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Resumo

Os modelos de comportamento humano são um contributo importante para as ferramentas que
ajudam a mapear e arquitectar planos de evacuação eficientes. Estes modelos precisam de dados
que podem ser fornecidos por sistemas de localização como o Ubisense.

Este estudo tem como objectivo explorar o uso do sistema de localização em tempo real
Ubisense aquando da modelação do comportamento humano e ainda desenvolver novos conheci-
mentos sobre padrões de trajectórias de pessoas em evacuações e outras situações de stress.

De forma a colectar dados de movimentações pedestres, concebemos e executamos experiên-
cias de comportamento pedonal de pequena escala com voluntários, em diferentes cenários e com
o objectivo de replicar várias situações encontradas em instalações reais, nas quais as movimen-
tações de cada participante foram monitoradas e gravadas com recurso ao sistema Ubisense.

Embora as trajetorias recolhidas em estado bruto parecerem imprecisas e irregulares, as ten-
tativas para filtrar e limpar os dados foram bem sucedidas, melhorando-os e preparando-os para
a análise posterior. A fim de melhor caracterizar e dar significado aos dados, foram calculados
descritores básicos de movimento e exploradas diferentes técnicas de visualização.

Por fim, procurou-se inferir comportamento humano a partir de trajetórias pedestres, dividindo-
as em segmentos ou sub-trajetórias que compartilham propriedades semelhantes e agrupando as
sub-trajetórias em conjuntos que simbolizavam um determinado comportamento. Seguidamente
usaram-se as técnicas de análise anteriormente exploradas para caracterizar estatisticamente cada
conjunto e o seu comportamento associado.

Os resultados obtidos demonstraram que a nossa abordagem é válida, pois fomos capazes de
extrair padrões e a sua caracterização. Além disso, o uso de tecnologia de monitoramento UWB
parece ser uma abordagem viável, pois apesar de devido a limitações como a falta de fina precisão
espacial não a tornem ideal para extrair as propriedades microscópicas do tráfego, é particular-
mente adequada para situações em que a utilização de vídeo é menos aplicável e o posicionamento
minucioso não é um problema, como por exemplo na análise macroscópica.
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Abstract

The models of human behaviour are an important input for the tools that that help mapping and
design efficient evacuation plans. These models must be calibrated and validated with reliable data
that can be provided by systems like the Ubisense real time location system.

This study aims to explore the usage of the Ubisense real time location system when modelling
human behaviour and develop new insights about patterns of human trajectories in evacuations and
other stressful situations.

Towards gathering pedestrian movement data, we devised and performed small scale walking
behaviour experiments with volunteers, taking place in different scenarios and aiming to replicate
several situations found in real facilities, where the movements of each participant was tracked
and recorded with the help of the Ubisense system.

Although the raw gathered trajectories were found to be noisy and imprecise, attempts to filter
and clean the data were successful, improving and preparing it for the subsequent analysis. In
order to further characterize and make sense of the data, we calculated basic motion descriptors
and explored different visualization techniques.

Finally, we attempted to infer human behaviour from pedestrian trajectories by partitioning
them into segments or sub-trajectories that shared similar properties and aggregated the sub-
trajectories into clusters that symbolized a certain behaviour, and then used the previously explored
analysis techniques to statistically characterize each cluster and associated behaviour.

The results we obtained demonstrated that our approach was valid, as we were able to extract
patterns and its characterising variables. Also, usage of UWB tracking technology seems a viable
approach, as although limitations like the lack of fine spatial precision make it not optimal for
extracting microscopic properties of traffic, it is particularly suited for for scenarios where video
recording is less applicable and pedestrian fine positioning is not an issue, such as for macroscopic
analysis.
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Chapter 1

Introduction

This chapter presents the context in which the dissertation was carried out. It begins by intro-

ducing the dissertation’s theme, motivation, scope and goals. A detailed characterization of the

problems to be tackled and corresponding methodological approach follows. Finally the expected

contributions are enumerated and the rest of the document structure is summarized.

1.1 Motivation

The last couple of decades have witnessed an increasing number of mass events, in which large

numbers of people flock to confined areas. Some of these large events are related to sports, en-

tertainment, culture or religion and are held regularly throughout the world. The safety of people

in emergency situations where panic can lead to unexpected or anti-social behaviour has been a

subject of interest and study of researchers, engineers and authorities [1]. The study of pedestrian

motion and behaviour is thus crucial for planning efficient evacuation strategies to assure safety for

people in situations such as these, which can lead to a large number of injured and casualties in an

evacuation scenario. However, studying crowd behaviour in emergency situations is challenging

since it often requires exposing real people to the actual, possibly dangerous, environments [2].

Furthermore, evacuation exercises are often too expensive and time consuming to be a standard

measure for evacuation analysis [3]. Therefore the usage of evacuation simulations built upon

models of pedestrian dynamics, have become essential tools in evaluating safety and designing

buildings, as well as planning emergency evacuation.

1.2 Scope

This thesis is carried out within the scope of the final dissertation in the Master Course in Elec-

trical and Computer Engineering at Faculdade de Engenharia da Universidade do Porto. It aims

to study and improve techniques for tracking pedestrians carrying RFID tags in order to study

the movement and behaviour of humans, particularly in situations of panic or emergency. The
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2 Introduction

resulting data from the movement of several people shall be analysed and filtered to be used in a

framework of human behaviour elicitation.

1.3 Problem statement

Agent-based models of pedestrian dynamics play an important role in predicting the dynamical

properties of large human crowds and are used as tools for designing buildings and planning

emergency egress. These models must, therefore, be calibrated against reliable data to ensure

their validity.

To improve the knowledge related to pedestrian dynamics, it is necessary to develop exper-

iments with volunteers where their movements are recorded and data is subsequently mined in

order to extract meaningful information.

Data collection on crowds and pedestrians has been traditionally based on direct observation

and time-lapse films [4]. Video has become an important tool as several applications for auto-

matic extraction of pedestrian trajectories have been developed [5]. However, the usage of video

recordings presents several limitations on the scenarios allowed for pedestrian experiments.

Hopping to widen the breath of possible experiment scenarios, this project will perform data

collection using Ubisense, a UWB real-time location system, to track tags carried by pedestrians.

1.4 Aim and goals

This project aims to extract relevant data from pedestrian movement experiments to be used as

framework for human behaviour elicitation. In specific, the goals to be achieved are the following:

• Study and improve techniques of tracking human movement using UWB RFID tags;

• Conduct experiments with volunteers and record tracked trajectories;

• Extract relevant information from the recorded trajectories;

• Use data mining and inference techniques to elicitate human behaviour.

1.5 Methodological approach

The methodological approach proposed in this project is formed from three main components.

Each of the components constitutes a task itself, which are listed below:

• Problem analysis — Perform a literature review to gather insight into the problem at hand;

• Data collection — Devise and conduct pedestrian experiments in order to provide relevant

data for analysis;

• Data analysis — Use behaviour mining techniques to infer pedestrian behaviour from the

previously collected data;
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1.6 Expected contributions

The usage of ultra-wideband radio frequency based systems for pedestrian experiment data collec-

tion allows some advantages over traditional methods such as automatic extraction of trajectories

from video recordings. Line-of-sight restrictions are minimized and low ceiling areas present no

limitations. It also encompasses a wider breath of simulation scenarios, such as limited visibility

situations e.g. dark or smoke filled rooms, which are very common in emergency situations due to

fire. Assigning identifiable tags to individual participants allows correlation between characteris-

tics of the individual pedestrian (e.g. gender, height and age) with its trajectory. This might allow

better understanding of the dynamics of heterogeneous crowds and study the effect of outliers like

elderly people or people with mobility impairments.

The data resulting from this thesis will be used within the context of a larger project: the

“mSPEED” Simulator, an integrated framework constituting a unique tool for agent-based “Mod-

elling and Simulation of Pedestrian Emergent Evacuation Dynamics”. This tool will be used for

validating new and existing building layouts, helping planners to develop and improve emergency

plans and safety systems, training occupants using virtual drills, and helping fire-fighters and res-

cuers to develop plans, rescue strategies, and learn how to deal effectively with crowds during

emergencies and critical situations.

1.7 Document structure

Beyond this introduction, this document further comprises four more chapters.

In Chapter 2, related research is described, based on a literature review of relevant topics of

pedestrian behaviour and modelling.

Chapter 3, presents the methodological approach on how the problem is to be tackled in this

project. Methods, technologies, algorithms and tools used are enumerated and a detailed method-

ology for the steps that need to be completed to sucessfully achieve the thesis goals are proposed.

The results gathered during the development of the project are presented, analysed and dis-

cusses in Chapter 4.

Finally, in Chapter 5 are presented the final conclusions and the directions for further develop-

ments within this project’s scope are laid out.
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Chapter 2

Literature Review

This chapter presents the state-of-the-art of human behaviour in emergency situations and the

fundamentals of pedestrian flow theory.

2.1 Introduction

Empirical studies of pedestrians have been carried out for more than four decades [6, 7, 8]. Com-

prehensive and accurate simulations of emergency situations and evacuation require not only hu-

man movement models, but human psychology and behaviour models as well [9].

Hoogendoorn et al. [10] describes pedestrian behaviour at three levels: strategic, tactical and

operational. An overview of these decision levels is presented in figure 2.1.

Figure 2.1: Levels in pedestrian behaviour, adapted from [11]

5
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At the strategic level, pedestrians determine which activities they want to perform and the

order of these activities. Given the choices at the strategic level, the tactical level pertains to the

short-term decisions of pedestrians. Among the processes within the tactical level, route choice

plays an important role and therefore a lot of literature involves this theme [12]. At last, the

operational level is concerned mostly with the actual walking behaviour of pedestrians.

Knowledge from other disciplines such as sociology and psychology is required to understand

and model the processes at the strategic and tactical level. However, as explained later in 2.3.5,

evacuations procedures are well defined in time and space, as the aims and routes of pedestrians

are known and usually the same. Consequently most processes at the strategic and tactical level

are often considered exogenous to pedestrian simulation [11].

2.2 Walking behaviour

This section presents the empirical findings at the foundation of pedestrian traffic. The preeminent

qualitative and quantitative observables are described, centred on collective phenomena and the

fundamental diagram. Later an overview is presented over various modelling approaches that

have been applied to the description of pedestrian dynamics.

2.3 Empirical data

2.3.1 Collective effects

Researchers of pedestrian dynamics have observed a large variety of interesting collective effects.

These macroscopic effects reflect the individuals’ microscopic interactions and therefore serve as

a first benchmark for any modelling approach [3].

• Jamming: Jamming usually occurs for high densities at locations where the inflow exceeds

capacity. Such locations are called bottlenecks and typical examples are exits or narrowings.

• Density waves: Density waves in pedestrian crowds are quasi-periodic density variations in

space and time.

• Lane formation: Groups of people moving in opposite directions spontaneously form lanes

of uniform walking direction. This allows for higher walking speeds and increases comfort

by reducing interactions with oncoming pedestrians [13, 4].

• Oscillations: Oscillatory changes of the direction of motion in counterflow at bottlenecks

whose frequency increases with the width and the shortness of the bottleneck [13, 4].

• Patterns at intersections: Alternating patterns of motion that are short lived and unstable.

Some patterns, such as roundabout traffic makes pedestrian motion more efficient [4].
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Figure 2.2: Jamming during a pedestrian experiment at Faculdade de Engenharia da Universidade
do Porto.

Figure 2.3: Formation of lanes during a pedestrian experiment at Faculdade de Engenharia da
Universidade do Porto.

• Panic: Various collective phenomena caused by simple reasons in emergency situations

are often misleadingly attributed to panic behaviour. "Typically panic is assumed to occur

in situations where people compete for scarce or dwindling resources (e.g safe space or

access to an exit) which leads to selfish, asocial or even completely irrational behaviour

and contagion that affects large groups. A closer investigation of many crowd disasters has

revealed that most of the above characteristics have played almost no role and most of the

time have not been observed at all" [3].

2.3.2 Variables that describe pedestrian traffic

The main microscopic variables that describe pedestrian dynamics are trajectories and time head-

ways, whilst flow, density and speed are the most important macroscopic variables.

A trajectory is a representation of the path of a moving object over time. Time headway is the

difference between the moments when two consecutive pedestrians cross a fixed location.
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The flow J of a pedestrian stream refers to the number of pedestrians that cross a fixed location

of per unit of time. From the various possible methods to measure flow, one from fluid dynamics

is singled out: the flow through a facility of width b can be determined from the average density ρ

and the average speed v of a pedestrian stream as

J = ρvb = Jsb (2.1)

where Js is the specific flow and represents the flow per unit-width.

Js = ρv (2.2)

This is the hydrodynamic relation, and considering traffic flow in a steady state, becomes valid for

all types of flows and is known as the fundamental relation.

2.3.3 Fundamental diagram

The empirical relation between the macroscopic characteristics of a traffic flow is described by

the fundamental diagram. As implied by its name, the fundamental diagram has been the focus of

many investigations [14, 15, 7, 6, 8, 16, 17, 18, 19, 20, 21]. The relation quantifies the capacity of

pedestrian facilities and became an elementary input for pedestrian facilities design methods [15]

and used as an evaluation and benchmark of pedestrian dynamics models [22].

The fundamental diagram has three equivalent forms: Js(ρ),v(ρ) and v(Js). The shape of the

diagram differs for different types of facilities like stairs and corridors, but it is assumed that for the

same type of facilities, but different widths, the diagram remains the same. There are significant

discrepancies between fundamental diagrams resulting from different researchers. Several expla-

nations have been proposed such as different measurement methods [17], cultural factors [21] and

differences between uni and multi-directional flow [14], but no consensus about their origin has

been reached. Nevertheless, all diagrams agree that velocity decreases with increasing density.

Some special points in the diagram are:

• Free speed v0 — The mean speed if ρ = 0 and J = 0.

• Capacity Jc — The maximum flow.

• Capacity density ρc — Density when J = Jc.

• Capacity speed vc — Mean speed when J = Jc.

• Jam density ρ j — Density when v = 0 and J = 0.

The fundamental diagram allows for a simple representation of the dependence of traffic char-

acteristics on some individual pedestrian and external aspects. In his thesis, Daamen [11] summa-

rizes some of these results from existing literature, which are presented in Figure 2.5.
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Figure 2.4: Flow-density relation for pedestrian traffic. Adapted from [11].

2.3.3.1 Fundamental diagram of pedestrian movement on a plane

Figure 2.6 presents the empirical relation between velocity and density for pedestrian movement

on a plane according to Weidmann [8].

Seyfried et al. [20] discuss possible causes for the variation of slope for different density-

domains:

• Domain I: free flow — ρ < 0.7 Small and increasing decline of the velocity. In this do-

main velocity is mostly determined by the individual free velocity of pedestrians. Passing

manoeuvres are possible but cause a decrease in velocity.

• Domain II: unstable region — 0.7 ≤ ρ < 2.3 Velocity decreases linearly with density.

Passing manoeuvres become hardly feasible, yet there is enough space to avoid contacts

with other pedestrians.

• Domain III: stable region — 2.3 ≤ ρ < 4.7 With increasing density the velocity remains

mostly constant. This might be explained by passing into marching in lock-steps and opti-

mized usage of available space. Contacts with other pedestrians become hardly avoidable.

• Domain IV: congestion — ρ ≥ 4.7 Velocity declines rapidly. Available space is strongly

restricted.
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Figure 2.5: Influence of individual pedestrian characteristics and external conditions on the fun-
damental diagram. From [11].

2.3.3.2 Measurement methods for flow, density and velocity

The way velocities, densities or time gaps are measured present several problems in conformance

to the two usual definitions of flow [3]. According to equation 2.1 the measurement of density is

associated with an instantaneous mean value over space, while in other popular definitions flow

is measured as a mean value over time at a certain location. Averaging these quantities over long

times or large spaces reduces resolution and inhibits advantages brought by new technologies [23].

Four different measurement methods are detailed next.

Method A
In this first method, flow is measured as a mean value over a time interval ∆t at a certain cross-
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Figure 2.6: Flow-density relation for pedestrian traffic. Adapted from [20].

Figure 2.7: Different measurement methods. Method A is a local measurement at the cross-section
with position x, while methods B-D measure the average results over space ∆x. From [17].

section with position x. The velocity vi of each pedestrian passing x can be obtained directly

〈J〉
∆t =

N∆t

tN∆t

and 〈v〉
∆t =

1
N∆t

N∆t

∑
i=1

vi(t) (2.3)

where N∆t is the number of pedestrians crossing the location x during the interval ∆t. tN∆t is the

elapsed time between the first and the last of the N∆t pedestrians. The time mean velocity 〈v〉
∆t is

defined as the mean value of the instantaneous velocities vi(t) of the N∆t pedestrians:

vi(t) =
xi(t +∆t ′/2)− xi(t−∆t ′/2)

∆t ′
(2.4)

Method B
In this method velocity is measured as a mean value over space and time. A segment ∆x is taken

as the measurement area. The velocity 〈vi〉 of each pedestrian is defined as the length ∆x of the

measurement area divided by the time needed to cross the area

〈v〉i =
∆x

tout − tin
(2.5)
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where tin and toutt are the moments a pedestrian enters and exits the measurement area. The density

ρi for each person is obtained as

〈ρ〉i =
1

tout − tin
·
∫ tout

tin

N′(t)
bcor ·∆x

dt (2.6)

bcor is the width of the measurement area while N′(t) is the number of pedestrians in the area at

time t.

Method C
This is the classical method. Density 〈ρ〉

∆x is defined as the number of pedestrians in the

measurement section per unit of area

〈ρ〉
∆x =

N
bcor ·∆x

(2.7)

The spatial mean velocity is the average of the instantaneous velocities vi(t) for all pedestrians in

the measurement area at time t

〈v〉
∆x =

1
N

N

∑
i=1

vi(t) (2.8)

Method D
This method is based on a special kind of decomposition of a metric space determined by

distances to a set of objects, which form a Voronoi diagram. At any time, the Voronoi diagram

contains a set of cells that are generated from the positions of each pedestrian. Each Voronoi cell

area Ai can be thought as the personal space belonging to each pedestrian j. The density and

velocity distribution over space can be defined as

ρxy = 1/Ai and vxy = vi(t) i f (x,y) ∈ Ai (2.9)

where vi(t) is the instantaneous velocity of each person, see eq. 2.4. The Voronoi density and

velocity for a specific measurement area Am = bcor ·∆x is defined as

〈ρ〉v(x,y, t) =
∫ ∫

ρxydxdy
Am

(2.10)

〈v〉v(x,y, t) =
∫ ∫

vxydxdy
Am

(2.11)

The specific flow

〈Js〉v(x,y, t) = 〈ρ〉v(x,y, t) · 〈v〉v(x,y, t) (2.12)

can be computed from the Voronoi density and velocity.
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Figure 2.8: Density and velocity distribution over space obtained from Voronoi method. From
[24].

2.3.3.3 Influence of the measurement method on the resulting fundamental diagram

Zhang et al. [17] concluded that the results of the fundamental diagram of pedestrian movement

obtained from the same set of trajectories by these different methods agree well and that the main

differences are the range of the fluctuations, which are larger in methods B and D and the resolution

in time of the results, lower for method A, these results can be seen in Figure 2.9.

The Voronoi method (D) presents reduced fluctuation as well as good resolution in time and

space, which permits examination on scales smaller that the pedestrians [23].

2.3.4 Bottleneck flow

A bottleneck designates a limited area of reduced capacity or increased demand. Pedestrian flow

in these areas exhibits interesting phenomena such as the formation of lanes at the entrance [25]

and clogging and arching [26, 27].

The study of pedestrian behaviour at bottlenecks is important in environments where a change

in size, which might cause a change in capacity [28]. Through the estimation of maximum capacity

from their fundamental diagrams, bottlenecks are paramount in the calculation of evacuation times

and building capacity.

2.3.4.1 Capacity and bottleneck width

An important and very often studied question, specially for legislation purposes, is how capacity

increases with rising bottleneck width.

A stepwise increase of capacity with width is expected as a consequence of the formation of

more lanes since pedestrians in independent lanes, are not influenced by those on others.

However, experiments from Hoogendoorn [30, 25] show that a self-organization phenomenon

known as zipper effect occurs at the entrance of bottlenecks. Additionally, another study [29] found

that the distance of lanes and the speed in a lane increases with bottleneck width. This optimization

of available space restricts the independence of lanes and leads to a very weak dependence of

density and velocity inside the bottleneck. Therefore a linear increase of capacity with facility

width is usually accepted [29].
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Figure 2.9: Fundamental diagrams resulting from the same set of trajectories but with different
measuring methods. From [17].

Figure 2.10: Zipper effect with increasing lane distances. From [29].



2.3 Empirical data 15

Figure 2.11: Influence of the width (b) of a bottleneck on the flow. Adapted from [29].

A comparison of several different laboratory experiments, Figure 2.11, shows that while all

agree on the linearity of the width - capacity relation, data differs in the values of bottleneck

capacity. The study concluded that the geometry of the bottleneck is only a minor influence on

flow while different initial densities in front of the bottleneck can change the results [29].

2.3.4.2 Relation between bottleneck flow and the fundamental diagram

Another interesting question is the relation between bottleneck flow and the fundamental diagram.

Notably, some of the measured values of flow in bottlenecks exceeds the maximum of empirical

fundamental diagrams. This occurrence is related to the jamming. A jam occurs if the inflow

exceeds the capacity of a bottleneck. In the case of a jam the density inside the jam will be higher

that the capacity density and therefore the reduced flow in front of the bottleneck causes a smaller

flow through the bottleneck than the bottleneck capacity [31].

2.3.4.3 Arching

Under some high pressure situations, where pedestrians try to pass a bottleneck as fast as possible

and compete for access of the limited resource that a bottleneck represents, stable obstructions

occur. This is analogous to the phenomenon of arching that occurs in the flow of granular materials

through narrow openings [3].

Helbing et al. [33] describe a similar phenomenon, freezing by heating, in situations involving

pedestrians under extreme conditions.

2.3.5 Evacuations

The previous empirical results presented are relative to pedestrian motion in simple scenarios.

However, those results, especially bottleneck capacities, are extremely important as full-scale de-
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Figure 2.12: Representation of the arching phenomenon. From [32].

scriptions of evacuations from large buildings are typically a combination of many of the simple

elements [3, 34].

An evacuation process is strictly limited in space and time, as the aims and routes of pedestri-

ans are known and usually the same (exits and egress routes). Five different temporal phases can

be distinguished [35]: detection time, awareness time, decision time, reaction time and movement

time.

Concerning the different sources of data on evacuation processes, Schadschneider et al. [3]

present a classification scheme, shown in Figure 2.13, while asserting that only data from uncon-

trolled or emergency situations can be used in the context of evacuation assessment.

Figure 2.13: Classification of empirical data. From [3].

Data for the evacuation of complete buildings is available from two different sources: real

evacuations and full scale evacuation trials. Reports of real evacuation processes are obtained

from eye-witness records and incident investigations. Evacuation trials are usually observed and

videotaped. These exercises are, however, often too expensive, time consuming and dangerous to

be a standard measure for evacuation analysis [3].

2.3.6 Purpose of the data

In evacuation processes and modelling in general, empirical data plays a crucial role in [36]:
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• Parameter identification — Identify factors that influence the evacuation process, e.g. bot-

tleneck widths and capacities;

• Calibration — Quantify the identified parameters, e.g. flow through a bottleneck in persons

per meter and second;

• Validation — Validate simulation results, e.g. compare the overall evacuation time mea-

sured in an evacuation with simulation or calculation results.

2.4 Modelling

2.4.1 Model characterization

Many different approaches have been developed for modelling pedestrian behaviour, which may

be categorized according to the following properties [37, 38, 39]:

• Microscopic vs. macroscopic: Microscopic models represent each pedestrian separately

while in macroscopic models the system is described through flow, density and speed rela-

tionships.

• Discrete vs. continuous: Models can be fully discrete, continuous or a combination of both.

This means that each of the three fundamental variables that describe the system, namely

space, time, and state variable can be either discrete or continuous. In continuous models

pedestrian behaviour is represented by differential equations describing their movement.

• Rule-based vs. reactive: In the reactive approach, interactions between pedestrians are

based on attraction and repulsion forces and described as equations of motion , although the

forces are not necessarily physical forces. For rule-based models pedestrians make decisions

based on their current situation and that in their neighbourhood, as well as their goals. There

rules are often determined by arguments from psychology.

• Deterministic vs. stochastic: In deterministic models, past behaviour completely deter-

mines the behaviour at a certain time. In contrast, for stochastic models, the behaviour is

controlled by certain probabilities such that different scenarios may occur for same situation.

The remainder of this section gives some details on existing pedestrian simulation models.

2.4.2 Fluid-dynamic and gaskinetic models

Henderson [40] proposed one of the earliest modelling approach for pedestrian dynamics, by using

an analogy with fluid or gas dynamics to describe how density and velocity of pedestrian flow

change overtime.

Fluid dynamic models take the macroscopic approach and are characterized by continuous

variables and deterministic force based dynamics.
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This modelling approach follows the similarities of pedestrian traffic flow and fluids: at low

densities, pedestrians are free to move and crowd dynamics can be partially compared with the

behaviour of gases. At medium or high densities however, some analogies with the motion of

fluids can be made such as trails of footprints of pedestrians look similar to streamlines of fluids

and emergence of pedestrian streams through standing crowds appears analogous to the formation

of river beds. At high densities, the observations can be compared with granular flows.

As a result, it can be said that fluid-dynamic analogies work reasonably well in normal situa-

tions, while granular aspects dominate at extreme densities [13].

2.4.3 Social-force models

Social force models suggest that the pedestrian movement can be described as if pedestrians were

subject to social forces. These forces represent internal motivations of the individual to perform

certain actions [22]. These models are continuous, deterministic, and take the microscopic ap-

proach.

Social-force based models calculate the movement of individuals through the mathematical

formulas associated with the application of forces, and therefore tend to result in simulations that

look closer to particle animation that human movement, with agents vibrating and forgoing social

rules [9].

2.4.4 Cellular automata

Cellular automata are rule-based dynamical models that are fully discrete. CA models take the

microscopic approach, and its dynamics are usually rule-based and stochastic. Being rule-based

has allowed complex aspects of fields such as psychology to be included in the dynamics of CA

models in a simple way.

these models are based on the principle of entities (automata) occupying cells according to

neighbourhood rules of occupancy, allowing only discrete movement and positioning [41]. This

modelling approach has lately seen wide adoption, due to its simplicity, low computational cost

and flexibility [3].

2.4.5 Agent-based models

Agent-based models are based on CA models, but try to address the limitation of homogeneous

participants. The modifications to the CA approach to accommodate individual heterogeneous

characteristics are so deep that the resulting models are much similar to Multi Agent Systems

(MAS).

These models are characterized by the presence of autonomous entities (agents) whose action

and interaction determines the evolution of the system.
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2.4.6 Summary

Table 2.1 presents an summary of existing pedestrian models according to the properties from

2.4.1.

Table 2.1: Summary of pedestrian modelling

Approach Scale Environment deter/stoch Interactions

Fluid-dynamic and gaskinetic macroscopic continuous deterministic reactive

Social-forces microscopic continuous deterministic reactive

Cellular automata microscopic discrete stochastic rule-based

Agent-based microscopic continuous stochastic rule-based

2.5 Data collection

Due to the complex description of pedestrian motion sequence, in evacuation dynamics, usually

only the vertical projection of the body of pedestrians is considered. As a result, data collection

methods only need to record a single point in two-dimensional space to represent each pedestrian.

Data collection on crowds and pedestrians has been traditionally based on direct observation,

photographs, time-lapse films [4]. Video has become an important tool as several applications

for automatic extraction of pedestrian trajectories have been developed [5]. It is considerably

better than direct observation, since the same scene can be studied over and over again, by human

observation or using computer software with analysis algorithms. However, the usage of video

recordings presents several limitations on the scenarios allowed for pedestrian experiments.

Besides video other technologies were also used to capture pedestrian behaviour, like Blue-

tooth and RFID [42], among others.

2.5.1 Ultra-wideband radio frequency systems for tracking pedestrians

A comparison of several radio frequency based systems for indoor human tracking [43] concludes

that UWB systems are the most accurate and fault-tolerant systems that have a widespread usage

in indoor localization.

According to Nekoogar [44], the usage of UWB based technology offers several advantages

over narrowband communication systems, some of which Corrales, Candelas and Torres [45]

claim are beneficial for indoor human tracking:

• Due to the short duration of UWB pulses, receivers are able to differentiate the original

signals from the reflected and refracted ones, which make UWB based systems less sensitive

to multipath fading.

• The low power UWB signals reside below the noise floor of typical narrowband receivers

and enable UWB signals to share the frequency spectrum with other radio services with

minimal or no interference.
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Figure 2.14: Comparison of narrowband (top) and ultra-wideband (bottom) signals in the time and
frequency domains. Adapted from [44].

• There are no line-of-sight restrictions due to the long wavelength, low frequencies included

in the broad range of the UWB frequency spectrum ability to penetrate a variety of materials.

• As UWB transmission is carrierless, no modulation is required, and the low-powered pulses

eliminate the need for a power amplifier, resulting in simple transceiver architecture and

reduced infrastructure.

The usage of a radio frequency based system for data collection allows for a number of ad-

vantages over traditional methods like automatic extraction of pedestrian trajectories from video

recordings: as previously mentioned, there are no line-of-sight restrictions and its also suited for

low ceiling buildings. It also encompasses a wider breath of possible simulation scenarios, like

limited visibility situations such as dark or smoke filled rooms, which are very common in emer-

gency situations due to fire.

Assigning identifiable tags to individual participants, also allows to easily associate some char-

acteristics of the individual pedestrian (e.g. gender, height and age) with its trajectory. This might

allow better understanding of the dynamics of heterogeneous crowds and study the effect of out-

liers like elderly people or people with mobility impairments

2.6 Knowledge Discovery in Databases

The process of knowledge discovery in databases (KDD) is the answer for the analysis of the im-

mense data volume in scientific and operational databases. While traditional analytic techniques

falter, KDD attempts to turn raw data into information, allowing the usage of that information to

gather knowledge about the specific domain. KDD involves sweeping databases using some sort

of algorithm or heuristic as guide and usually consists of multiple, connected steps, including data

selection, data preprocessing, incorporation of prior knowledge, data mining, visual representa-

tion, interpretation and evaluation of the results [46].
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2.6.1 Datamining

The primary goals of data mining are prediction and description. Prediction is associated with

using some known variables to predict unknown or future values [46]. Description focuses on

identifying valid, potentially useful, and understandable correlations and patterns in existing data

[47].

To achieve the stated goals, data mining can involve tasks from the following classes: devia-

tion, association, clustering, classification, regression and generalization.

• Association comprises of discovering interesting and significant relations and dependencies

between variables;

• Classification can be defined as the task of assigning objects to one of several predefined

categories, by learning a target function f that maps each attribute set x to one of the prede-

fined class labels y [48];

• Clustering divides data into groups (clusters) that are meaningful, useful, or both. The

clusters should capture the natural structure of the data [48];

• Deviation involves discovering the most significant deviations of the data from the expected

or previously measured values;

• Generalization consists of finding a compact description for the data;

• Regression encloses mapping a data item to a real-valued prediction variable [46];
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Table 2.2: Summary of Data-Mining Tasks and Techniques. Adapted from [49]

Knowledge type Description Techniques

Classification
Predict the class label that a set of

data belongs to based on some training

datasets

Bayesian classification

Decision tree induction

Artificial neural networks

Support vector machines

Clustering
Determine a finite set of implicit

groups that describe the data
Cluster analysis

Association

Find relationships among item-sets or

association / correlation rules, or pre-

dict the value of some attribute based

on the value of other attributes

Association rules

Bayesian networks

Deviation
Find data items that exhibit unusual de-

viations from expectations

Clustering

Outlier detections

Evolution analysis

Regression
Lines and curves summarizing the

database

Regression

Sequential pattern extraction

Generalization Compact description of the data
Summary rules

Attribute-oriented induction

2.6.2 Spatio-temporal data mining

Spatio-temporal data mining can be defined as the extraction of implicit knowledge, spatial and

temporal relationships, or other patterns not explicitly stored in spatio-temporal databases [50].

The data that populates spatio-temporal databases might come from robotics and computer

vision applications, GIS, CAD, biology and mobile computing as well as temporal data obtained

by registering events and monitoring processes.

The need to investigate both the temporal and spatial dimensions add complexity to the data

mining tasks, as spatial relations (distance, direction, shape, topology) as well as temporal relations

must be considered in the data mining methods. Some of these relations are not explicitly defined

in the dataset and must be extracted from the data, either before the mining process starts or on-

the-fly as they are needed.

Extraction of spatial and temporal relations introduces fuzziness that might have influence on

the results, that can also be impacted by the spatial resolution and temporal granularity of the

data. Other challenge is concerned with data representations, as working at the level of the stored

data (points, lines, timestamps) is often undesirable, and complex transformations are required to

describe them at higher conceptual levels.
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The Methodological Approach

3.1 Problem Statement

As stated in the previous chapters, this project aims gather data from the movement of pedestrians

and subsequently extract information to discover knowledge such as patterns, trends, dependencies

and rules of movement. This information can then be used as input for tools to help predict the

behaviour of masses and design buildings and plan emergency egress.

Although Agent-based models of pedestrian dynamics are pivotal in predicting the dynamical

properties of large human crowds, these are often built upon analogies with the dynamics of fluids

or movement of particles in a gas and therefore ignore psychological factors that guide pedestrian

behaviour. Some models try to overcome this limitation with the usage forces between particles

that arise from empirical rules and insights, but ultimately lack information that might be extracted

from the analysis of real pedestrian movement. There is also a clear necessity for reliable data

against which the models can be calibrated and to ensure their validity.

Data collection on crowds and pedestrians has been traditionally based on direct observation

and time-lapse films. Video has become an important tool as several applications for automatic

extraction of pedestrian trajectories have been developed. However, the usage of video recordings

presents several limitations on the scenarios allowed for pedestrian experiments, some of which,

in particular line of sight and visibility restrictions, can be overcome radio frequency based data

collection systems. The availability of one such system (Ubisense) in the LIACC made its use

compelling for this task. It is noteworthy to mention that there is little literature regarding tracking

humans trajectories in confined spaces and dealing with the problems that might arise such as the

precision of the extracted trajectory.

The optimal source of data for evacuation processes is real evacuations. However data col-

lected from real evacuations comes mostly from witness records and incident investigations as

the unpredictability of such events does not allow for the installation of radio frequency or video

based tracking systems that would also require each person to wear specific markers or devices.

As such, there is no reliable way to gather evacuees trajectories. Evacuation exercises, overcome

the data collection problem, but are often too expensive, time-consuming and dangerous.

23
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The first main problem then is to gather reliable data on pedestrian movement with the usage

of the Ubisense real time location system as gathering data from evacuations is difficult. After

this, the data must be analysed and the problem resides in extracting meaningful information

and discovering knowledge for later usage in model validation and calibration for the ’mSPEED’

framework.

3.2 Overview

This section focuses on how to tackle and try to solve the above stated problem.

Regarding the need for data on pedestrian movement to model human behaviour, and the as-

sociated challenges that arise from gathering data from real evacuations and conducting full-scale

evacuation exercises, we chose to devise and perform small scale walking behaviour experiments

with volunteers. These experiments are conducted under controlled conditions and take place in

different scenarios, aiming to replicate several situations found in real facilities such as bottle-

necks, corners and junctions. As described during the literature review, more complex scenarios

are often a combinations of many of the simple elements such as these. This approach deals

with the reduced number of participants available, space related limitations, and the danger and

expensiveness of the time consuming full scale evacuation exercises. Another advantage of per-

forming experiments is the possibility to vary each influencing variable to examine its effects on

the behaviour of pedestrians.

The next challenge is related with recording the movement of pedestrians in these experiments.

Towards this, we propose the usage of an ultra-wideband based indoor location system, Ubisense,

that allows gathering spatio-temporal data from each participant in each of the performed exper-

iments in the form of trajectories. The location system must then be studied and understood to

ensure that the resulting data is of the highest quality possible. Important topics to cover in this

step include the system installation, sensor and tag placement, as well as using an application to

interface with the Ubisense API to extract and record the location information of each pedestrian.

Once the experiments are over, arises the problem of dealing with and trying to improve the

quality of the data, so that analysis can be performed. Although the location system used can,

under ideal conditions, achieve an accuracy of up to 20 cm, previous experiments and test scenarios

could only reach sub-meter accuracy [51]. To deal with this problem we will reject corrupted

readings and filter out data bellow a certain quality threshold, while also trying to reduce the noise

in the readings. Consequently, an application will be developed to help visualize the extracted data

by reconstructing the experiments in a three-dimensional simulation scenario.

The next step is concerned with extracting meaningful data from the gathered trajectories.

Towards this goal we will use spatio-temporal analysis and visualization to make sense of the data.

Analysis will be performed by calculating basic motion descriptors such as velocities, acceleration,

measures of sinuosity, path length and evacuation time to characterize trajectories. Visualization

will focus on the representation of trajectories as well as the distribution of some of the quantified

properties along each trajectory or the experiment area.
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Concerning the final goal of behavioural explanation, we face the challenges of how to extract

patterns from the trajectory data and how to explain behaviour with the extracted patterns. To solve

this challenges we plan to partition trajectories into segments or sub-trajectories that share the

similar properties. This step will be performed taking as input the characterization obtained from

the previous step, by using motion descriptors. Finally we plan to aggregate the sub-trajectories

into clusters that symbolize a certain behaviour. The tasks that make up the solution for this

last goal - infer human behaviour from pedestrian trajectories - will be made possible with the

application of spatio-temporal data mining and machine learning concepts.

3.2.1 The Ubisense Real Time Location System

The Ubisense real-time location system is an in-building ultra-wideband radio based tracking sys-

tem which can obtain accurate information of the positions of people and objects. This system

uses small devices (tags, Figure 3.2b) that send UWB pulses to a network of hardware receivers

(sensors, Figure 3.2a) fixated in the localization area.

Figure 3.1: Ubisense components. From [52].

The system applies a combination of TDOA (Time-Difference of Arrival) and AOA (Angle of

Arrival) techniques to estimate the position of each tag [52]. These tags are small devices that can

be attached to objects or carried by personnel. Sensors can also be connected to a computer, and

Ubisense also provides a middleware platform which can manage and filter real-time location in-

formation and simplify the creation of location aware applications that monitor several localization

areas simultaneously, as schematized in Figure 3.3.

Section 2.5.1 already mentioned some of the advantages of using a UWB based technology

for indoor human tracking, comparing it to both other radio-frequency based technologies as well

as the conventional video based method used in most experiments of pedestrian movement. The

system availability in the LIACC is another reason for its usage as the tool for data collection in

this project.
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(a) Sensor
(b) Tag

Figure 3.2: Ubisense hardware components in detail

Figure 3.3: Ubisense location engine

The Ubisense location system has seen wide adoption in the industry, especially in manufac-

turing plants, providing location services for tracking assets in order to improve and better control

processes [53]. Lately, it has also been used to track personnel during military and fire fighter

training and operations, and as a behaviour analysis tool based on coordinates of body tags [54].

3.2.2 Spatio-temporal Analysis and Visual Inspection

Towards understanding how movement patterns relate to the characteristics of the facilities and

crowds, it is fundamental to make sense of the data. A simple and effective way to do this is

through visualization, as the human brain is used to perform similar analysis on a daily basis.

This can be achieved by using spatio-temporal analysis and visualization techniques that represent

trajectories with associated data such as velocities and accelerations.

The techniques to be explored rely on the description of trajectories and mobile objects through

the calculation of different values and indices, as well as their visual representation. These descrip-

tors provide essential movement characteristics of mobile objects and therefore are an important

step to compare the movement of different pedestrians and therefore differentiate behaviour.

We will focus on some quantitative and qualitative representations of mobile objects; quanti-

tative consist on quantification by basic motion descriptors such as velocities, accelerations, ori-

entation. Some aggregated indexes will also be calculated such as measures of tortuosity and path

length, evacuation time and average velocity. Qualitative representation consists on the visualiza-

tion of trajectories associated with the quantitative data as well as data inferred for the facility, to

better understand spatio-temporal pattern of the movement of pedestrians.
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3.2.3 Spatio-temporal Data Mining

A important task left is to analyse and understand the spatio-temporal patterns, processes, and

behaviours of pedestrians, in order to extract useful and meaningful information and knowledge

about pedestrian dynamics.

The information provided by the previous task, spatio-temporal analysis, is an initial step

towards this goal, but knowledge discovery techniques can still be applied to find hidden pat-

terns, relations and behaviours in the data. The approach to contextualize movement patterns

follows. Its aim is to extract hidden patterns, trends, behavioural contexts and useful information

and knowledge from the trajectory data collected beforehand. Trajectory data mining discovers

spatio-temporal knowledge through exercises including pattern detection, clustering, classifica-

tion, generalization, outlier detection and visualization.

A important input for this step are the descriptions of trajectories obtained in the previous

step and they act as features for the data. The trajectory data mining scheme employs trajectory

partitioning and clustering algorithms to extract behavioural patterns of pedestrians using multiple

descriptors.

The main challenges consist of describing and characterizing trajectories in order to be able

to extract patterns as well as explaining behaviour based on the extracted patterns. As mentioned

before, the first phase is dealt in the previous chapter, Spatio-temporal Analysis and Visualization,

where pedestrian trajectories are described by calculation basic motion descriptors, which provide

movement characteristics of the pedestrians.

Towards the second challenge, as humans can present multiple movement behaviours across

space and time, to describe behaviour from trajectory data it is better to capture local motion

behaviours rather than to use aggregated motion. Trajectory partitioning is then used to decompose

a trajectory into a set of sub-trajectories with similar motion characteristics. The resulting sub-

trajectories can consequently be clustered into groups that share the same local behaviours.

3.3 Methodology

3.3.1 Pedestrian Experiments

Our aim for the experiments described in this section is twofold. First, we aim to provide valid

data for pedestrian dynamics model elicitation, as well as model validation in different facilities

Another goal is to evaluate the usage of a UWB based real-time location system for pedestrian

movement data collection and trajectory extraction.

Towards meeting these goals, we devised a set of experiments in simple scenarios that mimic

sections that compose more complex facilities. The simple scenarios chosen were: corridor, bottle-

neck, corner, and t-junction. Different configurations such as different corridor widths or varying

number of participants were also explored.
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These experiments follow a set of similar experiments performed in Germany at the Jülich

Supercomputing Centre [20, 29, 16, 24, 55], in which pedestrian trajectories were accurately ex-

tracted from video recordings. The similarity between our experiments and others found in litera-

ture allows comparison, which is valuable to evaluate the novel method for trajectory extraction.

The choice of simple scenarios is also related with some limitations faced when planning the

experiments: only 30 Ubisense tags are available, imposing a limit on the maximum number of

participants. There are also space limitations: as the system and equipment installation and setup

is a lengthy process, it is not possible to perform the experiments outdoor, and a room with full

availability for an entire week is required, as well as the needed materials to build the barriers that

limit the experiment area.

The experiments were divided in three general set-ups: single-file, narrow passage and corner

and T-junction. Each set-up aims to provide data suitable to study different phenomena: funda-

mental relation in a simple scenario, unidirectional pedestrian flow through bottlenecks and more

complex configurations like corners and merging of flows respectively.

3.3.1.1 The Single-File Scenario

The reduced degrees of freedom associated with movement along a line (single-file movement)

helps reduce the number of effects that might influence the relation between density and velocity

of pedestrian movement. Single-file movement is therefore the simplest system for investigation

of this dependency, which is the goal of the first experiment. To avoid boundary effects and limit

the amount of participants needed, this first scenario is composed of a looping track with corridor

width such that it does not impede the free movement of arms but enforces single-file movement

by preventing passing and the formation of multiple lanes (Figure 3.4).

Figure 3.4: Experimental setup for the single file scenario

Test subjects were instructed not to overtake and were distributed uniformly in the corridor.

Each experiment run had each person complete two full loops before leaving the track. To regulate

pedestrian density, three runs with 10, 15 and 20 randomly chosen pedestrians were performed.

Ten runs with a single pedestrian were also performed with the purpose of free velocity determi-

nation.
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3.3.1.2 Bottleneck Scenario

In the second scenario, focus is given to unidirectional pedestrian flow through bottlenecks (Figure

3.5). We plan to study flow as a parameter of bottleneck width as well as the formation of arc like

structures as density at the front of the bottleneck increases. With these experiments we aim to

extrapolate information about capacity estimation in pedestrian facilities, as this is an important

parameter that allows the estimation of time taken in an evacuation scenario, or minimum width

in bottlenecks for different desired evacuation durations.

Figure 3.5: Experimental setup for the bottleneck scenario

Before each runs starts, participants are placed in the starting area to ensure a constant initial

density between different experiments runs. Ensuring constant initial density is important as it

influences flow through the bottleneck [29]. After the signal to start the experiment, participants

move through a bottleneck with sufficient height to assure constant width from the hips to the

shoulders of the test persons. Four runs with different bottleneck widths w = 0.8,0.9,1.0 and

1.4m and 20 participants were performed.

3.3.1.3 Corner and T-Junction Scenarios

While reliable data is crucial for modeling and calibration of pedestrian dynamics models, it is

almost nonexistent for complex types of facilities like T-junctions or corners [24]. The last set

of experiments aim to combat this deficiency by improving the data base related to pedestrian

dynamics and investigate the bottleneck flow due to merging, splitting and turning of streams. For

this last scenario, different experiments were carried out with different corridor widths behind and

in front of merging and splitting of streams (Figure 3.6). In each of the different corridor sections

C, L or R, width is set either to 0.9 or 1.5m. The corner angle is always kept at 90◦.
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(a) T-junction

(b) Corner

Figure 3.6: Experimental setup for the corner and T-junction scenarios

In the corner experiments, pedestrians start behind the entrance to the corridor and move across

in a single direction. Different runs are recorded with varying corridor widths behind and in front

of the corner.

For some T-junction experiments, a similar number of pedestrians moves from both left and

right simultaneously, merging into the main stream, while in other experiments the initial stream

composed of all pedestrians is split as participants walk into different corridors.

3.3.2 Data collection

In contrast to the data collection method performed in most pedestrian experiments, trajectory

extraction from video recordings, on our experiments automatic data collection is performed with

the aid of the above mentioned UWB tracking system, by assigning individual tags to participants,

whose position can then be then tracked.

The experiments are to be conducted with up to 30 participants and performed in the Faculty

of Engineering of the University of Porto. The experiments should be confined to an open area

with as few metallic elements as possible, to minimize electromagnetic interference and ensure

good readings from the RF system.

3.3.2.1 Tracking system installation and configuration

As stated in 3.2.1, the chosen tracking system contains both hardware and software parts. The

hardware part is composed of active tags that emit ultra-wideband (UWB) pulses and receivers

which are used to calculate the location of the tags based on the received UWB signal. Several

sensors are chained together to form a cell, within which tags can be localized. Each sensor

determines the Angle of Arrival (AOA) of the incoming signal and the Time Difference Of Arrival

(TDOA) is obtained with a timing cable between the sensors. Within each cell one sensor is
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responsible to collect and process the information from the other sensors and generate location

events which are fed to the Location Engine over a network.

The Location Engine is a software service responsible to process location the data and pass in-

formation to other applications via an API. In conjunction with other software components such as

the Location Engine Configuration, Map, Platform Control, Security Manager, Service Installer,

Service Manager and Site manager, they make up the Ubisense Location Platform software suite

that allows the set-up and calibration of location sensors and tags, as well as their configuration

into cells and the defining the location system’s behaviour.

For the physical set-up of the tracking system, after being secured at a height of 2.3m from

the ground, four sensors were placed in the four vertices of the bounding rectangle containing the

area where experiments took place (Figure 3.7). Within this area, the different scenarios were built

using tables and a vinyl foldable wall.

Figure 3.7: Ubisense sensors placement in the experiment area

Tag placement plays an important role in ensuring that good readings will be achievable. Tags

become difficult to read when they are in close proximity to materials that absorb a large amount

of radio frequency energy, such as water, that makes up most of the human body. For the purposes

of the experiments, tags were attached on top of Christmas hats secured with straps (Figure 3.8).

Location data about the placement of the sensors was then input into the Location Engine

Configuration tool to create a cell within which the location of tags can be obtained. This tool also

features an automatic calibration procedure where the data about sensors orientation and offset is

calculated from location events of tags in known positions within the cell. To improve the location

data, activity thresholds, which are the incident power levels for UWB signals above which tag

sightings are assumed valid rather than background noise, can be set for each sensor, and filters to

reject outlier location events and provide robust location tracking can be set for each tag.

The filters are algorithms for estimating tag positions from sensor measurements which main-

tain a state that is used to reject outlier measurements and reduce noise. Several parameters control

the behaviour of the algorithm such as constraints on the motion of tags.

The filter algorithms available in the Location Engine Configuration are variants of Informa-

tion filtering, which uses the previous motion of the tag to predict its position at the time a new
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Figure 3.8: Ubisense tags attached to hats

sighting is made. The sensor data is then compared to the prediction and a new estimate for the

position of the tag is created. Therefore the algorithm requires a model for the motion of tags, and

four variants are provided, each with different constraints on the motion model, as summarized in

table 3.1.

Table 3.1: Stateful filters

Name Filter state dimensions Dynamics of the tracked tag

Static fixed height informa-

tion filtering
2 dimensions (2D position)

Mostly still or moving un-

predictably. Height fixed to

small range.

Static information filtering 3 dimensions (3D position)

Mostly still or moving un-

predictably. Position uncon-

strained.

Fixed height information fil-

tering

4 dimensions (2D position

and velocity)

The tag is moving with a pre-

dictable speed. Height fixed

to a small range.

Information filtering
6 dimensions (3D position

and velocity)

The tag is moving with a pre-

dictable speed. Position en-

tirely unconstrained.

Adapted from [56]

None of the scenarios for pedestrian experiments features elevation changes, therefore the

tags attached to the pedestrians will keep a constant distance to the floor and tag movement can

be considered to be only horizontal. As recommended by the system instruction manual, the

algorithm that provides the most constrained motion allowed by the tracked object was chosen -

fixed height information filtering. With this filter, the tag is free to move horizontally, but vertical

motion is constrained to be close to a fixed height above the cell floor. If a tag is not seen for some
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period of time, it is assumed to continue moving with the same horizontal speed and direction,

with uncertainty increasing over time, but to keep close to the same fixed height.

3.3.2.2 Data extraction and recording

While the location system captures events that provide information about the spatial position of

tags, a special application has to be developed to record these events so that trajectories may be

stored in a file or database. This application was already developed before this project, although

some modifications were be made to attempt to extract more information about the positioning

events. Its interface is presented in Figure 3.9

Figure 3.9: Ubisense location logger.

3.3.3 Visualization tool

A simple visualization tool was developed to offer a first insight into the gathered data. The tool

takes the files with location data provided by the previously mentioned data recording tool as input

and provides a three-dimensional representation of the position pedestrians at any time during each

experiment as can be seen in Figure 3.10. It also features the ability to playback the experiments

at different speeds and show only the desired tags.

Although it presents limited use for analysis, as only collective phenomena can be observed,

this visualization tool is useful in the initial stage of the project to understand possible shortcom-

ings or problems with the data early on.

3.3.4 Data Filtering and Cleansing

Despite the filtering algorithms provided by the tracking system, visualization of early samples of

trajectory data have shown that the collected trajectories were still noisy and imprecise and not yet

adequate for the desired movement analysis. The samples also contained some useless information

such as unused tags outside the measurement area that were tracked during experiments and the

data recorded in the instants just before the start and after the end of the experiment duration.

To improve the quality of the recorded trajectories a series of actions are performed on the

data:
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Figure 3.10: Visualization tool.

• Cleansing: With the aid of the previously proposed visualization tool, unused and malfunc-

tioning tags in each data record file can be found and discarded. The precise instants for the

start and end of each experiment can also be defined, to better trim trajectory data;

• Filtering: The data can contain some corrupted readings that can be rejected through filter-

ing;

• Smoothing: As information about the whole trajectory is available, smoothing techniques

can be used to reduce the noise in the readings by improving the location of each measure-

ment using information about previous and subsequent sightings;

• Re-sampling: The collected data is sampled at irregular time intervals, and fixed interval

re-sampling is required for some of the analysis techniques later presented;

3.3.4.1 Data filtering

The filtering technique employed is based on some modifications to the Maximum Redundant Dis-

tance filter (MRD) of the Douglas Argos-filter algorithm [57]. The MRD filter works by retaining

locations based on spatial redundancy between consecutive locations. As the distances between

tracked locations are small in the present work, a similar approach was developed using velocity

information instead of spatial distance.

Each step of the algorithm considers three consecutive locations A, B and C as presented in

Figure 3.11. If any of the velocities of the movement between positions AB, BC or AC are lower

that a certain maximum velocity maxv, then the endpoints of the movement are marked as retained.

The algorithm continues by considering the locations B, C and D in the next step and so on until

the last location. At the end all locations not marked as retained are removed from the trajectory.



3.3 Methodology 35

Figure 3.11: Filter logic

3.3.4.2 Data smoothing

Smoothing is applied to reduce and smooth-out short-term irregularity in the data series to reveal

more clearly the underlying trend in the data. For this purpose, smoothing was achieved trough

the usage of a weighted moving average smoother.

The weighed moving average smoother uses information from a sample window around each

point in the data to obtain a better estimation of the point. It has multiplying factors to give different

weights to data at different positions in the sample window. The weighted moving average of

window size m estimates locations ŷ(i) as:

ŷ(i) =
k

∑
j=−k

ai, jyi+ j (3.1)

Where k = (m− 1)/2 and the weights [ai,−k, ...,ai,k] sum to one and depend on the temporal

distance between the point in consideration yi and the weighted point yi+ j:

ai, j =
|tk− ti−k|
ti+k− ti−k

(3.2)
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3.3.5 Initial analysis

3.3.5.1 Analysis of the single file experiment

The main goal of the single file experiment was to investigate the dependency between the density

and velocity of pedestrian movement.

Towards this goal, only a straight section with length lm = 2m (Fig. 3.4) is considered to

determine the density-velocity relation of pedestrian movement. Entrance (ten) and exit (tex) times

are recorded for each pedestrian crossing the entrance (xen) and exit (xex) of this section. From

these times, both the average velocity vi (3.3) of each crossing i as well as the number of persons

inside the measurement section N(t) at each instant t can be obtained.

vi =
lm

tex
i − ten

i
(3.3)

Taking into consideration the large period between consecutive measurements for each tag, a

linear interpolation between the positions and instants when each tag is first located inside (xin
i , t

in
i )

or outside (xout
i , tout

i ) the measurement section and the positions and times associated with the

previous locations (xin−1
i , t in−1

i ,xout−1
i , tout−1

i ) are necessary to better estimate the exact entrance

(3.4) and exit (3.5) times.

ten
i = t in−1

i +
[(

t in
i − t in−1

i

) xen−xin−1
i

xin
i −xin−1

i

]
(3.4)

tex
i = tout−1

i +
[(

tout
i − tout−1

i

) xex−xout−1
i

xout
i −xout−1

i

]
(3.5)

Density at each instant t can be obtained from the instantaneous number of pedestrians N

inside the measurement section:

ρ(t) = N(t)/lm

As the measurement section is short, only small numbers of persons can be inside. Conse-

quently the value of density calculated from the above definition jumps between discrete values.

An enhanced definition of the density, calculated through the time headways between successive

pedestrians avoids this problem, but its calculation is a challenging task as the data collection sys-

tem is unable to provide the location of two tags at the same instant, and also because inaccuracies

would increase as error from two different measurements would have to be taken into account.

The density assigned to each pedestrian crossing the measurement section is determined as the

mean value of density during the crossing:
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ρi =
1

tex
i − ten

i

∫ tex
i

ten
i

ρndt

The differences between the mean value of density over time determined by this method or by

the time headway method is negligible [21].

The fundamental diagram of pedestrian movement is finally obtained by taking the graphi-

cal representation of the velocity (vi) - density (ρi) pairs of each crossing. An example of such

representation is in Figure 3.12, which was obtained by Seyfried et al. [20] using the same method.

Figure 3.12: Representation of the velocity (vi) - density (ρi) pairs of each crossing for runs with
various number of participants (N). From [20].

3.3.6 Spatio-temporal Analysis and Visual Inspection

This part of the project attempts to use a set of spatial and spatio-temporal analysis methods

to measure and compare movement. The analysis will be explore the concepts of velocity and

acceleration, sinuosity, directional statistics and density. The first step involves the calculation

of a variety of values that describe the participants movement in an aggregate manner, such as

average velocity, total displacement and evacuation time for each pedestrian.

In order to contextualize the trajectories, motion descriptors such as instantaneous velocity and

orientation are calculated for each tag at different instants for the entire duration of the experiment.

This is an important step towards describing trajectories in ways that allow a deeper analysis and

comparison.

Finally the data gathered during these steps is represented graphically so empirical and visual

review can be performed.
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3.3.6.1 Trajectory representation

A trajectory is a continuous function of time which, given a time instant t, returns the position

at time t of the object in a d-dimensional space. In our application, however, only a finite set of

observations of the moving object exist. Moreover, the location system used provides location

events at irregular rates and without temporal alignment between the sightings of different objects.

For an approximate reconstruction of the trajectory, tags are assumed have a piecewise linear

movement: moving along a straight line with constant speed between observations.

The data collected from each experiment is a collection of trajectories, τ = {T R1, ...,T Rn},
where each trajectory T Ri represents the movement of each of the n pedestrians carrying a UWB

tag. A trajectory can then be stored as sequence of multidimensional points T Ri = p1, p2, ..., pm,

where m is the number of points in the trajectory. As the movement is constrained to a horizontal

plane, only two spatial dimensions and another for temporal data are needed for each point p j =

x j,y j, t j.

3.3.6.2 Velocity and acceleration

The general properties of movement retlative to a fixed point or prior speed are described by

the velocity and acceleration. These properties of motion can differentiate distinct behaviours of

moving objects; for example, velocity can explain states of mobile objects such as walk, stay, run

and drive.

For an object’s two dimensional vector moving from point P to point Q, the displacement is the

change in the position vector r, given the x and y component of ∆r as ∆x and ∆y, and ∆t referring

to the duration of the described motion.

∆x = xQ− xP

∆y = yQ− yP

∆t = tQ− tP

The average velocity vav is the vector quantity equal to the displacement divided by the time

interval.

vav =
∆r
∆t

The average acceleration, vav of an object from point P to point Q is the vector change in

velocity, ∆v, divided by elapsed time.

aav =
∆v
∆t
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3.3.6.3 Tortuosity

Tortuosity is a commonly used characteristic to describe movement paths which consists in how

much tortuous and twisted a path is in a given space or time. Studies on the tortuosity of trajectories

have been done mainly in the fields of biology to research the movement of animals. Throughout

the years, a variety of tortuosity indices have been proposed such as Mean Squared Distance,

Fractal D, Straightness Index and Sinuosity [58]. The Straightness Index, promoted by Batschelet

[59], is a particularly interesting measure due to its simplicity and intuitiveness: it consists on the

ratio of the distance between the beginning and end points of the path (D) and the total path length

(L).

SI =
D
L

(3.6)

Figure 3.13: Straightness index. Point A represents the start of a trajectory and B the end of it.
The dotted straight line is the displacement (distance between the beginning and end points of the
path) while the sinuous line represents the recorded trajectory. From [60].

The Straightness index ranges from 0 to 1, where higher values mean straighter paths.

3.3.6.4 Directional statistics

Directional data is an important part of the information contained in trajectories. Techniques from

linear statistics, however, are not appropriate in characterizing a sample of angular observations.

Even a technique as basic as computing a mean may lead to disturbing results [61].

Measures such as the directional mean and circular variance are analogous to familiar measures

from linear statistics and help examine the directional pattern on trajectories. The directional mean

(θ̄ ) is a measure of central tendency calculated as follows:

Let θ1,θ2, ...,θn be a sample on n directions
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θ̄ =


tan−1

(
S̄
C̄

)
, if S̄ > 0 and C̄ > 0

tan−1
(

S̄
C̄

)
+π, if S̄ > 0 and C̄ < 0

tan−1
(

S̄
C̄

)
+2π, if S̄ < 0 and C̄ > 0

(3.7)

Where S̄ and C̄ are the mean of the x and y coordinates:

S̄ =
1
n

(
n

∑
i=1

sinθi

)

C̄ =
1
n

(
n

∑
i=1

cosθi

)

The circular variance (Sv) indicates the variability of the directions of the movement and can

be obtained from the mean resultant length (R̄) as follows:

R̄ =
√

S̄2 +C̄2

Sv = 1− R̄
n

(3.8)

Unlike its linear analogue, the values for circular variance are always between 0 and 1; values

close to 0 mean that all vectors point in the same direction while values near 1 indicate a wide

range of directions.

3.3.6.5 Density

The surrounding environment of pedestrians conditions their movement and therefore it is vi-

tal to try to gather and incorporate this type of external information when describing pedestrian

movement, in order to understand the resulting behaviour. An important part of each pedestrian

surroundings is how space around him is occupied - how many other pedestrians are nearby and

how close they are. Density presents a simple way to incorporate this data, however different ways

to calculate density have been explored, some of them detailed in 2.3.3.2.

From the presented methods, the one involving the Voronoi decomposition of space was cho-

sen for the purpose of density calculation. In this method, partitions of space are determined by

distances to a set of objects, which form a Voronoi diagram. At any time, the Voronoi diagram

contains a set of cells that are generated from the positions of each pedestrian. Each Voronoi cell

area Ai can be thought as the personal space belonging to each pedestrian j as illustrated in Figure

3.14. The density over space can be defined as:

ρxy = 1/Ai i f (x,y) ∈ Ai (3.9)



3.3 Methodology 41

Figure 3.14: Voronoi partition of space. Adapted from [24].

3.3.6.6 Aggregate trajectory characterization

In each of the experiments, for each of the participating pedestrian’s trajectories, the following

values that hold information about that whole trajectory were obtained: displacement, evacuation

time, trajectory length, average velocity, straightness index, directional mean and circular variance.

Table 3.2 shows how these values were calculated.

Table 3.2: Aggregate motion descriptors of trajectories

Value Formula

Displacement D =
√

(xm− x1)2 +(ym− y1)2

Evacuation Time ET = tm− t1
Path Length L = ∑

m−1
j=2

√
(x j+1− x j)2 +(y j+1− y j)2

Average Velocity Vav = L/ET
Straightness Index 3.6
Directional Mean 3.7
Circular Variance 3.8

3.3.6.7 Segmented trajectory characterization

Given the assumed representation for trajectories as a set of points with an associated location and

time in 3.3.6.1, each trajectory can be seen as composed of (m−1) segments, where each segment

sk is connects two sequential points (psk1, psk2).

Other information can be computed and associated to each new segment of the trajectory in

order to further improve the description of movement. Simple values to obtain are velocities and

accelerations, as well as the orientation. A measure of density can also be obtained through the

reciprocal of the areas assigned to each cell obtained by generating a Voronoi diagram in which the

location of pedestrians act as seeds 3.3.6.5. These values are stored in multi-dimensional vectors

that characterize the segments of each trajectory.
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Table 3.3: Motion descriptors of trajectory segments

Value Formula

Displacement Dk =
√
(xk2− xk1)2 +(yk2− yk1)2

Velocity Vk = Dk/tk
Acceleration (Vk+1−Vk)/tk
Orientation θk = arctan2(yk2− yk1,xk2− xk1)

Density 3.9

3.3.6.8 Visualization

In order to comprehend the relations between movement patterns and the characteristics of the

facilities and behaviour of crowds it is essential to extract meaning from the data. A practical

technique to help do so is visualization, since the human brain is so visually oriented and performs

analogous analysis on a day to day basis.

In order to accomplish this, the data computed during from the previously mentioned spatio-

temporal analysis can be presented through visual representations, where, for instance, the data

can be associated with the individual pedestrian by drawing the pedestrian’s trajectory in a certain

colour, that corresponds to a value for the associated characteristic. Figure 3.15a shows an example

of such representation. In a similar fashion, other representations show different characteristics for

each segment that composes the trajectories, resulting in figures such as Figure 3.15b.

(a) Trajectories colour coded by average veloc-
ity

(b) Trajectories colour coded by velocity in each
segment

Figure 3.15: Examples of the visualization of trajectories

Towards obtaining information for the whole experiment area, kernel density estimation can be
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used. Kernel density estimation (KDE) is an approach to achieve a non-parametric estimation of

data density [62]. Given a set of n data samples xi, the kernel density estimator f̂h(x) is calculated

as:

f̂h(x) =
1
n

n

∑
i=1

Kh(x− xi)

based on a kernel function K and a bandwidth parameter h. Appropriate selection of K where∫
K(x)dx = 1 and K(x)≥ 0 allows interpretation of f̂h(x) as a density function that approximates

the probability distribution function f (x) of the data items xi from which it has been constructed.

Bandwidth h is a parameter with influences the smoothness of the density reconstruction.

The extension of KDE into two dimensions leads to express the estimate of probability density

at the point (x,y) as:

ˆf2D(x,y) =
1

nh2
1

n

∑
i=1

K1

(
x− xi

h1
,
y− yi

h1

)
(3.10)

Where K1 is kernel function defined over 2-dimensional space. Examples of commonly used

kernel functions are the uniform, triangular, gaussian, and Epanechnikov functions [63]. The

Epanechnikov kernel function is defined in 3.11 and was the one chosen for our project.

K1(x,y) =

 2
π

(
1− (x2 + y2)

)
α, if (x2 + y2)< 1

0, if (x2 + y2)≥ 1
(3.11)

In addition, the point density value can be magnified by a scaling factor (α), which can be a

scalar value of motion descriptors.

3.3.7 Spatio-temporal Data Mining

The goal of this part of the project is to identify local behaviours from the trajectory dataset. Tra-

jectories may have a long and complicated path, hence although two trajectories can be identical

in some limited sections, they might not be similar as a whole. Instead of clustering trajectories

as a whole, they can be segmented at the points where the behaviour of the trajectory changes

rapidly - characteristic points. Each partition is then represented by a line segment between two

consecutive characteristic points. To discover similar portions of movement, clustering is applied

on the resulting set of segments by grouping sub-trajectories based on density.

This approach to trajectory clustering was introduced in [64], where the algorithm for trajec-

tory clustering - TRACLUS is presented.
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Finally, the resulting sub-trajectory clusters are characterized by employing the techniques

introduced in the previous section to produce aggregate information about the sub-trajectories in

each cluster.

The proposed methodological approach is presented in Figure

3.16 and involves three steps; trajectory partitioning, segment

clustering and cluster classification.

1. Trajectory partitioning
Trajectories are partitioned into line segments using the

minimum description length (MDL) principle.

2. Segment clustering
Discover sub-trajectories that indicate share common

movement patterns by using a density-based clustering

algorithm.

3. Cluster characterization
Extract aggregate motion descriptors for sub-trajectories

in the same cluster following the procedure presented in

3.3.6.6.
Figure 3.16: Procedure
for spatio-temporal data
mining

3.3.7.1 Distance function between line segments

Some of the steps of the trajectory partition and clustering algorithms require a way to measure

distance between line segments. The distance function used in clustering line segments by the TR-

ACLUS approach is composed of three components: the perpendicular distance (d⊥), the parallel

distance (d‖), and the angle distance (dθ ). These components are illustrated in Figure 3.17.

Figure 3.17: Components of the distance function for line segments. From [64].

Suppose ps and pe are the projections of of the points s j and e j onto Li. The Euclidean distance

between s j and ps and between e j and pe are l⊥1, l⊥2 respectively. The perpendicular distance

between Li and L j is defined by the Lehmer Mean of l⊥1 and l⊥2 of order 2 as follows:
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d⊥(Li,L j) =
l2
⊥1 + l2

⊥2
l⊥1 + l⊥2

(3.12)

The minimum of the Euclidean distances of ps to si and ei is l‖1. Likewise, l‖2 is the minimum

of the Euclidean distances of pe to si and ei. The parallel distance between Li and L j is defined as

the minimum of the Euclidean distances of l‖1 and l‖2:

d‖(Li,L j) = min(l‖1, l‖2) (3.13)

The angle distance between Li and L j is defined in Formula 3.14, where ‖L j‖ is the length of

L j and θ is the smaller intersecting angle between Li and L j.

dθ (Li,L j) =

‖L j‖× sin(θ), if 0◦ ≤ θ < 90◦

‖L j‖, if 90◦ ≤ θ ≤ 180◦
(3.14)

Finally, the distance between two line segments is defined as the weighted sum of the three

distances:

d(Li,L j) = ω⊥ ·d⊥(Li,L j)+ω‖ ·d‖(Li,L j)+ωθ ·dθ (Li,L j) (3.15)

Where the weights ω⊥, ω‖ and ωθ are set to 1 as default but can be changed depending on the

application.

3.3.7.2 Trajectory partitioning

Trajectory partitioning aims to find a set of points at which the behaviour of a trajectory T Ri =

p1, p2, ..., pm changes rapidly - characteristic points ({pc1 , pc2 , ..., pcpar}). The trajectory is then

segmented at each characteristic point into (par−1) trajectory partitions, and each partition is rep-

resented by a line segment between two consecutive characteristic points {pc1 pc2 , pc2 pc3 , ..., pcpar−1 pcpar}.
An example of a trajectory and its partitions is illustrated in Figure 3.18

Figure 3.18: Example of a trajectory and its trajectory partitions. From [64].
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The partitioning process is achieved by finding the optimal trade-off between two contradictory

desirable properties: preciseness and conciseness. Preciseness alludes to the minimization of the

difference between a trajectory and a set of its trajectory partitions, whereas conciseness invokes

the smallest possible number of trajectory partitions. A possible method for finding the optimal

tradeoff between preciseness and conciseness is based on the minimum description length (MDL)

principle.

The MDL cost consists of two components: L(H) and L(D|H). L(H) is the length, in bits,

of the description of the hypothesis H, and L(D|H) is the length, in bits, of the description of the

data D when encoded with the help of the hypothesis. The best hypothesis to explain the data is

the one that minimizes the sum of L(H) and L(D|H).

In the trajectory partition problem, a trajectory corresponds to D and set of trajectory partitions

corresponds to H. The lengths of the hypothesis and the data are defined as:

L(H) =
par−1

∑
j=1

log2(len(pc j , pc j+1)) (3.16)

L(D|H) =
par−1

∑
j=1

c j+1−1

∑
k=c j

{
log2(d⊥(pc j pc j+1 , pk pk+1))+ log2(dθ (pc j pc j+1 , pk pk+1))

}
(3.17)

Where L(H) measures the conciseness and is obtained by the sum of the length of all trajectory

partitions of a trajectory. L(D|H) indicates the preciseness and is computed by the sum of the

distances between a segment of a trajectory partition (pc j pc j+1) and each line segment (pk pk+1)

residing in the trajectory partition.

Figure 3.19: Formulation of the MDL cost. From [64].

The formulation of the MDL cost is presented in Figure 3.19. Consequently, finding the op-

timal trajectory partitioning is finding the hypothesis that minimizes L(H)+L(D|H). However,

the obligation to consider every subset of the points in a trajectory makes finding the optimal

partitioning prohibitive.

In order to approximate the solution, Lee, et al. [64] defined two MDL costs, MDLpar(pi, p j)

and MDLnopar(pi, p j). MDLpar(pi, p j) is the MDL cost of a trajectory between pi and p j assuming

that pi and p j are the only characteristic points. MDLnopar(pi, p j) is the MDL cost assuming

that there is no characteristic point between pi and p j (i.e. preserving the original trajectory).
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The approximate solution is then longest trajectory partition pi p j that satisfies MDLpar(pi, p j) ≤
MDLnopar(pi, p j) for every k such that i < k ≤ j. The approximate algorithm for partitioning a

trajectory is presented next.

Algorithm 1 Approximate Trajectory Partition. Adapted from [64].

Input: A trajectory T Ri = p1, p2, p3, . . . , p j . . . , pleni

Output: A set CPi of characteristic points
1: Add p1 into the set CPi . the starting point
2: startIndex← 1, length← 1
3: while startIndex+ length≤ leni do
4: currIndex← startIndex+ length
5: costpar←MDLpar(pstartIndex, pcurrIndex)
6: costnopar←MDLnopar(pstartIndex, pcurrIndex)

. check if partitioning at the current point makes the MDL cost larger than not partitioning
7: if costpar > costnopar then . partition at the previous point
8: Add pcurrIndex−1 into the set CPi

9: startIndex← currIndex−1, length← 1
10: else
11: length← length+1
12: Add pleni into the set CPi . the ending point

3.3.7.3 Segment clustering

The clustering algorithm for line segments employed in this work was introduced in [64] and is

based on DBSCAN [65]. Let D denote the set of all line segments. Lee, et al. [64] summarize the

notions required for density-based clustering in the following definitions:

Definition 1. The ε-neighborhood Nε(Li) of a line segment Li ∈ D is defined by Nε(Li) = {L j ∈
D | dist(Li,L j)≤ ε}.

Definition 2. A line segment Li ∈ D is called a core line segment with regard to ε and MinLns if

|Nε(Li)| ≥MinLns.

Definition 3. A line segment Li ∈ D is directly density-reachable from a line segment L j ∈ D
w.r.t. ε and MinLns if Li ∈ Nε(Li) and |Nε(Li)| ≥MinLns.

Definition 4. A line segment Li ∈ D is density-reachable from a line segment L j ∈ D w.r.t. ε

and MinLns if there is a chain of line segments L j,L j−1, ...,Li+1,Li ∈ D such that Lk is directly

density-reachable from Lk+1.

Definition 5. A line segment Li ∈ D is density-connected to a line segment L j ∈ D w.r.t. ε and

MinLns if there is a line segment Lk such that both Li and L j are density-reachable from Lk.

Definition 6. A non-empty subset C ⊆ D is called a density-connected set if C satisfies the fol-

lowing two conditions:

(1) Connectivity: ∀Li,L j ∈ C, Li is density-connected to L j;

(2) Maximality: ∀Li,L j ∈ C, if Li ∈ C and L j is density-reachable from Li, then L j ∈ C.
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Definition 7. The set of participating trajectories of a cluster Ci is defined by PT R(Ci)= {T R(L j) |
∀L j ∈Ci}. T R(L j) denotes the trajectory from witch L j has been extracted and |PT R(Ci)| is called

the trajectory cardinality of the cluster Ci.

Given a set D of line segments and two parameters ε and MinLns, the clustering algorithm in

[64] generates a set of O clusters. In the algorithm a cluster is defined as a density-connected set

of line segments, however, only sets of line segments that present a trajectory cardinality above

a certain threshold are considered as clusters, in order to ensure that they explain the behaviour

of a sufficient number of trajectories. The clustering algorithm for line segments is detailed in

Algorithm 2.

Algorithm 2 Line Segment Clustering. Adapted from [64].

Input: (1) A set of line segments D = {L1, . . . ,Lnumln}
(2) Two parameters ε and MinLns

Output: A set of clusters O = {C1, . . . ,Cnumclus}
1: clusterId← 0 . an initial id
2: Mark all the line segments in D as unclassified
3: for each L ∈ D do
4: if L is unclassified then
5: Compute Nε(L) . compute the ε−neighborhood of each unclassified line segment L
6: if |Nε(L)| ≥MinLns then . if L is determined as a core segment
7: Assign clusterId to ∀X ∈ Nε(L)
8: Insert Nε(L)−{L} into the queue Q
9: EXPANDCLUSTER(Q,clusterId,ε,MinLns)

10: clusterId← clusterId +1 . a new id
11: else
12: Mark L as noise
13: Allocate ∀L ∈ D to its cluster CclusterId
14: for each C ∈ O do . check the trajectory cardinality of each cluster
15: if |PT R(C)|< MinLns then . a threshold other than MinLns can be used
16: Remove C from the set O of clusters

17: procedure EXPANDCLUSTER(Q,clusterId,ε,MinLns) . compute a density-connected set
18: while Q 6=∅ do
19: Let M be the first line segment in Q
20: Compute Nε(M)
21: if |Nε(L)| ≥MinLns then
22: for each X ∈ Nε(M) do
23: if X is unclassified or noise then
24: Assign clusterId to X
25: if X is unclassified then
26: Insert X into the queue Q
27: Remove M from the queue Q



Chapter 4

Experimental Results, Analysis and
Discussion

In this project we devised, conducted and recorded pedestrian movement experiments with the

goal of extracting relevant information from the collected trajectories and to help elicitate human

behaviour in emergency situations. This chapter presents and discusses the results obtained from

following the proposed methodology for achieving the desired aims.

The chapter begins by exposing how the experiments were conducted and then the raw loca-

tion information collected is presented. The varied visualization tools and methods are depicted

in images, followed by discussion of the performance of the data collecting system and the subse-

quent results of the attempts to further clean, filter and improve the movement data. The single-file

experiments were subject of a particular type of analysis, whose outcome is then discussed.

Results of the spatio-temporal analysis and visual inspection are presented next, consisting of

some tables summarizing the values of the descriptors and indexes that characterize the trajecto-

ries. Several figures illustrating how these values are distributed and evolve along the different

areas of the pedestrian facility in question are then presented, followed by a discussion of the re-

sults. The chapter ends with the exposition of the knowledge obtained by the usage of data mining

techniques on the gathered movement information.

4.1 Pedestrian Experiments

The motion information of pedestrians was recorded from pedestrian movement exercises con-

ducted with up to 30 participants, mostly students, whose average age was 21.4±4.5 years and of

mixed gender (Figure 4.1). The experiments were performed in classroom B227 in the Faculty of

Engineering of the University of Porto. The area in which the experiments took place was confined

within a section of 7m x 15m of the room, where the only metallic elements present were from the

tables that made up barriers for delimiting the track for the experiments.

49
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Figure 4.1: Photograph of participants getting ready for the start of one of the experiments

4.1.1 Data Collection

During the experiments, the application developed to interface with the Ubisense API gathered the

location events of the tag in the measurement area and recorded the information in text files. A

different file was created for each experiment, and the contents of each of the files following same

structure as the following excerpt:

1 <Tags>
2 <Tag Name=" P30 " Date=" 5 / 1 0 / 2 0 1 2 12 : 0 0 : 0 0 AM" Hour=" 15 " Minute=" 10 " Second=" 27 "

M i l l i s e c o n d =" 604 " x=" 4.78555774688721 " y=" −7.63859128952026 " z="−0.95 " a="
−0.188959793264351 " b=" 0 " c=" 0 " d=" 0.981984824999599 " s t d e r r ="
0 .890595674514771 " gdop=" 0 " a c c v a l i d =" 1 " / >

3 <Tag Name=" P13 " Date=" 5 / 1 0 / 2 0 1 2 12 : 0 0 : 0 0 AM" Hour=" 15 " Minute=" 10 " Second=" 27 "
M i l l i s e c o n d =" 604 " x=" 0.939729273319244 " y=" −9.07961082458496 " z="
−0.950000059604645 " a=" −0.549598499304991 " b=" 0 " c=" 0 " d=" 0.835428925499771
" s t d e r r =" 0 .142962396144867 " gdop=" 0 " a c c v a l i d =" 1 " / >

4 <Tag Name=" P21 " Date=" 5 / 1 0 / 2 0 1 2 12 : 0 0 : 0 0 AM" Hour=" 15 " Minute=" 10 " Second=" 27 "
M i l l i s e c o n d =" 619 " x=" 2.24641871452332 " y=" −10.4371576309204 " z="
−0.950000059604645 " a=" 0.961314486019944 " b=" 0 " c=" 0 " d=" 0.275453188342792 "

s t d e r r =" 0 .354592680931091 " gdop=" 0 " a c c v a l i d =" 1 " / >
5 <Tag Name=" P5 " Date=" 5 / 1 0 / 2 0 1 2 12 : 0 0 : 0 0 AM" Hour=" 15 " Minute=" 10 " Second=" 27 "

M i l l i s e c o n d =" 623 " x=" 5.70134353637695 " y=" −6.91658163070679 " z="−0.95 " a="
0.933159563247838 " b=" 0 " c=" 0 " d=" 0.359462417394509 " s t d e r r ="
0 .17901137471199 " gdop=" 0 " a c c v a l i d =" 1 " / >

6 < / Tags>

The UWB system used for data collection reads tags’ location asynchronously: a stream of lo-

cation events is generated over time; each event only contains information about the position of a

single tag. Consequently the location of the crowd is updated one pedestrian at a time. Moreover,

the system does not ensure a constant frequency of readings for each tag. The mean frequency
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of location updates for a single tag in the collected data was 4.74± 1.74Hz. This compares un-

favourably with video collection techniques, where frequencies of 25Hz are common and each

frame contains data about all pedestrians.

4.1.2 Visualization tool

This simple visualization tool developed for the project takes the previously mentioned log files

as input and provides a graphical representation of the tags positions and movement over time in

a three-dimensional environment. Figure 4.2 shows the tool in use with data from the one of the

experiments. The application can playback the experiments at different time-scales and allows

choosing which tags are shown or hidden.

Figure 4.2: Visualization tool

Although this tool presents limited use for analysis, it provided an early insight into the col-

lected data and allowed to understand some limitations of the tracking system. It also allowed

the realization that one of the tags used during the experiments - ’P11’ - behaved erratically, and

therefore the data associated with that specific tag should be discarded. Another usage was to

define the precise instants of the start and end of each experiment.

4.2 Data Filtering and Cleansing

The recorded stream of location events contained spatial and temporal information for the UWB

tags used in the experiments. As each tag was carried by a different participant, the trajectory of

movement of each pedestrian can be reconstructed from the location events associated with the tag.

Trajectories are then stored as a sequence of multidimensional points with two spatial dimensions

and another for temporal data.

Assuming piercewise linear movement (i.e. moving along a straight line with constant speed

between observations), the graphical representation of the trajectories is simple to obtain and two
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examples of such representation for the T-junction and corner experiments are illustrated in Figure

4.3.

(a) Trajectories for one of the T-Junction experiments (b) Trajectories for one of the Corner experiments

Figure 4.3: Graphical representation of pedestrian trajectories

From the graphical trajectory representation it is immediately obvious that a lot of superfluous

information is present in the recorded files and needs to be removed, such as location events from

unused tags outside the measurement area that were still tracked during experiments and the data

recorded in the instants just before the start and after the end of each experiment duration. It also

shows that one of the tags used during the experiments behaved erratically, and therefore should

not considered for the purposes of trajectory representation and analysis. Results after discarding

bad tags and trimming trajectories are presented in Figure 4.4 for the same experiments as before.

The resulting figures transmit the idea that the collected trajectories appear to be jerky and

imprecise. Considerable noise seems to affect some measurements as some trajectories are drawn

outside the physically delimited track bounds, where pedestrians would be unable to reach. In par-

ticular, some trajectories from the corner experiment (Figure 4.4b) continue moving forward after

the corner, moving beyond the track boundaries. This behaviour can in part be explained in the

context of the information filter used by the location system framework: position measurements

with high uncertainty take a secondary role in comparison with prediction, which uses a rectilin-

ear motion model to predict the position of the tag. Uncertain measurements can therefore cause

erroneous trajectories when the tag bearer changes the direction of movement. The trajectories are

later promptly corrected when a good measurement occurs.

Although the location system used can, under ideal conditions, achieve an accuracy of up to

20 cm, experiments and test scenarios could only reach sub-meter accuracy [51]. The inaccuracies

of the positioning system explain the irregularities in the trajectories, and can be attributed to
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(a) Trajectories for one of the T-Junction experiments (b) Trajectories for one of the Corner experiments

Figure 4.4: Graphical representation of pedestrian trimmed trajectories after discarding bad tags

imprecisions in the calibration process, limitations of the information filter used by the location

system framework, background noise, the agglomeration of large number of tags in confined areas

and the signal attenuation caused by the presence of a large number of test persons.

Such noisy trajectories are not yet adequate for the desired movement analysis, as some of

the descriptors of motion such as orientation and acceleration are heavily affected by noise in the

position measurements. In order to improve the quality of the recorded trajectories, the data was

first filtered to attempt to remove corrupted readings and then smoothed to reduce the noise by

smoothing-out short-term irregularity in the data and reveal more clearly the underlying trend.

4.2.1 Data filtering

As mentioned in 3.3.4.1 the filtering algorithm applied to the data was based on Maximum Redun-

dant Distance filter (MRD) of the Douglas Argos-filter algorithm, with some alterations allowing

the usage of velocity information instead of spatial distance. The filter works by retaining loca-

tions based on spatial redundancy between consecutive locations, therefore removing corrupted

readings which are seen as outliers and filtered by the algorithm. Figure 4.5 illustrates the results

of applying the filter to a particularly noisy trajectory. The chosen value for the maxv parameter

was 1.33m/s, as obtained from the free velocity in 4.3.1.

Whilst the quality of the filtered trajectory still leaves a lot to be desired, the filter correctly

identifies and removes obviously faulty readings.
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Figure 4.5: Application of the MDR based filter on a particularly noisy trajectory. The original
collected trajectory is represented as green and the filtered result as blue.

4.2.2 Data smoothing

In this step we attempt to reduce the noise in the data. The irregularities we desire to remove are

characterized by short-term disturbances, and therefore we want to reinforce the underlying trend

in the data.

As the present work relies on off-line trajectory data, information about the whole trajectory is

immediately available, and smoothing techniques can be used to reduce the noise in the readings

by improving the location of each measurement using information about previous and subsequent

sightings.

Several different approaches to smoothing were trialled; moving average, weighted moving

average, exponential and Kalman smoothers were applied to the trajectories. The results of these

attempts are depicted in Figures 4.6 and 4.7.

From Figure 4.6 we realise that the Kalman smoother follows the original trajectory too

closely, maintaining many of the undesired irregularities, and therefore doesn’t perform well in

our problem. Although the results of applying the simple moving average, weighted moving av-

erage and exponential smoothers seem similar in a two-dimensional representation, the lack of

temporal information in both the moving average and exponential smoothers tips the balance in

the favour of the usage of the weighted moving average smoother. In the former two smoothers,

the position of one observation can be heavily influenced by measurements separated by a sig-

nificant time interval, whereas usage of weights based on time-differences between observations
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(a) Moving average filter (b) Exponential smoother (c) Kalman smoother

Figure 4.6: Different approaches for trajectory smoothing. Green and blue coloured lines represent
the trajectory before and after smoothing is applied, respectively.

Figure 4.7: Application of the weighted moving average smoother (k = 9) on a trajectory. Green
and blue coloured lines represent the trajectory before and after smoothing is applied, respectively.
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dampens the effect of distant measurements in the case of the weighted moving average smoother

illustrated in Figure 4.7 and detailed in 3.3.4.2. After testing with different window sizes, we

found that a value of 9 produced the most appealing results.

4.2.3 Re-sampling

The collected data is sampled at irregular time intervals, and fixed interval re-sampling is required

for some of the analysis techniques that were used on the trajectories at a later stage of the project.

For an approximate reconstruction of the trajectory, pedestrians are assumed to have a piecewise

linear movement - moving along a straight line with constant speed between observations.

After the tasks of cleansing useless information, trimming trajectories, filtering bad readings,

smoothing the noise and re-sampling the data are over, the resulting trajectories are exemplified

by Figure 4.8.

(a) Trajectories for one of the T-
Junction experiments

(b) Trajectories for one of the Cor-
ner experiments

(c) Trajectories for one of the bot-
tleneck experiments

Figure 4.8: Graphical representation of trajectories after filtering and cleansing

A three-dimensional visualization of the evolution of trajectories over time is also presented

in Figure 4.9, where time is associated with the vertical axis and therefore snapshots at different

instants can be understood as horizontal planes in the figure.
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(a) Trajectories for one of the T-
Junction experiments

(b) Trajectories for one of the Cor-
ner experiments

(c) Trajectories for one of the bot-
tleneck experiments

Figure 4.9: 3D representation of trajectories

4.3 Initial Analysis

4.3.1 Analysis of the single file experiment

As stated before, the main goal of the single file experiment was to investigate the dependency

between the density and velocity of pedestrian movement. Figure 4.10 shows the extracted trajec-

tories for this scenario.

Figure 4.10: Extracted trajectories for the single file scenario

Towards this goal, only a straight section with length lm = 2m (as seen in Figure 4.11) was

considered to determine the density-velocity relation of pedestrian movement. Entrance (ten) and

exit (tex) times were recorded for each pedestrian crossing the entrance (xen) and exit (xex) of this

section. From these times, both the average velocity of each crossing i as well as the number of

persons inside the measurement section N(t) at each instant t were obtained.

From the runs with a single pedestrian on the track, the free velocity v f ree = 1.33±0.13m/s,

was obtained, which matches quite well with the value from literature (1.34m/s) [66].
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Figure 4.11: Experimental setup for the single file scenario

Figure 4.12 shows the evolution of the crossings’ speed and density in the measurement section

over the whole duration of the run with 20 pedestrians. As the pedestrian density in the measure-

ment area at a given time t is obtained by simply dividing the section length by the number of

pedestrians inside it at t, it will jump between discrete values over the duration of the experiment,

and is represented by the black line the figure. Tick blue lines, whose length indicates the time

interval a pedestrian is inside the measurement section, represent the mean velocity of the crossing.

Figure 4.12: Evolution of crossing speed vi and density in the measurement section ρn over the
duration of the experiment composed of 20 participants. Tick blue lines, whose length indicates
the time interval a pedestrian is inside the measurement section, represent the mean velocity of the
crossing.

The density assigned to each pedestrian crossing the measurement section is determined as the

mean value of density in the section during the crossing. A graphical representation of the velocity

(vi) - density (ρi) pairs of each crossing is presented in Figure 4.13. This representation is known

as the fundamental diagram of pedestrian movement.

In comparison with the diagrams obtained from similar experiments [20, 21] (Figure 4.14),

where data was collected manually from video recordings, similar values for density and velocity

are found for runs with the same number of participants. However, our diagram is more disperse as
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Figure 4.13: Relation between density and velocity (fundamental diagram) in the single file sce-
nario for the runs with 1, 10, 15 and 20 participants.

a result of the limited precision of the UWB system. No data is presented for values of density over

1.21/m because when the experiment was performed no more than 20 voluntaries were present.

Figure 4.14: Relation between density and velocity from similar experiments. From [20].

4.4 Spatio-temporal Analysis and Visual Inspection

4.4.1 Aggregate trajectory characterization

Aggregate trajectory characterization aimed at providing values quantifying trajectories as a whole.

In each of the experiments, for each of the participating pedestrian’s trajectories, the following

values that hold information about that whole trajectory were obtained: displacement, evacuation
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time, trajectory length, average velocity, straightness index, directional mean and circular vari-

ance.

Table 4.1 shows the results of quantifying trajectories as a whole for the data collected from

the first run of the T-Junction experiments as an example of the results obtained in this step.

Table 4.1: Aggregate motion descriptors of trajectories for one of the T-Junction experiments

Mean SD Min Max

Trajectory

Evacuation Time (sec) 9.24 2.44 5 13.8
Average Velocity (m/s) 0.602 0.131 0.388 0.855
Path Length (m) 5.38 0.596 4.02 7.11
Displacement (m) 3.44 0.849 0.322 4.28
Straightness Index 0.638 0.153 0.0723 0.795
Average Orientation (rad) 0.503 2.13 -2.34 2.55
Circular Dispersion 0.985 0.00557 0.975 0.995

The relations that arise between some of motion descriptors can be analysed with the help

of Table 4.2, which lists the correlation matrix of trajectories motion descriptors. Observation of

the table shows that some obvious correlations are clearly visible; for example positive correlation

among motion descriptors describing sinuosity of path including straightness index, straight length

and circular dispersion; and the negative correlation between evacuation time and average velocity

of the movement.

Table 4.2: Correlation matrix of aggregate motion descriptors of trajectories for one of the T-
Junction experiments

Evac.
Time

Av. Ve-
locity

Path
Length

Displa-
cement

St. In-
dex

Av. Ori-
entation

Circ.
Disp.

Evac. Time 1.0000
Av. Velocity -0.9291 1.0000
Path Length 0.5621 -0.2797 1.0000
Displacement 0.2914 -0.1229 0.3844 1.0000
St. Index 0.0756 0.0262 0.0685 0.9388 1.0000
Av. Orientation -0.4963 0.5291 -0.1028 -0.3178 -0.2712 1.0000
Circ. Disp. 0.7473 -0.7826 0.4404 -0.3009 -0.5383 -0.3150 1.0000

For all the runs in the bottleneck experiment the pedestrians occupy the same initial position

and only the exit width is changed. As expected, evacuation times decrease (12.6,11.4,8.37s) and

average velocities increase (0.585,0.708,0.844m/s) as the exit width is increased (0.9,1.0,1.4m).

The same can’t be said about the corner experiments, however. The runs with: equal entry

and exit widths of 1.5m; 1.5m entry and 0.9m exit; and equal entry and exit widths of 0.9m,

feature evacuation times of 6.81,9.55 and 9.6s and average velocities of 0.88,0.712 and 0.799m/s

respectively. These results imply that, although evacuation time only shows dependency with the

exit width, velocity varies with entry width as well.



4.4 Spatio-temporal Analysis and Visual Inspection 61

Two dimensional maps of trajectories, where each trajectory from one of the T-junction ex-

periments is coloured by the corresponding value of a set of aggregate motion descriptors are

presented in Figure 4.15. From a initial visual analysis, the behavioural information transmitted

by these representations is low, although it can be noted that in the case of the average orientation

figure a clear partition between the trajectories originated from the movement of the pedestrians

that come from different entrances to the Junction is immediately clear (Figure 4.15b).

(a) Average trajectory velocity (b) Average orientation (c) Evacuation time

Figure 4.15: Example of T-Junction trajectories coloured by aggregate descriptors

Besides the obvious observation that pedestrians whose initial position is close to the exit have

lower evacuation times, Figure 4.16 also shows that the evacuation time of pedestrians originating

from a central area is lower that whose of the periphery.

Figure 4.16: Trajectories coloured by evacuation time for one of the bottleneck experiments.
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Aggregate characterization is not very handy at providing insight into the details of how prop-

erties of pedestrian flow such as densities and velocities are spread in facilities, or how they vary

from one facility to another. However, they seem to be very important in realizing how evacu-

ation times change depending on the pedestrians initial positions, path and exit choices during

emergencies.

Some of the computed descriptors such as the straightness index and circular dispersion can

provide insight into the ability of evacuation participants to efficiently find egress routes. Even

simple properties such as evacuation times are important benchmarks of evacuation exercises and

important for building planners.

4.4.2 Segmented trajectory characterization

Segmented trajectory characterization aimed at further improving the already existent description

of movement. Since trajectories are assumed to be represented as a set of points with an associ-

ated spatial location and time instant, each trajectory can also be imagined as a the sequence of

segments connecting two consecutive points.

A vector of new features was then computed for each segment of the trajectories and stored

alongside the location and temporal data. The following descriptors that quantify information

about each segment of the trajectory were obtained: displacement, velocity, acceleration, orienta-

tion and density. Information about the displacement, velocity and acceleration along the x and y

axes were also calculated.

Representations of trajectories in which each of the segments that constitute a trajectory is

coloured according to the value of descriptors associated with motion data from that segment are

depicted in the figures that follow. Figure 4.17 illustrates the two-dimensional maps of trajectories

for of the T-junction experiments obtained when considering the average velocity and acceleration

of segments, respectively.

The information conveyed by the segment coloured maps allows distinction of different values

of descriptors such as velocity for separate parts of each trajectory. This permits a glimpse on how

the characteristics of movement are distributed throughout the different zones of the experiment

area. For instance, Figure 4.17a transmits the idea that the pedestrians movement speed is slow

as they approach the junction, but faster after the merging of streams. The acceleration map

reinforces the same idea, as the centre of the junction features a large number of segments with

positive acceleration, whilst the corridors leading up to it show the opposite.

Average segment velocity coloured trajectories for the bottleneck experiment with widths of

0.9 and 1.4m are depicted in Figure 4.18. Is is apparent that the lower velocity, higher congestion

areas appear before the bottleneck, with pedestrians moving faster once they find themselves al-

ready inside the narrow section of the facility. The figure also showcases the effect of the width of

the bottleneck on the variation of velocity: the colour of segments in figure 4.18a features a wider

range that that of figure 4.18b, meaning a wider variation of velocity - caused by the congestion

of a narrower exit.
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(a) Average segment velocity (b) Average segment aceleration

Figure 4.17: Trajectories coloured according to the value of motion descriptors associated with
each segment

(a) Bottleneck width 0.9m (b) Bottleneck width 1.4m

Figure 4.18: Trajectories coloured according to the value of average segment velocity for different
runs of the bottleneck experiment
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(a) Merging of flows (b) Splitting of flow

Figure 4.19: Trajectories coloured according to the value of average segment velocity for different
flow directions in the T-junction experiments

Figure 4.19 illustrating average segment velocity for different flow directions in a T-junction

like facility transmits the idea that, for the same overall number of pedestrians, a splitting flow is

characterized by higher movement velocity than that of merging flows. The motion also seems

more regular in the splitting flow figure (4.19b), with reduced velocity variance and pedestrians

moving orderly and closer to the walls and resulting in shorter paths.

4.4.2.1 Density obtained through the Voronoi partition of space

In order to assign densities at different temporal instants to the different zones of the experiment

area, a Voronoi partition of space, where the position of the tags is input as seeds to the method,

is performed. For each instant t, the cells obtained by the method represent the personal area

occupied by each pedestrian at that instant. This allows measuring the density in any point in space

as the reciprocal of the area of the cell that the point belongs to. Figure 4.20 represents the partition

of space in different experiment areas according to the Voronoi method at a certain instant. The

crosses represent the position of pedestrians and the labels show the density to assigned to each.

The density in the T-junction (Figure 4.20a) is not homogeneous and a higher density region

appears near the junction. The lowest density region is located at a triangle-shaped area where the

left and right branches begin to merge. The densities in the branches (before the merging region)

are not uniform and are higher over the inner side, especially near the corners. Similar conclusions

are extracted by looking at Figure 4.20b, referencing the distribution of density at a certain time

instant t, in the corner experiment.

Density in the bottleneck experiment takes the highest value just before the narrowing, de-

creasing as the distance to it increases as illustrated in Figure 4.21. A reduction the values of
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(a) T-junction (b) Corner

Figure 4.20: Partition of space in the experiment areas according to the Voronoi method. The
crosses show the positions of pedestrians at the time and the labels indicate the assigned density.
Density is calculated as the reciprocal of the area occupied by each cell.

Figure 4.21: Partition of space in the bottleneck experiment according to the Voronoi method.
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density is also strongly related with the increasing distance along the direction perpendicular to

the narrow passage.

4.4.3 Visualization through histograms and KDE maps

With the sole exception of the Voronoi based representation of pedestrian density data, all the

results presented until now only contained information about trajectories and the space directly

traversed by pedestrians. In an attempt to provide results and information for every point of space

in the facilities, we extrapolate information from neighbour locations that already contain the data.

In the first attempt, we divide the space along a two-dimensional grid, and assume that the

value of a certain motion descriptor of each cell of the grid is the average of the values of that

same descriptor from known locations in that cell. This idea is analogous to a 2D-histogram, and

is illustrated in Figure 4.22. The figures clearly show that, for different runs of the T-junction

experiment with different exit widths, the velocity is more regular and homogeneous along the

whole experiment area in the case where the flows merge into the larger corridor of Figure 4.22b.

The conclusions found by analysing Figure 4.22a are the same discussed preciously on a sim-

ilar analysis of Figure 4.17a: movement is slow as pedestrians approach the junction, but faster

after the merging of streams. However, relation seems much more clear in the newly obtained

histogram figure.

(a) Entry and exit widths are the same and equal to
0.9m

(b) Entry width of 0.9m on each side and common
exit with 1.5m of width

Figure 4.22: Histogram of velocity for T-junction experiments with merging flows and different
entry and exit widths

Still, the histogram approach has some limitations. Finding appropriate grid size is problem-

atic and sometimes no good solution can be found. Wide grid sizes generalize too much and

valuable information is lost. Narrow grid sizes risk making many cells empty of known descriptor

locations and therefore without a way to extrapolate information. This problem is exacerbated in

the facilities where some areas are very populated and others not visited very often.
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On the second attempt, we try a non-parametric way to estimate the probability density func-

tion of the descriptor. Kernel density estimation allows us to make inferences about the whole

experiment are based on a finite data sample. Two-dimensional maps of kernel density estimates

for velocity and acceleration in the T-junction experiments can be visualized in Figure 4.23.

(a) Average segment velocity (b) Average segment acceleration

Figure 4.23: KDE map of trajectories descriptors

The kernel density maps provide qualitative information about the distribution of the descrip-

tors. Although lacking the important quantitative information, these maps make up to it by pre-

senting information in a smoother manner, and also providing information about zones not covered

previously (e.g. zones were not crossed by trajectories) due to its probabilistic nature. Again, the

intersection where pedestrians meet is shown to be the bottleneck of the evacuation as the velocity

is lower before it and higher after (Figure 4.23a), which correspond to areas of deceleration and

acceleration respectively (Figure 4.23b).

4.5 Spatio-temporal Data Mining

4.5.1 Trajectory partition

Trajectory partitioning aims to differentiate contrasting behaviour within a trajectory. Trajectory

partitions are sub-trajectories that are characterized by different behavioural characteristics. To

achieve this goal, the partitioning algorithm looks for the characteristic points of a trajectory -

points where the behaviour of the trajectory changes rapidly. Each resulting trajectory partition is

represented by a line segment between two consecutive characteristic points.
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The partitioning algorithm implemented in this project is called TRACLUS and was intro-

duced in [64]. Figure 4.24 illustrates a pedestrian trajectory and the respective segments between

characteristic points produced by the partitioning algorithm.

Figure 4.24: Results of partitioning a trajectory. Represented in blue colour is the original tra-
jectory and the segments between characteristic points resulting from trajectory partitioning are
plotted in green.

Figure 4.25a depicts the segments resulting from partitioning all the trajectories for one of the

T-junction experiments. Inspection of the figure reveals that, although much simpler that the origi-

nal trajectories, the partition segments still retain most of the fundamental geometrical information

of the original trajectories, whilst eliminating minute details that, due to the imprecisions in the

data collection system, have little significance.

The trajectory partitioning approach adopted in this project essentially considers only the di-

rectionality of the movement. It is, thus, useful to find behavioural changes that are accompa-

nied by changes in the motion direction. This approach is not optimal, as important behavioural

changes occur in situations such as congestion due to bottlenecks, where the geometry of trajecto-

ries is mostly unaffected but properties of movement such velocities are deeply affected.

In his thesis [67], Nara proposes a different partitioning approach that relies on the assumption

that in many situations pedestrians change of behaviour involves moments of stopping or staying.

This approach is based on a distance threshold: if the distance of each segment is less that a

threshold the segment is assigned as stay.

However, due to the short term nature of the data collected in this project, and the imprecisions

and noise that affect the data - even after extensive smoothing and treatment, properties such as
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(a) Segments resulting from trajectory partitioning (b) Original trajectories

Figure 4.25: Results of partitioning multiple trajectories

velocities still maintain large fluctuations that impede the use of this alternative approach.

4.5.2 Segment clustering

After the different portions of trajectories with different behavioural characteristics are separated,

it is time to discover which sub-trajectories share common movement patterns and group them

into clusters for further study and characterization of the behaviour singled out by each cluster.

Figure 4.26 shows the different segment clusters, and the corresponding sub-trajectories, found

in the data of one of the runs of the T-junction experiment. Three clusters are identified: each fea-

turing segments and sub-trajectories from different branches of the facility (with the exception

of some segments from the lower branch appearing the in the mid branch cluster). The results

are satisfactory and mostly in line with what we expected to obtain, because, as with the trajec-

tory partitioning approach, the clustering algorithm adopted in this project is mostly based on the

geometry of the segments.

Lee et al. [64] also produce a heuristic for parameter value selection, that in the case of

the T-junction scenario returns the values ε = 1.2 and MinLns = 3 for parameters. Figure 4.27a

illustrates the clusters resulting by using the parameter values provided by the heuristic. Usage

of these values results on increased number of clusters, some of which appear very similar. In

comparison, the clusters identified in Figure 4.27b, where the values for parameters were chosen

by manual tuning, clearly separate sub-trajectories in the different zones of the facility: clusters

0 and 2 groups sub-trajectories in left and right branches and cluster 1 represents movement after

merging. The number of segments not assigned to any cluster is also inferior in the case where the

parameters were manually tuned.
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(a) Segments (b) Sub-trajectories

Figure 4.26: Results of clustering

(a) Parameters ε = 1.2 and MinLns = 3 provided by
the heuristic

(b) Parameters ε = 1.55 and MinLns = 3 found
through manual tuning

Figure 4.27: Effect of different parameters on clustering
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Results also show that the discovered clusters are highly dependant on the chosen parameters,

and that the optimal parameters change with the geometry of the facility, therefore requiring con-

stant turning for different facilities. These limitations are caused by the geometry based approach

to the trajectory segmentation and clustering.

4.5.3 Cluster characterization

This final step involves gathering aggregate information about the sub-trajectories that make up

each cluster. The characterization is analogous to that applied to the whole trajectories in 4.4.1.

The information created in this step aims to allow statistical modelling of the clusters as a means

for human movement model elicitation.

One of the sets of sub-trajectories produced by partitioning trajectories from the the first run of

the T-Junction experiments based on its different behaviours, and by clustering similarly behaved

sub-trajectories is graphically illustrated in Figure 4.28.

Figure 4.28: Sub-trajectories for the cluster 1 of one of the T-Junction experiments.

Table 4.3 shows the results of quantifying the previously mentioned sub-trajectories as an

example of the results obtained by cluster characterization.

Statistical information such as the mean and standard deviation of the average orientation

(pointing downwards in this example), velocity and displacement could be sufficient for creat-

ing artificial trajectories similar to those that belong to the cluster in analysis. The same procedure
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Table 4.3: Aggregate motion descriptors of sub-trajectories for the cluster 1 of one of the T-
Junction experiments

Mean SD Min Max

Trajectory

Evacuation Time (sec) 3.62 1.02 2.4 6
Average Velocity (m/s) 0.342 0.0815 0.223 0.456
Path Length (m) 1.26 0.33 0.847 1.97
Displacement (m) 1.18 0.357 0.635 1.92
Straightness Index 0.919 0.069 0.75 0.975
Average Orientation (rad) -1.52 0.202 -1.89 -1.16
Circular Dispersion 0.947 0.0131 0.929 0.969

applied to all the clusters found in a complete set of trajectories could help recreate the same trajec-

tories, thus acting as a rudimentary modelling tool for the experiment from which the trajectories

were extracted.
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Conclusions

5.1 Final remarks

Given the objectives of the project: study and improve techniques of tracking human movement

using UWB RFID tags; conduct experiments with volunteers and record tracked trajectories; ex-

tract relevant information from the recorded trajectories; use data mining and inference techniques

to help elicitate human behaviour, and the findings provided by the analysis of the conducted ex-

periments, we conclude that this research met the initial goals.

Several experiments of pedestrian movement in restricted areas were devised and conducted,

from which trajectories were recorded by a UWB RDIF tracking system. Regarding the first two

objectives, we concluded that the Ubisense RTLS lacks the fine spatial precision that would be

desired to make extensive quantitative analysis of motion at the scales relevant for characteristics

of movement such as velocities and accelerations. We can also reason that although the system has

a complex and time-consuming setup and installation, its usage and handle is relatively accessible.

Usage of this technology presents several advantages over traditional data collection tech-

niques, expanding the breath of possible scenarios for experiments, such as situations of limited

visibility for which data is inexistent. Compared with the usual method for tracking of people

trajectories, video recordings, UWB allows use in narrower spaces, facilities with lower ceilings

and areas with line of sight restrictions. Other aspect is related with data collection. UWB based

systems record the coordinates of position for each tag directly whereas video recordings must

be later analysed and processed in order to extract positions / trajectories. Each tag carried by

pedestrians is uniquely identifiable, allowing individual tracking and thus enabling the investiga-

tion of the behaviour and effect of specific individuals like child, elderly or people with mobility

impairments on the crowd dynamics.

On the other hand, the UWB system used has a lower sample rate: about 5 Hz in the case of

UWB versus 25 Hz with video. Also, video techniques present synchronized results whilst UWB

does not. Moreover, technical limitations like the lack of fine spatial precision make it not optimal

for extracting microscopic properties of traffic, such as velocities and densities at a disaggregated

level.

73



74 Conclusions

In conclusion, and when comparing the drawbacks with the advantages, UWB techniques for

human trajectory extraction seems a viable approach. It is particularly suitable for scenarios where

video is less applicable and pedestrian fine positioning is not an issue, such as for macroscopic

analysis (e.g. egress time, path choice and behaviour scrutiny).

Concerning the information extracted from the trajectories, we found that the system limi-

tations like the lack of fine spatial precision became a problem when trying to extract detailed

information, for example, for performing quantitative analysis. Attempts to improve the quality of

the data by filtering and smoothing proved to be challenging tasks in this project.

When it comes to the third objective — extract relevant information from the recorded trajecto-

ries, it is also important to mention that adequate choice of parameters is fundamental to properly

characterize and describe the motion behaviour patent in the trajectory data.

The computed descriptors of movement, combined with the exploration of several different

visualization techniques, provided insight into some of the processes of crowd congestion and

emergency egress. The results from this step capture and describe the spatio-temporal behaviour

of crowds, an important feature of evacuation dynamics. Such results can be used for improving

facility design as well evacuation route planning.

On the subject of using data mining techniques for discovering hidden trends and knowledge

from the trajectory dataset, we discovered that out approach was valid, as we were able to extract

patterns and its characterising variables such as velocities, orientations and tortuosity indexes.

Although the patterns were also easily identifiable by with visual analysis of the trajectories’

characteristics, the data-mining method provides an automatic alternative, that can be used on

massive datasets as no human input is required. It also proved that, by using machine learning

techniques, it can adapt to different situations and scenarios that alternative conventional methods

might not.

5.2 Future Developments

Although the present study makes a contribution to the database of pedestrian movement knowl-

edge, it also intends to incite further research on the matter of the usage of UWB based tracking

systems. This is a promising technology that widens the range of possible test scenarios for which

there is scarce data such as low visibility situations, so common during evacuations due to fire

or during the night. As this is a relatively new topic, there are still some subjects that remain

unexplored, thus this promotes an opportunity for further investigation.

Some limitations of the current study are related to the lack of the desired accuracy and pre-

cision from the tracking system used, which brings consequences related to the ability to dis-

cern smaller nuances in the behavioural patterns. Therefore, future studies that build on these

results and suppress its limitations are recommended and include better filtering and smoothing

approaches and sensor fusion.
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The spatio-temporal analysis and visualization techniques that made the basis of the method-

ological approach of this project can also be applied to other sources of pedestrian motion in-

formation, such as simulations in virtual environments and data collected with the help of other

technologies.

Important problems that were not optimally solved in this project still have plenty of room for

improvement. Examples of such problems are the limitations of the directional-based trajectory

partition algorithm and the density-based clustering of segments of trajectories. Description of

subsections of trajectories by feature vectors, dimensionality reduction by principal component

analysis and the the application of more conventional clustering algorithms are some interesting

approaches that could be applied to the data-mining problematic of the project.

Future work will also focus on the analysis of other experiments using different scenarios,

following the same methodology. The results of this work will be used to validate and calibrate

behaviour models in the “mSPEED” framework. This will constitute a unique tool for agent-based

“Modelling and Simulation of Pedestrian Emergent Evacuation Dynamics” under development at

LIACC.
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