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Abstract 

Fishmeal (FM) has been the preferred protein source for aquafeeds, in particular 

for carnivorous species. However, current FM inclusion levels threaten the expansion of 

the intensive production of those species. In this context, research has been focusing on 

evaluating more cost-effective and sustainable alternative ingredients to FM. Meat and 

bone meal (MBM) is a desirable product for carnivorous fish diets as it generally 

possesses a high protein content, relatively balanced amino acid profile, high digestibility 

and palatability and lacks anti-nutritional factors. Also, it is produced worldwide with a 

steady availability. Recent unban of the use of these ingredients inside the European 

Union emphasizes the necessity to evaluate it as new potential ingredient for FM 

replacement. Gilthead seabream (Sparus aurata) is an important economic species in 

Mediterranean aquaculture but overproduction, associated with increasing price of 

feeds, led to a decrease in profitability of the intensive production of this species. 

Therefore, present study aimed to evaluate FM replacement with MBM on growth, 

digestibility, feed efficiency utilization and gut microbiota of gilthead seabream juveniles. 

Three experimental diets were formulated (45% CP; 20% CL): a control diet (FM100), 

with FM as the main protein source, and MBM50 and MBM75 where FM was replaced 

at 50% and 75%, respectively. Triplicate groups of juvenile gilthead seabream (25 ± 0.72 

g) were fed for 83 days with the experimental diets. A 50% substitution did not 

significantly affect growth (DGI of 2.48 and 2.51 for FM100 and MBM50 diets, 

respectively), feed utilization efficiency (FCR of 1.51 and 1.53; PER of 1.51 and 1.50, for 

FM100 and MBM50 diets, respectively). However, a 75% substitution led to a significant 

decrease on growth rate (DGI of 2.25) and feed utilization (FCR of 1.72; PER of 1.29), 

although feed intake (g kg ABW-1 day-1) was significantly higher (26.1 compared to 24.2 

for diet MBM50). Whole-body composition was mostly unaffected by the experimental 

diets with the exception of lipid and energy content, which were significantly lower in fish 

fed the diet MBM75. Protein and essential amino acid retention were unaffected by the 

experimental diets while lipid and energy retention were significantly reduced with the 

increase of FM substitution. Crude protein digestibility was high (>89%) and unaffected 

by the experimental diets while energy digestibility was significantly higher for diet 

MBM50 (95.2 %), compared to the control (82 %). ADCs of essential amino acids were 

high (>92%) for all experimental diets and statistically similar or higher for diet MBM50, 

compared to the control diet, but lower for MBM75 when compared to MBM50.  
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MBM significantly modulated gastrointestinal microbiota with a decrease in 

operational taxonomic units (OTUs) and species richness but an increase in replicate 

similarity with increasing MBM inclusion rate. MBM appeared to promote the 

development of Vibrio, Bacillus and Mycobacterium genera while colonization by 

Staphylococcus and Corynebacterium genera appeared to decrease. Overall, results 

indicate that half of FM could be replaced by MBM, in diets for gilthead seabream 

juveniles, without compromising growth performance and feed utilization with good 

results in nutrient and EAA digestibility and retention. Further studies are required to 

study fatty acid profile, digestibility and retention, and the effect of dietary MBM inclusion 

on general intestine health fish, fish wellbeing and immune status as well as on flesh 

quality traits of gilthead seabream. 

Keywords: Gilthead seabream; alternative protein sources; meat and bone meal; 

amino acids; digestibility; microbiota 

 

Resumo 

A farinha de peixe (FP) é a principal fonte proteica em dietas para aquacultura, 

em particular para espécies carnívoras. No entanto, os atuais níveis de incorporação da 

FP ameaçam a expansão da produção aquícola destas espécies. Sendo assim, a 

investigação tem centrado esforços no estudo de novos ingredientes, alternativos à FP, 

economicamente mais viáveis e sustentáveis. A farinha de carne e osso (MBM) é um 

ingrediente com elevado potencial para incorporação em dietas para peixes carnívoros, 

dado o seu elevado teor em proteína, perfil de aminoácidos relativamente equilibrado, 

elevada digestibilidade, boa palatabilidade e ausência de fatores anti-nutricionais. Para 

além disso, a MBM é produzida mundialmente e com disponibilidade contínua. A recente 

reautorização do uso destes ingredientes na alimentação de peixes na União Europeia 

salienta a necessidade da avaliação do seu potencial como alternativa à FP, em 

espécies produzidas na Europa. A dourada (Sparus aurata) é uma espécie de grande 

importância económica na aquacultura Mediterrânica mas o excesso de produção, 

associada ao aumento do preço das dietas, levou a uma diminuição na rentabilidade da 

produção intensiva desta espécie. Neste contexto, o presente estudo teve como objetivo 

avaliar o efeito da substituição da FP por MBM no crescimento, digestibilidade, eficiência 

de utilização do alimento e microbiota gastrointestinal de juvenis de dourada. Foram 

formuladas 3 dietas experimentais, com 45% de proteína bruta e 20% de lípidos totais, 

fazendo variar a taxa de incorporação da MBM: dieta controlo (FM100), com FP como 



FCUP 
Potential use of meat and bone meal in diets for gilthead seabream 

(Sparus aurata) juveniles 

3 

 
a principal fonte proteica, e MBM50 e MBM75 onde FP foi substituída em 50 e 75%, 

respetivamente. Cada uma das dietas foi fornecida, em triplicado, a grupos de juvenis 

de dourada (peso médio inicial 25 ± 0.72 g), durante 83 dias. A substituição de 50% da 

FM por MBM não afetou significativamente o crescimento (DGI de 2.48 e 2.51 para as 

dietas FM100 e MBM50, respetivamente) ou a eficiência de utilização do alimento (FCR 

de 1.51 e 1.53; PER de 1.51 e 1.50 para as dietas FM100 e MBM5, respetivamente). No 

entanto, uma substituição de 75% da FP acarretou uma diminuição significativa da taxa 

de crescimento (DGI de 2.25) e da utilização do alimento (FCR de 1.72; PER de 1.29), 

apesar da ingestão voluntária de alimento (g kg ABW-1 day-1) ter sido significativamente 

maior (26.1 comparado a 24.2 para a dieta MBM50). A composição corporal não foi, de 

uma forma geral, afetada pelas dietas experimentais, com a exceção do teor em lípidos 

e energia, que foram significativamente mais baixos nos peixes alimentados com a dieta 

MBM75. A eficiência de retenção proteica e aminoacídica não foi afetada pelas dietas 

experimentais enquanto a lipídica e energética foram significativamente reduzidas com 

o aumento da substituição da FP. O coeficiente de digestibilidade aparente da matéria 

seca, proteína, lípidos energia e aminoácidos foi avaliada através de um ensaio de 

digestibilidade. A incorporação de MBM não alterou significativamente a digestibilidade 

da proteína, que foi elevada (> 89%), mas aumentou a digestibilidade da energia, sendo 

esta significativamente maior para a dieta MBM50 (95.2%), comparativamente ao 

controlo (82%). Os coeficientes de digestibilidade aparente dos aminoácidos essenciais 

foram elevados (> 92%), para todas as dietas experimentais e estatisticamente 

semelhantes ou superiores para a dieta MBM50, comparativamente ao controlo, mas 

mais baixas para a dieta MBM75 quando comparadas à MBM50.  

A incorporação de MBM nas dietas modulou significativamente o microbiota 

gastrointestinal, verificando-se um decréscimo em unidades taxonómicas operacionais 

(OTUs) e riqueza de espécies. A inclusão de MBM parece promover o desenvolvimento 

das bactérias dos géneros Vibrio, Bacillus e Mycobacterium, enquanto a colonização 

pelos géneros Staphylococcus e Corynebacterium diminui. De um modo geral, estes 

resultados indicam que metade da FP pode ser substituída por MBM, em dietas para 

juvenis de dourada, sem comprometer a desempenho de crescimento, eficiência de 

utilização do alimento, digestibilidade e retenção dos nutrientes e energia. Contudo, 

futuros estudos são necessários para avaliar o efeito da inclusão de MBM em dietas na 

saúde intestinal, bem-estar e estado imune de douradas, bem como avaliar a sua 

repercussão na qualidade da carne da dourada.  

Palavras-chave: Dourada; fontes proteicas alternativas; farinha de carne e osso; 

aminoácidos; digestibilidade; microbiota 
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Introduction 
The State of Aquaculture 

The ever growing human population and its inherent growing need for food has 

been putting pressure on natural fish stocks and is causing doubts about a sustainable 

future of seafood for human consumption. Fish global per capita consumption has 

increased from 9.9 kg in 1960 to 19.5 kg in 2012 (FAO 2014) and fisheries captures 

alone will not be able to meet the expected demand of seafood in the future. In fact, 

28.8% of fish stocks were estimated to be overexploited by the fishery industry in 2011 

(FAO 2014). Although it was reported that total capture fisheries reached a second all-

time high of 93.7 million tons (MT) in 2011 (93.8 MT in 1996), overall, these numbers 

only represent a relatively stable situation that has been seen in the last decade, where 

total capture fisheries values have revolved around 90 MT (Fig. 1) (FAO 2012). In 

particular, marine captures have decreased from 82.6 MT in 2011 to 79.7 MT in 2012 

(FAO 2014).  

 

Fig. 1: World capture fisheries and aquaculture production. Source: FAO (2014) 

Aquaculture plays now, more than ever, an important role in providing global food 

security by meeting the increasing demand while alleviating the negative effects of 

fishing. According to Haylor and Bland (2001), aquaculture is “the farming of aquatic 

organisms in inland and coastal areas, involving intervention in the rearing process to 

enhance production and the individual or corporate ownership of the stock being 

cultivated”. This production includes diverse practices and a wide range of farmed 

species, systems and techniques, where more than 567 species are currently being 

farmed, 354 of which are finfish (FAO 2014). The aquaculture industry also plays a vital 

role in reducing poverty as it creates employment in many underdeveloped and 
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developed countries and allows preservation of the natural ecosystems and improves 

environmental sustainability. 

Historically, this type of farming has been practiced in many forms and degrees 

since it was firstly documented in China, with the freshwater carp, in 2000 B.C. As 

scientific knowledge and technologies develop, aquaculture became more efficient with 

the increase of intensive production systems. In fact, producers have gone from 

obtaining wild seeds of juveniles from their natural environment to a complete, closed 

production, contributing this way to sustain natural fish stocks. 

Currently, aquaculture is considered to be the fastest growing food production 

sector (Yang et al. 2006), reaching an all-time high in 2012 with the total production of 

90.4 MT, more than doubling since 2000 (32.4 MT) (FAO 2014). Despite the positive 

growing trend, it appears that aquaculture production is stagnating as it expanded more 

slowly in the period 2000-2012 (6.2%) than in the periods 1980–1990 (10.8%) and 1990–

2000 (9.5%) (FAO 2014). Nevertheless, world food fish aquaculture production grew at 

an average rate of 6.2% in the period 2000-2012, but lower than in the period 1990-2000 

at 9.5%, and it was estimated that in 2013, total production reached 70.5 MT of food fish, 

corresponding to an increase of 5.8% (FAO 2014). Compared to capture fisheries, 

farmed food fish worldwide contributed a record 42.2% of a total of 158 MT of fish 

produced in 2012 by both sectors (FAO 2014). However, these values are the result of 

an uneven production as, in 2012, Asia alone accounted for 88% of total aquaculture 

production, with 43.5 MT of food fish produced in 2013. The European Union (EU) only 

represented a small percentage of global production, corresponding to 4.3% (2.88 MT) 

in 2012 (FAO 2014) and it is still largely dependent on imports of fish and fishery 

products, showing production constrains (Karapanagiotidis 2014). 

 

The State of European and Mediterranean Aquaculture 

In the last 15 years, marine aquaculture became more intensive as a need to 

compensate for the stagnating capture fisheries, and was possible due to new 

technologies, expansion of suitable sites, improvement in feed technology, better 

knowledge of farmed species biology, increased water quality within closed farming 

systems and increase demand for seafood products (Read and Fernandes 2003). In 

2011, the EU was the fifth largest fisheries and aquaculture producer worldwide, with a 

volume of 1.24 MT of aquaculture products, more than 20% of total EU fisheries 

production (EUMOFA 2014). Increase in finfish production due to diversification of 

farmed species allowed an increase in annual growth rate of 13% in 2000, compared to 
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only 4% in 1980 (IUCN 2007). However, despite the initial growth, in 2011, the volume 

of farmed products in the EU was the lowest registered since 2003 (Fig.2) (EUMOFA 

2014). In 2011, Spain was the Member State with the highest volume of farmed products 

(274 225 tones), which represented an increase of 8% relatively to 2010, followed by 

France, United Kingdom, Italy and Greece (EUMOFA 2014). 

 

Fig. 2: Total aquaculture production in the European Union. Source: EUMOFA (2014)  

Most recent data point that, in 2013, Portugal’s total aquaculture production was 

of 9955 tones, providing a revenue of around 54 million euros, representing a 9% 

decrease in volume, mainly due to a reduction in turbot’s production, but a 3.1% increase 

in revenue compared to 2012 (INE 2015). Finfish production in marine and brackish 

waters accounted for 41.9% of total production where 85% of those refer to gilthead 

seabream and turbot production (INE 2015). Also, in the EU, gilthead seabream was the 

sixth most produced aquaculture species, after salmon, trout, oyster, mussel and carp, 

representing 5.8% of the total European aquaculture production in 2011 (EUMOFA 

2014).  

  

Gilthead seabream (Sparus aurata L.) 

Biology  

Sparus aurata (Linnaeus, 1758) (Fig. 3) is a perciform fish that belongs to the 

family Sparidae. It possesses a relatively deep and compressed oval body, with thick lips 

and small eyes, and a generally curved head profile. The overall body color is silver-grey 

with a big dark blotch at the beginning of the lateral line that extends to the upper part of 

the opercular bone. The edge of the fork and caudal fins are black. This species also 

possesses a characteristic golden colored bar between the eyes, always narrower in the 

central part (Basurco et al. 2011).  
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This species is commonly found in the Mediterranean Sea but less frequently in 

the Eastern Atlantic coasts from Great Britain to Senegal and rarer in the Black Sea 

(Moretti et al. 1999). It has a demersal behavior and inhabits sea grass beds and sandy 

bottoms; young gilthead seabreams can be found at low depths (up to 30 m) while adults 

can occur in deeper waters (up to 150 m), living in solitary or in small schools (Basurco 

et al. 2011). Due to its euryhaline nature during the early stages of its life cycle, this 

species can also be found in brackish waters, such as coastal lagoons and estuaries. 

However, it is sensitive to low temperatures, 4 °C being the lethal minimum. 

Gilthead seabream is a mainly carnivorous species, feeding of crustaceans and 

mollusks, as well as polychaetes, some teleost fish and echinoderms, but can be 

accessorily herbivorous (Wassef and Eisawy 1985). They are considered opportunist 

feeders, where they adapt their diets according to local availability and accessibility, and 

temporal variation (Pita et al. 2002). Regarding reproductive biology, this species is 

considered to be a protandric hermaphrodite, meaning that juveniles reach sexual 

maturity as males (during the first 2 years of life) and then become sexually mature 

females at sizes over 30 cm of length. Spawning occurs from December to April, during 

which the pelagic eggs hatch at open sea and, in early spring, juveniles migrate towards 

coastal areas where there is abundant food, protection and milder temperatures. In late 

autumn, they return to open sea to breed. 

 

Fig. 3: Gilthead seabream specimen (Sparus aurata, L.). Source: FAO 

 

Aquaculture production  

Gilthead seabream is a species of great economic value for the Mediterranean 

aquaculture industry (Nengas et al. 1999; Libralato and Solidoro 2008). It has shown 

great adaptability to all kinds of farming systems and displays a homogenous growth 

under culture conditions (Montero et al. 2009). Historically, this species was extensively 

cultured in Mediterranean coastal lagoons and saltwater ponds such as the Italian “valli” 
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(Basurco et al. 2011) or the Egyptian “hosha”, which are natural traps that take 

advantage of the juveniles’ trophic migration from the sea to coastal lagoons. For a very 

long time, marine rearing of this species depended on the collection of wild juveniles and 

it was only up until the 1980’s that intensive fish rearing systems were developed, mostly 

due to successful artificially breeding techniques derived by a shortage of fry and 

juveniles, establishing the beginning of mass production of gilthead seabream (Moretti 

et al. 1999). Since then, this species has become one of the main products of European 

aquaculture. 

Currently, grow out of gilthead seabream is performed on floating cages at open 

sea while most of the reproduction and growth phase is in intensive land systems 

(Merinero et al. 2005). In 2011, the EU produced around 74 000 tons of gilthead 

seabream, providing a revenue of 370 million euros. However, this represented a 

decrease of 19% in volume and 6% in value when compared to 2010 (EUMOFA 2014). 

Greece was the largest contributor, responsible for 67% of all volume produced. In 2013, 

Portugal reported a production of 1 201 tons of gilthead seabream (INE 2015). 

Improvements of rearing techniques in the last several years, such as feeding 

systems automation, harvesting procedures and health management, have resulted in 

an overproduction of gilthead seabream that is having a toll on prices in the main 

European markets (Flos et al. 2002). From 1996 to 2005, production in Mediterranean 

countries rose from 30 000 tones to 90 000 tones (Martínez-Llorens et al. 2008) and this, 

associated with the decrease in sale price, has forced farmers to control the production 

costs in order to improve profitability (Merinero et al. 2005). 

 

Feed formulation in aquaculture  

About 40% of total aquaculture production is dependent on the supply of 

exogenous feeding (Deutsch et al. 2007). This is known as intensive aquaculture 

production and allows producers more control over the quality of the final product and 

more control over the culture conditions. From the period 1995-2008, the industrial 

aquafeed production increased more than threefold, as a consequence of the increase 

in intensive aquaculture, growing from 7.6 MT to 29.2 MT, at an average rate of 11% per 

year, and it is expected to reach 71 MT by 2020 (FAO 2011). Currently, the challenge in 

fish nutrition research is the formulation of sustainable diets, less dependent on marine 

ingredients that support maintenance, growth, reproduction, health and well-being of the 

animal, at a reduced cost, while providing food with a good nutritional value for humans. 
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Compared to terrestrial animals, aquaculture feeds possess a wide range of 

nutritional composition where ideal values in nutrients vary among the different species 

and life stages, and according to other factors such as production and environmental 

constrains, markets or manufacture’s preferences and economic climate (Bureau 2006). 

Marine fish, due to developing in an aquatic environment where carbohydrates sources 

are scarce, have a digestive and metabolic system better adapted to use protein and 

lipids as energy source (Lovell 1998), which is required for life-sustaining processes, 

such as maintenance, movement, and tissue synthesis. Currently, commercial feeds for 

marine carnivorous fish contain between 40-50% protein and 12-26% lipids (Cerdá 

2012). Fish also seem to use protein more efficiently than terrestrial animals, due to a 

more effective nitrogen excretion through the gills that requires much less energy than 

excretion as urea or uric acid (Lovell 1998). Fish, like other animals, do not have a true 

protein requirement but have a requirement for a well-balanced mixture of essential 

(EAA) and non-essential amino acids (NEAA). Amino acids are the structural 

components of proteins and are used, among other functions, to synthesize new protein 

and new muscle and a balanced amino acid profile is essential for fish growth and 

wellbeing (NRC 2011). 

Dietary incorporation of lipids and carbohydrates is important to promote dietary 

protein sparing, so that protein is solemnly used for muscle growth instead of energetic 

purposes, as protein is considered to be most expensive component in a feed (Forster 

and Dominy 2006). It is important to note that the metabolic capacity to use either of 

these non-protein energetic components differs among fish species and feeding habits 

and environments, being necessary knowledge on the species’ specific ability of its 

utilization. 

Also, feeding is considered to be one of the main factors that can significantly 

modulate the gut microbial community in farmed fish (Estruch et al. 2015). The 

gastrointestinal tract (GIT) is a complex system not only involved in digestion and nutrient 

absorption but also in the animal’s immune response and disease resistance (Cerezuela 

et al. 2012), which are largely influenced by the GIT microbiota (Silva et al. 2011). 

Bacteria are the most commonly found microorganisms in the GIT of fish (Rawls et al. 

2004; Nayak 2010) with colonization beginning in the larval stages and consequent 

establishment, composition, and diversity being modulated through the rest of the fish’s 

life cycle by many endogenous and exogenous factors including habitat, 

environmental/culture conditions, age and diet (Nayak 2010; Tapia-Paniagua et al. 

2010). Therefore, it is important to study how dietary manipulations can modulate the 

diversity and composition of the GIT microbiota and its relationship with the host. This 
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information might be used as a strategy to improve nutrition but also as a way to prevent 

diseases (Navarrete et al. 2009) since a disruption in this delicate balance may lead to 

alterations in immune regulatory response, increasing disease susceptibility or reducing 

functionality (Perez et al. 2010; Dimitroglou et al. 2011; Tapia-Paniagua et al. 2011). 

Up to this point, little is known about the diversity and functional role of gilthead 

seabream GIT microbial communities (Kormas et al. 2014). Most of the studies 

performed so far on several fish species are based on culture dependent methods which 

are laborious and time consuming (Tapia-Paniagua et al. 2010), and do not allow a true 

evaluation of the microbiota diversity and composition, as many bacteria species are 

unculturable (Navarrete et al. 2009; Feng et al. 2010). The devolvement of molecular 

culture-independent approaches, such as PCR-DGGE (Polymerase Chain Reaction - 

Denaturing Gradient Gel Electrophoresis), has allowed a more complete and rapid 

assessment of the composition, diversity and functional relationships of the microbiota 

in fish GIT (Clements et al. 2014). PCR-DGGE is based on the amplification of equally 

sized PCR products of a hypervariable region of a highly conserved bacterial gene (V3-

region of the 16S rRNA gene), which are then separated by electrophoresis on a 

denaturing gradient gel, based on their differential denaturation profile, i.e. their 

differential polymorphisms (Ercolini 2004). These DNA fragments can then be further 

analyzed, through sequencing of the excised gel bands and subsequent identification 

(Hovda et al. 2007).  

 

Ingredients for aquafeeds: current situation 

In order to formulate adequate feeds for farmed species, the industry has relied 

heavily on ingredients of marine origin such as fishmeal (FM) and fish oils. According to 

FAO (2012), fishmeal is “the crude flour obtained after milling and drying fish or fish parts, 

and it is produced from whole fish, remains or other fish by-products resulting from 

processing” and it is the preferred ingredient as it can support rapid fish growth and feed 

conversion, constituting the major dietary protein source in commercial aquafeeds for 

marine species (Gao et al. 2013). It has a high protein content, high nutrient digestibility 

and palatability, balanced amino acid profile, lack of anti-nutritional factors and it is 

generally widely available (Forster and Dominy 2006; Gatlin et al. 2007). It is also a highly 

tradable product, and its production can be an important source of revenue for some 

countries (FAO 2014). 

Although in 2012, 35% of the worlds’ FM was produced from fish waste, a 

significant proportion derives from capture fisheries of small pelagic fish, such as 
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anchoveta, sardines, herring and mackerel (FAO 2014; Sun et al. 2014). As the main 

producing countries, responsible for 2/3 of the trade, Peru and Chile, are affected by 

natural phenomena, such as El Niño, the catches of these species are bound to fluctuate, 

affecting supply and prices of FM (Hardy 2000). In fact, over the last decade, the prices 

of this commodity have significantly risen associated with the increasing demand and 

scarcity, both for terrestrial and aquatic production, going from a little over 500 US$/ton 

in 2003 to almost 2000 US$/ton in 2013 (FAO 2014). Due to this, there has been general 

concern about future supply of FM and its sustainable use in feeds as the aquaculture 

sector remains the largest consumer, currently using 60% of total production 

(Karapanagiotidis 2014). At current inclusion rates, annual FM production is not enough 

to support the predicted growth of intensive rearing systems. Also there is a perceived 

inefficiency in catching fish, processing it into FM and then fed it back to fish (Yu 2004). 

Taking everything into account, it is, therefore, necessary to improve feeding strategies 

as an industry that is dependent on FM is vulnerable to collapse through the loss of profit 

margins (Read and Fernandes 2003). 

In Mediterranean intensive aquaculture, feeding and diet formulation can account 

for as much as 45% of the overall production costs (Williams et al. 2003). FM supplies 

the largest portion of dietary protein for carnivorous fish in aquaculture (Kokou et al. 

2012) and for some farmed species, inclusion levels are still around 50% (Glencross et 

al. 2007). In fact, intensive production of European sea bass and gilthead seabream still 

requires continuous supply of high quality marine products (Karapanagiotidis 2014) and, 

particularly for gilthead seabream production, feeding costs can go as high as 49% of 

total production costs (Merinero et al. 2005).  

One way to increase profitability and reduce the environmental impact of FM is 

through the optimization of the nutrient levels in diets (Williams et al. 2003), for example, 

by achieving an optimal protein/energy ratio (García-Gallego et al. 1998), or by 

strategically replace FM with other less expensive protein sources (Martínez-Llorens et 

al. 2008). Research is ongoing to find the best sustainable replacements for FM, without 

compromising growth, quality and welfare of farmed fish while still ensure the best 

economic returns. 

Throughout the years, there has been a great number of potential ingredients 

evaluated to be included in feeds for farmed species. According to Gatlin et al. (2007), a 

suitable replacer for FM must be widely available at a competitive price, easy to handle, 

ship, store and incorporate in fish diets. In terms of nutritive value, it must be low in fiber 

and carbohydrates, high in protein, with a balanced amino acid profile, as well as be 

highly digestible and palatable. Many of these ingredients are more complex than FM 
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and require thorough evaluation in order to determine their nutritional value, appropriate 

incorporation levels and nutritional limitations, and its practicality to include in commercial 

feed formulation (Glencross et al. 2007). Due to the high protein requirements of 

carnivorous marine species, such as gilthead seabream, the number of potential 

alternatives is restricted to ingredients with high protein content and digestibility (Yiğit et 

al. 2012). 

 

Plant protein sources in gilthead seabream 

Due to its wide availability, competitive price and relatively constant nutritional 

composition (Pereira and Oliva-Teles 2002), plant protein sources have been the subject 

of study for a great variety of farmed species. Because gilthead seabream is an 

economically important species in Mediterranean aquaculture (Kokou et al. 2012), there 

has been substantial effort to evaluate plant protein ingredients for FM replacement. 

Some of the studied plant ingredients include soybean meal (Robaina et al. 1995; Kissil 

et al. 2000; Kissil and Lupatsch 2004; Martínez-Llorens et al. 2007; Kokou et al. 2012), 

corn gluten meal (Robaina et al. 1997; Kissil and Lupatsch 2004; Yiğit et al. 2012), 

hazelnut meal (Emre et al. 2008), lupin seed meal (Robaina et al. 1995; Pereira and 

Oliva-Teles 2004), wheat gluten (Kissil and Lupatsch 2004), pea protein concentrate 

(Sánchez-Lozano et al. 2010), pea seed meal (Pereira and Oliva-Teles 2002), carob 

seed germ meal (Martínez-Llorens et al. 2012), rapeseed protein concentrate (Kissil et 

al. 2000), as well as mixtures of several plant ingredients (Venou et al. 2003; Kissil and 

Lupatsch 2004). 

Despite its potential, plant protein sources have only seldom been able to fully 

replace FM (Pereira and Oliva-Teles 2002), or even being used at high levels in feeds 

as fish performance has been inversely related to the inclusion levels of test ingredients 

(Pereira and Oliva-Teles 2003). This trend also follows for most carnivorous fish species 

(Gómez-Requeni et al. 2004; Karapanagiotidis 2014).  

Overall, when using plant protein sources individually, FM can be replaced up to 

60% for Sparidae fish, while with mixtures, substitution levels can go up to 75% but with 

major negative effects on fish’s health (Oliva-Teles et al. 2011). The high content of 

carbohydrates present in plants protein sources limits its use as most fish species, in 

particular carnivorous, cannot use them effectively as energy source (Li et al. 2010). 

Enes et al. (2011) suggested that diets for gilthead seabream juveniles should not 

include more than 20% digestible carbohydrates, as higher dietary inclusions may 

depress growth and feed utilization. Furthermore, the presence on anti-nutritional factors 
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in many plant sources has negative physiological effects, by damaging the 

gastrointestinal tract and reducing nutrient digestibility, growth performance, and 

increasing disease susceptibility (Baeza-Ariño et al. 2014). Also, some plant protein 

sources appear to be limited in some EAA, such as lysine, methionine and tryptophan 

(NRC 1993; Martínez-Llorens et al. 2012) that can restrain growth and protein accretion 

(Kissil et al. 2000). However, this limitation can be overcome by using a mixture of 

complementary protein sources (Pereira and Oliva-Teles 2004) or by dietary 

supplementation with crystalized amino acids, making the feed more complex and, 

sometimes, more expensive.  

The aquaculture industry also competes in the international market for the use of 

these plant ingredients along with the animal husbandry sector, biofuel production and 

direct use for human consumption (Karapanagiotidis 2014). Additionally, sustainability 

issues arise where there is growing pressure to develop environmentally friendly 

aquafeeds as some of the most used plant sources are produced in tropical countries, 

causing destruction of the rainforest for soy production in South America or the native 

forest in south-east Asia for palm (Karapanagiotidis 2014). 

 

Animal by-products protein sources 

Animal by-products, also called processed animal proteins (PAP) or rendered 

animals ingredients, have received great attention worldwide as they appear to be more 

practical and cost-effective alternative to FM for aquaculture feeds (Booth et al. 2012). 

These products are usually the result of processed slaughterhouses leftovers and 

in the EU, around 17 MT of these by-products are produced annually, corresponding to 

3 million metric tons of protein (Woodgate and Veen 2004). Depending on the raw 

materials used to manufacture these ingredients, they can have various designations 

such as meat meal (MM), meat and bone meal (MBM), poultry by-product meal (PBM), 

feather meal (FeM), blood meal (BM) and even milk-byproducts and gelatin (Hardy and 

Barrows 2002). MM or MBM are widely used animal by-products, derived from 

slaughtered farmed livestock (cattle, swine, sheep, and/or poultry) (FAO 2011), and 

typically possess high protein content (50-85%) with a relatively good amino acid profile, 

(Wilson 2002), moderate fat level (7-15%), high ash content (10 to 40%), high 

digestibility, low carbohydrate content, and lack anti-nutritional factors (Hu et al. 2013). 

Meat meals are also a good source of calcium and trace minerals (Rossi and Davis 2014) 

and can be used as a source of phosphorous (P), even at low inclusion levels (Suloma 
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et al. 2013). It is a product produced worldwide with a steady availability, allowing a more 

flexible feed formulation and advantageous in countries where FM is not locally available.  

Nutritional quality of animal by-products are greatly influenced by the quality and 

specific combination of the raw materials as well as by the processing methods used to 

manufacture these products (Forster and Dominy 2006; Rossi and Davis 2014) which 

can result in an inconsistent and unpredictable final product, being more variable than 

between fish meals. Meat meals are typically produced by a dry-rendering process where 

the raw material is cooked by dry heat at 135-140ºC in a steam jacked cooker until all 

the moisture is evaporated, followed by fat removal by draining off and screw press and 

grinding. Variation in the proportion of bone and soft tissues used contribute to large 

variations in meal quality and their classification as MM (<55% protein and <4.4 P) or 

MBM (<55% protein and <4.4% P) (Bureau et al. 2000). 

Compared to FM, protein digestibility of meat meals is generally lower, up to 20% 

for meals with high ash and fat content, and may be low in some EAA such as lysine, 

methionine, phenylalanine, isoleucine and/or histidine (Millamena and Golez 2001; Hu 

et al. 2008a; Wang et al. 2008), mainly caused by heat-damaged protein due to 

excessive heat during processing (Allan et al. 2000). In fact, an unbalance of EAA 

content may lead to poor results when high substitution levels are applied (Tidwell et al. 

2005; Forster and Dominy 2006). 

Indigestible inorganic matter content, depending on the quantity of bone in the 

raw material, may also be a limiting factor when using MM and MBM as high content 

may impair digestibility, reducing nutrient and energy availability. Robaina et al. (1997) 

determined that ash levels in MBM exceeding 12.5% could lead to a decrease in protein 

digestibility in gilthead seabream.  

Animal by-products, particularly meat meals, usually possess high levels of 

saturated fatty acids (FA) and 18:2 n-6 polyunsaturated FA but are low in n-3 highly 

unsaturated FA (eicosapentaenoic, docosahexaenoic, and arachidonic acids) that are 

required by marine fish (Millamena 2002; Hu et al. 2013). Unbalances in saturated and 

unsaturated FA content can lead to body lipid accumulation and morphological 

alterations (Robaina et al. 1997) as well as contribute to reduced palatability of these 

diets for fish. Robaina et al. (1997) found that gilthead seabream fed increasing levels of 

MBM showed hepatocyte necrosis in the liver and a progressive decrease in lipid 

digestibility. 
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The use of animal by-products in aquaculture 

The use of animal by-products in aquafeeds is highly variable depending on the 

region. In the EU, its use was prohibited in 1990-2000, by the EU Commission Regulation 

(EC No. 999/2001) due to the arising of bovine spongiform encephalopathy (BSE) in 

ruminants in Western Europe in the 1980-1990’s. BSE is a disease caused by prion 

protein and is also linked to a human disease, Creutzfeldt-Jakob disease, believed to be 

transmitted from infected cows to humans (Friedland et al. 2009), including its PAP by-

products derived from infected ruminants. In 2013, however, this prohibition was lifted 

allowing the use of only PAPs derived from non-ruminant animals (Category 3, including 

poultry, feather meal, porcine and porcine blood meal, PAP) for feeding of aquaculture 

animals (EU Commission Regulation, EC No. 56/2013). This opened doors to a whole 

new range of ingredients that can be used in aquafeeds inside the EU.  

Up to this point limited work has been carried out towards the use of animal by-

products in gilthead seabream feeds. Table 1 summarizes all the literature found. 

 

Table 1: Studies performed to evaluate fishmeal replacement with different animal by-products 

ingredients in gilthead seabream. 

Animal by-

product1 
IBW (g)2 

Dietary protein 

content (%DM) 

Recommended 

substitution 

level (%DM) 

Reference 

MBMa 5 51.8 40 Davies et al. (1991) 

MBMb 5 49.2 36 
Alexis (1997) 

PMM 1.1 44.9 100 

MBMc 40 43.9 20 Robaina et al. (1997) 

PBM 1.55 44.0 75 Nengas et al. (1999) 

BMd 33/179 46.6 15 
Martínez-Llorens et al. 

(2008) 

1 MBM: Meat and bone meal; MBMa (46-59% CP; 9-12% CL; 25-33% Ash); MBMb (60% CP; 9% CL; 25% ash); MBMc 
(64% CP; 10.3% CL; 25.4% ash). PMM: Poultry meat meal; PBM: Poultry by-product meal; BMd: Blood meal (98.8% 
CP; 0.2% CL; 1.0% ash). 
2 IBW (g): Initial body weight 

Also, for other aquaculture fish species worldwide, research has demonstrated 

that these ingredients have potential to be included in aquafeeds. Table 2 summarizes 

the studies that have been performed using animal by-products ingredients as fishmeal 

replacement.   
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Objectives of this study 

The aim of this study is to evaluate the effects on growth performance, whole-

body composition, digestibility, nutrient and amino acid retention, and gut microbiota 

modulation in gilthead seabream fed diets formulated to replace 50 and 75% of fishmeal 

(FM) by meat and bone meal (MBM).
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Table 2: Studies performed with several farmed species using animal by-product ingredients for fishmeal replacement.  

Species 

Habitat/ 

Trophic 
level1 

IBW 
(g)2 

Animal by-product 

(% DM)3 

Diet protein 
content (%DM) 

Recommended 
FM substitution 
levels (% DM) 

Reference 

African catfish (Clarias 
gariepinus) 

FW 
3.8 ± 0.4 

93.1 PBM 25.3 100 
Goda et al. (2007) 

93.9 MBM 25.8 75  

Australian short-finned eel 
(Anguilla australis australis) 

FW 
4.3 ± 0.5 

2.23 MM 43.6 23 Engin and Carter (2005) 

Australian silver perch 
(Bidyanus bidyanus) 

FW 
3.0 ± 0.34 

12.2 MM 34 (DP4 basis) 52  Stone et al. (2000) 

Australian snapper (Pagrus 
auratus) 

Marine 
3.6 ± 0.2 

14.0 

MM 53.6 35 

Booth et al. (2012) PBM 80.8 36  

18% PBM + 15% BM + 5% MM 52.7 84  

Black sea bream 
(Acanthopagrus schlegelii) 

Marine 
3.2 ± 0.45 

7.90 Enzyme treated PBM 41.8 16 Gao et al. (2013) 

Bluegill (Lepomis macrochirus) 
FW 

3.2 ± 0.2 
22.0 38% MBM  44.0 100 Masagounder et al. (2014) 

Climbing perch (Anabas 
testudineus) 

FW 
3.0 ± 0.4 

0.53 18% MBM 40.2 67 Kader et al. (2011a) 

Cuneate drum (Nibea 
miichthioides) 

Marine 
4.0 ± 0.7 

28.0 
17% PBM + 9% MBM + 3% BM 42.8 80 

Guo et al. (2007) 17% PBM + 6% MBM + 3% BM 
+ 3% FeM 43.0 80 

Florida pompano (Trachinotus 
carolinus) 

Marine 
3.5 ± 0.6 

2.99 10% MBM  37.1 67 
Rossi and Davis (2014) 

5.87 14% MBM + 0.6% Tau 39 100 

Gibel carp (Carassius auratus 
gibelio) 

FW 
2.5 ± 0.0 

15.3 8%  PBM + 2% BM + 4% MBM 37.9 67 Hu et al. (2008a) 

13.5 12% PBM + 6% MBM + Lys 
and Met 37.9 67 Hu et al. (2008b) 

4.88 PBM 37.9 67  Yang et al. (2006) 
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Grouper (Epinephelus 
coioides) 

Marine 
4.0 ± 0.0 

6.10 32% MM + 8% BM 45.4 80 Millamena (2002) 

Hybrid striped bass (Morone 
chrysops x M. saxatili) FW / - 

15.0 
29% MBM 38.4 100 

 
Webster et al. (1999) 

28% PBM 40.5 100  

55.0 MBM 41.0 83 Bharadwaj et al. (2002) 

35.0 Feed grade PBM + Met 47.3 100 Rawles et al. (2011) 

Japanese flounder 
(Paralichthys olivaceus) 

Marine 
3.7 ± 0.62 

4.30 MBM 48.4 20 Kikuchi et al. (1997) 

5.55 
MBM 45.8 >40 

Wei et al. (2006) 
Pet grade PBM 45.4 80 

Japanese seabass 
(Lateolabrax japonicus) 

Marine 
3.4 ± 0.43 

76.3 40% PBM + 35% MBM + 20% 
BM + 5% FeM 43.4 19 Hu et al. (2013) 

Large yellow croaker 
(Pseudosciaena crocea) 

Marine 
3.7 ± 0.56 

1.88 MBM 43.1 45 Ai et al. (2006) 

Largemouth bass (Micropterus 
salmoides) 

FW 
3.8 ± 0.4 

3.10 
MBM 43.05 <50  

Tidwell et al. (2005) 
PBM 47.04 100 

23.3 MBM / PBM 43.2 / 43.1 30 Li et al. (2010) 

Malabar grouper (Epinephelus 
malabaricus) 

Marine 
4.2 ± 0.61 

50.2 PBM / MBM / FeM 52.8 / 53.4 / 53.7 25 Li et al. (2009) 

Nile tilapia (Oreochromis 
niloticus) 

FW 
2.0 ± 0.0 

11.7 BM + MBM + FeM 41.4 100 Rodríguez-Serna et al. (1996) 

12.5 
MBM 30.0 100 

El-Sayed (1998) 
PBM 30.0 100 

Olive flounder (Paralichthys 
olivaceus) 

Marine 
3.7 ± 0.62 

14.5 MBM 52.6 20 Lee et al. (2012) 

Rainbow trout (Oncorhynchus 
mykiss) 

FW 
4.1 ± 0.3 

6.50 MBM 47.4-48.4 32 
Bureau et al. (2000) 

11.0 FeM 55.0-56.7 30 

0.96 
MBM + Leather meal + Squid 
liver powder + FeM + MBM + 
PBM 

45.1 20 (or 28% FM 
protein) Lee et al. (2001) 
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Rainbow trout (Oncorhynchus 
mykiss) 

1.93 7% BM + 7% MBM + 7% PBM 
+ 7% FeM 46.8 75 Yanik et al. (2003) 

16.8 PBM 50.4 29 

El-Haroun et al. (2009) 16.8 BM 48.4 13 

35.0 FeM + MBM / FeM + PBM / 
MBM + PBM 50.3 – 52.2 50 

Red drum (Sciaenops 
ocellatus) 

Marine 
3.7 ± 0.57 

2.30 Flash-dried PBM / Enzyme-
digested PBM 44.0 >67 Kureshy et al. (2000) 

Sea bass (Dicentrarchus 
labrax) Marine / 110 10% MBM + 4% BM 46.1 69 Altan et al. (2010) 

Silver perch (Bidyanus 
bidyanus) 

FW 
3.0 ± 0.34 

12.1 6% MM + 9% Provine©5 + BM 34.0 52 Hunter et al. (2000) 

Spotted rose snapper 
(Lutjanus guttatus) 

Marine 
4.0 ± 0.2 

11.0 High quality PBM 52.0 90 Hernández et al. (2014) 

Sutchi catfish (Pangasius 
hypophthalmus) 

FW 
3.1 ± 0.46 

4.80 MBM 28.7 67 Kader et al. (2011b) 

1 Source: http://www.fishbase.org. FW: freshwater 
2 IBW (g): Initial body weight 
3 BM: Blood meal; MBM: Meat and bone meal; MM: Meat meal; PBM: Poultry by-product meal; FeM: Feather meal; 
4 DP: digestible protein 
5 Commercial high protein meat meal
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Materials and methods 
Diet composition 

Three experimental diets were formulated to be isoproteic (45% crude protein) 

and isolipidic (20% crude lipid). A control diet (FM100), containing FM as the main protein 

source, was formulated. Two other diets were formulated to replace FM by increasing 

levels by the experimental ingredient, meat and bone meal, at 50% (MBM50) and 75% 

(MBM75) in the diets (dry matter basis). Diets were prepared using a cooking extrusion 

processing with a semi-industrial twin-screw extruder (CLEXTRAL BC-45; Firmity, St. 

Etienne, France). The processing conditions were as follows: 100 rpm speed screw, 110 

ºC temperature, and 40-50 atm pressure to form 2 to 3 mm diameter pellets. Ingredients 

and chemical composition of experimental diets are presented in Table 3. Amino acid 

composition of the experimental diets is presented in Table 4.  

 

Table 3: Composition and proximate analysis of the experimental diets. 

 Diets 

 FM100 MBM50 MBM75 

Ingredients (g kg-1 DM) 

Fish meal1 574 287 143 

Wheat meal2 263 176 132 

Meat and bone meal3 - 409 615 

Soy oil 94 33 3 

Fish oil 49 74 87 

Vitamin and minerals mix4 20 20 20 

Proximate analysis (% DM) 

Dry matter (DM, %) 90.0 91.9 91.5 

Crude Protein (CP) 44.0 43.8 45.3 

Crude Lipid (CL) 21.4 19.0 20.6 

Crude Fiber (CF) 2.20 1.84 1.66 

Ash 10.3 18.8 20.1 

Energy (kJ g-1) 20.3 18.8 19.8 

NFE (%)5 22.1 16.6 12.3 
1 Fish meal (93.2% DM, 70.7% CP, 8.9% CL, 15.1% Ash, 19.7 kJ-1 Energy);  
2 Wheat meal (92.4% DM, 17.1% CP, 2.4% CL, 78.3% CHO, 2.4% Ash);  
3 Meat and bone meal (97.0% DM, 53.1% CP, 15.3% CL, 4.7% CHO, 26.9% Ash, 17.69 kJ-1 Energy); VALGRA 
S.A., Beniparrell, Valencia, Spain 
4 Vitamin and mineral mix (g kg−1): Premix: 25; Choline, 10; DL-a-tocopherol, 5; ascorbic acid, 5; (PO4)2Ca3, 
5. Premix composition: retinol acetate, 1000000 IU kg−1; calcipherol, 500 IU kg−1; DL-a-tocopherol, 10; 
menadione sodium bisulphite, 0.8; thiamine hydrochloride, 2.3; riboflavin, 2.3; pyridoxine hydrochloride, 15; 
cyanocobalamine, 25; nicotinamide, 15; pantothenic acid, 6; folic acid, 0.65; biotin, 0.07; ascorbic acid, 75; 
inositol, 15; betaine, 100; polypeptides 12.  
5 Nitrogen-free extract, NFE (%) = 100-%CP-%CL-%CF-%Ash 
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Table 4: Amino acid composition (g 16 g-1 N) of the experimental diets and EAA requirement of 

gilthead seabream (g 16 g-1N; Peres and Oliva-Teles 2009). 

 
FM100 MBM50 MBM75 Requirement1 

Essential amino acids 

Arg 6.75 7.17 7.21 5.55 

His 2.73 1.78 1.90 1.89 

Ile 4.26 3.01 2.98 2.55 

Leu 7.61 5.70 5.96 4.75 

Lys 6.94 5.53 5.35 5.13 

Met 2.83 2.30 2.21 2.60 

Phe  

(Phe + Tyr) 

4.20 

(7.10) 

3.14 

(5.24) 

3.17 

(5.29) 

-                 

(5.76) 

Thr 4.18 2.99 3.44 2.98 

Val 5.37 4.13 4.49 3.21 

Non-essential amino acids 

Ala 5.67 5.45 6.78  

Asp 8.45 6.68 7.57  

Cys 0.68 0.64 0.75  

Glu 14.1 12.1 13.9  

Gly 5.91 8.38 11.7  

Pro 4.03 4.85 6.20  

Ser 3.77 3.14 3.77  

Tyr 2.90 2.11 2.12  

1 Determined by Peres and Oliva-Teles (2009). 

Arg: arginine; His: histidine; Ile: isoleucine; Leu: leucine; Lys: lysine; Met: methionine; Phe: phenylalanine; 
Thr: threonine; Val: valine; Ala: alanine; Asp: aspartate; Cys: cysteine; Glu: glutamate; Gly: glycine; Pro: 
proline; Ser: serine; Tyr: tyrosine.   

 
Growth trial 

Gilthead seabream juveniles were provided by a local fish farm (Piscimar, S.L., 

Castellón, Spain) and transported alive to the Fish Nutrition Laboratory of the Polytechnic 

University of Valencia. Prior to the growth trial, all fish were acclimatized to the indoor 

rearing conditions for 2 weeks while fed a standard seabream diet (48% CP; 23% CL; 

11% Ash; 2.2% CF; 14% NFE). After the adaptation period, 405 gilthead seabream 

juveniles, with an initial body weight of 25 ± 0.72 g, were randomly distributed into 9 

cylindrical fiberglass tanks (1.750 L) in a recirculation seawater system (65 m3 capacity) 

with a rotary mechanical filter and a gravity biofilter (approximately 6 m3). 

Diets were randomly assigned to triplicate groups and fish were hand fed to 

apparent visual satiation, two times a day, six days a week, for a total of 83 days. Feed 
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consumption was recorded daily and water parameters (temperature, salinity, dissolved 

oxygen and pH) were measured weekly. All tanks were equipped with aeration. The 

water was heated by a heat pump installed in the system. Photoperiod was natural and 

all tanks had similar light conditions. During the growth trial, water temperature averaged 

22.5 ± 1.3 °C, salinity 35.7 ± 0.8 ‰, dissolved oxygen 6.7 ± 0.4 mg L−1 and pH ranged 

from 6.5 to 7.5.  

 

Fish sampling 

Individual weighing occurred under anesthesia (30 mg L−1 of clove oil 

(Guinama®, Valencia, Spain) containing 87% of eugenol) every 4 weeks. At the end of 

the trial (83 days), 5 fish per tank were sacrificed by a lethal bath of clove oil, pooled and 

stored at -32 ºC and biometric parameters recorded. For initial whole-body composition 

analyses, 5 fish were randomly sampled, pooled and stored at -32 °C, prior the beginning 

of the growth trial. 

 

Sampling for GIT microbiota analyses    

Fish were fed 10 to 12 hours before sampling (to allow food to be in the intestine) 

and then 2 hours before (to allow food to be in the stomach). All the following procedures 

were performed under aseptic conditions. Six fish per dietary treatment were 

anesthetized using clove oil dissolved in water (1 mg 100 mL-1 of water), in order to 

minimize suffering, and then sacrificed by decapitation. The abdominal cavity was 

opened and four different sections were considered: stomach (STO), anterior (AI), middle 

(MI) and posterior intestine (PI). The GIT content was obtained by scrapping the 

gastric/intestinal mucosa with a spatula, whereby samples include the luminal and the 

mucosa-associated microbiota. Thus, a total of four gastrointestinal content samples 

were obtained per fish, placed in Eppendorff tubes and immediately frozen in liquid 

nitrogen. Later, they were stored at -80°C until DNA extraction.  

 

Digestibility trial  

At the end of the growth trial, the remaining fish were transferred to the 

digestibility system and adapted for one month. The digestibility system consisted in a 

thermo-regulated recirculating seawater system equipped with a battery of 9 fiberglass 

tanks of 55 L capacity, designed according to the Guelph System (Cho et al. 1982). At 

the beginning of the digestibility trial, 9 homogeneous groups of 5 fish were randomly 
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distributed to each tank. To estimate apparent digestibility coefficient, celite was added 

as an inert digestibility marker, at 10 g kg-1, to the same diets used previously in the 

growth trial. Each diet was assigned to triplicate group and fish were hand fed in excess. 

After an adaptation period of 5 days to the experimental system, fecal collection was 

performed by stripping until a significant amount of sample was collected and fecal 

samples were placed to dry at 60 ºC for 48h prior to analyses. Apparent digestibility 

coefficients (ADC) of dry matter, energy, protein and amino acids were determined with 

the following formula:  

ACD (%) = 100 x [1 – (marker in diet/marker in feces) x (Y in feces/Y in diet)], where Y 

is the nutrient or energy content. 

 

Chemical analyses 

Chemical analyses of the dietary ingredients were performed prior to diet 

formulation. Diets, ingredients, feces, as well as whole fish were analyzed according to 

AOAC (1990) procedures: dry matter (105 °C to constant weight), ash (incinerated at 

550 °C for 5h), crude protein (N x 6.25) by the Kjeldahl method after an acid digestion 

(Kjeltec 2300 Auto Analyzer, Tecator Höganas, Marineeden), crude lipid extracted with 

methyl-ether (ANKOMXT10 Extractor), crude fiber by acid and basic digestion (Fibertec 

System M., 1020 Hot Extractor, Tecator), and acid insoluble ash (ADC marker) following 

the method described by (Atkinson et al. 1984). Energy was calculated according to 

Brouwer (1965), from the C (g) and N (g) balance (GE = 51.8 x C – 19.4 x N). Carbon 

and nitrogen were analyzed by the Dumas principle (TruSpec CN; Leco Corporation, St. 

Joseph, MI, USA). All analyses were performed in triplicate. 

 

Amino acid determination  

Total amino acid composition of ingredients, diets, feces and carcass was 

determined by a Waters HPLC system (Waters 474, Waters, Milford, MA, USA) 

consisting of two pumps (Model 515, Waters), an auto sampler (Model 717, Waters), a 

fluorescence detector (Model 474, Waters) and a temperature control module. The 

amount of sample used was calculated to contain approximately 25 mg of crude protein 

that was hydrolyzed with 50 mL of 6 N HCl with 0.5% phenol at 115 ºC for 24 h. 

Aminobutyric acid was added as an internal standard before hydrolyze. Amino acids 

were derivatized with AQC (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate). 

Methionine and cysteine were determined separately as methionine sulphone and 
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cysteic acid after oxidation with performic acid. Amino acids were separated by HPLC 

with a C-18 reverse-phase column Waters Acc. Tag (150 mm x 3.9 mm). 

 

PCR-DGGE (Polymerase Chain Reaction - Denaturing Gradient Gel 

Electrophoresis) 

DNA extraction from GIT samples  

DNA extraction from GIT samples, from a pool of 2 fish per tank to reduce 

variation, was performed according to Pitcher et al. (1989) with some modifications. 

Briefly, approximately 300 mg of each sample were resuspended in 1 mL of TE buffer 

(10 mM Tris, 1 mM EDTA, pH 8) vigorously mixed and pelleted by centrifugation at 13000 

g for 5 min. After 2 washes with 1 mL TE, cell pellet was resuspended in 200 µL of TE 

containing 50 mg/mL of lysozyme and incubated for 30 min at 37 ºC. A second 30 min 

incubation at 37ºC was performed with the addition of 10mg/mL RNAse, followed by a 

30 min incubation at 55ºC with 20 mg/mL Proteinase K and 10% SDS. After 10 min on 

ice in the presence of 500 µL of GES (Pitcher et al. 1989) and 250 µL of ammonium 

acetate (7.5 M), a phenol-chloroform extraction was performed by adding 500 µL phenol-

chloroform-isoamyl alcohol (25:24:1). The aqueous phase was re-extracted with 500 µl 

of chloroform-isoamyl alcohol (24:1) and the DNA of the subsequent aqueous phase was 

precipitated with 0.6 volumes of isopropanol. After 10 min centrifugation at 13000 g, the 

DNA pellet was washed with ice-cold 70 % ethanol and dried at room temperature. DNA 

was resuspended in 50 µL ultrapure water.  

 

Polymorphism analyses of 16S rRNA genes by denaturing gradient gel 

electrophoresis (DGGE)  

Bacterial 16S rRNA gene fragments were amplified by a touchdown PCR on a 

T100TM Thermal Cycler (Bio-Rad), using primers 16S-358F (which has a GC clamp at 

the 5’ end) and 16S-517R (Muyzer et al. 1993), yielding a 233bp DNA fragment. PCR 

mixtures (50 µL) contained 24.75 µL of water (Sigma), 10 µL of GoTaq Buffer 5X 

(PROMEGA), 5 µL of each dNTPs (2 mM, PROMEGA), 2.5 µL of each primer (10 µM 

Forward and Reverse), 0.25 µL of GoTaq polymerase (PROMEGA), and 5 µL of DNA 

template were subjected to a touchdown PCR. A 94ºC incubation for 5 min was followed                 

by 10 cycles of 64ºC, 1 min, 65ºC, 1 min and 72ºC, 3 min. The annealing temperature 

was decreased at every cycle 1ºC, until reaching 55ºC. Thus, final 20 cycles of 94ºC for 

1 min, 55ºC for 1 min and 72ºC for 3 min. Final extension was at 72ºC, 10 min. PCR 
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products were resolved by electrophoresis on 1 % (w/v) agarose gels containing Gel Red 

(Biotium) to check for product size. 300 ng of each PCR product were loaded on an 8% 

polyacrylamide gel composed by a denaturing gradient of 40 to 80% 7M 

urea/40%formamide. Electrophoresis occurred on a DCode™ universal mutation 

detection system (Bio-Rad), during 16h at 60°C, 65V in 1×TAE buffer. Gels were stained 

for 1 hour with SYBR-Gold Nucleic Acid Gel Stain, and imaged on a Gel Doc EZ System 

(Bio-Rad) with the Image Lab software v4.0.1 (Bio-Rad).  Selected bands were excised 

from the gel and eluted in 20 µl ultrapure water prior to DNA re-amplification using the 

same oligonucleotide primers as above, but without the GC clamp. Amplicons were 

sequenced to identify microbiota OTUs (Operational Taxonomic Units). Phylogenetic 

analysis, to identify the closest known species, was done by comparison with sequences 

in the GenBank non-redundant nucleotide database using BLAST 

(http://www.ncbi.nlm.nih.gov). Only sequences higher than 100 bp reads and 80–100% 

query coverage were considered a valid identification. 

 

Data and statistical analyses 

Before analysis, all data obtained was checked for normality (Kolmogorov–

Smirnov test) and homogeneity of variances (Levene’s test). If necessary, variables were 

normalized by log transformation or arcsin square root transformation, for data 

expressed as decimal fractions or percentage, respectively. DGGE banding patterns 

were transformed into presence/absence matrices and band intensities measured using 

Quantity One 1-D Analysis Software v4.6.9 (Bio-Rad Laboratories, Lda. Amadora, 

Portugal). Relative similarities between dietary treatments and replicates were calculated 

using Primer software v7.0.5 (PRIMER-E Ltd, Ivybridge, UK). Similarity percentages 

(SIMPER) were used to represent the relative similarities between treatments. Species 

richness was assessed using Margalef’s measure of richness, and species diversity was 

assessed by the Shannon–Weaver index. Clustering of DGGE patterns was achieved 

by construction of dendrograms using the Unweighted Pair Groups Method with 

Arithmetic Averages (UPGMA).  

Statistical analysis of data was done by one-way analysis of variance (ANOVA). 

Newman–Keuls test was used to assess significant differences among diets at 0.05 

significant levels (Stat graphics, Statistical Graphics System, Version plus 5.1, Herndon, 

VA, USA). DGGE parameters were subjected to a two-way ANOVA, with section and 

diet as fixed factors. 
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Ethics statements 

The experimental protocol was reviewed and approved by the Committee of 

Ethics and Animal Welfare of the Universitat Politècnica de València (UPV), following the 

Spanish Royal Decree 53/2013 on the protection of animals used for scientific purposes 

(BOE 2013). 

 

Results 
Growth trial: performance and feed utilization efficiency 

At the end of the growth trial, survival rate was high (>95%) and unaffected by 

the experimental diets. Growth performance and feed utilization of fish fed the 

experimental diets are presented in Table 5. Diet MBM50 showed similar results to the 

control diet with no significant differences in terms of final body weight, weight gain, daily 

growth index, feed conversion ratio and protein efficiency ratio. However, increasing the 

inclusion rate of MBM to 75%, growth performance and feed utilization were significantly 

reduced. Feed intake was significantly higher for diet MBM75 when compared to the 

control diet but not statistically different from MBM50. 

Table 5: Growth performance and feed utilization efficiency of gilthead seabream fed the 

experimental diets1. 

 FM100 MBM50 MBM75 SEM 

Initial Body Weight (g) 24.3 23.8 24.3 0.3 

Final Body Weight (g) 121.4a 121.7a 108.2b 2.4 

Weight Gain (%)2 399.4a 412.4a 346.1b 12.5 

Daily growth index3 2.48a 2.51a 2.25b 0.05 

Feed intake (g kg ABW -1day-1)4 24.2b 24.6ab 26.1a 0.4 

Feed conversion ratio5 1.51b 1.53b 1.72a 0.04 

Protein efficiency ratio6 1.51a 1.50a 1.29b 0.04 

Survival Rate (%) 100 94.8 99.3 1.5 
1 Means in the same row with different superscript letters are significantly different (p<0.05). SEM: pooled 
standard error of the mean. 
Average body weight (ABW):  initial body weight (IBW) + final body weight (FBW)/2. 
2 Weight gain, % = [(Final weight – Initial weight) / Initial weight] x 100 
3 DGI = [(Final weight1/3 – Initial weight1/3) / days] x 100 
4FI = Total dry feed intake / Average body weight / days 
5 FCR = Dry feed intake (g) / Weight gain (g) 
6PER = weight gain / crude protein intake 



FCUP 
Potential use of meat and bone meal in diets for gilthead seabream 

(Sparus aurata) juveniles 

31 

 
 

Digestibility trial: ADC (%) of diets and amino acids 

The apparent digestibility coefficients (ADC) of diets and amino acids were 

evaluated (Table 6). ADC of dry matter, crude protein and energy were the highest for 

diet MBM50, averaging 89, 97 and 95%, respectively. ADC of crude protein was not 

statistically affected by the experimental diets while ADC of dry matter was significantly 

lower for both MBM75 (68%) and the control (75%) diets. ADC of energy was lower for 

fish fed diet MBM75 (87%) but not significantly different from the control diet (82%). The 

ADCs of EAA were all high (>93%) but significantly lower for fish fed diet MBM75 when 

compared to diet MBM50, which were significantly higher. Digestible amino acid content 

of the experimental diets is presented in Table 7.  

Table 6: Apparent digestibility coefficients (ADC, %) of the experimental diets1. 

 FM100 MBM50 MBM75 SEM 

Dry matter 74.6b 86.9a 68.4b 3.3 

Crude Protein 95.7 96.7 88.6 1.9 

Energy 82.2b 95.2a 87.0ab 2.5 

Amino acids     
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Arg 95.7ab 96.7a 94.1b 0.5 

His 95.2b 97.8a 95.2b 0.6 

Ile 95.9ab 97.2a 94.0b 0.6 

Leu 95.9ab 97.0a 93.9b 0.6 

Lys 97.3ab 97.9a 95.4b 0.5 

Met 96.7a 96.6a 92.5b 0.9 

Phe 94.4a 97.0a 93.3b 0.7 

Thr 95.5ab 96.6a 93.6b 0.6 

Val 95.6ab 96.8a 93.8b 0.6 
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Ala 95.5 96.0 93.3 0.7 

Asp 92.0b 96.4a 93.0b 0.8 

Cys 91.1ab 92.6a 87.6b 0.6 

Glu 96.5a 96.7a 93.9b 0.7 

Gly 92.2 94.4 91.9 0.6 

Pro 95.9a 95.0ab 91.8b 0.8 

Ser 95.0ab 95.9a 92.9b 0.6 

Tyr 97.1a 97.2a 94.1b 0.7 
1 Means in the same row with different superscript letters are significantly different (p<0.05). 
SEM: pooled standard error of the mean 

ADC (%) = 100 -100 x [(marker in diet/marker in feces) x (AA in feces/AA in diet)] 
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Table 7: Digestible amino acids content (g 100 g-1 DM) of the experimental diets1. 

Diet  Essential amino acids Non-essential amino acids 

 Arg His Ile Leu Lys Met Phe Thr Val Ala Asp Cys Glu Gly Pro Ser Tyr 

FM100 2.84 1.15 1.80 3.12 2.97 1.20 1.78 1.75 2.26 2.38 3.42 0.27 6.01 2.40 1.70 1.58 1.24 

MBM50 4.80 0.80 1.35 2.56 2.50 1.02 1.41 1.33 1.85 2.42 2.97 0.27 5.39 3.66 2.13 1.39 0.95 

MBM75 3.41 0.84 1.30 2.60 2.37 0.95 1.37 1.50 1.96 2.94 3.27 0.30 6.07 4.99 2.65 1.63 0.93 

1 AA in the diet (g 100g-1) x ADC (%) of AA / 100 

 

Whole body composition and biometric parameters 

At the end of the growth trial, whole-body composition was unaffected by the 

dietary inclusion of MBM, with the exception of crude lipid and energy content, which 

were significantly lower for fish fed the diet MBM75 (Table 8). There were no significant 

differences in whole-body amino acid composition (g 100 g-1) and in the measured 

biometric parameters of gilthead seabream fed the different experimental diets.  

 

Nutrient and amino acid budget 

Nitrogen, lipid and energy balance of fish fed the experimental diets are 

presented in Table 9. Results show that the inclusion of MBM did not significantly affect 

nitrogen retention (% intake), while daily nitrogen intake was significantly higher for fish 

diet MBM75. Daily lipid and energy intake were significantly higher for diet MBM75 and 

lower for diet MBM50 but neither were significantly different from the control diet. Lipid 

retention (% intake) was significantly higher for fish fed diet MBM50 but lower for diet 

MBM75 than that of the control diet. Compared to the control diet, energy retention was 

significantly lower for fish fed the diet with the highest inclusion of MBM while with 

MBM50 it was not significantly different.  

Amino acid budget is presented in Table 10 and in Fig. 4, it is represented the 

efficiency of EAA retention (% intake) of fish fed the different experimental diets.  Results 

show no significant changes in EAA retention, daily or per percentage of intake, for the 

different experimental diets. 
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Table 8: Whole-body composition and biometric parameters of gilthead seabream fed the 

experimental diets1. 

 FM100 MBM50 MBM75 SEM 

Whole-body composition (% wet weight) 

Dry matter (%) 35.0 34.6 33.1 0.4 

Crude protein  16.1 15.9 15.9 0.2 

Crude lipid 16.1a 16.4a 14.5b 0.3 

Ash 2.10 1.91 2.01 0.1 

Energy (kJ g-1) 9.94a 9.68a 8.67b 0.23 

Essential amino acid (g 100g-1 wet weight) 

Arg 1.24 1.14 1.05 0.08 

His 0.34 0.32 0.28 0.11 

Ile 0.60 0.58 0.56 0.16 

Leu 1.08 1.04 0.99 0.22 

Lys 1.13 1.05 0.97 0.18 

Met 0.49 0.51 0.53 0.07 

Phe 0.55 0.52 0.51 0.13 

Thr 0.61 0.54 0.56 0.13 

Val 0.74 0.72 0.70 0.13 

Non-essential amino acids (g 100g-1 wet weight) 

Ala 0.92 0.84 0.87 0.21 

Asp 1.32 1.35 1.27 0.19 

Cys 0.10 0.11 0.12 0.02 

Glu 2.11 2.04 1.97 0.27 

Gly 1.11 0.91 1.00 0.81 

Pro 0.64 0.52 0.61 0.32 

Ser 0.57 0.55 0.53 0.09 

Tyr 0.44 0.38 0.39 0.10 

Biometric indices 

Condition factor (g cm-3)2 1.74 1.81 1.75 0.03 

Visceral index (%)3 8.57 8.53 9.31 0.22 

Hepatosomatic index (%)4 2.75 2.87 2.40 0.32 

Visceral fat index (%)5 1.23 1.17 1.22 0.13 
1 Means in the same row with different superscript letters are significantly different (p<0.05). SEM: 
pooled standard error of the mean.  
2 CF = [Wet weight (g) / Length3 (cm)] x 100 
3 VSI = [Visceral weight (g) / wet weight (g)] x 100 
4 HSI = [Liver weight (g) / wet weight (g)] x 100 
5 VFI= [Visceral fat (g) / wet weight (g)] x 100 
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Table 9: Nitrogen, lipid and energy budget of gilthead seabream fed the experimental diets1. 

 FM100 MBM50 MBM75 SEM 

Nitrogen     

Intake (g kg ABW-1 day-1) 1.71b 1.72b 1.89a 0.03 

Retention (g kg ABW-1 day-1) 0.43 0.42 0.40 0.01 

Retention (% intake) 25.0 24.5 21.3 0.8 

Lipid     

Intake (g kg ABW-1 day-1) 5.17a 4.68b 5.37a 0.11 

Retention (g kg ABW-1 day-1) 2.88a 2.94a 2.47b 0.08 

Retention (% intake) 55.8b 62.9a 46.0c 2.6 

Energy     

Intake (kJ kg ABW-1 day-1) 5.47a 5.03b 5.64a 0.10 

Retention (kJ kg ABW-1 day-1) 1.72a 1.67a 1.40b 0.06 

Retention (% intake) 31.5a 33.2a 24.9b 1.4 
1 Means in the same row with different superscript letters are significantly different (p<0.05). SEM: pooled 
standard error of the mean.  
Nutrient intake (g kg ABW-1 day-1) = [Nutrient intake (g DM) / 1000)] / (ABW (g) x number of days) 
Nutrient retention (g kg ABW-1 day-1) = [((FBW x final whole-body nutrient content) – (IBW x initial whole-body 
nutrient content) / 1000] / [ABW x number of days] 
Nutrient retention (% intake) = Nutrient retention / Nutrient intake x 100 
Average body weight (ABW): initial body weight (IBW) + final body weight (FBW) / 2. 

 
 

 

Fig. 4: Retention (%) of ingested essential amino acid in gilthead seabream fed the experimental diets. 

 

0

10

20

30

40
Arg

His

Ile

Leu

LysMet

Phe

Thr

Val

Essential amino acid retention (% intake)

FM100 MBM50 MBM75



FCUP 
Potential use of meat and bone meal in diets for gilthead seabream 

(Sparus aurata) juveniles 

35 

 
 

Table 10: Amino acid budget of gilthead seabream fed the experimental diets1. 

   FM100 MBM50 MBM75 SEM 
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Arg 
Int (mg kg-1 day-1) 719.5b 801.2a 857.3a 22.6 
Ret (mg kg-1 day-1) 205.2 187.9 158.1 13.2 
Ret (%Int) 28.7 23.6 18.5 2.3 

His 
Int (mg kg-1 day-1) 291.3a 209.7c 231.9b 12.6 
Ret (mg kg-1 day-1) 58.2 53.6 43.1 5.7 
Ret (%Int) 20.2 25.6 18.6 2.3 

Ile 
Int (mg kg-1 day-1) 453.9a 355.8b 364.1b 16.5 
Ret (mg kg-1 day-1) 96.6 94.4 84.6 5.4 
Ret (%Int) 21.5 26.7 23.3 1.51 

Leu 
Int (mg kg-1 day-1) 810.9a 673.1b 728.1b 22.2 
Ret (mg kg-1 day-1) 176.3 169.7 150.4 10.5 
Ret (%Int) 21.9 25.3 20.7 1.5 

Lys 
Int (mg kg-1 day-1) 739.6a 653.2b 652.4b 17.0 
Ret (mg kg-1 day-1) 186.6 170.4 145.2 15.0 
Ret (%Int) 25.5 26.1 22.3 2.1 

Met 
Int (mg kg-1 day-1) 301.4a 270.7b 269.7b 6.4 
Ret (mg kg-1 day-1) 84.0 88.8 88.5 2.1 
Ret (%Int) 27.9 33.0 32.9 1.2 

Phe 
Int (mg kg-1 day-1) 447.4a 370.2b 386.7b 12.8 
Ret (mg kg-1 day-1) 90.2 85.5 77.1 5.3 
Ret (%Int) 20.3 23.1 20.0 1.4 

Thr 
Int (mg kg-1 day-1) 444.3a 352.6b 420.0a 14.7 
Ret (mg kg-1 day-1) 99.4 86.0 86.3 6.3 
Ret (%Int) 22.5 24.9 20.6 1.7 

Val 
Int (mg kg-1 day-1) 572.7a 487.8b 547.5a 14.4 
Ret (mg kg-1 day-1) 121.6 116.9 106.7 6.6 
Ret (%Int) 21.4 23.7 19.5 1.4 

N
o

n
-e

s
s
e
n

ti
a
l 

a
m

in
o

 a
c
id

s
 

Ala 
Int (mg kg-1 day-1) 603.9b 643.7b 827.6a 35.6 
Ret (mg kg-1 day-1) 153.9 139.3 135.9 7.0 
Ret (%Int) 25.7a 21.7ab 16.4b 1.8 

Asp 
Int (mg kg-1 day-1) 900.4a 788.7b 924.1a 23.7 
Ret (mg kg-1 day-1) 216.2 221.3 192.2 12.4 
Ret (%Int) 24.2 28.1 20.9 1.8 

Cys 
Int (mg kg-1 day-1) 72.6b 75.0b 91.1a 3.1 
Ret (mg kg-1 day-1) 16.7 17.5 18.6 0.6 
Ret (%Int) 23.1 23.4 20.4 1.0 

Gly 
Int (mg kg-1 day-1) 629.6c 989.2b 1427.9a 116.3 
Ret (mg kg-1 day-1) 192.0 152.2 162.5 14.9 
Ret (%Int) 30.8a 15.4ab 11.4b 3.8 

Glu 
Int (mg kg-1 day-1) 1507.2b 1423.3b 1697.8a 45.3 
Ret (mg kg-1 day-1) 342.9 332.9 299.2 19.5 
Ret (%Int) 22.9 23.4 17.7 1.7 

Pro 
Int (mg kg-1 day-1) 429.6c 572.0b 757.0a 48.0 
Ret (mg kg-1 day-1) 110.2 86.5 98.3 5.3 
Ret (%Int) 25.8a 15.2b 13.0b 2.3 

Ser 
Int (mg kg-1 day-1) 402.1b 371.0b 460.2a 14.1 
Ret (mg kg-1 day-1) 92.4 88.4 79.7 6.9 
Ret (%Int) 23.2 23.9 17.3 2.1 

Tyr 
Int (mg kg-1 day-1) 309.3a 248.7b 258.9b 10.0 
Ret (mg kg-1 day-1) 69.2 59.0 56.6 3.9 
Ret (% Int) 22.5 23.5 21.9 1.4 

1 Means in the same row with different superscript letters are significantly different (p<0.05). SEM: pooled 
standard error of the mean; Int: intake; Ret: retention. 
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Modulation of gilthead seabream gut microbiota 

The microbial community profiling of the stomach (STO) and intestinal samples 

(AI, MI, PI) recovered from gilthead seabream fed the experimental diets was studied by 

polymorphism analyses of the variable V3 region of the 16S rRNA gene using DGGE. 

Similar banding patterns between the 3 replicates for each diet were not always evident, 

with one replicate constantly failing to cluster with the other 2 in the Bray–Curtis 

dendrogram (Fig. 5). The figure further shows that the bacterial communities obtained 

from the AI of fish fed diet MBM75 seem to be more closely related (percentages of 

similarity around 70% between 2 out of 3 samples) than those recovered from fish fed 

the control and MBM50 diets, which seem to diverge more (percentages of similarity 

below 50% between 2 out of 3 samples for each diet). Nevertheless, variations on the 

average number of OTUs (Operational Taxonomic Units), microbial richness, microbial 

diversity and similarity indices between samples were detected with statistical 

significance between experimental diets and between gastrointestinal sections (Table 

11). With exception on the average number of OTUs, there were significant differences 

(p<0.05) on the indices of microbial richness, microbial diversity and similarity between 

the different gastrointestinal samples analyzed. The AI samples presented the highest 

microbial richness, the PI samples the highest microbial diversity, while the STO samples 

revealed the lowest microbial diversity and richness. PI and STO samples where the 

ones with higher similarity between replicates, that is, were the most homogeneous 

samples (Table 11). Replacement of FM by MBM lead to a significant decrease (p<0.01) 

on the average number of OTUs and on the microbial richness, and to a significant 

increase on the SIMPER similarity (p<0.001) (Table 11). Sequence analysis from the 

DGGE bands (Fig. 5, Table 12) showed that the detectable dominant bacteria present 

in the stomach and intestines of gilthead seabream fed the experimental diets were most 

closely related to uncultured bacteria (bands 13, 15, and 16) or bacteria belonging to the 

Corynebacterium (bands 6, 8, 12, and 18), Staphylococcus (bands 1, 10, and 11), Vibrio 

(bands 9 and 14), Weissella (bands 4 and 5) or Bacillus (bands 2 and 3) genus. 

Mycobacterium (band 7) and uncultured Plantibacter (band 17) were also detected. 
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Fig. 5: PCR-DGGE fingerprints of the microbiota found in stomach and intestinal sections recovered from gilthead seabream fed the experimental diets. Black numbers on top of the 

figure represent the different samples analyzed (from a pool of two fish each) while red numbers inside the figure correspond to bands removed for sequencing, which results are 

presented in Table 12.
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Fig. 6: Dendrograms and PCR-DGGE fingerprints of the microbiota found in stomach and intestinal sections 

recovered from gilthead seabream fed the experimental diets.
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Table 11: Ecological parameters obtained from PCR-DGGE fingerprints of the microbiota found in stomach (STO) and intestinal sections (AI, anterior intestine; MI, 

middle intestine; PI, posterior intestine) recovered from gilthead seabream fed the experimental diets. 

 STO  AI  MI  PI 

Diets FM100 MBM50 MBM75  FM100 MBM50 MBM75  FM100 MBM50 MBM75  FM100 MBM50 MBM75 

OTUs1 17 ± 3.6 18.7 ± 4.5 17.3 ± 2.1  23 ± 4.4 24.7 ± 2.5 19 ± 2  23.3 ± 5.7 19.0 ± 4.0 18.0 ± 1.7  26.0 ± 3.6 19.3 ± 0.6 14.7 ± 3.2 

Richness2 1 ± 0.2 1.1 ± 0.3 1 ± 0.1  1.4 ± 0.2 1.5 ± 0.1 1.2 ± 0.1  1.4 ± 0.3 1.2 ± 0.2 1.1 ± 0.1  1.5 ± 0.2 1.2 ± 0.03 0.9 ± 0.2 

Diversity3 2.3 ± 0.3 2.6 ± 0.2 2.3 ± 0.1  2.6 ± 0.1 2.7 ± 0.1 2.5 ± 0.4  2.7 ± 0.2 2.5 ± 0.1 2.6 ± 0.2  2.8 ± 0.1 2.8 ± 0.1 2.4 ± 0.3 

SIMPER 
Similarity (%)4 

45.4 ± 5.1 42.5 ±12.3 52.8 ± 7.3  36.0 ±11.7 38.0 ± 4.9 57.6 ± 9.3  25.7 ± 3.5 30.7 ± 9 45.9 ± 17  38.4 ± 4.2 41.1 ± 1.5 58.8 ± 6.7 

Two-Way ANOVA  Variation source5  Section  Diet 

Variation source  Section Diet Interaction  STO AI MI PI  FM100 MBM50 MBM75 

OTUs1  ns ** ns  - - - -  a ab b 

Richness2  * ** ns  b a ab ab  a ab b 

Diversity3  * ns ns  b ab ab a  - - - 

SIMPER Similarity (%)4  * *** ns  a ab b a  b b a 

Values presented as means ± standard deviation (±SD) (n = 3 per treatment pooled from 6 fish) 
1 OTUs: Average number of operational taxonomic units. 
2 Margalef species richness: d=(S-1)/log(N) 
3 Shannons diversity index: H’=-∑(pi(ln(pi)) 
4 SIMPER, similarity percentage within group replicates. 
5 ns, non-significant (p>0.05); *p<0.05; **p<0.01; ***p<0.001 
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Table 12: Closest relatives (BLAST) to the sequenced PCR-DGGE gel bands of the GIT communities 

of gilthead seabream fed the experimental diets. 

Band Nearest neighbor 

Similarity 
to nearest 
neighbor 
(%) 

Accession 
number of 
nearest 
neighbor 

    

1 Staphylococcus sp. THK-6.1 16S ribosomal RNA gene, 
partial sequence 

97 KM100592.1 

2 Bacillus subtilis strain C14 16S ribosomal RNA gene, 
partial sequence 

100 KP050498.1 

3 Bacillus subtilis strain C14 16S ribosomal RNA gene, 
partial sequence 

100 KP050498.1 

4 Weissella paramesenteroides strain FT369 16S 
ribosomal RNA gene, partial sequence 

96 KM207814.1 

5 Weissella paramesenteroides strain FT369 16S 
ribosomal RNA gene, partial sequence 

100 KM207814.1 

6 Corynebacterium sp. S1-30 16S ribosomal RNA gene, 
partial sequence 

99 KP114217.1 

7 Mycobacterium sp. Iso-37 16S ribosomal RNA gene, 
partial sequence 

98 KC768749.1 

8 Corynebacterium sp. MU10 16S ribosomal RNA gene, 
partial sequence 

98 KF631233.1 

9 Vibrio sp. SF096-4 16S ribosomal RNA gene, partial 
sequence 

99 JX549389.1 

10 Staphylococcus sp. HB1 partial 16S rRNA gene, strain 
HB1 

99 AM268420.1 

11 Staphylococcus arlettae strain BAN98 16S ribosomal 
RNA gene, partial sequence 

96 JX960429.1 

12 Corynebacterium sp. MU10 16S ribosomal RNA gene, 
partial sequence 

98 KF631233.1 

13 Uncultured bacterium clone S14-hap 0613 16S 
ribosomal RNA gene, partial sequence 

78 FJ373480.1 

14 Vibrio sp. AB336d partial 16S rRNA gene, isolate 
AB336d 

97 FR821229.1 

15 Uncultured bacterium isolate DGGE gel band 16 16S 
ribosomal RNA gene, partial sequence 

97 HQ876077.1 

16 Uncultured bacterium clone B112_218 small subunit 
ribosomal RNA gene, partial sequence 

100 KM500154.1 

17 Uncultured Plantibacter sp. isolate DGGE gel band 
2R12-2 16S ribosomal RNA gene, partial sequence 

93 KF051512.1 

18 Corynebacterium variabile partial 16S rRNA gene, 
strain PG-Z 

99 HG798646.1 
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Discussion  

In order for European aquaculture industry to expand, it is necessary to find viable 

alternatives to FM as its use is becoming less sustainable at current inclusion rates. A 

number of investigations have been carried out to evaluate the potential use of non-

ruminant processed terrestrial animal proteins, MBM, in diets for aquaculture species 

worldwide. However, due to the prohibition in the EU of the use of terrestrial animal 

ingredients for aquafeeds in 2001 (Karapanagiotidis 2014), most of the literature found 

with the use of these ingredients are of studies performed outside the EU, with species 

not produced in this area. Besides that, there has been a wide range of results regarding 

the ideal substitution level due to the different habitats, feeding habits, and different 

processing techniques and raw materials used, most of the times, secret of the company, 

which can result in an unpredictable final product (Hendrick et al. 2005; Xavier et al. 

2014). However, improvements in processing technologies, and the utilization of raw 

materials of higher nutritive value (e.g., blood meal or low bone meat meal) can lead to 

the production of a more nutritious MBM (Bureau et al. 2000; Rossi and Davis 2014).  

Overall results of this study show that MBM is efficient in promoting good growth 

and feed performance in gilthead seabream juveniles. Fish fed a diet with half of the FM 

replaced by MBM showed a slightly higher weight gain, approximately 1.2% higher than 

that of fish fed the non-MBM control diet. On the other hand, increasing the replacement 

level to 75% decreased growth performance in about 9.3%, relatively to the non-MBM 

control diet. Issues related to the EAA profile, availability of protein, energy and amino 

acid of MBM may have, at least, contributed to the lower performance of MBM75 diet, 

relatively to the others, as it will be discussed. 

MBM is a desirable dietary component for carnivorous and omnivorous fish 

species, containing high levels of protein and fat (Allan and Rowland 2005; Rossi and 

Davis 2014). Present results are in agreement with previous studies where 20-80% of 

dietary FM could be replaced by MBM without negatively affecting growth performance. 

For grouper, 80% of FM could be replaced by high quality animal protein, a blend of MM 

and BM, with similar growth rate as the control group (Millamena 2002). High FM 

replacement (of around 80%) with MBM was also achieved with hybrid striped bass 

(Bharadwaj et al. 2002).  

For large yellow croaker and Australian silver perch, 45 and 50% of FM could be 

successfully replaced by meat meals (MBM/MM), respectively (Stone et al. 2000; Ai et 

al. 2006). Likewise, for other fish species such as sutchi catfish and African catfish, the 
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replacement level may be increased up to 67-75%, respectively, with no negative effects 

on growth (Goda et al. 2007; Kader et al. 2011b). 

On the contrary, lower replacement levels of FM by MBM or MM were observed 

for Australian snapper (up to 35%; Booth et al. 2012), largemouth bass (up to 30%; Li et 

al. 2010), rainbow trout (up to 30%; Bureau et al. 2000), Malabar grouper (up to 25%; Li 

et al. 2009), Australian short-finned eel (up to 23%; Engin and Carter 2005), olive 

flounder (up to 20%; Lee et al. 2012), and Japanese flounder (up to 20%; Kikuchi et al. 

1997). Very low results were also obtained by Kureshy et al. (2000) in red drum as more 

than 16.6% FM substitution with low ash MM decreased performance. For Florida 

pompano, in soybean meal based diets, MBM was effective to reduce FM from 15 to 5% 

(Rossi and Davis 2014). In part, at least, this discrepancy of results may be due to 

variations on MBM composition largely influenced by the raw material composition and 

quality as well as to the processing conditions during rendering and the feeding habit of 

the species (Rossi and Davis 2014; Xavier et al. 2014).  

Palatability is an important issue when working with alternative protein sources 

to FM, as low palatability decreases feed consumption, and can result in poorer growth 

performance. In the present study, MBM did not compromise feed palatability, as fish fed 

diet MBM75 had significantly higher feed intake than that of fish fed the other diets. 

However, it did not translate to a higher feed efficiency ratio, as fish fed diet MBM75 had 

the lowest weight gain, or daily growth index. The higher feed intake of MBM75 diet may, 

in part at least, be related to its lower digestible protein content, compared to the other 

diets. Even though it is generally accepted that fish eat primarily to satisfy their energy 

requirements (Cho and Kaushik 1990; Kaushik and Medale 1994), in the present study 

an attempt to adjust feed intake to a certain level of digestible protein intake, 

irrespectively the diet, was observed (digestible nitrogen intake 1.64-1.67 g N kg-1day-1), 

as previously reported for other fish species (Peres and Oliva-Teles, 1999). Generally, 

results of most feeding trials indicate that replacement of FM with MBM has minimal 

effect on feed consumption (Allan and Rowland 2005; Ai et al. 2006; Booth et al. 2012; 

Hu et al. 2013; Rossi and Davis 2014).  

Apparent digestibility values of MBM are generally lower than those of FM for 

different fish species (Silva and Oliva-Teles 1998; Wei et al. 2006; Booth et al. 2013; 

Xavier et al. 2014), contributing to a lower performance of MBM based diets. 

Nevertheless, ADC of energy was high for both diets containing MBM (95% and 87% for 

diets MBM50 and MBM75, respectively) but lower for the MBM75 diet than for the other 

diets, which may be correlated to its higher ash content. Indeed, high levels of 

indigestible inorganic matter have been reported to be a limiting factor when using animal 
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by-products, as it may increase intestinal transit (less time for nutrients’ digestion), 

leading to a higher feed intake but poor feed efficiency and growth performance (Goda 

et al. 2007; Xavier et al. 2014), as it was observed in this trial. In the present study, ash 

content of MBM based diets (19.5% DM) was almost double the quantity present in the 

non-MBM control diet (10% DM), but ash content alone could not be accounted for as 

the only factor contributing for the poor growth performance of diet MBM75, as ash 

content of diet MBM50, similar to the one of the MBM75 diet, did not limited its 

performance.  

Fish are able to effectively use lipids as an energy source (Sullivan and Reigh 

1995). However, although it was not determined for this study, it is acknowledged that 

processed animal by-product meals possess high levels of saturated fats (Millamena 

2002), which are less digestible than unsaturated fats (NRC 2011) as lipid digestibility is 

negatively correlated with the degree of saturation (Takeuchi et al. 1979). The presence 

of high levels of saturated fats in diet MBM75, comparatively to the other diets, could 

have led to a lower lipid digestibility and a lower energy digestibility, contributing to the 

observed growth reduction of fish fed diet MBM75. In fact, others authors have reported 

moderate lipid digestibility values when using these type of ingredients: 77.2% with MM 

(Mabrouk and Nour 2011), 58% and 73% with MBM (Bureau et al. 1999). 

Dietary ash content may have also condition protein digestibility. Robaina et al. 

(1997) determined that there is a negative correlation between ash content and protein 

digestibility of a diet. In this study, even though protein and EAA digestibility of MBM 

based diets were high, protein and EAA digestibility of diet MBM75 were lower than those 

of MBM50. A wide range of protein ADC in diets formulated with animal by-products have 

been reported, indicating a dependence on the nutritional quality of the ingredient as well 

as on the species. Protein ADC of MBM based diets averaged 65.2% for gilthead 

seabream (Mabrouk and Nour 2011) but for mulloway fish it averaged 87.2% (Booth et 

al. 2013). Booth et al. (2005) obtained a protein ADC of 75.3% when replacing 50% of 

FM in diets with MM in Australian snapper. For Nile tilapia, nutritional quality of the MBM 

significantly influenced protein digestibility that ranged from 50 to 87%, depending on the 

protein and ash content of the ingredient (Xavier et al. 2014). Protein ADC of the MM 

ingredient was determined to be around 75.1% in diets for sea bass (Silva and Oliva-

Teles 1998).  

Protein quality, evaluated in terms of amino acids’ availability and profile, may 

have also affected MBM’s nutritional quality (Peres and Oliva-Teles 2006; 2007). Indeed, 

more than protein content itself, fish require a well-balanced amino acid profile in feeds 

to achieve an optimal growth (Berge et al. 1999; Peres and Oliva-Teles 2009). 
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Unbalanced levels of EAA in diets have been reported as one of the causes for growth 

depression in several farmed fish when fed animal by-products (García-Gallego et al. 

1998; Millamena 2002; Sun et al. 2014; Xavier et al. 2014), as protein deposition is 

closely related to weight gain. García-Gallego et al. (1998) reported that, for European 

ell, MM diets led to lower feed intake and utilization due to some EAA deficiency. 

However, in the present study, almost all EAA of the experimental diets exceeded the 

requirement levels for gilthead seabream, as determined by Peres and Oliva-Teles 

(2009), with the exception of methionine and phenylalanine + tyrosine, in accordance 

with previous studies using animal by-products (Nengas et al. 1999; Wang et al. 2008).  

Besides the rendering composition, the technological processes may also 

condition protein digestibility, as heat and other processes can damage protein (Booth 

et al. 2005; Rossi and Davis 2014; Xavier et al. 2014). Tidwell et al. (2005) reported that 

when FM was replaced by 50% with MBM, growth reduction of largemouth bass was 

attributed not to the dietary amino acid composition but to their availability. Lysine is 

considered to be one of the first limiting amino acids in alternative ingredients to FM in 

aquafeeds (Kaushik and Seiliez 2010; NRC 2011) and, in processed animal ingredients, 

lysine is considered to be the amino acid most sensitive to heat damage during the 

rendering process (Nengas et al. 1999). Indeed, lysine availability may greatly differ 

among different batches of MBMs, ranging from 73 to 91% (Parsons et al. 1997). In the 

present study, even though lysine availability of the MBM ingredient was not determined, 

the obtained lysine digestibility coefficient and lysine retention efficiency for diet MBM50 

suggested that amino acid availability of the MBM ingredient was little affected by the 

rendering process. 

In the present study, EAA retention was not different for the three experimental 

diets. Lysine intake was significantly lower for the MBM diets but, for diet MBM50, the 

retention efficiency of lysine was even slightly higher (2.3%) that the control diet, 

suggesting a similar lysine efficiency utilization at a 50% replacement level. However, for 

diet MBM75, lysine retention was 12.5% lower than that of control diet. Despite the 

significant higher arginine intake for fish fed MBM diets, arginine retention in fish fed diet 

MBM75 decreased about 35.5%, though not statistically significant, compared to the 

non-MBM control diet. This lower arginine retention efficiency may be due to the high 

arginine content of the MBM based diets (>7 g 16 N-1). A reduction of arginine utilization 

efficiency with an increase in intake is indeed to be expected due to a reduction of the 

absorption rate or to an increased metabolic utilization for other purposes than muscle 

growth, or both (Peres and Oliva-Teles 2008).  
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At the end of this trial, whole body composition was unaffected by the dietary 

MBM inclusion, with the exception of crude lipid and energy which were significantly 

lower for fish fed diet MBM75. Nutrient deposition in the body is related to the efficiency 

of its retention and, in this trial, whole-body crude protein and nitrogen retention efficiency 

were not significantly affected by the experimental diets although daily nitrogen intake 

was significant higher for diet MBM75. However, whole-body lipid content and retention, 

as well as energy retention, decreased in fish fed the diet with the highest level of MBM, 

suggesting a lower lipid and energy utilization efficiency with increasing MBM, as diets 

had similar crude lipid content (approximately 20% DM) and intake was significantly 

higher. Also for gilthead seabream, Robaina et al. (1997) reported a decrease, though 

not statistically significant, in both lipid digestibility and whole-body lipid content in 

gilthead seabream with increasing dietary MBM. Similar results were also obtained by Ai 

et al. (2006) where diets with more than 45% MBM caused a decrease in whole-body 

lipid content in large yellow croaker. On the contrary, juvenile snapper had a slight 

increase, although significant, of whole-body lipid content as dietary MBM increased 

(Booth et al. 2012), while other studies shown no significant differences in whole-body 

composition of fish fed diets with different levels of animal by-products (Bureau et al. 

2000; Bharadwaj et al. 2002; Goda et al. 2007; Jamil et al. 2007), suggesting that the 

lipid utilization efficiency is influenced by either the species, quality of the ingredient or 

both.  

Even though GIT microbiota modulation action due to the dietary incorporation of 

plant ingredients (Heikkinen et al. 2006; Refstie et al. 2006; Ringø et al. 2006b; 

Dimitroglou et al. 2010; Silva et al. 2011) and pre and probiotics (Dimitroglou et al. 2010; 

Cerezuela et al. 2012; Cerezuela et al. 2013; Kormas et al. 2014) has been previously 

reported, from all the literature found, this is the first study evaluating the effect of dietary 

animal by-products inclusion. In the present study, the inclusion of MBM in the diets for 

gilthead seabream modulated its GIT microbiota with significant changes in composition, 

and richness, while diversity was not significantly affected. A 50% FM replacement with 

MBM did not cause significant changes on the microbiota parameters analyzed, when 

compared to the non-MBM control diet, whereas an increase of the substitution level to 

75% lead to a significant decrease in GIT microbial richness and OTUs, and to a 

significant increase in the similarity between replicates (i.e. homogeneity between 

individuals under the same treatment). Results from this study indicate that a 75% FM 

replacement with MBM may increase fish susceptibility to diseases as reduction of GIT 

microbial richness and diversity is often associated with higher susceptibility to diseases 

in both humans and animals (de Vos and de Vos 2012; Thomas et al. 2014). Also, 
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reduced diversity can compromise intestinal functionally as a diverse microbiota allows 

better adaptation to changing environmental conditions, such as those in aquaculture 

production (Cerezuela et al. 2012). 

Besides the dietary effect on general GIT microbiota, significant differences in 

microbiota composition of different GIT sections (stomach, anterior, middle or posterior 

intestine) were observed, with an increase in the microbial diversity and richness towards 

the end of GIT. The lower microbial diversity and richness observed in the stomach might 

be explained by the harsh acidic stomach environment, which does not allow the 

establishment of bacteria unable to growth at low pH (Navarrete et al. 2009). Indeed, the 

pH variation of the different GIT compartments of juvenile fish can act as a selective 

mechanism, allowing colonization of some species and not others (Grisez et al. 1997). 

Besides the pH effect, the availability of digested nutrients, which is higher in the intestine 

than in the stomach, might also help to explain the higher microbial richness encountered 

in the last sections of the GIT, independent of the diet (Navarrete et al. 2009). 

PCR-DGGE, followed by DGGE bands sequencing, is a powerful tool to 

determine the predominant bacteria present in GIT samples (Tapia-Paniagua et al. 

2010). In present study, the predominant bacteria found from the sequenced bands 

belonged to the phyla Firmicutes (38.9%), followed by Actinobacteria (27.8%), 

uncultured bacteria (22.2%) and Proteobacteria (11.1 %). This is in accordance with 

previous studies where Proteobacteria, Firmicutes, and Actinobacteria prevailed in the 

gut of wild, organically or conventionally reared gilthead seabream, determined by 

pyrosequencing (Kormas et al. 2014), as well as in other farmed species such as grass 

carp (Han et al. 2010), yellow grouper (Zhou et al. 2009; Feng et al. 2010) and olive 

flounder (Kim and Kim 2013). Bacteroidetes, a predominant group found in gilthead 

seabream by Kormas et al. (2014), was not detected in this study. 

Among the phyla described, the detectable predominant bacteria present in the 

stomach and intestine of gilthead seabream fed the experimental diets were most closely 

related to bacteria belonging to the Staphylococcus, Vibrio, Corynebacterium, Weissella, 

or Bacillus genera. A similar study reported Diaphorobacter as the dominant genus in 

wild and commercially reared gilthead seabream but this was not the case in the present 

study (Kormas et al. 2014).  

Vibrio spp. and Bacillus spp. are particularly common genera found in the GIT of 

fish (Perez et al. 2010; He et al. 2013). In this study, Vibrio is the only genus that appears 

both in the intestine and stomach. While in the intestine it seems to appear in just in one 

replicate (middle intestine of fish fed diet MBM75), in the stomach, Vibrio appears to be 
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absent in the control diet and its bands become more pronounced with increasing MBM, 

suggesting that the inclusion of this ingredient promoted its appearance. Other authors 

have reported Vibrio as the dominant genus in juveniles and adult marine fish gut (Grisez 

et al. 1997; Tapia-Paniagua et al. 2010), but this was not observed in present study. 

Additionally, Vibrio is a common genus in aquatic environments, and its predominance 

in the stomach could also be attributed to the ingestion of the surrounding water since it 

is recognized that bacteria from water can survive and multiply in the digestive tract 

(Navarrete et al. 2009). Despite some species of this genus being pathogenic for fish 

(Heikkinen et al. 2006; Feng et al. 2010), others, such as V. alginolyticus, are beneficial 

for seabream larvae, competing with opportunist pathogenic bacteria (Grisez et al. 1997). 

Similarly, MBM inclusion appears to potentiate the appearance of Bacillus subtilis 

as these bands become more pronounced (or only appear) in fish fed diet MBM75 in all 

intestinal sections. Other authors have also reported an increase in the presence of 

Bacillus spp. in the intestinal microbiota of rainbow trout fed diets with SBM (Heikkinen 

et al. 2006) and in Atlantic salmon fed diets with chitin (Askarian et al. 2012). Although 

Cerezuela et al. (2013) reported negative changes in the intestinal morphology of 

gilthead seabream when supplementing with a particular strain of B. subtilis, other strains 

are currently being used as probiotics in humans and animals (Cutting 2011), with 

different studies reporting the probiotic proprieties in fish, by enhancing fish immune 

response, growth performance and disease resistance (Nayak 2010; Sun et al. 2010; He 

et al. 2011, 2013; Liu et al. 2012).  

The inclusion of MBM also appears to promote the development of 

Mycobacterium spp. as it is clearly more pronounced, though replicates were not 

homogenous, in the posterior intestine of fish fed diet MBM75. Bacteria from this genus 

are known to cause fish mycobacteriosis, a chronic disease characterized by the 

presence of numerous variable sized granulomas in tissues (Righetti et al. 2014), that 

can lead to high mortality rates in a variety of fish species worldwide (Stine et al. 2005; 

Sonda-Santos and Lara-Flores 2012) and can be pathogenic for humans due to its 

zoonotic potential and resistance to water disinfectants (Yanong et al. 2010). From all 

the literature found, there has been no report of the presence of Mycobacterium spp. in 

the GIT other than in fish with mycobacteriosis related symptomatology (Stine et al. 2005; 

Yanong et al. 2010; Sonda-Santos and Lara-Flores 2012; Righetti et al. 2014; Zhang et 

al. 2015). However, in this study, despite the presence of Mycobacterium spp. in the 

intestine of gilthead seabream fed diet MBM75, fish did not appear to show symptoms 

of the disease. 
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Some studies have also reported presence of Staphylococcus spp. in the GIT of 

fish (Ringø et al. 2006a; Ringø et al. 2006b; Bakke-McKellep et al. 2007; Askarian et al. 

2012; Cantas et al. 2012) as well as Corynebacterium spp. (Al-Harbi and Naim Uddin 

2004; Wu et al. 2010). In present study, Staphylococcus spp. and Corynebacterium spp. 

were present in all intestinal sections, but more predominantly in fish fed the non-MBM 

control diet, indicating that inclusion of MBM may reduce fish colonization by species of 

these genus. This might be beneficial since these genus are often associated with 

pathogenic species for humans and animals (Thomas et al. 2014). In particular C. 

aquaticum is considered to be pathogenic for fish, such as striped bass and rainbow 

trout, and mice (Baya et al. 1992).  

Finally, the genus Weisella was present in all intestinal sections and more 

predominant in fish fed the non-MBM control diet, suggesting that gradual inclusion of 

MBM also led to its disappearance. While some strains of these genus are considered 

to be pathogenic for farmed rainbow trout (Figueiredo et al. 2012), other strains of 

Weissella are receiving attention as potential probiotics (Fusco et al. 2015) and 

Weissellin A, a protein produced by these bacteria, has shown to have antimicrobial 

properties, suitable for food and feed preservation (Papagianni and Papamichael 2012). 

 

 

Conclusion  

 The future of aquaculture nutrition will rely on the search for alternative protein 

sources for FM replacement as current inclusion rates threaten the expansion of the 

industry. Results from present study indicate that MBM is a promising ingredient and that 

a 50% substitution did not compromise growth performance and feed utilization of 

gilthead seabream juveniles. However, a substitution up to 75% MBM led to a decrease 

in growth, lipid and energy retention and EAA digestibility. Although ADCs of EAA were 

high for all experimental diets (>92%), they were significantly reduced by the inclusion 

of MBM. The reduced performance of 75% MBM diet may be attributed to its high ash 

content and high levels of saturated fats that may have compromised nutrient 

digestibility.  

Species diversity was not affected by the MBM inclusion level. However, only the 

50% substitution with MBM maintained the OTUs and species richness unaltered, 

indicating that higher levels might compromise the GIT microbiota stability. Also, MBM 
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appeared to promote the development of Bacillus genus, a group of organisms 

commonly associated with beneficial effects in animal health, namely as probiotics but 

also Vibrio and Mycobacterium genus, often associated with pathogenic bacteria. 

Overall, MBM has the potential to be included in diets for gilthead seabream 

juveniles but better characterization of this product is required in order to improve 

utilization and feeding strategies. The next step in this research could be the evaluation 

of the performance of a MBM intermediate inclusion level (between the 50 and 75% FM 

replacement level). Also the effect of dietary inclusion of MBM on general intestine health 

fish, fish wellbeing and immune status, as well as on flesh quality traits of gilthead 

seabream deserves further research. 
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