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Abstract

In this work we studied the several gravito-electromagnetic analogies in the literature, and presented
a new exact one, based on tidal tensors. We clarified the relation between the different analogies,
and further worked out some of them; namely the analogy based on inertial gravitational fields
(GEM fields), which was reformulated and extended. The gravito-electromagnetic analogy based
on tidal tensors stems from the tidal dynamics of the two theories: the analogy for electric type
tidal tensors is manifest in the geodesic deviation, and in the analogous electromagnetic worldline
deviation; the analogy for magnetic-type tidal tensors is manifest in the force exerted on spinning
particles (magnetic dipoles/gyroscopes). It extends to the field equations: the gravitational field
equations may be cast as a set of four algebraic equations for tidal tensors and sources, analogous
to Maxwell’s equations in this formalism; plus two additional equations with no electromagnetic
counterpart. This analogy is ideally suited to compare the tidal dynamics of the two interactions;
key differences are made transparent in the symmetries and time projections of the tidal tensors,
which are related to the phenomenon of electromagnetic induction, and the absence of analogous
effects in gravity. This is extensively explored in the context of the dynamics of spinning multipole
particles — a natural application of the formalism. The analogy based on inertial GEM fields stems
from the space part of the geodesic equation, which can be cast exactly as consisting of a Lorentz-
like part where two spatial vector fields — a gravitoelectric and a gravitomagnetic field — mimic
the electromagnetic fields, plus a term involving the shear/expansion of the observer congruence
which has no electromagnetic analogue. This analogy also extends to the field equations, where we
have on the gravitational side six equations, four of which, again in this formalism, exhibit many
similarities with Maxwell’s equations; the similarity gets particularly close for rigid frames and
stationary fields. This formalism also leads to an exact gravito-electromagnetic analogy for the
“precession” of the spin vector of a spinning particle (this analogy, together with the tidal tensor
one, means that both equations of motion for a spinning dipole particle — the spin evolution, and
the force — can be cast in exact gravito-electromagnetic analogies). At the heart of these analogies
is the Mathisson-Pirani (MP) spin condition; however this condition is usually portrayed in the
literature as problematic, due to its degeneracy and the famous helical motions it allows, which
have been deemed unphysical. We address the problem of the spin condition and the definition
of center of mass in General Relativity, and show that these claims are but misconceptions: not
only the MP condition is as valid as any other, as it is the most suitable one (through the non-
helical solution) for many practical applications. As for the helical motions it equally allows,
we show that they are just alternative (but equivalent) descriptions, dynamically consistent and
explained through the concept of hidden momentum — analogous to the hidden momentum of
electromagnetic systems. We discuss the different forms of hidden momentum, and unveil some
of its counter-intuitive features. A number of other issues not well understood in the literature
were clarified in the course of this work; namely the physical meaning of the magnetic part of the
Riemann tensor, and the problem of the covariant equations of motion for spinning particles in
electromagnetic fields, and their interpretation.



Resumo

Neste trabalho estudamos as vérias analogias gravito-electromagnéticas existentes na literatura, e
apresentamos uma nova, baseada em “tensores de marés”. Clarificamos a relagao entre as varias
analogias, e evoluimos algumas delas, em particular a analogia baseada em campos de forgas inerci-
ais (campos GEM), que foi reformulada e estendida. A analogia gravito-electromagnética baseada
nos tensores de marés emana da dinamica dos efeitos “de marés” das duas teorias: a analogia entre
tensores de marés do tipo eléctrico manifesta-se na equagao de desvio geodésico, e na equagao de
desvio andloga no electromagnetismo; a analogia dos tensores do tipo magnético manifesta-se na
forga exercida em particulas em rotacao (dipolos magnéticos/giroscépios). A analogia estende-se
as equacoes de campo: as equagoes relativistas do campo gravitacional podem ser retratadas como
um sistema de quatro equacoes algébricas envolvendo apenas tensores de marés e termos de fonte,
analogas as equagoes de Maxwell quando escritas neste formalismo, mais um par de equagoes
adicionais que nao tém andlogo electromagnético. Esta analogia é ideal para comparar as duas
interacgoes; diferengas chave sao transparentes nas simetrias e projecgoes temporais dos tensores
de marés, que estao relacionadas com os fenémenos de inducao electromagnéticos, e a auséncia de
efeitos andlogos na gravidade. Estas diferencas sdo exploradas com grande detalhe no contexto
da dindmica de particulas com momentos multipolares — uma aplicagao natural do formalismo.
A analogia baseada nos campos de forcas inerciais emana da parte espacial da equagao das ge-
odésicas, que pode ser exactamente descrita como consistindo de uma parte semelhante a forga
de Lorentz, onde dois vectores espaciais — os campos “gravitoeléctrico” e “gravitomagnético” —
mimetizam os campos electromagnéticos, mais um termo adicional envolvendo o “shear”/expansao
da congruéncia de observadores, que nao tem andlogo electromagnético. Esta analogia também
se estende as equagoes de campo, onde obtemos do lado gravitacional seis equacoes, das quais
quatro, neste formalismo também, manifestam vérias semelhangas com as equagoes de Maxwell;
a semelhanca é particularmente proxima no caso de referenciais rigidos em campos estacionarios.
Este formalismo leva ainda a uma analogia exacta para a “precessao” do vector de spin de uma
particula em rotacdo (juntando esta analogia a dos tensores de maré, temos que ambas as equagoes
de movimento para particulas pélo-dipolo — a equagao de evolugao do spin, e a da for¢ga — podem
ser retractadas em analogias gravito-electromagnéticas exactas). No coracao destas analogias estd
a condigao de spin de Mathisson-Pirani (MP); todavia esta condigdo é vista na literatura como
problemaética, devido & sua degenerescéncia e aos famosos movimentos helicoidais que ela admite,
que foram considerados néao fisicos. Nds abordamos o problema da condigao de spin, e da defini-
¢ao de centro de massa em Relatividade Geral, e mostramos que tais afirmagdes ndo passam de
um mal entendido: nao s6 a condicao MP é tao vélida como qualquer outra, como é mesmo a
mais adequada (através da sua solugao nao helicoidal) para vérias aplicagdes praticas. Quanto as
solucoes helicoidais que ela igualmente admite, mostramos que sao apenas descrigoes alternativas
(mas equivalentes), dindmicamente consistentes e explicadas pelo conceito de “hidden momentum”
— analogo ao hidden momentum dos sistemas electromagnéticos. Discutimos também as vérias
de formas hidden momentum, e revelamos alguns dos seus efeitos contra-intuitivos. Varias outras
questoes que nao eram bem compreendidas na literatura foram sendo clarificadas no decurso deste
trabalho; nomeadamente o significado fisico da parte magnética do tensor de Riemann, e o pro-
blema das equagoes de movimento covariantes para particulas multipolares (em rotagao) sob acgao
de campos electromagnéticos, e a sua interpretagao.
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1 Description of this document

This is a “contextualization” document as required for a PhD work in physics in the form
of article compilation.

It is organized as follows. In Sec. 2 the articles produced in this thesis are listed; it
contains five research papers, three of them published in international journals with peer
review, the other two available on-line in the form of preprint, to be submitted soon for
publication in refereed journals.

In Sec. 3 I briefly review what initially motivated this work, was then the state of the
art.

Sec. 4, “Roadmap to the papers”, is a quick guide for the papers, explaining their
motivation and aim, how they fit in the context of this work, and briefly describing their
main outcomes.

In Sec. 5 a more detailed summary and discussion of each paper is given. It is not
meant to substitute the introduction and conclusion of the papers though, to which I refer
the reader for an even more comprehensive account of the results in each paper, as well
as a detailed literature review. In this section the main results of each paper are outlined,
but the way they are presented does not always follow rigorously the original text (this
is the case with the older papers #1 and #2). Paper #1 was where we first presented
the analogy based on tidal tensors; but I have been using and developing this formalism
since then, my knowledge advanced accordingly, in the light of the more recent papers
#3, #4 and #5; thus I describe the same results from the perspective I have today, and
refer the reader to the latest papers where the ideas in Paper #1 are put on firm grounds
and further developed. In Paper #2 we studied the conditions under which a similarity
between gravity and electromagnetism occurs, in view of astrophysical applications, and
at an approximate level; we studied the dependence on the reference frame in particular
detail. This issue has been revisited, with an exact approach, in the recent Paper #B5,
where the results in Paper #2 were generalized and understood at a more fundamental
level; and I make use of that in the discussion of this paper.



2 Article compilation — index

Papers published in international journals with peer review

1. L. Filipe Costa, C. Herdeiro, “Gravitoelectromagnetic analogy based on tidal ten-
sors”, Physical Review D 78, 024021 (2008)

2. L. Filipe Costa, C. Herdeiro, “Reference frames and the physical gravito-electromagnetic
analogy”, Proceedings of the International Astronomical Union (IAU) vol 5 (Cam-
bridge U. Press) p 31. Preprint [arXiv:0912.2146] (2009)

3. L. Filipe Costa, C. Herdeiro, J. Natario, M. Zilhao, “Mathisson’s helical motions for
a spinning particle: Are they unphysical?”, Physical Review D 85, 024001 (2012)

Papers published in the form of preprint, to be submitted to refereed journals

4. L. Filipe Costa, J. Natario, M. Zilhao, “Spacetime dynamics of spinning particles —
exact gravito-electromagnetic analogies”, Preprint [arXiv:1207.0470]

5. L. Filipe Costa, J. Natario, “Gravito-electromagnetic analogies”, Preprint [arXiv:1207.0465]

Further publications on the material of this thesis exist in the form of conference proceed-
ings, both in international journals (in Proceedings) and in book chapters; they are listed
in Sec. 7, but not included in the compilation as, except for one of them, they do not
contain significant new material compared with the five research papers above (they are
essentially a different way of presenting the same results; they have a few new figures and
equations, but I include them in this document in Sec. 5).

Note that Paper #2 above, in spite of being a Proceedings paper, and indeed being
associated with a conference (the International Astronomical Union Symposium), is indeed
a research paper (original material is encouraged in this publication), and has been subject
to scientific refereeing.



3 Introduction and motivation

The material in this thesis can be split in two main topics: gravito-electromagnetic analo-
gies (with their very broad range, and related subjects), and the dynamics of spinning
multipole test particles in general relativity (to which we were led in the course of this
work).

The pursue for analogue models to describe gravity has a long history, and many dif-
ferent types of models have been proposed, both classical (based on e.g. fluid dynamics,
electromagnetism, light propagation in dielectric media) and quantum (based on e.g. Bose-
Einstein condensates); for a review and references see [6]. In this work we have studied
a special class of these analogies, the ones between the gravitational and electromagnetic
interactions. The parallelism is in this case drawn between two relativistic fields theories
(the two classical interactions), and (in the case of the the ones dubbed “physical” below)
one compares effects “alike”. In this sense one might argue that these analogies have a
stronger physical component than (most) other analogue models. It is my view that they
are interesting not only for providing intuition and a familiar formalism to treat other-
wise more complicated gravitational problems (which is a common goal to other analogue
models), but also (and especially) for the prospect of yielding a formalism allowing for a
direct comparison of the two interactions, from which one might learn fundamental aspects
about both of them.

When we started this work, the state of the art in the field of the gravito-electromagnetic
(GEM) analogies, known as “gravitoelectromagnetism”, was that there were several dif-
ferent analogies in the literature, but the relation between them was unclear. The best
known ones were the analogy between linearized gravity and electromagnetism in Lorentz
frames (based on suitably defined gravitational 3-vector fields, the “GEM fields”, that
mimic the electromagnetic ones), e.g. [7, 8, 9, 10, 11, 12], and the analogies between
the Maxwell and the Weyl tensor (namely their decomposition on electric and magnetic
parts, the scalar invariants they form, and the Maxwell-like “higher order field equa-
tions”), e.g. [31, 32, 34, 37, 46]; there were also exact analogies based on GEM fields,
e.g. [18, 19, 20, 22, 23, 25], and an exact mapping, via the Klein Gordon equation, be-
tween ultrastationary spacetimes and magnetic fields in curved spacetimes [28]. Not only
the relation between the different approaches had not been established, as they seemed
to lead to differing views, as for instance spacetimes which were purely magnetic from
the point of view of the analogies based on GEM fields, turned out to be purely electric
from the point of view of the Weyl tensor (that is the case, for instance, of the Godel and
Heisenberg spacetimes). And there were issues within each of them, such as the lack of a
consistent physical interpretation for the magnetic parts of the Riemann and Weyl tensors,
or the regime of validity of the analogies drawn in linearized theory. I briefly review these
analogies in Sec. 3.1 below.



3 Introduction and motivation

In Sec. 3.2 I review the most relevant literature on the relativistic multipole approaches
to the description of the motion of test bodies, and discuss the then open questions when
we started this work. They have to do essentially with the problem of the spin supple-
mentary condition (and the center of mass definition in relativity), and with the elec-
tromagnetic equations. The latter (perhaps surprisingly) were less well understood than
their gravitational counterparts. In this work considerable effort is put in the clarification
of these issues. The problem of the spin condition is important because the existence
of gravito-electromagnetic analogies in the equations of motion for spinning particles re-
quires a particular spin condition to hold — the Mathisson-Pirani condition, which was
poorly understood and portrayed as problematic in most literature. As for the electro-
magnetic equations and their interpretation, since one of the motivations for studying
gravito-electromagnetic analogies is the hope of applying intuition from electromagnetism
to the description and understanding of gravitational phenomena, then it is crucial to
correctly understand the electromagnetic analogue first.

3.1 The Gravito-electromagnetic analogies in the literature

3.1.1 Analogy based on inertial forces from linearized gravity

This is the oldest and best known gravito-electromagnetic analogy, and it has been pre-
sented in different forms and conventions, see e.g. [7, 8, 9, 10, 11, 12, 13, 14]. Herein
we will follow the conventions used in papers #1 and #2 of this compilation, which are
common in the literature, e.g. [12] (up to the different signature).

One considers perturbations around Minkowski spacetime: g,, = My + hpw, || < 1,
usually assumed to be such that the line element has the form:

ds? = —c® (1 — 2®) dt* — 4 A;dtdx? + 6;; [1 + 2®] dx'da? . (3.1)

A parallelism is drawn between the perturbations @, A (dubbed the “GEM potentials”)
and the components of the electromagnetic vector potential AY = (¢, ff), to define “GEM
fields” in analogy with electric and magnetic fields E and B of electromagnetism. If ones
considers stationary perturbations, as is more usual® (e.g. [7, 15, 14, 66, 10, 101]), these

GEM fields are (up to numerical factors in the different definitions)
Eq=-V®  Bg=VxA,

and the motivation for this parallelism and these definitions is that they play in the
gravitational equations roles analogous to the fields £ and B of electromagnetostatics.
The space part of the equation of geodesics dU®/dT = —F%‘WU AU is given, to first order
in the perturbations and in test particle’s velocity ¢’ (and, again, if the metric is stationary),

If the fields depend on time, different definitions of Eq exist in the literature, as a fully working analogy,
holding simultaneously for geodesics and for the field equations, is not possible. This is discussed in
Sec. 5 of Paper #b5 of this compilation [5].

10



3 Introduction and motivation

by the Lorentz-like expression:

d*z

- = —Eg — 20 x Bg . (3.2)

The evolution of the spin vector S of a torque-free gyroscope, described? by the Fermi-

Walker transport law
DS“
— = 5a"U" (3.3)

U® is the gyroscope’s 4-velocity, a® = DU%/dr), reads in space components, to linear
order, and with respect to the basis vectors of the coordinate system in (3.1),
as o 5

— =-9X%xB 3.4
dt G ( )
similar to the well known text book expression [99] for the precession of a magnetic dipole
under a magnetic field, dS/dt = ji x B. This phenomenon is the so-called “gyroscope
precession”.

The force exerted on a gyroscope, given by the Mathisson-Papapetrou equation (Eq.
(5.4) below), is, to linear order, for a gyroscope at rest [10] in the stationary field

F=-V(5-Bg), (3.5)

similar to the force on a magnetic dipole Fgn = V(i - B), e.g. [99].
Finally, introducing the quantity h,, = hu — 9u,h%, /2, the Einstein field equations

1

in the linear regime, and imposing the harmonic gauge condition A aﬂ’ﬁ = 0, reduce to a
set of four equations
OrY = —167wJ (3.7)

closely analogous to the Maxwell equations in the Lorentz gauge, A% = —4nj*. J* =
—TP Up is the mass/energy density current measured by the observers of zero 3-velocity
in the coordinate system of (3.1). In terms of the GEM fields, Eqgs. (3.7) take the form:

)V.Eq=4np, i)VxEg=0
5 1 5 4 -
iii)V-Bg =0 iv) §V X Bg=—J (3.8)
c
very similar to Maxwell’s equations for electromagnetostatics in Lorentz frames.
In some literature time-dependent versions of the analogy are proposed, e.g. [12, 13, 16,
17], however there was no general agreement? on its limit of validity and physical content,

with other authors arguing that the physical analogy holds only for stationary phenomena
9, 8, 11].

2If the Mathisson-Pirani spin condition holds; see Secs. 5.4 and 5.5 for more details.
3The debate was centered about the implications of the gauge condition }_La 5’6 = 0, and gets somewhat

11



3 Introduction and motivation

3.1.2 Exact analogy based on inertial forces

Exact approaches to a gravito-electromagnetic analogy based on GEM inertial fields also
existed in the literature, albeit much less known than the approach based on linearized
theory of the previous section. Exact GEM fields, for the case of stationary space-
times, were introduced by Landau-Lifshitz [18], and further worked out by other authors
[20, 19, 21, 23, 24, 22]; this is sometimes called “the quasi-Maxwell” formalism, and can
be summarized as follows. One considers a stationary spacetime, whose line element is
generically described by:

ds® = —e?®(dt — A;da)? + %‘jdxidxj (3.9)

where ~;; is an arbitrary spatial metric (not flat, in general) . Then one defines [19] the
exact GEM fields as 3 3
G=-V® H=e’VxA, (3.10)

dubbed, respectively, gravitoelectric and gravitomagnetic fields. V denotes the covariant
differentiation operator with respect to the spatial metric -y;;. The motivation for these
definitions is the following. Let u® = (u,0) be the 4-velocity of the stationary observers
whose worldlines are tangent to the time Killing vector 9/9t, and consider an orthonormal
tetrad field e5 adapted to these observers, such that e; = u, and the spatial triad e; is
fixed with respect to the coordinate basis of 7;; (i..e. points towards fixed neighboring

—

observers). Let UY = (U O, U) be the 4-velocity of some free test particle; the space part
of the geodesic equation DU /dr = 0 can be exactly written in this frame as:
DU DU 5(1oA .7 =
S =0 = =0 (UG + U x i) (3.11)
dr dr
where DX Jdr =dX i Jdr + F%U iX* denotes the 3-D covariant derivative with respect to

the spatial manifold ~;;, of a spatial vector X , along the projected curve (parametrized by
7) on 7;;. This equation is very similar to the electromagnetic Lorentz force law, which,
is this notation, reads:

DU o2 o=

—— =L (VB +7 x B)

dr mo

Also, according to Eq. (3.3), the “precession” of a gyroscope at rest (U* = 0) is given by :

DS DS 15 =
- = - == H 12
dr 0= dr QSX (3.12)

muddy; to follow it see [16], [9], [8] p. 163, [17] and [11], by this order. Herein I shall not give
more details on it because we argue this is an unnecessary complication; this gauge choice is not in
fact necessary to obtain the equations for the GEM fields (only for Eqgs. (3.7) above); one just needs
to linearize Egs. (3.6), identify the inertial GEM fields from the geodesic equation, and express the
equations in terms of them. In this way one obtains the desired equations in a transparent fashion, in
terms of quantities whose physical role is clear in advance, and avoiding the subtleties of the harmonic
gauge. See Sec. 5 of Paper #5 for more details.

12



3 Introduction and motivation

which is similar to the precession of a magnetic dipole under a magnetic field DS Jdt =
iix B.
The force on a gyroscope at rest is given by [19]
R T U Lo
Fo=3 [V(H 8y~ §(v-H)-2§- H)G} . (3.13)

Apart from the last term, this is similar to the expression for the force on magnetic dipole
that one obtains by integrating the force density F' = [ j x Bd3z (see [99], p. 189):

Fgy = V(ji- B) = ji(V - B) (3.14)

The term f(V - é) is usually not written in the literature since, due to the absence of
magnetic monopoles, V - B =0 in Lorentz frames.

In terms of the GEM fields é, H , the Einstein equations read, in their time-time,
time-space, and space-space components, respectively:

-~ . 1.
V-G = —4x(2p+T°) +G*+ 5H? (3.15)
VxH = 2GxH—16x] (3.16)
. 1~ X 1
V.G — GiGj + §H2%]‘ +R;; = 8« (2%sz + Tz]> (3.17)

The first two equations resemble, respectively, the Gauss and Ampere laws of electromag-
netostatics, but contain non-linear terms that have no counterpart in the latter (in their
usual textbook form, valid for Lorentz frames).

It is worth noting that G and H are simply, respectively, minus the acceleration and
twice vorticity of the stationary observers (of zero 3-velocity u’ = 0 in the coordinates
system of metric (3.9)):

Du®
G* = -— = —a® 3.18
dr “ ( )
H* = 2% ;u"Pu’ = 20" (3.19)

This justifies our dubbing of these fields as “inertial fields” (or fields of inertial forces).
This observation is also important for a more general formulation of the GEM fields, not
relying on the “potentials” @, Aof the stationary metric above. Indeed an exact formulation
holding for arbitrary fields and observer congruences exists in the literature [25] (albeit
little studied). The treatment in that case is much more complicated and for this reason
I shall not give it herein, instead I refer the reader to Sec. 3 of Paper #5 [5], where that
analogy is reformulated and further worked out.

Finally, this analogy has a very straightforward relation with the approach from the
linearized theory (unlike the situation between the other analogies in this section), in spite
of the fact that works establishing it are almost non-existing. Linearizing the GEM fields
(3.10) herein, one obtains, in terms of the GEM fields of Sec. 3.1.1,

é ~ —Eg; I'_j ~ —2§G .

Thus, up to the different conventions for the GEM fields, linearizing the equations above
one obtains the corresponding equations of Sec. 3.1.1.

13



3 Introduction and motivation

3.1.3 The exact analogies between the Weyl and the Maxwell tensors

There is a set of analogies, based on exact expressions, relating the Maxwell tensor F¢8
and the Weyl tensor C3,5. These analogies rest on the fact that: 1) they both irreducibly
decompose in an electric and a magnetic type spatial tensors; 2) these tensors obey dif-
ferential equations — Maxwell’s equations and the so called “higher order” gravitational
field equations — which are formally analogous to a certain extent [31, 32, 41, 34, 35];
and 3) they form invariants in a similar fashion [31, 32, 36, 47]. I will briefly review these

analogies below.
The Maxwell tensor splits, with respect to a unit time-like vector U, in its electric and

magnetic parts:
E*=F%U?, B*=%F"3U", (3.20)

i.e., the electric and magnetic fields as measured by the observers of 4-velocity U“. These
are spatial vectors: F*U, = B*U, = 0, thus possessing 3+3 independent components,
which completely encode the 6 independent components of F},,. The explicit decomposi-
tion is
Fop = 2UjoEg) + €aprsU°B" . (3.21)
In spite of their dependence on U?, one can use E* and B” to define two tensorial quan-
tities which are U® independent, namely
F,pFo8 Fop5 % F8
E°E,— BB, = -~~~ pep,=--%"" .
2 4
these are the only algebraically independent invariants one can define from the Maxwell
tensor.
Let T"‘B, ho‘ﬁ be the time and space projectors — i.e., parallel and orthogonal to U“:

(3.22)

%= (TV)% =-U"Us;  h%=(hY)% =UUs + 0% (3.23)
Substituting decomposition (3.21) in the Maxwell equations

PO = dmj®  (a); «FP =0 (b), (3.24)
and taking time and space projections one expresses them in terms of the electric and
magnetic fields measured by the observers of 4-velocity U®:

V,E* = dnpe + 2w, B* ; (3.25)
o3 DrE® o ps 2ppo o BEY Lo BBaY 4+ 4mil@
€ Bg., = —0%E” + §9E — €%, W BT + €%, B a’ + 4wy (3.26)
V,.B* = —2w,E" ; (3.27)
DrB® 2
P B, = -T2 1 5%B° — 0B + %0 B + e B (3.28)

where €., = €, U7, VAP = h)‘ahﬁjl...hﬁgnv)\Am'"p” denotes the spatially pro-
jected covariant derivative of a tensor A% #n and Dp/dr is the Fermi-Walker derivative.
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3 Introduction and motivation

The quantities 0, 0, = ho‘uh’BVUa;g, w* = ea57U7;5/2 and a®, are, respectively, the ex-
pansion, shear, vorticity and acceleration of the congruence of observers with 4-velocity
Ue.

The Weyl tensor has a decomposition formally similar to (3.20)-(3.21). With respect to
a unit time-like vector U?, it splits irreducibly in its electric £,3 and magnetic H,g parts:

Eapp = ConpoUTU%,  Hop = %ConpoUTU. (3.29)

These two spatial tensors, both of which are symmetric and traceless (hence have 5 in-
dependent components each), completely encode the 10 independent components of the
Weyl tensor. The explicit decomposition is,

5 g § v Suv
Cop”® = 1{20,01 + g [} &) + 2 {eagu U MU + U, Hg, 0, . (3:30)
Again, in spite of their dependence on U®, one can use &,z and H,g to define the two
tensorial quantities which are U® independent,

C, ﬁuycaﬁuu Copyw * B

8 ’ 16 ’
which are formally analogous to the electromagnetic scalar invariants (3.22) (it should
be noted however that, by contrast with the latter, these are not the only independent
scalar invariants one can construct from C,g,,; there are also two cubic invariants, see
[32, 45, 46]).

As stated above, these tensors obey also differential equations which have some formal
similarities with Maxwell’s; such equations, dubbed the “higher order field equations” are
obtained from the differential Bianchi identities R,;[,,,o] = 0. These, together with the
field equations (5.7a), lead to:

EPEns — H P Hop = EP M pp = (3.31)

1
CMVJT;M = &7 <TV[T;J] — 391/[7'7‘;0]> , (332)

Expressing Cqgsy in terms of £,5 and Hag using (3.30), and taking time and space
projections of (3.32) using the projectors (5.105), one obtains, assuming a perfect fluid,
the set of equations

~ T -~
VMEV” = ?ﬂ-vup =+ 3““7'[1/# + eyaﬁo.a’nyB'y (3.33)
1, = 2Ee 4 €00 — 30 &7 —wie £0—2aPe,  HT+4 3.34
Curtitw = - pr T &l = S0y — W Erp(pyy T 20T €pr () + T(p+p)ow (3.34)
VuH = 87(p + plwy — 3wEyy — €papo® €7 (3.35)
D
el = My, = Hyu + 300 ]+ T er 1S — 20°60r ) (3.36)
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3 Introduction and motivation

where curld,pg = € V(aAﬁ) and the index notation (uv) stands for the spatially pro-

Vi
jected, symmetric and trace free part of a rank two tensor (cf. definitions in [34]):

1
_ ap B «
Aty = h Wy Aap = ShiwhasA A

)

The analogy with Maxwell’s equations is closer if one considers the case of vacuum, and
takes the linear regime; in this case Eqgs. (3.33)-(3.36) become the equations in the right
column of Table 3.1, originally found by Matte [31] (see also [32, 33]), which are formally
similar to Maxwell’s equations in Lorentz frames, only with the electric and magnetic
parts of the Riemann tensor E,g = Rqu5, U*U", Hopg = *Ra,5,U*U” in the place of the
electromagnetic fields (note that, in vacuum, Rogy5 = Capys)-

Table 3.1: Analogy between Maxwell’s equations in Lorentz frames and Matte’s equations.

Electromagnetism Linearized Gravity
Maxwell’s Equations Matte’s Equations
E' =0 (3.1.1a) EY, =0 (3.1.1b)
B, = (3.1.2a) H”J =0 (3.1.2b)
. oB" el OH
Kl Kl
e"Ep g =— B (3.1.3a) €' E]l,k; == (3.1.3b)
. OB o OEY
Kl Ik
€™ By = 5 (3.1.4a) e IHIJ“€ = a0 (3.1.4b)

3.1.4 Some then open questions to be addressed

As mentioned above, the limit of applicability of the usual analogies based on the linearized
theory was unclear; new approaches allowing for a transparent assessment of the actual
physical similarities between linearized gravity and electromagnetism, and under which
precise conditions they occur, were for this reason needed.

The physical content of the analogy in Sec. 3.1.3 was an unanswered question in the
literature, and that is mainly due to the fact that the magnetic part of the Weyl (and
Riemann) tensor was not well understood (the electric part &,,, was reasonably well un-
derstood due its role in the geodesic deviation equation); in the literature concerning this
approach its physical significance was either presented as an open question [42, 44, 43], or
given inconsistent interpretations. It was suggested in some works to be associated with
rotation [37, 38, 34, 39, 40] and gravitational radiation [43, 48, 49, 50, 51, 40]. However,
immediately contradictions arise [37, 38, 34]: there are many known examples of rotating
spacetimes where the magnetic part of the Weyl tensor vanishes; amongst them is the
notorious example of the Gddel Universe. It is also clear that gravitational waves cannot
be the sole source for H,,, since the latter is generically non-vanishing in most stationary
spacetimes.
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3 Introduction and motivation

The relationship between the different analogies (namely, the relationship between the
electric and magnetic parts of the Weyl tensor, and the GEM fields) was another issue
in need for a clarification, as they lead to seemingly different, even opposite, views of the
same problems. Consider, for example, the Heisenberg spacetime (the same conclusions
would be reached with e.g. the Godel Universe; I choose Heisenberg’s because it is possible
to analyze it both with exact and linearized theories), whose line element is given by

ds? = (dt — ar?d)” + dr? + r2dg? + d=2 .

Both according to the approach based on linearized theory of Sec. 3.1.1, and with the
exact approach of Sec. 3.1.2, this spacetime has zero gravitoelectric field: G = EG =0,
and a non-zero (uniform) gravitomagnetic field; Bq = —a€, in the definitions of Sec.
3.1.1, or H = 2aé, in the definitions of Sec. 3.1.2. However according to the analogy
based on the Weyl tensor in Sec. 3.1.3, this is a purely electric spacetime! Indeed, for the
observers u’ = 0 (the same observers measuring the GEM fields above), the magnetic part
of the Weyl (and Riemann) tensor wvanishes: Hqpg = Hap = 0, and it is the electric part
of the Weyl tensor that is non-zero: £,5 # 0 (the non-zero components are &, = 2a?/3,
Epp = 2r%a®[3, €., = —4a®/3). And when observers exist for which €, # 0, Hep = 0,
the spacetime is in this framework classified as purely electric, see [45, 46].

3.2 Spinning multipole particles in general relativity

The classical equations of motion for spinning charged particles (possessing only charge
and intrinsic magnetic dipole moment) under the action of electromagnetic fields were
first derived in the framework of Special Relativity by Frenkel [55] (see also [131]), and
subsequently? by Bhabha-Corben [56, 82, 83] (for particles with both electric and magnetic
moments) and Weyssenhoff-Raabe [76]. Later, more rigorous treatments were put forth
by Dixon [59] and Gralla et al [64]; in [64] particles with electric and magnetic dipole
moments are considered, and [59] gives equations valid to arbitrary order in the multipole
expansion.

In the presence of a gravitational field, the equations of motion for spinning multipole
particles were first derived by Mathisson [61], for zero electromagnetic field, and accurate
to quadrupole order; these equations were then re-derived by Papapetrou [79], who carried
out a derivation exact (in the external field) at each step, but for pole-dipole particles only.
Tulczyjew [62], Taub [117], Dixon [60] and Souriau [118, 119], carried out derivations
covariant at each step, again for pole-dipole. The latter two, unlike the former, include
also the electromagnetic field. Equations with both electromagnetic and gravitational fields
valid first to quadrupole order [81], and then to arbitrary order [106], were given by Dixon.
Some recent treatments re-derive these equations; Gralla et al [66] obtained equations to
quadrupole order in Dixon’s scheme (based on the “generalized Killing vectors” of [81]);

4There were also the famous treatments by Thomas [128] and by Bargmann-Michel-Teledgi [127]; these
are not covariant treatments, however, and only take into account the particle’s spin in the equation
for the spin evolution, and not in the force equation.
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and Natdrio [65], by a totally independent method (based on a Lagrangian approach to
the problem of the Euler top in General Relativity) derived, for arbitrary dimension, the
equations for pole-dipole particles in a gravitational field.

In-between these works there are treatments on free spinning pole-dipole particles in
flat spacetime, most notably the work by Mathisson [74] where the famous helical motions
were discovered, further worked out and re-derived by Weyssenhoff-Raabe [75, 76], and
the important treatment by Méoller [78], where first light was shed on the issue of the
spin supplementary condition®, the helical motions, and the relation with the problem of
defining a center of mass for spinning bodies in relativity.

The treatments are all very different (and lead also to seemingly different results, which
was one of the issues we needed to clarify in our work as explained below), some more
rigorous than the others, thus I cannot go through the details of each of them; so below
I very briefly outline the main ideas of the multipole scheme for test bodies in general
relativity, and I take the physically more consistent viewpoint of extended test bodies (not
point particles), and describe them in terms of a covariant multipole expansion. Thus I
follow a scheme that is closer to Dixon’s, e.g. [59, 60], yet simplified and already using our
formalism and notation of papers #3 [3] and #4 [4].

A test particle is described by the moments of its charge current density 4-vector j* (the “electro-
magnetic skeleton”), and the moments of T (the “gravitational skeleton” [61]). In flat spacetime
(and in Lorentz coordinates) they are, respectively,

T ank (1) / PO T A8, (3.37)
3(r,U)

tal"'a"w/(’f)

/ oL T wdY, . (3.38)
=(mU)

These moments are taken with respect to a reference worldline z%(7), of proper time
7 and (unit) tangent vector UY = dz%/dr, and a hypersurface of integration X(7,u).
Y(1,u) = X(2(1),u) is the spacelike hypersurface generated by all geodesics orthogonal to
some time-like vector u® at the point z%(7); r* = 2 — 2%(7), where {z} is a chart on
spacetime; d¥, = —u,dY, and d¥ is the 3-volume element on (7, u). w® is a vector such
that displacement of every point by w”dr maps %(7) into X(7 + dr), see [115, 59, 60] for
more details. In a strongly curved spacetime (or if one uses a non-rectangular coordinate
system) one needs to refine the expressions above in terms of bitensors (see the formulations
in [60, 81, 105, 106, 66]), as not only r® = 2% — 2%(7) is not a vector® (only to first order),
but also the integrals (3.37)-(3.38) above would make no sense, as they would amount
to adding tensor components at different points. If only lower order moments are to be
kept, and if the gravitational field is not too strong, one can still to a good approximation

5One can say that this important work by Méller laid the foundations for our contribution, Paper #3 [3].

5Tn the general case of a curved spacetime, the distance between two points is the length of the geodesic
connecting them; r® is not even (exactly) a vector, and the closest notion to a separation vector is the
bitensor —o"(z, z), which is the vector tangent to the geodesic at z“ whose length equals that of the
geodesic connecting the two points [60, 81]. Also one must distinguish a coordinate system at 2% from
the one at z“, as the basis vectors change from point to point in a curved spacetime.
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[81, 140, 116, 4] set up a locally nearly Lorentz frame and compute the moments from the
expressions (3.37)-(3.38). In particular, to dipole order (which is the case we are mostly
interested in), the bitensors are by definition redundant, as the approximation amounts to
considering T and j non-vanishing only in a very small region around z%(7), so that
only terms linear in r are kept; to first order, r® is a vector (see e.g. Eq. (7) of [96]),
and /7%r, the distance between two points. Also, to first order, spacetime can always be
taken as flat, thus these integrals are meaningful mathematical operations and do indeed
define tensors, just like in flat spacetime.

3.2.1 Equations of motion for pole-dipole particles

This is the simplest case next to the monopole particle (whose sole equation of motion
is the Lorentz force), and it is perhaps surprising that the problem of the equations of
motion for it is still not well understood, with different methods and derivations leading
to different versions of the equations, and the relation between them not being clear.
And that it is the electromagnetic (not the gravitational) field that has been posing more
problems.

The many existing approaches are very different, so I will state the general problem
in the covariant multipole scheme of the previous section. Truncating the expansion to
dipole order amounts to keep only two moments of T%?: t®¥ ¢*%7 and two moments of
3% J%, J%. In the integrals (3.37)-(3.38), to dipole order, w® ~ U® . The equations of
motion will follow from the charge conservation j<, = 0, and from the conservation of the
total energy-momentum tensor [59, 81],

(Tiot)"g =0 & T = F*jg . (3.39)

where F* is the Maxwell tensor of the external (background) electromagnetic field and
T8 the energy-momentum tensor of the particle. A straightforward solution of this ap-
parently simple problem, in term of quantities whose physical meaning is clear at each
step, is yet to be given in the literature.

The following form of the equations is popularized in the literature, both concerning
general relativistic treatments, e.g. [81, 106, 66]

DP* 1 e 1. ,

- :qFO‘BU5+§F’“” Qv = 5 RS (3.40)
DSe” lag78] 4 90018 po!
T = 2T+ 2Q" R, (3.41)

or, for the case Raﬁw = 0, in special relativistic treatments, e.g. [56, 83, 59]. ¢ = fE 71%d%,,
is the charge, Qs is the electromagnetic dipole moment tensor,

QY = 2dl°UP) 4 P70y, Us | (3.42)

where d® and p® are the electric and magnetic dipole moments measured by the observer
of 4-velocity U® (i.e., comoving with the reference worldline). These can be written in
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terms of the moments J° defined in Eq. (3.37), taking u® = U®:
“ = —J%ug, (3.43)

1
,ua = §€a6,y§U5j/8/Y . (344)

But other (less well known) version of these equations exists in the literature [60, 77]:

DP* 1 1 Dd’

= aFQUT+ SF = SR, 8UP + F U + F——  (3.45)
DSP N

i = 2Pluf) 4 200 el 1 2l AL (3.46)

where
Hap = 6a675ﬂ’yUé .

P and S°# are taken to be the momentum and angular momentum of the particle. But
clearly one cannot be dealing with the same quantities in Eqgs. (3.40)-(3.41) and (3.45)-
(3.46), as the equations would not be compatible. This is the case in particular with P
(in the case of S*?, to dipole order, it makes no difference, see Appendix A of Paper #4
[4]); contracting (3.41) with U®, one obtains the expression

B DSeP

P =mU”
m dr

Up — €%,,d" B*U7 + €% i’ EXUT (3.47)
whereas contracting (3.46) with U leads to

DSeB

PY = mU® —
m dr

UIB + EQG)\TIU’QE)\UT ) (348)

so indeed these expressions correspond to different quantities. We argue in Paper #4 [4]
that it is expression (3.48) that is the physical momentum momentum of the particle,
understood as the integral on a spacelike hypersurface of the particle’s energy-momentum
tensor

P = / TPy . (3.49)
3(r,U)

As for the expression (3.47), which hereafter I will denote by P, (“Dixon’s momentum”),
we argue, following [110], that it is a part of the canonical momentum P%, = P, + qA*
associated to the Lagrangian of the system. In many treatments it is simply not clear
what P* or P§,, is. In Dixon’s treatments [81, 106, 59] it is clear from the beginning that
Pg,, is not (3.49), as electromagnetic terms are explicitly added to its definition, see e.g.
Eq. (5.1) of [81]. The problem in this case is in the physical interpretation, as Pg; is
nevertheless taken therein as the physical momentum, which leads to inconsistencies, as is
explained in detail in Appendix A of Paper #4 [4]. Therein the relationship between the
two formulations, and how to obtain one from the other, is clarified.
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The spin supplementary condition. — Many other issues were unclear in the literature
concerning these equations. Firstly, in order for Eqgs. (3.45)-(3.46) to be equations of mo-
tion, the reference worldline z%(7) must be chosen as some representative point through
the body (so that its tangent U? is the body’s 4-velocity). Even in the case F*% = 0,
the system above is undetermined, as it has 3 more unknowns than equations. The sys-
tem can be closed” by imposing a condition of the type Sa5u5 = 0, for some time-like
unit vector field u®, which effectively kills off 3 components of the angular momentum.
The role of the condition So‘ﬁu5 = 0 is to specify the representative point of the bodys;
more precisely, to choose it as being the center of mass as measured by some observer of
4-velocity u®. The choice of the vector field u® has been subject of a long debate in the
literature, sometimes put in terms of which are the “correct” and the “wrong” conditions
for each type of particle (since its status as a mere gauge choice is still not generally
well understood; see introduction of [87] for a comprehensive review). The three best
known ones are the Corinaldesi-Papapetrou condition [89], where u® o 9/t corresponds
to the static observers in Schwarzschild spacetime (but can be easily generalized to other
stationary spacetimes), the Frenkel-Mathisson-Pirani condition [55, 61, 80] (hereafter Pi-
rani’s condition, as it is best known), where u® = U? (i.e., the center of mass is computed
in its own rest frame), and the Tulczyjew-Dixon condition [62, 60, 81], where u® is taken
parallel to P®. It is the point of view in most of the literature that it is preferable to
have equations of motion depending not on a center of mass measured by some particular
observer, but instead one that is defined only in terms of properties “intrinsic” to the par-
ticle. The latter two conditions accomplish that, and are the most widely used (especially
the Dixon-Tulczyjew); the differences between the two have been discussed, and again
subject of a number of misunderstandings (for a review and clarification, I refer the reader
to Appendix C.2 of Paper 4 # [4]).

Especially poorly understood is the Mathisson-Pirani condition, which happens to be
the most important one in the context of this work, as the exact gravito-electromagnetic
analogies for spinning particles require this condition to be used. This condition is de-
generate, and allows for exotic helical solutions, even for a free particle in flat spacetime
(in addition to the uniform straightline motion, which is also a solution). In the zero
3-momentum frame (P’ = 0), these are circular motions of radius

vy2S
m

where S = /5%7S,5/2, m = —PU, is the particle’s “proper mass”, and v = 1/v1 — v?;
for more details see Sec. 5.40 below. The motions have been dubbed unphysical (see e.g.
[76, 77]), due to the belief that R, for a given particle, can be arbitrarily large, based on the
fact that « can be arbitrarily large. That is, the representative point of a finite free body
might move along circular trajectories with any radius, which is obviously contradicted by
experiment and seemingly would invalidate the interpretation of this spin condition as a
center of mass choice. It was our goal in Paper #3 [3] to clarify the misconception at the
origin of these assertions, see Sec. 5.4.4 below, demystify the helical motions, and prove

R:

"In the case F*# = 0, one needs also to provide evolution laws for the moments d* and p®.
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that there is nothing wrong with this spin condition.

The hidden momentum. — Eq. (3.48) above tells us that the particle’s momentum P? is
not parallel to the 4-velocity U® — the particle is said to possess “hidden momentum”. This
was another issue that was not well understood, and yet to be discussed in the framework
of General Relativity when we started this work. The reason for the denomination hidden
momentum is as follows: since P“ is not parallel to U, in the center of mass frame
(where U = 0) there will be a non-vanishing spatial momentum P # 0; since in this
frame the body is, by definition, at rest, this momentum must be hidden somehow. The
third term in (3.48) is what we dub the “electromagnetic” hidden momentum. It is a still
not well known feature of relativistic electrodynamics, despite its discovery by Schockley
& James [90] dating back from the 60’s, and having since been discussed in number of
papers, e.g. [91, 90, 92, 93]. It is originated by the action of the electromagnetic field on
the particle, and it is for that reason that we dub it “electromagnetic”; but it should be
noted that it is purely mechanical in nature, see e.g. the simple physical model in Fig. 9
of [100] (see also Appendix D of Paper #4 [4]).

The second term in (3.48) is what we dub “inertial” hidden momentum, a concept
that did not exist yet when we started this work. It was introduced only recently by
Gralla-Harte-Wald in [66] (where it was dubbed “kinematical” hidden momentum), which
was also the first work where the problem of the non-parallelism of U® and P% was
addressed in a fully relativistic approach. This hidden momentum originates from the spin
supplementary condition (i.e., from the field vector u® with respect to which the center of
mass is computed). We further worked out these ideas in papers #3 (where we shown that
the hidden momentum explains the dynamical consistency of Mathisson’s Helical motions)
and #4, and a paper [120] is now in preparation where an exact formulation in terms of
the GEM inertial fields of Sec. 3 of Paper #5 [5], yielding the hidden momentum of the
particle when its center of mass is computed in an arbitrary frame (that is, applying to
arbitrary spin conditions), is presented.

Finally, it should be noted that the hidden momentum (and now in particular the elec-
tromagnetic one) is not a feature one only needs to care about in sophisticated relativistic
treatments; indeed it affects the textbook expressions for the forces exerted on a particle
with electromagnetic moments. Take the case of the force exerted on a magnetic dipole;
there has been a long debate in the literature concerning the correct equation for this force,
and how it changes according to the two concurrent dipole models (the current loop, and
the pair of monopoles; the result will differ because the former, but not the later, possesses
hidden momentum); see e.g. [91, 122, 123, 124, 125]. T will not go through the details of
each of these works (some of them is fair to say are not very rigorous, and contain even
some mistakes). For a purely magnetic dipole (d® = 0, ¢ = 0) in flat spacetime, and in
the particle’s rest frame, the space part of Eq. (3.45) above reads

. DP .
Fegm = ar V(B - i), (3.50)

where Vi(B - i) = B¥p;. One is used to see this expression in textbooks, e.g. [99], and
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it is correct, for a magnetic dipole taken as a small current loop. But what many authors
are not aware of is that this is not md, because such particle possesses hidden momentum
Paia = i X E; c.f. Eq. (3.48). And the force Eq. (3.50) above is the derivative of the total
momentum of the particle (including the hidden one). The acceleration equation reads

. - DPy = o D, o . _ - Di_ x
ma:FEM—A:V(B-u)—g(uxE):(u-V)B—d—f><E (3.51)

which is in agreement with [91, 124, 125]. Here (- V!)B = B%/ {5, and in the last equality
I used Maxwell vacuum equation V x B = dE/dt. In some textbooks, e.g. [126], we find
the expression F' = (fi - V)B for the force on a magnetic dipole; it is thus not true in

genergl. Such expression can only yield either DP /dt for vacuum electrostatics (so that
VxB=0= (fi-V)B=V(B-[i)), or ma for the case of a fixed dipole Dji/dr = 0.

3.2.2 Equations of motion to quadrupole order

The relativistic equations of motion for spinning particles, to quadrupole order, were given
first by Mathisson [61] (see also [97]) for purely gravitational fields; then Dixon derived
the equations in the presence of an electromagnetic field, first in flat spacetime [59], and
later for curved spacetime [81, 106]. Dixon’s treatments in [59, 106] are actually valid to
arbitrary multipole order, and based on exact multipole moments, which in the case of
curved spacetime require the use of bitensors. The theory of bitensors is given in [129];
see also the brief reviews in [81, 105]. As explained above, to quadrupole order, and to a
good approximation, the bitensors may be dropped and one may define the moments in a
way similar to the case of flat spacetime. The equations are [59, 106, 66],

DPS, 5 10 1
dr == QFa U/g + §FMV7QQ;LV - 5 a[guysuy
1 e 1 .
+3Qoya P — < Tgyso ROT (3.52)
DS
= 2Pon) U+ 2Q%1P 7
-

(3.53)

. 4
+2m[aqu5]“’p + gJWp[aRﬁ/})W ’

where m®? = 4Q(0‘5)7/3, Q"7 is an electromagnetic quadrupole moment, and J*#79
a quadrupole moment of T, see Sec. VI of Paper #4 [4] for their definitions. The
question mark is on the physical interpretation of these equations. In the literature these
are portrayed as giving the “force” and the “torque” [81, 66] on the spinning particle, up
to quadrupole order. We argue that they do not yield the actual force and torque on
the body, because these are not equations for the physical momentum P, defined by Eq.
(3.49), and angular momentum S®?, defined by

50 =2 / rlerfgs., .
3(r,U)
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For this reason, following the discussion of the previous section, I denote the “momentum”
in Eqgs. (3.52)-(3.53) by Pg,,, and the angular momentum by S8 because it is argued in
to be the “canonical” angular momentum [110] (for more details see Sec. 5.5.4.1). P® is
not the same as Pf5;, when an electromagnetic field is present, which is already manifest
to dipole order as discussed above; and to quadrupole order, S?‘a’% cannot also be taken
as S, as shown by Eq. (5.93) below. Moreover, unlike the issue with the definition
of momentum, which does not affect the main results in Paper #4 [4] as we deal mostly
therein with magnetic dipoles (for which P, = P®), this one affects any spinning charged
body, and also the interpretation of the work of the force, and of the proper mass variation,
that we obtain to dipole order (as explained in Sec. 5.5.4.1 below). On top of that, unlike
the equations to dipole order, for which the alternative version (3.45)-(3.46), in terms of
what we call the physical momenta, is known, in the quadrupole case, by contrast, Egs.
(3.52)-(3.53) above (given in e.g. [59, 81, 106, 66]), were the only ones available in the
literature that take into account the electromagnetic field (in the framework of a covariant
multipole approach).

The inadequacy of Eq. (3.53), taken as a physical torque, becomes clear if one considers
a spherical, uniformly charged body in flat spacetime. In that case (in vacuum) the term

m[aWF Bliip vanishes (see Sec. VIA of Paper #4 for details); all that remains is the dipole
term 2ufPF a]e, present in Eqs. (3.46) or (3.41), which does not change the magnitude of

S?aﬁn (if one also assumes o = a&fﬁ, as done in [81, 66]), and moreover vanishes if the
magnetic field B* is aligned with S . That contradicts what we know from elementary
arguments: if an electric field with a curl is present, it must torque the charged bodys;
that is the case when the magnetic field is time-dependent, by Faraday’s law of induction
VxE = —-0B /Ot. That torque has actually been computed in some non-relativistic
treatments [107, 108, 109], where the following expression is presented for the torque

exerted on a spinning charged ball in an electromagnetic field, e.g. Eq. (1) of [107]:

- .. B dB

T=ixB—-ol I
Here o = q/2m is the gyromagnetic ratio, and I the moment of inertia of the sphere about
an axis passing through its center. The first term is the usual torque on the magnetic
dipole, the second is the torque due to the induced electric field, which we dub 7i,q. If
the sphere is uniform, oI = ¢%,/3, where g,z is the charge quadrupole, given by definition
(5.94) below. Thus Ti,q is manifest to quadrupole order.

Due to its importance in the context of this work — since a fundamental difference
revealed in the tidal tensor formalism put forth in Paper #1 [1] is the absence of gravita-
tional effects analogous to electromagnetic induction — this was a problem in need to be
addressed: obtain the equations for the physical quadrupole torque, single out the torque
due to electromagnetic induction and clarify how it fits in Dixon’s multipole scheme. That
is done in Paper #4 [4], where, as discussed in Sec. 5.5.4.1 below, it is shown that indeed
it is the part of the torque ignored in Eq. (3.53) (i.e., the space part of —DS"*?/dr,
see notation therein) that encodes the torque due to Faraday’s induction on an arbitrary
charged body (not only spherical).
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3.2.3 The gravito-electromagnetic analogies for spinning particles in the
literature

Analogies between the equations of motion for gyroscopes in a gravitational field and mag-
netic dipoles in an electromagnetic field have been unveiled in different forms throughout
the years. This is the case for both the force equation (center of mass motion) and the
spin evolution equation of these test particles in external fields. Below I shall describe
what was the state of the art prior to our paper devoted to the subject, Paper #4 [4].

The analogy for the force was first found by Wald [10] in the framework of linearized
theory, who showed that the gravitational force exerted on a spinning pole-dipole test
particle (hereafter a gyroscope), whose center of mass is at rest in a stationary field, takes
the form (3.5), analogous to the force on a magnetic dipole. The analogy was later cast in
an ezact form, Eq. (3.13), by Natdrio [19], using the ezact gravitoelectromagnetic (GEM)
inertial fields from the so-called 1+3 “quasi-Maxwell” formalism that I briefly review in
Sec. 3.1.2. The force was seen therein to consist of an electromagnetic-like part in the
form V(H - S)— S(V - H), plus a term (S - H)G interpreted as the weight of the energy of
the gravitomagnetic dipole; the limit of validity of the analogy was thereby extended to
arbitrarily strong stationary fields and when the gyroscope’s worldline is tangent to any
time-like Killing vector field (it comprehends e.g. circular trajectories with arbitrary speed
in axisymmetric spacetimes). And in Paper #1 [1] we put forth the exact, covariant and
fully general analogy relating the two forces, made explicit in the tidal tensor formalism.

The analogy between the so-called “precession” of a gyroscope in a gravitational field
and the precession of a magnetic dipole under the action of a magnetic field was noticed
long ago, in the framework of linearized theory, see Eq. (3.4), by a number of authors
[140, 147, 7, 141]. The analogy was later cast in an ezact form, Eq. (3.12), in the framework
of the GEM inertial fields, e.g. [140, 25, 19]; it is not covariant, holding only in a specific
frame comoving with the particle, but, in the formulation in [25] (see Paper #4 [4] for
details), the test particle can be moving with arbitrary velocity in an arbitrary field.

Finally, it had recently been found by Gralla-Harte-Wald [66] an analogy, at an approxi-
mate level, between what we call the “inertial” hidden momentum Pg;; (dubbed “kinemat-
ical” in [66]), under Dixon-Tulczyjew spin condition S®? Pg = 0, and the electromagnetic
hidden momentum P ;5. The approximate expressions are Puiar ~ —(1/M)S x F (with
F = DP/dr), and Pyapm ~ ji X E (we show in Paper #4 [4] that the analogy can be cast
in an exact form, using the Mathisson-Pirani condition instead).
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4.1 The exact GEM analogy based on tidal tensors

In an approach started in [1], and completed in [5], an exact analogy between gravity and
electromagnetism, based on what we called the “tidal tensors”, was found. We were seeking
a formalism that would allow for a transparent comparison between the two interactions.
Clearly, relativistic gravity and electromagnetism are very different theories; the reasoning
was that, in order to separate the differences in the description from the actual differences
in the physics, the comparison should be based on physical forces that could be invariantly
defined in both theories. There is no physical, covariant, gravitational force analogous to
the Lorentz force of electromagnetism, due to the equivalence principle (which can be
stated as gravity being “pure geometry”); that is, the gravitational field does not exert
forces on monopole particles, which move along geodesics. Tidal forces, by their turn, are
covariantly present in both theories, and for this reason they are the basis of this approach.
They manifest themselves in two basic effects:

e the relative acceleration of two nearby (monopole) test particles; this is described by
the geodesic deviation equation in gravity, and by the analogous worldline deviation
of electromagnetism (for particles with the same ratio ¢/m);

e the net force exerted on test particles with dipole moments. There is no gravitational
analogue to the intrinsic electric dipole, as there are no negative masses; but there is
an analogue to the magnetic dipole moment. The intrinsic magnetic dipole moment is
the dipole moment of the spatial (with respect to the particle’s proper frame) charge
current density about the particle’s center of mass. Its gravitational analogue is the
particle’s angular momentum about its center of mass, i.e. the dipole moment of
the spatial mass/energy current (usually dubbed “spin” tensor/vector). A spinning
particle whose only gravitational moments are the momentum and the spin, is what
we dub a (ideal) gyroscope.

When one compares the exact equations describing these effects, an exact dynamical anal-
ogy emerges. Both in gravity and electromagnetism, the relative acceleration of neighbor-
ing monopole test particles (momentarily with the same velocity, and the same ¢/m in
the electromagnetic case) are given by a contraction of an electric-type tidal tensor with
the separation vector. And, if the Mathisson-Pirani spin condition is employed, both the
force on a gyroscope and the force on a magnetic dipole, are given by a contraction of a
magnetic type tidal tensor with the magnetic moment / spin vector of the particle.
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This analogy extends to the field equations; the Maxwell equations (the source Egs.
(5.5a), plus the Bianchi identity (5.5b))

PO = Amj®  (a); «FP =0 (b). (4.1)

can be cast, decomposing them in their time and space projections with respect to a unit

time-like vector U%, as a set of four algebraic equations involving only tidal tensors and

sources. The gravitational field equations (Einstein Egs. with sources, plus the algebraic
Bianchi identity)

1 a
R’Ya"yﬁ = Raﬁ =8m (Ta,b’ — 2gO¢BT’YY> (CL), *Rﬂy ] =0 (b), (42)

by their turn, taking time and space projections, decompose into a set of six algebraic
equations, four of which analogous to the Maxwell equations (and likewise being algebraic
equations involving only tidal tensors and sources) plus two additional equations which
have no electromagnetic counterpart, and involve a third rank 2 tensor that encodes the
purely spatial curvature. Conversely, in the four equations with an electromagnetic coun-
terpart, there are missing terms comparing with electromagnetism; these correspond to
the antisymmetric parts / time projections (with respect to the observer congruence) of
the electromagnetic tidal tensors, and encode the laws of electromagnetic induction, which
have no gravitational counterpart. This is a fundamental difference between the two in-
teractions that is herein made transparent, and is extensively explored in this work [4, 5].

4.2 The exact GEM analogy based on fields of inertial forces

This approach has a different philosophy from the tidal tensor analogy, as it does not
compare physical forces from both theories; instead it explores a parallelism between the
electromagnetic fields and fields of inertial forces arising from the so-called “1+3 splitting”
of spacetime. That is, physical forces on the electromagnetic side, and reference frame
artifacts on the gravitational side. This is more in the spirit of the well known analogy
between linearized gravity and electromagnetism, where one looks for some “vector” fields
playing in gravity a role analogous to the electromagnetic ones — actually those fields are
but a special limit of the exact ones herein.

This analogy emerges as follows. We take an arbitrary orthonormal reference frame,
which can be thought as a continuous field of orthonormal tetrads, or, alternatively, as
consisting of a congruence of observers, each of them carrying an orthonormal tetrad
whose time axis is the observer’s 4-velocity, and the spatial triads, spanning the local
rest space of the observers, are for now left arbitrary (namely their rotation with respect
to Fermi-Walker transport). The mixed time-space part of the connections associated to
this frame encode four spatial kinematical fields: the acceleration a®, vorticity w® and
shear K,y of the observer congruence, plus the rotation Q% of the spatial triads with
respect to Fermi-Walker (FW) transport. Writing the geodesic equation in such frame,
one obtains for the spatial part an equation resembling the Lorentz force, with —ad = G
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in the role of an electric field, O+ & = H in the role of a magnetic field, plus a third
term with no electromagnetic analogue, involving K(g). And, if the Mathisson-Pirani

spin condition holds, gyroscopes are seen to precess relative to this frame at frequency o)
(like a magnetic dipole precesses at a rate —B under a magnetic field).

In this approach we finally understood the true nature of the so-called “gravitomagnetic
field” (H) — it is a reference frame artifact that comes from two separate parts of distinct
origin: the vorticity of the observer congruence, plus the rotation (relative to FW trans-
port) of the tetrads they carry. Only the latter is implied in the gyroscope “precession”.

Doing a time plus space splitting of the Maxwell equations (5.5), and expressing them
in terms of the electric and magnetic fields measured with respect to the observer congru-
ence, we obtain a set of four equations which are a generalization of the usual textbook
expressions (valid in Lorentz frames) to frames with arbitrary acceleration, rotation, and
shear. And doing a similar splitting of the gravitational field equations (5.7), and express-
ing them in this frame — that is, in in terms of the “gravitoelectromagnetic” (GEM) fields
G and H , the shear K (,g), and a suitably defined “spatial curvature” — we again obtain a
set of six equations, four of which analogous to Maxwell’s, plus two additional ones with
no electromagnetic counterpart. The four equations which are analogous to Maxwell equa-
tions present many formal similarities with the latter; and the similarity gets closer when
one considers stationary fields and rigid frames (K (,3) = 0), where we obtain the so-called
“quasi-Maxwell” regime. In this regime, an exact analogy emerges also in this formalism
between the electromagnetic force on a magnetic dipole and the gravitational force on a
gyroscope (it is not, however, as general as the one from the tidal tensor formalism).

The well known analogies between linearized gravity and electromagnetism, where the
notion of GEM fields first came about, are recovered as a limiting case of this exact
formalism (for the weak field, slow motion regime).

This formalism is very powerful (cf. discussion in the conclusion of [5]); and it is
even more so when used together with the tidal tensor formalism — for this reason the
connection between the two, established in [5], is of primary importance.

4.3 Gravity contrasted with electromagnetism — where can
they be similar

It is important to realize that the existence of the exact analogies above does mot mean
that the interactions are similar. Both the analogy based on tidal tensors and the analogy
based on inertial GEM fields are functional analogies; the gravitational tidal tensors and
inertial fields, despite playing roles dynamically analogous to the electromagnetic tidal
tensors and fields, are themselves in general very different from the latter. (Even for
seemingly analogous setups).

What these formalisms provide is a set of tools to compare the two interactions, and
tell us where a similarity is to be expected. In what concerns the concrete effects, the
precise conditions (namely regarding the time dependence of the fields) for occurrence of
a gravito-electromagnetic similarity are specific to the type of effect [2, 5]. More generally
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one can say that the similarity may occur in weak stationary fields, and only for special
frames therein. In [2] we discussed this issue in the framework of linearized theory and
Post-Newtonian approximation, in view of astrophysical applications of present interest,
namely the rotational and translational gravitomagnetic effects, subject of experimental
scrutiny in past, recent and ongoing space experiments [54, 69]. A distinction, from the
point of view of the analogy with electrodynamics, between effects related to (stationary)
rotational mass currents, and those arising from translational mass currents, was found
to exist: while the former are clearly analogous to magnetism, in the case of the latter
the analogy is not so close. In Sec. 7 of [5] we generalize this analysis in terms of exact
equations.

4.4 The problem of the center of mass in general relativity;
Mathisson-Pirani spin condition

Both the magnetic parts of the analogy based on tidal tensors (i.e., the force on the
spinning particle), and of the one based on inertial fields (both the equation for the force
and for the particle’s spin precession), require the Mathisson-Pirani condition to hold [4].
However this spin condition is usually portrayed in the literature as problematic; that led
us to address and clarify this issue in [3].

The problem of the spin condition can be stated as follows: the equations of motion for
spinning pole-dipole test particles in general relativity, which follow from the conservation
of the energy-momentum tensor, are undetermined until one specifies the reference world-
line (relative to which the moments are taken). A spin condition of the type S®uz = 0
for some unit time-like vector u® has the role of requiring the reference worldline to be
the center of mass as measured by some observer of 4-velocity u®. This is because (unlike
in Newtonian mechanics) in Relativity the center of mass is an observer dependent point,
see Fig. 1 of [3].

The Mathisson-Pirani condition states that the reference worldline is the center of mass
as measured in its own rest frame. It is however poorly understood in the literature — in
particular its degeneracy, and the exotic helical motions it allows even for a free particle
in flat spacetime (in addition to the expected straightline motions). These motions have
been deemed unphysical, due to the belief that the radius of the helices was arbitrarily
large (see e.g. Refs [4,5,15,28,29] of [3]), and for this reason a lot of skepticism has been
drawn into this spin condition.

In [3] we show that these claims are a misconception, arising from a subtle (but crucial)
mistake in some derivations in the literature. The radius of the helices is finite and always
contained within the “disk of centroids” (the disk formed by all the possible positions of
the centers of mass measured by the different observers), and the helical solutions are just
equivalent, albeit more complicated (comparing with the non-helical one, that the same
condition equally allows) descriptions of the motion of a spinning body. Interestingly, the
dynamics of the helical motions (as well as other exotic motions allowed by the infinite
possible spin conditions) are seen to be explained through the same concept of hidden
momentum that was recently proposed in Ref. [20] of [3] as an explanation for the bobbings
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observed in numerical simulations of binary systems. And another exact analogy, in the
framework of the GEM inertial fields, is seen to emerge [4], between this type of hidden
momentum and the one present in electromagnetic systems. Such analogy proves insightful
for the understanding of the helical motions, see Fig. 1 of [26].

However it is not only because of the analogies that this spin condition is interesting;
indeed as we argue in [3], and exemplify in [4], in spite of its degeneracy, it is this spin
condition, through its non-helical solution, that in many applications yields the simplest
(especially in comparison with the more popular Dixon-Tulczyjew condition), clearest, and
physically more sound description.

4.5 Spinning test particles in general relativity

The dynamics of spinning particles with multipole electromagnetic and inertial /gravitational
moments are one of the most natural applications of the tidal tensor formalism, and an
ideally suited one to illustrate the similarities and differences between the two interac-
tions, that are encoded in the symmetries and time projections of the tidal tensors. This
is studied in detail in [4]. The gravitational tidal tensors are symmetric in vacuum; the
electromagnetic ones however possess an antisymmetric part, which encodes the laws of
electromagnetic induction. A number of physical consequences are explored. It is seen that
whenever a magnetic dipole moves in a non-homogeneous electromagnetic field it always
measures a non-vanishing magnetic tidal tensor B,g, and therefore a force is exerted on it.
In gravity by contrast, that is not the case: the gravitomagnetic tidal tensor H,g can be
zero for observers moving in non-homogeneous fields; geodesic motions for spinning parti-
cles were even found to exist in Schwarzschild (radial geodesics) and in Kerr-dS (circular
equatorial geodesics) spacetimes. Also, due to the fact that the electric tidal tensor E,p
possesses an antisymmetric part (encoding the curl of the induced electric field), a time-
varying electromagnetic field torques a spherical charged body; the gravitational field, by
contrast, never torques a “spherical” body (i.e., a body whose multipole moments in an
orthonormal frame match the ones of a sphere in flat spacetime).

The time-projections of the tidal tensors in a given frame are related with the rate of
work done on the test particle by the external fields; in order to obtain that relationship,
we start by writing the general equation yielding the variation of energy of a particle with
multipole structure with respect to an arbitrary congruence of observers. This generalizes,
for the case of non-spatial forces, and test particles possessing hidden momentum and
varying mass, the previous results in the literature (which apply only to spatial forces on
monopole particles). An interesting reciprocity is found to exist: in a frame comoving
with the particle, the electromagnetic field, unlike the gravitational field, does work on
the particle, causing a variation of its proper mass; conversely, for “static observers”, a
stationary gravitomagnetic field (but not a magnetic field) does work on mass currents —
there is actually a spin-curvature potential energy, which quantitatively accounts for the
Hawking-Wald spin-spin interaction energy.
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4.6 Other issues clarified in the course of this work

One of our most relevant contributions to the field was the clarification of the relationship
between the several gravito-electromagnetic analogies that have been unveiled throughout
the years (including the new one based on tidal tensors that we proposed), which is done
in [5].

A related open question in the literature was the physical significance of the magnetic
part of the Riemann tensor (i.e., the gravitomagnetic tidal tensor); it is now clear from
the analysis in [1, 4, 5], and the interpretation therein solves the inconsistencies previously
found in the literature (see Refs. in Sec. 4.3 of [27]).

Another issue to which we gave a contribution is on the very problem of the covariant
equations describing the motion of spinning particles subject to gravitational and electro-
magnetic fields, which even today is not generally well understood, with different methods
and derivations leading to different versions of the equations, the relation between them
not being clear. Perhaps surprisingly, it is the electromagnetic (not the gravitational) field
that has been posing more problems. In [4] these differences are clarified, and the various
terms in Dixon’s equations are physically interpreted. The dynamical differences between
the different dipole models (the current loop, and the charge models), the physical justi-
fication of the variation of the particle’s proper mass, the work done on it by the external
fields, and the case of the (apparently) missing electromagnetic induction torque in the
quadrupole order equation of motion for the spin vector are also clarified.

A central issue in this context, which is not well understood, and leads to countless
misconceptions in the literature, is the fact that the momentum of a spinning particle
with multipole moments is not parallel to its 4-velocity — that is, it possesses hidden
momentum. In this work we discussed several types of hidden momentum: the pure gauge
“inertial” hidden momentum [3, 4], and the gauge invariant hidden momentum generated
by the electromagnetic and gravitational fields (the latter being of quadrupole order) [4];
some further counter-intuitive consequences of it were unveiled — such as the fact that
bodies can accelerate in opposite direction to the force in very simple systems.

4.7 Outcome and future directions

In this work we found a new exact analogy between gravity and electromagnetism based
tidal tensors and we also studied and further developed other analogies in the literature;
in particular, the not well known, but extremely powerful, analogy based on exact GEM
fields. The main outcome of each approach, as well as the exact results one can obtain
from application of each analogy, are summarized in the conclusion of [5]. We gave a
contribution to the understanding of the equations of motion of multipole particles in
gravitational and electromagnetic fields, and revealed some fundamental, yet not well
known, aspects of both interactions. Moreover, we addressed the old problem of Mathisson
helical motions, the issue of the various types of hidden momentum, and the physical
meaning of the Dixon’s equations.

The main points of this work on the gravito-electromagnetic analogies is that 1) there
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is a lot to be learned from a comparative study of the two interactions; and 2) the analo-
gies are useful from a practical point of view, as they provide intuition and a familiar
formalism to treat otherwise more complicated gravitational problems. Indeed, the for-
malisms developed, by being exact and general, provide a powerful set of tools that allows
to study gravitomagnetic effects in arbitrarily strong fields, and also add new phenom-
ena to the “gravitoelectromagnetism” category — a major addition being the motion of
spinning pole-dipole particles in General Relativity, which can be exactly described in the
framework of gravito-electromagnetic analogies, as we have shown in [4]. This is just the
first major application of the formalism, on which we plan to build on (a first glimpse of
the application of the tidal tensor formalism to the study of gravitational radiation, and
the physical insight it brings, is given in [5]; and a paper on the use of the curvature scalar
invariants will soon be published [30]), with many further applications being planned for
the coming years.
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5 The papers summarized and discussed

5.1 Notation and conventions

1.

Signature and signs. We use the signature — + ++; €48,y = /—g[a370] denotes the
Levi-Civita tensor, and we follow the orientation [1230] = 1 (i.e., in flat spacetime,
€1230 = 1). €k = €ijk0 is the 3-D alternating tensor. We use the convention for the

3 . « _ T« _ T«
Riemann tensor: R B = L By B + ...

. Sometimes we use the abbreviation €,g, = €ag,sU 5, where U® is the 4-velocity of

the test particle’s CM.

. Greek letters a, 3, 7, ... denote 4-D spacetime indices, Roman letters 4, j, k, ... denote

3-D spatial indices. Following the usual practice, sometimes we use component
notation 7% to refer to a tensor T. We use arrows for 3-vectors 7 except in Paper
#2 where bold fonts v are used instead. In papers #3-#5 we use bold fonts to
denote tensors T (including 4-vectors U) .

Time and space projectors. (T“)aﬂ = —u“ug, (h“)O‘IB = uug + gaﬁ are, respectively,
the projectors parallel and orthogonal to a unit time-like vector u®; may be
interpreted as the time and space projectors in the local rest frame of an observer
of 4-velocity u®. («) denotes the index of a spatially projected tensor:

Alo)B... — (hu)aﬁAuﬁ....

Tensors resulting from a measurement process. (A*)*?n denotes the tensor A
as measured by an observer O(u) of 4-velocity u®. For example, (E*)* = ﬁuﬁ
(E")ap = Faypu? and (E*)op = Raygyu”ut denote, respectively, the electric field,
electric tidal tensor, and gravito-electric tidal tensor as measured by O(u). Analo-
gous forms apply to their magnetlc/ grawtomagnetlc counterparts.

For 3-vectors we use notation A(u); for example, E(u) denotes the electric 3-vector
field as measured by O(u) (i.e., the space part of (E™)®, written in a frame where
u® =0). When u® = U® (i.e., the particle’s CM 4- Velomty) we drop the superscript
(e.g. (EY)® = E®), or the argument of the 3-vector: E(U) = E.

. Electromagnetic field. The Maxwell tensor F*? and its dual xF*? decompose in

terms of the electric (E")* = "éuﬁ and magnetic (B*)* = *F%uﬁ fields measured
by an observer of 4-velocity u® as

Foag = 2u(E")g + eapyst’ (BY)7 ; (5.1)
*Faﬂ = QU[a(Bu)ﬂ] —(Eoéﬁ,yaug(fju)7
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7. Static observers. In stationary, asymptotically flat spacetimes, we dub “static ob-
servers” the rigid congruence of observers whose worldlines are tangent to the tem-
poral Killing vector field £ = 0/0t; may be interpreted as the set of points rigidly
fixed to the “distant stars” (the asymptotic inertial rest frame of the source). For
the case of Kerr spacetime, these correspond to the observers of zero 3-velocity in
Boyer-Lindquist coordinates. This agrees with the convention in e.g. [73]. Note
however that the denomination “static observers” is employed with a different mean-
ing in some literature, e.g. [94], where it designates rigid, vorticity-free congruences
(existing only in static spacetimes). In the case of the electromagnetic systems in
flat spacetimes, by static observers we mean the globally inertial rest frame of the
sources.

8. GEM and GEM fields. GEM is the acronym for “gravitoelectromagnetism”. By
“inertial GEM fields”, we mean the fields of inertial forces that arise from the 143
splitting of spacetime: the gravitoelectric field, which plays in this framework a role
analogous to the electric field of electromagnetism, and the gravitomagnetic field,
analogous to the magnetic field. Different notations and conventions are used in the
literature for these fields; and it is also the case for the papers in this compilation.
In papers #1 and #2, the gravitoelectric and gravitomagnetic fields were denoted,
respectively, by Eg and Bg, and defined (following e.g. [12]) such that the geodesic
equation in linearized stationary fields reads, in its space components,

2
%:—E(}—Qﬁng,
cf. Eq. (3.2) above. In papers #3-#5, we denoted the exact GEM fields by G and
H, and used a convention (following e.g. [19]) such that the exact geodesic equation,
for stationary fields, has space components
DU _ o (U6@+(7><ﬁ) ;
dr

cf. Eq. (3.11). In linear regime, the correspondence between the two definitions is
é ~ —Eg; I:_i ~ —QEG .

Accordingly, different conventions for the GEM “potentials” were used. ®, A , 05
of papers #1 and #2 correspond to, respectively, —®, —A/2, —&; of paper #5.
In what follows I will discuss each paper using its original notation.

5.2 Paper #1 — “Gravitoelectromagnetic analogy based on
tidal tensors”

In this paper we first presented an exact analogy between gravity and electromagnetism
that stems from the tidal dynamics of both theories, based on mathematical objects that
we dubbed “tidal tensors”.
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We were interested in comparing the two interactions in a way as transparent as possible;
the rationale behind our approach was that such comparison should based on physical,
covariant forces that are present in both theories. The electromagnetic Lorentz force has
no physical counterpart in gravity, as monopole point test particles in a gravitational
field move along geodesics, without any real force being exerted on them. Also the spin
vector of an ideal gyroscope in a gravitational field undergoes Fermi-Walker transport
(i.e., follows the compass of inertia) without any real torque being exerted on it. Thus the
analogies between the Lorentz force and the geodesic equation, and between the precession
of a magnetic dipole and the “precession” of a gyroscope, which are well known from
the linearized theory approaches reviewed in Sec. 3.1.1, and exist also in exact versions
(reviewed in Sec. 3.1.2), are not suited for our purpose. They draw a parallelism between
the electromagnetic fields E%, B® and fields of inertial forces G*, H* (fictitious forces,
that vanish in locally inertial frames), i.e., they compare physical forces from one theory,
with reference frame artifacts from the other.

Tidal forces, by their turn, are covariantly present in both theories, and their mathe-
matical description in terms of “tidal tensors” is the basis of this approach. Tidal forces
manifest themselves in two basic effects: the relative acceleration of two nearby monopole
test particles, and in the net force exerted on dipoles. These notions of multipole mo-
ments are the ones given in Sec. 3.2, i.e., the multipole moments of the current density
vector j¢ = (pe, j) in electromagnetism, and the moments of the energy momentum tensor
T,p in gravity. From the latter, only the moments of the projection J* = —7P Us (ie.,
the moments of the mass/energy 4-current density) have an electromagnetic counterpart.
Monopole particles in the context of electromagnetism are those whose only non-vanishing
moment is the total charge; dipole particles are particles with nonvanishing electric and
magnetic dipole moments (i.e., respectively, the dipole moments of p. and j) Monopole
particles in gravity are particles whose only non-vanishing moment of 7% is tag (see
definition (3.38) above), of which only the momentum P* = —t%U B contributes to the
equations of motion; they correspond to the usual notion of point test particles, which
move along geodesics. There is no gravitational analogue of the intrinsic electric dipole,
as there are no negative masses; but there is an analogue of the magnetic dipole moment,
which is the “intrinsic” angular momentum (i.e. the angular momentum about the particle’s
center of mass), usually dubbed spin vector/tensor. A particle possessing only pole-dipole
gravitational moments corresponds to the notion of an ideal gyroscope. We thus have
two physically analogous effects suited to compare gravitational and electromagnetic tidal
forces: worldline deviation of nearby monopole test particles, and the force exerted on
magnetic dipoles/gyroscopes. An exact gravito-electromagnetic analogy, summarized in
Table 5.1 , emerges from this comparison.

Egs. (5.1.1) are the worldline deviations for nearby test particles with the same! tangent

"We want to emphasize this point, which, even today, is not clear in the literature. Eqgs. (5.1.1) apply only
to the instant where the two particles have the same (or infinitesimally close, in the gravitational case)
tangent vector. For both electromagnetism and gravity, in the more general case that where velocity of
the two particles is not infinitesimally close, the deviation equations include more terms (which depend
on both particles’ 4-velocity, thus in their relative velocity); the relative acceleration is not, in either
case, given by a simple contraction of a tidal tensor with a separation vector, see [1, 27, 96]. A more
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Table 5.1: The gravito-electromagnetic analogy based on tidal tensors.

Electromagnetism Gravity
Worldline deviation: Geodesic deviation:
% = % %027, E° = F9 ,U" (5.1.1a) % = —E%da®, B% = R, U*U" (5.1.1b)
Force on magnetic dipole: Force on gyroscope:
Fgy =B u®, B =%F ,U"  (5.1.2a) Ff=-H/S H° =%R%, UU" (5.1.2b)
Maxwell Equations: Eqgs. Grav. Tidal Tensors:
E®, =47mp, (5.1.3a) E®, =47 (2pm +T) (5.1.3b
Elap) = 3FapU” (5.1.4a) Efag =0 (5.1.4b
B, =0 (5.1.5a) H*, =0 (5.1.5b
Biog) = %*FQBWUW — 2Meapoyj°U”Y  (5.1.6a) Hiop) = —4meapoyJ7U (5.1.6b

pe = —j%Uq and j¢ are, respectively, the charge density and current 4-vector; pm = Tog U*UP and J* = 7TgU5
are the mass/energy density and current (quantities measured by the observer of 4-velocity U%); Tog =

energy-momentum tensor; S%, p® are the spin and magnetic moment 4-vectors; x = Hodge dual. We use

€1230 = vV —49-

vector (and the same ratio charge/mass in the electromagnetic case), separated by the
infinitesimal vector dz®. They tell us that the so-called electric part of the Riemann tensor
E% = RO‘#BUU KUY plays in the geodesic deviation equation (5.1.1b) the same physical
role as the tensor E,3 = F,,,3U"7 in the electromagnetic worldline deviation (5.1.1a).
E.p describes the tidal effects produced by the electric field £ = FRU" as measured
by the test particle of 4-velocity U®. We can define it as a covariant derivative of the
electric field as measured in the inertial frame momentarily comoving with the particle:
E.z = Ea;mU:amst. Hence we dub it the “electric tidal tensor”, and its gravitational
counterpart the “gravitoelectric tidal tensor”.

There is a magnetic counterpart to this analogy. Consider a purely magnetic dipole,
that is, a particle whose only non-vanishing electromagnetic moment, as measured in the
particle’s CM frame, is the magnetic moment p® = (0, i), defined by Eq. (3.44) above.
The force exerted on it is [59, 60, 63, 66]

DpP~

FS = = Py, = B (5.3)
where pag = €apyep’U % and B.g = xFy,,3U"7 is the “magnetic tidal tensor”, describing
the tidal effects produced by the magnetic field B* = xF% U7 as measured by the particle
of 4-velocity U“.

detailed discussion of this important issue will be presented elsewhere.
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The gravitational force exerted on a gyroscope (i.e., a spinning pole-dipole particle) is
given by the Mathisson-Papapetrou equation:

DP° 1
= ——R% UPSH. (5.4)

e dr 2 Puv

If the Mathisson-Pirani spin condition S*?U, 3 = 0 holds, we have S* = e"TAS Uy, where
S¢ is the spin 4-vector, defined as being the 4-vector with components (0, 5) in the CM
frame; substituting in Eq. (5.4) above, we obtain Eq. (5.1.2b) of Table 5.1, revealing
the physical analogy B,g ¢+ Ha,g. That is, the magnetic part of the Riemann tensor
H% = *R?,5,U*U” plays in the gravitational force (5.1.2b) the same physical role as
B,p in the electromagnetic force (5.1.2a); for this reason we dub it “gravitomagnetic tidal
tensor”. Note the relative minus sign between Eqs. (5.1.2a) and (5.1.2b); it reflects the
fact that masses/charges of the same sign attract/repel, implying that parallel charge/mass
currents attract/repel.

In Paper #1 [1] this magnetic analogy was the final addition to the results of Table
5.1, and was presented as an application of the formalism (i.e., an analogy based “deriva-
tion” of Mathisson-Papapetrou-Pirani equation). There were however relevant issues left
unaddressed, and for this reason the treatment therein is not fully satisfactory. The grav-
itational part of the analogy was based on the well established Eq. (5.4); however this
equation needs to be supplemented by a spin condition as explained in Sec. 3.2.1; and
this is an old, but important problem in this context because, in order to be ezxact, the
analogy requires the Mathisson-Pirani spin condition to hold, as explained above. It turns
out that this condition was poorly understood and portrayed as problematic in the liter-
ature, due to its degeneracy and the exotic helical solutions it allows. In the later work
[3] (Paper #3 [3]) we clarify these issues, explain the meaning of the spin condition, and
demystify the helical motions. The electromagnetic part of the analogy, Eq. (5.1.2b) of
Table 5.1, was obtained therein from a covariantization of the textbook, non-relativistic,
3-D expression Fgy = V(ji - B); and then the result checked with expression (11.26) of
[63]. However in the latter result (in spite of being relativistic) only space components of
the force were given; furthermore, in the derivation in [63], the physical meaning of the
moments of the current defined therein is not clear (as customary, unfortunately, in most
literature concerning multipole equations), and given by guessing. Especially because the
physical content explored in Sec. V of [1] concerns mostly the time components of the
forces, a more solid foundation for these results was in order. This is done in the recent
work [4] (Paper #4), where the same exact analogy is shown to stem from the rigorous
equations of motion for pole-dipole particles in gravitational and electromagnetic fields,
and a number of issues and subtleties involving them (some of them not well understood in
the literature, even today) are clarified. Namely the physical meaning of the forces above
(which are not trivial, DP%/dr # ma® in general!), as well as the momentum (which is
not mU®, due to the “hidden momentum”) and the mass of the test particle (which is not
a constant).

37



5 The papers summarized and discussed

5.2.1 The gravitational analogue of Maxwell’s Equations

If we take the traces and anti-symmetric parts of the electromagnetic tidal tensors, we
obtain Egs. (5.1.3a)-(5.1.6a) of Table 5.1, which are Maxwell’s equations

PO, = Amj®  (a); «FP =0 (b), (5.5)

written in tidal tensor form. That is, Egs. (5.1.3a) and (5.1.6a) are, respectively, the
time and space projections (with respect to U?%) of the Maxwell equations with sources
(5.5a); and (5.1.4a) and (5.1.5a) are, respectively, the space and time projections of the
source-free equations (5.5a) (i.e., the electromagnetic Bianchi identity). This is explicitly
shown using the projectors in [5] (Paper #5).

Egs. (5.1.3a)-(5.1.6a) may be cast as equations involving only tidal tensors and sources,
which can be seen decomposing;:

Fa/g;,y = 2U[aE5h + €aﬁMUB“7UU

or by noting that the pair of Egs. (5.1.4a), (5.1.6a), may be condensed in the equivalent
pair
e U Ep g = —BagU®  (a) 71, U°B 5 = EqgUP +4mj, (b))  (5.6)

In a Lorentz frame in flat spacetime, since UO;‘B = U‘fﬁ =0, we have E,3 = E,.3, Byg =
B,.; and (using U“ = 0f) Egs. (5.6) can be written in the familiar textbook forms
VxE-= —Gé/at and V x B = aﬁ/ﬁt + 477, respectively. Likewise, Eqgs. (5.1.3a) and
(5.1.5a) reduce in this frame to the familiar forms V- E = 47p. and V- B = 0, respectively.
By performing, on the gravitational tidal tensors, the same operations that lead to
Egs. (5.1.3a)-(5.1.6a) (i.e., taking the traces and anti-symmetric parts) we obtain the
analogous set of Egs. (5.1.3b)-(5.1.6b). Egs. (5.1.3b) and (5.1.6b) turn out to be ezactly
the time-time and and time-space projections of Einstein equations with sources (5.7a):

1 (0%
Rop = Rap = 87 <Ta5 - 29a5T”y> (a);  *R™ ;=0 (D). (5.7)

And Egs. (5.1.4b) and (5.1.5b) are, respectively, the time-time and space-time projections
of the algebraic Bianchi identity Rjag,s = 0 & *RW%B = 0. Again, this is explicitly
shown using the projectors in [5].

5.2.2 Gravity vs Electromagnetism

Egs. (5.13a)-(5.16a) are strikingly similar to Egs. (5.13b)-(5.16b) when the fields do not
vary along the observer’s worldline. Otherwise, they tell us that the two interactions must
differ significantly, since the tidal tensors do not have the same symmetries.

Sources — Eqgs. (5.1.3) tell us that the source of E,3 is p., and its gravitational
analogue, the source of Eqg, is 2p + T, (p + 3p for a perfect fluid), manifesting the well
known fact that in gravity, by contrast with electromagnetism, pressure and stresses act as
sources of the field. The magnetic/gravitomagnetic tidal tensors are analogously sourced
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by the charge/mass-energy spatial currents j /J#) as shown by Egs. (5.1.6). Note
that, when the fields do not vary along the observer’s worldline, xF,g.,U” vanishes and
equations (5.1.6a) and (5.1.6b) match up to a factor of 2, identifying j* «<» J*.
Symmetries and time projections of tidal tensors — The gravitational and electromag-
netic tidal tensors do not generically exhibit the same symmetries; moreover, the former
are spatial, whereas the latter have a time projection (with respect to the observer measur-
ing them), signaling fundamental differences between the two interactions. In the general
case of fields that are time dependent in the observer’s rest frame (that is the case of an in-
trinsically non-stationary field, or an observer moving in a stationary field), E,z possesses
an antisymmetric part, which is the covariant derivative of the Maxwell tensor along the
observer’s worldline; E,g, by contrast, is always symmetric. As discussed above, E,g3 is
a covariant derivative of the electric field as measured in the the momentarily comoving
reference frame (MCRF); and Eq. (5.6a) is a covariant way of writing the Maxwell-Faraday
equation V x E=-0B /Ot. Therefore, the statement encoded in the equation Epg =0is
that there is no physical, gravitational analogue to Faraday’s law of induction (in the lan-
guage of GEM vector fields of Paper #5 [5], we can say the the curl of the gravitoelectric
field G does not manifest itself in the tidal forces, unlike its electromagnetic counterpart).
To see a physical consequence, let dz% in Eq. (5.1.1a) — the separation vector between a
pair of particles with the same ¢/m and the same 4-velocity U® — be spatial with respect
to U (02*U, = 0); and note that the spatially projected antisymmetric part of £, can
be written in terms of the dual spatial vector a/: Ej(,y,)) = emmgoﬂUé. Then the spatial
components (5.1.1a) can be written as (using E,y) = Euyw)) + Ejuyw):
D?5%

E((uyo)02” + s’ U%02" | & _

D25l’<#> i
dr? m

20w _ 4
dr2 m

rﬁ-éerchx&],

(5 %
the second equation holding in the frame U’ = 0, where we used the dyadic notation
of e.g. [67]. From the form of the second equation we see that ¢d/m is minus an angular
acceleration. Using relation (5.6), we see that o = —B" sU B. and in an inertial frame

a= 85/875 = —V x E. In the gravitational case, since Ey, = E(,,,,) = E(,(,), we have

D*6xyy D26z D%

B no_ v _ =
72 = 02 = *E(‘uy)ém = 72 = *ﬁ) 0% .

That is, given a set of neighboring charged test particles, the electromagnetic field “shears”
the set via F(,,), and induces an accelerated rotation? via the laws of electromagnetic
induction encoded in Ej The gravitational field, by contrast, only shears? the set, since

(5.9)

pv]:

2By rotation we mean here absolute rotation, i.e, measured with respect to a comoving Fermi-Walker
transported frame. See Paper #5 [5].

3If the two particles were connected by a “rigid” rod then the symmetric part of the electric tidal tensor
would also, in general, torque the rod; hence in such system we would have a rotation even in the
gravitational case, see [140] pp. 154-155. The same is true for a quasi-rigid extended body; however,
even in this case the effects due to the symmetric part are very different from the ones arising from elec-
tromagnetic induction: first, the former do not require the fields to vary along the particle’s worldline,
they exist even if the body is at rest in a stationary field; second, they vanish if the body is spherical,
which does not happen with the torque generated by the induced electric field, see [4].
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E;.1 =0.
[%Elrther physical evidence for the absence of a physical gravitational analogue for Fara-
day’s law of induction is given in Sec. VI. of paper #4 [4]: consider a spinning spherical
charged body in an electromagnetic field; and choose the MCRF (in order to keep things
simple; see [4] for the general covariant treatment); if the magnetic field is not constant in
this frame, by virtue of equation V x E=-0B /0t, a torque will in general be exerted on
the body by the induced electric field, changing its angular momentum and kinetic energy
of rotation. By contrast, no gravitational torque is exerted in a spinning “spherical” body
(i.e., a particle whose multipole moments in a local orthonormal frame match the ones of
a spherical body in flat spacetime) placed in an arbitrary gravitational field; its angular
momentum and kinetic energy of rotation are constant.

There is also an antisymmetric contribution xF,.,U" to Bag; in vacuum, Eq. (5.1.6a)
is a covariant form of V x B = 9E /0t; hence the fact that, in vacuum, Hng = 0, means
that there is no gravitational analogue to the antisymmetric part Bjyg (i.e., the curl of

é) induced by the time varying field E. Some physical consequences of this fact are as
follows. Eq. (5.1.6a) implies, via (5.1.2a), that whenever a magnetic dipole moves in a non-
homogeneous field, it measures a non vanishing Bj,g (thus also B,g # 0), and therefore
(except for very special orientations of the dipole moment p®) a force will be exerted on
it; in the gravitational case, by contrast, the gravitational force on a gyroscope is not
constrained to be non-vanishing when it moves in a non-homogeneous field; it is found
that it may actually move along geodesics, as is the case of radial motion in Schwarzschild
spacetime, or circular geodesics in Kerr-dS spacetime. For more details see Paper #4 [4].

The spatial character of the gravitational tidal tensors, contrasting with their elec-
tromagnetic counterparts, is another difference in the tensorial structure related to the
difference in the symmetries (and thus to the laws of electromagnetic induction), as can
be seen from Egs. (5.6) and (5.1.6a). Physically, this is manifest (for instance) in the fact
that the electromagnetic force on a magnetic dipole has a non-vanishing projection along
the particle’s 4-velocity U, which is the rate of work done on it by the induced electric
field (and is reflected in a variation of the particle’s proper mass, as shown in Paper #4
[4]). This is more easily seen be seen if we imagine the dipole as a small current loop, as
depicted below:

A A A A A A A A
B B IR
I 0B 0P = >
x/ \r FOL Ua:—._’:—I:—I E.d
~ 4, - EM 815 # 8t %oop °

Rui Quaresma
>

— i = IAfi (magnetic moment), ® = B.7A (magnetic flux),
E = induced electric field, A = area of the loop.

where ® is the magnetic flux through the loop and E is the induced electric field. Thus
FzUs is minus the power transferred to the dipole by Faraday’s induction, due to a time
varying magnetic field B (as measured in the particle’s proper frame). An equivalent, but
manifestly covariant derivation of this result is given in Paper #4 [4].
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This effect has no counterpart in gravity. Since H,g is a spatial tensor, we always have
FaUL, =0

which means that no work is done on the gyroscope, as measured in its proper frame (and
its proper mass is constant). Hence, the spatial character of the gravitational tidal tensors
precludes induction effects analogous to the electromagnetic ones.

5.2.3 Matching between tidal tensors

It is important to realize that the existence of this ezact gravito-electromagnetic analogy
does not mean that the interactions are similar. This is a functional analogy: despite play-
ing analogous roles in the dynamics of both theories, gravitational and electromagnetic
tidal tensors are generically very different. In their symmetries and time projections, as we
have seen above, and also in the more obvious fact that the electromagnetic tidal tensors
are linear in terms of the electromagnetic potential (and fields), whereas the gravitational
tidal tensors are non-linear in the metric tensor (and in the “gravitoelectromagnetic” fields
of Paper #5 [5]). Nevertheless, we found that a matching occurs in certain special cases:
linearized gravity under certain conditions, and an exact matching in the so-called ultra-
stationary spacetimes.

5.2.3.1 Linearized Gravity

Take arbitrary perturbations around Minkowski spacetime in the form,

ds? = — (1 —2®) dt* — 4 A;dtdx? + [§;; + 20;5] do'da? (5.10)
(gij = euclidean metric in an arbitrary coordinate system), and an arbitrary electromag-
netic field A% = (¢, A) in Minkowski spacetime ds? = —dt? + Gij(z¥)dxidz’. The explicit
expressions for gravitational and electromagnetic tidal tensors from these setups, as mea-
sured by an arbitrary observer of 4-velocity u® = (u", u?), are given in Egs. (11)-(12) and
(14)-(20) of Paper #1 [1]. Comparing these expressions we see that they will in general
be very different, even to linear order. But if one takes time independent electromagnetic
potentials/gravitational perturbations, and a “static observer”, U* = ¢} (i.e., an observer
with zero 3-velocity in the coordinates of (5.10)) then the linearized gravitational tidal
tensors match their electromagnetic counterparts:

<I>ﬁ¢

~ 1k A A
Eij ~ _q);ij = Ez‘j, Hij ~e; -Ak;lj =

B;; . (5.11)

This can be illustrated by an elementary example of analogous physical systems — the
gravitational field of a spinning mass and the electromagnetic field of a spinning charge: in
the far field limit (where the non-linearities of the gravitational field are negligible), for an
observer at rest with respect to the central body, the gravitational tidal tensors asymptot-
ically match the electromagnetic ones, cf. Egs. (8)-(9) of [1]. But if the observer moves,
the electromagnetic tidal tensors it measures will be very different from the gravitational
ones (for explicit expressions, see [27], sec. 2.2.1; or, for the case of non-spinning bodies,
Egs. (2.11)-(2.16) of Paper #2 [2]).
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5.2.3.2 Ultrastationary Spacetimes

Ultra-stationary spacetimes are stationary spacetimes admitting rigid geodesic time-like
congruences. In the coordinate system adapted to such congruence, the metric is generi-
cally given by:

A 2 . .
ds? = — (dt + Ai(xk)daﬂ) + v (¥ dada? (5.12)

The Klein-Gordon equation in these spacetimes reduces to a time-independent Schrodinger
equation

(P+EA)? E? —m?

e €= —F—,

Hy =ep; H=
2m

2m
for a particle with “charge” —F and mass m, living in a curved 3-space with metric ;;,
under the action of a “gravitomagnetic field”

H=VxA (5.13)

where (V x A)i = ¢l . VIAF. ¥ denotes 3-D covariant derivatives with respect to ~;;. The
covariant derivative of H turns out to be, up to a factor of 2, the exact gravitomagnetic
tidal tensor of (5.12) as measured by a static observer (u® = §%):

V,;H; = é3;V;V'A* = 2H,; . (5.14)

That is, we have an ezact matching between tidal tensors from a linear theory (Electromag-
netism) in a curved spacetime, and a non-linear one (General Relativity). This provides
valuable insight for the understanding of the magnetic part of the Riemann/Weyl tensors
(Hag/Hap) of these spacetimes, whose interpretation had been posing difficulties in the
literature. It has been suggested (see e.g. [37, 38, 34, 39]) that “rotation” (here one should
in rigor read vorticity w® = ec‘méuwgu‘S /2 of the congruence of u! = 0 observers, due to
the frame dragging effect) sources the magnetic part of the Weyl tensor; but immediately
contradictions arise. Whereas a number of examples, like the Kerr metric or the Van-
Stockum interior solution [37], are known to support the idea that rotation sources H .,
there are also well known counterexamples, like the Gédel universe [37, 38, 34]. Indeed
the vorticity does not directly relate to Hyg or Hag, but to the gravitomagnetic field*
H of the corresponding frame. This makes a crucial difference. Take first the case of
the interior Van Stockum metric (e.g. [37]), describing the interior of an infinitely long
rotating cylinder of dust®; the line element can be put in the form (5.12), with

. - . 2,2 2.2

Aida' = —ar?de ,  yijdr'da? = e " dr? 4 r?de? + e d2? (5.15)
where a is a constant. The gravitomagnetic field for this setup is, cf. Eq. (5.13),
— 212 _, . . . L.
H = —2ae"""&,. The gravitomagnetic tidal tensor has non-vanishing components (for
4More precisely, with the definition (5.13) for H , it is minus one half of the vorticity: H = —20, as

discussed in Sec. 3 of Paper #5 [5], or in e.g. [19])
®Note: this example was not kept in the final published version, but was part of an earlier preprint [27].
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an observer with 4-velocity u#* = 55 ): H,, = H,, = —a’r. The general relation between
Heapg and Heapg is (cf. Eq. (10) of [27])

Hopg = Hap — 47‘(606507J0U’Y ; (5.16)

so in this case Hyog = Hap, and from Eq. (5.14) we can write H;; = @jHi/Q = @jwi/él.
Thus in this spacetime, there is a simple relation between the magnetic part of the Weyl
tensor, and the gradient of the vorticity.

Now take the case of the Go6del Universe, which is portrayed in the literature as a
homogeneous rotating universe (a difficult notion, means rotation around any point!).
The metric can be written in the form (5.12), as described below:

QQ/ Q Aidzt = e\/i‘”dy,

Q Q ‘; \O: 'ngdl' 'da? = dx? + = 5 2\/_wmdy + dz
O NS.  H=9xA=a

A~ A TN

The gravitomagnetic field H is uniform; thus its tidal tensor vanishes H;; = @j H;/2=0.
This is the physical interpretation for the vanishing of the magnetic part of the Weyl
tensor in this metric (since, again, Hys = Hapg). That is, in other words: frame-dragging
is present, the u’ = 0 observers have vorticity, but it is uniform, and for this reason
Hap = 0.

This allows us also to easily visualize the concept of homogeneous rotation, in analogy
with a gas of charged particles subject to an uniform magnetic field (see picture above):
there are Larmor orbits around any point.

In Paper #5 [5] we revisit these spacetimes in the framework of another exact GEM
analogy (based on exact inertial GEM fields, not tidal tensors), with which we get more
insight into the mapping presented above via Klein-Gordon equation, and where we also
address the non-vanishing gravitoelectric tidal tensor in these spacetimes, which has no
counterpart in the electromagnetic analogue, and was a question left unanswered in Paper

#1.

5.2.4 Conclusion. Where does it stand in the context of the literature.

In this paper we introduced the analogy based on tidal tensors, which was then a new
addition to the list of gravito-electromagnetic analogies that have been unveiled through-
out the years. One may split these in two classes: physical and purely formal. In the
second category falls the analogy between the electric and magnetic parts of the Weyl and
Maxwell tensors, reviewed in Sec. 3.1.3. We classify this one as purely formal because it
is not based on objects that play analogous physical roles in the two theories; it compares
gravitational tidal tensors with electromagnetic fields (not tidal tensors; see discussion in
Sec. 4.3 of [27]). Amongst the physical analogies, the best known are the ones from the
Post-Newtonian and linearized theory approaches, briefly reviewed in Sec. 3.1.1, where a
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parallelism is drawn between the electromagnetic fields and fields of inertial forces — the
so-called “gravitoelectromagnetic” (GEM) fields, which are reference frame artifacts. The
latter play in the equations of motion (3.2), (3.4), and in the field equations (3.7), a role
analogous to their electromagnetic counterparts. There are exact versions of this analogy,
discussed in Sec. 3.1.2 (and that we further work out in Paper #5 [5]). Our tidal tensor
analogy is also a physical one (i.e., it is based on objects playing analogous dynamical
roles), and it is exact; its distinctive feature is that it is based on physical, covariant forces
of both theories. The connection between the various analogies is established and discussed
in detail in [5].

The tidal tensor formalism is ideally suited to compare the two interactions (the primary
motivation of this approach). We have shown that Maxwell equations can be cast as
equations for the traces and antisymmetric parts of the electromagnetic tidal tensors (and
involving only tidal tensors and sources); taking the traces and antisymmetric parts of the
gravitational tidal tensors, we obtain a set of exact equations which we argue to be their
physical gravitational analogues. By comparing them we found striking similarities, and
key differences between the interactions; namely in the phenomenon of electromagnetic
induction, the way it manifests itself in the tidal forces, and the absence of analogous
phenomena in gravity.

In this paper we just started exploring this comparison. Based on Egs. (5.1.6) of
Table 5.1, we concluded that, due to the symmetries of the tidal tensors, a similarity
between the gravitational force on a gyroscope Eq. (5.1.2b) and the electromagnetic
force on a magnetic dipole (5.1.2a) may occur only when the fields do not vary along the
particle’s worldline. The detailed comparison of the two forces in setups of interest, and
the physical consequences of the symmetries of the tidal tensors, are then given in Paper
#4 [4]. We explored the physical content of the (temporal) projection of these forces along
the particle’s worldline, which was seen to be the power transferred to the magnetic dipole
by Faraday’s law of induction, and is zero in the gravitational case (i.e., the force, just
like the gravitomagnetic tidal tensor governing it, are spatial with respect to the particle’s
4-velocity, which precludes an analogous gravitational induction effect).

We compared the tidal tensors in some special types of fields. We considered weak
gravitational fields (i.e., linear regime), where we have found close similarities in the tidal
tensors, as expected from the similarities that have been long known in the literature (and
that I review in Sec. 3.1.1). Generically one can say that, in this regime, the electromag-
netic and gravitational tidal forces are similar if there is a frame where the fields are sta-
tionary, and for observers at rest therein. Otherwise very important differences arise, that
are not negligible in any consistent linear approximation (even in the slow motion regime),
and that are usually overlooked in the literature. One may see this also as a statement
about the physical content of the above mentioned gravito-electromagnetic analogies from
linearized theory. In those approaches, as explained in Sec. 3.1.1, a parallelism is drawn
between the metric perturbations {®, ff} and the electromagnetic 4-potential A% = (¢, ff),
and GEM fields EG and EG are defined from the former in analogy with the electric E
and magnetic B fields. EG and g@ are fields of inertial forces (i.e., fictitious forces, as
mentioned above); however they have been used to describe also (through their deriva-
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tives) tidal effects, like the force applied on a gyroscope Eq. (3.5). These are covariant
effects, implying physical gravitational forces. In electromagnetism (in inertial frames) the
tidal effects are always given by the derivative of the fields F;; = Ej.;; B;; = B;,;; but the
derivatives of EG and gg will only yield the correct tidal forces E;;, H;j, in the conditions
mentioned above (see also in this respect Paper #5 [5]). In particular, Eq. (3.5) is true
only when the particle is at rest in a stationary field.

We considered also ultrastationary metrics, whose gravitomagnetic tidal tensor was
found to match exactly the one of a magnetic field in a curved 3-space. This allowed
us to clarify some conceptual difficulties in the literature concerning these spacetimes, in
particular the vanishing of the magnetic part of the Weyl tensor (H,3) in some of them
[37, 38, 34]: it is a magnetic type tidal tensor, thus it does not measure rotation itself,
but differential rotation, which vanishes if the spacetime is homogeneous. H,z is actually
linear in this spacetimes, and has a simple relation with the gradient of the vorticity. The
connection for general spacetimes and arbitrary frames is made in Paper #5 [5]. But quite
generally we can say that the analogy between the magnetic part of the Riemann tensor
and the magnetic tidal tensor of electromagnetism gives a physical interpretation to the
former (and to the magnetic part of the Weyl tensor as well), which was then an open
question in the literature [42, 44, 43, 40].

5.2.5 Erratum for Paper #1

1. Missing terms in expression (20) of [1] for H;;; should read instead
Hy = & (Auy+ O ) (U0 + 26O U0

+éir’ (‘P;jz +2A(q) + élj) UOU* — 26, (A[l;j]m + Qm[l;ﬂ) vty

2. Type mistakes in unnumbered expressions in Sec. IV; they should read instead:

6m? 18Jm Jye{q,
]L:—Gmqu, M~ — cosQ{m’ }<:—>{qu}M'
r r
(down to some mistype in the editing process, as the expressions were correct in the
preprint).

5.3 Paper #2 — Reference frames and the physical
gravito-electromagnetic analogy

Most general relativistic effects accessible to experimental (or observational) testing are
within the realm of the linear or Post Newtonian approximations. Some of them are de-
scribed in the framework of gravito-electromagnetic analogies that (as explained in the
previous section) are drawn in these approaches. In this paper, building up on what we
learned in Paper #1 [1], we addressed the following questions: under which specific con-
ditions is there a similarity between weak field gravity and electromagnetism; what is the
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realm of applicability of the analogies from the linearized and Post-Newtonian approaches;
in view of the astrophysical applications of present interest, how does the answer depend
on the (Post-Newtonian) reference frame, and is there a difference, from the point of view
of the analogies, between “rotational” and “translational” gravitomagnetism?

5.3.1 Linearized theory

We start by studying gravity in the linear regime, and comparing with electromagnetism.
As in Sec. 5.2.3.1 above, we take arbitrary perturbations around Minkowski spacetime,
i)

4 ; Oij
ds® = —c? (1 — 22> dt* — = A;dtda’ + [5@ +2-—
C C C

] da'da? (5.17)

but now, in order to facilitate the comparison with the relevant literature, we keep track
of the ¢ factors (i.e., we are not putting ¢ = 1). Again we consider an arbitrary electro-
magnetic field A% = (¢, A) in flat spacetime. Next we compare tidal forces of the two
theories (governed by the tidal tensors); and also other types of analogous effects, which
in electromagnetism consist of physical forces and torques (the Lorentz force, and the pre-
cession of a magnetic dipole, governed by the EM fields E, E), but whose gravitational
counterpart are reference frame artifacts (the inertial “forces” in the geodesic equation,
and the gyroscope “precession”, governed by the GEM fields Eg, Bg).

Tidal effects. — As we have seen in Sec. 5.2.3.1 above, the electromagnetic and gravi-
tational tidal tensors from these setups will be in general very different, cf. Eqgs. (11)-(12),
(14)-(20) of Paper #1 [1]. But that if one considers time independent fields, and a static
observer of 4-velocity U¥ ~ ¢df, then the linearized gravitational tidal tensors match
their electromagnetic counterparts identifying (¢, A?) « (®, A%), cf. Eq. (5.11); that
suggests a physical analogy between these potentials, and defining the “gravitoelectromag-
netic fields” Eg = —V® and Bg = V X A, in analogy with the electromagnetic fields
E =-V¢, B=V x A. In terms of these fields we have E;; ~ (Eg);; and H;; ~ (Bg) ;,
similar to the electromagnetic tidal tensors in Lorentz frames, E;; = F; ; and B;; = B; ;.

The matching (5.11) means that a gyroscope at rest (relative to static observers) will
feel a force & similar to the electromagnetic force Fg,, on a magnetic dipole, which in
this case take the very simple forms (time components are zero):

Foum = 5 V(BS)  F}= —%sti ~ —%(BG)WSZ- o Fg = —%V(Bg.S) . (5.18)
Had we considered gyroscopes/dipoles with different 4-velocities, not only the expressions
for the forces would be more complicated, but also the gravitational force would signifi-
cantly differ from the electromagnetic one, as one may check comparing Eqs. (12) with
(17)-(20) of [1]. This will be exemplified in section 5.3.2 below.

The matching (5.11) also means, by similar arguments, that the relative acceleration
between two neighboring masses D26z’ /dr? = —EY dx; is similar to the relative accelera-
tion between two charges (with the same g/m): D?*52'/dr? = E%8x;(q/m), at the instant
when the test particles have 4-velocity U* ~ cd§ (i.e., are at rest relative to the static
observer O).
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Geodesics. — The space part of the equation of geodesics U QBU p = _ngU BUY is
given, to first order in the perturbations and in test particle’s velocity, by (a’ = d?z*/dt?):

20A 2 1 [0® 00';
a \% —i—c 5 cvx(Vx.A) 2 8tv+ 5 U61] (5.19)
2 1 |0® 00';
prm— — _ —_— JE— _ -7 .
= —Eg v x Bg 2 lat v+2 5 U e (5.20)

where we defined the time-dependent gravitoelectric field® Eq = —V® — (2/¢)0.A/0t.
Comparing with the electromagnetic Lorentz force:

a=21|_v —18A+V><(V><A)]—Q[E+V><B}, (5.21)
m c ot ¢ m c
these equations do not manifest, in general, a close analogy, due to the extra terms in
(5.20), which have no electromagnetic counterpart. Note that, for the problem at hand
in the next section, they are of the same order of magnitude as the gravitomagnetic
term v X Bg/c. But when one considers stationary fields, then (5.20) takes the form
a=—Eg — 2v x Bg/c analogous to (5.21).

Note the difference between this analogy and the one from the tidal effects consid-
ered above: in the case of the latter, since are the tidal tensors as measured by the
test particle that determine the forces, the similarity occurs only when the electromag-
netic/gravitational potentials and their gradients, are time-independent in the frame co-
moving with the test particle (by comoving frame herein I mean the comoving Post-
Newtonian frame [72, 68], or, for electromagnetism in flat spacetime, the momentarily
comoving inertial frame); this is clear from Eqgs. (11)-(12), (14)-(20) of Paper #1 [1]. In
the case of the analogy for the geodesics, it is when the gravitational potentials (®,©;;)
are time-independent in the observers’ (not the test particle’s!) frame.

As mentioned above, the gravitational “acceleration” (5.20) is a reference frame artifact;
it is worth noting that, as explained in detail in Paper #5 [5], By = Du'/dr is the
acceleration and B = (V x u)?/2 the vorticity of the observer congruence (the observers
of zero 3-velocity u’ = 0 in the coordinate system of (5.17)). The last term of (5.20)
arises from the fact that this congruence is a shearing one, since, to linear order, we have
=00 /0t = u(;,j) = 0i;+06;;/3, where o;; is the traceless shear tensor and ¢ the expansion
scalar.

5In some works, e.g. [12], the gravitoelectric field is given a different definition: Eg’ = —V& —
(1/2¢)8A/8t. The motivation of such definition is to obtain linearized field equations more similar
to the electromagnetic ones. In particular, taking ©;; = ®d;; (the so-called GEM regime [5]), and
choosing the harmonic gauge condition, which implies ¢V - A= —209 /0t, one obtains with such def-
inition V- Eg’ = 4mppm, cf. Eq. (16) of [12]. But but, on the other hand, an extra “non-Lorentz-like”
term appears in the equation for geodesics (5.20). With our definition above, the geodesic equation is
more similar to the Lorentz force, but on the other hand V - Eq = 4mpy, — 38*®/0t. Tt is not possible
to find a fully working analogy, based on GEM fields, when they depend on time, see Sec. 5 of Paper

#5 [5].
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Gyroscope precession. — The evolution of the spin vector of the gyroscope is given
by the Fermi-Walker transport law, which, for a gyroscope at rest reads DS'/dr = 0;
hence, we have, in the coordinate basis,

as'
dt

. 100U
SxBag) + -——
(S x G)+C 5

Comparing with the equation for the precession of a magnetic dipole under the action of
a magnetic field

. . 1
C 0j c

Sl . (5.22)

% = % uwx B (5.23)
we see that there is an extra term in the gravitational equation, arising from the shear of
the reference frame (that generically exists when the gravitational field is time-dependent),
as discussed above. But this term can be made to vanish by choosing a suitable frame.
Consider the orthonormal tetrad eqs, and let e, denote the transformation matrix relating
it to the coordinate basis e, = J4: €5 = e%e,. Take e4 such that ey is the observers
4-velocity u®, and the spatial triads e; follow as much as possible the coordinate basis
vectors e;. That is, the e; co-rotate with the observer congruence (i.e., they rotate with
respect to Fermi-Walker transport with an angular velocity that equals the vorticity of
the congruence, see Secs. 3 and 5 of Paper #5 [5] for detailed explanation), but without
suffering the shear and expansion effects of the later. To linear order, €%, and its inverse

e, , are given by
e, A;
ey = (1—9¢ep; e%:eﬁ——cg ej+2—cle0 ;
(5.24)
o A
ey = (1 + ¢)eo s € =€ — 612 93—2766 .

Thus ei2 = (5"2 - ; /c?; expressing S in the tetrad, S = Sie%, we obtain an expression
similar to the electromagnetic one (5.23):
asi 1

= (Sx Bg)' . (5.25)

Thus, in the special case of gyroscope precession, the linear gravito-electromagnetic anal-
ogy holds even if the fields vary with time. This might be somewhat surprising, because
if we think about the magnetic dipole as a spinning charged body in a time dependent
magnetic field, an induced electric field would arise that should torque the body, changing
it angular momentum S. Which, in the light of the conclusions of Paper #1, does not
have a gravitational counterpart. As discussed in detail in Sec. VI of Paper #4 [4], the
apparent paradox is an artifact of the dipole approximation, which neglects the torque
exerted by the induced electric field. The latter depends on the particle’s second moment
of the charge, that is of quadrupole order. To dipole order the total torque reduces to Eq.
(5.23), which preserves the magnitude of S, only causing the dipole to precess (regardless
of the time-dependence of the field). That is: the analogy holds because electromagnetic
induction effects are neglected in this degree of approximation.
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5.3.2 Translational vs. Rotational Mass Currents

The existence of a similarity between gravity and electromagnetism, both in terms of tidal
and inertial effects, requires time independent fields, as shown above. To what pertains
gravitomagnetic effects, this is a statement about the time dependence of the mass currents
in the chosen reference frame: if the they are (nearly) stationary, for example from a
rotating celestial body, the gravitational field generated is analogous to a magnetic field;
such is the field detected on LAGEOS Satellites data [52], in the Gravity Probe B mission
[53], and presently under experimental scrutiny by the LARES mission [54]. But when

they vary with time — e.g. the ones resulting from translation of the celestial body,
considered in [69] — then the dynamics differ significantly.
Rotational Currents. — We start by the basic example of analogous systems already

considered in Sec. III of Paper #1 [1]: the electromagnetic field of a spinning charge
(charge ), magnetic moment ps) and the gravitational field (in the far region r — o) of
a rotating celestial body (mass m, angular momentum J), see Fig.5.1.

O O ) O

) *— [ ] *——
W W

12 ]

% — ¢(E+v xB) £~ Eg-2vxBg

Figure 5.1: Spinning charge vs. spinning mass

The electromagnetic field of the spinning charge is described by the 4-potential A% =
(¢, A), given by (5.26a). The spacetime around the spinning mass is asymptotically de-
scribed by the linearized Kerr solution, obtained by putting in (5.17) the perturbations
(5.26D) :

_Q lps xr
_7"

) AZ*

c 73

¢ , A=

(a); @=

M 1
u IXT oL —d5, (). (5.26)

c 3

Let O be a static observer (i.e., at rest with respect to the central bodies); the gravitational
tidal tensors it measures asymptotically match the electromagnetic ones, identifying the
appropriate parameters:

rady  (@d)rirg] sem.

-5 ZHs B
75 7 ij

M 3Mrir; MoQ 3 [(r.d)
ﬁéij_ =" Ey; Hy=_ |3

Ei’ ~
J rd c

0ij + 2
(all the time components are zero for this observer). This means that O will find a
similarity between physical (i.e., tidal) gravitational and electromagnetic forces: the grav-
itational force Fé = —HjiSj /c exerted on a gyroscope carried by O is similar to the force
Fi = B7uj/c on a magnetic dipole; and the worldline deviation D?6z"/dr? = —E¥ ¢z,
of two masses dropped from rest is similar to the deviation between two charged particles
with the same ¢/m.
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Moreover, in the frame of the static observers O, test particles will be seen moving on
geodesics described by equations analogous to the electromagnetic Lorentz force, see Fig.
5.1.

Translational Currents. — For observers O moving relative to the mass/charge of
Fig. 5.1, however, the electromagnetic and gravitational interactions will look significantly
different. Consider the frame obtained from the frame of the static observers O by applying
a boost of constant coordinate velocity w; and let us denote” the boosted frame by O. For
simplicity we specialize here to the case where J = p = 0, so that the mass/charge currents
in the frame O arise solely from translation. To obtain the electromagnetic 4-potential
A% in O, we apply the boost A% = A% A* = (¢, A), where A% = 97%/0x®, using the
expansion of Lorentz transformation (as done in e.g. [72]):

2 2 < 2
_ w 3w w X.wW _ 1 _ -

yielding, to order ¢=2, A% = (¢, A) with ¢ = Q(1 + w?/2¢?)/r and A = —Qw/rc. To
obtain A% in the coordinates (z%,%) of O, we must also express r (which denotes the
dlstance between the source and the point of observation, in the frame O) in terms of

= |T + wt|, i.e., the distance between the source and the point of observation in the

frame O. Using transformatlon (5.27), we obtain: r~! = R7![1 — (w.R)?/(2R?c?)], and
finally the electromagnetic potentials measured in O:

- Q w?  (w.R)? ' _ 1Q
b= (e T )s A=l (5:2%)

The metric of the spacetime around a point mass, in the coordinates of O, is also obtained
using transformation (5.27), which is accurate to Post Newtonian order, by an analogous
procedure. First we apply the boost g;5 = AO‘aA'BBgag to the metric (5.26) (with A = 0);
then, expressing r in terms of R, we finally obtain (note that, although we are not putting
the bars therein, indices @ = 0,4 in the following expressions refer to the coordinates of

0):

= —1+2 M + AMw?  M(wR)”_ 1+ 20,
goo = Re2 R4 ARS T 2’
AMuw; 24 M ©
goi = ?31 = _67215 9ij = [1 +2R 2} 0ij = [1 +202} % (5:29)

4 3

where we retained terms up to ¢~* in ggo, up to ¢ in gio, and ¢~ ? in gij, as usual in
Post-Newtonian approximation. Note that in the fields (5.28)-(5.29) we kept terms to
second order in w (and the transformation (5.27) originating them was non-linear). This
is because, in order to consistently take into account the gravitomagnetic force on a test

"This is a slight notation abuse, as one should in general distinguish observer from frame, see Sec. 3.1
of Paper #b5 [5] where this issue is discussed in detail. Herein the situation is simple because we are
dealing with Post-Newtonian frames [68], differing between each other only by boosts, thus both the
observer congruence and the corresponding spatial frame are always well defined.
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particle, —2v x Bg/c, even to first order in the velocity of the test particle v, one needs to
keep terms up to second order® in the translational velocity of the source (—w); see Eq.
(5.36) below. We neglected non-linear terms in M, as done in [69]; the metric (5.29) is
equivalent to expressions (11) of [69] (where an additional gauge choice, Eq. (19) of [72],
was made), for the case of a single source. It also matches Eqs. (5) of [70] to linear order
in M (and again for the case of one single source). Note that the metric (5.29), like the
electromagnetic potential (5.28), is now time dependent, since R(#) =T + wt.

The gravitational tidal tensors measured by the observers O are (E,o = Ego = Hao =
HOa = 0)

- 20 - 1 9%
Ej = 04— 504600 — 25
M(Sij 3’[1}2 9 (RW)2 3MRZRJ 2’(1)2 5(RW)2
= PR — 1 4+ —— - —F
R3 2 2 2R? R c? 2¢2R?
Y 2R ; (5.30)
- 1 ,00 M 3 6
Lk l L k k

which significantly differ from the electromagnetic ones (Eo, = Boo = 0):

B 10 -
By = —0i— S5 = Eij
- Q§Z] 1 ’wf2 . §(RW)2 . SQRZRJ 1 ’LU72 . 5(RW)2
R3 2¢2 4 c2R? RS 2c2 4c2R?
Quiw; | 3Qu;R;j(R.w) )
2¢2R3 2R ’ (5-32)
FE; = —— =0 — == = — - = — P | .
o cot™ T 2o’ T ¢ of | cR [w R2 } ’ (5:33)
m A — Q 3
B'L] = Gil Am;lj = Bz,] = ﬁ Gijkwk — ﬁ<R X W)rLRJ ; (534)
10B; 3Q
BiO = E ot = — 2R (RW)(R X W)z . (535)

In particular, unlike their gravitational counterparts, E,g and B,g are not symmetric,
and have non-zero time components. Note that the differing terms causing this are of
the same order of magnitude as the others, thus cannot be neglected in any consistent
approximation.

The space part of the geodesic equation for a test particle of velocity v is:

- 20A - 30 (M
a = V(I)+Cat—2VX(VXA)—628t(R>V (536)
M 2w?  3(R.w)? 3M(R.w) AM M
- 't e e ]R em v e < BT g @y,

8Otherwise, if we assumed w? ~ 0 together with v? & 0, then vw ~ 0, and Eq. (5.36) would reduce to
the first term (the Newtonian acceleration)
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which matches equation (10) of [70], or (7) of [71], again, in the special case of only
one source, and keeping therein only linear terms in the perturbations and test particle’s

velocity v.
Comparing with its electromagnetic counterpart

m v Q w?  3(R.w)? 1QR.w) Q
(Q)a:E+cXB:R3 'oe e Ry e ey (Bw)

we find them similar to a certain degree (up to some factors), except for the last term of
(5.36). That term signals a difference between the two interactions, because it means that
there is a velocity dependent “acceleration” which is parallel to the velocity; that is in con-
trast with the situation in electromagnetism, where the velocity dependent accelerations
arise from magnetic forces, and are thus always perpendicular to v.

As expected from Egs. (5.25) (and by contrast with the other effects), the precession
of a gyroscope carried by O, Eq. (5.37b) takes a form analogous to the precession of a
magnetic dipole,

as q Q

dt — 2m 2R3

if we express S in the local orthonormal triad e as defined in Sec. 5.3.1, such that
St =(1- M/R)S"

[Sx (Rxw)|,

s’ 2M

dt 2R3
The triad of axes e’ is in this case fixed relative to the “distant stars” (i.e., non rotating
relative to inertial frames at infinity); thus Eq. (5.37) yields the precession of the gyroscope
relative to the distant stars, which is the situation of interest for astrophysical applications,
namely the measurements performed by the Gravity Probe B (GPB) [53]. Indeed, the
precession angular velocity above,

(R x w) x S (5.37)

2M
T 2R3

or equivalently, Q@ = Bg/c, cf. Eq. (5.25), can be regarded as the sum of two terms: the
geodetic (or de Sitter) precession, measured by the GPB (in addition to the Lense-Thirring
one), which amounts to 3Q2/4, plus the Thomas precession, which amounts to /4. See
e.g. Egs. (40.33) of [73], or Egs. (3.4.38) of [7]; see also Sec. IVB of Paper #4 [4] where
a related issue is discussed.

Finally, a problem that was not addressed in this paper, and is usually overlooked in the
literature concerning both the linearized and Post-Newtonian approaches, is the following:
we said above that Eq. (5.37) yields the precession of a gyroscope with respect to a system

Q R xw,

of axes €’ that is non-rotating with respect to an inertial frame at infinity; but how can one
ensure that, as it amounts to comparing systems of vectors at different points in a curved
spacetime? This is an highly non-trivial problem, which is studied in a exact approach
in Secs. 3.1 and 3.3 of Paper #5. The conclusion is that one may determine the relative
rotation of two tetrads at different points, exactly, only in spacetimes admitting shearfree
observer congruences. In the problem at hand, the boosted frame indeed shears, but not
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to this degree of accuracy, as explained above; the traceless shear is neglected, only the
expansion (which preserves angles) is manifest in the boosted metric (5.29).

5.3.3 Conclusion

In this work, and in view of the analogies from linearized theory reviewed in Sec. 3.1.1,
whose limit of applicability is not always clear, we dissected under which specific condi-
tions gravitational dynamics (for weak fields) becomes similar to electromagnetism, with
a special emphasis to setups of recent and present experimental interest.

We have concluded that the actual physical similarities between gravity and electro-
magnetism (on which the physical content of such approaches relies) occur only on very
special conditions. In the framework of linearized theory and Post-Newtonian approxi-
mations (and with the type of frames commonly used therein), this is a requirement of
time-independence of the fields; the frame in which such independence is required depends
on the type of effect. For tidal effects, like the forces on gyroscopes/dipoles, the simi-
larity manifest in Eqgs. (5.18) (and the analogy based on GEM fields therein) holds only
when both the potentials (gravitational/electromagnetic) and their gradients are time-
independent in the test particle’s frame. In the example of analogous systems considered
in Sec. 5.3.2, this means that the center of mass of the gyroscope/magnetic dipole must
not move relative to the central body. In the case of the analogy between the equation for
the geodesics and the Lorentz force law (see Fig. 5.1), as manifest in equation (5.19), it
is in the the observers’ (not the test particle!) frame, that the time independence of the
potentials, is required. In the case of the tidal effects, as mentioned above, the restriction
is not only on the potentials, but also in its gradients; here I would like to remark that this
makes a difference. Consider this basic example, a test particle in circular motion around
the Coulomb field of a point charge. In the inertial frame momentarily comoving (MCRF)
with the particle, the potential ¢ is constant; but not the electric field E (it is constant
in magnitude, but time-varying in direction), and due to that the electromagnetic tidal
tensors can no longer be similar to the gravitational ones (for instance of the analogous
situation, a particle in circular motion around a Schwarzschild black hole). In this frame-
work this can be understood as follows: take the magnetic tidal tensor B,g; as discussed
in Sec. 5.2, it is a covariant derivative of the magnetic field as measured in the MCRF:
B.g = Ba;glU:com = (BMCRF )a;8- Since in this frame the electric field is time-varying, by

virtue of Maxwell equation V x B =0E /Ot, this means that B has a curl, thus By, # 0.
By contrast with the gravitational analogue, where Hj,5 = 0. This can be stated in this
way: the symmetries of the electromagnetic tidal tensors differ from the gravitational ones
when F,g.,U" # 0, i.e., when the electromagnetic field is not covariantly constant along
the observer’s (in this case the particle’s) worldline; this is what Egs. (5.1.6a), (5.1.4a) of
Table 5.1 tell us. And indeed for circular motions around a coulomb charge, F,,5.,U7 # 0,
despite d¢/dr = ¢.,U* = 0.

In Sec. 7 of Paper #5 [5] the analysis herein is refined and generalized for the exact
case.

Finally, as a consequence of this analysis, a distinction, from the point of view of the
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analogy with electrodynamics, between effects related to (stationary) rotational mass cur-
rents, and those arising from translational mass currents, becomes clear: albeit in the
literature both are dubbed “gravitomagnetism”, one must note that, while the former are
clearly analogous to magnetism, in the case of the latter the analogy is not so close.

5.4 Paper #3 — Mathisson’s helical motions for a spinning
particle: Are they unphysical?

Both the analogy between the electromagnetic force on a magnetic dipole and the grav-
itational force on a gyroscope (a spinning pole-dipole particle), introduced in Paper #1
(and put on firm ground in Paper #4), and the analogy between the precession of a mag-
netic dipole in a electromagnetic field and the “precession” of a gyroscope, known from
the approaches based on exact GEM inertial fields of Sec. 3.1.2 (see also papers #4 and
#5), require the so-called Mathisson-Pirani spin condition to hold. The very notions of
rotation and compass of inertia in relativity, and the physical meaning of the Fermi-Walker
transport law, rely also on it. It turns out that the problem of the spin supplementary
condition is an old one, and not well understood even today. This is even more so in the
case of Mathisson-Pirani condition, due to its degeneracy and the exotic solutions it allows.
In particular the famous helical motions for a free particle in flat spacetime (where the
particle’s center of mass accelerates without the action of any force), which were regarded
with a lot of skepticism, and deemed unphysical, due to the belief that the radius of the
helices could be arbitrarily large [76, 75, 60, 77].

In this work, which initially started out as an Appendix of Paper #4 [4], we clarify these
issues, explain the helical motions, and show that there is nothing wrong or unphysical
with the Mathisson-Pirani condition.

5.4.1 Equations of motion for free spinning particles in flat spacetime.
Mathisson’s helical motions.

As explained in Sec. 3.2, in a multipole expansion, a body is represented by a set of
moments of 7% called “inertial” or “gravitational” moments (forming the so called [61]
“gravitational skeleton”), and the moments of j* (the electromagnetic skeleton). In this
work we are interested in free particles, so only the former contribute to the equations
of motion. The moments are taken about a reference worldline z*(7), which could in
principle be arbitrary, but will be chosen below as a suitably defined center of mass. The
case of pole-dipole particles corresponds to truncating the expansion at dipole order. In
this case the equations of motion involve only two moments of 7%?, the momentum P<,
and the angular momentum S* defined as (see e.g. [97, 60, 59]):

Pa

/ T*Pdyg (5.38)
3(u)

58 = 9 /E ( )r[aTﬂthV. (5.39)
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Here P%(7) is the 4-momentum of the body; S%’(7) is the angular momentum about a
point z%(7) of the reference worldline; (7, u) = X(2(7),u) is the spacelike hypersurface
generated by all geodesics orthogonal to some time-like vector u® at the point z%(7);
r® = x% — 2%(1), where {2} is a chart on spacetime; d¥, = —u,d¥, and d¥ is the
3-volume element on X (7, u).

In the case of free particles in flat spacetime (i.e., without any further fields), the
equations of motion that follow from the conservation law T 5= 0 are [76, 79, 60, 59, 81,
97]: 7

DP® DSo#

=0 =2PlUf (). 5.40
R O o) (5.40)
Contracting (5.40b) with U® we obtain an expression for the momentum:
DS*P
P =mU" — U 5.41
m 7 s (5.41)
where m = —P*U,. Egs. (5.40) form an indeterminate system. Indeed, there are 13

unknowns (P%, 3 independent components of U%, and 6 independent components of Sob )
for only 10 equations. This is where the spin condition comes into play. A supplementary
spin condition of the type S*# ug = 0, for some unit timelike vector u®(7), effectively kills
off 3 components of the angular momentum, thereby closing the system. Such condition has
the role of specifying the representative point of the body (i.e., the worldline of reference
relative to which S*? is taken); as I shall show below, it demands it to be the center of
mass as measured in the rest frame of the observer of velocity u®.

In this way U“ is the center of mass 4-velocity and m denotes the proper mass, i.e., the
energy of the body as measured in the center of mass frame. Note from Eq. (5.41) that the
momentum P® is not, in general, parallel to U%; the spinning particle is said to possess
“hidden momentum” [66, 4], which plays a key role in this discussion, as explained in Sec.
5.4.5 below.

Mathisson’s helical solutions [74] arise when one uses the condition S*?U, = 0. In this
case S0 = eO‘B””SﬂUy; (5.40c) becomes PY = mU* + Saﬁag, where a® = DU®/dr; and
DS%/dr = 0. The solution of (5.40) under this condition turns out to be degenerate; it
describes the famous helical motions, which, in the P' = 0 frame, correspond to clockwise
(i.e. opposite to the spin direction) circular motions with radius

vy2S
m

R=

(5.42)

and speed v on the zy plane. Taking their center as the spatial origin of the frame, they
read:

2%(1) = (77’, —R cos <%7‘> , Rsin (%7) ,0) (5.43)

These motions were interpreted in [74] (for the case of an electron) as the classical coun-
terpart of the Dirac equation ‘zitterbewegung’. However, the fact that v can be arbitrarily
large has led some authors (see e.g. [76, 77]) to believe that, according to (5.43), a given
free body might move along circular trajectories with any radius; for this reason these
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Figure 5.2: Center of mass of a spinning particle (§ = Seé,, orthogonal to the page) as
evaluated by two different observers. Observer O of 4-velocity u®* = P*/M is
at rest with respect to center of mass a:lc M= xzc v (w) it measures (i.e., mlc A is
a proper center of mass). Observer O, moving with velocity ¥ = —vé, relative
to O, sees the points on the right hemisphere (e.g. point B) moving faster
than the points in the left hemisphere (e.g. point A), and, therefore, for O,
the right hemisphere will be more massive than the left one. This means that
the center of mass %, = x%,,() as evaluated in the moving frame of O is

shifted to the right (relative to z%,,). The shift is exactly AZ = S, x /M.

solutions have been deemed unphysical. The same arguments were used to imply that the
the frequency of these motions, given by

m

only coincides, for the case of an electron, with Dirac’s zitterbewegung frequency w =
2M./h, in the limit v — 1. Both these assessments are misconceptions as shown below.

5.4.2 Center of mass. Significance of the spin condition.

In order for (5.40) to be equations of motion for the body, z*(7) must be taken as its
representative point. The natural choice for such point would be the body’s center of
mass (CM); however, in relativity, the CM of a spinning body is an observer dependent
point. This is illustrated in Fig. 5.2. As mentioned above, a spin condition of the type
Sug = 0 (for some unit time-like vector u®) amounts to choosing z®(7) as the center
of mass x&y;(u) measured by the observer O(u) of 4-velocity u®. This is easily seen in
the rest frame of O(u) (the u’ = 0 frame). In such frame S*ug = S*0ug; thus, from
Eq. (5.39):

g0 _ 2/ r[iTOthy = /:ciTOOdga: —m(u)z", (5.45)
X(r,u)

where m(u) = —P%u, denotes the mass as measured in the frame O. The first term of
(5.45) is by definition m(u)zl,,(u), where z4,,(u) are the coordinates of the center of
mass as measured by O, and so

510 Sa5u5

Ty (u) — 28 = mw) & xdg(u) — 2% = — . (5.46)
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O

Figure 5.3: Kinematical explanation of the helical motions allowed by S®% Ug = 0: every
point within a disk of radius S,/M, centered at x@,,(P), is a centroid corre-
sponding to some observer; and it is also a proper center of mass if it rotates
with angular velocity w = M/S, in the opposite sense of the spinning body
(solid red lines).

Thus the condition Saﬁug = 0 is precisely the condition z&,,(u) = 2%, i.e., that the
reference worldline is the center of mass as measured in this frame. In order to see how the
center of mass changes with the observer, take u® = P®/M, i.e., the reference worldline
is the center of mass as measured in the zero 3-momentum frame, that we denote by
gy (P). And let SY # denote the angular momentum with respect to xg)(P). Consider

now another observer O moving relative to O with 4-velocity u® = @°(1,%); for this
observer the center of mass will be at a different position, as depicted in Fig. 5.2. It is
displaced by a vector Az® = — 5 ug/m(u) relative to the reference worldline z*, where
m(u) = —P7u, denotes the mass of the particle as measured by O. That is,
: (S, x B)!
Azt = —— 5.47
. = (5.47)

with M = /—PP,. Hence the set of all possible CM’s measured by all observers O(u)
fills a disk of radius Ryue = S«/M centered at x@y;(P). This is the minimum size a
particle can have without violating the dominant energy condition (i.e., without possessing
matter/energy flowing faster than light). The latter implies p > |f\, where p = T% and
J' =T, let b be the largest dimension of the body. Using the definition of S fin [3], we
may write, in the P? = 0 frame,

S, = ‘/Fx Jd3x

< /ryﬂd% < /prdS:r <Mb < b> % = Rynaz - (5.48)

Thus the disk of CM’s, within which all the helical motions are contained, is always smaller
than the body.
5.4.3 Kinematical interpretation of the helical motions

The Mathisson-Pirani condition S®*U, = 0 amounts to choosing for z® the center of mass
xg&y(U) as measured in its own rest frame, i.e., the frame U* = 0. Such CM is dubbed
a “proper center of mass”. It turns out that, contrary to what one might expect, such
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point is not unique, as we shall now show. The CM measured in the P! = 0 frame (zcm
in Fig. 5.2) is one of the proper CM’s, as it is clearly at rest in this inertial frame, and
thus has uniform straightline motion in any other inertial frame. It corresponds to the
solution R = 0 in Eq. (5.43). Let again O be an observer moving relative to the P! = 0
frame with 3-velocity . The 4-velocity of O is 4® = y(u® + v¥), where v = —u,u® and
v® is the relative velocity vector which is spatial with respect to u® = P*/M. As we have
seen above, the center of mass measured by O is at a new point xZCM(ﬂ) = a‘cZCM, shifted
by a vector Az’ relative to xy(P), cf. Fig. 5.2 and Eq. (5.47). But this new point in
principle is not at rest relative to the observer O measuring it, i.e., it is not a proper CM.
In order to see that, we take as reference worldline 2%(7p) = x&y;(P), and compute the
evolution of the shift vector along it:

DAz® _Sfﬁ Dug dAx 1lg dv

_ daz 1 & , 4
drp Mae W T T T g (5.49)

The second equation holds in the rest frame of O (the frame u’ = 0 = P?), where the time
coordinate is t = 7p. If O is inertial, Dv®/dr = 0, and x&,;() is a point at rest relative
to 22y (P), thus not at rest relative to O (it moves relative to it at speed —%). The set
of CM’s measured by all the possible inertial observers forms a disk of points all at rest
with respect to each other and (again, for a free particle in flat spacetime) with respect to
xg,;(P), around which the disk is centered.

But if ¥ is not constant, then the shift Az varies accordingly, and the centroid x&,()
acquires a non-trivial velocity oy = dAz/dt (as measured in the P! = 0 frame). If O
itself moves with ' = Uy, i.e., if the observer velocity ' is a solution of the equation

a:%ix%, (5.50)
then x&,(a) it is at rest relative to O (it is a proper center of mass). The solutions (in

the P! = 0 frame) are circular motions in the plane orthogonal to g*, with radius

_[5x S wS.

=A .01

R x i i (5.51)
and constant (independent of R) angular velocity
M

= —— 5.2

w=-3 (5:52)

in the opposite sense to the rotation of the body, as illustrated in Fig. 5.3. This is origin
of the helical motions, as argued in [78]; our analysis in this section is equivalent to the
one therein (only stated and derived in a different form). Indeed the solutions of (5.50)
are precisely (5.43), and the expressions for the radius and angular velocity (5.51)-(5.52)
are equivalent to (5.42), (5.44), as shown below. Hence the radius of the helical motions is
not arbitrarily large; they are contained within the disk of CM’s, of radius Ry,qp = Sx/M,
which is always smaller than the body as shown by inequality (5.48) above.
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5.4.4 The misconception in the literature

So what is then the origin of the apparent paradox? It all comes down to a misunderstand-
ing of what it means to consider different solutions corresponding to the same particle; in
particular which are the parameters that must be fixed.

Different representations of the same extended body must yield the same moments (P
and S%%) with respect to the same observer and the same reference worldline. When
one changes from one helical representation to the other, one is changing the point about
which the angular momentum is taken; and also changing the CM velocity U®, which
means that the proper mass m = —P%U, will also be different. Let U® and U® denote
the 4-velocity vectors of two different helical representations. Clearly m must be different
from m = —P*U,. Also the tensor S*?, obeying 5% Ug = 0, must be, in general, different
from the tensor S, obeying 5’0‘5(75 =0, if S and S*P are to represent the same body,
since the former is the angular momentum about the point xg,,(U), and the latter about
the point #,,(U). As we show in detail in Sec. IV of Paper #3 [3], the magnitude S of
the spin vector of any helical solution obeys

5=
Y
Thus, it is the quantities S, = 7S and M = m/v, not m and S, that we must fix in order
to ensure that we are dealing with the same particle. Therefore, R = vy2S/m = vS,/M <
Rpqz, for all the helical representations corresponding to a given particle. Moreover, the
frequency w = m/v%S = M/S, is the same for all helices corresponding to the same
particle, and coincides exactly (even in the relativistic limit) with Dirac’s zitterbewegung
frequency, identifying S, = h/2 and M = M..

5.4.5 Dynamical Interpretation of the Helical Motions

We see from Eq. (5.49) that the CM x@,,(u) is not at rest in the P = 0 frame when the
4-velocity u® of the observer measuring it changes; conversely, P will not be zero in the
CM frame (where, by definition, the particle is at rest); thus P® is not parallel to U?,
and the particle is said to possess hidden momentum [66]. This is a key concept for the
understanding of the dynamics of the helical solutions; namely how the CM of a spinning
particle can accelerate in the absence of any force without violating the conservation laws.
Consider a generic spin condition S? ug = 0; contracting (5.40b) with ug, leads to

D
5B % = (u, U)P* — m(u)U*; (5.53)
T
where y(u,U) = —UPug and m(u) = —PPug. We then split the momentum P® in two
parts:
1 DuB
v(u,U) dr

The “kinetic momentum” is the projection of P* along U“; and the projection orthogonal to
Ue, P8, = (hU)aﬁPﬁ, is the hidden momentum. Hence, if Dug/dr = 0, that is, if we take

P% = Py + P2y; P& =mU®%; P&y = (RY)e 578 (5.54)
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as z%(7) the CM measured by an observer O(u) such that u® is parallel transported along
it (e.g., an inertial observer in flat spacetime), then P* || U, and P&, = 0. Otherwise,
P&, # 0 in general. This is the reciprocal of Eq. (5.49b); one can obtain one effect from
the other, see [3] for details.

Notice the important message encoded herein: in relativity, the motion of a spinning
particle is not determined by the force laws given the initial position and velocity; one
needs also to determine the field of vectors u® relative to which the CM is computed; the
variation of u® along z®(7) is enough to possibly cause the CM to accelerate, even in the
absence of any force. In this case the variation of P is compensated by an opposite
variation of P, keeping P constant. If u® varies in a way such that the signal in Eq.
(5.49b) oscillates, we may have a bobbing; or if it is such that O(u) sees its CM to be
at rest (u® = U?, i.e, its 3-velocity ¥, in the frame P! = 0, is a solution of ¥ = Tay,
Eq. (5.49¢)), so that the condition S*¥ug = S“’Us = 0 is obeyed, then we have a helical
solution. In this special case the hidden momentum takes the form

Pho;d = Saﬁaﬁ = GQB,Y&aﬁSFYU& y

which in vector notation reads ﬁhid = -9 Xyd = S xUé, where G is the “gravitoelectric
field” as measured in the CM frame (see Paper #4 [4]). This is formally analogous to the
hidden momentum FJ; = eaﬂvéEﬂﬁ U® of electromagnetic systems; in vector notation

ﬁhid =/ XUE, see [4]. The dynamics of the helical representations may actually be cast
as analogous to the bobbing [66] of a magnetic dipole orbiting a cylindrical charge, as
explained in Fig. 5.4.

5.4.6 Conclusion

In this work we studied the problem of the spin supplementary condition and the center
of mass definition in relativity, and in special detail the Mathisson-Pirani condition, and
its famous helical solutions. We concluded that there is nothing wrong with this spin
condition, it is as valid as the Tulczyjew-Dixon [62, 60, 81|, the Papapetrou-Corinaldesi
[89], or any other physically reasonable condition (there are infinite possibilities), the
choice between them being just a matter of convenience. Actually, in some applications, the
Mathisson-Pirani condition is the most suitable one, many applications in Paper #4 [4] are
examples of that; this is discussed in detail in Appendix C therein. It is degenerate, and the
helical solutions it allows for a free particle (in addition to the expected uniform straightline
motion), are just alternative and physically consistent descriptions of the motion (only
more complicated). The claims in the literature that these solutions are unphysical because
the radius of the helices is arbitrary large were shown to arise from a subtle (but crucial)
mistake in earlier derivations. Indeed the radius is finite and always contained within the
disk of centroids (i.e., the disk formed by all possible positions of the centers of mass as
measured by the different observers), which is typically much smaller than the body, and
even in the case that the body rotates with relativistic velocity, it is always contained
within its convex hull.
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Cl

Rui Quaresma

Figure 5.4: Hidden momentum provides dynamical interpretation for the helical motions:
the acceleration results from an interchange between kinetic P = mU® and
hidden “inertial” momentum Py, = Sab ag, which occurs in a way that their
variations cancel out at every instant, keeping P constant. This is made mani-
fest in b) panel, representing the P=0 frame, wherein ﬁhid =ax US’ =—mU =
—Pyin. Panel ¢) represents an electromagnetic analogue [66]: a (negatively)
charged test particle possessing magnetic dipole moment i = (u*, u?,0), or-
biting a cylindrical (positively) charged body. The cylinder is along the z axis,
and E is the electric field it produces (measured in the particle’s CM frame).
The z component of the force vanishes for this setup; hence P? = 0 = constant.
But the particle possesses a hidden momentum [66, 4] ﬁhid =[ XUE; as it or-
bits the line charge, ﬁhid oscillates between positive and negative values along
the z-axis, implying the particle to bob up and down in order to keep the
total momentum along z constant: P* = P7, + P}, = 0. (Note however the

important distinction: @ xu S, but not i Xy E, is pure gauge).
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Interestingly, the dynamical consistency of the helical motions (as well as other exotic
motions which are allowed by the infinite possible spin conditions, and where the center of
mass accelerates without any force) can be explained through the same concept of “hidden
momentum” that was recently discussed in [66], and argued therein to play a key role in the
bobbings observed in numerical simulations of binary systems. This hidden momentum
may be cast as analogous to the hidden momentum of electromagnetic systems (another
not well understood feature of relativistic electrodynamics, despite its discovery dating
back from the 60’s [90]), that we discuss in detail in Paper #4 (see also in this respect
[91, 66]).

Regarding the suggestions that Mathisson’s helical motions (for an electron) are the
classical limit of the zitterbewegung of Dirac’s equation, originally put forth by Mathisson
[74] (and later supported by other authors [82, 83, 79, 84, 85, 98]), they have been rejected
by other authors [75, 76, 60, 77], based on two arguments: one is again the supposedly
arbitrarily large radius of the helical motions (which would be contradicted by experimental
evidence), the other is that the frequency of the helical motions only coincides with the
zitterbewegung frequency of Dirac’s equation in the non-relativistic limit. As a byproduct
of our analysis, both turn out to be misconceptions, the second argument originating
precisely from the same mistake that led to the former. Indeed, identifying the appropriate
parameters, all the classical helical representations for the free electron have the frequency
w = 2M,/h, which is precisely Dirac’s frequency. With the no-go arguments against the
correspondence now put aside, the way is now open for a demonstration of the existence
(or not) of a deep connection between the two phenomena.

Finally, the outcome of this paper, and the validation of the Mathisson-Pirani condition,
is of special importance in the context of this work, since, as mentioned at the start of
this section, part of the gravito-electromagnetic analogies, in order to be exact, rely on
this condition. That is the case of the analogies for both the force and the spin evolution
of a spinning particle, studied in the other four papers in this compilation, and also of a
third one — the exact analogy relating the “electromagnetic” hidden momentum and the
“inertial” hidden momentum of a spinning particle — which is unveiled in Paper #4 [4].

5.5 Paper #4 — Spacetime dynamics of spinning particles —
exact gravito-electromagnetic analogies

In this paper we studied several aspects of the motion of spinning multipole test particles in
electromagnetic and gravitational fields, in the framework of exact gravito-electromagnetic
analogies. This is the first major application of the tidal tensor formalism developed in
Paper #1 [1], as the forces on the test particles, and the dynamical implications of the
symmetries and time-projections of the tidal tensors (key distinctive features between
electromagnetism and gravity found in [1]) are discussed in depth. The main point of this
work is that there is a lot to be learned (about both of them) from a comparative study
of the gravitational and electromagnetic interactions.

Below I will (very) briefly review the main results in this paper; I refer the reader for
the introduction and conclusion of the paper for a comprehensive account of the results
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and issues addressed; and I also would like to draw the reader’s attention to the boxes at
the end of Secs. III, IV, V and IV therein, summarizing the main results and conclusions
therein.

5.5.1 Equations of motion and the exact analogies

In most of this work we deal with the dynamics of the so-called pole-dipole spinning test
particles. We consider systems composed of a test body plus background gravitational
and electromagnetic fields. Let (Tiot)® = O 4 (Thnatter)™® denote the total energy mo-
mentum tensor, which splits into the electromagnetic stress-energy tensor ©*? and the
energy-momentum of the matter (Thaser)®. Moreover, let 7% and j* denote, respec-
tively, the energy momentum tensor and the current density 4-vector of the test body.
We also consider that the only matter and currents present are the ones arising from
the test body: (Tatter)™® = T, (jiot)® = j. In this case the conservation of total
energy-momentum tensor yields:

(Tiot)™%5 =0 = T, = -0, & T, = F*j, | (5.55)
where F®8 is the Maxwell tensor of the external (background) electromagnetic field.

As discussed in Sec. 3.2, in a multipole expansion the body is represented by the
moments of j%, and a set of moments of T%%. Truncating the expansion at dipole order,
the equations of motion for such a particle involve only two moments of 7%, which are
P and S°#, Egs. (5.38)-(5.39) above, and the electromagnetic moments:

¢ = / jds,, | (5.56)
b
d* = / r*j%dX, | (5.57)
3(r,U)
« 1 « 5/ B o
nt = —e% U r?U%dY, . 5.58
2 575 E(T’U) ( )

As already discussed in Secs. 3.2 and 5.4, the moments are taken with respect to a
reference worldline z%(7), of proper time 7 and (unit) tangent vector U® = dz%/dr, and a
hypersurface of integration (7, u). Following [59] we take u® = U%; d¥, = —U,dX%, where
dY. is the 3-volume element on (7, U); ¢ denotes the total charge, which is an invariant
(making ¥ in this case arbitrary), d*(7) and pu®(7) are, respectively, the intrinsic electric
and magnetic dipole moments about the point z%(7) of the reference worldline. It is useful
to introduce also the magnetic dipole 2-form i,z by

1
Lo = €aprait U p = ?%wUﬁ,ﬂw : (5.59)

The motion of the test particle is described by the reference worldline z%(7), which is
prescribed by the spin supplementary condition (as explained in Sec. 5.4.2 above). In most
of Paper #4 we choose the Mathisson-Pirani spin condition S*?U 3 = 0, under which the
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exact gravito-electromagnetic analogies studied in this work arise. The rigorous equations
of motion, that follow from the conservation equation (5.55) and the charge conservation
7% = 0, have been derived in a number of independent treatments [60, 59, 81, 106, 64, 66];
the relationship between them, as well as the physical interpretation of the terms involved
is an important clarification made in this work; it is discussed detail in Appendixes A (see
also B) of Paper #4 [4]. Writing them in terms of the physical momentum and angular
momentum, given by definitions above, they read, in tidal tensor form:

DP® Dd’
= aE"+ B ug —HP*S5 + E*Pdg + F — (5.60)
DSeP o
5 = 2Plyfl 4 2, /P ¥, 1 24l PO U (5.61)
-

where F*# is the background Maxwell tensor. The first term in (5.60) is the Lorentz
force; the second and third terms terms are the forces discussed in Paper #1 [1]: the force
Bbe pug = Fg)\p due to the tidal coupling of the electromagnetic field to the magnetic dipole
moment, and the third, —Hﬁo‘Sﬁ = I'4, is the Mathisson-Papapetrou spin-curvature force.
The last two terms are the force exerted on the electric dipole, consisting of a tidal term
EoB dg governed by the electric tidal tensor, and of a non tidal term F%Ddﬂ /dr.

Analogy based on tidal tensors.— The force equation (5.60) manifests the physical anal-

ogy
Bag — Hag

we found in Paper #1 (now being extracted from the rigorous, fully covariant equations
of motion): both the electromagnetic force on a magnetic dipole and the gravitational
force on a gyroscope are determined by a contraction of the spin/magnetic dipole 4-vector
with a magnetic type tidal tensor. B,g is a covariant derivative, keeping U® fixed (co-
variantly constant), of the magnetic field B* = xF BU # measured by the test particle:
Bog = Baglu=const.; i-€., it is a derivative of B* as measured in the inertial frame mo-
mentarily comoving with the particle.

Precession analogy based on GEM fields.— Another exact analogy arises from the spin
evolution equation (5.61). Take now, for simplicity, purely magnetic dipoles (i.e., d* = 0);
if the Mathisson-Pirani condition S*Us = 0 holds, Eq. (5.61) can be written as

DrS,
dr

where B? is the magnetic field as measured by the test particle, B* = xF*# Ug, and Dp/drt
denotes the Fermi-Walker covariant derivative (see e.g. [73, 7, 63] for an explanation of
this derivative). This is the relativistic generalization of the the familiar textbook torque
T =X B. Consider now an orthonormal frame eg comoving with the test particle, i.e.

= €uap U 1 BP, (5.62)
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U = e;. In such frame, S0 =0 and US = 663‘, and equation (5.62) reduces to:

% R % -
Zf _(@x By e ¥ (* *)Z (5.63)
where € is angular velocity of rotation of the spatial axes e; relative to the tetrad Fermi-
Walker transported along the particle’s CM worldline (may be interpreted as their rotation
relative to a system of local comoving guiding gyroscopes, defining the so-called compass
of inertia). This equation manifests the analogy QO < B. If instead of a local tetrad
one considers an extended frame, such that the time axis of the tetrads is tangent to a
congruence of observers, and the spatial triads e; co-rotate with the observers (this is set
up by demanding Q) = @, where & is the vorticity of the congruence), which is physically
the most natural and relevant frame?, then €} becomes one half of the gravitomagnetic field
H of the corresponding frame. The details on this are given in Sec. 3 of Paper #5 [5]. In

this way we obtain a generalized version (now valid for arbitrary fields) of the analogy in
Sec. (3.1.2)

st (1. - )

=|=SxH+jxB 5.64

dr <2 G > ( )

Momentum of the particle: analogy based on GEM fields.— The momentum of the

particle is not parallel to its 4-velocity, it is said to possess “hidden momentum”, P, =

(hU)O‘ﬁPﬁ. Contracting (5.61) with U®, and using the spin condition S“’Us = 0, one
obtains an expression for P%:

P = Pg, + Phiar + Priaews
P, =mUY PBlapMm = eaﬁwuﬁEWU‘s; Pl = —eaﬁwSﬂcﬂU‘s ) (5.65)

Thus the hidden momentum consists of two parts: the “inertial” one Py ; discussed in
Sec. 5.4.5 above, and which is pure gauge, and another part P, that arises in when
an electromagnetic field is present (albeit being purely mechanical in nature, see e.g. the
model in Fig. 9 of [100]). E is the electric field as measured in the particle’s CM frame;
and —a® = G® is the gravitoelectric field in this frame, see Eq. (3.18) above. Thus
we have another exact analogy based on GEM fields: the inertial hidden momentum is
analogous to the “electromagnetic” hidden momentum, with S playing the role of ji, and
the gravitoelectric field playing the role of the electric field. To make it more explicit, we
write the momentum in the particle’s CM frame (where U? = 0), and in vector notation
(Plia =0):

—

Biuu=P=-Sxi+ixE=SxG+ixE. (5.66)

9Tt is this type of frame that is useful in the experimental detection of gravitomagnetism, such as in the
Gravity Probe B mission [53], where one needs to define a frame whose axes are everywhere fixed to
the “distant stars”. For shear-free congruences, this amounts to say that the triads e; point to fixed
neighboring observers, as is the case of the frames defined in Sec. 3.1.2 for the case of stationary
spacetimes.
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Table 5.2: Analogy between the electromagnetic force on a magnetic dipole and the grav-
itational force on a gyroscope

Electromagnetic Force Gravitational Force
on a Magnetic Dipole on a Spinning Particle
Fpy = Bl (5.2.1a) FS=-H/s% (5.2.1b)
G =*F, gU" H% = «R®,5,U*U”
Eqgs. Magnetic TT Egs. Gravitomagnetic TT
B% =0 (5.2.2a) H*, =0 (5.2.2b)
Blag = % * FopnyUY = 2meqpoyj°U7  (5.2.3a) Hiog = —4meapoyJ7UT  (5.2.3b)
BogU®=0;  BagUP = " ;Ejg U (5.2.4a) HopU® = HopUP? =0 (5.2.4b)

Note that this analogy holds for the Mathisson-Pirani condition, with other spin condi-
tions Py has a different form, cf. Eq. (5.54).

Mass of the particle. — The “proper mass” of the particle is defined as the scalar m =
—PU,, and represents the energy of the particle as measured in the frame where its center
of mass is at rest. It is conserved in a purely gravitational field, if the Mathisson-Pirani
condition holds; but it is not conserved in general in the presence of an electromagnetic
field. Using (5.60), we obtain (see Paper #4 for details)

dm DB Dd”

P e (5.67)

The first term is essentially'® the rate of work done on the magnetic dipole by Faraday’s
law of induction, already discussed in Sec. 5.2.2 above (see figure therein). We shall see
below that if the test particle is a rigid spinning particle, this corresponds to a variation
of kinetic energy of rotation. The second term corresponds to the work done on the
magnetic dipole by the electric field when the dipole vector varies, e.g., when the dipole
rotates. Note the important difference between the two terms: the first is non-zero only
when the magnetic field varies along the particle’s worldline; the second has nothing to do
with induction effects, it is non-zero only when the dipole varies (regardless of the variation
of the electric field).

5.5.2 Dynamical implications of the symmetries of the tidal tensors

According to Table 5.2, both in the case of the electromagnetic force on a magnetic dipole,
and in the case of the gravitational force on a gyroscope, it is the magnetic tidal tensor,

101 P8ygm = 0, then p, DB"/dr = B" Uy, = FguUs; otherwise there is an extra term (quadratic in
u) originating from the electromagnetic hidden momentum.
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as seen by the test particle of 4-velocity U, that determines the force exerted upon it.
The explicit analogy in Table 5.2 is thus ideally suited to compare the two forces, because
in this framework it amounts to comparing B,z to H,z. The most important differences
between them are: i) B,g is linear in the electromagnetic potentials and vector fields,
whereas H,g is not linear in the metric tensor, nor in the GEM “vector” fields (for a
detailed discussion of this aspect, see Sec. 3 of [5]); ii) in vacuum, H,g = 0 (symmetric
tensor), whereas B, is generically not symmetric, even in vacuum; iii) time components:
Hqp is a spatial tensor (with respect to the observer measuring it), whereas B,g is not.
These last two differences, which are clear from equations (5.2.3)-(5.2.4), are the ones in
which we are mostly interested in the present work. In this section we start by the physical
consequences of the symmetries, and in the next section we discuss the time projections.
Eq. (5.2.3a), in vacuum (5 = 0) reduces to

1
B[aﬁ] *Faﬁ ’YU . (5.68)

There is an important statement encoded in this equation that can be stated as follows:
since it is the tensor B,z measured by the particle that yields the force Fg);, whenever the
particle sees a varying field (DF®? /dr # 0), B, is non-vanishing (Blap) # 0 = Bag # 0)
and therefore a force will be exerted on it (except possibly for very special orientations of
f£). In particular, whenever a magnetic dipole moves in a non-homogeneous field, a force
will be exerted on it (again, except for very special i’s).

In the gravitational case, since Hj,5 = 0, analogous effects to not occur, and therefore,
even in non-homogeneous fields, there are velocity fields for which H,g = 0, i.e., for which
gyroscopes feel no force. There are even geodesic motions for spinning particles. This is
exemplified below.

5.5.2.1 Radial motion in Schwarzschild spacetime

Consider a magnetic dipole in the field of a static point charge @, and with a purely radial
initial velocity U® = U%(1,%). The particle sees a varying field (DF?/dr # 0); thus, by
virtue of Eq. (5.68) it measures a non-vanishing tensor B,g, and therefore (except for the
special case ¥ || [i) a net force will be exerted on the dipole; explicitly:

Fi =0: B = B = 2@y (5.69)

This is unlike what one might naively expect, as the radially moving dipole sees a vanishing
magnetic field BY; taking the perspective of the frame comoving with the particle, this
is explained through the laws of electromagnetic induction: the moving dipole “sees” a
time-varying a electric field; by virtue of Eq. (5.68) (which is a covariant form for V x B =
OE /dt), that will induce a curl in B, i.e., an antisymmetric part in the magnetic tidal tensor
B,g. For this configuration, actually Bag = Blag], 1.e., the force Fg; comes entirely from
the antisymmetric part of B,g.

Therefore, since H,p is symmetric (in vacuum), Hiap = 0, we expect, in the spirit of
the analogy, the force to vanish in the analogous gravitational setup. This is exactly the
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Figure 5.5: An illustration of the physical consequences of the different symmetries of the
tidal tensors. A gyroscope dropped from rest in Schwarzschild spacetime will
move radially along a geodesic towards the source, with no force exerted on it.
A magnetic dipole in (initially) radial motion in a Coulomb field, by contrast,
feels a force. Due to the hidden momentum, the force is approximately opposite
to the acceleration!

case. If one considers a gyroscope in radial motion in Schwarzschild spacetime, the force
is exactly zero:
F§=-H*S3 =0

This means that a gyroscope in radial motion moves along a geodesic (for instance, a
gyroscope dropped from rest will fall into the singularity moving in a straight line).

Finally (this is not the topic of this section, but is nevertheless interesting), we note, in
the electromagnetic system, this counterintuitive consequence of the hidden momentum
P qpnp: if one assumes i = oS, the acceleration is

D
moa® = B[aﬂ]ug + eaﬁw%(sﬁcﬂ)U‘s ~ B[aﬁ]uﬁ =—Fgu
approximately opposite to the force!

5.5.2.2 Equatorial motion in Kerr and Kerr-de-Sitter spacetimes

We found another manifestation of the absence of a gravitational counterpart to the an-
tisymmetric part of the magnetic tidal tensor Bj,g (i.e., of induction effects analogous
to the electromagnetic ones) comparing the forces on gyroscopes in equatorial motions in
Kerr and Kerr-de-Sitter spacetimes, to the ones of magnetic dipoles in equatorial motions
in the field of a spinning charge.

In the equatorial plane of the Kerr, and Kerr-dS spacetimes, there are observers for
which H,g = 0; it is so when the observer’s angular velocity is

Ue
=2 = b

Ut~ 22 YE=0) (5.70)
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a) Equatorial plane of a spinning charge. Black arrows: velocity field vg_),
which makes the magnetic field B vanish; magnetic dipoles in straightline
motion, momentarily with such velocities, do not precess relative to the distant
stars. b) Equatorial plane of Kerr spacetime. Black arrows: velocity field
U(q,—0) for which a gyroscope in straightline motion momentarily does not
“precess” (with respect to the distant stars); asymptotically it matches its
electromagnetic counterpart. Red arrows: velocity field v—g) which makes the
gravito-magnetic tidal tensor H,g vanish; this means that gyroscopes moving
along trajectories tangent to #ig—g) feel no force, F§ = 0. If A > 0 (Kerr-
dS spacetime) circular geodesics for gyroscopes do even exist. Um=0) has no
electromagnetic analogue: for a moving dipole always B,g # 0, by virtue of
Blog) = *DFyp/dr, generically implying Fgy; # 0 .
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This means that gyroscopes carried by such observers feel no force (regardless of the
orientation of the spin vector g) The angular velocity ’l)sz:O) does not correspond to any
circular geodesic for material particles in the Kerr spacetime; circular geodesics “are too
fast”, their angular velocity dies off as r—3/2, whereas U?Hzo goes as r~2. But in Kerr-dS,
the repulsive A “slows down” the circular geodesics, and makes possible the existence of
circular geodesics for which H,g = 0. The angular velocity that makes H,g vanish in the
equatorial plane of Kerr-dS is the same Eq. (5.70) above; and it is a rotation in the same
sense of the black hole; thus the geodesics obeying this condition are found equating (5.70)
to the equation for prograde circular geodesics in Kerr-dS,

—Ma+ %ar® £/ Mr3 — 216

r3 —a2M + %QQT‘S

(’U(gbeo)-‘r =

We show the solutions to exist numerically; that is, in Kerr-dS, it is possible for gyroscopes
to move along geodesic orbits (for arbitrary S ).

This type of motions, and the velocity field (5.70) have no electromagnetic counterpart;
due to the laws of electromagnetic induction, cf. Eq. (5.68), B,g, can never vanish for a
moving particle (nor does it vanish for a particle at rest in this field), hence a force will
always be exerted on the dipole (except for very special, fixed, orientations of fi).

The formal analogy between the scalar invariants of F and R as a guide. — In our
study of the equatorial motions, and in particular to find the velocity field (5.70) above
we made use of the formal analogy between the electromagnetic invariants (3.22) and the
quadratic invariants of the Weyl tensor, expressions (3.31) above. The electromagnetic
invariants have the following physical interpretation [63, 18, 30]:

1. if E*B, # 0, then the electric E* and magnetic B® fields are both non-vanishing
for all observers;

2. if E“E, — BB, > 0 (< 0) and E*B,, = 0, there are observers u® for which the
magnetic field B* (the electric field (E?) is zero.

In the case of the Weyl tensor (or the Riemann tensor, in vacuum) the quadratic invariants
(3.31) are not sufficient for an analysis like the one we did for the electromagnetic case.
Whereas the invariants (3.22) are the only two independent scalar invariants of F®%, in
the case of R,g+s there are 14 independent invariants in general, which in vacuum reduce
to four: the invariants (3.31), plus two cubic invariants, given by

_ 1 af A po 1 af A po
A= [ R RM R, B= 1 R RM < R”,,

and usually combined in the complex quantity J = A — iB. Define also the complex
quantity I = (R-R 4+ i+xR-R)/8. It turns out (cf. [45, 46, 30]) that one obtains
formally equivalent statements to 1-2 above, replacing F by R, provided that the condition
M = I3/J? — 6 > 0 (real or infinite) is added to 2); that is:
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1. xR-R # 0 = E,, and H,, are both non-vanishing for all observers;

2. xR-R=0,R-R >0, with M > 0 = there are observers for which H,, vanishes
(“Purely Electric” spacetime)!!.

Further details and comments on this classification shall be given in [30]. The analysis
above is for vacuum, where C = R; in order to obtain similar statements valid generically,
one only has to replace R by C.

The invariant structure of the electromagnetic of a spinning charge (charge @), magnetic
moment p) is:

P_p_ i B 12(5 + 3 cos 20)
ré 276

>0,
(5.71)
210 cos

E-B=
rd

(= 0 in the equatorial plane)

which tells us that in the equatorial plane § = 7/2 there are observers measuring the
magnetic field B (not the tidal tensor!) to be locally zero, since E-B=0and E2—B2 > 0
therein. The angular velocity of such observers is U?/U? = us/(Qr?). If we additionally
assume that the charge and mass are identically distributed in the body, its gyromagnetic
ratio is pus/J = Q/2M, and we obtain the angular velocity

ue
’U¢ = = =

®
= W = W = 'U(BZO) 5 (572)

which asymptotically matches, up to a factor of 2, the velocity (5.70) above.

This analogy proves illuminating for the gravitational problem. In the case of Kerr
spacetime, which is of Petrov type D, the condition M > 0 (real) is satisfied, since I* = 6.J2
(see e.g. [46]). Thus one only has to worry about the invariants (3.31), which have the

structure:
602

E*Eay — H Hay & —5— >0

(5.73)
18J M cos 0

E“VH,,, ~ -
"

(=0 in the equatorial plane)

formally analogous to its electromagnetic counterpart (5.71). Note in particular that the
result E*"H,, = 0 for the equatorial plane (6 = 7/2) is ezact. It was in this way that we
concluded that in the equatorial plane, there are observers for which the magnetic tidal
tensor vanishes, whose angular velocity we found to be given by Eq. (5.70)above (see
Paper #4 [4] for more details).

At this point it is important to stress the following: in spite of the striking similarities
in the invariant structures (5.71) and (5.73), and in the velocity fields (5.72) and (5.70),

"The case xR-R = 0, xR-R < 0 would mean that there would be observers for which E,- vanishes

(but no “Purely Magnetic” vacuum solutions are known, and it has been conjectured that they do not
exist, see e.g. [111, 112]).
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this is a purely formal analogy; in one case we are talking about velocities for which the
magnetic field B¢ vanishes, in the other about the vanishing of the gravito-magnetic tidal
tensor H,g. The physical effects are actually opposite: in the first case magnetic dipoles
with such velocities do not undergo Larmor precession, DS /dr =0, cf. Eq. (5.62), but
they feel a force Ff,, # 0 (Bag never vanishes, as discussed above). In the gravitational
case, the gyroscope feels no force: F& = 0, but it precesses (relative to the local comoving
tetrad non-rotating relative to the distant stars): DS/dr = S x H, cf. Eq. (5.63).

For completeness, we also investigated the physical gravitational counterpart of the
velocity for which magnetic dipoles do not precess; it involves some subtleties (it comes
down to finding the velocity that a gyroscope, momentarily in “straightline” motion, must
have in order to not precess relative to the distant stars) but asymptotically it matches
(5.72).

5.5.3 Time projections of the forces and work done on a test particle

A fundamental difference between the gravitational and electromagnetic interactions con-
cerns the time projections of the forces F§ and Fgy; in the different frames. These encode
the work done by the force in the given frame.

In order to understand it, and its relation with the particle’s energy, consider a con-
gruence of observers O(u) with 4-velocity u®, and let U% denote the 4-velocity of a test
particle. The following relation generically holds [25]:

U = ~(u® +v%); = —uU, = __r (5.74)
’ V1=,
where v® = U®/~v — u® is the velocity of the test particle relative to the observers O(u);
in the frame u’ = 0, v’ is the ordinary 3-velocity. The energy of the test particle relative
to O(u) is E = —P%u,, and its rate of change (the “power equation”)

dE

- =—Fua - Puq.5U" (5.75)

where F“ = DP®/dr denotes the 4-force. Thus we see that the variation energy of the
particle relative to O(u) consists of two terms: the time projection of F* along u®, plus
a term depending on the variation of u® along the test particle worldline. The first term
is interpreted as the rate of work, as measured by O(u), done by the force on the test
particle. Using u® = U%/~ — v®, we can write it as

gy, _ _FUa
"=

+ Fu,. (5.76)

In the simplest case of a point particle with no internal structure (a monopole particle) the
first term is zero, since the momentum is parallel to the 4-velocity (P* = mU®), and its
mass is a constant, m = myg; hence the force is parallel to the acceleration and orthogonal
to U®. Such force is said to be spatial with respect to U%. Thus —F%u, = F%v,, telling
us that the time-projection of the 4-D force F'* is the familiar power (i.e., the rate of
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work per unit of proper time 7) transferred to the particle by the 3-D force (hU)gF H (see
e.g. [61, 114]). If the frame is inertial, so that the second term of (5.75) vanishes, then
—F%u, = dE/dT = mody/dr, i.e., F*v, = moydy/dr is the rate of variation of kinetic
energy of translation of the particle’s center of mass. This is the type of force we are more
familiar with; an example is the Lorentz force on a charged particle, DP®/dr = qF*PU, 85
whose projection along u® reads —u*DP, /dr = yqu*E,, yielding the rate of work (per
unit proper time) done by the electric field on the particle moving with velocity v® relative
to O(u).

However, if the particle has internal structure, as in the problem at hand (spinning
multipole particles), its internal degrees of freedom may store energy, which in general will
be exchanged with the energy of the external fields and the kinetic energy of the center
of mass. Therefore, the proper mass of the particle m = —P*U, no longer has to be a
constant, cf. Eq. (5.67). Also the momentum is not be parallel to U?%, as the particle in
general possesses hidden momentum, cf. Eq. (5.65). These, together, endow F¢ with a
nonvanishing time projection: F*U, # 0.

Let us turn our attention now to the second term of Eq. (5.75). Decomposing (e.g.
(25, 5, 34])

Ua;g = —a(u)qug + wap + Oag , (5.77)

where a(u)* = uo‘;ﬂuﬁ is the acceleration of O(u) (not the particle’s!), wag = (h“)é(h“)gup\;y]
the vorticity, and 6,5 = (h“)é(h“)guo\;y) the total shear of the congruence (6,5 = oop +

0(h*)ap/3, with 0,5 as usual the traceless shear and 6 the expansion scalar). G(u)® =

—a(u)® is thus the gravitoelectric field measured in the frame u’ = 0. Decomposing

P* = mU® + P24, and decomposing U® using (5.74), the second term of Eq. (5.75)

becomes:

— P 5UP = m~?[G (1) o — Oapv® v
+ 1B [Ga — (W + bag) V7] (5.78)

This part of dE/dr depends only on the kinematical quantities of the congruence. That
is, unlike the term (5.76), which arises from the 4-force F'“, the term (5.78) does not
depend on any physical quantity one can locally measure; it is locally an artifact of the
reference frame, which can always be made to vanish by choosing a locally inertial one.
Its importance (in a non-local sense) should not however be overlooked. To understand
it, consider a simple example, a monopole particle in Kerr spacetime, from the point
of view of the congruence of static observers (i.e., u® parallel to the time-like Killing
vector field € = 0/0t, in Boyer Lindquist coordinates). Since the congruence is rigid,
a3 = 0; also, for a monopole particle, P, = 0, and, in a gravitational field, F'* = 0
(the particle moves along a geodesic). Therefore, the energy variation reduces to dE/dT =
— P, sUP = my2G(u)qv®; which is the rate of “work” (per unit proper time 7) done
by the gravitoelectric “force” [19, 5, 25] m72G(u)®. (In the Newtonian limit, reduces to
the work of the Newtonian force m@G.) Hence we see that (5.78) is the part of (5.75) that
encodes the change in translational kinetic energy of a particle (relative to static observers)
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which occurs due to the gravitational field, without the action of any (physical, covariant)
force, i.e., for particles in geodesic motion.

The system of Egs. (5.75), (5.76) and (5.78) are a generalization, for the case of test
particles with varying m and hidden momentum, of the “power” equation (6.12) of [25]
(the latter applying to monopole particles only).

5.5.3.1 Time components in test particle’s frame

One fundamental difference between the tensorial structure of H,g and B, is that whereas
the former a spatial tensor, in both indices, with respect to the observer u“ measuring it:
(H*)opu” = (H")5u® = 0 (this follows from the symmetries of the Riemann tensor), the
latter is not: (B%)asu® = 0 but (B%)apu’ = %Fa,.u’u” # 0 in general. That means that
whereas F§ is a spatial force, Fy; has a non vanishing time projection in the particle’s
proper frame,

F&\Us = BP*Uapp = €p5,, U EM P (5.79)

We already discussed the meaning of —F)\ Uy = Ping in Sec. 5.2.2 (see figure therein;
in Paper #4 we present an equivalent derivation of the same result, only covariant at
each step); it is the rate of work transferred to the dipole by Faraday’s law of induc-
tion. It consists in the variation of the proper mass m, minus the projection along U®
of the derivative of the hidden momentum (to which only the “electromagnetic” hidden
momentum contributes):
dm  DFSy dm  DPSipMm
Pod = =@ T T dar
Also, we can say that Pj,q is the variation of the dipole’s energy F = —P, U as measured
m a momentarily comoving inertial frame. It is worth mentioning that the failure to notice
that Fi,; has a time projection, and that m varies, has led to the difficulties in [102, 103] to
covariantly describe the force on a magnetic dipole (namely to the claim that no covariant
description of such forces is this scheme is possible).
As discussed already in Sec 5.2.2 above, the induction phenomenon in (5.79) has no
counterpart in gravity. Since H,g is a spatial tensor, we always have

(5.80)

F&U, =0 (5.81)

which means that the energy of the gyroscope, as measured in a momentarily comoving
inertial frame, is constant. The proper mass m is also constant, since, in the gravitational
case, Paq, = —U,DP,/dr is always zero.

5.56.3.2 Time components as measured by static observers

Electromagnetism. — With respect to an arbitrary congruence of observers u®, the time
projection of the force exerted on a magnetic dipole is, cf. Eq. (5.76):

Pind

FPU
SEMTS | pa g, = —+ F&\ Ve (5.82)
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where, in accordance with discussion above, we identify Pijng = — EBMUg as the power
transferred to the dipole by Faraday’s induction, and Fg)v, is the power transferred
by the 3-force (hU)ijgM exerted on it. Consider now a congruence of observers u® for

which the fields are covariantly constant, F’ O‘%u” = 0, which we dub in this context “static
observers”'2. The time projection of the force in this frame vanishes:

DP,
= *Fop,UP pi®u? = 0. (5.83)

—FEyua = —
EM Yo -

That tells us that the total work done on the dipole, as measured in this frame, is zero.
The scalar E = —P,u® (the energy of the particle in the u* = 0 frame) is thus a conserved
quantity, and using P* = mU® + B, we can write it in the form

E =m+ T + Epjq = constant, (5.84)

where we dub Epiq = —P% uq as the “hidden energy” (i.e., the time component of the
hidden momentum in the u’ = 0 frame), and T = (y — 1)m is the kinetic energy of
translation of the center of mass (cf. e.g. [114] p. 70), as measured in this frame. The
reason for the later denomination is seen taking the Newtonian regime, where T' ~ mv?/2.
Thus the constancy of the energy of the particle comes from an exchange of energy between
three parts: T, proper mass m (which, for a rigid particle, is kinetic energy of rotation
about the CM as I shall show below), and Fyiq. The latter is the most unfamiliar; a
suggestive setup where it plays a role are the bobbings of a particle with magnetic dipole
moment orbiting a cylindrical charge in Fig. 5.4 above.

In this work we are especially interested in the case: By = 0 (= Epig = 0); in this case
the energy exchange occurs only between proper mass and translational kinetic energy,
m+ T = constant. Also, we have Py,q = dm/dr, and for static observers in flat spacetime
uq;g = 0, so that the second term of (5.75) vanishes. We can thus write:

‘fo — _F\ e = Pind + Porans = 0, (5.85)
where Pirans = dT'/dr. An example is the problem depicted in Fig. 5.7a): a magnetic
dipole falling along the symmetry axis of the field generated by a strong magnet (P2, =0
for this configuration). From the point of view of the static observers, E =0 and only
magnetic field Bis present; since the latter does no work in any charge/current distribu-
tion, naturally Fig)\;ua = 0. According to Eq. (5.85), this arises from an ezact cancellation
between Pirans and Ping: on the one hand there is an attractive spatial force F]E]M causing
the dipole to gain translational kinetic energy; on the other hand there is a variation of
its internal energy (proper mass m) by induction, which allows for the total work to vanish.

12The reason for this denomination is the fact that the condition F' ”%u” = 0 corresponds to the observers at
rest with respect to the sources in the electromagnetic applications herein. Note that for e.g. observers
u'® in circular orbits around a Coulomb charge we have Fo‘;ﬁwuW # 0, even though «'® is in that case a

symmetry of Fog: L,/ Fog = 0, and the latter is explicitly time-independent in a rotating frame.
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Gravity. — In gravity, where the induction effects are absent (FSU, = 0), we have for
arbitrary u®
—Ffuy = Fiuv, . (5.86)

This implies in particular that a cancellation similar to the one above does not occur
(even for some “static observers”); unless ﬁG U = 0, F§ does work on the test particle, by
contrast with its electromagnetic counterpart. That is, a stationary gravitomagnetic tidal
field does work on mass currents; and there is actually a potential energy associated with
it, as we shall now show. A conserved quantity for a spinning particle in a stationary
spacetime is (e.g. [81, 66, 87])

1
Eror = =P + 58a;p5" = constant (5.87)

where & = 0/0t is the time-like Killing vector field. Consider the congruence of the static
observers'3 O(u), defined as the unit-time like vectors u® tangent to £%; we may write
€Y = &u®, with € = \/—£9E,. The first term of (5.87), —P%¢, = F¢ is the “Killing energy”,
a conserved quantity for the case of a non-spinning particle, which yields its energy E with
respect to the static observer at infinity. It can be interpreted as its “total energy” (rest
mass + kinetic + “Newtonian potential energy”) in a gravitational field (e.g. [15]). The
energy Fio: can likewise be interpreted as the energy at infinity for the case of a spinning
particle. To see the interpretation of the second term in (5.87), V = 4.5 S8 /2. consider
the case that P, = 0. We have

dE}ot av
— = —F2%, —mUUP¢.5+ — .
0="" o = mU U 6aip + (5.88)
dv

—EFfua = EFEv, is the rate work of F&, as measured by the static observers at infinity,
and thus V is the spin-curvature potential energy associated with that work. In order to
compare with the electromagnetic Eq. (5.84), note that d¢/dr = —yG(u),v®, and that for
P2, =0, E=~ym=m+T, thus we can write dEo/dT = d({E + V)dr in the form

gd—T — EmA?Gov® + V_y (5.90)

dr dr

The second term accounts for the “power” of the gravitoelectric “force” m~2G(u) (which,
as explained above, is not a physical force, it arises from the acceleration of the observer
congruence, being non-zero even for geodesic motion; in the weak field limit it reduces
to the variation of Newtonian potential energy). Eq. (5.90) tells us that the variation of
translational kinetic energy T' comes from the potential energy V', and the power of G (u)
(m being constant); this contrasts with the case of the magnetic dipole discussed above,

13Gee point 7 of Sec. 5.1. In stationary asymptotically flat spacetimes, such as the Kerr metric studied
below, these are observers rigidly fixed to the asymptotic inertial rest frame of the source. They are
thus the closest analogue of the flat spacetime notion of observers at rest relative to the source in the
electromagnetic systems above.
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Figure 5.7: a) A magnetic dipole in the inhomogeneous magnetic field of a strong magnet,
from the point of view of the static observers u®; the work is zero (—Fg uq =
Pind + Pirans = 0), manifesting that a stationary magnetic field does no work.
Arises from an exact cancellation between Pinq and Pipans- b) Gyroscope (small
Kerr black hole) in the field of a large Kerr black hole; b) Black hole merger. Evidence
that, unlike its electromagnetic counterpart, gravitomagnetic tidal field does work:
spin-dependent part of the energy released is the work (as measured by the static
observers at infinity) of Fg.

where (also for A%, = 0) the kinetic energy comes from the variation of proper mass m,
no potential energy being involved. In terms of the work done on the particle, F& is thus
more similar to the electromagnetic force exerted on a monopole charge, where the proper
mass is constant and the energy exchange is between T and potential energy.

There is a known consequence of the fact that F§ does work (and of the interaction
energy V'): the spin dependence of the upper bounds for the energy released by gravita-
tional radiation (Fig. 5.7c) when two black holes collide, obtained by Hawking [104] from
the area law.

In order to see that, consider the apparatus in Fig. 5.7b: two Kerr black holes with spins
aligned, a large one (mass M, spin J = aM ) which is our source, and small one (4-velocity
U®, spin S = /5%S,) which we take as test particle, falling into the former along the
symmetry axis. For axial fall, and given that S is also along the axis, P2y(= P%y) = 0.
(Consider again the frame of the static observers O(u), u® = &%/, i.e. the observers
with zero 3-velocity in Boyer-Lindquist coordinates). For this configuration, V' is a pure
spin-spin potential energy; it reads:

dasr [0
V(T):im :/OO gFGUadT,

the +/— sign applying to the case that S and J are parallel /antiparallel. The second
equality follows directly from Eq. (5.89), and can also be easily checked noting that, in
Boyer-Lindquist coordinates, {Fgua, = (Fg)o, and computing explicitly the time compo-
nent (Fg)o for axial fall, Eq. (37) of [10]. Thus we see that V(r) is minus the work!4

M Note that computing the work of F& does not amount to integrate the power measured by the local static
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done by F§ as the particle goes from infinity to 7. Let us now analyze the problem of
the black hole merger. The increase of translational kinetic energy of the small black hole
during the fall is given by Eq. (5.90) above (or by the power Eq. (5.75); note in this case
that 0,5 = 0, since O(u) is a rigid congruence). The second term of (5.90) is the gain in
kinetic energy due to the “Newtonian” attraction, and exists regardless of S¢; V by its
turn is a spin-spin energy; thus the kinetic energy of the particle (and therefore energy
available to be released by gravitational radiation in the black hole merger) depends on
S. Upper bounds for this energy which are, accordingly, spin dependent, were obtained in
[104] by a totally independent method. From these limits, and for the case of the setup
in Fig. 5.7, Wald [10] obtained an expression (Eq. (35) therein) for the amount of energy
AFE, by which the upper bound is increased /reduced when S is parallel /antiparallel to j,
comparing with the case S = 0 (fall along a geodesic). This energy is precisely minus the
value of V (r) at the horizon r: AEy = =V (ry); that is, it is the work done by F§ on the

small black hole as it comes from infinity to the horizon: AE; = f;(”)(—gFgua)dT.

5.5.4 Beyond pole-dipole: the torque on the spinning particle

It follows, from Egs. (5.61) or (5.62), that for purely magnetic dipoles (d* = 0), if we
assume i = oS , 82 is a constant of the motion. This might be somewhat surprising. If
one imagines the magnetic dipole as a spinning charged body, one would expect that, in
a time-varying magnetic field, the induced electric field will in general exert a net torque
on it, which will accelerate!®the rotation of the body. But in Eq. (5.63) we only find the
term fi X é, coupling the field to the dipole moment (which is there in any case, even
if the field is constant), and no term coupling to the derivatives of the electromagnetic
fields; i.e., no trace of induction phenomena. Moreover, we have seen that the induced
electric field does work on the spinning particle, cf. Eq. (5.79), contributing to a variation
dm/dr = —[i- DB /dr of its proper mass m. That work has been shown, in non-relativistic
treatments [107, 109] (for the case of a rigid spherical body), to equal the variation of the
particle’s rotational kinetic energy. Thus we expect it to be associated as well to a variation
of the spinning angular velocity, and hence of S2.

As shown below, this apparent inconsistency is an artifact inherent to the pole-dipole ap-
proximation, where terms O(R?) (being R the size of the particle), which are of quadrupole
type, are neglected; indeed, whereas the contribution of induction to the body’s energy
is of the type fi - E, i.e., of dipole order, the associated torque involves the trace of the
quadrupole moment of the charge distribution. And there is no analogous torque in the
gravitational case, confirming the absence of an analogous induction effect.

For clarity, I will treat the two interactions (electromagnetic and gravitational) sepa-
rately.

observers, —F&uq = FSva (ie., to sum up the work elements dW = F&v.dr), as that would mean
summing up energies measured by different observers; but to integrate instead the quantity {FZva,
which can be thought as summing work elements measured by static the observer at infinity.

5Unlike the torque due to the magnetic field, the torque due the induced electric field will not be orthogonal
to §, and hence will in general change its magnitude. For instance, in the application in Fig. 5.8, Eina
has circular lines around S’: so that Tina || S
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5.5.4.1 Electromagnetic torque

The relativistic equations of motion for spinning multipole particles in an electromagnetic
field, accurate to quadrupole order, were obtained by Dixon [59, 105, 106]; the equation
for the spin evolution (sometimes dubbed the “torque” [66] on the particle) reads, in our
notation

D(Scan)a’g

o = 2(Ppi) U 4 2Q°P P, 4 2mle ) FOe (5.91)

Q% is the electromagnetic dipole moment tensor, encoding the electric and magnetic
dipole moments:
QP = 24U 4 P Uy | (5.92)

and m®7 is a quadrupole type moment whose definition is given in Sec. VIA of Paper
#4 [4]. These equations follow from rigorous derivations in [59, 106, 66|, and are thus
well established. The question mark in the literature is the physical interpretation of the
quantities (Ppiyx)® and (Scan)®?; this is the first issue we had to address, as it is crucial in
this context. (Scan)®” is not the angular momentum S’ of def. (5.39) (which we argue to
be the physical angular momentum of the particle), but instead a quantity obtained from
it by adding certain electromagnetic functions, cf. Eqs. (7.1)-(7.2) and (7.6)-(7.7) of [59].
To quadrupole order

(Sean)®? = 598 4 5" greb = plo_gflo (5.93)

where
P = / rorPivdy., (5.94)
5(r,U)

is the second moment of the charge (the charge “quadrupole”).

In order to see how important it is to distinguish between (Scan)aﬂ and S8 , take
for example a spinning spherical, uniformly charged body. In this case, as shown in
Paper #4 2m[apMF5]“?f’ = 0 (if external currents are present), and the space part of
(5.91) reduces to €,9°UsD(Scan)*? /dT = e”aBVU”uaBﬁ, i.e., it is the familiar dipole order
torque on the magnetic dipole (fi x B in vector notation). If one takes [ || é, it is zero:
€0 "5U5D(Scan)a5 /dr = 0. Thus (Scan)®? is certainly not the physical momentum, nor
its variation the physical torque, as we know that if the magnetic field varies with time,
it induces an electric field with a curl that torques the body. And it is also known, from
non-relativistic treatments of this problem [107, 108, 109], that such torque depends on
the trace of the charge quadrupole ¢®%.

(Sean)®? is shown in [110] to be instead the canonical angular momentum, and (Ppiy)® +
qA% = (P.an)® the canonical momentum associated to the Lagrangian of the system!'6
(which is the quantity conserved in collisions, and whose time part is the energy scalar con-
served in time-constant fields). We note also that the vector (Scan)? = 67“ o 6(Scan)°‘5 Ur/2,

16T thank A. I. Harte for discussions on this point, and drawing our attention to Ref. [110].
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in the frame U’ = 0, also coincides with the canonical angular momentum obtained by
differentiating the non-relativistic Lagrangian, 0L/0& (cf. Eq. (31) of [109]).

Having this issue clarified, one computes the physical torque — that is, the Fermi-Walker
derivative of the physical angular momentum vector S<,

DpS® 1 s, DS
¢ = =77 = —€,5 U, 5.95
T dr T gtes B (5.95)
by subtracting the contribution of S’ from Eq. (5.91) above. It reads:
o o v, anpB o, o Blu;p 1 o « l)qﬁ’y o
T =€ OéﬁVU 1% B + Eaﬁm p“F — 56 Oé/BFA/idT +7—ind s (596)

where the first term is the dipole torque, cf. Eq. (5.62), and the next terms are quadrupole
contributions; the second term is the one that vanishes for a spherical body (thus not the
one we are interested in), and the fourth term is the result we were looking for,

T Lo EW [ 6°‘Uq77] , (5.97)

ind — 56 7% o
the torque due to the laws of electromagnetic induction, governed by the antisymmetric
part of the electric tidal tensor. Indeed in the Lorentz frame momentarily comoving with
the particle, we can write

. 1 L .
Tina = —5(V x Eon)’ [¢'; — 6'47,]

where (V x ECM)j is the curl of the electric field at the particle’s center of mass. This is
precisely what one obtains computing explicitly the torque, to quadrupole order, from the
integral Ting = [ pef” X Eingd3z, see Paper #4 [4] for details. Using Egs. (5.6), we write
(5.97) in the equivalent form

1

Ti?id = iBaﬁU/B [qao. — 6Olo_q'y’yj| . (598)

Now, if the spinning body is “quasi-rigid”, we have

@ = 2 05q" o 5.99

N—?(ﬁqyfﬂlﬁ) (5.99)

where ¢ is the body’s angular velocity relative to a system of comoving Fermi-Walker

transported axes. Therefore, the rate of work done on this body by the induction torque
Tind» P = TinaSas 18:

7049 = —B%U  ia = —F\Ua (5.100)

i.e., it equals the time projection, in the particle’s proper frame, of the dipole force Fgy;

(in other words, the work done by the dipole force, as measured in the particle’s frame).

This confirms that the work transferred to the particle by Faraday’s induction, that we
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Figure 5.8: a) A spinning, positively charged spherical body being pulled by a strong
magnet; Eina = electric field induced in the body’s CM frame. b) A spinning
spherical body falling into a Kerr Black hole. As the spinning charge moves in
the inhomogeneous magnetic field E, a torque 74, Eq. (5.97), is exerted on it
due to Eind, i.e. to the antisymmetric part Ej,5. That causes S = 1/5*Sq,
and the body’s angular velocity @ = S/I to vary. 75, does work at a rate
T i = Pind, which exactly matches time projection of the dipole force Fgy;.
That causes the kinetic energy of rotation about the CM to decrease, manifest
in a variation of proper mass dm/dr, and cancels out the gain in translational
kinetic energy, so that the total work transfer is zero (cf. Sec. 5.5.3.2). In
the gravitational case no analogous induction effects occur (as expected since
Efg = HagUﬁ = 0): no torque is exerted on the spinning particle, its angular
momentum S, angular velocity €2, and proper mass m, are constant; and there
is a net work done on it by F§ at a rate Py = —FZuq, corresponding to an
increase of translational kinetic energy.

81



5 The papers summarized and discussed

discussed in Sec. 5.5.3.1, is indeed associated to a torque, which causes S? to vary as
expected (since 7%, is not orthogonal to S“ in general).

It is also associated with a variation of kinetic energy of rotation. In order to more easily
see that, consider now a spherical body, so that the second term in (5.96) vanishes; and a
configuration where the electromagnetic hidden momentum ﬁhidEM = [i X E vanishes, for
example the setup in Fig. 5.8a), which causes (see Paper #4 for details) the third term of
(5.96) to vanish also; in this case the total torque reduces to

77 = %, U n* B’ + 14 . (5.101)

Assuming p® = 0S5%, and since S* = IQ“ (I =moment of inertia of the sphere with
respect to an axis passing through its center), it follows that the power of the total torque
is 77Q, = 77 . Since also, from Eq. (5.95), 77 = IDrQ° /dr, we have that the power
of 7%, equals the rate of variation of the particle’s rotational kinetic energy, I 02/2:

1dQ?
'CM Q = UQ — 77_[ .
Tind*fa = T 300 2 dr
Thus we can write )
1 dQ) DB«
2l gy = il = g

where in the last equality I used again B,y = 0. That is, for this setup, the variation
of the body’s kinetic energy of rotation is the projection, along its worldline, of the dipole
force Fif,,. And finally, this result confirms also that (for a purely magnetic dipole, d* = 0)
the variable part of the particle’s mass that we obtained in the dipole approximation, Eq.
(5.67), is kinetic energy of rotation (not potential energy, as claimed in some literature,
e.g. [81, 76, 77]) — this confirms, in a relativistic covariant formulation, and in the context
of Dixon’s multipole approach, the claims in [107, 108, 109, 113].

5.5.4.2 Gravitational torque

The equation for the spin evolution of an extended spinning body in a gravitational field
is, up to quadrupole order [106, 66],

DSk 4
= oplrA 2 I“VP[KR)‘[])W (5.102)
leading to
DpS° 4
T = 57' — 6JWP[I*”vRAF]W/EHAU(;(7(S , (5.103)

where J*% is a quadrupole moment of the energy-momentum tensor 7%, see Paper #4
for more details. Our goal herein is to consider the gravitational analogue of the problem
in Sec. 5.5.4.1. Therein we considered a spherical charged body in flat spacetime; we
prescribe the analogous test body for the gravitational problem by demanding it to have an
analogous multipole structure (i.e., its “gravitational skeleton” [61]) to its electromagnetic
counterpart (rather than demanding its shape to be “spherical”, which in a general curved
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spacetime is not a well defined notion. More precisely: in a local orthonormal tetrad
€a, such that éy = U? (i.e., the triad é; spans the rest space of the center of mass), the
moments of J are the same as for a sphere in flat spacetime (thus have the same structure
as the moments of j* in the electromagnetic problem above). The moments of the space
part T(8) are negligible to a good approximation. For this type of body we have (see
Sec. VIB of Paper #4 [4] for details)

the equality holding for vacuum (R* = 0), which (as in the electromagnetic case) is
the problem at hand. Thus, no gravitational torque is exerted, up to quadrupole order,
in a spinning spherical body. Therefore, as expected from the discussion in the previ-
ous sections, there is no gravitational counterpart to the torque 7, that comes from the
antisymmetric part of the electric tidal tensor E,g (or, equivalently, from the time projec-
tion B,gU #), and which is due to Faraday’s law of induction. The comparison with the
electromagnetic analogue makes this result natural, since the gravito-electric tidal tensor
Eqp is symmetric, and the gravitomagnetic tidal tensor H,z is spatial, meaning that the
dynamical effects which, in electromagnetism, are caused by the curl of the electric field
E, have no counterpart in the physical gravitational forces and torques.

5.5.4.3 Summarizing with a simple realization

The main ideas in Secs. 5.5.3 and 5.5.4 can be summarized in the example of analogous
systems in Fig. 5.8: a spinning spherical charge moving in the field of a strong magnet
(or another spinning charged body), and a spinning “spherical” mass moving in Kerr
spacetime. Starting by the electromagnetic system, a force F);, Eq. (5.2.1a) of Table 5.2,
will be exerted on the particle, causing it to move and gain translational kinetic energy.
And as it moves in an inhomogeneous magnetic field, a torque 7, is exerted upon it, due,
from the the viewpoint of the observer comoving with the particle, to the electric field
induced by the time-varying magnetic field. That torque will cause a variation of angular
momentum S, and therefore of the angular velocity Q% = S/I of the particle (measured
with respect to the comoving Fermi-Walker transported tetrad). Clearly, as we see from
Eq. (5.101), S? is not conserved (as would be the case in a pole-dipole approximation,
see Eq. (5.62)). The variation of the magnitude  of the angular velocity also implies a
variation of rotational kinetic energy of the particle; that variation is the projection of
F§g, along the particle’s worldline, and is reflected in a variation of proper mass dm/dr.
With respect to the “static observers” u®, the variation of rotational kinetic energy is
exactly canceled out by the variation of translational kinetic energy, ensuring that a static
magnetic field does not do work, so that F;u, = 0, and the total energy of the particle,
FE = —P,u®, is conserved.

In the gravitational case, there is also a net force F& on the body, cf. Eq. (5.2.1b) of
Table 5.2, causing it to gain kinetic energy at a rate Pirans = Févl But no torque is
exerted on it; up to quadrupole order we have:

DpS®
dr

0; S? = constant
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(i.e., the spin vector of the spinning spherical mass is Fermi-Walker transported), implying
also Q0 = constant. This is consistent with the constancy of the proper mass (and the fact
that F& is spatial, meaning that no work is done by induction), because, since there is no
torque, the kinetic energy of rotation is constant. Thus in this case, from the point of view
of the static observers, the gain in translational kinetic energy is not canceled out by any
variation of rotational kinetic energy, and therefore the stationary gravitomagnetic (tidal)
field does a net work on the particle.

5.5.5 Conclusion

In this work we explored the exact gravito-electromagnetic analogies in the equations of
motion for spinning particles in gravitational and electromagnetic fields, that were seen to
arise when the Mathisson-Pirani spin condition is employed. In special detail we explored
the analogy based on tidal tensors for the force equations, that was put forth in Paper #1
[1]. We also studied the analogy for the spin precession, based on GEM fields, and, also
based on it, found a new one, for the particle’s hidden momentum.

A point that it is never too much to emphasize is that the existence of these ezxact
analogies does mot mean that the interactions are similar. These are functional analogies:
B, plays in the equation (5.2.1a) for the force exerted on a magnetic dipole the same
role as H, in Eq. (5.2.1b) for the gravitational force exerted on a gyroscope; also, in the
appropriate frame, the gravitomagnetic field H plays in the “precession” of the gyroscope
a role analogous to B in the precession of a magnetic dipole, cf. Eq. (5.64). But the
analogies do not imply that these objects themselves are similar, in fact they are in general
very different even in seemingly analogous setups (we give in this work many examples of
that). The exact analogies are suited instead for a comparison between the interactions,
as it amounts to comparing mathematical objects that play analogous dynamical roles
in both theories. Such comparison unveils suggestive similarities, useful in terms of the
intuition they provide. But, and especially in the case of the tidal tensor analogy, it was
the differences it makes transparent that proved particularly illuminating.

We had found in Paper #1 [1] that the key differences, in terms of tidal forces, between
gravity and electromagnetism, are the fact that E,g and H,g are symmetric (the latter
in vacuum) whereas their electromagnetic counterparts E,g and B,g are not. These
differences were seen to be related with the phenomenon of electromagnetic induction,
and the way it manifests itself in the electromagnetic tidal forces, which has no analogue
in gravity. In this work we explored the physical consequences for the dynamics of test
particles. The results in Sec. 5.5.3, concerning the time components of the force, and in
Sec. 5.5.4, concerning the torque exerted on the spinning particle, are manifestations of the
absence of a gravitational counterpart to the antisymmetric part of E,g (or, equivalently, to
the projection of B,g along U®); E|p) encodes the Maxwell-Faraday law V x E= —Oé/at;
the gravitoelectric tidal tensor, by contrast, is symmetric: Ep,5 = 0, translating in an
absence of analogous induction effects in the physical gravitational forces and torques.
And the results in Sec. 5.5.2, showing that in a non-homogeneous gravitational field
there are moving observers for which H,g = 0, so that gyroscopes can actually move
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along radial or circular geodesics (in Schwarzschild and Kerr-dS spacetimes, respectively),
manifest that there is no gravitational analogue the antisymmetric part B,g), encoding

Maxwell Eq. V x B = 0E /0t. In electromagnetic systems, due to this law (more precisely,
in covariant form 2B, = xFap,U7), Bap is non-vanishing whenever the dipole “sees”
a varying field (as is the case when the particle moves in a non-homogeneous field), and
therefore (except for some special orientations of [i) an electromagnetic force F; # 0 is
exerted on it.

We have studied in detail the work done by the fields on the particle from the point
of view of different frames, which is an important physical content encoded in the time
projections of the forces; and its relation with the particle’s energy (in the given frame)
and proper mass. For that we needed to generalize the power law existing in the litera-
ture, extending it to the case of particles with multipole structure (which possess hidden
momentum and varying mass). An interesting reciprocity was found to exist: in a frame
comoving with the particle, the electromagnetic (but not the gravitational) field does work
on it, causing a variation of its proper mass; conversely, for “static observers”, a stationary
gravitomagnetic (but not a magnetic) field does work on the particle. We shown that there
is actually a potential energy associated with this work which embodies the Hawking-Wald
spin-spin interaction energy [10] (that had been found to exist in the special case of an
axial fall in a Kerr black hole).

In the course of this work a number of issues had to be clarified, the first of them being
the equations of motion themselves, both to dipole and quadrupole order, and the physical
meaning of the quantities involved. In particular the misconceptions in the literature
regarding the problem of the spin supplementary condition, and the difficulties in the
electromagnetic part of the equations. Some of this problems are briefly reviewed in Sec.
3.2 above (for a more comprehensive summary I refer the reader to the conclusion of Paper

#4).

5.6 Paper #5 — Gravito-electromagnetic analogies

This work has two main goals: 1) establish the connection between the several gravito-
electromagnetic analogies existing in the literature, and in particular between the tidal
tensors and the exact GEM fields; 2) further develop these two approaches.

As for the approach based on tidal tensors, we complete the tidal tensor formulation of
the gravitational field equations started in Paper #1 [1]. Using the time and space projec-
tors, we do a full splitting of the gravitational field equations (the Einstein equations with
sources, plus the algebraic Bianchi identities), obtaining six equations (5 independent),
four of which are the ones first derived in [1], which are analogous to Maxwell’s equations
in this formalism, and two additional ones with no electromagnetic counterpart that are
not given in [1]. And we add to the list of analogies in this formalism the one we found to
exist in the “differential precession” of gyroscopes/magnetic dipoles.

As for the analogy based on exact GEM fields, we take its most general form in the
literature [25], valid for arbitrary fields, reformulate and further generalize it for arbitrary
frames. We discuss in detail the inertial forces that arise in the different frames, and the
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origin of the GEM fields; and we derive a general expression for them which generalizes
the previous results in terms of an arbitrary transport law for the spatial frame. The grav-
itomagnetic field (i.e., the field that yields the Coriolis-like “acceleration” in the geodesic
equation) is seen to consist of two contributions of independent origin: the vorticity of
the observer congruence, and the rotation of the spatial triads relative to Fermi-Walker
transport. This definition encompasses the many gravitomagnetic fields that have been
defined in the literature. As for the field equations, we do, again, a full splitting of the
gravitational and electromagnetic equations, and express them in this formalism. It turns
out that from the set of six gravitational equations, four are seen to exhibit many similari-
ties with the electromagnetic equations (that is, it is not only in the tidal tensor formalism;
the similarity occurs in this formalism as well). Restricting the approach to stationary
fields, we obtain on the gravitational side the “quasi-Maxwell” field equations of Sec. 3.1.2
above; and in the electromagnetic side, the equations for the electric and magnetic fields
in the analogous situation: for arbitrarily accelerated and rotating frames (not in Lorentz
frames, as is the usual comparison in the literature), which unveils a much closer anal-
ogy. We also build up on the work in [19] — where an analogy was found between the
gravitational force on a gyroscope written in terms of GEM fields, Eq. (3.13), and the
electromagnetic force on a magnetic dipole at rest in a Lorentz frame, Eq. (3.14) — by
adding the corresponding electromagnetic force in the analogous conditions, i.e., in terms
of the fields measured in the arbitrarily accelerating and rotating frame where the particle
is at rest. Again the analogy is seen to get strikingly closer.

5.6.1 Analogy based on tidal tensors

In Paper #b5 [5] we revisited the analogy based on tidal tensors introduced in Paper #1
[1], and completed the tidal tensor formulation of the gravitational field equations. In [1]
it was shown that, by taking the traces and antisymmetric parts of the electromagnetic
tidal tensors, one obtains the Maxwell equations, and performing the same operations on
the gravitational tidal tensors leads to a strikingly similar set of equations, which turn out
to be some projections of the gravitational field equations.

In [5], using a more robust approach, we extend this formalism to the full gravitational
field equations — KEinstein equations with sources plus the algebraic Bianchi identities,

1 a
R.5 =87 <Ta5 - 2ga5T'L) (a); *R” =0 (), (5.104)

which I summarize in what follows. Using the time and space projections with respect to
a unit time-like vector U,

B= (T = —UUs W= () =UTUs +0%  (5106)

we first do a full decomposition of the Riemann tensor

R0 = (T2, 4 h%,) o (T2, 4+ 10, ) B2
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obtaining!”

R, = 4IE[ahU5]Um +2{e“>;5UXHMWUa1 +e“aﬁXUxHu[5Uw}
+e PV U F g (5.106)

This equation tells us that the Riemann tensor decomposes, with respect to U, in three
spatial tensors: the gravitoelectric tidal tensor E,g, the gravitomagnetic tidal tensor Hyg,
plus a third tensor

Fog = *R *ay3s UTU° = %, 35 R, UTU°

introduced by Bel [138], which encodes the purely spatial curvature with respect to U?,
and has no electromagnetic analogue. E,g and F,g are symmetric (and spatial), and
therefore have 6 independent components each; Hyg, is traceless (and spatial), and so
has 8 independent components. Therefore these three tensors together encode the 20
independent components of the Riemann tensor.

Substituting decomposition (5.106) and its Hodge dual in Eqgs. (5.104a), and decom-
posing in time and space projections, we obtain, respectively, the time-time, time-space,
and space-space projections:

E%, =47 2pm +T9%) ; (5.107)
Hipr) = =4 erory J U ; (5.108)
o o o Lo 1 « (o)
5+ E% —F9, BZSW[QT‘QM—T@] (5.109)

(since Eq. (5.104a) is symmetric, these are the only non-trivial projections). Here
Jo = T8 Ug, pm =T BT 3U, are, respectively, the mass/energy current and density, as
measured by an observer of 4-velocity U%; and T<9<>’\ ) = h’\éh’8 9T55.
Repeating the procedure in Egs. (5.104b), we obtain the time-time (which is the same
as the space-space), time-space, and space-time projections, respectively:
H®, =0; (a) Flog =0;  (b) Ejqg =0 (c). (5.110)

«

Turning now to the electromagnetic field equations (source equations, plus Bianchi iden-
tity),

PP, =4mj®  (a); «F =0 (b), (5.111)

we decompose Fy,g., and its dual in terms of the electromagnetic tidal tensors,
Fapy = 2UjaEgp + €apucU7 B, ; (5.112)
*Faﬁ;’Y = 2U[aBB]'y - eaﬁ,u,aUUE'ufy . (5113)

7The characterization of the Riemann tensor by these three spatial rank 2 tensors is known as the “Bel
decomposition”, even though the explicit decomposition (5.106) is not presented in any of Bel’s papers
(e.g. [138]). To the author’s knowledge, an equivalent expression (Eq. (4.6) therein) can only be found
in [144].
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Table 5.3: Tidal tensor formulation of the electromagnetic and gravitational field equations.

Electromagnetism Gravity
Maxwell Source Equations Einstein Equations
Fl = anJ? Ry = 87 Ty — 19,0 T%)
e Time Projection: e Time-Time Projection:
E% = 4mp, (5.3.3a) E*, =47 (2p+T9) (5.3.3b)
e Space Projection: e Time-Space Projection:
Bjag) = 3*Fapiy U —2meapoyj°UY  (5.3.6a) Hiag) = —4T€apar J U (5.3.6b)
e Space-Space Projection:
No electromagnetic analogue F% + E% — F9, h% = 8w [%T"Yvhaﬁ - T<<(2>>;k5'3'7)
Bianchi Identity Algebraic Bianchi Identity
*F =0 (& Flape =0) xR =0 (¢ Riapys =0)
e Time Projection: e Time-Time (or Space-Space) Proj:
B*, =0 (5.3.5a) H*, =0 (5.3.5b)
e Space Projection: e Space-Time Projection:
Elop) = FapU” (5.3.4a) Efag =0 (5.3.4b)

e Time-Space Projection:

No electromagnetic analogue
Flag =0

Then, substituting in Eqs. (5.111), and splitting in the time and space projections, we
obtain the set of four electromagnetic equations already presented in Paper #1 [1], Egs.
(5.1.3a)-(5.1.6a) of Table 5.1, and that we summarize again in Table 5.3. That is, the time
and space projections of (5.111a) are, respectively Egs. (5.3.3a) and (5.3.6a) of Table 5.3.
The same procedure applied to Eq. (5.111b) yields Eqgs. (5.3.4a) and (5.3.5a) as the time
and space projections, respectively. We re-write them in the form

E°, = Admwp.; (5.114)
1 a

Blag) = UnEgy U + SeapuoU B Uy 5 (5.115)

B, = 0; (5.116)
1 i .

Biag) = UaBgpU" = 5€apuolU” BV, = 2Meapoyj°UT (5.117)

to note that indeed Maxwell’s equations may be cast as algebraic equations involving only
the two tidal tensors and the sources.
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Thus, as illustrated in Table 5.3, the gravitational field equations consist of four equa-
tions with an electromagnetic analogue, plus two equations — the space-space projection
of (5.104a), Eq. (5.109), and the time-space projection of (5.104b), Eq. (5.110b), which
have no electromagnetic analogue. However this is not a set of six independent equations,
as Egs. (5.110b), (5.110c) and (5.109) are not independent; using the latter, together with
(5.110b)/(5.110c), one can obtain the remaining one, (5.110c)/(5.110b).

Eq. (5.109) involves, as a source, the space-space part of the energy momentum ten-
sor, T{@{P) which, unlike the energy current 4-vector J& = —7T°P Us (analogous to the
charge current 4-vector j) has no electromagnetic counterpart. It has a fundamental
difference'® with respect to the other gravitational field equations in Table 5.3 (and their
electromagnetic analogues): the latter are algebraic equations involving only the traces
and antisymmetric parts of the tidal tensors (or of F,g), plus the source terms; they im-
pose no condition on the symmetric parts. But Eq. (5.109), by contrast, is an equation
for the symmetric parts of the tensors E,g and F,g. It can be split in two parts. Taking
the trace, and using (5.107), one obtains the source equation for [Fgs:

Fo, = 8mp ; (5.118)
substituting back in (5.109) we get:
1
F% +E% = 8 [h% <2T77 + p) - T%J . (5.119)

This equation tells us that the tensor [F5 is not an extra (comparing with electrodynamics)
independent object; given the sources and the gravitoelectric tidal tensor E.g, Fog is
completely determined by (5.119).

In vacuum (7% = 0, j* = 0), the Riemann tensor becomes the Weyl tensor: Rogys =
Capys; due to the self duality property of the latter: Cogys = — x Cxapys, it follows that
Fop = —Eqp.

The gravitational field equations are summarized and contrasted with their electro-
magnetic counterparts in Table 5.3. Egs. (5.3.3b)-(5.3.6b) are very similar in form to
Maxwell Egs. (5.3.3b)-(5.3.6b); they are their physical gravitational analogues, since both
are the traces and antisymmetric parts of tensors {F,g, Bag} <> {Eap, Hapg}, which
we know, from equations (5.1.1) and (5.1.2) of Table 5.1, to play analogous physical
roles in the two theories. Note this interesting aspect of the analogy: if one replaces,
in Egs. (5.114)-(5.117), the electromagnetic tidal tensors (E,g and B,g) by the gravita-
tional ones (Eo3 and H,g), and the charges by masses (i.e., charge density p. and current
J%, by mass/energy density p and current J¢), one almost obtains Eqs. (5.3.3b)-(5.3.6b),
apart from a factor of 2 in the source term in (5.3.6b) and the difference in the source of
Eq. (5.3.3b), signaling that in gravity pressure and stresses contribute as sources. This
happens because, since E,g and H,g are spatial tensors, all the contractions with U®
present in Egs. (5.115) and (5.117) vanish.

18We thank Jodo Penedones for drawing our attention to this point.
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5.6.1.1 The analogy for differential precession

In Paper #1 [1] we gave a physical interpretation for the tensors B,g and H,g as the
tensors which, when contracted with a magnetic/gravitomagnetic dipole vector, yield the
force exerted on magnetic dipoles/gyroscopes. In Paper #5 we unveil a new exact analogy
(again relying on the Mathisson-Pirani spin condition) relating these two tensors, which are
cast as tensors of “relative”, or “differential”, precession for spinning particles; i.e., tensors
that, when contracted with a separation vector 6z, yield the angular velocity of precession
of a spinning particle at given point Ps relative to a system of axes anchored to spinning
particles, with the same 4-velocity (and gyromagnetic ratio o, if an electromagnetic field
is present), at the infinitesimally close point P;. (This is somewhat analogous to the
electric tidal tensors F,z and E,g, which, when contracted with §2”, yield the relative
acceleration of two infinitesimally close test particles with the same 4-velocity).

On the gravitational side, the equation yielding the precession of a gyroscope at Po,
moving with 4-velocity U®, with respect to a system of axes locked to comoving (i.e.,
moving with the same U®) guiding gyroscopes at Pi, is

%TS =00g xS;  6QL =H 52!, (5.120)
where Hog = Raup UFUY. See Paper #5 [5] for details. This is not an original result: it
was was obtained first in a recent work [142], but through a derivation that, from our point
of view, is not satisfactory, and makes an assumption — that the gyroscopes at P; and
P2 have the same acceleration — that turns out to be unnecessary; they only need to be
momentarily comoving (i.e., have the same 4-velocity) in order for (5.120) to hold. In Sec.
2.3 of Paper #5 we proposed a new, more straightforward derivation of the same result.
In order to find the precession of a gyroscope at P relative to the comoving system of
gyroscopes at Pi, one just has to setup a system of Fermi coordinates (see e.g. [129, 145])
with origin along the worldline of the system of guiding gyroscopes passing trough the
location Pi, and compute the angular velocity of rotation (let me denote it by —5@) of
its basis vectors e, at Pa, relative to the comoving gyroscopes therein (i.e., relative to the
Fermi-Walker transported tetrad of the momentarily comoving worldline passing through
P2). This angular velocity is given by the connection coefficient Féj of this frame at (Ps),
which is well known to be Ff)j(Pg) = Rijkoéxk, e.g. [145]. Then the angular velocity of

precession of a gyroscope at Po is simply minus the former, i.e., 540.

It is interesting that, considering the electromagnetic analogue, the exact physical anal-
ogy Hup <+ B, emerges again. The precession of a magnetic dipole at Pa, with 4-velocity
U, with respect to a system of axis fixed to magnetic dipoles (with the same gyromagnetic
ratio o) at P; and comoving with the same U®, is given by

DS

- = 0Gpu x S 0y = —oB' 827 . (5.121)
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5.6.2 The exact analogy based on GEM fields

In our approach one starts with an arbitrary orthonormal reference frame, which can be
thought as consisting of a congruence of observers, each of them carrying an orthonormal
tetrad whose time axis is the observer’s 4-velocity (i.e. the tangent to the congruence) and
the spatial triads spanning the local rest spaces of the observers. We choose the frame
orthonormal because the connection coefficients associated to it are very simply related
with the inertial fields. Along the observer’s worldline, the variation of the basis vectors
e, is given by the rotation matrix Q,3:

Vue; = Q‘S‘Bed; Q% = 2ulvaf + eo‘%yQ“u” , (5.122)

which encodes the observer’s acceleration a®, and the angular velocity of rotation Q% of
the spatial triad e; relative to Fermi-Walker transport. Since

Veéeﬁ = Fg&e&
and u = ey, this defines the connection coefficients
ri=da =19 ; L= e OF (5.123)

The coefficients Fgﬁ are trivially zero:

; 1
%= € Veses = —5Vealeg-e) =0,

and the remaining mixed time-space connection coefficients encode kinematical quantities
of the observer congruence:
0 o — 3o T
Fj% =Viu, = K;: = I‘jé. (5.124)

where the tensor K% = (h“)o‘/\(h“)ﬂ ~uNT decomposes in the the vorticity wag = Kjag);
and the shear/expansion tensor K (,g).
The kinematics of the congruence may be written as

Unyg = —a(u)atig — €aprsw u’ + K(op)

where w® is the vorticity vector

1 1
W — §€aﬁv5u’y;6u6 _ _ieaﬁ’yéwaﬁu@ (5.125)

It is useful to split K(,g) in the traceless shear 0,4 and expansion 0 = u®:

1 u
K(aﬁ) = O0ap + g(h )a,@g .

The transport law for the spatial triads e; along the congruence is up until now still
arbitrary; it is generically independent of the congruence and its kinematics. But some

91



5 The papers summarized and discussed

preferred choices exist. Let Y* = (h“)O‘BX # be the projection orthogonal to the congru-
ence of a vector X% connecting two neighboring observers. The condition that X< is a
connecting vector is the vanishing of its Lie derivative along u®: £, X® = 0. The evolution
of Y, in tetrad components, is given by (see Paper #5 [5] for details)

. 1 .
Y = <U%j + 59525 + Wi — sz) Y7, (5.126)

1

where dot denotes the ordinary derivative along u: Ag = b, Eq. (5.126) tells us

&,
that for a shear-free congruence (025. = 0), if we lock the rotation Q of the tetrad to the
vorticity @ of the congruence, Qi}‘ = w;s, the connecting vector’s direction is fixed on the
tetrad (and if in addition § = 0, i.e., a rigid congruence, the connecting vectors have
constant components on the tetrad). This is a very important result in the context of this
work, as it tells us how to setup (in non-shearing spacetimes) frames whose local spatial
axes e; are all locked one to another. A familiar example is the rigidly rotating frame in
flat spacetime; by choosing!® Q0= &, one is demanding that the spatial triads e; carried
by the observers co-rotate with the congruence; hence it is clear that the axes e; always
point to the same neighboring observers. Another example, of central importance in the
context of gravitomagnetism, is the so-called frame of the distant stars, relative to which
the gyroscope “precession” is measured; this is discussed in Sec. 5.6.2.2 below.

The choice € = & is argued in [136, 134] to be the most natural generalization of the
non-relativistic concept of reference frame; we dub the frames verifying this transport law
“congruence adapted frames”. But other choices are possible. An also natural one would
be ( = 0, i.e., the triad e; does not rotate relative to Fermi-Walker transport along the
congruence (which means that it is fixed relative to local guiding gyroscopes, as discussed in
Sec. 5.6.2.2 below). Another usual choice corresponds to the frames sometimes employed
in the in the context of black hole physics and astrophysics [140, 132, 133]: the tetrads
carried by hypersurface orthogonal observers, whose spatial axis are taken to be fixed to
the background symmetries; for instance, in the Kerr spacetime, the congruence are the
zero angular momentum observers (ZAMOS, see e.g. [73, 140]), and the spatial triads are
fixed to the Boyer-Lindquist spatial coordinate basis vectors. This tetrad field has been
dubbed in some literature “locally non-rotating frames” [133, 132] (somewhat erroneously,
as such tetrads do rotate with respect to the local compass of inertia, since they are not
Fermi-Walker transported in general) or “proper reference frames of the fiducial observers”
[140]. It is regarded as important for black hole physics because it is a reference frame
that is defined everywhere (unlike for instance the star fixed static observers u® oc 9/09t of
Kerr spacetime, that do not exist past the ergosphere).

9Note that for relativistic rotation, the vorticity & is not constant, and not equal to the (constant) angular
velocity of the rigidly rotating observers; but it is the condition © = & (not € equal to the angular
velocity) that that ensures that the tetrads are rigidly anchored to the observer congruence.
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5.6.2.1 Inertial forces — “gravitoelectromagnetic (GEM) fields”

The spatial part of the geodesic equation for a test particle of 4-velocity U%, VyU® =
DU®/dt = 0, reads, in the frame eg4:

dU' e (pi i g0 g
T (U0) +( 63.+F36)U U7+ TLURT =0

Substituting (5.123) and (5.124), we have

D 7 A A = — — - “a ]_ -
PU_ g0 |09G + T x A — o -Ue. — Lo (5.127)
dr J i3
where o .
bur  du* N S
e +F%U U’/ = Fépum - (5.128)

Eq. (5.127) has formal similarities with the electromagnetic Lorentz force, which, in this
frame, reads
DU iz = o=
e (UOE + U x B) . (5.129)

dr m

The derivative operator D /dr

As shown in detail in Paper #5 [5], D /dT is a spatial covariant derivative operator along a
curve (parametrized by 7), preserving the spatial metric (h")ag, for spatial vectors. It can
be understood as follows. The variation the components of a vector A® (or an arbitrary
tensor) along a curve of tangent U must be measured with respect to a system of axes;
the ordinary covariant derivative DA% /dr yields the variation with respect to a system
of axes parallel transported along the curve; but this is not the only covariant derivative
one can define along the curve. Another covariant derivative, the Fermi-Walker derivative
DpA%/dr, yields the variation of A* with respect to a system of Fermi-Walker transported
axes. The derivative we are interested in is a different one, it is one that measures the
variation of a spatial vector X“ along the curve, but with respect to a system of axes
undergoing the arbitrarily prescribed transport law (5.122) along the congruence (i.e., a
connection for which the spatial triad vectors e; are constant along u). It is set up as
follows. First we note that the spatial projection (i.e., orthogonal to u, for this reason we
denote it by V1) of the ordinary covariant derivative of a spatial vector X

LvB — (pun\B
VEXP = (B2 VX7,

when taken along the congruence: Vi X?, yields the Fermi-Walker derivative along the
congruence
DX?  DpX©
VaX® = (h")5 = :
u (h*)3 dr, dr,

(5.130)

Thus we dub V= the Fermi- Walker connection. The connection V we are looking for is
such that it coincides with the ordinary covariant derivative in the directions orthogonal
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to the congruence (thus Vx = V)L( if X%u, = 0), but such that @ue; = 0. In tetrad
components such connection is written as

VaX' = VX' - 3000 X . (5.131)

The derivative D /d7 is the one determined by this connection along a curve of tangent U,
D/dr = Vy. Its action on a spatial vector X is thus, in tetrad components

DX dx’

—vlyi_oig0yi — i 175 vk
Ir = VX QjU X = +I‘ij X",
or, in manifestly covariant notation:
DX DX
7d7- = (hu)aﬂid,r + ’YEa/BW&UaXﬁQ’Y .

Acting on the spatial velocity U = (h“)aﬁUﬁ of the test particle, DU<O‘>/dT, yields the
result we want: the “acceleration” with respect to the chosen frame, whose triad vectors e;
rotate along the congruence (relative the Fermi-Walker transport) with an angular velocity
Q that one may arbitrarily specify.

DU! /dT has a particularly simple interpretation when the congruence is rigid, and one
chooses the congruence adapted frame O=a (see previous section) which was already
given in Sec. 3.1.2 above: in this case there is a well defined space manifold in the quotient
space, of (time-independent) metric (h*);; = vi; (c.f. notation of Sec. 3.1.2); and DU*/dr
is just 3-D covariant acceleration of the projected curve (parametrized by 7) on 7;;.

Exact GEM fields

Eq. (5.127), which we can write in the manifestly covariant form

DU
Fipy = =~ =7 76" + %50 UPHY — K@PUg| (5.132)

is a very important result in the context of this work, as it yields the inertial forces, in the
GEM language, of an arbitrary frame. G and H%are, respectively, the “gravitoelectric”
and “gravitomagnetic” fields, defined by

G = —Vau® = —a*(u); H =w*+ Q% . (5.133)

These designations are due to the analogy with the roles that the electric (E*)* = F®ug
and magnetic (B%)* = xF8 ug fields play in the electromagnetic Lorentz force
DU~  ¢q

= L+ e U (BT

or, in the tetrad, Eq. (5.129). The gravitomagnetic field H* consists of two parts of
different origins: the angular velocity Q¢ of rotation of the tetrads relative to Fermi-Walker
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transport (i.e., the local guiding gyroscopes), which is independent of the congruence, plus
the vorticity w® of the congruence of observers u®. In a congruence adapted frame, where
the rotation of the tetrad is locked to the vorticity of the congruence, Q% = w®, the
gravitomagnetic field becomes simply twice the vorticity: H* = 2w®. This is the case of
the gravitomagnetic field of the quasi-Maxwell formalism reviewed in Sec. 3.1.2 above.

The last two terms of (5.127) have no electromagnetic counterpart; they consist of the
shear/expansion tensor K (ap)- 1t corresponds to the time derivative of the spatial metric
(h")ap that locally measures the spatial distances between neighboring observers. This
can be seen noting that K5 = Lu(h")ag = (h*)ap0u’, the last equality holding in the
u' = 0 frame. K(,p) is sometimes called the second fundamental form of the distribution
of hyperplanes orthogonal to u. If this distribution is integrable (that is, if w® = 0) then
K (4p) is just the extrinsic curvature of the time slices orthogonal to u.

Simple examples in flat spacetime

An important result in this paper is the above clarification of the origin of the so-called
gravitomagnetic field, as arising from the two independent parts 2% and w®, and its general
formulation applying to arbitrary frames, given by Eq. (5.127). In order to see how these
things play out, and the relationship with the inertial forces we are familiar with from the
textbooks on classical mechanics, e.g. [137], we consider, in flat spacetime, the straightline
geodesic motion of a free test particle, from the point of view of three distinct frames: a) a
frame whose time axis is the velocity of a congruence of observers at rest, but whose spatial
triads rotate uniformly with angular velocity O; b) a frame composed of a congruence of
rigidly rotating observers (vorticity &), but carrying Fermi-Walker transported spatial
triads (Q = 0); ¢) a rigidly rotating frame, that is, a frame composed of a congruence of
rigidly rotating observers, carrying spatial triads co-rotating with the congruence O=a
(i.e., “adapted” to the congruence). This is depicted in Fig. 5.9.

In the first case there we have a vanishing gravitoelectric field G = 0, and a gravit-
omagnetic field H=20 arising solely from the rotation (with respect to Fermi-Walker
transport) of the spatial triads; thus the only inertial force is the grav1tomagnetlc force
Faem = 74U x €. In the frame b), there is a gravitoelectric field G=3&x(Fx&) due
the observers acceleration, and a also gravitomagnetic field H= &, which originates solely
from the vorticity of the observer congruence. That is, there is gravitomagnetic force
~U x & which reflects the fact that the relative velocity v® = U*/y —u® (or v = (7/7 in
the frame @ = 0) between the test particle and the observer it is passing by changes in
time. The total inertial forces are in this frame

Fopv = fchx(FxJ))—i—U'xw'].

In the frame c), which is the relativistic version of the classical rigid rotating frame,
one has the effects of 1) and 2) combined: a gravitoelectric field G = & x (7 x &), plus
a gravitomagnetic field H =&+ Q = 23, the latter leading to the gravitomagnetic force
2U x @, which is the relativistic version of the well known Coriolis acceleration, e.g. [137].
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In the tetrad:
—
TN Ny
, G=0, H=0
rotating axes
b)
In the tetrad:

/

4 relative
« velocity
R4

.

7/
/‘ | -

rotating
observers

In the tetrad:

Figure 5.9: A test particle in uniform motion in flat spacetime from the point of view of
three different frames: a) a frame composed of observers at rest, but carrying
spatial triads that rotate with uniform angular velocity ﬁ; b) a frame consist-
ing of a congruence of rigidly rotating observers (vorticity <), but each of them
carrying a non-rotating spatial triad (i.e., that undergoes Fermi-Walker trans-
port); ¢) a rigidly rotating frame (a frame adapted to a congruence of rigidly
rotating observers); the spatial triads co-rotate with the congruence, 0 =a.
Note: by observer’s rotation we mean their circular motion around the center;
and by axes rotation we mean their rotation (relative to FW transport) about
the frame’s origin.
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The total inertial force is in this frame
Fapm =7 7@ x (Fx &) +20 x &

which is the relativistic generalization of the inertial force in e.g. Eq. (4-107) of [137].
Moreover, in this case the spatial connection coefficients F;k equal the ones of the 3-D

spatial metric (i.e. of the spatial manifold associated to the quotient of the spacetime
by the congruence), there is a well defined 3-D curve obtained by projecting the parti-
cle’s worldline on the space manifold, U is the vector tangent to it (see Fig. 5.9c) and
Fapn = DU Jdr, of. Eq. (5.128), is simply the acceleration of the curve.

Finally, let me make these remarks on the usefulness of Eq. (5.127), and of our gen-
eral definition of H. Although the congruence adapted frame, O=cG=H /2, might seem
the most natural frame associated to a given family of observers, other frames are useful
and are used in the literature, and the gravitomagnetic effects of such frames discussed
therein. Eq. (5.127) yields the inertial forces of any of such frames, in particular our
general definition of H encompasses all the gravitomagnetic fields defined in the differ-
ent approaches. That includes the case of the “locally non-rotating frames” [133, 132],
or “proper frames of the fiducial observers” [140] in Kerr spacetime discussed above, for
which & = 0, and H=0=N"1Vx 5 ; that is, all the gravitomagnetic accelerations come
from Q@ (N, § denote, respectively, the lapse function and the shift vector [140]). Frames
corresponding to a congruence with vorticity, but where the spatial triads are chosen to
be Fermi-Walker transported, Q= 0, have also been considered; in such frames H=4¢
(dubbed the “Fermi-Walker gravitomagnetic field” [25]).

5.6.2.2 Gyroscope precession

Another main result of this GEM formalism is the exact analogy between the so-called
gyroscope “precession” and the precession of a magnetic dipole, that I already presented
in Sec. 5.5.1 above. Herein I will further elaborate on this subject, and show how the
formalism in Paper #5 [5] helps clarifying the precise meaning of the gyroscope precession,
what is it in the exact theory, and how can one setup a frame that allows us to determine
the rotation of a vector relative to an inertial frame at infinity.

As discussed in Sec. 5.5, if the Mathisson-Pirani condition holds, the spin vector of an
ideal gyroscope (that is, a spinning pole-dipole particle) in a gravitational field is Fermi-
Walker transported:

DS«

dr
where U® is its center of mass 4-velocity. This is the natural result: a gyroscope, which
is understood as an object that opposes to changes in direction of its spin axis S , has it
fixed with respect to the mathematical definition of a comoving non-rotating frame. (This
emphasizes the importance of acknowledging the physical validity of the Mathisson-Pirani
condition, that we addressed in Paper #3 [3]). In a comoving orthonormal tetrad eg

= S,a” U, (5.134)
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(where U =0, and S0 = 0) we can write:

dr dr Ok

So ideal gyroscopes in a gravitational field are torque-free, and do not precess (relative
to non-rotating frames). What one means in the literature by gyroscope “precession”; e.g.
[7,8, 73], and which has been measured by the Gravity Probe B mission [53], is a precession
with respect to the distant stars, that is, with respect to the axes of an inertial frame at
infinity. And this has a physical meaning, as it may detect the presence of frame dragging
(and also the Thomas precession). That is, locally O has no meaning; if O # 0, that tells
us only that we are using a rotating frame to describe the motion of the gyroscope. But if
the frame we are choosing has its axes fixed to an inertial frame at infinity, and still Q #0,
then non-rotating frames at different points rotate one relative to another which indicates
frame dragging (if the Thomas precession can be ruled out, e.g. if the gyroscopes are in
geodesic motion).

This notion of “frame of the distant stars” obviously applies only to asymptotically flat
spacetimes. The question now is how can one compare systems of axes at different points
in a curved spacetime, in order to determine if one rotates or not one relative to another.
The answer is given by Eq. (5.126) above. As discussed above, if a rigid congruence
of observers exists (as is the case in stationary spacetime), setting e; as the tangent to
the congruence u®, and locking the rotation of the spatial triads to the vorticity, O=a
(i.e., choosing the congruence adapted frame), the connecting vectors between neighboring
observers obey A

Yi=0;

that is, the tetrad vectors point to fixed neighboring observers. Thus we have a frame
in which the local spatial triads carried by the observers are all locked one to another.
Therefore measuring the angular velocity rotation of a vector relative to the local system
of axes at point, effectively amounts to measure it with respect to any tetrad at another
point. Now consider the spacetime to be asymptotically flat (besides stationary). In this
case there are the so-called “static observers” (cf. point 7 of Sec. 5.1), the rigid congruence
of observers whose worldlines are tangent to the time-like Killing vector field, and that at
infinity coincides with the asymptotic inertial rest frame of the source — the axes of the
latter define the directions fixed relative to the distant stars. Setting up the frame adapted
to this congruence as explained above, yields a frame with axes everywhere locked to the
distant stars, thus by measuring the precession of a gyroscope relative to any local tetrad
of this frame one is in fact measuring it relative to the former.

The analysis above, based on rigid congruences, applies to stationary spacetimes, such
as the Kerr metric or the (approximate) gravitational field of spinning bodies, which is
was the problem at hand in the Gravity Probe B mission. But what about the gravita-
tional field generated by a system of translating bodies, which have been studied in the
Post-Newtonian approximation (and whose gravitomagnetic field has also been subject
of experimental test, e.g. [69, 71, 70])? These are not stationary spacetimes. However
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a similar analysis for gyroscope precession can be done in these spacetimes, because, as
can be seen from the line element (5.29) above (and discussed in detail in Paper #5 [5]),
to post Newtonian order (as well as in the “gravitomagnetic limit” of linearized theory)
the shear of the PN frame is negligible, only the expansion remains. In this case, for a
congruence adapted frame, Eq. (5.126) reads

.2 1 4
Y'~ —0Y"
3

which again means that tetrad vectors point to fixed neighboring observers, and by the
same construction above one can show that the so-called PN frames (the frames adapted
to the u’ = 0 observers in the PN metrics) are frames fixed to the distant stars.

Finally, it should be noted that in most literature dealing with GEM analogies, the
precession of the gyroscope is cast as being governed by the same gravitomagnetic field
that yields the Coriolis acceleration U x H in the geodesic equation (5.127), see e.g. Eqgs.
(3.4), (3.2) and (3.12), (3.11), only with a relative factor of 2 between the two. It is clear
in the general formulation herein that the fields involved in these effects are not the same;
the field H leading to the Coriolis acceleration arises not only from the rotation Q of
the frame relative to a local Fermi-Walker transported tetrad (that yields the gyroscope
“precession”), but also from the vorticity @ of the congruence. In this sense, one can say
that the Lense-Thirring effect detected in the LAGEOS satellite data [52] (and currently
under scrutiny by LARES mission [54]), measuring H from test particle’s deflection, is of a
different mathematical origin from the one which was under scrutiny by the Gravity Probe
B mission [53], measuring O from gyroscope precession, the two being made to match by
measuring both effects relative to the “frame of the distant stars” (verifying 0= @, and
thus in this case the fields differ only by a factor of 2). It is important to bear this in mind,
as in the literature GEM fields of frames which are not congruence adapted are discussed;
for instance the “Fermi-Walker gravitomagnetic field” defined in [25], which is the H of
a frame corresponding to a congruence with vorticity, but where the spatial triads are
chosen to be Fermi-Walker transported: () = 0. Thus there is a non-vanishing H=3&in
this frame, whereas at the same time gyroscopes do not precess relative to it.

5.6.2.3 Field equations

In a parallelism to what is done in Sec. 5.6.1, we split the Einstein and the Maxwell
equations in their time and space projections with respect to the observer congruence, but
now expressing them not in tidal tensors, but instead in terms of the EM/GEM fields as
measured in such frame.

I start by the electromagnetic equations. Using decomposition (5.1), we write Maxwell’s
Egs. (5.111) in terms of the electric and magnetic fields (E*)* = Oéuﬁ and (B")* =
*F%uﬁ measured by the congruence of observers of 4-velocity u®. All the fields below are
measured with respect to this congruence, so we may drop the superscripts: (E*)* = E,
(B*)* = B®. For simplicity, below I choose the congruence adapted frame (& = Q = H/2);
and I refer the reader to Paper #5 for the general expressions. The time and space
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projections with respect to u® of Eq. (5.5a) read, in tetrad components, respectively,

=

V-E = 4mp.+H-B, (5.135)

VxB = E+GxB+irj—KODEe +0E . (5.136)

The time and space projections of (5.5b) are, in the tetrad,

V-B = —
VxE = —

E, (5.137)
+GxE+KDB.e — 08 . (5.138)

- T

V is the connection defined in (5.131); since herein we are dealing with derivatives along
the spatial directions, and for spatial vectors, it could be taken also as the spatial projection
of the ordinary covariant derivative, since, for spatial X®, V,X? = (h“)f VX7 (or, in
the tetrad, V; X7 = V;X7).

Egs. (5.135)-(5.138) are equivalent to Eqgs. (3.25)-(3.28), only written in a different

form. In the special case of a rigid frame (K(7) = § = 0) and time-independent fields

(E = B = 0), these equations yield Eqs. (5.4.4a)-(5.4.8a) of Table 5.4.

Turning now to the gravitational equations, using T — pand T 0i — J%, and the
expressions for the Riemann and Ricci tensors in terms of GEM fields given in Paper #5
[5], the time-time, time-space, and space-space components of the Einstein field equations
with sources, Eq. (5.104a), read, respectively:

~ - -, 1 - . an
V-G = —4n(2p+T%)+G*+ 5H2 — 60— KWK (5.139)
VxH = —165]+2G x [ +2V0 - 2V;KUE ; (5.140)
1o _ :
8T <Tg§ — 55;3T a) = R;j + VgG}- — G;Gjﬁ + K(;j») + K(%j)g

Lre 72 i i
by [y o+ Higt o H205 = HH; o+ Ky HY = HK gogf1a1)
where H;j = €;;5H" is the dual of H. Egs. (5.139)-(5.140) are the gravitational analogues
of the electromagnetic equations (5.135) and (5.136), respectively; Eq. (5.141) has no
electromagnetic counterpart.

As for the the algebraic Bianchi identities (5.7b), the time-time (equal to space-space,

as discussed in Sec. 5.7), space-time and time-space components become, respectively:

V-H = —-G-H; (5.142)
VxG = —f-H0+HEDE (5.143)
KipH = —xR. (5.144)

Egs. (5.142)-(5.143) are the gravitational analogues of the time and space projections of
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the electromagnetic Bianchi identities, Eqs. (5.136)-(5.138), respectively?’; Eq. (5.144) has
no electromagnetic analogue.
The 3-D curvature tensor jo.,;i in the equations above is the restriction to the spatial

directions of the curvature of the connection @, given in the tetrad by

R.! =T

i
o= 1y

I I )
iy T — i — O T (5.145)

iy mk’

and Rﬁ =R 0 is the Ricci tensor associated to it; this tensor is not symmetric in the
general case of a congruence possessing both vorticity and shear. Eq. (5.144) states that
if the observer congruence has both vorticity and shear/expansion, then Rijkl does not
obey the algebraic Bianchi identities for a 3D curvature tensor. In some special regimes

the interpretation of Rijl}i is simple. In the quasi-Maxwell limit of Sec. 3.1.2 — that is,

rigid (K (o) = 0), congruence adapted (€2 = &) frames — it is the curvature tensor of the
spatial metric ;; (which yields the constant infinitesimal distances between neighboring
observers of the congruence). In the case that the vorticity is zero (& = 0), the congruence
is hypersurface orthogonal, and R%“l%i gives the curvature of these hypersurfaces.

This remarkable aspect should be noted: all the terms in the Maxwell equations (5.135),
(5.136) and (5.138) have a gravitational counterpart in (5.139), (5.142) and (5.143), re-
spectively, substituting {E, B} — {G, H} (up to some numerical factors). As for (5.136),
there are clear gravitational analogues in (5.140) to the terms G x B and the current 4775',
but not to the remaining terms. It should nevertheless be noted that, as shown in Paper

#b5, in the Post-Newtonian regime (or in the “GEM limit” of linearized theory), the term

2V0 of (5.140) embodies a contribution analogous to the displacement current term E of
(5.136). The gravitational equations contain, as one might expect, terms with no parallel
in electromagnetism, most of them involving the shear/expansion tensor K ,g).

Special cases. “Quasi-Maxwell” regime (143 formalism)

Since most of the differing terms involve K(,g), the similarity gets closer if we take the
“quasi-Maxwell” regime, i.e., stationary fields, and a frame adapted to a rigid congruence
of stationary observers K(,3) = 6 = 0. The field equations in this regime are given in
Table 5.4 . Therein we drop the hats in the indices, for the following reason: as discussed
in Sec. 5.6.2.1, in this regime there is a natural 3-D Riemannian manifold on the quotient
space (measuring the fized distance between neighboring observers). This manifold has
metric 7;;, in the notation of Sec. 3.1.2. We thus interpret the spatial fields G and H
as vector fields on this 3-D Riemannian manifold. The operator V becomes the covariant
derivative of v;; (as I‘;k =) F;k, i.e., the 4-D spatial connection coefficients equal the

connection coefficients for +;;), and ]:21-]- its Ricci tensor, which is symmetric (contrary
to the general case). The equations in this “quasi-Maxwell” regime exhibit a striking

2Fqs. (5.142)-(5.143) are equivalent to Eqs. (7.3) of [25]; therein they are obtained through a different
procedure, not by projecting the identity xR’ ; = 0 < Rjap,]5 = 0, but instead from the splitting of

the identity d°u = 0 < u[4,3,) = 0. Noting that u[a;5,) = —Rjas,au”, we see that the latter is indeed
encoded in the time-time and space-time parts (with respect to u®) of the former.
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Table 5.4: GEM formulation of the electromagnetic and gravitational field equations, for station-

ary fields.

Stationary fields, rigid, congruence adapted frame: O=z=H /2 (quasi-Maxwell formalism)

Electromagnetism

Gravity

Maxwell Source Equations

Einstein Equations

Fo = 4nJP Ry =87 (T — 19,0 T%)
e Time Component: e Time-Time Component:
V-E=dnp.+ H-B (5.4.4a) V-G=—4n(2p+T%) +G* + L H? (5.4.4b)
e Space Components: e Time-Space Components:
VxB=GxB+4rj (5.4.5a) V x H=2GxH—16x] (5.4.5b)
e Space-Space Component:
No electromagnetic analogue VG — GGy + %ﬁ2’7ij + Ry = 8m (37T, + T(5)4.6)
Bianchi Identity Algebraic Bianchi Identity
K =0 (& Flapy =0) *R7 =0 (¢ Rigpys =0)
e Time Component: e Time-Time (or Space-Space) Component:
V-B=-H-E (5.4.7a) V-H=-H-G (5.4.7b)
e Space Components: e Space-Time Components:
VxE=GxE (5.4.8a) VxG=0 (5.4.8b)

similarity with their electromagnetic counterparts, Eqs. (5.4.4a)-(5.4.8a) of Table 5.4, in
spite of some natural differences that remain — numerical factors, the source and terms
in (5.4.4b) with no electromagnetic counterpart. We note in particular that, by simply
replacing {E, B} — {G, H} in (5.4.5a)-(5.4.8a), one obtains, up to some numerical factors,
Egs. (5.4.5b), (5.4.7b)-(5.4.8b). Of course, the electromagnetic terms involving products
of GEM fields with EM fields, are mimicked in gravity by second order terms in the
gravitational field. This is intrinsic to the non-linear nature of the gravitational field, and
may be thought of as manifesting the fact that the gravitational field sources itself.

The results in Table 5.4 complete the usual approach in the literature dealing with this
regime, e.g. [19, 22, 23], where the gravitational Egs. (5.4.4b)-(5.4.8b) are presented, but
not the electromagnetic equations (5.4.4a)-(5.4.8a); the former are usually compared with
the Maxwell equations in Lorentz frames. In Table 5.4, by contrast, analogous situations
are compared: gravitational and Maxwell’s equations in terms of fields both measured in
accelerating and rotating frames.

Finally, it should be mentioned that there is another notable limit of Eqs. (5.139)-(5.144),
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which the case that the frame is adapted to an hypersurface orthogonal (i.e., vorticity free)
congruence, leading to the well known ADM “341 formalism” (see e.g. [143, 25]), obtained
by setting H = 0 in the equations above. Namely Eq. (5.139) becomes the so-called
“Hamiltonian constrain”, Eq. (5.140) the “momentum constrain”, and Eq. (5.141) the
equation for the evolution of the extrinsic curvature K ,g) of the hypersurfaces orthogonal
to the congruence; see Paper #5 [5] for details.

5.6.2.4 Relation with tidal tensor formalism

One of the motivations of this work was to establish the connection between the inertial
GEM fields herein and the tidal tensors of Secs. 5.2 and 5.6.1. The two analogies are
intrinsically different; the latter stems from tensor equations, whereas the former from
fields of inertial forces, i.e., artifacts of the reference frame. A relationship between the two
formalisms exists nevertheless, and we are finding it of great interest, due the importance
of using the two formalisms together in some applications, to be presented elsewhere (e.g.
[30)).

In an arbitrary frame one can express the gravitational tidal tensors in terms of the
GEM fields, using the expressions for the tetrad components of Riemann tensor given
in Sec. 3.4.2 of Paper #5 [5]. The expressions obtained are to be compared with the
analogous electromagnetic situation, i.e., the electromagnetic tidal tensors computed from
the fields as measured in an arbitrarily accelerating, rotating, and shearing frame (in flat
or curved spacetime). General expressions for an arbitrary choice of the spatial frame are
given in [5], herein I will assume the congruence adapted frame (& = Q = H/2).

I will start by the electromagnetic tidal tensors; since in this section all the fields and
tensors will be measured with respect to the congruence of observers u®, I use the ab-
breviated notation F,g = (E")as = Faupu”, and Bag = (E")ap = *Foupu”. It follows
that

Eay = Bayy — Fopu’ 5 Bay = Bawy — xFagu’,, .

Using decompositions (5.1), we obtain the tetrad components (Ey; = Bg; = 0):

=Y %_% [5 Hobj; ~ Bng] - 6;imBmK(;3) ; (5.146)
o= VB + % B Fio — By + ¢ BaK ) (5.147)
By = Cif;% + %(ﬁ x B); + (G x B); ; (5.148)
By = Cii? + %(ﬁ x B);, — (G x B); . (5.149)

Turning now to gravitational tidal tensors, again we use the abbreviated notation E,g =
(E")ag = Rapprutu’, Hog = (H")op = xRapprutu”. Using the tetrad components of the
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Riemann tensor given in Paper #5 [5], we obtain (Eq, = E 5 = Hp, = H,y = 0):

dH k

= 1 72 ! ™
E; = —V;G;%—G%ijt—(H %J-_HJ-HZ) Seih g+ e B
d Im
_EK() 0K iy K i,

_ *5 ViH; + (G By = 26,H,| + 6" ViK

(il)
B (5.150)

) (5.151)

i
Note the formal similarities with the electromagnetic analogues (5.146)-(5.147). All the
terms present in £;; and B;j, except for the last term of the latter, have a correspondence in
their gravitational counterparts E;;, Hj;, substituting {E, B'} — —{é, H } and correcting
some factors of 2. However, the gravitational tidal tensors contain additional terms, which
(together with the differing numerical factors) encode the crucial differences in the tidal
dynamics of the two interactions. The fourth and fifth terms in (5.150) have the role of
canceling out the antisymmetric part of @JAG%, that is, canceling out the contribution of

the curl of G to the gravitoelectric tidal tensor, as can be seen from Eq. (5.143). Note
in particular the term —H?, which has no counterpart in the electric tidal tensor (5. 146)
in Eq. (5.143), that term shows up “inducing” the curl of G, in a role analogous to B
in the equation (5.138) for V x E, which might lead one to think about gravitational
induction effects in analogy with Faraday’s law of electromagnetism. The fact that it
is being subtracted in (5.150), means, however, that the curl of G does not translate
into physical, covariant forces. For instance, it does not induce rotation in a set of free
neighboring particles (see Eq. (5.9) above and discussion therein), nor does it torque an
extended rigid body, as discussed in Sec. 5.5.4 (see sec. VI of Paper #4 [4] for more
details).

There are some interesting special regimes where the relation between the tidal tensors
and the inertial fields becomes simpler. One is the “quasi-Maxwell” regime of of Secs.
3.1.2 and 5.6.2.3; i.e., stationary spacetimes, and a frame adapted to a rigid congruence
of stationary observers. The gravitational tidal tensors as measured in such frame can
be expressed entirely in terms of the gravito-electric G and gravitomagnetic H fields; the
non-vanishing components are:

B = —V;Gi+GiGj+~ (HQ%J HjHi); (5.152)
Hy = — [ViHi+ (G Hy - 26;H] (5.153)

(in accordance with the discussion in Sec. 5.6.2.3, the hats in the indices are dropped
since these tensors may be expressed in an arbitrary, coordinate or not, basis on the
spatial manifold ;;).

The non-vanishing components of the electromagnetic tidal tensors are, under the same
conditions,

5 1re - L. S

DN |
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= 1 — - 1 — — — —

Thus again, even in the stationary regime, the electromagnetic tidal tensors have non-
vanishing time components, unlike their gravitational counterparts. The spatial parts,
however, are very similar in form; note that replacing {E, B} — —{G, H/2} in (5.155),
the time components vanish, and one almost obtains the space part (5.153), apart from
the factor of 2 in the third term; and that a similar substitution in (5.154) almost leads
to (5.152), apart from the term G;G;, which has no electromagnetic counterpart. The
gravitational and electromagnetic tidal tensors are nevertheless very different, even in this
regime; namely in their symmetries. E;; is not symmetric, whereas E;; is (the second and
third terms in (5.152) are obviously symmetric; and that the first one also is can be seen
from Eq. (5.4.8b) of Table 5.4). As for the magnetic tidal tensors, note that, by virtue
of Eq. (5.4.5b), the last term of (5.153) ensures that, in vacuum, the antisymmetric part
Hp;j (ie., the curl of H) is subtracted from H;;; in (5.31), thus keeping Hj;; symmetric,
by contrast with B;;. This can be seen explicitly by noting that in vacuum (5.153) can be
put in the equivalent form:
1
Hij = —5
where we used Hj;,;) = 2G[; H;), as follows from Eq. (5.4.5b).

Another interesting regime to consider is the weak field limit, where the non-linearities
of the gravitational field are negligible, and compare with electromagnetism in inertial
frames. From Egs. (5.146)-(5.149), the non-vanishing components of the electromagnetic
tidal tensors measured by observers at rest in an inertial frame are:

dE; dB;

Eij = Eij ; Ei = ar Bij = B;;; By = ar

Hi;j — H[i;j] + (é . ﬁ)'yij — QG(jHi) ,

i.e., they reduce to ordinary derivatives of the electric and magnetic fields. The linearized
gravitational tidal tensors are, from Egs. (5.150)-(5.151):

1 dH* d 1 .
Thus, even in the linear regime, the gravitational tidal tensors cannot, in general, be
regarded as derivatives of the gravitoelectromagnetic fields G and H. As discussed in Sec.
5.6.2.3, K(;;) is the time derivative of the spatial metric; thus we see that only if the fields
are time independent in the chosen frame do we have E;; ~ —G; ;, H;; =~ —%Hm.

5.6.2.5 Force on a gyroscope

In the framework of the inertial GEM fields, there is also an analogy, based on exact
equations, relating the gravitational force on a gyroscope and the electromagnetic force
on a magnetic dipole. It is different from the analogy based on tidal tensors, Egs. (5.1.2)
of Table 5.1, and not as general. The gravitational force on a gyroscope was first written
in terms of GEM fields in [19], where Eq. (3.13) was obtained, valid for a gyroscope
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at rest with respect to some rigid congruence of observers in a stationary spacetime. It
was therein compared to the textbook expression (3.14) for the force on a magnetic dipole,
written in terms of the fields measured in the inertial frame momentarily comoving with it.
Herein we compare the gravitational force to its electromagnetic counterpart on analogous
conditions— in terms of the fields measured in an arbitrarily accelerating and rotating
frame where the particle is at rest. The material below may be seen as a continuation of
the work in [19], and unveils an analogy even stronger than initially found.

We start with equations (5.1.2) of Table 5.1, which tell us that the forces are determined
by the magnetic/gravitomagnetic tidal tensors as seen by the particle. For the spatial part
of the forces, only the space components of the tidal tensors, as measured in the particle’s
proper frame, contribute. Comparing Eqgs. (5.147) and (5.151), which yield the tidal
tensors in terms of the electromagnetic/gravitoelectromagnetic fields, we see that a close
formal analogy is possible only when K,5) = 0 in the chosen frame. Thus, a close analogy
between the forces in this formalism can hold only when the particle is at rest with respect
to a congruence for which K,g) = 0; that is, a rigid congruence. The rigidity requirement
can be satisfied only in special spacetimes [146]; it is ensured in the “quasi-Maxwell” regime
— that is, stationary spacetimes, and congruences tangent to time-like Killing vector fields
therein.

I start by the electromagnetic problem — a magnetic dipole at rest in a rigid, but
arbitrarily accelerating and rotating frame. Since the dipole is at rest in that frame,
p® = (0, '); hence the spatial part of the force is Fi,, = B’'uu;. Substituting (5.155a) in
this expression yields the force exerted on the dipole, in terms of the electric and magnetic
fields as measured in its proper frame:

Fpy =V(B-fi) + % [ﬁ(ﬁ CH) - (ji- ﬁ)E} : (5.157)

Using H-E=-V-B , cf. Eq. (5.4.7a) of Table 5.4, we can re-write this expression as

q T 1 IV
Foar = V(B i) = 3 [M(v B+ (i H)E} . (5.158)

Consider now the analogous gravitational situation: a gyroscope at rest (i.e., with zero 3-
velocity, U = 0) with respect to stationary observers (arbitrarily accelerated and rotating)
in a stationary gravitational field; from Egs. (5.1.2b) and (5.153), the force exerted on it
is given by:

B % V(- 8)+5(G 1) -8 1d] . (5.159)
From Eq. (5.4.7b) we have G - H = —V - H; substituting yields [19]:
Fg = % [@(ﬁ S-SV -H)-2(S- ﬁ)é] : (5.160)

Note that replacing {fi, E, B} — {S,G, H/2} in Eq. (5.157) one almost obtains (5.159),
except for a factor of 2 in the last term. The last term of (5.159)-(5.160), in this framework,
can be interpreted as the “weight” of the dipole’s energy [19]. It plays, together with
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Eq. (5.4.5b), a crucial role in the dynamics, as it cancels out the contribution of the curl of
H to the force, ensuring that, in the tidal tensor form (5.1.2b), it is given by a contraction
of S with a symmetric tensor H,g (see the detailed discussion in Sec. 5.6.2.4). This
contrasts with the electromagnetic case, where the curl of B is manifest in By, (which has
an antisymmetric part) and in the force.

5.6.3 Conclusion

In this section I summarized most of the main results in Paper #5 [5]. Herein I will
briefly summarize some other results in the paper. As described in Sec. 5.6.2.4, in this
work we established the connection between the GEM inertial fields and the tidal tensor
formalism. But other important connections were made. In section 5 of [5], the popular
linearized theory analogies are obtained as a limiting case of the results from the theory
based on exact GEM fields of Sec. 5.6.2 above. In the case of the tidal effects, they
were also obtained as a special case of the tidal tensor analogy. That material is not
being included in this document since its presentation in [5] is already succinct enough;
but it is nevertheless of relevance. Obtaining the linear regime from the rigorous, exact
approaches, clarifies the limit of validity of the equations usually presented which was not
clear in the literature, as discussed in Sec. 3.1. It also allows one to work with quantities
whose physical meaning is clear, which is not the case with the GEM fields of the usual
linearized theory. In the way they are usually presented (as described in Sec. 3.1.1 above)
they are somewhat naively derived from the temporal components of the metric tensor
(drawing a parallelism with the electromagnetic potentials), their status as artifacts of the
reference frame not being transparent, and in particular their relation with the kinematical
quantities associated to the observer’s congruence. The exact approach yields a more
accurate account of some subtleties involved, which are overlooked in the linear approach,
for instance the effects concerning gyroscope “precession” relative to the “distant stars”
(such as the Lense-Thirring and the geodetic precessions) — the question arising of how
can one talk about the “precession” of a local gyroscope relative to the distant stars, as it
amounts to comparing systems of vectors at different points in a curved spacetime? The
answer is given in Sec. 5.6.2.2. A correct understanding of the linear gravitomagnetic
effects is of primary importance in the context of experimental astrophysics nowadays, as
it pertains all gravitomagnetic effects detected to date [52, 14, 53, 69, 149, 70], and the
ones we hope to detect in the near future [54].

In section 7 of [5] we discussed under which conditions gravity can be similar to elec-
tromagnetism (as already emphasized in Sec. 5.5.5, one must bear in mind that the
existence of exact analogies does not mean that the interactions are similar). The ex-
act inertial GEM formalism, together with the tidal tensor formalism, provide a suitable
“set of tools” to make such comparison. The precise conditions for occurrence of a close
gravito-electromagnetic similarity are seen to be specific to the type of effect; the results
can be seen as a generalization of the ones obtained in Paper #2 [2] in the framework of
linearized theory and Post-Newtonian regimes.
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Table 5.5: What can be computed by direct application of the GEM analogies

Result

Approach

e Geodesic deviation equation (5.1.1b) of Table 5.1:
-Replacing {q, E.g} — {m, —E.g} in (5.1.1a).

e Force on a gyroscope (5.1.1b) of Table 5.1:
-Replacing {u®, Bog} — {S%, —Hyp} in (5.1.1a).

e Differential precession of gyroscopes (5.120):
-Replacing {0, Bog} — {1, —Hag} in (5.121).

e Gravitational field equations (5.1.3b)-(5.1.6b) of Table 5.1:
-Replacing {Eyp3, Bag} = {Eap, Hop} in Egs. (5.114)-(5.117),
and pe — 2p+ T in (5.114), 5 — 2J% in (5.117).

Tidal tensor analogy

(Exact, general results)

e Geodesic Equation (3.11) (stationary fields)
-Replacing {E,B} — {(_j, H} in (5.129), multiplying by -.

e Gyroscope “precession” Eq. (5.64) (arbitrary fields):
-Replacing {7, B} — {S, H/2} in (5.64).

e Force on gyroscope Eq. (5.159) (stationary fields,
particle’s worldline tangent to time-like Killing vector):
-Replacing {ji, E, B} — {S,G, H/2} in (5.157), factor
of 2 in the last term.

Inertial “GEM fields”
analogy

(Exact results,
require special frames)

e Higher order field equations (3.1.1b)-(3.1.4b) of Table 3.1:
-Replacing {E, B} — {E;;, H;;} in Eqs. (3.1.1a)-(3.1.4a).

e Equations of gravitational waves (5.161):
-Replacing {E, B} — {E;;, H;;} in Eqgs. (5.162).

Analogy Fj,, <> Capgys
(Linearized theory)

We also revisited (Sec. 6 of [5]) the formal analogies between the Weyl and the Maxwell
tensors, that I briefly review in Sec. 3.1.3 above. The tidal tensor approach in Papers #1
and #4 (and also the discussion in Sec. 5.6.1.1 above) gives a physical interpretation to the
magnetic part of the Riemann tensor, which was not well understood as explained above.
In [5] we put this together with the Matte equations of Table 3.1 to propose a suggestive
interpretation of gravitational radiation, and of its interaction with matter. Taking curls
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5 The papers summarized and discussed

of Egs. (3.1.3b)-(3.1.4b) of Table 3.1, we obtain the wave equations

32 L 82 .
(6152 -0 ak) Eij =0; (CL) <8t2 -0 6k) Hij =0 (b) , (5.161)

formally analogous to the electromagnetic waves

82 . 82 .
(s-20)E -0 @ (gz-0a)p-0 0. G

only with the gravitational tidal tensors {Eqg, Hag} in the place of {E", B} We arrive
at an interpretation of gravitational radiation as a pair of traveling orthogonal (since
EagHafB = 0 for gravitational radiation) tidal tensors, propagating by mutually inducing
each other, just like E and B in the electromagnetic waves. And we know how these tensors
act on test bodies: the tensor E,s causes a relative acceleration between two (monopole)
test masses; and H,g causes a force on a spinning particle; but none of them can couple
to a monopole particle. It is well known (e.g. [7]) that a gravitational wave (by contrast
with an electromagnetic wave) does not displace the center of mass of an approximately
monopole particle; this could be interpreted as being the reason. The coupling of the
gravitational wave to test bodies, through its multipole moments, is readily established
using Eqs (3.52)-(3.53) of Sec. 3.2.1, and thereby also compared with the action of the
electromagnetic wave. The interaction of the electromagnetic field with the multipole
particle starts at monopole order (Lorentz force), then there is the force and torque on
dipoles, and so on to higher orders; the gravitational interaction starts only at dipole
order (the spin-curvature force), and continues to quadrupole order (force and torque on
the body), and so on. See [5] for more details.

Given the interpretation above of gravitational radiation as a pair of propagating tidal
tensors, just like the pair {E, E} in the electromagnetic waves, it is natural to suppose
that gravitational waves might carry some quantity formally similar to the energy and
momentum densities pgy; o< E? + B2, pg& o €%,,u’ EFBY; but with {Eng, Hag} in
the place of {E , B }. Such quantities turn out to be the well known “super-energy” and
“super-momentum” densities defined from the Bel-Robinson tensor, e.g. [32, 34, 148, 144],
which arise naturally in this framework. For this reason, that tensor and the concept of
super-energy are also briefly discussed.

Paper #5 [5] concludes with a brief discussion of the main outcomes of the gravito-
electromagnetic analogies existing in the literature; I reproduce here the Table 5.5, and
refer the reader to the discussion therein.
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