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ABSTRACT 

The yeast Saccharomyces cerevisiae is one of the most important 

microorganisms in the Biological industry since it is the main responsible for 

beer, bread and wine production. Currently, quality control of these products 

has assumed a growing importance with a constant monitoring of the 

fermentation process. Microbiological monitoring consists both on the control of 

the necessary organisms to perform the fermentation and on the immediate 

detection of contaminating and very often spoiling organisms. 

Conventional microbial identification such as biochemical tests or 

differential and selective media cannot be routinely used in industry for rapid 

detection. As a consequence, the development of rapid detection technologies 

for food and beverage spoilage yeasts employing molecular biology-based 

methods has assumed a huge importance in industrial research.  

The present work focuses in the development and optimization of a 

fluorescence in situ hybridization method using a PNA probe targeting S. 

cerevisiae. The effects of formamide concentration, time and temperature of 

hybridization on the FISH signal were optimized by statistical analysis. The 

response surface methodology (RSM) was used to optimize hybridization 

efficiency by implementing the Box-Wilson design, also known as central 

composite design (CCD). According to diagnostic plots, the proposed quadratic 

model provides an adequate approximation to the real system. Statistical 

analysis of the results showed that the quadratic terms of these three variables 

had significant effect. However, no interactions between the three variables 

were found to contribute to the response at a significant level. The optimal 

conditions for higher hybridization efficiency were 53.9ºC of temperature, 57.8 

min of hybridization time and 43.8% of formamide concentration. Under these 

conditions, the model predicted a fluorescence intensity of 147 a.u. Verification 
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of the optimization showed that a fluorescence intensity of 183±13 a.u. was 

observed under the optimal conditions. Hence, the optimization was 

successfully achieved and the PNA-FISH method showed to be highly robust.  

Subsequently, a simplification of the protocol was carried out. It was 

shown that the number and concentration of components in the hybridization 

solution can be reduced to 50 mM Tris-HCl and a hybridization time of 30 min 

proved to be enough to distinguish a positive sample, presenting a fluorescence 

intensity of 69±18 a.u. These satisfactory outcomes along with the exclusion of 

formamide, the simplicity and functionality of the PNA-FISH method may open 

up new applications at an industrial level. 

Key-words: Fluorescence in situ hybridization, PNA-FISH, Response Surface 

Methodology, Saccharomyces cerevisiae  
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RESUMO  

A levedura Saccharomyces cerevisiae é o microorganismo mais 

importante na indústria biológica pois é o principal responsável pela produção 

de cerveja, pão e vinho. Atualmente, o controlo de qualidade destes produtos 

tem assumido uma importância crescente com a constante monitorização do 

processo de fermentação. A monitorização microbiológica consiste tanto no 

controlo dos organismos intervenientes como na deteção imediata de 

organismos contaminantes e que, muitas vezes, conduzem à deterioração do 

produto final. 

Uma identificação microbiana convencional, como testes bioquímicos ou 

meios diferenciais e seletivos, não pode ser utilizada diariamente na indústria. 

Como consequência, o desenvolvimento de tecnologias de deteção rápida com 

base em métodos de biologia molecular tem sido conduzido tendo como alvo 

leveduras que deterioram alimentos. 

A presente dissertação centra-se na hibridação in situ fluorescente com 

uma sonda de PNA direccionada para S. cerevisiae. Os efeitos da 

concentração de formamida, tempo e temperatura de hibridação no sinal de 

FISH foram otimizados por análise estatística. A metodologia de superfície de 

resposta (RSM) foi utilizada para otimizar a eficiência de hibridação através da 

implementação do desenho experimental Box-Wilson, também conhecido como 

desenho do composto central (DCC). De acordo com gráficos de diagnóstico, o 

modelo quadrático proposto prevê uma aproximação adequada do sistema 

real. A análise estatística dos resultados demonstrou que os termos 

quadráticos das três variáveis apresentam efeito significativo. No entanto, 

nenhuma interação entre as variáveis contribui para a resposta a nível 

significativo. As condições ótimas para uma eficiência de hibridação mais 

elevada são 53.9ºC de temperatura, 57.8 min de tempo de hibridação e uma 
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concentração de formamida de 43.8%. Sob estas condições, o modelo prevê 

uma intensidade de fluorescência de 147 u.a. Um ensaio de verificação da 

otimização demonstrou uma intensidade de fluorescência de 183±13 u.a. sob 

condições ótimas. A otimização foi alcançada com sucesso e o método de 

PNA-FISH demonstrou ser altamente robusto.  

De seguida, foi realizada uma otimização do protocolo. Demonstrou-se 

que o número e concentração de componentes na solução de hibridação pode 

ser reduzido a 50 mM Tris-HCl e um tempo de hibridação de 30 min revelou ser 

suficiente para distinguir uma amostra positiva, apresentando uma intensidade 

de fluorescência de 69±18 u.a. Estes resultados, juntamente com a eliminação 

da formamida do protocolo e a simplicidade e funcionalidade do método de 

PNA-FISH, podem abrir portas a novas aplicações a nível industrial. 

Palavras-chave: Hibridação in situ fluorescente, PNA-FISH, Metodologia de 

superfície de resposta, Saccharomyces cerevisiae 
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CHAPTER ONE 

WORK OUTLINE 

 

Project presentation and motivation 

The utilization of microorganism for food production has been part of the 

cultural evolution of humans for centuries. Although the same organisms are 

still employed for fermentation processes in a large scale nowadays, the food 

and beverage production is a highly engineered industrial process (Anon. 

2013a). Large fermenters require constant monitoring to assure the quality of 

the final product and to prevent a break-down directly coupled to loss of money. 

Beer, wine and bread production are based upon the fermentation of 

sugar by the yeast Saccharomyces cerevisiae, a commonly used industrial 

microorganism. Currently, quality control of food products has assumed a 

growing importance either with the control of the desired organisms as with the 

immediate detection of contaminating and very often spoiling organisms.  

In biological industry an accurate and rapid method for microorganism 

identification and monitoring is required. Fluorescence in situ hybridization 

(FISH) has been used for the study of the dynamics of yeast populations as it 

combines the direct and simple visualization of the result with the reliability of 

molecular methods (Amann and Ludwig 2000; Xufre et al. 2006).  

Main Objectives  

The present study has as main goal the optimization of a Fluorescence in 

situ hybridization with a Peptide Nucleic Acid (PNA) probe. The targeted 

microorganism was S. cerevisiae mostly as it is without any doubt the most 

employed microorganism in food and beverage production.  
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Besides the hybridization optimization with a response surface 

methodology (RSM) approach, a simplification of the protocol to enable a future 

adaptation to a microfluidic platform was carried out. In a first stage, a standard 

RSM experiment with a three-factor layout, the called central composite design 

(CCD), was performed. Temperature, time and formamide concentration were 

optimized. Additionally and since the method showed to be relatively robust, 

several simplification experiments were carried out.  

Thesis organization 

The present chapter describes the main objectives, context and 

motivations for the development of this work and serves as a guideline to the 

overall work presented in the subsequent chapters.  

In chapter two, a brief literature review is provided offering thorough 

information regarding microbial identification in biological industrial and 

fluorescence in situ hybridization technique. The response surface methodology 

is individually analysed in terms of the standard central composite design and 

its practical application in Bioengineering.  

Chapter three consists in the materials and methods section providing 

details about the yeast strain and the growth media as well as the hybridization 

procedures and the probe sequence. It is also described the fluorescence 

intensity measurement with the ImageJ software.  

Chapter four comprises the results and an extensive discussion that 

encompasses the regression models of response and the model checking 

adequacy provided by the RSM analysis. This chapter also includes a 

simplification of the protocol, a discussion about the ImageJ analysis and a S. 

cerevisiae probe specificity testing. 
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Chapters five and six present concluding remarks and perspectives for 

further research, respectively. An overview of the developed work and an 

approach for further research are provided. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

Biological Industry: Bread, beer and wine 

Antoine Lavoisier, one of the founders of modern chemistry, was a 

pioneer in the scientific studies of alcoholic fermentation describing this 

phenomenon as ‘one of the most extraordinary in chemistry’ (Barnett 2003). He 

also defined the chemical reactions that underpin the fermentation of sugars 

into ethanol and carbon dioxide, estimating the proportions of the elements in 

sugar, water, and yeast biomass. By the second half of the nineteenth century, 

Louis Pasteur proved that alcoholic fermentation was a microbial occurrence. 

Pasteur wrote ‘…we see that the yeast takes something from the sugar…’ and 

declared indisputably that alcoholic fermentation has a biological basis 

(Borneman et al. 2013). The yeast Saccharomyces cerevisiae was identified as 

the principal microorganism responsible for the conversion of grape must into 

wine, the oldest biotechnological endeavour (This et al. 2006).  

 Furthermore, S. cerevisiae is used for bread fermentation throughout the 

world being very important for bread quality. The fermentative activity of baker's 

yeast is essential not only for the rising action of the dough by production of 

CO2, but also in production of the wide range of aroma compounds identified in 

bread (Frasse et al. 1992; Birch et al. 2013). The metabolism of yeast originates 

most of the aroma compounds in the fermented bread such as alcohols, 

aldehydes and esters. Formation of these aroma compounds in bread is highly 

influenced by the fermentation temperature, fermentation time and yeast level. 

Recently, aroma of bread and the choice of yeast strain have attained more 

focus as a quality criterion for bread (Birch et al. 2013).  
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 Besides the centre stage role of S. cerevisiae in wine production and 

bread baking, it is also the main character in the beer brewing process clarifying 

its designation as brewer’s yeast. On an industrial scale, recent researches are 

ultimately focused on maintaining the integrity of the final product. The support 

of the supply of yeast requirements for fermentation has also been investigated 

(Lodolo et al. 2008). 

S. cerevisiae as a model organism 

S. cerevisiae has become increasingly important over recent years in 

biotechnology and is now the most investigated and best characterized 

eukaryotic microorganism. It has been used as a model eukaryote allowing the 

understanding of the biology of this cell and hence, ultimately, human biology 

(Ostergaard et al. 2000).  

For several centuries, S. cerevisiae has been used in the production of 

food and alcoholic beverages, and today this organism is also used in a number 

of different processes within the pharmaceutical industry. S. cerevisiae is a very 

attractive organism to work with since it is non-pathogenic, and due to its 

extensive application in the production of consumable products, it has been 

classified as a GRAS organism (generally recognized as safe) (Ostergaard et 

al. 2000; Murphy and Kavanagh 1999). 

Another important feature is the susceptibility of S. cerevisiae to genetic 

modifications by recombinant DNA technology, which has been even further 

facilitated by the availability of its complete genome sequence, published in 

1996 (Goffeau et al. 1996). 

Yeast cell wall structure and flocculation 

The yeast cell wall is a strong, but elastic, structure that is essential not 

only for the maintenance of cell shape and integrity, but also for progression 

through the cell cycle (Levin 2011; Klis et al. 2002). The yeast cell wall has 



 A RSM approach for PNA-FISH optimization 2013 

7 
 

many functions. First, it provides protection from the exposure to rapid and 

extreme changes in environment, particularly with respect to osmotic shock 

(Hohmann 2002; Levin 2011). Additionally, the yeast cell wall is required to 

establish and maintain cell shape and to protect against mechanical stress. 

Finally, the cell wall acts as a scaffold for cell-surface proteins (Levin 2011). The 

polysaccharides that provide the mechanical strength of the cell wall also serve 

as the attachment matrix for a wide variety of glycoproteins such as sexual 

agglutination factors and adhesins critical to cell-cell contact during biofilm 

formation (Douglas et al. 2007; Levin 2011). 

 S. cerevisiae spends a considerable amount of metabolic energy in cell 

wall construction which, depending on growth conditions, comprises about 10-

25% of the total cell mass (Klis et al. 2006). This structure is composed largely 

of polysaccharides (~85%) and proteins (~15%) (Lesage and Bussey 2006) 

consisting specifically of an inner layer of load-bearing, acting as a scaffold for a 

protective outer layer of mannoproteins that extend into the medium as 

described in Figure 1 (Klis et al. 2006). The major load-bearing polysaccharide 

is a moderately branched 1,3-β-glucan. Due to the presence of side-chains, 1,3-

β-glucan molecules can only locally associate through hydrogen bonds, 

resulting in the formation of a highly elastic and continuous three-dimensional 

network (Klis et al. 2006). At the external face of the 1,3-β-glucan network, 

highly branched 1,6-β-glucan chains are found, which in turn may be connected 

to a GPI-modified mannoprotein (Klis et al. 2006; Kollár et al. 1997). Chitin, a 

polymer of β-1,4-N-actetylglucosamine (GlcNAc),  is a minor constituent of the 

S. cerevisiae cell wall and is concentrated at the bud neck and at the septum 

(Lesage and Bussey 2006). The lateral walls of the growing bud generally do 

not contain chitin, demonstrating that chitin is not essential for the mechanical 

strength of the lateral walls (Klis et al. 2006).  
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Yeast mannan is an electron-dense and fibrillar outer layer of the wall 

composed by a varied set of mannoproteins linked to the cell wall 

polysaccharides (Osumi 1998; Klis et al. 2006).  

 

Figure 1 - Structure of the yeast cell wall. The wall is primarily composed of mannoproteins and β-glucan 

(1→3) and (1→6) (adapted from McClanahan (2009)). Cell-wall thickness has been reported for yeast as 

approximately 90 nm (Smith et al. 2000).  

Yeast flocculation can be defined as an asexual aggregation process of 

yeast cells into clumps with subsequent fast sedimentation in the medium in 

which they are suspended; such aggregates are called flocs (Stratford 1992; 

Soares and Vroman 2003).  This process is reversibly dispersed by the action 

of specific sugars (Masy et al. 1992), salts and EDTA (Soares and Vroman 

2003). 

The most recognized hypothesis to explain the mechanism of flocculation 

in S. cerevisiae is the lectin-like theory proposed by Miki et al. (1982). According 

to this model, the flocculation gene FLO1 governs the expression of a lectin 

present only in flocculent cells. This specific protein, firmly associated with the 

cell walls of flocculent cells, binds mannose residues present in the cell walls of 

neighbouring cells. Flocculation was found to be Ca2+-dependent due to the role 

of calcium ions in the activation of the lectins (Soares and Vroman 2003). 

Flocculation is a highly complex phenomenon affected by many genetic, 

physiological and environmental factors that may enhance the survival of yeast 

cells in starvation conditions (Soares and Vroman 2003). 
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Requirement for microbial identification at an industrial level  

Accurate and rapid microorganism identification is essential in a wide 

range of applications including microbial forensics, food safety, environmental 

studies and clinical microbiology. Detection, differentiation and identification of 

microorganisms can be performed by numerous techniques including those 

exclusively based on phenotypic, biochemical and immunological features. 

Nowadays, these assays have been replaced by molecular biology approaches; 

besides enhancing the sensitivity and specificity of the detection process, they 

reduce much of the subjectivity inherent to interpreting morphological and 

biological data (Settanni and Corsetti 2007; Woo et al. 2003). 

Focusing in biological industry, serious microbiological problems are 

caused by yeasts, including S. cerevisiae. Particularly in fermented foods and 

beverages, where the metabolites produced contribute to the flavour, aroma 

and taste of the final products, it is not easy to define microbial spoilage 

(Loureiro 2000). In fact, in non-fermented foods, any yeast able to change food 

sensorial characteristics can be regarded as spoilage yeast. In fermented 

alcoholic beverages, the spoilage concept is more complex since yeast activity 

is essential during the fermenting process (Loureiro and Malfeito-Ferreira 2003). 

 In the wine industry, where alcoholic fermentation occurs in the presence 

of many yeast species and bacteria (mainly lactic and acetic), the line between 

beneficial fermenting activity and detrimental spoilage activity is very difficult to 

draw (Loureiro and Malfeito-Ferreira 2003). Monitoring of spoilage yeasts, such 

as S. cerevisiae, during all phases of winemaking has gained an increasing 

importance due to the tendency to reduce the use of preservatives, particularly 

those effective against yeasts such as sulphur dioxide and benzoic acid 

(Loureiro and Querol 1999; Loureiro and Malfeito-Ferreira 2003). 
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 Currently, yeasts are the most feared cause contaminants leading to 

wine spoilage. The common spoilage effects are film formation in stored wines, 

cloudiness or haziness, sediments and gas production in bottled wines, and off-

odours and off-tastes at all stages of wine production (Loureiro and Malfeito-

Ferreira 2003). 

In brewing and winery industries, the discrimination between S. 

cerevisiae fermenting yeasts and ‘‘wild yeasts” is crucial to assess the 

microbiological quality of these alcoholic beverages (Loureiro and Malfeito-

Ferreira 2003). In this dissertation we will focus in the identification of S. 

cerevisiae, the main microorganism responsible for wine production. 

Culture Media and Conventional Phenotypic tests  

Conventional laboratory differentiation of yeasts, involving microscopy 

and biochemical tests, not only requires extensively trained laboratory 

personnel, but it is also time-consuming and cost-intensive. It depends on 

several factors difficult to assess, such as the skills of the laboratory staff in 

examining and identifying the presence and nature of the organisms (Bader et 

al. 2011; Hay and Jones 2010).  

Cultural identification is based on the recognition of specific features, 

such as macroscopic and microscopic morphology and pigmentation. For some 

fungi, such as yeast species, rapid biochemical tests or differential and selective 

media allow a more readily standardized recognition (Hay and Jones 2010). 

Identification schemes describing the characteristics of a microbial isolate such 

as colony and cell morphology, nutritional and physical requirements for growth, 

metabolic characteristics and pathogenicity factors have been developed and 

improved over many decades (Woo et al. 2003). At this point, even small 

microbiology laboratories are able to identify isolates to species level using fairly 

simple traditional test procedures. 
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Isolation and enumeration media for yeasts are usually complex and 

nutritionally rich, containing sugar as energy source (e.g., glucose, fructose, 

sucrose), a digested protein as nitrogen source (e.g., peptone, tryptone, 

casitone), and a complex supplement (e.g., yeast extract, malt extract) (Loureiro 

and Malfeito-Ferreira 2003). ()()(30)57Several culture media have been 

developed to allow yeast identification such as Lysine agar and copper sulphate 

medium. According to van der Aa Kühle and Jespersen (1998), copper sulphate 

medium was the best medium to discriminate between wild yeasts (including 

wild S. cerevisiae) and fermenting yeasts in lager beers. Heard and Fleet (1986) 

used Lysine agar to detect non-Saccharomyces species, which may be 

regarded as a hygiene indicator under certain conditions. Thomas and 

Ackerman (1988) developed a medium with ethanol (11.4% v/v) as a selective 

agent to detect spoilage yeast in wines verifying the growth of all these yeasts 

within 72h. Over 77% of the non-spoilers failed to grow in the broth during the 

same period of time. 

Due to the time required and the subjectivity associated, classical 

identification cannot be routinely used in biological industry. As a consequence, 

rapid detection and enumeration methods, especially for food and beverage 

spoilage yeasts, have been developed. Some of the technologies employed 

include immunological techniques (e.g. ELISA) and molecular biology-based 

methods. 

Nucleic acid-based detection methods 

The genetic material of each living system is unique and specific for each 

species. The design of oligonucleotides that hybridize specifically to target 

sequences has been the basics to the development of powerful molecular 

approaches. Techniques like restriction fragment length polymorphism (RFLP) 

of mitochondrial DNA, restriction enzyme analysis of polymerase chain reaction 

(PCR)-amplified ribosomal DNA, random amplified polymorphic DNA (RAPD) 
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assay are now familiar to industry microbiologists (Loureiro and Malfeito-

Ferreira 2003). 

a. Polymerase Chain Reaction 

PCR is a revolutionary method developed by Kary Mullis in the 1980s. 

This technology is based on using the ability of DNA polymerase to synthesize 

a new strand of DNA which is complementary to the template strand. The 

requirement of a primer to initialize DNA polymerase activity makes possible to 

delineate a specific region of template sequence that the researcher wants to 

amplify (Anon. 2013b).  

The PCR reaction can be divided into three crucial steps. The first one is 

the denaturation of the double-stranded DNA (dsDNA) molecule at 

temperatures above 90ºC. Second, oligonucleotide primers bind to the target 

sequence generally at 50-60ºC - annealing – and, finally, optimal DNA 

extension occurs at 70-78°C. For conventional PCR methods, the amplification 

products are analysed by performing a gel electrophoresis followed by an 

ethidium bromide staining. 

PCR methods are particularly promising because of their simplicity, 

specificity and sensitivity (Martínez et al. 2010). Nevertheless, the choice of 

target genes and the design of oligonucleotide primers are critical elements in 

determining the sensitivity of PCR (Yamamoto 2002). 

The majority of PCR-based identification methods rely on the 

amplification of species-specific genes such as: elongation factors, heat-shock 

proteins, RNA polymerase or ribosomal DNA genes (Johnson et al. 2003; 

Yamamoto 2002; Johnson 2000). rDNA genes are present in high copy 

numbers, they contain conserved regions allowing the design of “universal” 

PCR amplification primers and, at the same time, they exhibit enough genetic 

differences to allow identification at the species level (Yamamoto 2002; Reyes‐
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López et al. 2003; Lu et al. 2000). Therefore, rDNA genes are generally 

considered as ideal targets. 

In recent years, a large number of approaches based on PCR techniques 

have been described as a tool for species identification to assess the quality of 

products in biological industries. Real-time polymerase chain reaction, also 

called quantitative polymerase chain reaction (qPCR), is a molecular biology 

technique based on PCR, which is used to amplify and simultaneously quantify 

a targeted DNA molecule enabling both detection and quantification (Hierro et 

al. 2006). qPCR is the abbreviation used for real-time PCR.  

Casey and Dobson (2004) developed a qPCR system to differentiate 

between the common spoilage yeasts, Zygosaccharomyces bailii, 

Zygosaccharomyces rouxii, Candida krusei, Rhodotorula glutinis and 

Saccharomyces cerevisiae, based on melting peak Tm analysis of the 5.8S 

rDNA subunit and the adjacent ITS2 (internal transcribed spacer) region of 

these yeasts.  

b. Restriction Fragment Length Polymorphism 

Restriction Fragment Length Polymorphism (RFLP) is a difference in 

homologous DNA sequences that can be detected by the presence of 

fragments of different lengths after digestion of the DNA samples in question 

with specific restriction endonucleases (Anon. 2013c). 

A RFLP analysis of ITS region can be applied for rapid identification of 

spoilage yeasts. Some restriction patterns generated from the region spanning 

the internal transcribed spacers yielded a unique profile for each species, and 

could be used as an easy and fast method of routine yeast identification 

(Caggia et al. 2001).  
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Isolation of sufficient DNA for RFLP analysis is time-consuming and 

labour-intensive. However, PCR can be used to amplify small amounts of DNA 

to the levels required for RFLP analysis (Anon. 2013c). This technique is 

commonly known as RFLP-PCR. 

Ribosomal regions show a low intraspecific polymorphism and a high 

interspecific variability allowing the classification of Saccharomyces species and 

the identification of several wine yeast species (Esteve-Zarzoso et al. 1999; 

Loureiro and Malfeito-Ferreira 2003). An RFLP-PCR analysis demonstrated that 

the complex ITS regions (non-coding and variable) and the 5.8S rRNA gene 

(coding and conserved) are useful to identify spoilage yeast, since the 5.8S 

rRNA gene carries great interspecific differences (Esteve-Zarzoso et al. 1999). 

The 26S rRNA gene has a universally recognized role in yeast taxonomy and 

recently, it provided the highest correct identification percentage of yeast 

species associated with honey as described by Carvalho et al. (2010). 

Recently, the monitoring of the predominance of the starter yeast strain 

during industrial wine fermentations has been tested by the analysis of 

restriction fragment length polymorphism of mitochondrial DNA (mtDNA-RFLP). 

This method was proposed by Rodríguez et al. (2011) as a response to one of 

the major challenges for microbiological control in the wine industry allowing a 

rapid intervention of the wine-producer if the presence of the inoculated yeasts 

has suffered a sudden decrease in any phase of the fermentation process. 

c. Other nucleic acid hybridization methods 

The hybridization of complementary DNA oligonucleotides is a basic 

principle of molecular biology with possible applications in species identification. 

The method involves essentially the hybridization between the target nucleic 

acid and a probe (usually labelled with fluorescent or radioactive molecules) 

and a positive result indicates the presence of the target species (Pereira 2008). 
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A number of factors are known to limit the widespread application of 

traditional DNA-DNA hybridization methods: good quality or undegraded DNA 

are usually required; small changes in experimental conditions may originate 

different results; non-discrimination between closely related species may occur 

(due to cross-hybridizations); and it is a time-consuming procedure (Pereira 

2008). However, DNA hybridizations methods have the advantage of enabling 

the simultaneous detection of multiple species in a sample with the use of two 

or more specific probes either tested in separate reactions or labelled with 

unique fluorescent dyes. 

A widely known nucleic acid hybridization-based approach is the 

fluorescence in situ hybridization (FISH) technique. This technique uses 

fluorescently labelled probes to detect nucleic acid sequences in whole cells, 

allowing the direct detection of organisms in complex microbial communities 

(Pereira 2008; Moter and Göbel 2000). A higher stability and affinity in the 

hybridization with FISH assays can be achieved by using peptide nucleic acid 

(PNA) probes. In the next section, the details and advantages of FISH 

technique as well as of PNA probes will be presented. 

Fluorescence in situ hybridization 

Fluorescence in situ hybridization (FISH) is a powerful technique 

introduced in the late 1980s with numerous applications and it has gained 

general acceptance as a clinical laboratory tool (Bishop 2010). The FISH 

method has been used in clinical diagnostic and other fields of microbiology as 

the characterization of microbial communities and diversity of natural habitats 

(Levsky and Singer 2003; Amann and Fuchs 2008).  

In the last decade, fluorescence in situ hybridization became one of the 

methods of choice for the study of the dynamics of indigenous yeast 

populations during wine fermentations since it combines the direct visualization 
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with the reliability of molecular methods (Xufre et al. 2006; Amann and Ludwig 

2000; Moter and Göbel 2000).  

In wine-related applications, Stender et al. (2001) explored this technique 

both for the rapid monitoring of lactic acid bacteria and for the detection of the 

slow growing yeast Dekkera bruxellensis, a well-recognized wine spoilage yeast 

that causes an undesirable flavour.  

Recently, Xufre et al. (2006) followed the evolution of the indigenous 

yeast populations during inoculated wine fermentations of white and red grape 

musts in a winery at Alentejo, Portugal. In this study, they were developed 

fluorescent oligonucleotide probes targeted to the D1/D2 region of the 26S 

rRNA of different yeast species known to be involved in the vinification process. 

Andorra et al. (2011) analysed Saccharomyces cerevisiae and 

Hanseniaspora guilliermondii populations during alcoholic fermentations by 

plating and culture-independent methods, such as fluorescence in situ 

hybridization (FISH) and quantitative PCR (qPCR). Species-specific FISH 

probes labeled with fluorescein (FITC) were used to directly hybridize S. 

cerevisiae and H. guilliermondii cells from single and mixed cultures that were 

enumerated by epifluorescence microscopy and flow cytometry. FISH and 

qPCR revealed the presence of high populations (107-108 cells/ml) throughout 

fermentations. Flow-FISH uses flow cytometry to perform FISH automatically 

using per-cell fluorescence measurements and allowing a high resolution and 

highly automated analysis of mixed microbial populations (Amann et al. 1990). 

The main advantage of this technique is its sensitivity since it can detect one 

cell in a million. 

FISH method - How does it work? 

Fluorescence in situ hybridization detects nucleic acid sequences by a 

fluorescently labelled probe that hybridizes specifically to its complementary 
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target sequence of sample ribosomal RNA (rRNA) within the intact cell (Amann 

and Fuchs 2008; Moter and Göbel 2000). Figure 2 demonstrates the basic 

steps of FISH method. The oligonucleotide probes are covalently linked at the 

5′-end to a single fluorescent dye molecule (Amann and Ludwig 2000). 

 

Figure 2 - Basic steps of fluorescence in situ hybridization: fixation, hybridization, washing and 

quantification by either epifluorescence microscopy or flow cytometry (Amann and Fuchs 2008). 

rRNAs are the main target molecules for FISH for several reasons: they 

can be found in all living organisms, they are relatively stable, they include both 

variable and highly conserved sequence domains and they occur in high copy 

numbers that can range from a few hundred to 100,000 per cell (Stender et al. 

2002; Amann and Ludwig 2000; Amann and Fuchs 2008).  

The first step of FISH using rRNA-targeted oligonucleotide probes is the 

fixation and permeabilization of the sample. This treatment is crucial for a 

quantitative FISH assay not only stabilizing cell morphology, but also 

permeabilizing as many cells as possible to allow the labelled oligonucleotides 

to diffuse to their intracellular rRNA target molecules (Amann and Fuchs 2008). 

Formaldehyde and ethanol continue to be the main fixatives used, but there is 

still no standard permeabilization protocol for all microbial cells. The specific 
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composition of the microbial cell wall is considered in the FISH optimization 

protocol introducing modifications such as enzymatic digestion of thick 

peptidoglycan layers by lysozyme, digestion of proteinaceous cell walls by 

proteases, the use of detergents and even short-term incubations in 

hydrochloric acid (Amann and Fuchs 2008; Roller et al. 1994). Membrane 

integrity is intrinsically linked to cell viability and, consequently, fixed FISH-

stained cells are no longer viable. 

The following step is hybridization, which consists on the incubation with 

a probe during which the labelled oligonucleotide diffuses to its intracellular 

targets and forms specific hybrids. During hybridization, temperature, pH, ionic 

strength and formamide concentration should be correctly defined and 

optimized to guarantee that the probe accesses and hybridizes with the target 

sequence (Cerqueira et al. 2008). The unbound probe is then washed away. 

Hence only specifically targeted cells retain the probes under the appropriate 

stringency conditions in the hybridization and washing steps. At this point, the 

sample is ready for single-cell identification and quantification by either 

epifluorescence microscopy or flow cytometry, which also allows for 

fluorescence-activated cell sorting (Sekar et al. 2004; Amann and Fuchs 2008). 

If an oligonucleotide probe is properly designed, failure to detect target 

cells by FISH is most often caused by lack of cell permeabilization, low cellular 

ribosome content or inaccessibility of the probe binding site based on the 

higher-order structure of the ribosome (Amann and Fuchs 2008). 

Peptide Nucleic Acid FISH 

Peptide nucleic acid (PNA) probes are synthetic DNA mimics developed 

in the early 1990s (Nielsen et al. 1994), where the negatively charged sugar-

phosphate backbone of DNA is replaced by an achiral, neutral polyamide 

backbone formed by repetitive units of N-(2-aminoethyl) glycine (Figure 3) 
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(Stender et al. 2002). They can hybridize to complementary nucleic acid targets 

obeying the Watson–Crick base pairing rules (Perry-O'Keefe et al. 2001). The 

lack of electrostatic repulsion, due to the uncharged nature of the PNA 

backbone is perhaps the main reason responsible for its properties, such as the 

higher specificity and more rapid hybridization kinetics compared to traditional 

DNA probes (Cerqueira et al. 2008). 

 
Figure 3 - Chemical structures of DNA and PNA. In PNA, the sugar phosphate backbone of DNA is 

replaced by a polyamide backbone, keeping the space between the nucleotide bases the same (Nielsen 

2001). 

The improved thermal stability compared with DNA/DNA duplexes 

implies that the melting temperature (Tm) for PNA/DNA duplexes is higher than 

for DNA/DNA (Perry-O'Keefe et al. 2001; Nielsen 2001). This increased Tm 

enables the synthesis of PNA probes shorter than most DNA probes. In fact, 

sequences of approximately 15 bp have been found to be optimal for PNA 

probes which contrast with probes of 20-24 bp for DNA. The higher specificity of 

PNA may be explained by the effect on the Tm of a single-base mismatch that 

will have much more impact in PNA/DNA hybridization than in DNA/DNA 

hybridization (Cerqueira et al. 2008).  

In addition, PNA probes hybridize efficiently under low salt 

concentrations, a condition that promotes the target of nucleic acids with a high 

degree of secondary structure such as rRNA (Perry-O'Keefe et al. 2001; 

Cerqueira et al. 2008). The unnatural PNA backbone also means that PNA is 
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not degraded by ubiquitous enzymes, such as nucleases and proteases 

(Demidov et al. 1994; Stender et al. 2002). Finally, diffusion through the cell 

membrane and naturally occurring microstructures such as the EPS biofilm 

matrix might be easier, even in Gram positive bacteria, due to the hydrophobic 

character of PNA as compared to DNA (Drobniewski et al. 2000). 

The utilization of PNA probes appears to have a particularly promising 

future in the rapid identification of yeast species.  

Response Surface Methodology  

To improve the performance of the systems and to increase the yield of 

the processes without increasing the cost, the called optimization, has assumed 

an emergent importance in industrial research and development (Baş and 

Boyacı 2007). The one-variable-at-a-time method consists of a parameter 

change to define the optimal operating conditions while keeping the others at a 

constant level. This method is time-consuming and it does not include 

interactive effects among the variables. Eventually, it does not depict the 

complete effects of the parameters on the process. In order to overcome this 

problem, optimization studies can be carried out using response surface design 

software (Baş and Boyacı 2007).  

Response surface methodology (RSM) is a collection of mathematical 

and statistical techniques useful for developing, improving, and optimizing 

processes. The objective is to optimize a response of interest which is 

influenced by several independent variables (Anderson-Cook et al. 2009; Baş 

and Boyacı 2007). An experiment is a sequence of designed tests, called runs, 

in which changes are made in the input variables in order to identify the reasons 

for changes in the output response.  
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A standard RSM design 

RSM can be used to define the relationships between the response and 

the independent variables offering a large amount of information from a small 

number of experiments. In RSM it is possible to observe the interaction effect of 

the parameters on the response. In addition to analysing the effect of the 

independent variables, this experimental methodology also generates a 

mathematical model. The graphical perspective of the mathematical model has 

led to the term Response Surface Methodology (Baş and Boyacı 2007). 

The relationship between the response and the input is given in Eq. (1): 

   (          )                                                                                          (1) 

where η is the response, f is the unknown function of response, x1,x2, . . . ,xn 

denote the independent variables, also called natural variables and n is the 

number of the independent variables. The measurement error is an example of 

other source of variability represented by the statistical error ε. It is generally 

assumed that ε has a normal distribution (Baş and Boyacı 2007). 

Response surface methodology allows the approximation of a complex 

unknown function with a low-order polynomial, usually either a first-order model 

(linear equation) or a second-order model (quadratic equation) (Anderson-Cook 

et al. 2009). To fit the data to a second order polynomial is the major drawback 

of RSM as not all the systems containing curvature are well accommodated by 

this function. For example, simple enzyme kinetics is defined by the Michaelis–

Menten equation which defines a rectangular hyperbola through the origin (Baş 

and Boyacı 2007). 

A standard RSM design consists of a central composite design (CCD) 

that fits a quadratic surface, which usually works well for process optimization. 

The three-factor layout for this CCD is represented in Figure 4. It is composed 

of a star design with axial points at ±α (stars), a 2k factorial design points at ±1 
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(vertices) and a common centre point of the two designs (Stat-Ease 2010). CCD 

is also known as Box-Wilson design. 

 

Figure 4 - Central Composite Design (CCD) for three factors (Stat-Ease 2010). 

Practical application in Bioengineering 

In recent years, RSM has been very popular for optimization studies in a 

wide range of research areas. Some examples of the RSM applications 

performed for optimization of biochemical process are pectin hydrolysis using 

pectolytic enzymes (Rodríguez-Nogales et al. 2007), coagulation–flocculation 

process for a paper-recycling wastewater treatment (Wang et al. 2007), aerobic 

biodegradation of dichloromethane (Wu et al. 2009) and determination of 

reaction parameters for damaged starch assay (Boyacı et al. 2004). 

Beg et al. (2003) optimized the alkaline protease production from Bacillus 

mojavensis in a bioreactor. The effects of casamino acids concentration, 

glucose concentration, inoculum age, incubation time, and agitation rate on 

response were investigated. Firstly, the effect of the independent parameters on 

protease production in shake flask cultures was determined using RSM and 

then optimum parameters were used in a bioreactor. Alkaline protease 

production in B. mojavensis was improved up to 4.2-fold in a 14L bioreactor 

during validation of a predicted statistical model. The final enzyme yield in the 

bioreactor was 2389 Uml-1 obtained within 10-12 h compared to 558 Uml-1 after 

24 h in shake flask cultures. 
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Gonçalves et al. (2012) enhanced the production of pectinases by 

recombinant Penicillium griseoroseum T20 using Response Surface 

Methodology. The independent variables studied were the concentration of the 

carbon source sucrose and the cultivation time. The P. griseoroseum T20 strain 

presented an increase in pectin lyase (PL) production of more than 400 fold 

compared to the wild type when cultivated in commercial sucrose and yeast 

extract. This optimization confirmed the large potential of the industrial 

application of response surface designs. The optimum conditions were reached 

in a less laborious and less costly manner, detecting, further, the interaction 

among several factors. 

Yeasts play a prominent role in wine fermentations. Different factors can 

affect this process directly influencing the growth rate of the microorganisms 

and the final composition, quality and flavour of wine (Torija et al. 2003). Arroyo-

López et al. (2009) studied the effect of temperature, pH and sugar 

concentration on the growth parameters of S. cerevisiae T73 by means of 

response surface methodology based in a central composite design. In the case 

of the maximum specific growth rate (μmax), the temperature was the most 

important variable, although the effect of sugar concentration was also 

significant (p < 0.05).  

Based on these examples, we can affirm that RSM is a useful tool for the 

optimization of chemical and biochemical process with a huge impact on an 

industrial scale. 
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CHAPTER THREE 

MATERIALS AND METHODS 

 

Yeast strain, inoculum cultures and growth media 

Saccharomyces cerevisiae PYCC3507 was kindly provided by Drª 

Manuela Rodrigues of the Department of Biology of the University of Minho. 

Yeasts were maintained on YEPD medium (1% (w/v) yeast extract, 2% (w/v) 

peptone, 2% (w/v) dextrose) at 30ºC for at least 24h. For YEPD-agar medium, 

2% (w/v) agar was added to the previous formulation. Yeast extract, dextrose 

and agar are from Merck, Darmstadt, Germany and peptone is from Liofilchem, 

Teramo, Italy. 

The S. cerevisiae preculture was prepared by transferring biomass of 

one YEPD-agar plate into 50 ml of YEPD medium in 100 ml Erlenmeyer flasks 

which were incubated for 16 h (Andorra et al. 2011) at 30ºC (VELP Scientifica 

Incubator, FOC 225E model, Usmate, Italy) and 160 rpm (IKA KS 130 basic 

shaker, Vidrolab, Portugal), under aerobic conditions.  Then, 100 ml of YEPD 

medium in 250 ml Erlenmeyer flasks were inoculated with 2 ml of inoculum, as 

described by Sekavov et al. (2005), allowing yeast proliferation until the 

exponential growth phase. The cultivations were carried out at 30°C, 160 rpm 

and under aerobic conditions. 

S. cerevisiae growth phase 

According to Hoshino et al. (2008) the intensity of probe-conferred 

fluorescence in E. coli cells presents lower intensities in the stationary phase 

that might be explained by reduced permeability of the cells due to structural 

changes in the cell wall. To assure the growth phase of S. cerevisiae, a growth 
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curve was constructed following the optical density at 600 nm, using a 

spectrophotometer (VWR V-1200). This yeast grows with a specific growth rate 

of 0.40 h-1 corresponding to a doubling time of 1.87 h on YEPD medium. To the 

FISH experiments, S. cerevisiae culture was grown until the mid-log phase with 

an OD600nm of approximately 0.80 what, according to Bergman (2001) 

corresponds to a cell density of 2.4x107 cells/ml. The S. cerevisiae growth curve 

may be found in Appendix I. 

Experimental design and statistical analysis 

The central composite design (CCD), which is the standard RSM, was 

selected for the optimization of the hybridization parameters. Temperature (ϰ1), 

time (ϰ2) and formamide concentration (ϰ3) were selected as three independent 

variables on the hybridization efficiency of a PNA probe targeting S. cerevisiae. 

Table 1 shows the maximum and minimum levels of variables defined for trials 

in the central composite design. 

Table 1- Experimental levels of variables tested for fluorescence intensity. 

Independent variables 
Range and level 

-α -1 0 +1 +α 

ϰ1 Temperature (ºC) 29.77 40.00 55.00 70.00 80.23 

ϰ2 Time (min) 9.55 30.00 60.00 90.00 110.45 

ϰ3 [Formamide] (%v/v) 0.00* 19.00 47.00 75.00 94.09 

* The value defined by the software was -0.09. 

Fluorescence intensity was selected as the dependent variable. The 

response variable was fitted by a second-order model in the form of quadratic 

polynomial equation as described in equation 2 (Wang et al. 2007): 

      ∑      ∑      
  ∑ ∑         

   
 

 
   

 
                                                 (2) 

where Ym is the response variable to be modelled; Xi and Xj the independent 

variables which influence Ym; b0, bi, bii and bij are the offset terms, the ith linear 
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coefficient, the quadratic coefficient and the ijth interaction coefficient, 

respectively.  

The fitted polynomial equation was expressed as surface and contour 

plots in order to visualize the relationship between the response and 

experimental levels of each factor and to obtain the optimum conditions (Lu et 

al. 2008). The optimization study was performed with Design-Expert 8 software 

developed by Stat-Ease, Inc. (Minneapolis). 

Probe sequence 

A probe targeting S. cerevisiae had already been designed by Meireles 

(2012) with Primrose Software (v2.17 - 2012) developed by Dr. K.E. Ashelford, 

Cardiff University, UK and ordered to Panagene Inc. The probe targets S. 

cerevisiae 26S rRNA (Appendix II) and it has the following characteristics: Alexa 

594-OO-AGGCTATAATACTTACC (sequence 5’ to 3’), being HPLC purified > 

90%. The theoretical specificity is 91.15% calculated as the number of S. 

cerevisiae hits / total hits in all detected microorganisms. This probe presents a 

sensitivity of 89.47% calculated as the number of S. cerevisiae hits / total S. 

cerevisiae sequences in database.  

Table 2 - Probe thermodynamic parameters calculated by Meireles (2012). 

Probe 
ΔH 

(Kcal/mol) 

ΔS 

(Kcal/K) 

ΔG 

(Kcal/mol) 
Tm (ºC) 

Tm PNA 

(ºC) 

AGGCTATAATACTTACC -115 -321.7 -15.26 62.4 66.2 

 

Hybridization in suspension  

The hybridization method was based on the procedure of Guimarães et 

al. (2007) with slight modifications. First, 1ml of the S. cerevisiae culture with an 

OD600nm of approximately 0.8 was pelleted by centrifugation at 10,000 g for 5 

minutes (Centrifuge 5418, eppendorf, USA), resuspended in 400 μl of 4% 
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(wt/vol) paraformaldehyde (Acros Organics, UK) and fixed for 1 h. Then, 500 μl 

of 50% (vol/vol) ethanol was added to the fixed cells incubating for at least 30 

min at -20ºC. Subsequently, 200 μl of the fixed cells aliquot was pelleted by 

centrifugation and resuspended in 100 μl of hybridization solution with 200 nM 

of PNA probe and incubated at 53ºC for 60 min in an oven (FD 23, Binder, 

Germany). After hybridization, cells were centrifuged at 10,000 g for 5 min, and 

500 μl of wash solution was added (incubation at 53ºC for 30 min). Washed 

suspension was pelleted by centrifugation and resuspended in 500 μl of sterile 

water. Finally, 20 μl of the cell suspension were spread on a microscope slide. 

Samples were allowed to air dry. The sample is then ready to be observed in a 

fluorescent microscope. The composition of the hybridization and washing 

solutions may be found in Appendix III. 

To overcome the high degree of flocculation of S. cerevisiae, some 

modifications to the standard protocol were performed. The modifications 

consisted of a pre-fixation washing with 500 μl of physiologic serum (0.9% 

NaCl) + 0.05% (vol/vol) Tween 80 (Liofilchem, Teramo, Italy) and a final 

resuspension in 30 mM EDTA (Panreac Quimica, Spain) instead of water.  

For every experiment, a negative control was performed simultaneously, 

where all the steps described above were carried out, but where no probe was 

added during the hybridization procedure. 

Hybridization procedure on slides  

The standard PNA-FISH protocol was performed as referred by 

Guimarães et al. (2007) with some adjustments. An inoculum of S. cerevisiae 

was prepared by standard procedures and immersed in 4% (wt/vol) 

paraformaldehyde followed by 50% (vol/vol) ethanol for 15 minutes each and 

allowed to air dry. Samples were then covered with 20 μl of hybridization 

solution containing 200 nM PNA probe. A simplified hybridization solution was 
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also tested. The detailed composition of these solutions may be found in 

Appendix III. Samples were covered with coverslips, placed in moist chambers 

and incubated for 60 minutes at 55ºC in an oven (FD 23, Binder, Germany). 

Subsequently, coverslips were removed and the slides were submerged in a 

pre-warmed washing solution. Washing was performed at 55ºC for 30 minutes 

and the slides allowed to air dry. The sample is then ready to be observed in a 

fluorescent microscope. 

Microscopic visualization 

The fluorescence signal was acquired using a Leica DM LB2 (Leica 

Microsystems, Germany) epifluorescence microscope equipped with a 

Live/Dead Filter sensitive to the Alexa Fluor 594 molecule attached to the PNA 

probe (Excitation 530 to 550 nm; Barrier 570 nm; Emission LP 591 nm). A N2.1 

Filter (Excitation 515 to 560 nm; Barrier 580 nm; Emission LP 590 nm) was 

used to confirm the absence of autofluorescence of S. cerevisiae cells in the red 

emission range. 

Fluorescence intensity measurement  

The technique of analysis was based on free available software, the 

ImageJ NIH, which is widely used for confocal microscope fluorescent image 

analysis (Rasband 2006; Casanova-Molla et al. 2011). The main steps are 

schematized in Figure 5. The RGB image was separated into three 8–bit 

grayscale images containing the red, green and blue components of the original 

(option: Split Channels). Due to the red fluorescent probe that target S. 

cerevisiae, the red channel was duplicated. The next step was the definition of a 

specific threshold, selecting B&W and Dark Background and adjusting manually 

the value. In order to minimize the variations, it was necessary to use a method 

that reduces the difference for each measurement. The method consists in 

defining the threshold smaller as the disappearance of the background, and no 
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disappearance of cell fragments. When the intensity values are very high, the 

default threshold was accepted. This binary image was processed assuming 

black cells on a white background.  

  

  

 
Figure 5 – Fluorescence intensity measurement with ImageJ software. a) Open image; b) Split channels; c) 

Adjust threshold; d) Watershed, Erode and Analyse Particles; e) Save data from ROI manager. 

Watershed segmentation was selected to separate nearby cells allowing 

an automatically separation or cutting apart cells that touch. Then, the option 

Erode removes pixels from the edges of cells in the binary image. Redirecting to 

a b 
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the duplicated red channel image, the option Analyse particles was selected. 

The following parameters were defined after the analysis of several images. 

Size: 100-100000; Circularity: 0.00-1.00  

The results are shown in a new window, ROI manager, and then saved 

as .txt file. It was also developed an automatic analysis of the results using 

MATLAB that makes the average, standard deviation and count the number of 

cells in each image and saves an excel document with these parameters of all 

the images placed in the folder. 

Statistics 

Data were calculated with the mean and standard deviation. Student’s 

two-sided t-tests were performed to compare data sets using p-values <0.05 to 

determine statistically significance (McDonald 2009). 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

Before the determination of the optimal conditions to the fluorescence in 

situ hybridization by response surface methodology, several additional 

experiments were performed in order to define the best assay conditions since 

the composition of the hybridization solution and the optical density that 

corresponds to Saccharomyces cerevisiae exponential phase. 

Simplification of the hybridization solution - I 

The optimization of the FISH protocol started with the comparison of 

simplified and complex hybridization solutions. The difference between them is 

the presence of NaCl, sodium pyrophosphate, polyvinylpyrrolidone, Ficol and 

disodium EDTA in the complex one. Theoretically, the high salt concentration, 

or ionic strength, stabilizes secondary structures of rRNA and increases the 

reaction rate (Azevedo 2005). Sodium pyrophosphate, polyvinylpyrrolidone and 

Ficol are high-molecular weight polymers that compose the Denhardt's solution. 

This mixture works as a blocking reagent for preventing the unspecific binding 

of nucleic acids in the hybridization step. EDTA is a chelating agent removing 

free divalent cations that strongly stabilize PNA-RNA duplexes (Azevedo 2005). 

According to Meireles (2012), 53ºC is the optimal temperature for hybridization 

in suspension. As such, this temperature was selected as the start point. The 

simplified hybridization solution shows greater fluorescence intensity contrarily 

to the expected, suggesting that in these conditions the complex solution can be 

substituted for this one with an improvement in the final signal. 
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Figure 6 - Fluorescence Microscope results for in suspension PNA-FISH (30% formamide) at 53ºC for 1h - 

Hybridization solution optimization. a) Negative control; b) Standard hybridization solution; c) Simplified 

hybridization solution. 

Deflocculating assay 

An important observation is the tendency of S. cerevisiae to form 

aggregates what will difficult its analysis by the ImageJ software. Yeast 

flocculation is enhanced in the presence of starvation conditions and, in this 

particular case, may be due to the sequential centrifugations of the in 

suspension FISH protocol. Consequently, the yeast flocculation was the first 

hurdle to overcome. Several experiments were tested since sonication and pre-

fixation washings until the hybridization method on slide. The main goal was to 

decrease the degree of flocculation. 

Sonication assays between 1 and 45 minutes were performed with and 

without an additional step of filtration (10 μm). Yeast cells were placed in an 

ultrasound water bath in order to disrupt possible clumps and to obtain a single-

cell suspension to be used in optimal conditions during FISH experiments. 

Increasing the sonication time, smaller circular clumps were observed but the 

dispersion was not enough to perform an adequate image analysis. 

Interestingly, after 45 minutes of sonication, yeast cells maintain their shape 

relatively defined, probably as a result of organism cell walls which are highly 

resistant.  It is possible that sonication physically weakens the yeast cell wall; in 

the absence of chemical cell wall stressors, the sonication treatment had 

negligible effect on viability (Islahudin et al. 2013). No structural differences and 

advantages were observed by adding filtration. 

a b c 
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On slide PNA-FISH was also tested because it is clearly well 

documented and widely implemented comparing to the suspension procedure. 

Nevertheless, the suspension procedure is preferable as it allows an anticipated 

fixation followed by the storage of fixated S. cerevisiae at -20ºC until the 

experiment. Considering the Response Surface Methodology assay, it 

comprises three blocks (two of them with 6 assays and the other one with 8) 

and the storage of the fixated microorganism will facilitate the experiment. 

According to Meireles (2012), 55ºC is the optimal temperature for PNA-FISH on 

slide. The FISH protocol on slide showed relatively greater fluorescence 

intensity (Figure 7) perhaps due to the fact that the suspension procedure 

demands more manipulation due to the numerous centrifugation and 

resuspension steps, situation that may overexpose the sample to the light, 

resulting in loss of signal.  

   
Figure 7- Fluorescence Microscope results for PNA-FISH for 1h (Simplified hybridization solution; 30% 

formamide). a) In suspension at 53ºC; b) On slide at 55ºC. 

Flocculation of yeast cells has been shown to be dependent on 

flocculins, lectin-like proteins in the cell wall of the yeast cells encoded by genes 

in the FLO-gene family, which bind to carbohydrates present in the cell wall of 

neighboring yeast cells (Johan et al. 2012). Several combinations between pre-

fixation washings and final resuspensions of 1x PBS, physiologic serum + 

0.05% (vol/vol) Tween 80 and 30 mM EDTA were tested to reverse this 

process. Tween 80, also known as polysorbate 80, is a non-ionic surfactant that 

is used as an emulsifier and dispersing agent (Kopec et al. 2008). It was tested 

b a 
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if the depletion of S. cerevisiae flocculation could be induced by the presence of 

0.05% Tween 80. In Johan et al. (2012) work, Saccharomyces cerevisiae cells 

were washed with 30 mM EDTA to ensure complete floc dispersion. This option 

was also experimented.  

The best deflocculation result was obtained conjugating a pre-fixation 

washing with 0.05% (vol/vol) Tween 80 and a final resuspension in 30 mM 

EDTA. Within these conditions, S. cerevisiae cells were significantly dispersed 

allowing the fluorescence image analysis (Figure 8). 

  
Figure 8 - Fluorescence Microscope results for in suspension PNA-FISH (Simplified hybridization solution 

with 30% formamide) at 53ºC for 1h - Deffloculation optimization: pre-fixation washing with 0.05% Tween 

80 (in physiologic serum) and final resuspension in 30 mM EDTA. a) Negative control; b) Positive. 

In order to allow an accurate ImageJ analysis of the RSM assay, a 

definition of the appropriate filter and microscope parameters was performed. 

N2.1 is a red filter that confirms the validity of this technique since the negative 

control is completely black. In fact, it is important to assure that negative control 

has cells. So, it was selected the Live/Dead Filter to proceed. However, in each 

experiment it was always made a confirmation with N2.1 Filter. For the LD filter, 

the microscope parameters chosen to the RSM assay was: exposure 3.0 s; gain 

1.0x; saturation 1.50 and gamma 1.00.  

a b 
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Response Surface Methodology assay 

Regression models of response 

For RSM based on the Box-Wilson design, used for the optimization of 

fluorescence in situ hybridization targeting S. cerevisiae, 20 experimental runs 

with different combinations of three factors were carried out. The variables used 

for the factorial analysis were temperature (ϰ1), time (ϰ2) and formamide 

concentration (ϰ3).  

Table 3 - Box-Wilson experiments design matrix with experimental values of hybridization efficiency 

Run 

Variables Response 

ϰ1 

Temperature 

(ºC) 

ϰ2 

Time 

(min) 

ϰ3 

[Formamide] 

(%v/v) 

y 

Fluorescence 

intensity (a.u.) 

1 40 30 9 118 

2 55 60 47 136 

3 40 90 75 88 

4 55 60 47 143 

5 70 90 19 59 

6 70 30 75 42 

7 70 30 19 55 

8 40 90 19 66 

9 55 60 47 166 

10 70 90 75 59 

11 40 30 75 54 

12 55 60 47 173 

13 29.8 60 47 52 

14 55 60 0 85 

15 55 110.5 47 81 

16 80.2 60 47 91 

17 55 60 47 150 

18 55 60 94.1 84 

19 55 60 47 105 

20 55 9.5 47 95 

 



 A RSM approach for PNA-FISH optimization 2013 

38 
 

The experimental responses for the 20 runs are presented in Table 3, 

which shows considerable variation in the hybridization efficiency depending on 

the three independent variables. The maximum fluorescence intensity (173 a.u.) 

was achieved in run number 12, while the minimum fluorescence intensity (42 

a.u.) was observed in run number 6. The center point of the design was 

repeated six times for estimation of error resulting in a fluorescence intensity of 

145±24 a.u. The standard deviation reflects the non-homogeneity of the 

hybridization process since the distribution of the signal is not uniform among 

the same sample in spite of the same growth phase of S. cerevisiae cells.  

Additionally, the user-dependent threshold definition may partly explain the 

standard deviation value. 

Table 4 - Summary of ANOVA parameters 

Source 
Sequential 

p-value 

Lack of Fit 

p-value 
R-squared 

 

Linear 0.9765 0.0609 0.0142  

2FIa 0.8974 0.0429 0.0640  

Quadratic 0.0053 0.1960 0.7935 Suggested 

Cubic 0.3139 0.1480 0.9229 Aliased  

a - Two-factor interaction 

The summary of data analysis for the response surface model may be 

consulted in Table 4. The suggested model is the quadratic one due to the 

significant sequential p-value (<0.05) and the relatively high R-squared (~0.8). 

In this case, the linear and the 2FI (two-factor interaction) models definitely can 

be ruled out, because its Lack of Fit p-value falls below 0.05. The quadratic 

model, identified earlier as the likely model, does not show significant lack of fit. 

The cubic model is aliased, so it should not be chosen, despite the highest R-

squared.  

The "Lack of Fit F-value" of 3.02 implies the Lack of Fit is not significant 

relative to the pure error (Table 5). There is a 19.60% chance that a "Lack of Fit 
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F-value" this large could occur due to noise.  As we want the model to fit, a non-

significant lack of fit is intended.  

Table 5 - Lack of Fit tests 

Source 
Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 
F Value 

p-value 

Prob > F 
 

Linear 28954.93 11 2632.27 7.58 0.0609  

2FI 27438.10 8 3429.76 9.88 0.0429  

Quadratic 5241.63 5 1048.33 3.02 0.1960 Suggested 

Cubic 1303.41 1 1303.41 3.75 0.1480 Aliased 

Pure Error 1041.46 3 347.15    

The analysis of variance (ANOVA) for the quadratic model is shown in 

Table 6. The Model F-value of 3.42 implies the model is significant. There is 

only a 4.89% chance that a "Model F-Value" this large could occur due to noise. 

Values of "Prob > F" less than 0.05 indicate model terms are significant.  In this 

case, ϰ1
2, ϰ2

2 and ϰ3
2 are significant model terms. Values greater than 0.10 

indicate the model terms are not significant. 

Table 6 - ANOVA results of the quadratic model 

Source 
Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 24144.99 9 2682.78 3.42 0.0489 Significant a 

    ϰ1 – Temperature 161.14 1 161.14 0.21 0.6626  

    ϰ2 – Time 31.31 1 31.31 0.040 0.8467  

    ϰ3 – [Formamide] 239.24 1 239.24 0.30 0.5961  

    ϰ1ϰ2 188.08 1 188.08 0.24 0.6377  

    ϰ1ϰ3 101.89 1 101.89 0.13 0.7280  

    ϰ2ϰ3 1226.86 1 1226.86 1.56 0.2467  

      ϰ1
2 11340.27 1 11340.27 14.44 0.0052 Significant a 

      ϰ2
2 7224.60 1 7224.60 9.20 0.0162 Significant a 

      ϰ3
2 7984.85 1 7984.85 10.17 0.0128 Significant a 

Residual 6283.08 8 785.39    

      Lack of Fit 5241.63 5 1048.33 3.02 0.1960 Not significant a 

      Pure Error 1041.46 3 347.15    

a - at 5% level (P < 0.05) 
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The p-values are used as a tool to check the significance of each of the 

coefficients which, in turn, are necessary to understand the pattern of the 

mutual interactions between the best variables (Li et al. 2007). The smaller the 

p-value, the greater the significance of the corresponding coefficient. P-values 

suggest that the independent variables ϰ1, ϰ2, ϰ3 have not a significant effect on 

the hybridization efficiency. No interactions between the variables were found to 

contribute to the response at a significant level. However, the quadratic term of 

these three variables had a significant effect. 

The coefficient of variation (CV) indicates the degree of precision with 

which the treatments were compared. Usually, the higher the value of CV, the 

lower the consistency of experiment is. Here, a CV of 29.31 indicated a 

reasonable precision and reliability of the experiments. The precision of a model 

can be checked by the determination coefficient (R2) and correlation coefficient 

(R). The determination coefficient implies that the sample variation of 79.35% 

for hybridization efficiency was attributed to the independent variables, and only 

about 20.65% of the total variation cannot be explained by the model.  

A regression model having an R2 value higher than 0.9 is considered to 

have a very high correlation (Li et al. 2007). In this experiment, a high 

determination coefficient of approximately 0.8 shows a good adjustment of the 

model to the experimental data. 

The closer the value of R to 1, the better the correlation between the 

experimental and predicted values. Here, the value of R (0.8908) indicates a 

close agreement between the experimental results and the theoretical values 

predicted by the following model equation.  

Another ANOVA parameter is the adequate precision that represents a 

measure of the range in predicted response relative to its associated error, in 

other words a signal to noise ratio. A ratio greater than 4 is desirable.  This 
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model presents a ratio of 4.320 indicating an adequate signal.  This model can 

be used to navigate the design space. Therefore, the quadratic model was 

selected in this optimization study.  

By applying multiple regression analysis on the experimental data, the 

following second order polynomial equation was found to describe the 

hybridization efficiency of the S. cerevisiae PNA probe: 

                                                          

        
         

         
                    (3) 

 where y is the predicted response (fluorescence intensity); ϰ1, ϰ2, ϰ3 are coded 

values of temperature, time and formamide concentration, respectively. 

Comparison of observed and predicted hybridization efficiency 

A regression model can be used to predict future observations on the 

response y (hybridization efficiency) corresponding to particular values of the 

independent variables.  

 

Figure 9- Observed fluorescence intensity vs the predicted fluorescence intensity - Diagnostic plot. 

Figure 9 shows observed fluorescence intensity versus those from the 

empirical model demonstrating graphically the determination coefficient of 

79.35% for the hybridization efficiency. Actual values are the measured 
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response data for a particular run, and the predicted values were evaluated 

from the model and generated by using the approximating functions. This graph 

indicates an adequate agreement between real data and the one obtained from 

the model. 

Determination of optimum conditions 

The 3D response surface plots described by the regression model 

illustrate the effects of the independent variables and the interactive effects of 

each independent variable on the response (Li et al. 2007). The optimal values 

of the independent variables could be easily understood from the 3D response 

surface plots and the corresponding contour plot. 

Regarding fluorescence in situ hybridization, it is important to introduce 

the concept of stringency as the extent to which hybridization can occur 

between nucleic acids with mismatched sequences. At high stringency, 

duplexes form only between strands with perfect complementarity while lower 

stringency allows annealing between strands with some degree of mismatch 

between bases. In order to maximize the confidence and specificity of these 

assays, high stringency hybridization conditions were investigated. Typically, 

they can be achieved by reducing NaCl concentration or increasing 

temperature. Formamide is a denaturant routinely used in hybridization 

techniques because it enables hybrids to be formed at lower temperatures 

adjusting stringency conditions (Yilmaz et al. 2012). A probe specificity testing 

with strains with only one mismatch should be done to assess stringency. 

According to Figure 10, this study suggests that at a standard 

hybridization time of 60 minutes, the hybridization efficiency increased gradually 

as the formamide concentration increased. However, increasing this 

concentration beyond approximately 45% decreased the hybridization 

efficiency. Formamide interferes with the binding kinetics of the probe 

enhancing the hybridization until a determined threshold. Extremely high 
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formamide concentrations decreased substantially the hybridization efficiency. 

This could be explained by the increased viscosity that results in reduced 

hybridization sensitivity. Everything indicates that formamide acts at the level of 

the cell envelope and the cell wall thickness can determine the optimal 

formamide concentration in hybridization experiments (Santos R. S., Guimarães 

N., Madureira P., Azevedo N., personal communication, June 2013). Previous 

researches point in this direction since the greater the thickness of bacteria cell 

wall, the higher the optimal formamide concentration. The cell wall of S. 

cerevisiae has about 90 nm of thickness (Smith et al. 2000) and the optimal 

formamide concentration according to the RSM analysis is 43.8% (vol/vol), 

supporting the previous hypothesis. 

  
Figure 10 - Response surface plot and corresponding contour plot of the combined effects of formamide 

concentration and temperature on the hybridization efficiency of a S. cerevisiae PNA probe with a constant 

hybridization time of 60 min. Red points - Design points above predicted value. 

According to the quadratic model, the temperature of hybridization is not 

significant since setting the time of hybridization and formamide concentration 

at 60 min and 47%, respectively, the fluorescent intensity is greater than 120 in 

a range of temperatures comprised between 45 and 65ºC. The PNA-FISH 

method targeting S. cerevisiae is robust as it allows the identification of this 

yeast in a wide range of hybridization conditions. A probe specificity testing 

should be done to assess the real robustness of the PNA-FISH method. 
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Figure 11 depicts the effects of temperature and time of hybridization on 

the fluorescence intensity (the measurement of hybridization efficiency), while 

formamide concentration was fixed at 0 (-α), 47 and 94.1% (+α).  

0% Formamide 

  

47% Formamide 

 
 

94.1% Formamide 

  
Figure 11 - Response surface plot and corresponding contour plot of the combined effects of time and 

temperature on the hybridization efficiency of a S. cerevisiae PNA probe with constant Formamide 

concentration. Red points - Design points above predicted value. 

Analysing the 3D response surface plot of 0% formamide, the initial idea 

is that the hybridization efficiency is very weak compared to the middle point of 

47% formamide. Nevertheless, a closer look at the counter plot indicates that 
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even without a denaturing agent the hybridization is possible and clearly 

distinguished compared with a negative control (fluorescence intensity = 30±3 

a.u.). Without a denaturing agent, the optimal ranges of temperature and time of 

hybridization were respectively 45-55ºC and 30-60 min, presenting a 

fluorescence intensity higher than 80. The optimal formamide concentration 

should be around the middle point of 47% since the hybridization efficiency is 

higher, presenting some design points above the predicted value. At 94.1% 

formamide, the hybridization efficiency substantially decreased being almost 

null at a temperature below 46ºC and during less than 48 min.  

Furthermore, response surface methodology (RSM) was employed to 

determinate the optimal hybridization conditions which would present the 

highest estimated fluorescence intensity. Simultaneous optimization of all 

parameters is possible by combining them into a single objective function, the 

desirability function, which basically represents the relationship of all 

parameters that are to be optimized (Aksezer 2008). Desirabilities range from 

zero to one for any given response. A value of one represents the ideal case. A 

zero indicates that one or more responses fall outside desirable limits. The 

optimal parameters are described in the Table 7 presenting an acceptable 

desirability of approximately 0.8. 

Table 7- Optimal hybridization parameters. 

Optimal 

conditions 

Temperature 

(ºC) 

Time 

(min) 

[Formamide] 

(%v/v) 

Fluorescence 

intensity (a.u.) 
Desirability 

53.9 57.8 43.8 147 0.797 

Model adequacy checking 

Usually, it is essential to check the fitted model to ensure that it provides 

an adequate approximation to the real system. The residuals from the least 

squares fit show how well the model satisfies the assumptions of the analysis of 

variance playing an important role in judging model adequacy (Li et al. 2007). 
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Residuals are the difference between actual and predicted values for each 

point. Studentized residuals are the residuals divided by the estimated standard 

deviation of that residual. It measures the number of standard deviations 

separating the actual and predicted values. 

The normal probability plot indicates whether the residuals follow a 

normal distribution, in which case the points will follow a straight line (Korbahti 

and Rauf 2008). The normality assumption was satisfied as the residual plot 

approximated along the straight line indicating that no response transformation 

was needed (Figure 12a). 

  
Figure 12 - Diagnostic plots. a) Normal probability of internally studentized residuals; b) Plot of internally 

studentized residuals vs predicted response. 

Figure 12b presents a plot of residuals versus the predicted response. 

The residuals distribute somewhat randomly on the display, suggesting that the 

variance of the original observation is constant for all values of the response. 

The outlier t is a measure of how many standard deviations the actual 

value deviates from the predicted value. Most of the standard residuals should 

lie in the interval of ±3.50 and any observation with a standardized residual 

outside of this interval is potentially unusual with respect to its observed 

response (Korbahti and Rauf 2008). According to Figure 13, the approximation 

of the fitted model to the response surface was fairly good with no data 

recording error since all the outlier t values are located below the interval of 

a b 
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±3.50. Both of the diagnostic plots are satisfactory, so the empirical model is 

adequate to describe the hybridization efficiency by response surface. 

 

Figure 13 - The outlier t test plot of Saccharomyces cerevisiae hybridization. 

Validation of optimized parameters 

In order to verify the optimization results, an experiment was performed 

under the predicted optimal conditions. Design-expert software predicted a 

fluorescence intensity of 147 a.u. at a hybridization temperature of 53.9ºC for 

57.8 min in a 43.8% formamide solution. The experimental values presented a 

fluorescence intensity of 184±14 a.u. which is consistent with the results 

obtained from RSM. The design points above the predicted value can 

somewhat support this high fluorescence. 

  
Figure 14 - Fluorescence Microscope results for in suspension PNA-FISH (Simplified hybridization solution 

with 43.8% formamide) at 53.9ºC for 57.8 min - Optimization Result. a) Negative control; c) Positive. 

a b 
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Denaturing agent – Is it required? 

Although the well-known toxicity of formamide, it remains the preferred 

solvent to lower the melting point and annealing temperature of nucleic acid 

strands in in situ hybridization (Matthiesen and Hansen 2012). Unlike 

formamide, urea is non-toxic and has been indicated as an additional 

permeabilizer that could increase the FISH signal (Lawson et al. 2012). The 

exclusion of formamide may open up new applications, such as simplified FISH 

analysis in a microfluidic platform. 

Urea was tested as a substitute for formamide in the hybridization buffer 

at 0.5, 2 and 4 M. Higher urea concentrations were not tested since, according 

to Simard et al. (2001), result in reduced hybridization sensitivity, possibly due 

to the solution’s viscosity that increases as a function of urea concentration.  

 

Figure 15 - Influence of different concentrations of urea in FISH signal. *: p < 0.05 and ***: p < 0.005 

relative to the negative control. All experiments were performed in triplicate. 

Interestingly, the signal was significantly higher (p < 0.005) with 0 M urea 

suggesting that the denaturing agent is not essential for the hybridization to 

occur. The fluorescence intensity increased from 0.5 M to 4 M urea, but always 

below the signal without denaturing agent as presented in Figure 15. The signal 
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was highest at 0 and 4 M urea, so these concentrations were chosen for further 

testing. Triplicate samples were always performed. 

Fixation as a crucial step 

In order to reduce the total time needed to perform the suspension 

procedure, a simplification of the fixation step was also tested. Fixation is one of 

the most crucial steps to assure an accurate and successful FISH result 

(Amann and Fuchs 2008) and can be based on either dehydration by alcohols 

(methanol or ethanol) or cross-linking by paraformaldehyde (Stadler et al. 

2010). Additionally to the standard procedure of 4% (wt/vol) paraformaldehyde 

during 1 h followed by 30 min of membrane permeabilization in 50% (vol/vol) 

ethanol at -20ºC, it was performed a reduced fixation step only with ethanol. All 

experiments were performed in triplicate.  

 

Figure 16 - Effect of the fixation procedure and the presence of a denaturing agent in the hybridization 

efficiency. . **: p < 0.01 and ***: p < 0.005. All experiments were performed in triplicate. 

The hybridization occurred even with the simplified fixation; however the 

incubation with paraformaldehyde showed to be important for an efficient 

hybridization with a substantial increase in the FISH signal. In the assay with 0 
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and 4 M urea it was verified an increase of signal of 45.52% and 51.56%, 

respectively, with the standard fixation procedure (Figure 16). In accordance 

with these data, the standard fixation protocol was maintained. Regarding the 

composition of the hybridization buffer, the supposed additional permeabilizer 

effect of urea described by Lawson et al. (2012) was not confirmed again.  

The idea was to compare the influence of optimal formamide and urea 

concentration with a hybridization solution without any denaturing agent, since 

the objective was to simplify the method. At this point, the decision was to 

proceed without any denaturing agent because it was verified a significant 

difference (p < 0.005) of FISH signal of 74.80% between this sample and the 

negative control. The sample subjected to a hybridization solution without any 

denaturing agent presented a fluorescence intensity of 106±25 a.u. 

Simplification of the hybridization solution - II 

The following approach was to further reduce the components of the 

hybridization solution removing dextran sulphate and Triton X-100. According to 

Azevedo (2005), dextran sulphate accelerates the rate of nucleic acid 

hybridization by decreasing the volume of solvent available to the probe and 

Triton X-100, as a detergent, affects membrane permeabilization.  

   
Figure 17 - Fluorescence Microscope results for PNA-FISH at 53.9ºC for 58 min - Simplification of the 

protocol. a) Negative control; b) Simplified hybridization solution 0M urea; c) Simplified hybridization 

solution 0M urea without dextran and Triton X-100. 

The new solution presented only 50 mM Tris-HCl (pH 7.5) acting as a 

buffer to control the pH of the hybridization, as variations in pH significantly 

a b c 
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affect hybridization temperature (Azevedo 2005). All experiments were 

performed in triplicate. 

Despite the marked decrease in FISH signal, the hybridization occurred 

even with a probe in a greatly simplified hybridization buffer of Tris-HCl (Figure 

17) suggesting that this simplification is valid. A hybridization step in these 

conditions for only 30 min was also tested demonstrating a fluorescence 

intensity of 69±18 a.u. compared to 86±8 a.u. for 60 min hybridization (Figure 

18). 

 

Figure 18 - Effect of the time of hybridization in the FISH signal. Simplified hybridization buffer only with 50 

mM Tris-HCl. *: p < 0.05 and ***: p < 0.005 relative to the negative control. All experiments were performed 

in triplicate. 

 

ImageJ analysis 

The developed ImageJ procedure to analyse fluorescence microscopy 

images demonstrated to be relatively simple and accurate. However, it is not 

completely automated since the threshold of each image has to be processed 

individually. For images with very distinguishable intensity values, the results 

appear to be consistent. The failure of this analysis seems to be images with 
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very close intensity values in which this method may not be precise enough to 

obtain differences.  

In the present study, the ImageJ analysis showed differences in the 

fluorescence intensity according to several hybridization conditions. To 

complete this work and to assess the real validity of image analysis, flow 

cytometry can be used to confirm the obtained data.  

S. cerevisiae probe specificity – preliminary testing 

 Following optimization of the hybridization conditions, the specificity of 

the PNA probe was tested in the optimal conditions found by RSM using 3 S. 

cerevisiae strains (IGC 2608T, IGC 3507 and PYCC 4072) and 1 S. bayanus 

IGC 4568T. Apart from the S. bayanus that was detected with lower 

fluorescence intensity, the remaining S. cerevisiae strains were detected with 

the expected fluorescence intensity levels (data not shown). It is possible that a 

small cross-reaction may have occurred in the S. bayanus hybridization 

experiment. Additional assays are needed to assess the real specificity of the 

probe including yeast species typically presents in wine and other S. cerevisiae 

strains. Negative controls were also always performed for this experiment. 

  



 A RSM approach for PNA-FISH optimization 2013 

53 
 

CHAPTER FIVE 

CONCLUDING REMARKS 

 

The present area of research has assumed an increasing importance in 

modern biological industries with the increase of quality control requirements 

and the continuous focus on final product excellence. Beer and wine spoilage 

organisms include several so-called wild yeasts, of which Saccharomyces 

species are generally considered the most important.  For this reason, the 

monitoring of wild yeast contamination is crucial in the production process of 

food and beverage industries. 

The scope of this dissertation consisted in the optimization of 

Saccharomyces cerevisiae detection by fluorescence in situ hybridization. With 

a response surface methodology approach, the maximum hybridization 

efficiency of 147 a.u. was predicted to occur at a hybridization temperature of 

53.9ºC, for 57.8 min in a 43.8% formamide solution. The proposed quadratic 

model was subjected to a model adequacy checking. The diagnostic plots are 

satisfactory, so the empirical model is adequate to describe the hybridization 

efficiency by response surface since it provides an adequate approximation to 

the real system. Statistical analysis of the results showed that the quadratic 

terms of these three variables had a significant effect. However, no interactions 

between the three variables were found to contribute to the response at a 

significant level. 

The PNA-FISH method targeting S. cerevisiae proved to be highly 

robust, and as such a simplification of the protocol was carried out. The removal 

of the paraformaldehyde incubation during the fixation step proved to decrease 

substantially the hybridization efficiency. Additionally, we demonstrated that a 
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simplification of the hybridization solution is possible removing both Triton X-

100 and dextran sulphate. The obtained FISH signal for a hybridization of 30 

min had a fluorescence intensity of 69±18 a.u. 

To prove the robustness of our method, a preliminary probe specificity 

assay was performed. The probe bound to all S. cerevisiae strains; 

nevertheless it bound to the S. bayanus strain presenting relatively lower FISH 

signal. In the future research, an extent specificity assay should be performed. 
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CHAPTER SIX 

PERSPECTIVES FOR FURTHER RESEARCH 

 

Throughout this work, it was noticed that additional experiments would be 

valuable to complement the topic addressed in this dissertation. However, due 

to time constraints and material resources some tests were not possible to 

perform. As an example, a flow cytometry assay of the optimal hybridization 

conditions should be performed in order to validate the quadratic proposed 

model. It would be also interesting to assess the Flow-FISH signal of the most 

simplified hybridization solution comparing to the negative control. In order to 

further reduce the total time needed to perform the suspension procedure, 

several tests should be performed to assess if the necessary time to each step 

could be condensed maintaining the final result clearly distinguishable from a 

negative control. Taken into account the adaptation of this concept to 

equipment for biological industry, the analysis time should be maintained as 

short as possible.  

In terms of simplicity and functionality, the development of a miniaturized 

platform integrating microfluidic PNA-FISH for cell detection emerged as a 

possible ultimate goal of the present dissertation. Recently, FISH-based 

microfluidic technique has been introduced due to the associated reduced cost, 

improved performance, automation and high speed. It also offers a number of 

advantages such as lower amounts of sample and reagents required 

disposability, compact size and computerization (Liu et al. 2011; Devadhasan et 

al. 2011). Combining multiple operations onto a single device is an attractive 

approach for automating FISH analysis on an industrial scale, ensuring the 

monitoring of yeast species. As an example, in wine production, a microfluidic 
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device (µFISH) will enable the early knowledge of the microbiological conditions 

and the application of corrective measures before spoiling becomes irreparable 

(Bottari et al. 2006). A better monitoring of the fermentation process will prevent 

the risk of alteration, leading therefore to a better quality of the final product. 

The continuation of this work depends on the design of adequate 

microfluidic geometry, enhancing as much as possible the detectability of the 

sample while trying to maintain the analysis time as short as possible.  

Despite the successful optimization approach, studies at industrial level 

are needed to define the real efficacy of FISH method and to determine the 

specific threshold that leads to the spoilage of the final product. 

Regarding the robustness of the PNA-FISH method, an extent probe 

specificity assay should be performed and a new target should be tested: 5.8S 

rRNA gene, according to Esteve-Zarzoso et al. (1999) useful to identify spoilage 

yeast, since it carries greater interspecific differences than the 18S and 26S 

rRNA genes.   
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APPENDIX 

I – Saccharomyces cerevisiae Growth Curve 

 

Figure 19 - Saccharomyces cerevisiae growth curve and corresponding cell density, according to 

(Bergman 2001). 

 

 

Figure 20- Determination of growth rate and doubling time of S. cerevisiae. 
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II – S. cerevisiae genome BLAST  

Query sequence: AGGCTATAATACTTACC (probe) 

Description: 26S ribosomal RNA gene 

Table 8 - BLAST significant alignment. 

Score Expect Identities Gaps Strand 

34.2 bits (17) 0.010 17/17 (100%) 0/17 (0%) Plus/Minus 

 

 

III – Composition of FISH Solutions 

Table 9 - Standard hybridization solution (pH 7.5) 

 Manufacturer 

10 mM Sodium Chloride Sigma-Aldrich, USA 

10% (wt/vol) Dextran Sulfate Fisher Scientific, UK 

30%(vol/vol) Formamide Acros Organics, UK 

0.1% (wt/vol) sodium pyrophosphate Acros Organics, UK 

0.2% (wt/vol) polyvinylpyrrolidone Sigma-Aldrich, USA 

0.2% (wt/vol) Ficol Fisher Bioreagents, UK 

5 mM Disodium EDTA Panreac Quimica, Spain 

0.1% (vol/vol) Triton X-100 Panreac Quimica, Spain 

50 mM Tris-HCl Fisher Scientific, UK 

 

Table 10 - Simplified hybridization solution (pH 7.5) 

 Manufacturer 

10% (wt/vol) Dextran Sulfate Fisher Scientific, UK 

30%(vol/vol) Formamide Acros Organics, UK 

0.1% (vol/vol) Triton X-100 Panreac Quimica, Spain 

50 mM Tris-HCl Fisher Scientific, UK 
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Table 11 - Washing solution (pH 10) 

 Manufacturer 

5 mM Tris Base Fisher Scientific, UK 

15 mM Sodium Chloride Sigma-Aldrich, USA 

1% (vol/vol) Triton X-100 Panreac Quimica, Spain 

 

 


