
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Ensemble Methods in Ordinal Data
Classification

João David Pereira da Costa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Jaime S. Cardoso

Second Supervisor: Ricardo Sousa

July 23, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143395769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ensemble Methods in Ordinal Data Classification

João David Pereira da Costa

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Eugénio Oliveira (Full Professor at Universidade do Porto)

External Examiner: Paulo Cortez (Associate Professor at Universidade do Minho)

Supervisor: Jaime S. Cardoso (Assistant Professor at Universidade do Porto)
July 23, 2014

Abstract

Ordinal classification problems can be found in various areas, such as product recommendation
systems, intelligent health systems and image recognition. These problems have the goal of learn-
ing how to classify certain instances (e.g. a movie) in an ordinal scale (e.g. good, average, bad).

The performance of supervised learned problems (such as ordinal classification) can be im-
proved by using ensemble methods, where various models are combined to perform better deci-
sions. While there are various ensemble methods for nominal classification, ranking and regres-
sion, ordinal classification has not received the same level of attention.

The goal of this dissertation is, therefore, to introduce novel ensemble methods for the classi-
fication of ordinal data. To do this, first a new ordinal classification algorithm based on decision
trees and the data replication method is presented, whose results show a competitive performance
when compared to other ordinal and non-ordinal classifiers. Then, the main ideas of this method
are exploited to try and improve ensembles whose models share similarities with decision trees
(i.e. ADABOOST with Decision Stumps and Random Forests).

i

ii

Resumo

Problemas de classificação ordinal podem ser encontrados nas mais diversas áreas, tais como sis-
temas de recomendação de produtos, sistemas inteligentes de saúde e reconhecimento de imagem.
Estes problemas têm como objectivo aprender a classificar uma determinada instância (e.g. um
filme) numa escala ordinal (e.g. bom, médio, mau).

Uma forma de melhorar o desempenho de problemas de aprendizagem supervisionada (como
é o caso da classificação ordinal) é usando métodos de ensemble, onde vários modelos são combi-
nados para tomar melhores decisões. Embora existam diversos métodos de ensemble desenvolvi-
dos para problemas de classificação nominal, ranking e regressão, a classificação ordinal não tem
recebido a mesma atenção.

O objectivo desta dissertação é, assim, introduzir novos métodos de ensemble para dados or-
dinais. Para isso, em primeiro lugar é apresentado um novo algoritmo de classificação baseado em
árvores de decisão e no método de replicação dos dados, cujos resultados revelam um desempenho
competitivo com outros classificadores ordinais enão ordinais. Depois as ideias principais deste
classificador são aproveitadas para melhorar ensembles cujos modelos gerados possuem semel-
hanças com árvores de decisão (i.e. ADABOOST com Decision Stumps e Random Forests).

iii

iv

Acknowledgements

I would like to thank both my supervisor Jaime Cardoso and my co-supervisor Ricardo Sousa for
their scientific guidance and constant support. Without their help, this dissertation would not be
possible.

I would also like to thank Daniel Moura for all the help with Weka and the whole VCMI group
at INESC, one of the best groups I could ever hope to work with.

Finally, I would like to dedicate this work to my late friend Eduardo Jesus, one of the most
brilliant persons I have ever met.

João David Costa

v

vi

“The question of whether Machines Can Think
is about as relevant as the question of whether Submarines Can Swim.”

Edsger W. Dijkstra

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives and Contributions . 3
1.3 Structure . 4

2 Background 5
2.1 Supervised Learning . 5

2.1.1 Formal Definition . 5
2.1.2 Learning Algorithms . 7
2.1.3 Nonlinear Transformations . 8

2.2 Ordinal Data Classification . 9
2.2.1 Ordinal Datasets . 10

2.3 Evaluation Metrics . 11
2.4 Ensemble Methods . 13

3 State of the Art 15
3.1 Ordinal Data Classification . 15

3.1.1 Naïve Approaches . 15
3.1.2 Monotonic Data Approaches . 16
3.1.3 Parallel Boundaries using SVMs . 17
3.1.4 Subdivision into Binary Problems . 18
3.1.5 Data Replication Approaches . 19
3.1.6 Unimodal Distribution Constraint . 21
3.1.7 Globally Consistent Approaches . 22

3.2 Ensemble Methods . 22
3.2.1 Ensemble Generation . 23
3.2.2 Ensemble Pruning . 27
3.2.3 Ensemble Integration . 29
3.2.4 Ensemble Methods for Ordinal Data Classification 30

3.3 Conclusions . 31

4 Ordinal Decision Tree using the Data Replication Method 33
4.1 Limitations of the Data Replication Method . 33
4.2 Proposed Solution . 34
4.3 Growing the Tree . 35

4.3.1 The XOR problem . 37
4.4 Classifying a Point . 39
4.5 Results . 39

ix

CONTENTS

4.6 Conclusion . 39

5 Ensemble Methods for Ordinal Data Classification 41
5.1 AdaBoost . 41
5.2 Random Forests . 44
5.3 Conclusion . 45

6 Conclusions and Future Work 47
6.1 Overview and Conclusions . 47
6.2 Future Work . 47

6.2.1 Future Work on oDT . 47
6.2.2 Future Work on oADABOOST . 48
6.2.3 Future Work on Random Forests . 49

References 51

A Quick Notation Reference 55

B Proof of local consistency 57
B.1 Assumptions and Definitions . 57
B.2 Monotonic Problems . 58
B.3 Symmetric Problems . 59
B.4 Concave/Convex Problems . 60

x

List of Figures

2.1 Example of a binary classifier . 6
2.2 Example of a decision tree classifier . 8
2.3 Example of a SVM . 9
2.4 Example of a nonlinear transformation . 9
2.5 Example of a cost matrix . 12
2.6 Example of a cost matrix that implements the MAE on a 4 class ordinal problem 12
2.7 Example of an ensemble of 3 binary classifiers 14

3.1 Example of a nonmonotonic ordinal problem 16
3.2 Comparison of a multiclass classifier vs. a multiclass classifier with parallelism

constraints . 17
3.3 Example of a subdivision of a 3 class ordinal problem into 2 binary classification

problems . 18
3.4 Toy example of the data replication method . 20
3.5 Toy example of the data replication method for a 3-class 2-dimensional problem . 20
3.6 Problems with decision trees and the data replication model 21
3.7 Example of a 10-fold cross committee . 24
3.8 Example of an ensemble search space . 28

4.1 Example of our decision tree on the data replicated space 35
4.2 Example of our decision tree on the data replicated space 38

xi

LIST OF FIGURES

xii

List of Tables

2.1 Datasets . 11

4.1 Comparison of various combination methods (oDT) 37
4.2 Comparison of the oDT with C4.5 and the Frank & Hall method 40

5.1 Comparison of various combination methods (oADABOOST) 43
5.2 Comparison of oADABOOST with ADABOOST variants 44
5.3 Comparison of Random Forest variants . 46

xiii

LIST OF TABLES

xiv

List of Algorithms

3.1 Boosting algorithm for binary classification . 24
3.2 Discrete ADABOOST . 25
3.3 ADABOOST.OR . 30

5.1 Ordinal ADABOOST . 42

xv

LIST OF ALGORITHMS

xvi

Abbreviations

ANN Artificial Neural Network
CLI Command-line Interface
DT Decision Tree
GUI Graphical User Interface
JVM Java Virtual Machine
KNN K-Nearest Neighbors
MAE Mean Absolute Error
MER Mean Error Rate
MSE Mean Squared Error
OCR Optical character recognition
RF Random Forest
SVM Support Vector Machine

xvii

Chapter 1

Introduction

This chapter presents the context and motivation, with a quick introduction to ordinal data classi-

fication and ensemble methods, and the goals of this dissertation. It also presents the structure of

this document.

1.1 Context and Motivation

Machine learning is the area of artificial intelligence responsible for the study of systems that

are able to learn from data. This field has seen its usage spread rapidly during the last decade,

with applications in various areas where it is usually very attractive to build models automatically

(e.g. when the amount of data is too much for a human to handle). Some of those applications

include web search, spam filters, fraud detection, ad placement, drug design and language pro-

cessing [Die97, Dom12].

Machine learning is also a very broad area, as there are many learning tasks that can be applied

to different types of data. In this work we will focus supervised learning, which is considered one

of the most mature and widely used machine learning tasks [Dom12]. Supervised learning is the

task of inferring a function from previously labeled training data (i.e. learn rules from a set of

examples). One could, for example, use a set of images labeled as “Car” and “Not Car” to learn a

function that automatically identifies cars on images.

It is possible to imagine many varied applications of supervised learning: One could use pre-

vious player performances to predict tennis results, use GPS and weather information to predict

the time a bus would take to go from point A to point B or even predict how much someone will

enjoy a movie based on their previous reviews.

We can see that there are many types of supervised learning problems. Different problems

need different approaches and, therefore, supervised learning problems are usually subdivided in

various tasks, usually related to the type of function one wants to learn, for example:

1

Introduction

Binary Classification
In binary classification one wants to learn a function that returns a class from a set of two

elements, such as: given some information about a person (e.g. height, weight, age...)

determine its gender.

Nominal Classification
In nominal classification one wants to learn a function that returns a class from a finite set,

for example: given some information about an animal (e.g. color, number of limbs, size...)

determine if it is a cat, a dog or a mouse.

Regression
In regression, one wants to learn a function that returns a real value – this is usually applied

to learn a mathematical function such as f̂ : Rd → R. Note that, unlike classification, in

regression our co-domain is infinite.

Ordinal Classification
In ordinal classification (sometimes referred to as ordinal regression), one wants to learn a

function that returns a class from a finite set where its elements, while not having a numer-

ical interpretation, have an order (e.g. classify a movie as bad, average or good). Ordinal

classification, therefore, shares similarities with both nominal classification and regression.

Ranking
In ranking one has an order relation between pairs of items and wants to learn a function

that is able to rank new elements. A common example of a ranking problem is ranking web

pages (for example by search engines).

This dissertation will focus only on the problem of ordinal data classification, although many

of the used approaches will be based on the methods used for other supervised learning tasks.

Ordinal classification has various applications:

• Content Recommendation Systems:

– Predict which products a consumer might like or not, and recommend them.

– Use music ratings to automatically generate playlists shaped to the user’s taste.

– Use previous movie reviews to find out what a user values in a movie (i.e. a certain

actor or a certain genre) and recommend the rental of other movies accordingly.

• Personal Skill Tracking:

– Keep track of personal statistics to classify someone’s performance (e.g. practicing

sports).

• Stock Market Prediction:

– Stock market prediction can be seen as a ordinal classification problem, where one

wants to either sell, keep or buy a stock.

2

Introduction

• Image Recognition:

– Classifying a someone’s age in a photo in an ordinal scale (e.g. baby, child, teenager,

young adult, adult, old person).

– Classify a picture’s quality using an ordinal classifier and, with that information, apply

a model (e.g. a nominal classifier) that performs better in low-quality or high-quality

images accordingly.

• Health Care:

– Classify the results of a medical operation automatically (this approach is currently

being used by INESC1 to classify the results of breast cancer operations from an aes-

thetically point of view).

– Automatically classify someone’s exercise routine based on their performance, physi-

cal condition and needs.

Various methods have been developed to tackle this problem, using the ordering relation be-

tween classes to try to obtain better results (usually by imposing restrictions on the final hypoth-

esis). Some of those methods reduce the problem to multiple binary classification problems and

combine their results [FH01] [WB06], others reduce it to a single binary classification problem

on a feature space with extended dimensionality [CDC07] and others use variations of nominal

classification algorithms, such as SVMs [SL02] [CK05] and decision trees [PB00].

One way to improve the results of supervised learning tasks is by combining various models

via ensemble methods, which have been shown to usually have better results than any single

classifier [Die00]. Ensembles also solve the problem of scaling supervised learning algorithms

to large databases, learn from multiple physically distributed datasets (this is important on some

cases where data cannot be stored in a single site due to legal reasons) and are useful for learning

concept-drifting data streams [TPV08].

It is interesting to note, however, the lack of ensemble methods developed with ordinal classi-

fication tasks in mind (with only few exceptions, such as ADABOOST.OR [LL09] and the work of

Sousa and Cardoso with Decision Trees [SC11]). Therefore, it appears to be interesting to study

and develop such methods.

1.2 Objectives and Contributions

In this dissertation we will introduce modifications to various popular supervised learning algo-

rithms, in order to improve their performance on ordinal tasks. With this, we intend to present the

following contributions:

• Introduce the concept of local parallelism as a weak constraint that can be applied to ordinal

classification;
1Instituto de Engenharia de Sistemas e Computadores.

3

Introduction

• Present a new decision tree algorithm based on the data replication method [CDC07] that

exploits local parallelism;

• Explore the ideas used on our decision tree to present a new ADABOOST variant;

• Study simple ways to improve the performance of Random Forests for ordinal classification;

• Provide open source implementations of the new proposed algorithms.

Our algorithms were developed on top of Weka [WFT+99], which is an open source machine

learning toolkit developed in Java. This allows us our work to be used in various ways, and

therefore reach a broader audience, namely:

• It is possible to install our algorithms as packages for Weka, that can then be used via Weka’s

GUI or CLI;

• Since our all our algorithms were developed in Java, they can be easily integrated with

various languages that run on the JVM (e.g. Java, Scala and Clojure).

1.3 Structure

This dissertation will be presented in the following way: Chapter 2 presents some of the back-

ground in supervised learning and formally introduces the problem of ordinal classification, en-

semble learning and the notation that will be used on this dissertation. Chapter 3 describes the

state of the art on both ordinal data classification and ensemble methods. Chapter 4 describes a

novel algorithm for ordinal data classification based on decision trees and data replication. Chap-

ter 5 presents our work on ordinal ensemble methods, namely a new ADABOOST variant and some

possible modifications to Random Forests. Finally, Chapter 6 presents the conclusions and future

work.

4

Chapter 2

Background

On this chapter the problem of ordinal classification and ensemble learning will be formally intro-

duced. A quick introduction to supervised learning is given on Section 2.1, ordinal classification

will be defined on Section 2.2, followed by a quick overview of evaluation metrics on Section 2.3.

Finally, ensemble methods are presented on Section 2.4. The notation introduced in this chapter

will be the one used on the rest of the dissertation. A quick notation reference is available on

Appendix A.

2.1 Supervised Learning

As stated in the introduction (Chapter 1), supervised learning is the task of inferring a certain

function from previously labeled data. There are various tasks in supervised learning – such

as binary classification, nominal classification, ordinal classification, regression and ranking –

depending on the function that we want to learn.

To achieve this task, we first need a dataset composed of various examples that have been pre-

viously labeled. We say that each example is composed of a feature vector with various attributes

(e.g. the age and height of a person) and a label, which is the attribute we want to learn (e.g. if that

person is tall or short).

We will also need a learning algorithm that is able to learn our function. These algorithms can

either generate our function from simple models or from very complex ones.

2.1.1 Formal Definition

Formally, we assume a feature space X composed of feature vectors xi = (xi,1,xi,2, ...,xi,n) and

a label space Y composed of single elements. For reading simplicity, xi = (xi,1,xi,2, ...,xi,n) will

sometimes be represented as x = (x1,x2, ...,xn) when the index i is implicit. For example, we

could be trying to classify a person as tall or short based on their age and height. Here, our feature

vectors could be of the form xi = (agei,heighti) with Y = {short, tall}.

5

Background

To be able to learn a certain function, we need to train a classifier with various examples

already classified – a dataset. Given a dataset D = (D, f), where D ⊆ X is our example set and

f : D→Y is the class labeling of the elements of set D, we want to learn a function f̂ :X →Y such

that f̂ is able to model our problem correctly. We will also assume that there exists an unknown

function g : X →Y that represents the perfect classifier.

Coming back to our previous example, we could have a dataset where D= {(10,1.40),(20,1.50)}
and f is defined as a mapping ((10,1.40) 7→ tall,(20,1.50) 7→ short).

To learn our function f̂ we need a learning algorithm. This algorithm will try to find the best

function f̂ ∈H, whereH is our hypothesis space (i.e. the space that contains all the functions that

our classifier can learn). For example, in many binary classification approaches, we want to define

a boundary that separates our two classes (a visual example can be seen on Figure 2.1, where we

have an hyperplane separating the white from the black region). To do this, our elements of Y
are mapped to {−1,1} (e.g. white = −1 and black = 1) and we define our hypothesis space as

H = {h|h(x) = sign(w ·x+b)} 1 , where w is a vector of weights associated to each attribute of

x and b is a constant factor.

Note that it is possible that g /∈ H (e.g. if there was no hyperplane that was able to separate

the white points from the black points in Figure 2.1), therefore our algorithm might not be able to

find the optimum solution.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

Figure 2.1: Example of a binary classifier

1Note that w · x+ b = 0 is the equation for a generic hyperplane. For example, on a 3D space, we would have the
plane equation w1 · x1 +w2 cdotx2 +w3 · x3 +b = 0.

6

Background

2.1.2 Learning Algorithms

As stated previously, to learn our function f̂ we need a learning algorithm. There are various learn-

ing algorithms, and therefore presenting them all in detail is out of the scope of this dissertation.

With that in mind, the main families of learning algorithms discussed in this dissertation are the

following:

Bayesian inference
Bayesian inference is a statistical principle used in various learning algorithms that uses

Bayes’ rule to estimate the probabilities of certain hypothesis. From a machine learning

point of view, one can see the task of learning as computing P(g(x) = y|x), where we can

use our dataset to estimate P(x|g(x) = y).

K-Nearest Neighbors
Our model classifies a new point by considering the label of the K closest points. Even

though these models are very easy to implement, they can model very complex functions

with ease (although this also makes them prone to overfit).

Decision Trees
Our model consists of a set of hierarchical cuts on each attribute, that can be represented

in a tree-like structure (Figure 2.2). Since the problem of constructing the optimal tree is

known to be NP-complete [HR76], most learning algorithms build the tree by in a top-down

fashion, using a greedy heuristic to recursively split the data [MS95].

Note that if we keep building our tree in this fashion, we will probably overfit (on the limit,

we could subdivide our tree so that each leaf corresponded to one example). This is usually

solved by pruning our tree. This operation is usually divided in two steps: Pre-pruning

(pruning executed while we construct our tree, such as stopping subdividing a node if it has

less than n examples) and Post-pruning (pruning executed after the tree was constructed, for

example if our error function in not expected to grow much by transforming a node into a

leaf).

One interesting property of Decision Trees is that they are usually easy to interpret. This

has many advantages, such as allowing our model to be validated by humans and, if needed,

executed by them. It can also help one to extract interesting properties of our problems.

Support Vector Machines
The task of learning a classifier can usually be reduced to finding the optimal boundaries

that separates our points into various classes. Support Vector Machines assume that the

optimal boundaries are those that separate the various classes with the largest margin (see

Figure 2.3), and obtains them by solving a quadratic programming problem.

Artificial Neural Networks
An Artificial Neural Network is a directed graph where each node represents an artificial

neuron (a variable) and each edge represents a connection between two neurons (a weight).

7

Background

Usually, these networks are organized in layers, where the first layer is the input layer (every

node represents one attribute) and the last layer is the output layer (every node represents

one output variable). The value of each node (excluding the input) is usually calculated by

applying a transfer function (e.g. a sigmoid or a step function) to the weighted average of

the nodes from the previous layer.

0 1 2 3 4
0

1

2

3

4

(a) Cuts on the feature space

x1

•�

x 1
≤

1

x2

x1 >
1

-

◦�

x 2
≤

3

•

x2 >
3

-

(b) Decision tree structure

Figure 2.2: Example of a decision tree classifier

2.1.3 Nonlinear Transformations

The usage of an hyperplane might seem limited at first, since most problems cannot be solved by

using linear models. One way to bypass this problem is by by applying a nonlinear transformation

Φ :X →Z to our feature space. Note that an hyperplane on our nonlinear spaceZ will correspond

to a nonlinear model on our original space X .

As an example, imagine that our feature vectors are of the form x = (x1,x2) and that our goal

is to learn the function g(x) = sign(x2 + x1x2 + x2
1). Using a simple hyperplane would lead us to a

very rough approximation of this function (as we cannot model neither x2
1 nor x1x2). To solve this,

we can apply the transformation z = Φ(x) = (x1,x2,x1x2,x2
1,x

2
2) to our feature vectors. In this new

space, our problem has a linear solution f̂ (z) = sign(z2 + z3 + z4) = sign(x2 + x1x2 + x2
1). While

8

Background

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

Figure 2.3: Example of a SVM

our model can still be interpreted as an hyperplane in our extended space Z , it represents a curved

surface in our original space X . A simple example of this can be seen on Figure 2.4.

−4 −2 0 2 4

−4

−2

0

2

4

(a) Original problem

−4 −2 0 2 4
0

2

4

6

8

10

(b) Problem after the nonlinear
transformation Φ(x) = (x,x2)

−4 −2 0 2 4

−4

−2

0

2

4

(c) Solution on the original space

Figure 2.4: Example of a nonlinear transformation

Some classifiers such as SVMs are able to efficiently implement this type of transformations,

using the so called kernel trick.

Note, however, that by doing this, we are increasing the size of H, and we might need more

training examples to avoid overfitting [Dom12].

2.2 Ordinal Data Classification

Ordinal data classification is a task of supervised learning where our labels have a certain order

between them. In this task, we have that Y = {C1,C2, ...Cn} and there is an ordering relation

9

Background

≺2 on the members of Y such that C1 ≺ C2 ≺ ... ≺ Cn Also, our classes cannot be interpreted as

numbers. For example, we could want to classify a movie as bad, average or good. In this example

Y = {bad,average,good} and we have the order bad ≺ average≺ good.

It is important to be able to distinguish nominal classification, ordinal classification and re-

gression problems, as the concepts of order and numerical interpretation might not be trivial. Here

are some examples:

• A person’s age - Regression

– While a person’s age can be seen as a finite and discrete problem (e.g. an integer

between 0 and 120), using a classification approach would need a large number of

examples (in classification we need at least one example per class, although usually a

lot more are needed to achieve good results). Also, even if all our training examples

have integer labels, an age of 12.5 years is still valid, since our classes have a numerical

interpretation.

• Search engine results - Ranking

– The task of ordering search engine results according to their relevance can be seen as a

problem where we want to assign and individual rank to each instance. Note that, even

though our classes can be represented as numbers (e.g. 0 for the worst result, 1 for the

second worst result...), they lack a numerical interpretation, and therefore a regression

approach is not suitable to solve this problem. Also, our classes do not have a concrete

value, as their assigned integer is only used to represent their order. Therefore this is a

ranking problem and not an ordinal one.

• A restaurant’s 5-star rating - Ordinal classification

– While it is possible to assign a number to each class and apply regression, this assumes

that there is a real numerical value to each one of our labels, which might not be true

(e.g. is a 4-star restaurant the double of a 2-star restaurant?).

• Number detection using Optical Character Recognition - Nominal classification

– While there is an obvious mapping from each one of our classes and a number, it is

obvious that neither their value nor their ordering is in any way related to the number’s

shape, and therefore this is a nominal classification problem.

2.2.1 Ordinal Datasets

For our experiments we will use two synthetic datasets and six real datasets. A more detailed

description of each dataset is presented on table 2.1

The synthetic datasets are the following:
2 A≺ B means that our value A precedes B. For example, one could claim that bad ≺ average≺ good.
3Excluding the class attribute.
4One of the labels has no examples.

10

Background

Table 2.1: Datasets

Name Points Attributes3 Labels
Synthetic 1 (Circle) 100 2 3
Synthetic 2 (Non-monotonic) 5000 2 5
Arie Ben David ERA 1000 3 9
Arie Ben David ESL 488 4 9
Arie Ben David LEV 1000 4 5
Arie Ben David SWD 1000 10 4(5)4

Balance-Scale 625 4 3
BCCT 1143 30 4

1. 1000 points calculated via
⌊
6× ((x−0.5)2 +(y−0.5)2)

⌋
with x,y ∈ [0,1] (the radius of a

circle centered on (0.5,0.5) multiplied by 6 so that it goes from 0 to 2).

2. 1000 points from the dataset presented by Ricardo Sousa [SYdCC13] (this dataset is also

shown on Figure 3.1).

The Balance-Scale dataset is available on the UCI repository (https://archive.ics.

uci.edu/ml/) and the Arie Ben David datasets are available on the MLData Repository (https:

//mldata.org/).

2.3 Evaluation Metrics

Once a classifier is trained, it is important to be able to measure its performance. However, per-

formance is a subjective concept, as one might consider some metrics more important than others

(e.g. if one wants to rank planes based on their performance, they might value speed over capacity

or vice-versa, depending on the plane’s main task).

There are many evaluation metrics for supervised learning tasks that depend on the nature of

the task itself. This evaluation is usually done using a test set – a dataset whose points were not

used during the classifier’s training – in order to achieve unbiased metrics.

In classification tasks one of the most common metrics is the percentage of misclassified points

in our test set (this metric is usually referred to as Misclassification Error Rate). One would usually

expect that a classifier that misclassifies 10% of our test set examples has a better performance than

one that misclassifies 30%.

However, this might not always be the case. As an example, imagine a system that automat-

ically detects whether someone boarding a plane is carrying a weapon. It is easy to see that, in

this case, just comparing the number of misclassifications is not enough, it is also important to

consider whether the those are false positives (accusing an innocent passenger) or false negatives

(let someone board the plane carrying a gun). In this case its usually preferred to use a cost matrix,

where we can assign custom costs to each type of error (see Figure 2.5) and obtain the average

cost.

11

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
https://mldata.org/
https://mldata.org/

Background

Innocent Not Innocent
Predicted as Innocent 0 100

Predicted as Not Innocent 1 0

Figure 2.5: Example of a cost matrix

Note that cost matrices can also be easily extended to problems with more than two classes.

Unfortunately, the costs of each outcome are not usually obvious, and therefore cost matrices

should only be designed by experts on the problem. For example, on Figure 2.5 we claimed that a

false negative is 100 times worse than a false positive, although this value is arguably too small or

too large (should 100 innocents be accused and investigated to avoid a disaster?).

The previous metrics, however, cannot be used for regression tasks, as an example cannot be

simply considered as misclassified (e.g. if a car takes 45 minutes to go from point A to point B,

and our model predicted that the trip would take 44 minutes, was the example misclassified?).

Nevertheless, we can use the difference between the prediction and the true value to measure our

performance. This is usually done by calculating either the Mean Absolute Error (1
N ∑x | f (x)−

f̂ (x)|) or the Mean Squared Error (1
N ∑x(f (x)− f̂ (x))2).

Ordinal data classification also has various evaluation metrics. Since this is also a classification

task, one can apply most metrics used in classification (e.g. MER and cost matrices). One can also

apply the same metrics used in regression by mapping our ordinal classes to integers (C1 7→ 1,C2 7→
2, ...), or by generating the appropriate cost matrix (on Figure 2.6 we present an example of a cost

matrix that implements the MAE).

C1 C2 C3 C4

C1 0 1 2 3
C2 1 0 1 2
C3 2 1 0 1
C4 3 2 1 0

Figure 2.6: Example of a cost matrix that implements the MAE on a 4 class ordinal problem

Be that as it may, those approaches to ordinal evaluation have their limitations:

• Classification evaluation metrics such as MER do not take into account the relation between

classes (e.g. classifying a 1-star movie as 5-stars is considered as bad as classifying a 4-star

movie as 5-stars).

• Regression evaluation metrics such as MAE assume that our classes have a numerical inter-

pretation, which is usually false on ordinal problems.

Many ordinal classification metrics have been proposed to solve these limitations [PdCAC08,

12

Background

CS11, BVh13], however, since their usage is still not widespread, in this work we will only com-

pare the MER and the MAE5.

2.4 Ensemble Methods

An ensemble of classifiers is a set of classifiers whose results are combined in some way in or-

der to achieve better results when classifying new instances. Assume a set of classifiers F ={
f̂1, f̂2, ..., f̂n

}
. One can combine the results of each of these classifiers (e.g. via majority voting)

in order to create a new classifier f̂F .

In order for our new classifier f̂F achieve a better performance than any classifier f̂i ∈ F it is

necessary and sufficient that all members of F are diverse and accurate [Die00].

A set of classifiers F is considered diverse if all classifiers are uncorrelated. As an example,

assume a set of three classifiers F =
{

f̂1, f̂2, f̂3
}

. If f̂1 ' f̂2 ' f̂3, then when one of the classifiers

is wrong, all the other classifiers will be wrong as well, and there will be no point in combining

their results. However, if this is not the case, it is possible that when f̂1 is wrong both f̂2 and f̂3

are right, and therefore it is probable that f̂F will be right as well (depending on the method used

to combine the different classifiers).

Also, a set of classifiers F is considered accurate if its classifiers perform better than a random

classifier. In other words, assuming a classification problem with K classes and a perfect classifier

g, the members of F are accurate if and only if ∀ f̂i ∈ F : P(f̂i(x) = g(x))≥ 1
K . This is obviously

necessary, as otherwise our combination of classifiers would only make results worse.

A simple example of an ensemble of 3 binary classifiers can be seen on Figure 2.7.

It is interesting to note that, even if F ⊆ H, it is possible that f̂F /∈ H and therefore we can

obtain classifiers that would be impossible to obtain using our learning algorithm [Die00].

5Some machine learning tools (such as Weka) come with an implementation of MAE for classification. This imple-
mentation is different from the one we presented and is not suited for ordinal tasks, therefore, special care should be
taken when attempting to reproduce our results.

13

Background

0 1 2 3 4
0

1

2

3

4

(a) Classifier f̂1
(Accuracy ' 61.5%)

0 1 2 3 4
0

1

2

3

4

(b) Classifier f̂2
(Accuracy ' 53.8%)

0 1 2 3 4
0

1

2

3

4

(c) Classifier f̂3
(Accuracy ' 69.2%)

0 1 2 3 4
0

1

2

3

4

(d) Final Result f̂F
(Accuracy ' 84.6%)

Figure 2.7: Example of an ensemble of 3 binary classifiers

14

Chapter 3

State of the Art

On this chapter the state of the art will be presented. On section 3.1 several proposed methods and

approaches for ordinal data classification will be presented. Section 3.2 will present some of the

most used ensemble methods. Finally, section 3.3 will present some conclusions about the state of

the art.

3.1 Ordinal Data Classification

This section will describe various approaches to ordinal data classification. For simplicity, simi-

lar approaches have been grouped together in various subsections and therefore they will not be

presented in chronological ordering.

Also, the main focus of this section will be to summarize the different types of approaches to

ordinal data classification. A more detailed presentation of most of this methods is available in the

work of Sousa et al. [SYdCC13].

3.1.1 Naïve Approaches

There are two very simple approaches to ordinal data classification:

• Treat the problem as a nominal classification problem.

• Assign a number to each class and treat the problem as a regression problem.

While this approaches might be intuitive and the implementation is trivial, they are incorrect

ways to treat the problem [SYdCC13]. Namely:

• If we treat the problem as a nominal one, we will be ignoring the order information, therefore

we will need more training examples.

• If we use regression, our classifiers will be more sensible to our arbitrary value assignment

than to the ordering.

15

State of the Art

Therefore, it is expected that the results obtained via naïve approaches to be inferior to more

complex ones.

3.1.2 Monotonic Data Approaches

One of the simplest assumptions that can be applied in ordinal data classification is the mono-

tonicity of the data, where it is assumed an ordering relation between the elements of X . Usually

it is assumed that our feature vectors are ordered according to xi � x j ⇐⇒ ∀k : xi,k ≤ x j,k (e.g.

(0,0,0) � (0,1,0) � (0,1,1) � (1,1,1)). Then, we assume that our function f̂ is monotone, so

that larger values of x cannot have smaller values of f̂ (x). Formally, xi � x j⇒ f̂ (xi)� f̂ (x j).

Some of the proposed algorithms based on this constraints include an ordinal Decision Tree [PB00]

and a KNN implementation [DF08]. The ordinal Decision Tree implementation [PB00] inserts

new elements in the dataset during the training, in order to enforce a minimum and maximum

value for each branch. With this, they are able to enforce the monotonicity constraint. The KNN

implementation [DF08] relabels the training data so that the monotonicity constraints are kept and,

when classifying a new point, enforces that it is value is kept in a valid interval.

Monotonicity is a very strong assumption and, while in some applications monotonic rules

are acceptable by experts [PMS01] and these methods might need fewer examples than other ap-

proaches, there are some problems that are clearly ordinal, yet do not respect this constraints [SYdCC13],

therefore it would be impossible to model them correctly using this assumptions. An example of

an ordinal problem that does not respect the monotonicity constraint can be seen on Figure 3.1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

4

4

5

5

Figure 3.1: Example of a nonmonotonic ordinal problem

16

State of the Art

3.1.3 Parallel Boundaries using SVMs

Another approach to ordinal data classification is to assume that the boundaries from our classifiers

cannot cross each other, as that would lead to some possible point where a small variation of one

feature could lead to a huge variation in our label, which is not expected (e.g. it is not expected

that a small change in a feature makes a product go from “bad” to “good” without going through

“average”).

One simple way to impose that restriction is to force the hyperplanes used for classification to

be parallel to each other. In Figure 3.2 it is possible to see two different classifiers, one without

the parallelism constraint and another one with it. In the first one, the point marked with
⊗

can

make an abrupt jump between two very distinct classes (“black” and “white”), while on the second

classifier that is not possible.

0 1 2 3 4
0

1

2

3

4

(a) Simple multiclass classifier (not consistent)

0 1 2 3 4
0

1

2

3

4

(b) Classifier with parallelism constraints (consis-
tent)

Figure 3.2: Comparison of a multiclass classifier vs. a multiclass classifier with parallelism con-
straints

One very important aspect of this constraint is that, even though we are using parallelism,

this does not mean that we are limited to linear models (i.e. hyperplanes). Recal that, by using

nonlinear transformations (as presented on section 2.1.3), it is possible to generate our parallel hy-

perplanes in a nonlinear space, and therefore obtain non-intersecting nonlinear boundaries. Using

this intuition, various authors have developed SVMs that, for a K class ordinal problem, gener-

ate K−1 parallel hyperplanes [SL02] [CK05] [WB06] (usually on the extended space Z), where

each boundary separates a group of classes respecting their order (e.g. one boundary separates
{C1} from {C2,C3} and another boundary separates {C1,C2} from {C3}).

While the parallelism constraint is simple and powerful, the previous approaches are limited

to SVMs. Even though SVMs usually present good results, they lack the interpretability of other

methods (e.g. decision trees).

17

State of the Art

3.1.4 Subdivision into Binary Problems

Another approach to ordinal data classification is based on the intuition that a K class ordinal

problem can be reduced to K− 1 binary classification problems, with classes C− and C+, where,

for a classifier k, the points are labeled as:

fk(x) =

C− if f (x)� Ck

C+ if f (x)� Ck

An example of this subdivision can be seen on Figure 3.3.

0 1 2 3 4
0

1

2

3

4

(a) Original Problem: C1 ≺ C2 ≺ C3

0 1 2 3 4
0

1

2

3

4

(b) Division 1: C1 ≺ {C2,C3}

0 1 2 3 4
0

1

2

3

4

(c) Division 2: {C1,C2} ≺ C3

Figure 3.3: Example of a subdivision of a 3 class ordinal problem into 2 binary classification
problems

The approach proposed by Frank and Hall [FH01] consists on applying a classifier to each of

the binary problems and then combining their results in the following way:

First, note that each of the K − 1 classifiers will give us the probabilities P(f̂i(x) = C+) '
P(g(x)� Ck),k ∈ {1, ...,K−1}. With that, we can try to calculate P(g(x) = Ck):

P(g(x) = Ck) =

1−P(g(x)� C1) if k = 1

P(g(x)� Ci−1)−P(g(x)� Ci) if k ∈ [2,K−1]

P(g(x)� CK−1) if k = K

18

State of the Art

Then our classification function simply needs to return the label with the largest probability,

therefore f̂ (x) = argmaxCk P(g(x) = Ck).

While this method allows for an easy application of various binary classifiers to ordinal clas-

sification, it is important to note that it will need more memory (due to the data replication) and

usually more time than other methods. Compared to the other approaches, this is the one that

places the weakest constraint on the classification problem (such as monotonicity or parallelism),

which might be a advantageous if none of the constraints hold for our problem (on the other hand,

it might present a worst performance if the hard constraints of the other classifier holds).

Even though our conversion from ordinal to binary guarantees that fk(x) = C−⇒ fk+1(x) = C−
and fk(x) = C+⇒ fk−1(x) = C+, those rules do not always hold for our function f̂ . In practice, this

means that it is possible that the combination rule proposed by Frank and Hall returns a negative

probability for some classes. One solution to this problem is setting that negative probabilities to

zero, although other smoothing operations could be applied.

Another possible way to combine our binary classifiers is by a simple counting method: f̂ (x)=
Ci, with i = 1+∑

K−1
k [[fk(x) = C+]]1. We will use this approach on our algorithms, as it seems to

present the best results. Nevertheless, changing them to use the previous solution is trivial.

3.1.5 Data Replication Approaches

One interesting variant of the Frank & Hall method is the data replication method proposed by

Cardoso and Pinto da Costa [CDC07]. In this method, the feature space is extended such that each

replica has its own dimension. 2

Assume a feature space of a K class ordinal problem. Also, for simplification, assume e0 as

a vector composed of (K− 2) zeros and a vector eq as a vector composed by (K− 3) zeros and

a constant larger than 0 (e.g. 1) on the q-th position. Every feature vector x = (x1,x2, ...,xn) is

transformed into (K−1) vectors of the form zq = (x,eq) labeled as:

f (zq) =

C− if f (x)≤ Cq+1

C+ if f (x)> Cq+1

The reason to do this is that, once this new binary classification problem is solved, the inter-

sections of our separating hyperplane and our extra dimensions can be projected on the original

space, resulting on a set of parallel hyperplanes dividing our classes (in a similar fashion to the

approaches shown on Section 3.1.3).

The best way to understand this approach is to look at a graphical example. Figure 3.4 shows a

1-dimensional dataset with 3 classes (Figure 3.4a). This dataset is then separated in 2 binary repli-

cas, each on it is own dimension (Figure 3.4b). The binary classification problem is then solved

(Figure 3.4c) and the hyperplane intersections are projected on the original space (Figure 3.4d),

1[[·]] is the indicator function. [[·]] is 1 if the inner condition is true, 0 otherwise.
2While the original paper proposes a more general solution that allows the use of smaller replicas, in this dissertation

only the simplest use case will be considered, where data is completely replicated.

19

State of the Art

resulting in a set of two parallel hyperplanes. Note that, since our original space was 1 dimen-

sional, it is impossible to see the parallelism in this example. A 3-class 2-dimensional example

can be seen on Figure 3.5.

−4 −2 0 2 4
−1

−0.5

0

0.5

1

(a) Original Problem

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

(b) Problem on the replicated
space

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

(c) Solution to the problem on the
replicated space

−4 −2 0 2 4
−1

−0.5

0

0.5

1

(d) Result on the original space

Figure 3.4: Toy example of the data replication method

0
1

2
3

4 0

2

4

0

0.5

1

Figure 3.5: Toy example of the data replication method for a 3-class 2-dimensional problem

Like the Frank & Hall approach, this method allows for an easy application of various binary

classifiers to ordinal classification. It will also need more memory and take more time than other

methods.

This method allows one to apply the parallelism constraint to various classifiers, and has al-

ready been mapped to SVMs, ANNs and LDA [CDC07, CSD12]. Nevertheless, it has some

problems when applied to decision trees, since they only use one attribute on each cut.

20

State of the Art

To see why this is the problematic, assume that we have a 3-class ordinal problem with two

attributes. After replicating the data, every point x = (x1,x2) will be transformed in two points of

the form zq = (x1,x2,e1) (in this case, z0 = (x1,x2,0) and z1 = (x1,x2,1)). If our algorithm learned

a linear model (e.g. a SVM with a linear kernel), we would obtain a solution corresponding to

the plane w1 · x1 +w2 · x2 +w3 · e1 + b = 0, which, when projected to the original space, would

correspond to two parallel lines: w1 ·x1 +w2 ·x2 +b = 0 and w1 ·x1 +w2 ·x2 +(w3 +b) = 0. On a

decision tree, since we can only pick one attribute for each cut, this is the same as saying that only

one of weights will be equal to 1 and all the others will be equal to 0. Therefore, two types of cuts

can happen:

• If the cut happens on one of the original attributes (x1 or x2, in this case), we will obtain a

cut on the plane x1+b = 0 (or x2+b = 0). Note that, since e1 is not present on our equation,

projecting this plane on the original space would result in two lines on the same position

(which is not desirable) lines.

• If the cut happens on one of the new attributes (e1 in our example), then the cut will sepa-

rate a replica from the others, and the decisions on each replica will become independent,

therefore defeating the purpose of the data replication method (On the limit, we would end

up with a Frank & Hall approach)

A graphical explanation of this problem is presented on Figure 3.6, where both types of cuts

can be seen.

0
1

2
3

4 0

2

4

0

0.5

1

(a) Cut on one of the original attributes

0
1

2
3

4 0

2

4

0

0.5

1

(b) Cut on one of the new attributes

Figure 3.6: Problems with decision trees and the data replication model

3.1.6 Unimodal Distribution Constraint

Another assumption that can be made for ordinal classification is that, for each point x, the prob-

ability P(f̂ (x) = Ck) follows an unimodal distribution, therefore it only exists a maximum in our

distribution.

21

State of the Art

This means that, if Ck is the most probable class, then:

∀i, j : |i|< | j| ⇒ P(f̂ (x) = Ck+i)≥ P(f̂ (x) = Ck+ j)

As an example, assume Y = {bad,average,good}. If P(f̂ (x) = good)≥ P(f̂ (x) = average),

then it is also expected that P(f̂ (x) = good)≥ P(f̂ (x) = bad).

This constraint was proposed by Pinto da Costa et al. [PdCAC08], where 3 approaches were

proposed:

• A parametric approach, where SVMs and ANNs were used to learn parameters of monotonic

distributions (binomial distribution and Poisson distribution).

• A nonparametric approach, where the output of an ANN is forced to output an unimodal

distribution.

• A parametric approach, where the parameters of the monotonic distributions are learned via

regression.

This approach has shown to perform better than other ordinal classifiers [PdCAC08], however,

this only happens when the right distribution is chosen, which is a problem of its own.

3.1.7 Globally Consistent Approaches

Some of the previous approaches applied some constraints to our final model, such as monotonic-

ity, parallelism or unimodality. Cardoso and Sousa proposed a more general concept, the concept

of consistency [CS10].

A function is said to be consistent if, for every continuous decision region, it holds that ad-

jacent regions have adjacent classes (see Figure 3.2). It is interesting to note that monotonicity,

parallelism and unimodality guarantee this property, even though they are not necessary condi-

tions.

While this appears to be the one of the best approaches, imposing this constraint is not trivial

and may lead to computational intensive solutions, therefore it has only been applied to small

problems.

3.2 Ensemble Methods

The usage of ensemble methods can be divided in 3 phases [MMSJS12]:

1. Ensemble generation;

2. Ensemble pruning;

3. Ensemble integration.

22

State of the Art

In the ensemble generation phase, the various classifiers f̂i ∈ F are generated. Note that

sometimes this step generates redundant models. The second phase is ensemble pruning, where

some of the models generated are removed. Some authors skip this phase, using a direct approach.

The final phase is ensemble integration, where the our classifiers f̂i ∈ F are combined to generate

our final model f̂F .

3.2.1 Ensemble Generation

3.2.1.1 Bayes Optimal Classifier

This ensemble tries to predict the value of g(x) by computing the probability P(g(x) = y|D,x) via:

P(g(x) = y|D,x) = ∑
h∈H

P(h(x) = y|x)P(h|D)

Then, we can simply define f̂ (x) = argmaxy P(g(x) = y|D,x).
This can be interpreted as an ensemble that combines all the hypothesis in H weighted by the

probability P(h|D) – the probability of obtaining a certain hypothesis using our dataset.

While, in theory, this ensemble should be optimal, this only holds for very limited number

of problems, where H is finite, g ∈ H and we are able to calculate P(h|D). Unfortunately this 3

assumptions do not hold on most practical applications [Die00]

3.2.1.2 Dataset Subsampling

A simple way to build various different hypothesis is to use a subsample of our dataset for training

the various functions in F . Since each classifier is trained with different examples, it is expected

that each classifier will also be different. This works particularly well with unstable algorithms,

such as decision trees and neural networks, where a small change in the input can lead to major

changes in the classifier [Die00].

This can be done in various ways:

• Bagging

• Cross-Validated Committee

• Boosting

The simplest way to do this is via bagging (Bootstrap Aggregating). In bagging, our classifiers

are trained in various runs, where in each run i we train a classifier f̂i using a dataset D′ = (D′, f),

where D′ is obtained by drawing N examples randomly with repetition from D (where N is the

number of elements in D). The training set D′ is called a bootstrap replicate of D, and contains,

on average, 63.2% of the original training set.

A cross-validated committee is generated in a similar way to cross-validation. For example, on

a 10-fold cross-validated committee, we divide our datasetD in 10 disjoint subsetsD′1,D′2, ...,D′10.

Then we create 10 overlapping training sets by dropping one of those 10 datasets from our original

23

State of the Art

subset. Therefore, f̂i would be generated using the dataset D−D′i. An example can be seen on

Figure 3.7.

D′1 D′2 D′3 D′4 D′5 D′6 D′7 D′8 D′9 D′10D =

D′1 D′2 D′3 D′4 D′5 D′6 D′7 D′8 D′9 D′10f̂1

D′1 D′2 D′3 D′4 D′5 D′6 D′7 D′8 D′9 D′10f̂2

D′1 D′2 D′3 D′4 D′5 D′6 D′7 D′8 D′9 D′10f̂10

Figure 3.7: Example of a 10-fold cross committee

Our third method is boosting. This method was first presented by Schapire in 1989 [Sch90]

and the idea behind it is to train various classifiers in an iterative fashion by taking it into account

the errors of previous classifiers. The original algorithm can be seen on Algorithm 3.1 [Fer07].

Data: A dataset D = (D, f) with N elements
Result: A classifier f̂F
D′1 := Subset of D with N′1 elements selected without replication;
f̂1 := train(D′1);
D′2 := Subset of D with N′2 examples where N′2

2 samples where misclassified by f̂1;
f̂2 := train(D′2);
D′3 := Subset of D where f̂1(x) 6= f̂2(x);
f̂3 := train(D′3);
f̂F (x) = sign(f̂1(x)+ f̂2(x)+ f̂3(x)) ; // Chooses a class according to a
majority voting

Algorithm 3.1: Boosting algorithm for binary classification

Later, Freund and Schapire proposed the ADABOOST (Adaptive Boosting) method [FS95].

This method manipulates our training examples by associating a weight to each one and then uses

that weight to define a weighted error function for each classifier 3. After training each classifier,

the algorithm updates the weight of each example, increasing the weight of misclassified instances

(intuitively, this makes “harder” instances more important). It also associates a weight to each
3If the classifier does not support weighted errors, then the examples are sampled randomly according to their

weight.

24

State of the Art

classifier based on it is performance, using it to combine the classifiers via weighted voting. The

details of the method can be seen on Algorithm 3.2.

Data: A dataset D = (D, f) with N elements
Result: A classifier f̂F
Initialize the example weights as w j := 1

N ;
i := 1;
while ¬EndingCondition do

f̂i := train(D);
errori = ∑

N
j=1 w j[[f̂i(d j) 6= f (d j)]];

αi = 0.5log(errori
1−errori

) ; // Classifier weight

forall the j do
w j := w jα

1−[[f̂i(d j)6= f (d j)]]
i ; // Updates the example weights

end
Normalize the weights so that ∑ j w j = 1;
F := F ∪

{
f̂i
}

;
i := i+1

end
f̂F (x) = sign(∑i αi f̂i(x)) ; // Chooses the best class according to a
weighted voting

Algorithm 3.2: Discrete ADABOOST

Note that both boosting and discrete ADABOOST, as stated on algorithms 3.1 and 3.2 only

work on binary classification problems (assuming Y = {−1,1}) and with discrete classifiers (e.g.

it does not work with classifiers that return a probability distribution). There are, however, many

variants of the ADABOOST method [Fer07], that can be applied to other supervised learning tasks

such as:

Real ADABOOST/Gentle ADABOOST/Modest ADABOOST

Variants that works with real classifiers (e.g. Naïve Bayes).

ADABOOST.M1/ADABOOST.M2/ADABOOST.M1W/BoostMA
Variants that works with multiclass problems.

ADABOOST.OC/ADABOOST.ECC
Variants based on ensemble of binary classifiers with output codes and error correcting

codes to solve multiclass problems (similar to the method presented on Section 3.2.1.4).

RANKBOOST

A variant designed for Ranking problems.

3.2.1.3 Manipulating Input Features

Another way to alter our input to build different ensembles is to manipulate the input features.

For example, imagine that our feature vectors are of the form x=(age,height,weight,gender),

we can train a classifier using only x′ = (age,height), another one using only x′ = (height,weight)

25

State of the Art

and so on. We could also train a classifier using linear or nonlinear combinations of this features,

for example x′ = (age, weight
height2 ,gender). The feature selection can be done either by an expert on

the problem domain or via search heuristics, such as genetic algorithms [MMSJS12].

Another way to manipulate the input features is via feature discretization [MMSJS12], where

numerical values are replaced by discretized versions. By repeating this process with different

discretization parameters, it is possible to generate different datasets and promote diversity.

Feature selection methods may present better results than bagging and boosting approaches,

however, our input features must be highly redundant [Die00], as feature selection is not a trivial

task, and removing some features might cripple our classifiers’ performance so much that our

voted ensemble will not perform as well as expected.

3.2.1.4 Manipulating Output Targets

Instead of manipulating our examples features, we can change their labels to add diversity to our

classifiers.

One way to do this is via error-correcting output codes [DB95] where, for each of our classi-

fiers f̂i, we divide our set Y into two subsets, converting our problem into a binary classification

problem.

Here, we assume that each one of our labels is a L-bit keyword. For example, if we have

that Y = {C1,C2,C3,C4,C5,C6,C7,C8} , we can map each class to a 3 bit binary number (C1 7→
000,C2 7→ 001, ...,C8 7→ 111). We then need to create L binary classifiers, one for each bit. Going

back to our example, we need three classifiers f̂1, f̂2, f̂3. f̂1 will give us the value of the first bit, f̂2

the value of the second bit and f̂3 the value of the third bit. Using these classifiers, we can obtain

our 3-bit keyword, and then find out the corresponding label.

Note that we can actually use more than log2(|Y|) classifiers. By doing this, we will have

bigger keywords and it is not guaranteed that our classifiers will give us a valid keyword. To fix

this, we simply pick the label whose keyword is closer (in Hamming distance) to our classifiers’

results.

It is interesting to note that the ordinal classifier proposed by Frank & Hall [FH01] works in a

similar way to this method, although the keyword mapping and the final classification are obtained

in a different way.

3.2.1.5 Injecting Randomness

The last general purpose method for generating ensembles is to inject randomness into our learning

algorithm.

For example, some classifiers such as neural networks are initialized with random weights. By

repeating the training with a different random seed, we are expected to obtain a different classifier.

Another way to inject randomness is through input smearing, where Gaussian noise is added

to each input value [MMSJS12].

26

State of the Art

3.2.1.6 Algorithm Specific Methods

Finally, we can have algorithm specific methods.

One family of such methods are Random Forests [Bre01], which only apply to decision trees.

The original definition of Random Forests is the following:

“A random forest is a classifier consisting of a collection of tree structured classifiers

{h(x,Θk),k = 1, ...}where the Θk are independent identically distributed random vec-

tors and each tree casts a unit vote for the most popular class at input x.” [Bre01]

Note that this is a broad definition that encompasses many ensembles of decision trees that

use randomness in some way and are whose results are combined with a simple metric. The most

common types of Random Forests are:

Tree Bagging
The simplest form of Random Forests is the application of bagging to decision trees. Note

that, while this is a Random Forest by definition, it is usually preferable to avoid that termi-

nology to avoid confusion.

Random Forests using Random Input Selection
This is the most common form of Random Forests and are the ones we will study in this

work. Here, ate each node, our algorithm picks a random subset of attributes4. and performs

the split on the most promising of those attributes.

Random Forests using Linear Combination of Inputs
This is a more complex variant of Random Forests, where instead of simply using a random

combination of features, one uses a random linear combination of random features.

As previously stated, in this work we will use the term Random Forests to refer to “Random

Forests using Random Input Selection”.

Other algorithms, such as SVMs, ANNs and KNN, have various parameters that can be altered

to generate different models, even if they are suboptimal [MMSJS12].

While these methods can achieve good results, they obviously only work with a specific learn-

ing algorithm.

3.2.2 Ensemble Pruning

The goal of ensemble pruning is, after obtaining our set F , obtain a subset F ′ ⊆ F that reduces

the size of our ensemble without a significant performance loss.

Tsoumakas, Partalas and Vlahavas [TPV08] propose the following taxonomy for ensemble

pruning methods:

• Search based methods
4 usually blog2(M)+1c, where M is the number of attributes

27

State of the Art

• Clustering based methods

• Ranking based methods

• Other methods

3.2.2.1 Search based Methods

Search based methods are the most direct approach to ensemble pruning. This methods consist of

performing a heuristic search in the space of possible subsets, according to some evaluation metric

(usually the performance or diversity of the ensemble [TPV08]).

This search can either be a greedy search or a stochastic search (e.g. genetic algorithms).

While the former is among the most popular categories of ensemble pruning, stochastic search

can achieve better results by avoiding getting stuck in local optima [TPV08].

Greedy search methods can occur in two directions: Forward selection (from ∅ to F) and

Backward elimination (from F to ∅). An example a search space and search directions can be

seen on Figure 3.8.

∅

{
f̂1
}� {

f̂2
}? {

f̂3
}-

{
f̂1, f̂2

}?� {
f̂1, f̂3

}�- {
f̂2, f̂3

}?-

{
f̂1, f̂2, f̂3

}?�
-

f orward selection

?

backward elimination

6

Figure 3.8: Example of an ensemble search space

3.2.2.2 Clustering based Methods

Clustering based methods can be divided in two phases:

1. Group the models using clustering techniques

2. Prune each cluster

28

State of the Art

To employ these methods, a distance measure between two classifiers must be defined, for

example, the probability that two classifiers do not make coincident errors (estimated from a vali-

dation set) [TPV08].

3.2.2.3 Ranking based Methods

Ranking based methods order the classifiers in F according to some evaluation metric (e.g. their

performance) and select them in this order.

Using an approach called Orientation Ordering it is possible to order the classifiers in a way

that gives preference to classifiers that correctly classify examples misclassified by the ensem-

ble [TPV08].

3.2.2.4 Other Methods

Other pruning methods include the usage of statistical procedures to determine if the differences

in predictive performance among the classifiers are significant, only retaining the significant clas-

sifiers, or formulate the pruning problem as a quadratic integer programming problem that looks

for a fixed size subset of classifiers that minimizes the misclassification and maximizes the diver-

gence. [TPV08]

3.2.3 Ensemble Integration

Nominal classifiers are usually combined in one of 3 ways:

• Majority voting

• Weighted voting

• Borda count

Of those methods, majority voting is the simplest one. It is important to note that, usually, it is

possible to predict which classifiers have a better performance, and therefore it might be interesting

to give more importance to the opinion of better classifiers, and therefore use a weighted voting.

On the other hand, some classifiers (e.g. Naïve Bayes) are able to say what are the most probable

decisions, assigning a probability to each one. With this, it is possible to use a borda count, to give

more importance to more certain decisions.

Regressions can be combined in many ways, as can be expected, for example:

• Mean

• Weighted Mean

• Percentile (Minimum, Median, Maximum...)

• Weighted Percentile

The interest of using weighted combinations is the same in regression as in nominal classifi-

cation.

29

State of the Art

3.2.4 Ensemble Methods for Ordinal Data Classification

3.2.4.1 ADABOOST.OR

One of the few ensemble methods for ordinal classification is ADABOOST.OR [LL09]. This

method uses a primal-dual approach to solve an ordinal problem both in the binary space and

the ordinal space.

To do this, they propose a relation between an ordinal classifier f̂ ord(x) and either K − 1

closely related binary classifiers f̂k(x) or one binary classifier f̂ bin(x,k), where each point on the

ordinal space has a cost vector c associated to it and each binary point has an associated weight of

w = (K−1)|c[k+1]− c[k]|. Using this relation, we are able to train our algorithms on the binary

space (as each point has an associated weight) and then use the cost vector on the ordinal space to

calculate the error and update the costs of each point. Finally, our ordinal classifiers are combined

using a weighted median, as it is shown to be equivalent as performing the boosting on the binary

space and convert the results back to the ordinal space.

A quick presentation of the method can be seen on Algorithm 3.3.

Data: A dataset D = (D, f) with N elements
Result: A classifier f̂F
Initialize the cost vectors c1

j (e.g. as MAE cost vectors)
i := 1;
while ¬EndingCondition do

f̂ ord
i := train(D) ; // Train the ordinal classifier (train and
combine the binary classifiers)

errori =
(

∑
N
j=1 ci

j[f̂i(d j)]
)
/
(

∑
N
j=1 ci

j[1]+ ci
j[K]
)

;

αi = 0.5log(1−errori
errori

) ; // Classifier weight

δi =
1−errori

errori
−1; forall the j do

if f̂i > fi then

ci+1
j [k] = ci

j[k]+

0 if k ≤ f (x j)

δi · ci
j[f̂i(x j))] if k > f̂i(x j)

δi · ci
j[k] otherwise

else
(same as above, but switch > to < and vice versa)

end
end
F := F ∪

{
f̂ ord
i
}

;
i := i+1

end
f̂F (x) = weightedMedian(F ,α)

Algorithm 3.3: ADABOOST.OR

One of the main limitations of this model is that it only works with ordinal classifiers, and

those must work on the binary space (such as the Frank and Hall method or the Data Replication

Method).

30

State of the Art

3.2.4.2 Ensembles of Globally Consistent Classifiers

As previously stated, one interesting restriction that can be applied to ordinal models is to force

our model to be globally consistent [CS10].

One interesting property about consistent classifiers is that, if our ensemble of classifiers F
is composed only of consistent classifiers, then if f̂F = median(F), it is guaranteed that f̂F
will also be consistent. Sousa and Cardoso [SC11] exploited this property to build ensembles of

consistent decision trees that guarantee a consistent final result.

3.2.4.3 Possibilities to be Explored

Those are the few examples of ensemble methods for ordinal data, although it is possible to see

that there are more ideas that can be explored.

For example, during the ensemble generation phase, it is interesting to explore what would

happen if restrictions such as parallelism were imposed on the final result. It is also noteworthy

that on the ensemble integration phase one can apply both regression and nominal approaches, for

example:

• Majority voting

• Weighted voting

• Borda count

• Percentile (Minimum, Median, Maximum...)

• Weighted Percentile

Note that, since ordinal data does not have a numerical interpretation, the mean of a set of

values cannot be calculated, although it is still possible to calculate any percentile (such as the

median).

Actually, both ensembles previously presented used the median as a combination rule due to

its interesting properties: Besides the guarantee of consistency and the duality between the binary

space and the ordinal space, if there is an absolute majority, then the median will behave majority

voting (the same applies to the weighted voting and the weighted mean).

Another interesting idea to be explored is how can boosting on the binary space be used to

improve ordinal classification. While some of this ideas are explored in ADABOOST.OR, it would

be interesting to explore other ideas (such as enforcing parallelism in our weak classifiers).

3.3 Conclusions

In this chapter we presented the state of the art in both ordinal classification and ensemble methods,

including ensembles designed for ordinal tasks.

31

State of the Art

We shown that there are various algorithms for ordinal classification and how most of them

use the order relationship to assume properties of our data (and exploit those properties), such as

monotonicity, parallelism or consistency.

We also shown the main types of ensemble methods and how they are currently being used for

ordinal classification. It was possible to see that there is a lack of ensembles designed specifically

for ordinal data classification, and we may be able to build on the previously presented ideas to

build new types of ensembles.

32

Chapter 4

Ordinal Decision Tree using the Data
Replication Method

While the focus of this dissertation is on ensemble methods for ordinal classification, it is interest-

ing to develop a new learning algorithm based on decision trees and the data replication method

for various reasons:

• Decision trees can be interpreted as boosting algorithms [KM96], and therefore some of the

insights from a new type of decision tree might be applicable to new ADABOOST variants.

• Some ensemble methods are exclusive to decision trees (e.g. Random Forests).

• The original data replication method does not support decision trees, and therefore this

algorithm will make the data replication method a more powerful framework, making the

development of ensembles of classifiers on the replicated space more versatile.

4.1 Limitations of the Data Replication Method

First of all, it is important to understand why the data replication method does not work with

decision trees.

As stated on the state of the art (Section 3.1.5), the data replication method works on an

extended space and then projects the hyperplane intersections on the original space, to obtain

parallel hyperplanes (a graphical example can be seen on Figure 3.5). However, when we use a

decision tree, our cut will only take one attribute in consideration, and therefore two things can

happen:

• If our cut is applied on one of the original attributes, then it will be parallel to all of the

replicated axis. Therefore, when our cut is projected back into the original space, all our

parallel lines will be equal.

33

Ordinal Decision Tree using the Data Replication Method

• If our cut is applied on one of the new attributes, then we will get a replica separated from

the others – on the limit, we would be reduced to the Frank and Hall approach.

Those problems can be visualized on Figure 3.6. Again, a more detailed description of this

problem can be found on Section 3.1.5.

4.2 Proposed Solution

To understand our solution, it is interesting to first imagine what would happen if our replicas were

decoupled (such as in the Frank and Hall method). In this case, we would build K−1 binary trees,

where each branch node could be defined by the tuple 〈att,θ , le f t,right〉, where att is the attribute

were the split will take place, θ the position of the split and le f t and right the left and right sons.

On the other hand, a leaf node would simply be composed of a binary label y1.

Our goal is to use the data replication method to build correlated trees that are able to exploit

parallelism. From this, we can extract some intuitions:

1. We want our trees to be correlated, so the attributes of their nodes should share some values.

2. Since our cuts can only have one attribute att, two cuts are parallel if and only if they are

made in the same attribute.

Based on this ideas, instead of growing K− 1 trees, we will build a single tree where each

branch node is composed only of parallel cuts. That is to say, our branch nodes would have one

attribute, but different cut position (depending on the replica). Formally, our branch nodes now

become 〈att, [θ1, ...θK−1], le f t,right〉. Note that now our leaf nodes must also be composed of

K−1 binary labels [y1, ...,yK−1].

With this, we assure that some of the parallelism constraints are kept, and we are able to apply

our decision tree on the replicated space. We will refer to this property as local parallelism, since

we only enforce parallelism on each node. An example of our tree can be seen on Figure 4.1.

Note our ordinal decision tree diagram in Figure 4.1c. Here it is possible to see that our ordinal

decision tree can be interpreted in two different ways:

• As a single decision tree, where each node has one attribute and K−1 split points and each

leaf has K−1 binary labels.

• As K−1 decision trees that share the same structure.

As a side note, decision tree algorithms (such as C4.5) also allow cuts on nominal attributes.

Since those attributes have no explicit order, such splits should be done as on a normal decision

tree (i.e. θ1 = θ2 = ...= θK−1).

1For now, we will assume this for simplicity, although on most DT implementations leaf nodes contain a probability
distribution.

34

Ordinal Decision Tree using the Data Replication Method

0
1

2
3

4 0

2

4

0

0.5

1

(a) Cut on the replicated space

0 1 2 3 4
0

1

2

3

4

(b) Cut on the original space

x1

[•,•]
�

x 1
≤
[2,

1]

x2

x1 >
[2,1]
-

[◦,◦]
�

x 2
≤
[2,

3]

[•,•]

x2 >
[2,3]
-

(c) Ordinal Decision Tree

Figure 4.1: Example of our decision tree on the data replicated space

4.3 Growing the Tree

To grow our tree, it is usually easier to see our model as a single tree. First, we need to find the

best attribute âtt and the best sequence of splits [θ̂1, ..., θ̂K−1]. To do this, for each attribute att we

find the values for [θ̂ att
1 , ..., θ̂ att

K−1] by simply picking the θk that maximize the gain ratio of each

replica k. Then, to pick the best attribute to split on, we combine our information gain/gain ratio

values using a combination heuristic (e.g. the average), and pick the attribute that maximizes that

value.

One problem of this model is that, sometimes, one replica might need less splits than others

(or one replica might need more splits than the rest). Also, it is possible that it is useful for some

replicas to make a split on a certain attribute and useless to others. Therefore, we need some way

to allow a replica to not make a cut on a certain attribute if there’s no reason to. We solve this

problem by allowing each replica to make a split at ∞ if the information gain is too small for a cut

to be made. Note that a cut at ∞ is the same as no cut at all, since all points will be classified as

< ∞.

This brings us to another problem: it is not clear what combination heuristic should be used to

combine the various performance metrics (e.g. information gain and gain ratio). One of the main

35

Ordinal Decision Tree using the Data Replication Method

problems being how to deal with cuts at infinity. For example, imagine that, as a combination

criteria, we pick the average information gain:

• If we use the infinity values in our metric, good cuts might be penalized.

• If we ignore the infinity values, them our metric will usually prefer splits that only occur in

a few replicas, and therefore not take advantage of the correlation.

For post-pruning we are using the same methods used in Weka’s J48 implementation with

some slight modifications. Since each node now has one distribution of points per replica, to

get the number of misclassified points we simply sum the number of misclassified points in each

replica.

With this in mind, we compared various metrics by averaging the results of 10 experiments

using 10-fold cross validation. Assume S = {θ1, ...,θK−1} the set of all K−1 splits, AS = {θ |θ ∈
S∧θ 6= ∞} the set of all active splits and value(s) the value of the we want to maximize (e.g. the

information gain or the gain ratio of that split). The metrics used are the following:

• Sum: ∑
s∈S

value(s)

– This is equivalent to the average of all splits.

• Average:
∑as∈AS value(as)

|AS|

• Product: 1−∏
s∈S

(1− value(s))

– Note that if the metric was simply the product, if one of the splits was done at infinity

(value(s) = 0) that branch would be pruned.

• Geometric Mean: |AS|

√
∏

as∈AS
(value(as))

• Minimum: min(value(as))

• Maximum: max(value(as))

• Euclidean distance to the minimum possible value:
√

∏
as∈AS

((0− value(as))2)

• Euclidean distance to the maximum possible value:
√
|AS|−

√
∏

as∈AS
((1− value(as))2)

– This metric is actually the difference between the maximum possible distance and

the euclidean distance to the maximum, so that it can still be used as a maximization

criterion.

The results are presented on Table 4.1.

While there is not much variation on the results, the sum appears to be one of the best combi-

nation rules, and therefore will be the one used in the next experiments.

36

Ordinal Decision Tree using the Data Replication Method

Table 4.1: Comparison of various combination methods (oDT)

(a) Percentage of incorrect classifications: mean of 10 experiments

Dataset Sum Average Product Geometric Min. Max. Dist. Min. Dist. Max.
Circle 5.48 5.46 5.46 6.07 6.08 5.45 5.44 5.56
Non-mon. 19.92 19.88 19.97 19.97 20.24 19.78 19.82 19.87
ERA 74.48 74.41 74.48 74.73 74.88 74.53 74.46 74.38
ESL 34.75 34.74 34.63 35.33 38.71 38.42 35.50 38.36
LEV 38.42 38.98 38.46 38.96 39.99 38.74 38.73 42.46
SWD 42.13 42.20 42.14 42.93 45.24 42.58 42.10 43.67
Balance 22.77 22.85 22.79 22.97 22.66 22.79 22.73 24.22
BCCT 10.41 10.44 10.47 10.19 11.00 9.77 9.85 10.54

(b) Mean Absolute Error: mean of 10 experiments

Dataset Sum Average Product Geometric Min. Max. Dist. Min. Dist. Max.
Circle 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.06
Non-mon. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
ERA 1.24 1.24 1.24 1.24 1.26 1.24 1.24 1.24
ESL 0.38 0.38 0.38 0.38 0.43 0.42 0.39 0.42
LEV 0.42 0.43 0.42 0.43 0.44 0.42 0.42 0.48
SWD 0.45 0.45 0.45 0.45 0.48 0.46 0.45 0.47
Balance 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.31
BCCT 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.11

(c) Tree Size: mean of 10 experiments

Dataset Sum Average Product Geometric Min. Max. Dist. Min. Dist. Max.
Circle 54.64 54.54 54.56 54.34 58.06 54.50 54.48 54.52
Non-mon. 75.20 74.96 75.30 74.94 74.32 75.74 75.66 74.92
ERA 11.74 11.86 11.74 11.68 14.16 11.96 11.80 11.92
ESL 29.86 29.14 30.20 29.92 28.98 26.98 29.12 28.50
LEV 23.16 26.70 23.28 26.30 28.88 23.82 23.26 41.24
SWD 26.68 27.88 26.84 28.24 27.20 27.10 27.38 34.40
Balance 75.26 77.56 75.36 77.24 77.46 77.32 75.80 85.52
BCCT 106.86 106.74 106.68 104.50 109.30 102.58 104.24 106.72

4.3.1 The XOR problem

During the conversion from a K class problem to multiple K− 1 binary problems, it is possible

that, for one of the replicas, every possible cut has no (or very little) information gain. A toy

example of such problem can be seen on Figure 4.2, where every possible cut on the first replica

has no information gain. A more complex example of that presents this problem Figure 3.1.

In practice, since there’s usually small amounts of noise in our data and our points are not

perfectly placed (such as in Figure 4.2), this problem usually only leads to cuts at “random”2

locations. Fortunately, one interesting property of decision trees is that random cuts do not have a

big effect on their accuracy, as this is compensated by a larger tree size [Min89].

2Note that the cuts are note really random, but their position will be heavily dependent on the noise.

37

Ordinal Decision Tree using the Data Replication Method

0 1 2 3 4
0

1

2

3

4

(a) Original ordinal problem

0 1 2 3 4
0

1

2

3

4

(b) First replica (problematic
case)

0 1 2 3 4
0

1

2

3

4

(c) Second replica

Figure 4.2: Example of our decision tree on the data replicated space

Note, however, that some pruning optimizations that operate directly on the information gain

might be problematic (this is the case of Weka’s MDL correction). Due to this our results were

obtained by disabling this optimization.

Nevertheless, it is actually possible to detect when this problem has occurred during training.

To do this, after we compute the optimal cuts for each replica, if one of the cuts was done at ∞

and has a similar (and significant) number of points classified as C− and C+, then that replica is a

XOR. We can then apply some heuristics to recompute the cut and attempt to solve the problem,

such as:

• If we assume that a cut k should be placed between the cuts k−1 and k+1 we can simply

use the point between this two cuts.

• Use a different metric for the information gain that prefers distributions with the same size.

For example, assuming that our cut splits our set of points D in two sets, L and R, we could

calculate the modified information gain H(D)−
(
|L|
|D|

)2
·H(L)−

(
|R|
|D|

)2
H(R).

• Unbalance the replica and recompute the cut. One could, for example, remove from our

replica k all the points C+ that are also classified as C+ in k+1.

It is not clear which of these is the best option, as all have their limitations, therefore we will

not be using any of them in this work.

38

Ordinal Decision Tree using the Data Replication Method

4.4 Classifying a Point

To classify a point, we can assume that our model is a set of K− 1 decision tree classifiers f̂k,

where each decision tree is composed by branch nodes 〈att,θk, le f t,right〉 and leaf nodes 〈yk〉.
Then we simple combine our binary labels as we would do on the Data Replication Method to

obtain the final classification.

Note that these trees can also be easily used by humans without needing K− 1 separate di-

agrams. To do this, one needs to parse the tree K− 1 times, considering only the kth attributes

and kth labels on each iteration. The final result can then be obtained by counting the C+ labels

(represented as a • on Figure 4.1c).

On our results, we are combining our results via the simple formula f̂ (x) = Ci, with i = 1+

∑
K−1
k [[fk(x) = C+]] although other combinations (such as the one proposed by Frank and Hall) can

be used.

4.5 Results

We compared our method (oDT) to the C4.5 implementation from Weka (J48) and the Frank and

Hall method using C4.5 decision trees. All classifiers were run with MDL correction disabled (as

it cannot be used by oDT and degraded the performance of the other classifiers). Our experiments

were executed 10 times, each one with 10-fold cross validation.

The results were compared with a paired t-test (corrected) with a confidence of 0.05. Results

marked • were significantly worse than our algorithm and results marked ◦ were significantly

better. They are presented on Table 4.2.

4.6 Conclusion

In this chapter we presented a new decision tree for ordinal classification (oDT). Our experiments

show that this model is competitive and on par with the state of the art (performing better than

C4.5 in some cases).

While our results were not superior to Frank and Hall’s approach, we claim that our method

has its advantages, namely on interpretability, as we believe that our trees are easier to read and

comprehend than the set of K−1 uncorrelated trees generated by the Frank and Hall method.

Nevertheless, this method still has some possible improvements, which are discussed on Sec-

tion 6.2.1.

39

Ordinal Decision Tree using the Data Replication Method

Table 4.2: Comparison of the oDT with C4.5 and the Frank & Hall method

(a) Percentage of incorrect classifications: mean (standard deviation) of
10 experiments

Dataset oDT C4.5 Frank & Hall
Circle 5.48(2.29) 5.22(2.08) 5.39(2.33)
Non-mon. 19.92(4.16) 20.10(4.33) 19.54(3.79)
ERA 74.48(4.21) 72.22(3.78) 72.67(3.96)
ESL 34.75(6.68) 35.17(6.04) 34.84(5.93)
LEV 38.42(4.41) 39.56(4.13) 38.96(4.29)
SWD 42.13(4.86) 43.18(4.29) 41.64(4.34)
Balance 22.77(4.57) 22.56(3.33) 24.02(4.36)
BCCT 10.41(2.99) 9.62(2.79) 10.04(2.98)

(b) Mean Absolute Error: mean (standard deviation) of 10 experiments

Dataset oDT C4.5 Frank & Hall
Circle 0.05(0.02) 0.05(0.02) 0.05(0.02)
Non-Mon. 0.20(0.04) 0.20(0.04) 0.20(0.04)
ERA 1.24(0.11) 1.32(0.11)• 1.22(0.10)
ESL 0.38(0.08) 0.39(0.07) 0.37(0.07)
LEV 0.42(0.05) 0.43(0.05) 0.42(0.05)
SWD 0.45(0.05) 0.46(0.05) 0.44(0.05)
Balance 0.29(0.06) 0.33(0.06)• 0.29(0.06)
BCCT 0.11(0.03) 0.11(0.03) 0.11(0.03)

◦,• statistically significant improvement or degradation

40

Chapter 5

Ensemble Methods for Ordinal Data
Classification

In this chapter a we present some changes to ADABOOST and Random Forests, to show how

ensemble methods can take advantage of the order relation in our data.

5.1 AdaBoost

One interesting property of ADABOOST is its similarities with Decision Trees [KM96], especially

when a Decision Stump1 is used as a weak learner.

With this, we can try and apply the same principles from our ordinal decision tree to AD-

ABOOST. We can do this by independently boosting each replica while forcing that, at every

iteration, all weak classifiers use the same attribute:

1. As before, we create K−1 binary replicas of our dataset;

2. Initialize the weights such as the sum of the weights of each replica is 1;

3. We train a weak classifier for each attribute of each replica;

4. Pick the best attribute (from the original attributes) âtt based on a combination of the errors

of each replica;

5. For this iteration, use only the classifiers trained with attribute âtt.

6. Calculate the weight of each replica k at iteration i;

7. If a replica has an error superior to 50%, stop boosting that replica;

1A Decision Stump is a very simple classification algorithm that only makes a cut in one attribute. It is equivalent
to a Decision Tree with only one branch node.

41

Ensemble Methods for Ordinal Data Classification

8. The training stops if every replica has an error superior to 50% or after a set number of

iterations.

A more detailed explanation of this algorithm can be seen on algorithm 5.1.

Data: A dataset D = (D, f) with N elements
Result: A classifier f̂F
Replicate the dataset in K−1 binary replicas Dk = (Dk, fk)
Initialize the example weights as w j

k := 1
N ;

Initialize activek = true; i := 1;
while ¬EndingCondition do

forall the att ∈ Attributes do
forall the k : 0≤ k < K−1∧activek do

f̂ i
k,att = train(Dk,att);

errori
k,att = ∑

N
j=1 w j

k[[f̂
i
k,att(d

j
k) 6= f (d j

k)]];
end

end
âtt i = argminatt combination(errori

k,att); ; // The attribute to split on

forall the k : 0≤ k < K−1∧activek do
f̂ i
k = f̂ i

k,âtt i
;

errori
k = errori

k,âtt i
;

if errori
k > 0.5 then

activek := f alse; // Stop boosting this replica
else

α i
k = 0.5log(errori

k
1−errori

k
) ; // Classifier weight

forall the j do
w j

k := w j
k(α

i
k)

1−[[f̂ i
k(d j)6= fk(d j)]] ; // Updates the example weights

end
Fk := Fk∪

{
f̂ i
k

}
; // Binary ensemble for relica k

end
end
Normalize the weights so that ∀k : ∑ j w j

k = 1;
i := i+1

end
forall the k do

f̂Fk(x) = sign(∑i α i
k f̂ i

k(x)) ; // Binary classifier for relica k
end
f̂F = getOrdinalClassifier(f̂F1 , ..., f̂FK−1) ; // Combines the binary
results

Algorithm 5.1: Ordinal ADABOOST

In our implementation, we implement the function train(dataset,att) by creating a new

dataset with only two attributes: att and the label. We then train our function in this dataset.

Nevertheless, any function that compels a classifier to use a specific attribute could be used.

As was previously the case, there are many ways to combine our error function in order to

pick the best attributes. To select the best combination method, we ran our ADABOOST variant

42

Ensemble Methods for Ordinal Data Classification

with the various alternatives and limited the maximum number of iterations to 102. The results are

presented on Table 5.1.

Table 5.1: Comparison of various combination methods (oADABOOST)

(a) Percentage of incorrect classifications: mean of 10 experiments

Dataset Sum Average Product Geometric Min. Max. Dist. Min. Dist. Max.
Circle 20.43 20.43 20.43 20.38 21.41 22.08 20.59 20.25
Non-mon. 74.42 74.42 74.52 74.52 74.45 74.28 74.48 74.49
ERA 75.12 75.12 74.97 74.93 75.17 75.23 75.16 74.88
ESL 35.41 35.41 35.44 36.31 36.04 34.65 33.91 35.60
LEV 38.40 38.40 38.24 38.33 39.96 38.40 38.42 38.35
SWD 43.84 43.84 43.83 43.38 44.42 43.14 43.82 43.96
Balance 15.40 15.40 15.43 15.19 15.27 15.76 15.43 15.19
BCCT 28.75 28.75 29.13 29.00 29.88 32.49 29.33 29.12

(b) Mean Absolute Error: mean of 10 experiments

Dataset Sum Average Product Geometric Min. Max. Dist. Min. Dist. Max.
Circle 0.21 0.21 0.21 0.21 0.22 0.23 0.21 0.21
Non-mon. 1.01 1.01 1.02 1.02 1.01 1.03 1.02 1.02
ERA 1.23 1.23 1.23 1.23 1.24 1.23 1.23 1.23
ESL 0.38 0.38 0.38 0.39 0.39 0.38 0.37 0.39
LEV 0.42 0.42 0.42 0.42 0.44 0.42 0.42 0.42
SWD 0.46 0.46 0.46 0.45 0.46 0.45 0.46 0.46
Balance 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.20
BCCT 0.30 0.30 0.30 0.30 0.31 0.34 0.30 0.30

Considering this, we will use the sum as a combination method on our next comparisons.

In Table 5.2 we show a comparison of the following ADABOOST variants, instantiated with

Decision Stumps, limited to 100 iterations:

ADABOOST.M1 One of the most common ADABOOST variants with support for multiple classes [FS+96].

ADABOOST.M1W A small variant of the ADABOOST.M1 algorithm designed for with weak

learners such as Decision Stumps [EP02].

ADABOOST.OR A variant of the ADABOOST.M1 designed for ordinal classification [LL09].

Since it needs an ordinal classifier as the weak learner, we used our decision tree limited to

one cut.

oADABOOST Our ADABOOST variant.

It is possible to see that our method presents favorable results when compared to other boosting

algorithms. Nevertheless, the current version only works with Decision Stumps, and therefore

there’s some interesting future work that could be done to make it more versatile.

2 This limit is purposely small so that different combination methods have a larger impact on the final result.

43

Ensemble Methods for Ordinal Data Classification

Table 5.2: Comparison of oADABOOST with ADABOOST variants

(a) Percentage of incorrect classifications: mean (standard deviation) of 10 experiments

Dataset oADABOOST ADABOOST.M1 ADABOOST.M1W ADABOOST.OR
Circle 6.87(2.61) 39.58(3.07)• 55.03(1.28)• 16.16(3.79)•
Non-mon. 66.30(3.14) 69.99(2.38)• 60.97(4.97)◦ 76.26(1.79)•
ERA 75.09(3.87) 78.19(2.32) 77.94(3.50) 78.10(2.31)
ESL 33.02(6.08) 56.97(2.89)• 46.77(6.05)• 44.86(5.48)•
LEV 37.63(4.44) 57.60(2.85)• 42.14(4.72)• 50.34(4.19)•
SWD 43.09(5.01) 48.20(3.90)• 48.26(5.13)• 48.20(3.90)•
Balance 2.57(2.14) 28.23(4.24)• 8.29(2.40)• 16.78(7.99)•
BCCT 12.80(2.76) 37.01(2.81)• 37.82(5.04)• 31.94(3.01)•

(b) Mean Absolute Error: mean (standard deviation) of 10 experiments

Dataset oADABOOST ADABOOST.M1 ADABOOST.M1W ADABOOST.OR
Circle 0.07(0.03) 0.44(0.03)• 0.55(0.01)• 0.16(0.04)•
Non-Mon. 0.99(0.07) 1.30(0.08)• 1.19(0.14)• 1.03(0.04)
ERA 1.24(0.10) 1.43(0.07)• 1.44(0.12)• 1.43(0.07)•
ESL 0.35(0.07) 0.73(0.06)• 0.56(0.08)• 0.51(0.07)•
LEV 0.41(0.05) 0.71(0.03)• 0.46(0.06)• 0.57(0.05)•
SWD 0.45(0.05) 0.50(0.04)• 0.54(0.06)• 0.50(0.04)•
Balance 0.03(0.02) 0.49(0.09)• 0.08(0.02)• 0.18(0.09)•
BCCT 0.13(0.03) 0.38(0.03)• 0.40(0.07)• 0.33(0.03)•

◦,• statistically significant improvement or degradation

5.2 Random Forests

While Sousa and Cardoso shown that combinations of consistent classifiers using the median

results in a consistent classifier [SC11], they only studied the combination of consistent Decision

Trees via bagging.

Our oDT algorithm however, while not guaranteed to be globally consistent, has a tendency

to be consistent on each cut, with the exception of some edge cases (see appendix B for a more

detailed proof). Also, since our new proposed algorithm is a Decision Tree, it is interesting to see

if there’s any way to improve ensembles designed for Decision Trees, such as random forests.

In Table 5.3 we present a quick comparison of random forests (each composed of 100 trees

and picking from blog2(M)+1c attributes on each node) to see if it is favorable to use the median

or/and to use our ordinal Decision Tree when building the forests.

While there was not much variations on our results, it appears that the median is a better choice

when combining ordinal classifiers. On the other hand, while the usage of our Decision Tree also

appears to improve the results of normal Random Forests (especially on the MAE), the results are

not as convincing.

44

Ensemble Methods for Ordinal Data Classification

5.3 Conclusion

In this chapter we presented a new ADABOOST variant, oADABOOST, which presents a competi-

tive performance when compared to other boosting algorithms. From this, it appears that boosting

ensembles designed for ordinal classification might benefit of imposing restrictions, such as local

parallelism, on its classifiers during training.

We also studied if Random Forests would benefit from using an ordinal classifier (in this case,

our Decision Tree) and using the median to combine the results. From this, it seems that by using

the median one can achieve better results on ordinal tasks.

Even though the results were positive, there are some changes that could lead to improvements

of these methods, and therefore would be interesting to study. Those ideas are presented later on

Sections 6.2.2 (oADABOOST) and 6.2.3 (Random Forests).

45

Ensemble Methods for Ordinal Data Classification

Table 5.3: Comparison of Random Forest variants

(a) Percentage of incorrect classifications: mean (standard deviation) of 10 experiments - Comparison with normal
Random Forests

Dataset Random Forest R. For. (Median) R. For. (oDT) R. For. (oDT + Median)
Circle 4.63(2.16) 4.62(2.18) 5.01(2.09) 4.94(2.04)
Non-mon. 17.74(4.17) 17.67(4.11) 16.99(3.48) 17.03(3.44)
ERA 73.87(4.41) 75.46(3.65) 73.95(4.53) 74.01(4.42)
ESL 33.43(5.95) 33.76(5.92) 32.20(5.86) 31.93(5.89)
LEV 37.69(4.00) 36.58(4.06) 37.36(4.53) 37.28(4.58)
SWD 42.79(4.34) 41.07(4.44) 41.57(4.32) 41.50(4.33)
Balance 18.47(3.54) 18.28(4.24) 17.94(3.99) 14.91(4.99)◦
BCCT 1.61(1.22) 2.24(1.49)• 4.44(2.04)• 4.75(2.11)•

(b) Mean Absolute Error: mean (standard deviation) of 10 experiments - Comparison with normal Random Forests

Dataset Random Forest R. For. (Median) R. For. (oDT) R. For. (oDT + Median)
Circle 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
Non-Mon. 0.18(0.04) 0.18(0.04) 0.17(0.03) 0.17(0.03)
ERA 1.36(0.13) 1.28(0.10)◦ 1.22(0.11)◦ 1.22(0.11)◦
ESL 0.36(0.06) 0.36(0.06) 0.35(0.07) 0.34(0.07)
LEV 0.41(0.05) 0.40(0.05) 0.41(0.05) 0.41(0.05)
SWD 0.46(0.05) 0.43(0.05)◦ 0.43(0.05) 0.43(0.05)
Balance 0.20(0.04) 0.19(0.05) 0.20(0.05) 0.16(0.05)◦
BCCT 0.02(0.01) 0.02(0.02) 0.04(0.02)• 0.05(0.02)•

(c) Percentage of incorrect classifications: mean (standard deviation) of 10 experiments - Comparison with modified
Random Forests

Dataset R. For. (oDT + Median) Random Forest R. For. (Median) R. For. (oDT)
Circle 4.94(2.04) 4.63(2.16) 4.62(2.18) 5.01(2.09)
Non-mon. 17.03(3.44) 17.74(4.17) 17.67(4.11) 16.99(3.48)
ERA 74.01(4.42) 73.87(4.41) 75.46(3.65) 73.95(4.53)
ESL 31.93(5.89) 33.43(5.95) 33.76(5.92) 32.20(5.86)
LEV 37.28(4.58) 37.69(4.00) 36.58(4.06) 37.36(4.53)
SWD 41.50(4.33) 42.79(4.34) 41.07(4.44) 41.57(4.32)
Balance 14.91(4.99) 18.47(3.54)• 18.28(4.24)• 17.94(3.99)•
BCCT 4.75(2.11) 1.61(1.22)◦ 2.24(1.49)◦ 4.44(2.04)

(d) Mean Absolute Error: mean (standard deviation) of 10 experiments - Comparison with modified Random Forests

Dataset R. For. (oDT + Median) Random Forest R. For. (Median) R. For. (oDT)
Circle 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
Non-Mon. 0.17(0.03) 0.18(0.04) 0.18(0.04) 0.17(0.03)
ERA 1.22(0.11) 1.36(0.13)• 1.28(0.10)• 1.22(0.11)
ESL 0.34(0.07) 0.36(0.06) 0.36(0.06) 0.35(0.07)
LEV 0.41(0.05) 0.41(0.05) 0.40(0.05) 0.41(0.05)
SWD 0.43(0.05) 0.46(0.05) 0.43(0.05) 0.43(0.05)
Balance 0.16(0.05) 0.20(0.04)• 0.19(0.05)• 0.20(0.05)•
BCCT 0.05(0.02) 0.02(0.01)◦ 0.02(0.02)◦ 0.04(0.02)

◦,• statistically significant improvement or degradation

46

Chapter 6

Conclusions and Future Work

6.1 Overview and Conclusions

In this dissertation we presented the state of the art on both ordinal data classification and ensemble

methods (including those for ordinal tasks).

We then presented a new decision tree and the data replication method, which presents better

results on ordinal classification tasks than C4.5.

Finally, we presented variations of two popular ensemble methods: ADABOOST and Random

Forests, that not only appear to perform better then the original methods, but also shed some light

on possible improvements for ordinal ensembles.

With this, we conclude that the results of ensemble methods for ordinal classification tasks can

be improved by two simple modifications:

• Enforcing local parallelism on each weak classifier (as seen in oDT and oADABOOST)

• Combining the results using a measure that takes the order into account (such as the median)

6.2 Future Work

While our algorithms presented good results, there are many ideas that could not be explored due

to time constraints.

6.2.1 Future Work on oDT

One of the main modifications that could be made to our decision tree is the choice of the thresh-

olds θk. As shown in appendix B, there are some cases where the order of our cuts is not guar-

anteed. It would, therefore, be interesting to study if there is any way to enforce this order (using

reasonable computational resources) and if it improves our classifier’s performance.

Another problem that our current implementation has is the XOR problem. While we already

presented some solutions to this problem, there might be other options. One interesting idea is that,

if we apply the ordering constraint to our thresholds our θk, it should be impossible that θk = ∞

47

Conclusions and Future Work

if (θk−1 < ∞∧θk+1 < ∞). Therefore, it might be possible to enforce this restriction in such a way

that solves this problem (or makes it even rarer). On the other hand, this could have the opposite

result, and propagate the XOR problem to other replicas, therefore special care should be taken

when implementing such constraint.

Also, we used a very simple approach to post-pruning, which might not be the best one.

It might be interesting to see if executing the post-pruning on the ordinal space achieves better

results. One simple way to do this could be to convert our final ordinal tree into a normal decision

tree, and perform the pruning on that tree. Note that this transformation can be achieved in the

following way:

1. Assume that our ordinal Decision Tree are K−1 binary trees Tk;

2. Replace the values of the leaves according to the mapping (C− 7→ 0,C+ 7→ 1);

3. Initiate your Decision Tree as a single tree with a single leaf (with value 0);

4. Start with k = 1;

5. Substitute each leaf (that has label y) by a copy of Tk, however, add y to the value of each

leaf of this new tree;

6. Repeat until k = K−1;

7. Assign a ordinal variable Cy+1 to each leaf.

While this new decision tree is equivalent to our ordinal tree, pruning it should lead to different

results. The pruned tree, however, will lose some of the correlation of our ordinal tree and might

be much larger than our ordinal tree1 (although this problem should be minimized by the post-

pruning). Therefore, it might also be interesting to explore ways to prune our tree in its ordinal

representation.

Finally, it would be interesting to apply the post-processing steps of Cardoso and Sousa [CS10]

to our ordinal tree, to see if the restrictions during the tree growth can lead to improvements (either

on the performance or optimization time) compared to other Decision Trees.

6.2.2 Future Work on oADABOOST

While our ADABOOST variant presented good results, our choice of attribute makes it unsuitable

to be instantiated with more powerful algorithms (e.g. SVMs), as it does not allow them to make

cuts that are not orthogonal to our attribute axes. Therefore, it might be interesting to study the

possibility of, instead of forcing our algorithm to be trained along an attribute, allow it to be trained

along a vector/combination of attributes. Unfortunately, the choice of these combinations does not

appear to be trivial, and they might need to be randomly generated.

1Trees generated by this transformation have a maximum depth of (K− 1) ∗ d, where d is the maximum depth of
our ordinal tree and have many nodes that are impossible to reach.

48

Conclusions and Future Work

6.2.3 Future Work on Random Forests

Unfortunately, there was not enough time in this dissertation to explore Random Forests in more

detail. Nevertheless, it would be interesting to see the results of extending the work of Sousa and

Cardoso [SC11] to Random Forests. Note that simply applying their approach to each tree in the

forest would result in a computationally expensive problem. Therefore it would be interesting

to see if one could generate a Random Forest that simplified each sub-problem, for example by

imposing that each tree used a certain maximum number of attributes.

49

Conclusions and Future Work

50

References

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[BVh13] Mohamad Hasan Bahari and Hugo Van hamme. Normalized ordinal distance; a
performance metric for ordinal, probabilistic-ordinal or partial-ordinal classification
problems. In Proceedings, pages 1–7, 2013.

[CDC07] Jaime S Cardoso and Joaquim F Pinto Da Costa. Learning to classify ordinal
data: The data replication method. Journal of Machine Learning Research, 8(1393-
1429):6, 2007.

[CK05] Wei Chu and S Sathiya Keerthi. New approaches to support vector ordinal regres-
sion. In Proceedings of the 22nd international conference on Machine learning,
pages 145–152. ACM, 2005.

[CS10] Jaime S Cardoso and Ricardo Sousa. Classification models with global constraints
for ordinal data. In Machine Learning and Applications (ICMLA), 2010 Ninth Inter-
national Conference on, pages 71–77. IEEE, 2010.

[CS11] Jaime S Cardoso and Ricardo Sousa. Measuring the performance of ordinal clas-
sification. International Journal of Pattern Recognition and Artificial Intelligence,
25(08):1173–1195, 2011.

[CSD12] Jaime S Cardoso, Ricardo Sousa, and Inês Domingues. Ordinal data classification
using kernel discriminant analysis: A comparison of three approaches. In Machine
Learning and Applications (ICMLA), 2012 11th International Conference on, vol-
ume 1, pages 473–477. IEEE, 2012.

[DB95] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. arXiv preprint cs/9501101, 1995.

[DF08] Wouter Duivesteijn and Ad Feelders. Nearest neighbour classification with mono-
tonicity constraints. In Machine Learning and Knowledge Discovery in Databases,
pages 301–316. Springer, 2008.

[Die97] Thomas G Dietterich. Machine-learning research. AI magazine, 18(4):97, 1997.

[Die00] Thomas G Dietterich. Ensemble methods in machine learning. In Multiple classifier
systems, pages 1–15. Springer, 2000.

[Dom12] Pedro Domingos. A few useful things to know about machine learning. Communi-
cations of the ACM, 55(10):78–87, 2012.

51

REFERENCES

[EP02] Günther Eibl and Karl Peter Pfeiffer. How to make adaboost. m1 work for weak
base classifiers by changing only one line of the code. In Machine Learning: ECML
2002, pages 72–83. Springer, 2002.

[Fer07] Artur Ferreira. Survey on boosting algorithms for supervised and semi-supervised
learning. Institute of Telecommunications, 2007.

[FH01] Eibe Frank and Mark Hall. A simple approach to ordinal classification. Springer,
2001.

[FS95] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In Computational learning theory, pages
23–37. Springer, 1995.

[FS+96] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.
In ICML, volume 96, pages 148–156, 1996.

[HR76] Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees is
np-complete. Information Processing Letters, 5(1):15–17, 1976.

[KM96] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision
tree learning algorithms. In Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing, pages 459–468. ACM, 1996.

[LL09] Hsuan-Tien Lin and Ling Li. Combining ordinal preferences by boosting. In Pro-
ceedings ECML/PKDD 2009 Workshop on Preference Learning, pages 69–83, 2009.

[Min89] John Mingers. An empirical comparison of selection measures for decision-tree
induction. Machine learning, 3(4):319–342, 1989.

[MMSJS12] João Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire De
Sousa. Ensemble approaches for regression: A survey. ACM Computing Surveys
(CSUR), 45(1):10, 2012.

[MS95] Sreerama K Murthy and Steven Salzberg. Decision tree induction: How effective is
the greedy heuristic? In KDD, pages 222–227, 1995.

[PB00] Rob Potharst and Jan C Bioch. Decision trees for ordinal classification. Intelligent
Data Analysis, 4(2):97–111, 2000.

[PdCAC08] Joaquim F Pinto da Costa, Hugo Alonso, and Jaime S Cardoso. The unimodal model
for the classification of ordinal data. Neural Networks, 21(1):78–91, 2008.

[PMS01] MJ Pazzani, S Mani, and WR Shankle. Acceptance of rules generated by machine
learning among medical experts. Methods of information in medicine, 40(5):380–
385, 2001.

[SC11] Ricardo Sousa and Jaime S Cardoso. Ensemble of decision trees with global con-
straints for ordinal classification. In Intelligent Systems Design and Applications
(ISDA), 2011 11th International Conference on, pages 1164–1169. IEEE, 2011.

[Sch90] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–
227, 1990.

52

REFERENCES

[SL02] Amnon Shashua and Anat Levin. Ranking with large margin principle: Two ap-
proaches. In Advances in neural information processing systems, pages 937–944,
2002.

[SYdCC13] Ricardo Sousa, Iryna Yevseyeva, Joaquim F Pinto da Costa, and Jaime S Cardoso.
Multicriteria models for learning ordinal data: A literature review. In Artificial In-
telligence, Evolutionary Computing and Metaheuristics, pages 109–138. Springer,
2013.

[TPV08] Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vlahavas. A taxonomy and
short review of ensemble selection. In ECAI 2008, workshop on supervised and
unsupervised ensemble methods and their applications, 2008.

[WB06] Willem Waegeman and Luc Boullart. An ensemble of weighted support vector ma-
chines for ordinal regression. Transactions on Engineering, Computing and Tech-
nology, 12:71–75, 2006.

[WFT+99] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes, and
Sally Jo Cunningham. Weka: Practical machine learning tools and techniques with
java implementations. 1999.

53

REFERENCES

54

Appendix A

Quick Notation Reference

X Feature Space

xi Feature Vector xi = (xi,1,xi,2, ...,xi,n) ∈ X – The i subscript might be omitted

Y Label space

D Dataset D = (D, f);

D Set of examples D⊆X – D = (d1,d2, ...,dn)

f Example labeling f : D→Y
D′ A subset of a dataset D = (D, f) – D′ = (D′, f) and D′ ⊂ D

f̂ Learned classifier f̂ : X →Y
g Perfect classifier g : X →Y
H Hypothesis spaceH= {h1,h2, ...,hn} – f̂ ∈H
w Weight vector w = (w1,w2, ...,wn) – usually used to define an hyperplane w ·

x+b = 0

Z Non-linear feature space

Φ Non-linear transformation Φ : X →Z of the feature space

≺ Order relation on an ordinal classification problem – a ≺ b stands for “a pre-

cedes b”

Ci Label of an ordinal classification problem where Y = {C1,C2, ...Cn} – if our

problem is ordinal, we assume that C1 ≺ C2 ≺ ...≺ Cn

C+ and C− Label of a binary classification problem

[[·]] Indicator function. [[·]] is 1 if the inner condition is true, 0 otherwise.

F Ensemble of classifiers F =
{

f̂1, f̂2, ..., f̂n
}

f̂F Classifier generated from an ensemble F
e0 Vector filled with zeros

eq Vector filled with zeros except on the q-th position

θ Split point (e.g. position of a cut made by a Decision Tree)

55

Quick Notation Reference

56

Appendix B

Proof of local consistency

Cardoso and Sousa [CS10] proposed the definition of consistency for ordinal functions. Intuitively,

a function is said to be consistent in the ordinal setting if adjacent contiguous decision regions

have adjacent classes (an example of a consistent and a non-consistent function can be seen on

figure 3.2).

In this chapter, we will show that, for most K-class ordinal problems transformed with the data

replication method, if our learning algorithm chooses the K−1 thresholds θ̂k on an attribute that

maximize the information gain on each replica k, it holds that θ̂1 ≤ θ̂2 ≤ ... ≤ θ̂K−1 ∨ θ̂1 ≥ θ̂2 ≥
...≥ θ̂K−1. Note that, if our thresholds are ordered, then that set of splits is generating a consistent

function.

B.1 Assumptions and Definitions

For the purposes of this proof we will have to make some assumptions about our dataset. First, we

will assume assume that our feature vectors xi ∈ D only have one attribute xi ∈ R. This is a valid

assumption for our algorithms, as they pick various thresholds from one attribute only. Due to this

assumption, we will use f (xi) and f (xi) interchangeably.

We will also assume that xi ∈ [0,1] to be able to avoid normalizing constants, and therefore

keep our expressions simpler. Since our algorithms do not use the absolute value of each point

(only its relative value), this is also a valid assumption (the results would be the same if our dataset

was normalized to fit this range).

We will assume that our dataset has an infinite number of points and that our dataset is noise-

less. We claim that this assumption is not as strong as it might seem, as most datasets do not have

that much noise and have a large number of points.

Finally, we will assume that C− and C+ behave as if there was a mapping (C− 7→ 0,C+ 7→ 1),

namely:

• C− ≺ C+.

• C−+C− = C−, C−+C+ = C+ and so on.

57

Proof of local consistency

• C++C+ and C−−C+ have undefined results.

This assumptions allow us to treat our problem in an analytical fashion using the following

two Lemmas:

Lemma 1. For a binary replica, we can calculate the information gain of a split at point θ̂ via:

−D · log2(D)− (1−D) · log2(1−D)

+L · log2(L)+(θ̂ −L) · log2(θ̂ −L)

+R · log2(R)+(1− θ̂ −R) · log2(1− θ̂ −R)

−θ̂ · log2(θ̂)− (1− θ̂) · log2(1− θ̂)

Where D=
∫ 1

0 f (x)dx, L=
∫

θ̂

0 f (x)dx and R=
∫ 1

θ̂
f (x)dx.

Lemma 2. The data replication method guarantees that fk(x) = C−⇒ fk+1(x) = C− and fk(x) =
C+⇒ fk−1(x) = C+.

B.2 Monotonic Problems

Definition 1. A dataset D = (D, f) is said to be monotonic if xi < x j⇒ f (xi)� f (x j) (monotoni-

cally increasing) or xi < x j⇒ f (xi)� f (x j) (monotonically decreasing).

If we assume that our dataset is monotonic, it is trivial to prove that the ordering constraints

are satisfied. Without loss of generality, we will assume that our dataset is increasingly monotonic.

Definition 2. The function u(·) will be used to represent the Heavyside step function, where

u(x) =

C− x < 0

C+ x≥ 0

Recall that the sum and subtraction operations on the binary labels C−,C+ are defined, allow-

ing the definition of a descending step function (C+−u(x)) and the combination of step functions.

Lemma 3. If a dataset is increasingly monotonic, all its replicas are increasingly monotonic

(assuming C− ≺ C+), then our functions fk behave like a step function and are defined by fk(x) =
u(x−θk).

Proof. The labeling of a replica k is given by:

fk(x) =

C− if f (x)� Ck

C+ if f (x)� Ck

Therefore, f (xi) � f (xj) ⇒ fk(xi) � fk(xj) which allows us to replace f (·) with fk(·) on

Definition 1.

58

Proof of local consistency

Since fk is binary and monotonically increasing, then there must be a point θk such that:

fk(x) =

C− x < θk

C+ x≥ θk

With this, we have that fk(x) = u(x−θk).

Lemma 4. If a dataset is increasingly monotonic, then fk(x) = u(x−θk) and it holds that θ1 ≤
θ2 ≤ ...≤ θK−1.

Proof. Assume that f is increasingly monotonic where f1(x) = u(x−θ1) and f2(x) = u(x−θ2).

As a counter example, assume that θ2 < θ1 (making our initial claim false).

Assume now a point p = (p) where θ2 < p < θ1. We know that f1(p) = C− and f2(p) = C+.

However, such point cannot exist, since according to Lemma 2 f2(x) = C+ ⇒ f1(x) = C+,

which is not true. Since there can be no points p = (p) where θ2 < p < θ1, it must hold that

θ1 ≤ θ2 ≤ ...≤ θK−1.

Theorem 1. If a dataset is increasingly monotonic and we pick the splits θ̂k that maximize the

information gain in each replica, then it holds that θ̂1 ≤ θ̂2 ≤ ...≤ θ̂K .

Proof. By Lemma 3, we have that fk(x) = u(x−θk). By applying this to Lemma 1, we have that:

D= 1−θ

L=

0 if θ̂ < θ

0 if θ̂ = θ

θ̂ −θ if θ̂ > θ

R=

1−θ if θ̂ < θ

1−θ if θ̂ = θ

1− θ̂ if θ̂ > θ

It is then possible to see that, when θ̂k = θk, our information gain is −θ · log2(θ)− (1−
θ) · log2(1− θ), which is equal to our initial entropy, and therefore its the maximum possible

information gain. It is also easy to see that for θ̂k < θk and θ̂k > θk our information gain will be

smaller. Therefore, we know that our cuts θ̂k will occur at positions θk.

B.3 Symmetric Problems

Definition 3. A dataset D = (D, f) is said to be symmetric if ∀x ∈ [0,1] : f (x) = f (1− x)

Unfortunately, if our dataset is perfectly symmetric, it is impossible to guarantee that our

thresholds θ̂k are ordered.

59

Proof of local consistency

Lemma 5. If a dataset is symmetric then, for every possible split θ̂ , there will be another possible

split θ̂ ′ with exactly the same information gain.

Proof. For every split θ̂ there is another possible split θ̂ ′ = 1− θ̂ .

Recall Lemma 1. For our first split θ̂ , we have that:

• D=
∫ 1

0 f (x)dx

• L=
∫

θ̂

0 f (x)dx

• R=
∫ 1

θ̂
f (x)dx

While for our second split θ̂ ′, we have:

• D′ =
∫ 1

0 f (x)dx =D

• L′ =
∫

θ̂ ′

0 f (x)dx =
∫ 1−θ̂

0 f (x)dx =
∫ 1−θ̂

0 f (1− x)dx =
∫ 1

θ̂
f (x)dx =R

• R′ =
∫ 1

θ̂ ′ f (x)dx =
∫ 1

1−θ̂
f (x)dx =

∫ 1
1−θ̂

f (1− x)dx =
∫

θ̂

0 f (x)dx = L

With this, it is easy to show that the information gain for both splits will be the same.

Theorem 2. If a dataset is symmetric and we pick the splits θ̂k that maximize the information gain

in each replica, then we cannot guarantee that the splits θ̂k are ordered,

Proof. Assume that our dataset has a set of thresholds θ̂1 ≤ θ̂2 ≤ ...≤ θ̂K−1, which maximize the

information gain, and a symmetric set of thresholds θ̂ ′K−1 ≤ θ̂ ′K−2 ≤ ...≤ θ̂ ′1, where ∀k : θ̂k < θ̂ ′k.

Since according to Lemma 5 we know that the information gain for a split at point θ̂k is the

same as the θ̂ ′k, then it is possible that our method will pick splits from different sets, and therefore

the chosen splits will not be ordered.

B.4 Concave/Convex Problems

Definition 4. A dataset D = (D, f) is said to be concave if it behaves as a monotonically increas-

ing dataset Dinc = (Dinc, f inc) until a point p and behaves as a monotonically decreasing dataset

Ddec = (Ddec, f dec) from point p onwards.

(The Definition for a convex dataset can be obtained by switching the order of Dinc and Ddec)

If we assume that our dataset is concave or convex and non-symmetric, it is possible to prove

that the ordering constraints can be satisfied. Without loss of generality, we will assume that our

dataset is concave.

Lemma 6. If a dataset is concave, all its replicas are concave, which in turn guarantees that our

functions fk are defined by fk(x) = u(x−θ inc
k)−u(x−θ dec

k), with θ inc
k < p < θ dec

k .

60

Proof of local consistency

Proof. The labeling of a replica k is given by:

fk(x) =

 f inc
k (x) if x < p

f dec
k (x) if x > p

=

u(x−θ inc
k) if x < p

1−u(x−θ dec
k) if x > p

From Definition 4 we know that θ inc
k < θ dec

k , therefore fk(x) = u(x−θ inc
k)−u(x−θ dec

k)

Lemma 7. Every replica of a concave dataset can be represented as a symmetric replica with a

shift δk, where fk(x) = u(x− (θk +δk))−u(x− (1−θk +δk)) and θk ∈ [0,0.5] and δk ∈ [−θk,θk].

Proof. From Lemma 6, we know that fk(x) = u(x−θ inc
k)−u(x−θ dec

k).

Assume that we have θ = 1−(θ dec−θ inc)
2 and a symmetric point θ ′ = 1−θ = 1+(θ dec−θ inc)

2 . We

claim that there must exist a shift δ that makes the following equalities true:θ inc = θ +δ

θ dec = θ ′+δ

By solving this, we obtain the solution δ = θ dec+θ inc−1
2 .

Therefore, one can conclude that fk(x) = u(x− (θk + δk))− u(x− (1− θk + δk)), with θk ∈
[0,0.5]. Also, since θk +δ ≥ 0 and 1−θk +δ ≤ 1,it must hold that δk ∈ [−θk,θk]

Lemma 8. If δk > 0, then the maximum information gain will be at θ inc
k and vice versa.

Proof. Recall Lemma 1 and Lemma 7.

Now, we have that:

D= 1−2 ·θ

L=

0 if θ̂ < θ +δ

0 if θ̂ = θ +δ

θ̂ − (θ +δ) if θ +δ < θ̂ < 1−θ +δ

1−2 ·θ if θ̂ = 1−θ +δ

1−2 ·θ if θ̂ > 1−θ +δ

=

0 if θ̂ ≤ θ +δ

θ̂ − (θ +δ) if θ +δ < θ̂ < 1−θ +δ

1−2 ·θ if θ̂ ≥ 1−θ +δ

R=

1−2 ·θ if θ̂ < θ +δ

1−2 ·θ if θ̂ = θ +δ

(1−θ +δ)− θ̂ if θ +δ < θ̂ < 1−θ +δ

0 if θ̂ = 1−θ +δ

0 if θ̂ > 1−θ +δ

=

1−2 ·θ if θ̂ ≤ θ +δ

(1−θ +δ)− θ̂ if θ +δ < θ̂ < 1−θ +δ

0 if θ̂ ≥ 1−θ +δ

By applying Lemma 1 to our expressions and by limiting the domain of θ and δ according

to 7, it can be shown that the first part of our expression (i.e. when hatθ ≤ θ +δ) is monotonically

61

Proof of local consistency

increasing, our middle part (i.e. when θ + δ < θ̂ < 1− θ + δ) is convex and the last part (i.e.

when θ̂ ≥ 1−θ +δ) is monotonically decreasing. Therefore, our function has two local maxima:

one at θ +δ and another one at 1+θ +δ .

By substituting θ̂ for θ + δ and 1−θ + δ , it is possible to show that the information gain at

θ +δ is superior to the one at 1−θ +δ if and only if:

− (θ +δ)log2(θ +δ)− (1− (θ +δ))log2(1− (θ +δ))

>

− (θ −δ)log2(θ −δ)− (1− (θ −δ))log2(1− (θ −δ))

Note that both sides of this inequality are actually entropies of binary events: The first one

of an event with probability p1 = (θ + δ) and the second one of an event with probability p2 =

(θ −δ). Knowing that, from Lemma 7, θ ∈ [0,0.5], δ ∈ [−θ ,θ] and that the maximum value of

the Shannon entropy for a binary event occurs at probability p = 0.5, it is easy to see that the first

part will dominate when δ > 0 and vice versa.

Also, it can be seen that, when δ = 0, both sides will be the same, as should be expected since

that makes our dataset symmetric.

Theorem 3. If ∀k : δk > 0 or ∀k : δk < 0, then θ̂1 ≤ θ̂2 ≤ ...≤ θ̂K−1∨ θ̂1 ≥ θ̂2 ≥ ...≥ θ̂K−1.

Proof. If δk > 0, then all splits θk will take place on the monotonically increasing part of the

concave function, and therefore will be ordered (and vice versa).

62

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives and Contributions
	1.3 Structure

	2 Background
	2.1 Supervised Learning
	2.1.1 Formal Definition
	2.1.2 Learning Algorithms
	2.1.3 Nonlinear Transformations

	2.2 Ordinal Data Classification
	2.2.1 Ordinal Datasets

	2.3 Evaluation Metrics
	2.4 Ensemble Methods

	3 State of the Art
	3.1 Ordinal Data Classification
	3.1.1 Naïve Approaches
	3.1.2 Monotonic Data Approaches
	3.1.3 Parallel Boundaries using SVMs
	3.1.4 Subdivision into Binary Problems
	3.1.5 Data Replication Approaches
	3.1.6 Unimodal Distribution Constraint
	3.1.7 Globally Consistent Approaches

	3.2 Ensemble Methods
	3.2.1 Ensemble Generation
	3.2.2 Ensemble Pruning
	3.2.3 Ensemble Integration
	3.2.4 Ensemble Methods for Ordinal Data Classification

	3.3 Conclusions

	4 Ordinal Decision Tree using the Data Replication Method
	4.1 Limitations of the Data Replication Method
	4.2 Proposed Solution
	4.3 Growing the Tree
	4.3.1 The XOR problem

	4.4 Classifying a Point
	4.5 Results
	4.6 Conclusion

	5 Ensemble Methods for Ordinal Data Classification
	5.1 AdaBoost
	5.2 Random Forests
	5.3 Conclusion

	6 Conclusions and Future Work
	6.1 Overview and Conclusions
	6.2 Future Work
	6.2.1 Future Work on oDT
	6.2.2 Future Work on oAdaBoost
	6.2.3 Future Work on Random Forests

	References
	A Quick Notation Reference
	B Proof of local consistency
	B.1 Assumptions and Definitions
	B.2 Monotonic Problems
	B.3 Symmetric Problems
	B.4 Concave/Convex Problems

