the amplifier.

2.2.3 Noise in Differential Pairs

Figure 2.2 shows a differential pair with the overall noise modelled.

Figure 2.2: Differential pair modelled with noise sources
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We can obtain the input-referred noise voltage by taking into account the output noise of M3

and M4. The drain noise current of M3 is divided between ro3 and the resistance seen looking

into the drain of M1. This resistance RX = ro4 + 2ro1. Denoting the resulting noise currents

flowing through ro3 and RX by InA and InB, respectively , we have: InA = gm3Vn3
(ro4+2ro1)
(2ro4+2ro1)

and

InB = gm3Vn3
ro3

(2ro4+2ro1)
. The former produces a noise voltage gm3Vn3ro3

(ro4+2ro1)
(2ro4+2ro1)

at node X with

respect to ground, whereas the latter flows through M1, M2 and ro4, generating gm3Vn3
(ro3ro4)

(2ro4+2ro1)

at node Y, with respect to ground. Thus, the total differential output noise due to M3 is equal to

gm3Vn3
(ro3ro1)
(ro3+ro1)

. We can conclude then, that the noise current of M3 is simply multiplied by the

parallel combination of ro1 and ro3 to produce the differential output voltage.

2.3 Amplifiers

The purpose of this section is to enlighten the reader in the analog electronics design fields, namely

amplifiers. The reader can find more information about amplifiers here: [12], [13]. Please refer

to appendix 2 for more information about basic transistor configurations.

2.3.1 Fully Differential amplifiers

This section deals with one of the most used input stages, the differential pair. Because of its

useful characteristics, it is the dominant choice in today’s high performance analog and mixed

signal circuits. So, what makes us choose differential over single ended operation?

• Environmental noise immunity

• Increase in the maximum achievable voltage swings

• Simpler biasing

• Higher linearity

Although differential operation brings a lot of benefits, it has a small drawback: the occupied

area. This section enlightens the reader on the basic differential pair, a detailed analysis on its

mode of operation, and possible negative feedback topologies, as well as common mode feedback

topologies.
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2.3.2 Differential pair with load resistors

Figure 2.3: Basic Differential pair

To allow normal operation, it is imperative to ensure that both M1 and M2 stay in saturation.

Their mode of operation can move to the triode region if there is a disturbance in the common

mode level, affecting their currents. Thus it is important that the bias currents of the devices have

minimal dependence on the input CM level. To do that a current source is used.

If the input voltage swing increases (Vin1−Vin2), the circuit becomes more non-linear, due to

one of the transistors absorbing all of ISS (in the worst case scenario), and the other one absorbs

none, thus one of them goes into cut-off and the other remains in saturation. Therefore its max-

imum and minimum voltage output varies from VDD and VDD−RDISS. For Vin1 = Vin2 the circuit

is in equilibrium. The range of the minimum and maximum common mode voltage can also be

obtained: M1 and M2 enter the triode region if Vin,CM > Vout1 +Vth = VDD−RDISS/2+Vth, and

if Vin,CM > Vgs1 +Vgs3−Vth we guarantee that both M1 and M2 remain in saturation. Thus we

set limits for Vin,CM : Vgs1 +Vgs3−Vth ≤ Vin,CM ≤ min(VDD−RDISS/2+Vth,VDD). Now that the

common mode voltage is defined, we can define the maximum values for the output voltage: it

can go as high as VDD, and as low as approximately Vin,CM−Vth.
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2.3.3 Common-mode Response

Figure 2.4: Basic Differential pair with common mode input

One of the most important attributes of differential amplifiers is their ability to suppress the effect

of common mode perturbations. In reality, neither the circuit is fully symmetric, nor does the

current source exhibits infinite output impedance. By definition AV,CM = Vout
Vin,CM

= − (RD/2)
(1/(2gm)+RSS)

.

If the resistor of the current source was of infinite value, AV,CM would be zero. The finite output

impedance of the tail current source results in some common-mode gain in a symmetric differential

pair, as seen from the equation. This conclusion was made assuming the circuit was perfectly

symmetrical, but what if it was not? Assuming there is a mismatch in a resistor, RD1 = RD1 +∆,

what happens to Vout1 and Vout2 as Vin,CM increases? Assuming M1 and M2 are symmetrical we

obtain: ∆Vout1 =− ∆Vin,CMgm
(1+2gmRSS)(RD1+∆) and ∆Vout2 =− ∆Vin,CMgm

(1+2gmRSS)(RD2)
, thus, a common mode change

at the input introduces a differential component at the output. This is a problem because if the input

of the differential pair includes both a differential signal and common mode noise, the circuit

corrupts the amplified differential signal by the input CM change. In conclusion, the common

mode response of differential pairs depends on the output impedance of the tail current source and

the asymmetries in the circuit.
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2.3.4 CMOS Differential Pair

Figure 2.5: Basic Differential pair with CMOS active load

In this case the load is done through an active load (diode connected or current-source load).

The small signal gain is: AV = gmN(ron||rop). The diode connected loads consume voltage head-

room, thus creating a trade-off between the output voltage swings, the voltage gain, and the input

common mode range. There are a lot of techniques that can be used to improve some of the char-

acteristics of this topology. For example, using current-source loads( 2.7) can help reduce the gm

of the diode connected load devices, by aiding in supplying the bias current, thus reducing their

currents rather than their aspect ratios, which will help increase the differential gain. However,

the small signal gain of the differential pair with current-source loads is relatively low; One way

to solve this problem is to increase the NMOS and PMOS output impedance through means of

cascoding ( 2.6). This method increases differential gain, but its drawback is an increase in the

consumption of more voltage headroom.
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Figure 2.6: Differential pair with cascoding

Figure 2.7: Differential pair with current source load

2.3.4.1 Frequency Response

This section deals with the analysis of the frequency response of the differential pair, both for

differential signals and common mode signals.

As we can see in Figure 2.8, its frequency response is similar to that of a common source

stage, exhibiting miller multiplication of Cgd . In this case both +Vin2/2and−Vin2/2 are multiplied

by the same transfer function, that brings us to the conclusion that the number of poles in Vout/Vin

is equal to that of each path (rather than the sum of the number of the poles in the two paths).

For common-mode signals, the high frequency gain is determined by the capacitance at node P,

which consists of Cgd3,Cdb3,Csb1 and Csb2. If M1-M3 are wide transistors this capacitance will

be of considerable value. Assuming there is a mismatch between M1 and M2,we can obtain the
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common mode high frequency gain simply by replacing in the formula the drain resistor and the

output resistor of M3 with its own value in parallel with the capacitance seen through that node.

AV,CM =−(∆gm
(RD||( 1

(CLs) )))

((gm1+gm2)[ro3||( 1
(CPs)+1)

).

This suggests that, if the output pole is much farther from the origin than is the pole at node

P, the common mode rejection of the circuit degrades considerably at high frequencies. For dif-

ferential pairs with high impedance loads made with active loads, an analysis can be made for

differential and common mode signals separately.

Figure 2.8: Differential pair equivalent half circuit

Figure 2.9: Differential pair with current source load
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In this case ( 2.9), G is an ac ground, because Cgd3 and Cgd4 conduct equal and opposite

currents to that node. As we have a very high load seen from the output (ro3||ro1), the dominant

pole is given by ((ro3||ro1)CL)
(−1). The common mode behaviour of this circuit is similar to the

one analysed before. Let us consider now a differential pair with an active current mirror.

Figure 2.10: Differential pair with mirror pole representation

In contrast to the fully differential configuration, this topology does not have the same transfer

function on both sides. The path consisting of M3 and M4 includes a pole at node E, which

is known as the mirror pole. This pole is greater in magnitude than the output pole, and it is

given by Cgs3,Cgs4,Cdb3,Cdb1 ,and the miller effect of Cgd1 and Cgd4. Even if only Cgs3 and Cgs4

are considered, the severe trade-off between gm(1/gm3 is the impedance seen through that node)

and Cgs of PMOS devices results in a pole that greatly impacts the performance of the circuit.

Through some abbreviations, the poles of this circuit are as follows: ωp1 = 1/(CL(roN ||roP)) and

ωp2 = gmP/CE where CE is the total capacitance at node E. There can also be obtained a zero in

the left half plane, and its value is 2ωp2. In summary, fully differential circuits do not possess a

mirror pole, another advantage against single ended circuits.

2.3.5 Stability and Frequency Compensation

Stability and frequency compensation is a topic that has to be taken into account by analog cir-

cuit designers. If we want to achieve higher output voltage swings, then a two stage operational

amplifier is required, and the study of such amplifier’s stability is of great importance.
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Figure 2.11: Two-stage operational amplifier

Observing figure 2.11, we can identify 3 poles, one at A1(A2), another at B1(B2) and another

at X(Y ). As stated in the previous section the pole at X lies in the high frequencies. Since the small

signal resistance seen at A1 is high, even the capacitances of M3,M5 and M9 can create a pole

close to the origin. In the output, the resistance can be small, however, CL can be high, making the

circuit exhibit two dominant poles. A bode plot of this circuit can be found in [13]. Since the poles

at A1 and B1 are relatively close to the origin, the phase approaches −180o well below the third

pole. This implies that the phase margin may be close to zero even before the third pole contributes

with its phase shift. So, how do we compensate this circuit? The goal is to move a dominant pole

towards the origin so as to place the gain crossover well below the phase crossover. However,

the unity gain bandwidth after compensation cannot exceed the frequency of the second pole of

the open-loop system. Thus, the magnitude of ωp,A1 must be reduced, however, the available

bandwidth will be limited to approximately ωp,A1, which is a low value. Furthermore, the small

magnitude of the required dominant pole translates to a very large compensation capacitor, which

is not desired. In [13], a better approach is taken, also known as Miller compensation, that creates

a large capacitance at node A1, and moves the output pole away from the origin.

2.3.6 Common-mode Feedback

As we have seen in the previous sections, fully differential amplifiers have many advantages in

comparison with their single ended counterparts, such as greater output swings, avoiding mirror

poles, thus achieving a higher closed loop bandwidth. However, high gain differential circuits

require common-mode feedback. For a better understanding of the need of this type of feedback,

an example is required. In a differential amplifier, sometimes negative feedback is required, and

for that, we short the inputs and the outputs of the circuit. The input and output common mode

levels are well defined in this case: VDD−RDISS/2. Now suppose the load resistors are replaced
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by PMOS current sources , so as to increase the differential voltage gain. Figure 2.12 represents

this example.

Figure 2.12: Differential pair with inputs shorted to outputs

What is the common mode level at the output node? Since each of the input transistors carry

half of the tail current, the CM level depends on how close the PMOS current values are to that

value. Suppose there is a mismatch in the PMOS and NMOS current mirrors defining an error

between their drain currents and ISS/2. If we assume the drain currents of both M3 and M4 in

the saturation region are slightly greater than ISS/2, both M3 and M4 must enter the triode region

so that their drain currents match ISS/2. Conversely, if their drain currents are inferior to ISS/2

then both Vout1 and Vout2 must drop so that M5 enters the triode region, thereby producing only

2ID3,4. The above difficulties arise because in high gain amplifiers, we want to use a p-type current

source to balance an n-type current source. The difference between the currents, IP and IN flows

through the intrinsic output impedance of the amplifier, creating an output voltage change equal

to (IP− In)(RP||Rn). Since the current error depends on mismatches and the load associated with

it is high, the voltage error can become very large, thus driving the n-type or p-type current source

into the triode region. It is emphasized that differential feedback cannot define the CM level. As

expected, in high gain amplifiers, the output CM level is quite sensitive to device properties and

mismatches and it cannot be stabilized by means of differential feedback. Thus, a common mode

feedback network must be added to sense the CM level of the two outputs and accordingly adjust

one of the bias currents in the amplifier. CMFB consists of three operations:

• Sensing the output CM level
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• Comparison with a reference

• Returning the error to the amplifier’s bias network

Recalling that Vout,CM = (Vout1 +Vout2)/2, a resistive divider can be employed as shown in figure

2.13.

Figure 2.13: Common-mode feedback with resistive sensing

This generates a voltage Vout,CM = (R1Vout1+R2Vout2)
(R1+R2)

, that is equal to (Vout1 +Vout2)/2 if the re-

sistors are equal. The difficulty here is that both resistors must be much greater than the output

impedance of the amplifier so as to avoid lowering the open loop gain. Such large resistors occupy

a very large area and suffer from substantial parasitic capacitance to the substrate. To eliminate

the resistive loading, we can interpose source followers between each output and its corresponding

resistor as seen in figure 2.14.
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Figure 2.14: Common-mode feedback with source followers

This technique produces a CM level that is in fact lower that the output CM level by the gate-

source voltage of transistors M7/M8. It is also important to state that R1 and R2 or I1 and I2 must

be large enough to ensure that M7 or M8 can handle a large differential swing on the output.

However, this sensing method has an important drawback: it limits the differential output swings

(even if the resistors and the currents are large enough) by approximately the threshold voltage.

Another type of CM sensing can be seen in figure 2.15:

Figure 2.15: Common-mode feedback with MOSFETs operating in deep triode region

In this type of sensing, we use two transistors in deep triode region, introducing a total

impedance that is equal to the parallel of M7 and M8 output resistors, which vary with the width,
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the length of the transistors and Vout1 +Vout2. If both the outputs rise together, then the total load

imposed by the transistors will drop, whereas if they change differentially, the load of one transis-

tor will increase and the other will decrease. As the resistor-based sensing method, this method

also limits the output voltage swing. Now that we have a method of sensing the CM level, it is

imperative to compare it with a reference and return the difference to the bias network. To do

this, an op amp can be employed, connected to the NMOS current sources, as we can see in figure

2.16:

Figure 2.16: Sensing and controlling the output CM level

The mode of operation is as follows: if both the output voltages increase, so does VE , thus

increasing the drain currents of M9 and M10 and lowering the output CM level. It can also be

interpreted as a form of forcing the CM level of both the outputs to the value of the reference, if

the open loop gain is high. This type of feedback can be applied to the PMOS current sources

as well. In some cases, the feedback can be used to control only one tail current source, to allow

optimization of the settling behaviour. As we have seen, both M9 and M10 were fed by the error

coming from the opamp. This technique consists of using only one of them to receive the error,

whilst the other is biased at a constant current.

2.3.7 Class Type of Amplifiers

This section provides the reader with an insight about the possible classes of the amplifiers. In our

case, it is only pertinent to study the A class , the B class and the AB class. For more information

on amplifier class types the reader can find it here : [14].

2.3.7.1 Class A

This is the most linear of the classes, meaning the output signal is a truer representation of the

input. Here are the characteristics of the class:

• The output transistor conducts for the entire cycle of the input signal. In other words, they

reproduce the entire waveform in its entirety.
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• These amplifiers work at higher temperatures, as the transistors in the amplifier are on and

running at full power all the time.

• There are no conditions to turn the transistors on/off. That does not mean that the amplifier

is never off or can never be turned off; it means the transistors doing the work inside the

amplifier have a constant flow of current through them, also known as bias.

• Class A is the most inefficient of all power amplifier designs, averaging only around 20%.

Because of these factors, Class A amplifiers are very inefficient: for every watt of output

power, they usually waste at least 4-5 watts as heat. Because of this, they run hotter than the other

class types, increasing somewhat the thermal noise of the devices. All this is due to the amplifier

constantly operating at full power. The upside is that these amplifiers are the most enjoyed of

all amplifiers. Since the transistor reproduces the entire waveform without ever cutting off, the

waveform is more linear; that is, it contains much lower levels of distortion.

2.3.7.2 Class B

In this amp, the positive and negative halves of the signal are dealt with by different parts of the

circuit. The output devices continually switch on and off. Class B operation has the following

characteristics:

• The input signal has to be a lot larger in order to drive the transistor appropriately.

• This is almost the opposite of Class A operation.

• There has to be at least two output devices with this type of amplifier. The output stage

employs two output devices so that each side amplifies each half of the waveform. Either

both output devices are never allowed to be on at the same time, or the bias for each device

is set so that the current flowing in one output device is zero when not presented with an

input signal.

• Each output device is on for exactly one half of a complete signal cycle.

These amps run cooler than Class A amps, but the linearity is not as pure, as there is a lot of

"crossover" distortion, as one output device turns off and the other turns on over each signal cycle.

This type of amplifier design, or topology, gives us the term "push-pull," as this describes the

tandem of output devices that deliver the signal to your speakers: one device pushes the signal, the

other pulls the signal.

As mentioned before, the input signal has to be a lot larger, meaning that from the amplifier

input, it needs to be "stepped up" in a gain stage, so that the signal will allow the output transistors

to operate more efficiently within their designed specifications. This means more circuitry in the

path of your signal, degrading the signal even before it gets to the output stage. The efficiency of

such topology wanders around the 60 per cent, and its linearity is inferior to that of class A, as

there is a trade-off between efficiency and linearity.
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2.3.7.3 Class AB

This is the compromise between both classes, A and B. Class AB operation has some of the best

advantages of both Class A and Class B built-in. Its main benefits are linearity comparable to

that of Class A and efficiency similar to that of Class B. Most modern amp designs employ this

topology.

Its main characteristics are:

• In fact, many Class AB amps operate in Class A at lower output levels, again giving the best

of both worlds

• The output bias is set so that current flows in a specific output device for more than a half

the signal cycle but less than the entire cycle.

• There is enough current flowing through each device to keep it operating so they respond

instantly to input voltage demands.

• In the push-pull output stage, there is some overlap as each output device assists the other

during the short transition, or crossover period from the positive to the negative half of the

signal.

There are many implementations of the Class AB design. A benefit is that the inherent non-

linearity of Class B designs is almost totally eliminated, while avoiding the heat-generating and

wasteful inefficiencies of the Class A design. And as stated before, at some output levels, Class

AB amps operate in Class A. It is this combination of good efficiency (around 50) with excellent

linearity that makes class AB the most popular amplifier design.

2.3.8 Instrumentation Amplifiers

Probably the most popular among all of the specialty amplifiers is the instrumentation amplifier

(in-amp). The in-amp is widely used in many industrial and measurement applications where

dc precision and gain accuracy must be maintained within a noisy environment, and where large

common-mode signals (usually at the ac power line frequency) are present. It may come to mind

that an in-amp might be the same as an op-amp , but several differences exist between them. An in-

amp is a precision closed-loop gain block. Normally, it has a pair of differential input terminals,

and a single-ended output that works with respect to a reference. Usually the feedback is done

internally, and there is a gain setting resistor. Its input impedance is quite high, and its CMRR

usually surpasses the 80 dB mark. The typical instrumentation amplifier topology can be found in

figure 2.17.
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Figure 2.17: Typical Instrumentation Amplifier

Typical expected characteristics of a in-amp are: low noise, low offset, high gain , high input

impedance and high CMRR. In the standard topology those are obtained by its three op amp

configuration. The gain in this case is defined by Rgain.



Chapter 3

Bibliographic Review

This chapter has the intent to provide the reader with the technological trends on instrumenta-

tion amplifiers until 2013. An explanatory and critical approach is taken when addressing every

relevant article.

3.1 Gm variation in rail-to-rail input stage

A rail-to-rail input stage is usually built from two differential pairs, a PMOS and a NMOS. This

is due to the fact that to achieve rail-to-rail operation, we must ensure operation over the entire

input common-mode voltage. The NMOS deals with the most positive voltage values in the input,

whilst the PMOS deal with the most negative. However, in the middle region both pairs are active,

bringing us to the conclusion that the rail-to-rail technique entails a problem. In the middle of

the rail, both transistor types are active, making the total gm twice as big than it usually is in the

voltage extremes. This situation can be better understood by observing figure 3.1.

Figure 3.1: Gm variation along the supply rail.

With a varying input gm, stability problems arise as the unity gain frequency of the amplifier

depends on the input gm. This derives from the fact that altering the input gm may alter pole

locations and, therefore, may affect the phase margin, which is undesired. There are a lot of

23
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techniques that deal with this problem. As the reader may have noticed, without a constant gm

technique the variation is 100 per cent, as the total gm in the middle area equals twice the normal

gm in the extremes.

In this section, some of the most relevant techniques are presented.

3.1.1 Dc shifting circuit to obtain overlapped transition regions

This gm control technique is based upon the overlapping of the gm of both input transistors (NMOS

and PMOS), and it was originally presented in [2]. The idea behind this is to shift the input voltage

to one of the input pairs (either the NMOS or the PMOS), so that one curve is shifted towards the

other, until they overlap, as seen in figure 3.2.

Figure 3.2: Gmn vs Gmp along the supply rail. Figure obtained from [9]

In this case the total transconductance will be nearly constant. The level shifter can easily be

implemented by a common-source voltage-follower, which is controlled by the current that passes

it (Ib controls Vgs. The circuit with the level-shifters can be seen in figure 3.3.

Figure 3.3: Rail-to-rail input stage with dc shift gm control. Figure obtained from [9]
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In this image, M5 and M6 are the level shifting transistors, and the voltage shifted can be

controlled by Ib.

Working Principle

The input voltages are shifted by M5 and M6 by |Vgs5,6| towards the positive supply rail, so

the transition region for gmp is shifted by the same value towards the negative supply rail. The

transition regions of gmn and gmp overlap and we can obtain a constant gm over the common-mode

range. A very small variation can be obtained if the dc shift level is well tuned.

3.1.2 Current Summing Technique

The technique presented focus on summing the square root of the p current and the n current, using

a square root circuit. This technique was originally presented in [3] For a balanced input pair it

can be proved that gmt = gmn +gmp =
√

2K(
√

In+
√

I p), so in order to keep gm constant we just

have to keep the sum of the currents constant. This circuit can be seen in figure 3.4.

Figure 3.4: Current Summing Circuit

• Vsg11 +Vsg10 =Vsg8 +Vsg9 = constant;

• I f (W/L)8 = (W/L)9 then
√
(ID8)+

√
(ID9) = constant;

• The input transistors work in strong inversion region;

• The square root circuit M7-M11 keeps the sum of the square-roots of the tail currents of the

input pairs and then the gm constant;

• The current switch , M5, compares the common-mode input voltage with Vb and decides

which part of the current Ib should be diverted to the square-root circuit;
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At the extreme voltages, either the p pair or the n pair receive Ib = 4Ire f . If the current through

M7 is larger than 4Ire f the current limiter M6 limits the current of M7 to 4Ire f = Ib and directs it

to the P input pair.

The circuit is somewhat complex and the functionality relies on the square law of MOS tran-

sistors. For current sub-micron processes, this law is not closely followed, which may introduce a

larger error in the total transconductance.

3.1.3 Gm Control Through the Use of an Electronic Zener

This technique relies on the use of an electronic zener to keep Vgsn +Vsgp constant, and it was

originally presented in [4]. The formula for the total gm in the input pair is as follows: Gmt =

gm1 + gm2 = 2K(Vgsn + |Vgsp|˘Vtn− |Vtnp|, thus making Gmt constant means keeping Vgsn + |Vgsp|
constant. As the reader can see in figure 3.5, the floating voltage source keeps that sum constant,

and its value is Vf s = gmt/2K +Vtn + |Vt p|.

Figure 3.5: Input stage with a Voltage source

One way to implement this voltage source is by using diode connected MOSFETs as seen in

figure 3.6.

Figure 3.6: Input stage with a voltage source, using diode connected transistors



3.2 Instrumentation Amplifiers Topologies 27

However, this circuit cannot achieve the same performance as with an ideal voltage source.

Figure 3.7 presents a more precise implementation of the voltage source.

Figure 3.7: A more precise implementation of the electronic zener

In this topology, the electronic zener is implemented by transistors M5-M8. M5 and M7 are

current mirrors, Id5=Id7, thus making the current through M5 and M6 constant. This configuration

is equivalent to a zener with very low resistance.

3.1.4 Comparative Analysis

From all the topologies here presented, the one who presents the best gm variation, is the one

with overlapped transition, presenting only a ± 4 per cent variation. Its only limitation is that it’s

sensitive to Vt and power supply voltage change, but in this case , that is not a problem, making

this topology an obvious choice.

3.2 Instrumentation Amplifiers Topologies

This section focus on the suitable topologies that can be used to develop instrumentation ampli-

fiers.

3.2.1 The Fully Balanced Differential Difference Amplifier (FBDDA)

The FBDDA topology is a recent one, with distinctive characteristics. Unlike common FDDA’s,

FBDDA’s employ 4 inputs, as one can see in image 3.8.
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Figure 3.8: The Fully Balanced Differential Difference Amplifier

The reader might easily come to the conclusion that this topology entails more area, but it

allows for more dynamic range and a higher input impedance value, as well as the ordinary advan-

tages achieved by the differential pairs. This configuration finds its applications in a wide range

of areas. In a similar way to the much known op amp configuration, the FBDDA also allows

for inverting or non inverting configurations as well as buffer operation. Image 3.9 presents the

fundamental applications for the FBDDA.
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Figure 3.9: Several applications of the FBDDA. (a) single ended buffer. (b) Fully differential
buffer. (c) Single ended noninverting amplifier. (d) Fully differential noninverting amplifier. (e)
Single ended state-filter. (f) Fully differential state-variable filter. Image obtained from [5]

It is also imperative to know the possible negative feedback combinations. Image 3.10

presents all of the possible combinations. These different topologies present different charac-

teristics as well.
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(a)

(b)

Figure 3.10: Negative Feedback combinations (a) and (b). Outputs are fed back to the same
differential pair (a). (b) outputs are fed back to different differential pairs.

In [5] it was presented the original FBDDA topology with a cmfb circuit, as well as a class AB

output stage. Good results were achieved. Information about FDDAs is not presented here because

the FBBDA is , so to speak, an upgrade to that topology and more suitable for instrumentation

amplifiers development. However, if required, more information on FDDAs can be found here:

[15], [16], [17], [18] and [19].

3.2.2 Pseudo-Differential Amplifiers (PDA)

PDAs are a variation of FDDAs. The major difference is that they do not use a current source

in the input pair, as seen in figure 3.11. This allows for higher swings, as the current source

does not limit the source voltage of the input transistors. However, this topology suffers in terms

of common-mode response, as its CMRR is close to 0 dB , since the differential gain equals the

common-mode gain.
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Figure 3.11: Pseudo-Differential Amplifier.

[6] presents a novel PDA topology with a rail-to-rail CMFB detector using a transconductance

and a transimpedance amplifier. Low power consumption and small area is achieved.

3.2.3 Chopper-Stabilized Amplifiers

Chopper-stabilized amplifiers are amplifiers that present low noise. They are mainly composed by

a pre-modulation block, followed by an amplifier, and ending with a demodulator. This allows to

amplify the signals in a desired frequency, reducing flicker noise immensely and achieving very

low offset. However, chopper amplifiers usually require switching capacity and occupy a rather

large area.

In [7] a novel chopper amplifier topology is presented , that combines the chopper topology

with the DDA topology. This allows for a very low noise and a low offset amplifier. It is a fairly

good topology, however, in terms of area, it is quite big.

3.2.4 Comparative Analysis

When facing the 3 possibilities to implement an inamp, one should consider the goals he has in

mind for the amplifier. The chopper amplifier is better in terms of noise and offset, however in

terms of area it would be quite large, and it would imply the use of switching, complicating the

circuit. While the PDA presents good characteristics, it lacks the overall better characteristics that

the simple DDA presents, namely the much required high CMRR. Since the goal of this thesis was

to make a dedicated inamp and at the same time maintain good characteristics to be used in other
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kind of applications, the DDA topology was the one that stood out. Another reason for the choice

of this topology was the fact that there are not any instrumentation amplifers based on the FBDDA

topology yet.



Chapter 4

Development of the Instrumentation
Amplifier

The first step to take in developing an amplifier is to acknowledge the environment in which it will

work, and the signals it will amplify. In this case, the environment is standard (normal temperature,

pressure and humidity values), and it will reside on a chip to be placed near the electrodes. This

first condition rapidly leads us to the conclusion that the power consumption of the chip has to be

very low, to increase the battery life, and its area has to be small, to avoid provoking discomfort on

the patient. Regarding the signals, we already know that they are low frequency, and low voltage

implying high precision and low noise. These are the top requirements to be satisfied, things such

as bandwidth and slew rate, for example, are not so important in the design of such amplifier.

Besides these characteristics, there are the usual op amp characteristics that have to be fulfilled,

such as the Phase Margin, gain, and others. For a better visualization of the global requirements,

the reader can find in table 4.1 an organized view of the desired characteristics.

With the requirements in mind, the beginning of the development of the topology is quite

simple. The differential pair is a fairly good start, as explained in the previous chapters, and so,

the adopted topology was as follows.

The block diagram of the proposed amplifier can be seen in figure 4.1. The two differential

transconductance amplifiers are the input differential pairs. The currents from the complementary

inputs sum, following to a gain amplifier (gain and output stage). This type of configuration is

advantageous because it entails high input impedance and increased dynamic range due to the use

of not one, but two differential pairs. This is a recent topology, and there are no instrumentation

amplifiers implemented yet with it. With the advantageous characteristics, its high flexibility and

the fact that it was a recent topology it was set in stone that the amplifier would be built based on

this topology.
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Table 4.1: Requirements for the amplifier, regarding myoelectric signals.

Characteristic Minimum Required Goal Optimum Value

Bandwidth 10*500 Hz = 5000 Hz >5000 Hz
PSRR 80dB >80dB
CMRR 80dB >100dB
Offset 100u <100u
Integrated Noise (10Hz - 300Hz) 2µV 2 < 2µV 2

Input Impedance 1M >1M
Open Loop Gain 80dB >80dB
Input Swing Arbitrary rail-to-rail
Output Swing Arbitrary rail-to-rail
Output Impedance 5K 500
Phase Margin 60o >70o

Gain Margin <0 -30
Slew Rate Arbitrary >1 V/us

Figure 4.1: Block diagram of the instrumentation amplifier - FBDDA topology.

4.1 Input Stage

The input stage is a derivation from the initial topology - it has 2 NMOS differential pairs as well

as 2 PMOS differential pairs that entail rail-to-rail operation. This is due to the fact that when the

input voltage is near the positive rail, the NMOS are active, while on the other hand, if the input

voltage is close to the negative rail, the PMOS are active. In either case, the complementary pairs

are cut-off. To maintain the circuit balanced, the NMOS and the PMOS currents are summed up,

through a current mirror , allowing for the correct functioning of the circuit upon mid rail operation

(both pairs are active). However, this entails a problem, the equivalent gm of the input pair is not

constant, affecting the circuit stability and gain.

Transistors M1-M8 are the differential pairs, both NMOS and PMOS. Transistors M9-M12 are

the gm-control transistors. These transistors are responsible for performing a DC shift in the input

voltage, thus making the transistors operating-zones overlap, as explained in the bibliographic
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review, allowing for a constant gm throughout the input voltage range. Transistors M13-M20 are

current sources that supply the differential pairs, as well as the dc shifting transistors. Since we

have NMOS and PMOS differential pairs, we need to have a way to sum the currents in both

pairs. Transistors M21-M24 take care of that problem, as they mirror the current from the PMOS

branch, to the NMOS. In the end, both currents are summed and carried out to the gain stage

(Out1 /Out2). As for the load of the NMOS differential pairs, a cross-coupled load was used -

transistors M25-M28. This allows for a higher CMRR, since the impedance they offer is higher

for differential signals, and smaller for common-mode signals, unlike the simple PMOS load.

Figure 4.2 presents both types of load.

(a) Differential pair with a PMOS active load.

(b) Cross-coupled load on a single differential
pair.

Figure 4.2: Types of load. (a) simple PMOS active load. (b) cross-coupled load

Even though, the PMOS active load has to offer a slightly higher output impedance, the cross

coupled load offers other types of advantages. For common-mode signals, the impedance it of-
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Table 4.2: Transistor sizes for the input stage.

Transistor Size (W/L)

M1-M4-M5-M8 50.1/5
M2-M3-M6-M7 150/5
M13-M14-M21-M22-M23-M24 10/1
M16-M19 30/1
M15-M17-M18-M20 25/1
M25-M26-M27-M28 15/1

fers is quite low, approximately 1/gm, and for common-mode signals, it is approximately Ro3/2

assuming the transistors have the same size, since the total impedance seen from the drain is the

parallel of (1/gm3//− 1/gm4) with Ro3//Ro4. This increases the CMRR, as well as permits the

CMFB circuit to drive the current source in the gain stage instead of the current source in the input

stage. This would complicate the CMFB circuit, as we would need to have two outputs, instead

of one: one for the NMOS current sources, and another for the PMOS. The cross-coupled load is

clearly advantageous. With this being said, the reader can find the total input stage in figure 4.3.

Figure 4.3: Input Stage of the Instrumentation Amplifier

The sizes of the transistors can be found in table 4.2:

4.2 Gain stage and Output Stage

As for the gain stage, a simple common-source was used, with miller compensation. The diode

connected NMOS function is to balance the gain branch and the branch composed by transistors

M29-M31 in terms of voltage. Compensation was made through a Poly capacitor and a triode
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transistor. This triode transistor had its bias point controlled by two other diode connected de-

vices, but because of the total power consumption, they had to be removed, making the control of

resistance of the transistor externally.

This output stage is based on the one developed by Phillip Allen, in [10]. It achieves rail-to-

rail operation, as well as a low output resistance. This topology in particular also guarantees offset

protection. Rail-to-rail operation is achieved through the use of transistors in Common-Source

configuration. However, the reader might wonder how is the low output resistance achieved, if we

are to use Common-Source transistors. This is due to a feedback network applied directly on the

output, thus reducing the output resistance by a factor of (1+Loop Gain). In this case, the loop

gain is determined by the error amplifiers, as seen in figure 4.4

Figure 4.4: Negative Feedback applied on the output

In this case, the error amplifiers are simple differential pairs. Transistors M1 - M8 constitute

the differential pairs.Transistors M35 and M34 are the output transistors, and their current is stabi-

lized in case of an offset in the error amplifiers by the feedback loop composed by M29-M33 and

M14. Figure 4.5 portrays this situation.

Figure 4.5: Output stage with offset stabilization circuit. Figure obtained from [10]
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If an offset occurs between the error amplifiers, the current that flows through the output drivers

is uncontrolled, since the current that flows through them is controlled by the current mirrors in

the differential pairs. The feedback loop that controls this works as follows. If an offset exists, the

output voltage in the error amplifier A1 increases, causing the current in M6 and M9 to decrease.

This decrease in the current is mirrored in transistor M8A, which will represent a decrease in its

gate-source voltage. This decrease in its Vgs will balance out the increase in the offset voltage in

the error loop, consisting of Vos, M8 and M8A. In this manner, the currents in the output drivers,

M6 and M6A , are balanced. Figure 4.6 presents both the gain stage, and the complete output

stage.

Figure 4.6: Gain and Output Stage

Because M35 can supply large amounts of current, we must ensure that this transistor is off

during the negative half-cycle of the output voltage swing. For large negative swings, the drain of

transistor M16 pulls to Vss, turning off the current that biases its respective error amplifier. The

gate of M35 is then floating and tends to pull towards Vss, turning this transistor on. This topology

already deals with this situation, keeping M35 off for the large negative swings, due to transistors

M9-M12. This swing protection circuit will degrade the step response of the amplifier, because

the unity-gain amplifier not in operation is completely turned off. As M35 turns off, M9 and M10

pull the drains of transistors M3 and M4 , respectively. As a result, transistor M6 is turned off, and

any floating nodes are eliminated. Transistors M11 and M12 deal with its positive counterpart, in

the same manner.

Short-circuit protection is also included in the design of the amplifier [10]. Transistors M19-

M28 compose the short circuit protection circuit, and its operation goes as follows. M23 senses the

output current through transistor M35 and in the event of large output currents, the biased inverter

formed by M20 and M24 trips, thus enabling transistor M28. Once it is enabled, the gate of M35

is pulled towards the positive rail, making its current limited to a maximum value, dependant on

its size. In a similar manner, M24-M28 deal with the NMOS output driver. Regarding the rest of
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Table 4.3: Transistor sizes for the gain and output stage.

Transistor(s) Size (W/L)

M1,M2,M7,M8,M16,M31 5/1
M3,M4,M5,M6,M17 15/1
M34 7/0.35
M35 21/0.35
M9,M10,M19,M24,M30 3/1
M11,M12,M29 1/1
M15 10/1
M23 2.5/1
M28 7/4
M20 7.5/1
M22 30/1
M33 80/1
M18 8/1
M21 40/1
M26,M27 1.5/1
M25 2/1
M14 42/1
Cc 10p
Cco 11p

the transistors, M13 is the gain transistor, and the rest of the transistors are current-sources, with

the exception of M36-M38. These are the triode transistors, biased by an external voltage.

Table 4.3 presents the sizes of the transistors that compose the gain and the output stage.

4.3 CMFB

The CMFB topology development was quite hard to develop. Rail-to-rail MOS CMFB detec-

tors were mandatory, since resistors and capacitors occupied a large area. In the beginning, a

simple differential common-mode detector was implemented, along with an error amplifier. This

common-mode detector initially had two input differential pairs, one NMOS and one PMOS, as

well as two outputs, one for the PMOS current mirrors and another for the NMOS current mirrors

because at the time the CMFB was feeding the input stage, instead of the gain stage. But after the

insertion of the cross-coupled load, there was no longer need for two outputs. However, still no

rail-to-rail results were being achieved. This was due to the current sources that fed the input pairs,

that did not allow the source voltage of the input transistors to go to zero. This affected the rail,

and the answer for this was later found in [11]. The use of pseudo-differential pairs, allows for a

higher swing, since there is no current source for the input transistors. There were other ways to

implement a rail-to-rail CMFB, but they were simple ideas at the time . One of these possibilities,

consisted in implementing a charge-pump to increase Vdd solely on the CMFB input stage. That

would allow rail-to-rail operation. An initial topology was implemented, but good results were
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not achieved, and so the decision was made about the CMFB - The topology in [11] was used. Its

topology can be seen in figure 4.7.

Figure 4.7: The Common-mode Feedback Detector. Image obtained from: [11]

This is solely the common-mode detector. Afterwards an error amplifier is applied, consisting

in a simple differential pair with PMOS load, as seen in image 4.8.

Figure 4.8: The Error Amplifier for the CMFB Circuit.

The transistor sizes for the CMFB detector are present in table 4.4.
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Table 4.4: Transistor sizes for the cmfb detector.

Transistor(s) Size (W/L)

M1A - M2A - M7A - M3B -M4B 5/4
M3A - M4A - M1B - M2B - M7B 15/4
M5A - M6A 15/8
M5B - M6B 5/8

As for the error amplifier, the reader can consult the transistor sizes used in table 4.5 .

This topology need not be the gain amplifier of the global circuit - it can work as a pre-amplifier

followed by a PGA.

Please refer to appendix 1 for expressions for the amplifier.

Table 4.5: Transistor sizes for the error amplifier.

Transistor(s) Size (W/L)

M1 - M2 5/2
M3 - M4 15/2
M5 (Iss) 15/1
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Chapter 5

Simulation and Results

Many simulations were performed, as one should in the case of an amplifier. This chapter con-

tains all the simulations made to the amplifier, as well as the layout produced and the simulations

performed on the layout. Please refer to appendix 1 for information on the simulations done.

5.1 Characterization of the amplifier

The simulation that follows is in regard to the amplifier connected in the non-inverting configura-

tion, with β = 0.1 for simulation purposes, as seen in image 5.1.

Figure 5.1: Non-Inverting configuration of the amplifier

The stimuli applied to the amplifier was as follows:

• Supply Voltage : V ss =−1.65;V dd = 1.65

• Bias: V bn =−725.2mV ;V bp = 557.4mV ;V re f = 0;V btn = 1.126V ;V bt p =−877.2mV

• Output : Rload = 10k,Cload = 10p

• Input : V (dc) = 0,Vpp = 2mV, f requency = 1K

One can find the amplifier’s frequency response in image 5.2.
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(b) Phase Plot.

Figure 5.2: Frequency Response of the amplifier.
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Table 5.1: Characteristics obtained through SPECTRE simulation and Monte Carlo analysis ap-
plied to the amplifier.

Characteristics Obtained from SPECTRE simulation Monte Carlo Analysis
Aol 78.63 dB NA
Acl 20.81 dB 20.81
Input Swing Vmin = -0.75V ; Vmax=1.6V NA
Output Swing Vmin = -1.04V ; Vmax=1.61V NA
Bandwidth 641KHz 635.5KHz
CMRR NA >122dB
PSRR NA >86dB
Integrated Noise (10 Hz - 300 Hz) 1.8µV 2 NA
Slew-Rate 0.2V/µs NA
Load Min R = 500 ohm , Max C=100p NA
Power Consumption 6.8 mW NA
Phase Margin 84 77
Gain Margin -21.71 -18.79
THD 0.1 % @ 1KHz, Vpp=2mV NA
Offset 324.7nV 1.219m

Table 5.1 contains the characteristics obtained, as well as the characteristics obtained from the

Monte Carlo simulation, applied only to the relevant parameters. Monte Carlo analysis setup:

• Number of Samples:1000

• Process and Mismatch variation

• Statistical Variation obtained from the Monte Carlo technology files (.mc extension)

Since the offset and the phase margin are the most important parameters to visualize in the

Monte Carlo analysis, their graphics are presented here. This is due to the fact that the phase

margin is the most important stability indicator, so we need to assure the amplifier is stable even if

some mismatch is present. Regarding the offset, it is one of the most affected parameters with the

mismatch of some transistors, and it is also one of the most important requirements of an inamp,

making the need for its graphic an obvious one. Figure 5.3 contains the bar graph regarding the

variation of the offset, and figure 5.4 contains the bar graph regarding the variation of the phase

margin.
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Figure 5.3: Monte Carlo analysis regarding the offset.

−60 −40 −20 0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

Figure 5.4: Monte Carlo analysis regarding the phase margin.

5.1.1 Discussion of the Results

All results fit the requirements imposed by the myographic signals. Monte Carlo analysis also

shows that even with some variations on the transistors, the amplifier will maintain good charac-

teristics.
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According to the Monte Carlo results, 0.0987 of the transistors would be discarded, which is

approximately 10 per cent.

Regarding the values obtained, it is important to note that the bandwidth value is quite high,

although the amplifier was designed without having regard to the bandwidth - due to the signals

it will amplify. However, this only reinforces the idea that this amplifier can be used in a more

generic context.

5.1.2 Layout

This section contains information regarding the layout, and the simulations done regarding post-

layout simulation.

Image 5.5 contains the layout produced without the I/O ring. Symmetry was taken into ac-

count , to minimize the possible offset.

Figure 5.5: Produced layout without the I/O ring.

Multiple fingers were used in the transistors that required symmetry the most, and also in order

to minimize the area when possible. After assuring that everything was okay regarding the DRC

and the LVS, the parasitics were extracted and the post-layout simulation was done using RCX,

as well as the Monte Carlo analysis. Table 5.2 presents the characteristics of the extracted layout,

along with its Monte Carlo analysis. The stimuli applied in this case was the same as before. The

frequency response can be seen in figure 5.6
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Table 5.2: Post-layout simulation and respective Monte Carlo analysis.

Characteristics Post-layout simulation Monte Carlo Analysis
Phase Margin 77.82 51.67
Offset 515.8n -658.2 µ
Gain Margin -11.86 -9.565
Closed Loop Gain 20.81 dB 20.81 dB
Bandwidth 656.2KHz 641.8khZ
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Figure 5.6: Frequency Response of the amplifier after post-layout simulation.
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The graphs that contain the Monte Carlo statistics analysis can be found in figure 5.7
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(a) Monte Carlo analysis regarding the phase-margin of the post-layout simulation.
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(b) Monte Carlo analysis regarding the offset of the post-layout simulation.

Figure 5.7: Monte Carlo analysis regarding the offset and the phase margin of the post-layout
simulation.
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Figure 5.8: Produced layout with the I/O ring.

For the I/O ring pads the IOLIB_ANA_3B_4M library provided them with ESD protection

(50 ohms). To complete the I/O ring , PERI_SPACER cells were used along with corners, both

from the IOLIB_3B_4M library. A dummy pad had to be used, to maintain a symmetrical layout.

After introducing the I/O ring, the dimensions of the layout were: Height - 1.0416 mm ; Length

- 1.265 mm . The dimensions of the amplifier itself were: Height - 0.303 mm ; Length - 0.5442

mm.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

To build an amplifier, one must always start from the requirements and aim for certain charac-

teristics. However, most of the times that does not happen, as one can easily change the course

in the middle of the design. In this case, that happened more than once , and one great example

is the fact that the commmon-mode feedback was to be designed from scratch, but in the end, a

suitable replacement was found. This choice was made because there was barely any information

regarding MOS rail-to-rail CMFB topologies. The idea that was implemented would allow for a

rail-to-rail cmfb, but since it did not present fairly good results on schedule it was discarded, and

another author’s topology was adopted. Besides that, a new topology for an instrumentation am-

plifier was achieved, with success. Regarding the post-layout simulation with the I/O ring, it was

not performed due to the non-existence of pad models for the schematic, making the passing of the

LVS an impossible task. All objectives were also successfully accomplished with the exception

of testing the chip. This is due to the fact that the production of the chip takes approximately 3

months, and its submission date was in July (as predefined by EuroPractice). However, the chip

will be tested after the conclusion of the Master Thesis.

6.2 Future Work

For the future work, it would be recommended to employ a full rail-to-rail cmfb topology, as the

one employed is only quasi-rail-to-rail. This amplifier has quite good characteristics, and it may

be suitable for various applications. The only downside to it, is the low slew rate. In the case of

myographic signals this is not a concerning parameter, however in other applications it might be.

Thus it is recommended the increase of the slew rate, if possible. Another suggestion would be to

implement along with the amplifier, a driven right leg circuit, to impose the common-mode level

in the input of the amplifier, for optimum operation.
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Appendix A

Expressions and simulation setups

A.1 Expressions and Calculations

A.1.1 Gain Expression for the novel instrumentation amplifier

First stage

Transistor M1 and M2 are the input NMOS, transistors Mcc are the cross coupled load, and

transitor Mp is the transistor that mirrors the current from the PMOS input pair.

Av1 = gmt1 ∗Req , in which Req = Ro1//Rcc/2//Ro2//Ro p and gmt1 = gm1 +gmb1

where gmt1 = 439.7µ , and Req = 288K;Av1 = 126.6

Measured Av1 = 125.9

Gain stage

M1 is the gain transistor, M2 is the diode connected transistor and M3 is the current source of

the gain stage.

Av2 = gm1 ∗Req, in which Req = Ro1//(1/gm2 +Ro3)

where gm1 = 503.8µ , and Req = 130.7K;Av1 = 65.8

Measured Av2 = 70.8

Total gain Av = Av1 ∗Av2 = 8330,28 = 78.4dB

Measured Av = 8913.72 = 79dB

A.1.2 Pole and zero Locations

The zeros and poles here shown are the most important ones. The transistor numbers are the ones

shown in chapter 4.

Input poles : wp1 = (Ro1//Ro5//Ro24//Ro25)∗ (Cgd1 +Cgd5 +Cgd25 +Cgd27 +Cgs27 +Cgd24 +

(Cc +Cgd13)(Av1−1)

Gain stage poles: (Ro13//(Ro15 +1/gm15))∗ (Cgd1 +Cgs1 +(Cc +Cgd13)(1−Av))

Output stage poles: (Ro35//(Ro34)∗ ((Cgd35 +Cco)(Av−1)+Cgs33 +Cgd33)

Error amplifier poles: (Ro6//Ro8//Ro12)∗ (Cgd2 +Cgs2 +Cgd6 +Cgs34 +Cgd34 +Cgd8 +Cgd12)

Gain stage zeros: gm13/(Cc +Cgd13)(1−Rz)
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Output zeros: gm35/(Cco +Cgd35)(1−Rzo)

A.2 Simulation Setups

A.2.1 Input and Output Swing

For the input swing measure, a simple parametric sweep was performed on the input voltage and

the amplitude of the input signal. To obtain the input swing , a simple observation on the output

would suffice.

For the output swing, the input amplitude was taken to high values, in order to force the output

waveform to its limit, visualizing then the limits of the output.

A.2.2 Minimum Load

To discover the minimum Load the amplifier could drive, a sweep to the Resistor and the capac-

itor coupled to the output was performed, and then observing the transfer function of the circuit,

conclusions were made.

A.2.3 Integrated Noise

To perform the noise analysis over the bandwidth of interest, the noise from 10Hz to 500Hz (in

this case) was plotted, and the integral over the area of interest was performed (10Hz-300Hz), thus

obtaining the integrated noise.

A.2.4 Harmonic Distortion

There are several ways of calculating the harmonic distortion of a circuit, such as calculating the

FFT transform of the output waveform. In this case, for simplicity reasons, cadence tools were

used (Spectre).

A.2.5 PSRR and CMRR

To obtain the CMRR, the inputs were shorted (common-mode signal), and then the open-loop gain

was extracted (Acm). Then a simple calculation allows us to obtain the CMRR, Ad - Acm.

Obtaining PSRR is similar to obtaining CMRR, but in this case one must place a voltage source

on the power supply, and obtain the open loop gain (Asup), and then with a simple calculation

PSRR is obtained: PSRR = Aol-Asup.

A.2.6 Power Consumption

To obtain the power consumption, the current passing through Vdd was measured, and then the

power was calculated - P= VI .



Appendix B

Overview of Single Stage Amplifiers

This appendix contains information regarding basic transistors configurations, and single stage

amplifiers.

B.1 Basic transistor configurations

B.1.1 Common-source configuration

This configuration is normally used in the gain stage, since it can achieve a high gain value.

Figure B.1: Common-source topology

Transistor kept in saturation through R1 and R2.

Open loop gain Av =Vo/Vi =−gmVgsRi
(ro//Rd)
(Ri+Rsi)

Input resistor Ri = R1/R2

Output resistor Ro = Rd//ro

With source resistor
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Figure B.2: Common-source with source resistor topology

Used to stabilize the quiescent point against variations of the parameters of the transistor.

However, the gain is reduced.

Open loop gain Av =− gmRd
(1+gmRs)

With a bypass capacitor on the source

Figure B.3: Common-source with capacitor topology

To minimize the loss of gain (because of Rs).

The stability of the quiescent point can be enhanced by replacing Rs with a current source.

Input pole: ωin =
1

([Cgd(1+gmRD)+Cgs](RS))

Output pole: ωout =
1

([RD||((
Cgd+Cgs)

Cgd
. 1

gm
)](Ceq+Cdb)))

with Ceq = (CgdCgs)/(Cgd +Cgs)

B.1.2 Source-follower configuration

This configuration is normally used in the output stage of an amplifier, because of its low output

resistor.
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Figure B.4: Source-Follower topology

Open loop gain Av =Vo/Vi =
(Rs//ro)Ri

((1/gm+Rs//ro).(Ri+Rsi))

Input resistor Ri = R1/R2

Output resistor Ro = 1/gm//Rs//ro

Significant pole: ωp =
gm

([(gmRD)+Cgs](RS))

B.1.3 Common-gate configuration

This configuration is much less used, standing alone, than source follower, or common source.

It is usually used in CMOS RF receivers or in cascode configurations. The transistor is kept in

saturation by the current source.

Figure B.5: Common-gate topology

Open loop gain Av =Vo/Vi = gm(Rd//RL)

Input resistor Ri = 1/gm

Output resistor Ro = Rd

To better understand the differences between these configurations, a comparison table is presented:
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Table B.1: A comparison table between basic transistor configurations

Topology Av Ai Ri Ro

Common-Source Av > 1 - Rth Moderate to high
Source-Follower Av ∼= 1 - Rth Low
Common-Gate Av > 1 Ai ∼= 1 Low Moderate to high

B.2 Single Stage Amplifiers

These are the basic MOS load topologies:

• NMOS with enhancement load

• NMOS with depletion load

• NMOS amplifier with PMOS load

The last one is one of the most used active load configurations, for example it is used in the

differential pair.

NMOS with enhancement load

Figure B.6: Nmos amplifier with an enhancement load

Open loop gain Av =−gmD/gmL

NMOS with depletion load
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Figure B.7: Nmos amplifier with a Depletion load

Av =−gmD(roD//roL)

NMOS amplifier with PMOS load

Figure B.8: Nmos amplifier with a Pmos load

Av =−gmn(ron//rop)
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