
Universidade do Porto
Faculdade de Engenharia

Generic Roles:
Reducing Code Replication

f

Fernando Sérgio Barbosa

September 2013

Scientific Supervision by

Doctor Ademar Aguiar, Assistant Professor
Department of Informatics Engineering

In partial fulfillment of requirements for the degree of
Doctor of Philosophy in Informatics Enginnering

by the Doctoral Program in Informatics Engineering

http://www.up.pt
http://www.fe.up.pt
mailto:fsergio@ipcb.pt

Contact Information:

Fernando Sérgio Barbosa
Escola Superior de Tecnologia
Instituto Politécnico de Castelo Branco

Avenida do Empresário, s/n
6000 - 767 Castelo Branco
Portugal

Tel.: +351 272 339 300
Fax.: +351 272 339 399
Email: fsergio@ipcb.pt

This thesis was typeset using the free LATEX typesetting system, originally developed by Leslie Lamport based on
TEX created by Donald Knuth. The body text is set in Latin Modern, a Computer Modern derived font originally
designed by Donald Knuth. Other fonts include Sans and Typewriter from the Computer Modern family, and Courier, a
monospaced font originally designed by Howard Kettler at IBM and later redrawn by Adrian Frutiger.

ISBN 978-972-752-138-8

9 789727 521388

Fernando Sérgio Rodrigues de Brito da Mota Barbosa
Generic Roles: Reducing Code Replication
Copyright © 2013 by Fernando Sérgio Rodrigues de Brito da Mota Barbosa. All rights
reserved.

. . . to my wife, Teresa

. . . to my daughters, Margarida and Rita

This page was intentionally left mostly blank.

Abstract

For many years the concept of modularity has been considered a very important part in the
development of large software systems. Modules help to manage the system’s complexity
by decomposing it in smaller parts. These parts can be assigned to individuals or teams for
development. Modules hide the information they manipulate behind an interface, allowing
its developers to develop the module independently of any other module in the system.
Developers can change the information their module manipulates and even the way it does
it without the need to consult other developers, and breaking their code. This enables the
interchangeability of modules, allowing one module to be substituted by another without
further modifications to the system. It also reduces compiling time as modules can be
precompiled.

The concept of modularization lead to the dawn of several decompositions techniques,
each with its own ideas on how a system should be decomposed into modules. For
each decomposition technique and to help programmers extract the most benefits from
modularization, several programming languages provide support for expressing modules.
In object-oriented decomposition, for example, several programming languages provide
support to define abstract data types, usually in the form of classes.

Ideally, each module would capture one coherent concept that would deal with a set
of coherent concerns related to the module’s concept. Unfortunately that is not always
true. Sometimes, modules need to interact in more complicated and intertwined manners.
Sometimes, the need to communicate with other modules lead one module to assume
concerns that are not related to its main concern. This is, as argued by many authors,
because only a single decomposition strategy is used . To avoid this we may need to use
more than one decompositions strategy or extend an existing one.

Code clones are an outcome of the lack of other decomposition strategies, among others
sources. Code cloning in a system is considered a bad thing with multiple drawbacks.
One of the more known problems is the inconsistent maintenance: bugs are fixed in some
clones, but not in others. Another major objection to the use of cloning is that it degrades
the design of the system over time. Awkward, verbose designs lead to the accumulation of
irrelevant code that ends up obscuring the original intent of the code.

ii abstract

In this dissertation we study the reduction of the code replication using modularity
as a cornerstone around which our solution must be based. We intend to reduce code
replication using another kind of module, which we can use to extend the object-oriented
strategy. The module that we will study is the role. Roles have been used to specify an
object’s behavior related to a specific collaboration in the modeling stages of a system. But
in the implementation that specification is merged with all the object’s other collaboration
behaviors, inside a class. It is a purpose of this dissertation to take the specification from
the design phase to the implementation phase and study its impact on the code replication
problem.

The solution proposed in this dissertation is to use roles as a way to compose classes
and thus reducing code replication. To pursue this goal a role language is designed and
a suitable compiler is implemented. The JavaStage language allows a programmer to
“program with roles”. It introduces several features like a powerful renaming mechanism
and to state role dependencies easily.

Using JavaStage and roles we were able to identify several refactorings that enables
us to write the replicated code as roles thus removing the code clone. The use of these
refactorings proved their value when applied to a series of case studies developed to assess
the amount of duplicated code that could be removed using roles.

As already mentioned, the modularity principles were followed throughout the design
of the proposed solution and, to assess the reusability of roles, a role library was started.
Its evolution corroborates the idea that roles are reusable modules and can be used as a
compositional element.

Resumo

A modularidade é, já há muitos anos, vista como uma peça importante no desenvolvimento
de sistemas informáticos de grandes dimensões. Os módulos ajudam a gerir a complexidade
do sistema decompondo-o em várias partes mais pequenas que podem ser adjudicadas a um
indivíduo ou a uma equipa para desenvolvimento. Os módulos encapsulam a informação
que manipulam e o modo como a manipulam, permitindo assim aos seus autores desenvolvê-
lo independentemente dos outros módulos do sistema. Os autores de um módulo podem,
inclusivé, alterar o modo de representação da informação à medida das suas necessidades,
ou até alterar o modo de a manipular, sem consultar os autores dos outros módulos e
sem quebrar os módulos destes. Isto permite a permutação de módulos, podendo assim
um módulo ser substituído por outro sem que o sistema sofra outras alterações. Também
permite um tempo de compilação mais rápido devido a poder-se pré-compilar os vários
módulos.

O conceito de modularização levou ao surgimento de várias estratégias de decomposição,
cada uma com as suas ideias sobre como um sistema deveria ser decomposto em módulos.
Para cada uma destas estragégias, e para ajudar os programadores a usufruir ao máximo
dos benefícios da modularização, surgiram várias linguagens de programação com suporte
para a representação de módulos. Por exemplo, na decomposição orientada a objetos,
muitas linguagens permitem a definição de tipos abstratos de dados, normalmente na
forma de classes.

Idealmente, cada módulo capturaria um conceito coerente e esse conceito lidaria
com um conjunto coerente de responsabilidades ligadas ao conceito principal do módulo.
Infelizmente, não é assim. Por vezes os módulos precisam de interagir de forma mais
complexa e interligada com outros módulos. Outras vezes a necessidade de comunicar
com outros módulos leva-os a assumir responsabiliades que não estão de acordo com a sua
“razão de ser”. Isto, como é argumentado por muitos autores, é uma consequência do uso
de uma única estratégia de decomposição. Para evitar isto provavelmente necessita-se de
uma outra forma de decomposição ou expandir uma já existente.

O aparecimento de clones no código é uma consequência do uso de uma única estratégia
de decomposição, entre outras causas. A presença de código repetido num sistema é

iv resumo

considerada um mau indício e acarta muitas consequências nefastas. Um dos problemas
mais conhecidos é a inconsistência na manutenção: os bugs são reparados em algumas
instâncias do código repetido mas não em todas. Outro grande problema do uso de cópias
de código é que o seu uso irá degradar o design do sistema a longo prazo. Isto leva à
acumulação de código irrelevante que acaba por obscurecer o objectivo inicial do código.

Nesta tese tenta-se estudar a redução de código repetido usando a modularidade como
“pedra de toque” em torno da qual a nossa solução se baseará. Tencionámos reduzir a
repetição de código usando outro tipo de módulo, que nos permita expandir a decomposição
orientada a objetos. O módulo que iremos estudar será o role. Os roles têm vindo a ser
usados para especificar o comportamento de um objeto em relação a outro objeto, dentro
de uma colaboração, na etapa de modelação do sistema. Mas, na fase de implementação,
essa especificação é agrupada com todos os comportamentos que o objeto exibe em todas
as suas colaborações, dentro de uma classe. É um dos propósitos desta tese levar esta
especificação desde a fase de modelação até à fase de implementação e estudar o seu
impacto no problema de repetição de código.

A solução proposta nesta dissertação é usar os roles como uma maneira de compor
classes e assim reduzir a repetição de código. Para atingir este objectivo uma linguagem
de programação que suporta roles será idealizada e um compilador adequado desenvolvido.
A linguagem JavaStage permite a um programador “programar com roles”. Ela introduz
algumas funcionalidades como um mecanismo de renomeaçao de métodos poderoso e uma
forma de exprimir as dependências do role facilmente.

Usando a JavaStage e os roles fomos capazes de identificar várias refactorings que nos
permitem expressar o código presente nas várias repetições como roles e assim remover o
código repetido associado. Estas refactorings mostraram o seu valor quando usadas numa
série de casos de estudo que foram desenvolvidos com o propósito de avaliar a quantidade
de código repetido que se poderia remover usando roles.

Como já foi mencionado os princípios da modularidade foram seguidos ao longo da
concepção da solução proposta e para avaliar a reutilização dos roles a construção de
uma biblioteca de roles foi iniciada. A sua evolução corrobora a ideia de que os roles são
módulos reutilizáveis e podem ser usados como um elemento composicional de classes.

Contents

Abstract i

Resumo iii

Preface xvii

1 Introduction 1
1.1 Software Reuse . 1
1.2 Research Goals . 4
1.3 Research Strategy . 4
1.4 Expected Results . 5
1.5 How to Read this Dissertation . 6

I State of the art 9

2 Code clones 11
2.1 Origins of Clones . 12

2.1.1 Development Strategy . 12
2.1.2 Maintenance Benefits . 13
2.1.3 Overcoming Underlying Limitations 14
2.1.4 Cloning by Accident . 14

2.2 Consequences of Clones . 15
2.3 Types of Clones . 16

2.3.1 Type I Clones . 16
2.3.2 Type II Clones . 17
2.3.3 Type III Clones . 18
2.3.4 Type IV Clones . 18

2.4 Detecting Clones . 19
2.5 Dealing with Code Clones . 20

2.5.1 Removing code clones . 21

vi CONTENTS

2.5.2 Avoiding Code Clones . 23
2.5.3 Managing Code Clones . 23

2.6 Summary . 24

3 Decomposition Techniques 25
3.1 Sample Frameworks . 26

3.1.1 Figure Handling Framework . 26
3.1.2 Graphical User Interface Framework 27

3.2 Object-Oriented Decomposition . 27
3.2.1 Object-Oriented Figure Framework 31
3.2.2 Object-Oriented GUI Framework 32
3.2.3 Code Replication in the Object-Oriented Solution 33

3.3 Aspect-Oriented Programming . 36
3.3.1 AOP Figure Framework . 38
3.3.2 AOP GUI Framework . 38
3.3.3 Code Replication in the AOP solution 38

3.4 Traits . 41
3.5 Feature-Oriented Programming . 43
3.6 Multiple Dimension Separation of Concerns 44
3.7 Other Approaches . 45
3.8 Summary . 46

4 Roles 47
4.1 What are roles? . 48
4.2 Modeling with Roles . 50

4.2.1 Advantages of Role Modeling . 52
4.2.2 Role Figure Framework . 52
4.2.3 Role GUI Framework . 53
4.2.4 Code Replication in the Role Solution 54

4.3 Dynamic Roles Characteristics . 55
4.3.1 Classes Playing Roles . 55
4.3.2 Roles Playing Roles . 56
4.3.3 Supertypes or Subtypes . 57
4.3.4 Defining Properties in Roles . 58
4.3.5 Method Call . 58
4.3.6 Role Identity . 59
4.3.7 Roles Lifecycle and Movement . 60
4.3.8 Role Visibility . 61

CONTENTS vii

4.3.9 Exceptions . 62
4.3.10 Renaming Properties . 62

4.4 Summary . 62

II Problem and Solution 65

5 Research Problem and Solution 67
5.1 Open Issues . 68
5.2 Research Questions . 69
5.3 Research Focus . 69
5.4 Thesis Statement . 70
5.5 Research Goals . 72
5.6 Proposed Approach . 74
5.7 Validation Methodology . 75
5.8 Summary . 76

6 JavaStage 77
6.1 Development . 77

6.1.1 Roles as modules . 78
6.1.2 Extending the reuse of roles . 79
6.1.3 Removing the playedBy . 80
6.1.4 The need for a Renaming Mechanism 82

6.2 Syntax . 83
6.2.1 Declaring Roles . 84
6.2.2 Playing Roles . 84
6.2.3 Stating Role Requirements . 86
6.2.4 Playing the Same Role More Than Once 86
6.2.5 Renaming Role Methods . 86
6.2.6 Providing Multiple Versions of a Method 88
6.2.7 Making Use of Naming Conventions 89
6.2.8 Roles Playing Roles or Inheriting from Roles 90
6.2.9 Role Constructors . 92
6.2.10 Conflict resolution . 93
6.2.11 The self problem and delegation . 93

6.3 Implementation . 94
6.3.1 Role Identity . 96
6.3.2 The plays Clause . 96
6.3.3 Role Inheritance vs Role Playing Roles 96

viii CONTENTS

6.3.4 Aliases vs Method Renaming . 97
6.3.5 Requirements Listing . 97

6.4 Limitations . 97
6.4.1 Source Code Must be Available . 98
6.4.2 No static public Variables . 98

6.5 Implementation Alternatives . 99
6.5.1 Using Reflection . 99
6.5.2 Roles as Standalone Classes . 100

6.6 Comparison with Other Approaches . 101
6.6.1 Traits . 101
6.6.2 Aspect-Oriented Programming . 103
6.6.3 Other Composition Techniques . 104
6.6.4 Role Related Approaches . 107
6.6.5 Dynamic Role Approaches . 108
6.6.6 Approaches using Class Extensibility 109

6.7 Summary . 109

7 Removing Clones 111
7.1 Unresolved Clones . 111

7.1.1 Identical Clones in Classes with Different Superclasses 112
7.1.2 Clones That Have Identical Structure but Use Different, Unrelated,

Types . 113
7.1.3 Clones With the Same Structure and Types But Using Different

Methods . 113
7.1.4 Clones With the Same Structure That Use Different Types and

Method Names . 114
7.2 Clone Removal Role Refactorings . 117

7.2.1 Extract Role . 117
7.2.2 Extract Role Changing Types . 121
7.2.3 Extract Role with Configurable Methods 125
7.2.4 Extract Role with Types and Methods 129

7.3 Summary . 132

III Validation 133

8 Towards a Role Library 135
8.1 Roles in Design Patterns . 135
8.2 Summary . 152

CONTENTS ix

9 Case Studies 153
9.1 The Target Systems . 153
9.2 The Case Study Setup . 154
9.3 JHotDraw . 159

9.3.1 JHotDraw Overview . 159
9.3.2 JHotDraw Results . 160
9.3.3 Solved Concerns . 164
9.3.4 Explaining Unresolved Concerns . 168
9.3.5 Other Considerations . 169

9.4 OpenJDK Compiler . 170
9.4.1 OpenJDK Compiler Overview . 170
9.4.2 OpenJDK Results . 171
9.4.3 Solved Concerns . 172
9.4.4 Explaining Unresolved Concerns . 178
9.4.5 Other Considerations . 179

9.5 Spring Framework . 181
9.5.1 Spring Framework Overview . 181
9.5.2 Spring Framework Results . 182
9.5.3 Solved Concerns . 183
9.5.4 Explaining Unresolved Concerns . 188
9.5.5 Other Considerations . 191

9.6 Discussion . 192
9.7 Threats to Validity . 194

9.7.1 Complexity of JavaStage . 194
9.7.2 System Comprehension and Evolution 194
9.7.3 Analyzed Systems . 194
9.7.4 Case Study Setup . 195
9.7.5 Clone Detecting Technique Used . 195

9.8 Summary . 195

10 Conclusions 197
10.1 Key contributions . 198
10.2 Future work . 199

10.2.1 Improve and Enhance the JavaStage Compiler 199
10.2.2 Improve the JavaStage Language 200
10.2.3 Refine and Extend the Refactorings 200
10.2.4 Extend the Role Library . 200
10.2.5 Further Studies . 200

x CONTENTS

Appendices 203

A Publications 205
A.1 Papers . 205
A.2 Book Chapters . 206
A.3 Posters . 206

Glossary 207

References 209

List of Figures

2.1 Example of Extract Method usage . 21
2.2 Example of Extract Superclass usage . 22
2.3 Example of Pull Up Method and Pull Up Field usage 22
2.4 Example of Extract Class usage . 22
2.5 Example of Form Template Method usage 23

3.1 Example of an application that uses the figure framework 26
3.2 Example of a GUI created with the GUI framework. 27
3.3 The classic diamond problem. 28
3.4 Implementation of delegation. 30
3.5 The impementation of a Stack class using delegation and inheritance.

Adapted from [KS08] . 31
3.6 Class diagram of the Figure framework . 32
3.7 Class diagram of the GUI framework . 33
3.8 Code replication originated by not using multiple inheritance. 34
3.9 Code from the composite pattern in the Figure Framework. 35
3.10 Code from the two instances of the observer pattern in the Component

Framework. The similarities between their add, remove and notify methods
are clear. 36

3.11 Code for the generalized observer aspect as proposed by Hannemann and
Kickzales, and the concrete FigureObserver aspect for the figure framework. 39

3.12 Code excerpt from the generalized composite aspect as proposed by Hanne-
mann and Kickzales. 40

3.13 Trait example, adapted from [SD05]. 43
3.14 Class definitions . 44
3.15 Class refinements . 44

4.1 An example of inheritance hierarchies of both roles and classes. 51
4.2 Roles created for the Figure framework. 53
4.3 The Figure hierarchy (excerpt) with roles. 54

xii LIST OF FIGURES

4.4 Roles created for the Component framework. 55
4.5 The Component hierarchy (excerpt) with roles. 56
4.6 Possible solution for the Picture problem. Shows how roles can mimic

multiple inheritance. 57
4.7 Examples of Conjunctive role attachment (left) and Disjunctive role attach-

ment (right) . 57

5.1 Research focus on the Decomposition Methodologies 71

6.1 Example of a simple role. 81
6.2 Example of a PolarLocation role identical to the Location role. 82
6.3 The extension of java syntax in JavaStage. 84
6.4 Definition of the PropertyProvider and FocusSubject role (first version). . . 85
6.5 Definition of the DefaultComponent class (first version). 85
6.6 A generic subject role requiring its observers to implement an update method

(first version). 87
6.7 Definition of the Mapper role, that replaces the PropertyProvider role, with

configurable methods (second version). 88
6.8 Definition of the generic subject role (second version) now with configurable

methods. 89
6.9 The VisitorElement role, a class Figure that plays the role, a subclass from

the Figure hierarchy and the Visitor interface. 90
6.10 Roles extending roles and roles playing roles. 91
6.11 Final version of the Container role now supporting constructors. The

CompositeComponent plays the GenericContainer role configuring it to use
an ArrayList as the container. 92

6.12 Excerpt of how an AbstractFigureRaw playing the GenericSubject role class
would look . 95

7.1 Example of a clone in classes that have different superclasses. 112
7.2 Example of a clone in classes that use different types. 114
7.3 Example of a clone that uses different methods but same types. 115
7.4 Example of a clone that has different types and method names but similar

structures. 116
7.5 Extract role . 117
7.6 Extract Roles Changing Types . 121
7.7 Extract Role with Configurable Methods 125
7.8 Extract Role with Types and Methods . 129

LIST OF FIGURES xiii

8.1 The use of the FactoryMethod role to relate a Figure subclass to the
corresponding FigureManipulator. 138

8.2 The use of the Prototype role to create clones for a figure hierarchy. 139
8.3 Flyweigth Factory example . 142
8.4 Using a role to play another, more generic role, in an example Chain of

Responsibility implementation. 143
8.5 Sample implementation of a subject role. 146
8.6 An implementation of the visitor pattern with roles. 148
8.7 The FlowerSubject role and the Flower class from our subject role sample. 151
8.8 Dependency Structure Matrix for the Observer role sample. 152

9.1 Relationships between the main classes of JHotDraw 159
9.2 javac compiling stages . 171
9.3 Spring Framework overview . 181

xiv LIST OF FIGURES

List of Tables

2.1 Clone Factors (adapted from [RC07]). 13
2.2 Detection Techniques Comparison . 20

5.1 Clone Factors that are the focus of the research. 70

8.1 Summary of the roles developed for the GoF patterns 149
8.2 The developed roles summary description 150

9.1 JHotDraw’s identified concerns associated with the corresponding clone sets.161
9.2 JHotDraw resolved concerns . 162
9.3 JHotDraw unresolved concerns . 162
9.4 JHotDraw LOC count . 163
9.5 OpenJDK compiler’s identified concerns associated with the corresponding

clone sets. 173
9.6 OpenJDK compiler resolved concerns . 174
9.7 OpenJDK compiler unresolved concerns . 174
9.8 OpenJDK compiler LOC count . 175
9.9 Spring’s identified concerns associated with the corresponding clone sets

(Part I). 184
9.9 Spring’s identified concerns associated with the corresponding clone sets

(Part II). 185
9.10 Spring resolved concerns (Part I) . 186
9.10 Spring resolved concerns (Part II) . 187
9.11 Spring unresolved concerns . 188
9.12 Spring LOC count (Part I). 189
9.12 Spring LOC count (Part II). 190
9.13 Clone removal results summary . 192

xvi LIST OF TABLES

Preface

Like many in my generation, the computer world opened to me by a small and slim black
box that we connected to a television: the ZX Spectrum that my parents bought me and
my sisters when I was fifteen. Initially it was used to play games but as I learned that one
could program it, it became even more interesting. Besides playing the games I could write
my own games and other programs. I still remember my first attempt at programming,
even before reading the BASIC manual: a game where a car chased another. It was a very
naive approach as I assumed that the computer would understand what I wanted and so
it was only 5 lines of code! It did not work (obviously!) and I solved the errors it had
by beginning each line with a “rem” - it actually commented the line so no wonder the
errors were gone! Another memory of those early days involved taking the computer to
the classroom where I showed my Biology teacher and colleagues a program I wrote that
simulated the connection of several proteins, with animations and all! It was incredible
what you could do with only 48K of memory. I love programming ever since.

And while every programmer does enjoy programming there is one thing they do not
like: writing the same code over and over. The evolution of programming languages,
especially under the Object-Oriented Paradigm, brought code reuse to a higher level
especially by the extensive use of libraries. Still the problem remains. This is the case
even when we are programming using best practices, or using design patterns. Every time
we program an Observer or a Singleton Pattern we feel that “we have done this before”.
With patterns we don’t need to solve the same problem over and over, we just reuse the
solution several times. But because the code for implementing the patterns is very similar
between pattern instances, the feeling that we are repeating the same code over and over
is present.

When studying Aspect-Oriented Programming (AOP), for a possible future thesis in
the area, and analyzing several aspect examples I felt the same “déjà vu” feeling. A number
of aspects were implemented in very identical ways, or with only little changes. This lead
me to believe that AOP is not enough to remove code replication and could benefit from
techniques for avoiding code replication as well. The study of AOP continued but this
problem remained in the background, and possible solutions were germinating. One such

xviii preface

solution lead to the role research field that was unknown to me at the time. It was a shock
to see that several of my new ideas were already debated long ago! The core ones were
not covered, though, and the code replication problem stepped from the background to
the foreground. The AOP study was put on hold and, as new ideas associated with roles
appeared and the role study progressed, it was completely put aside. Over the years that
took me to undertake this work the original ideas have matured and evolved, but they all
reached the conclusion in a recognizable form.

I thank my supervisor Ademar Aguiar for its initial guidance and ensuring me that
the path I was leading would take me where I wanted to go,. His steering over the years
was also very important in focusing my research effort, even in spite of the distance. I
must also acknowledge Professors Eugénio Oliveira and Augusto de Sousa, of the Doctoral
Program in Informatics Engineering (ProDEI) for all the support provided in my first year
and as representatives of all the teachers in the Doctoral Program, to whom I also thank.
My thanks also to the members of the supervising committee, Professor João Miguel
Fernandes and Professor João Pascoal Faria, for their valuable advices and suggestions for
improvement. I also thank my institution - Escola Superior de Tecnologia do Instituto
Politécnico de Castelo Branco - for the financial support and for alleviating my work load
so that I could better proceed with my thesis work.

On a more personal note I thank my wife Teresa and daughters Margarida and Rita
for their unconditional support even when things were not going as well as I liked them to
be. I especially thank them for their sympathy and understanding when the work took
me away from them often and for long periods.

Fernando Sérgio Barbosa
Porto, Portugal

July 2013

Chapter 1

Introduction

1.1 Software Reuse . 1
1.2 Research Goals . 4
1.3 Research Strategy . 4
1.4 Expected Results . 5
1.5 How to Read this Dissertation 6

1.1 Software Reuse
Every software engineer’s goal is to deliver a working system that fulfills all users’ re-
quirements. But this is not enough. The system must also be reliable, easy to maintain,
easy to evolve, and as cheap as possible to develop. Over the time software engineers
have developed techniques and methodologies that reduce software complexity, improve
readability, enhance reuse of code and facilitate evolution. On the basis of many of the
techniques is code reuse, because with code reuse both the cost and the production time
of the software are decreased.

Modularization [Par72] is the mean by which code reuse has been made possible.
Modularization also leads to decomposition and composition phases in the software life
cycle. Decomposition enables us to identify the modules present in a system by taking
the system and breaking it into smaller systems. Decomposition also contributes greatly
to program comprehension because we only need to understand a part of a system. If a
module is well written it is complete and highly, if not completely, independent from other
modules. We can therefore analyze each module per se. We can also develop each module
independently, thus reducing time in the implementation phase, by assigning different
modules to different developing teams.

2 introduction

Composition, on the other hand, is used to produce the final system by putting together
the various modules. There are also many ways to compose a system from its modules
but they tend to depend on the decomposition strategy used.

Over the time several decomposition methodologies have been proposed, each present-
ing its own definition of a module or set of modules. Nowadays, object-oriented (OO)
decomposition is the dominant methodology. In OO we can assume that the smallest
module available is the class. In the functional paradigm, another popular decomposition
strategy, the smallest module is the function.

These evolutions lead to a significant improvement in code reuse but there is a problem
that still persists: that of code replication. This is a real problem, especially in large systems
[MLM96, BYM+98, Bak95, JMSG07, KG06b, LLMZ06]. Code replication has negative
effects on development time and programmers motivation [MLM96, BYM+98, JDHW09].
Programmers like to write code, what they do not like is to write the same code over
and over. If a programmer has to do the same code over and over it leads to tiredness
and to errors. This leads to the reuse of code on the copy-paste principle with all the
associated problems, like having to trace every instance of the replicated code to fix a bug
or to introduce a new feature. This problem of code replication will be the focus of study
of this work. There are several reasons for code replication but we will not deal with all
of them [RC07]. We are interested in those situations where code replication is due to a
poor modularization of the system, underlying language or programming paradigm.

One reason for code clones that we will try to overcome are modularization limitations.
Even though OO is the dominant decomposition strategy it has restrictions in modular-
ization. There are always concerns that do not fall neatly into a class and are shared by
a set of classes. These are called the crosscutting concerns because they exist across all
the classes that deal with them. These crosscutting concerns may lead to severe code
replication. This code replication may appear because classes must have the same code
for dealing with the same crosscutting concern.

There is also code that is very much the same because classes have to do similar tasks.
Developers that use design patterns [GHJV95] in their systems tend to use the same, or
similar, code for each instance of the same pattern, whenever possible. In a system that
uses the same pattern several times it is likely that some of the code is replicated. Even if
the system only uses an instance of a design pattern the developer has a déjà vu feeling
that she is writing the same code again. To reduce this code replication in the design
pattern instantiation several tools were developed, but we feel that if we can capture each
participant of a design pattern into a module and reuse that module the outcome is more
effective than using tools.

We need a new way to further reduce code replication and we believe that it is possible

software reuse 3

to find a way to do it. This new way must cope with the modularization principles as well.
It must also provide a way to decompose the system into new modules and then compose
the new modules to form the system.

Even though the several decomposition strategies are worthy, we will focus our discussion
in the OO decomposition, or the more relevant that derived from it, as it is the dominant
one. We will take a more detailed look at the role approach [RWL96, RG98, Ste00], as we
believe that roles are the most likely technique to produce good results in reducing code
replication as they offer a good way to decompose a system.

Objects interact with each other through collaborations. In each collaboration it enters,
the object plays a specific role. The role represents the behavior of an object with respect
to each collaboration. The same object may play several roles, depending on the objects
it interacts with. Classes can therefore be defined by the several roles its objects may
play in a system. Some of these roles are defining, that is, the class primary concern is to
deal with that type of interactions. These roles can be directly implemented in the class
itself. Other roles the class plays are superimposed, that is, its objects only assumes these
roles because they are required to interact with other objects. These superimposed roles
eventually lead to crosscutting concerns and to replicated code, if we implement them in
the class.

If we decompose a class into roles we can describe the superimposed roles independently
of the class that plays them. This way we can develop an independent role with the
crosscutting code. When composing the class the role behavior is added to the class
behavior. This is done for every class that plays the role. Classes can therefore share the
role implementation, thus reusing the code instead of replicating it.

Roles retain all of the OO features [CLD05] but offer an even more granular way of
decomposition as several classes can play the same role. Thus we can place a crosscutting
concern in a role and make all the classes that need to address that concern play that role.
To compose the system, roles also have advantages because they can be seen as a smaller
module than the class so they act at a finer grain level and can influence classes as well as
other roles.

Many role researchers have concentrated in dynamic roles and evolving objects of a
system at run-time by attaching, or detaching, roles to them. Even if this is a good way of
using roles we will not directly address dynamic issues but limit our work to the problems
of code reuse to which a static approach is sufficient. Our goal is to build generic roles:
roles that can be easily tuned to fit a particular class.

4 introduction

1.2 Research Goals
Taking into account the previous concerns this dissertation aims at contributing to the
software engineering body of knowledge by proposing new ways of reusing software.

The main research goal is to reduce replicated code by providing a new way of
composing classes that is an extension to the object-oriented paradigm. More
concretely we intend to use roles as a component for classes. This way we intend
to increase code reuse while following all the modularity guidelines and retain all its
advantages. We intend to explore how roles can be made modular and therefore reusable,
thus contributing to diminish code replication. An intended outcome of the work is to
build a library of reusable roles. This will show how roles can be used to reduce code
replication and provide other ways of reusing code.

These research goals are further detailed in Chapter 5.

1.3 Research Strategy
Software engineering is still maturing as a research area. Software development has specific
characteristics that suggests its own research paradigm, combining aspects from other
disciplines: it is a human creative phenomenon; software projects are costly and usually
have long cycle times; it is difficult to control all relevant parameters; technology changes
very frequently, so old knowledge becomes obsolete fast; it is difficult to replicate studies;
and there are few common ground theories.

A categorization proposed at Dagstuhl workshop [THP92], groups research methods in
four general categories, quoted from Zelkowitz and Wallace [ZW98]:

• Scientific method. “Scientists develop a theory to explain a phenomenon; they
propose a hypothesis and then test alternative variations of the hypothesis. As they
do so, they collect data to verify or refute the claims of the hypothesis.”

• Engineering method. “Engineers develop and test a solution to a hypothesis.
Based upon the results of the test, they improve the solution until it requires no
further improvement.”

• Empirical method. “A statistical method is proposed as a means to validate a
given hypothesis. Unlike the scientific method, there may not be a formal model or
theory describing the hypothesis. Data is collected to verify the hypothesis.”

• Analytical method. “A formal theory is developed, and results derived from that
theory can be compared with empirical observations.”

expected results 5

These categories apply to science in general. Effective experimentation in software
engineering requires more specific approaches. Software engineering research comprises
computer science issues, human issues and organizational issues. It is thus often convenient
to use combinations of research approaches both from computer science and social sciences.
The taxonomy described by Zelkowitz and Wallace [ZW98] identifies twelve different types
of experimental approaches for software engineering, grouped into three broad categories:

• Observational methods. “An observational method collects relevant data as a
project develops. There is relatively little control over the development process other
than through using the new technology that is being studied”. There are four types:
project monitoring, case study, assertion, and field study.

• Historical methods. “A historical method collects data from projects that have
already been completed. The data already exist; it is only necessary to analyze what
has already been collected”. There are four methods: literature search, legacy data,
lessons learned, and static analysis.

• Controlled methods. “A controlled method provides multiple instances of an
observation for statistical validity of the results. This method is the classical method of
experimental design in other scientific disciplines”. There are four types of controlled
methods: replicated experiment, synthetic environment experiment, dynamic analysis,
and simulation.

The best combination of methods to use in a concrete research approach is strongly
dependent on the specific characteristics of the research study to perform, viz. its
purpose, environment and resources. Hereafter, the research methods referred will use this
terminology. Further description of each method can be found in [ZW98].

Based on the expected results and contributions of the work presented in this disserta-
tion, the research strategy comprised a mix of observational and historical methods (case
studies, literature search, and lessons learned) to substantiate the replicated code reduction
contribution (Chapter 7 (p. 111)) and the observational method to provide evidence for
the generic roles and role library contributions (Chapter 8 (p. 135)). A detailed rationale
of the methods is presented in Chapter 5 (p. 67).

1.4 Expected Results
The expected outcomes of this thesis are the following contributions to the body of
knowledge in software engineering:

6 introduction

• Providing roles with a supporting language. Roles are used for modeling and
documentation of systems but not in its implementation. This introduces a gap
between modeling and implementation as the artifacts from the earlier stages are not
used in the final solution. Each developer must find its own way of implementing
the role view used in the design stage. This opens the door to misconceptions and
ultimately to errors. With a programming language that supports roles developers
can reproduce the design decisions more accurately and thus less error prone.

• Refactorings for removing code clones. Nowadays refactoring code is a powerful
technique to remove a number of flaws out of the system code, making it more
adaptable, easy to understand, etc. Code cloning is identified as a flaw in a system’s
code and some known refactorings can be used to reduce it. We intend to extend the
known collection of refactorings by adding role related clone reduction refactorings.

• A role library. To demonstrate the reusability of roles there is no better way than
to build a library of reusable roles. This way we can provide a reusable solution for
recurrent problems that classes cannot cope with. To start the role library we intend
to analyze the design patterns present on the Gang of Four book of design patterns
[GHJV95]. These patterns provide a solution to recurrent problems so if we can
develop generic roles for these patterns they can be used in the several instances of
the pattern or, at least, a great number of them.

• Evaluation of the extent roles can reduce code clones in a system. We
intend to verify whether or not roles can reduce replicated code in a system. For that
we will conduct a series of case studies where we will try to reduce the replicated
code present in the target system. We expect that the amount of replicated code
is significantly reduced in every system we analyze. We also expect to reduce the
number of code lines in the system.

1.5 How to Read this Dissertation
The remaining of this dissertation is logically organized into three parts, with the following
overall structure:

Part 1: State of the art. The first part reviews the most important concepts and
issues relevant to the thesis:

• Chapter 2, “Code clones” (p. 11), provides a literature review on the field of code
clones, its definitions, types, detecting technologies and ways to remove them.

how to read this dissertation 7

• Chapter 3, “Class composition” (p. 25), provides a description of some of the most
used composition techniques in software development.

• Chapter 4, “Roles” (p. 47), focus on the role concept, discussing the dynamic view
of roles and the static view of roles, their problems and advantages, and how to
model with roles.

Part 2: Problem & solution. The second part states the problem researched and
the proposed solution:

• Chapter 5, “Research problem and solution” (p. 67), lays both the fundamental
and specific research questions in scope for this thesis, and overviews the proposed
solution.

• Chapter 6, “JavaStage” (p. 77), presents the JavaStage language, its syntax, how to
program with roles using it, the way it is implemented and its limitations. It also
compares it to other approaches.

• Chapter 7, “Removing Clones” (p. 111), presents the clones that are still unresolved
by traditional techniques and the proposed refactorings that use roles and how they
can be used to remove code clones.

Part 3: Validation The third part presents the validation of the thesis and the
conclusions of the dissertation:

• Chapter 8, “Towards a Role Library” (p. 135), discusses the building of a role library
based on design patterns.

• Chapter 9, “Case studies” (p. 135), presents the case studies used to validate the
dissertation, their setup and results obtained.

• Chapter 10, “Conclusions” (p. 197), drafts the main conclusions of this dissertation,
and points to further work.

For a comprehensive understanding of this dissertation, all the parts should be read
in the same order as they are presented. Those already familiar with code clones, class
composition or roles, and only want to get a fast but detailed impression of the work, may
skip the first part, and go directly to Chapter 5 (p. 67).

Some typographical conventions are used to improve the readability of this document.
Refactory names always appear in Small Case style. Relevant concepts are usually
introduced in italics. Book titles and acronyms are type-faced in allcaps. References
and citations appear inside [square brackets] and in highlight color — when viewing this
document on a computer, these will also act as hyperlinks.

8 introduction

Part I

State of the art

Chapter 2

Code clones

2.1 Origins of Clones . 12
2.2 Consequences of Clones . 15
2.3 Types of Clones . 16
2.4 Detecting Clones . 19
2.5 Dealing with Code Clones . 20
2.6 Summary . 24

When developing a system, programmers usually reuse solutions by copying code
and then modifying it to fit a new purpose. This leads to code cloning because several
fragments of a system will be identical or, at least, very similar. Even if this has immediate
advantages like a reduced development time in the long run it will reclaim its toll. An
obvious problem of code clones is the increased system size. A system with code clones
is also more difficult to maintain [MLM96, BYM+98, JDHW09] and more error prone
[JDHW09]. Nevertheless code clones are found in several systems, especially in large ones
[DRD99, Kon97, MLM96, KdMM+96, KKI02, Bak92, BYM+98], ranging from 5% to 23%
of total system code [MLM96, BYM+98, Bak95, JMSG07, KG06b, LLMZ06].

There are many reasons for the occurrence of clones [KdMM+96, BYM+98, Bak95,
KBLN04], one of them are crosscutting concerns, that is, concerns that a class must deal
with that are not its main concern. When several classes deal with the same concern they
tend to use similar code. This is more frequent in languages that do not support multiple
inheritance. With multiple inheritance we could place the concern in a superclass and all
subclasses inherited the same behavior. With single inheritance we tend to replicate the
common behavior in all classes, if we cannot find a common superclass.

To identify clones there are several techniques and tools . There are also many proposals
on how to remove clones [FR99, HKKI04, KH00, JH06, RD04] and even semi-automated

12 code clones

tools [HKK+04]. Nevertheless those techniques and tools are not capable of removing all
the replicated code.

All the problems associated with code clones lead them to be considered as a bad smell,
hinting that the system needs to be refactored [Fow99]. Fowler in [Fow99] says that:

Number one in the stink parade is duplicated code. If you see the same code
structure in more than one place, you can be sure that your program will be better if
you find a way to unify them.

This motivated the development of several techniques to identify code clones [Kon97,
Bak95, LLMZ06, Kri01]. The removal of code clones has been the subject of several
studies [FR99, HKKI04, KH00, JH06, RD04]. This section presents an overview of the
code cloning problem, its origins, types of clones, what problems arise when we use code
cloning, when it is beneficial to use them, how can clones be removed and what type of
clones cannot be removed by current techniques.

In this chapter we give an overview of code cloning, namely reasons for its occurrence,
types of clones, ways to detect clones and techniques to remove them.

2.1 Origins of Clones
There are many reasons for the appearance of code clone, ranging from intentional cloning
to independently developed code. Roy and Cordy in [RC07] present 24 factors for the
presence of duplicated code. Those factors are grouped in categories and subcategories. In
table 2.1 we present those factors, albeit in a different format from the one used by Roy
and Cordy. We then proceed to briefly explain each one.

2.1.1 Development Strategy

The simpler way of duplicating code is by copy-pasting it and, optionally, modifying it.
It is a fast way of reusing safe code, and used when dealing with crosscutting concerns
[KSN05]. Copy-paste is also used when forking a system, the code is copied and expected
to be altered to cope with different specifications. Depending on the nature of the new
specifications the code can remain pretty much the same or suffer many transformations.
Sometimes related components have similar functionality/logic so it is useful to clone and
modify existing components to create new components when other forms of reuse are not
available.

Clones also occur due to the use of tools that generate code. Tools have a uniform way
of generating code so it is likely to have clones. After merging two systems, the merged
system may contain clones due to the fact that similar functionalities may have used

origins of clones 13

Category Subcategory Factor

Development
Strategy

Simple reuse by copy and paste
Reuse Forking
Aproach Design reuse

Functionalities/Logic reuse

Programming
Approach

Generative programming
Merging similar systems
Delay in restructuring

Maintenance
Benefits

Avoiding Risk
Unwanted design dependencies

Ensuring Robustness
Better performance in real time programs

Reflecting Design decisions (e.g., crosscutting)

Overcoming
Underlying
Limitations

Language
Limitations

Lack of reuse mechanisms
Abstraction creates complexity
Abstraction is error-prone
Significant efforts in making abstractions

Programmers’
Limitations

Time Limitations
Performance by LOC
Lack of ownership
Lack of knowledge in the domain
Difficulty in understanding large systems

Cloning by
Accident

Language
Paradigm

Protocols to interact with API and Libraries

Programmers
Working Style

Programmer’s mental model
Unknowingly implementing the same logic
by different programmers

Table 2.1: Clone Factors (adapted from [RC07]).

similar implementations in both systems, even when developed by different programmers.
The fact that developers usually postpone code restructuring can also introduce clones
(for example instead of creating a method they simply copy the code).

2.1.2 Maintenance Benefits

Sometimes the benefits of duplicating code cannot be ignored. For example, in financial
situations [Cor03], and given the fact that most financial applications have little differences
between them, the risk of developing new code, instead of duplicating and changing a
thoroughly tested code, is too high. Also code clones can be used to reduce complexity in
source code whenever abstractions are difficult to form [TBG04].

System with clones can be more robust, especially when redundancy is required. In
these systems different teams may develop the same functionality, or it can be done in

14 code clones

slightly different ways by the same team. Therefore clones are likely to appear. In these
situations clones cannot be removed as they add to the system robustness. Also in real
time systems the performance cost associated with calling methods or use of other code
reuse techniques may result in code being cloned.

2.1.3 Overcoming Underlying Limitations

Other sources of clones are language limitations, like languages that only support single
inheritance. In these languages, classes that have similar concerns but inherit from different
superclasses tend to use code clones. Writing reusable code requires a bit of an effort and
it may be simpler to maintain a set of clones than to write a general solution. This is
especially true if the code in question is a critical system functionality. It is less error
prone to copy the critical code than to try and reuse it with the possible introduction of
errors.

Programmers’ limitations can also contribute to replicated code. For example, when
time limits are tight it is easier and faster to copy and modify than to write a general
solution. Also a programmer may have its productivity assessed by the amount of code
written. It is therefore beneficial to copy code than to write a generic solution with fewer
lines of code. When the system is hard to understand a programmer, unfamiliar with the
system, tends to duplicate the code that already exists and modifies it to his purposes, in
an example-oriented implementation. This can also occur when a developer has a loose
grasp in the problem domain and copies the solution from a similar problem. Finally
a developer can be asked to modify a system but cannot modify its source code due to
various factors related to ownership. Again the solution is to replicate and then modify
the code.

2.1.4 Cloning by Accident

Clones can appear by chance when developers independently use the same solution for
similar problems. The use of design patterns [GHJV95] may contribute to this phenomenon
as they describe solutions to recurrent problems in software systems and programmers
familiar with them tend to use the same designs and solutions. Equally a developer may
reuse a solution he had used in another problem without realizing it. The use of APIs and
libraries often need the programmer to follow a series of steps that inherently will lead to
similar code when the API/library is used several times.

consequences of clones 15

2.2 Consequences of Clones
An obvious consequence of clones is the increased system size. This can be quite significant
in systems that have size limitations, as for example systems for mobile devices [Joh94].

Cloning code can lead to the propagation of bugs if the cloned segment is faulty. Even
when the segment is modified, the bug tends to persist as the developers focus is on the
changes and not on the overall code. If cloning is heavily used then the bug propagation
probability is significantly increased [Joh93, LLMZ06].

Code clone impairs maintenance [MLM96, BYM+98, JDHW09] and evolution
[GFGP06] of a system. To maintain a system, developers need to identify all the clones
and change each instance accordingly. Thus code duplication also means duplication
of correction efforts as the time spent in correcting a clone is duplicated in all clone
occurrences. This contributes to a greater maintenance cost [MNK+02].

Clones may also raise a particular maintenance problem: the inconsistency in updating.
As said above, a bug in a code block is propagated to all its clones. If the bug is fixed in
most, but not all, occurrences then an inconsistency in the update is made in maintenance
[LLMZ06]. These inconsistencies may be hard to detect if the unchanged code is rarely
used. Inconsistencies can also occur when modifying the clones to introduce new behavior.
All, but a few, clone instances are updated with the new behavior, leading to inconsistent
behavior.

A related problem is the introduction of new bugs. A developer may copy the code
to implement a new functionality, but his lack of expertise in the system and not fully
understanding the initial code will eventually lead to new bugs. Even for experienced
programmers, this procedure is error prone [BYM+98].

Code clones also have negative effects in program comprehensibility [Gie07, KdMM+96],
mostly because the principle of locality of functionality is violated, i.e., one specific aspect
of functionality is implemented by each instance of a clone. To fully understand the system
one must know all clone instances. This can also affect the evolution of a system.

The use of clones can also indicate that the design if flawed or it may prevent design
improvement [RC07]. It can indicate that not enough reuse mechanisms have been
used, like inheritance or delegation, and that the efficient reuse of such code is therefore
compromised.

Clones are traditionally regarded as having a bad impact on a system, and while this is
generally true, it is not necessarily so for all clones. The use of clones can also have positive
influences in a system. Some studies lead their authors [KG06a, KBLN04, KSN05, Cor03]
to state that clones can often be used in a positive way. In a recent study with fifteen open
source systems [HSHK10] the authors claimed that the presence of duplicate code did not
have a negative impact on software evolution. Kapser and Godfrey describe in [KG06a]

16 code clones

eight cloning patterns. For each pattern they studied their advantages and disadvantages
to software development and maintenance. In this respect their results show that not all
patterns are harmful, and some are even beneficial. Therefore, they conclude, that when
considering the refactoring of a clone, some concerns such as stability, code ownership,
and design clarity need to be considered.

Whether they have a good or bad impact in a system, it is important to be aware of
code clones in the system. For this purpose, clone detection techniques have been proposed
and widely applied.

Clones can either be removed or managed. As mentioned, some studies showed that
some clones do not affect maintainability and even increase code comprehension. These
clones should be maintained rather than eliminated. Harmful clones should be eliminated.

2.3 Types of Clones
The definition of what is a clone differs between authors as they tend to use a definition
that suits their target language or detection techniques [RC07]. Several authors define
clones as code fragments that are similar, but the definition of similar varies [BYM+98,
BB02, KKI02, KG04, Kon97, LLMZ06].

There are many terms used to clone categorization [BMD+99, MLM96], but throughout
the remainder of this section and the remainder of this thesis we will use Roy and Cordy
[RC07] categories. Roy and Cordy use 4 clone types:

Type I - Similar code fragments, except layout and comments.
Type II - Structurally similar code segments with differences in identifiers, literals or

types.
Type III - Clones with added, removed or changed statements. They may have

differences in identifiers, literals and types.
Type IV - Fragments have the same functionality but the code is different.
This categorization has the advantage to provide an increasing level of differences

between the clones. Type I clones are the most similar and Type IV clones are the most
different. These levels also correspond to an increasing difficulty in detecting code clones.

2.3.1 Type I Clones

Code fragments of Type I clones are identical, with the exception of layout, variations in
white space and comments. The following examples are based on [RC07].
if(a >= b){

c = d + b; // comment on this

d = d + 1;

types of clones 17

}

else {

c = d - a; // comment on that

}

The following code is an exact copy of the previous code, with only the comments
changing place
if(a >= b){

// comment on this

c = d + b;

d = d + 1;

}

else {

// comment on that

c = d - a;

}

The same code could be written with a different layout but it would be, nevertheless,
a Type I clone.
if(a >= b)

{

c = d + b; // comment on this

d = d + 1;

}

else

{

c = d - a; // comment on that

}

2.3.2 Type II Clones

In Type II clones, fragments are modified by changing identifier names (variables, methods,
etc.), literals and types, and all changes admitted to Type I as comments and layouts.
The code segment
if(a >= b){

c = d + b; // comment on this

d = d + 1;

}

else {

c = d - a; // comment on that

}

has a Type II clone in the fragment

18 code clones

if(m >= n)

{ // comment on this

y = x + n;

x = x + 5;

}

else

{ // comment on that

y = x - m;

}

2.3.3 Type III Clones

In Type III clones, fragments are modified by changing, introducing or removing statements
and all modifications made to Type II clones.

The code
if(a >= b){

c = d + b; // comment on this

d = d + 1;

}

else {

c = d - a; // comment on that

}

could be copied and then modified to a Type III clone as
if(a >= b){

c = d + b; // comment on this

d = d + 1;

e = 1; // added statement

}

else {

c = d - a; // comment on that

}

2.3.4 Type IV Clones

Type IV clones are clones that provide the same functionality but differ in the code. These
clones are usually not copied, but can occur when different developers implement the same
logic.

The following methods are Type IV clones as they both calculate the factorial of a
number.
int factorial(int n){

int fact = 1;

detecting clones 19

for(int i = 2; i <= n; i++)

fact *= i;

return fact;

}

int recFactorial(int n){

if(n == 0) return 1;

return n * recFactorial(n - 1);

}

While these types are useful for clone categorization they may be a bit restrict as many
kinds of clones fall into the same type. It is hard to describe the clones that refactoring
cannot remove in terms of these types only. When necessary we will add other clone
descriptions to better identify clones.

2.4 Detecting Clones
Clone detection is an essential activity for all clone activities be its removal or management.
There are several techniques to detect clones which can be categorized as:

Line-based - a line by line comparison is made in the source code [DRD99, Bak95, Joh93].
Each line is compared with all other lines. If a minimum number of consecutive lines of
code are identical to other lines of code they are marked as code clones. Depending on
the granularity of the algorithm, or if they treat lines as textual lines or instruction lines,
these techniques can or cannot detect layout differences between code. This means that
techniques that rely only in a source code line by line technique cannot detect Type I
clones with different layouts as in our third example of these clones. These techniques are
vulnerable to different coding styles.

Token-based - The source code is scanned and divided into tokens. The tokens are
then searched for identical token sequences. When identical token sequences have more
than a minimum number of tokens the sequences are marked as clones [KKI02, LLMZ06].
Representing a source code as a token sequence enables the detection of clones with different
line structures, which cannot be detected by line-by-line algorithm. These techniques
have the advantage of overlooking the code layout and also detecting clones with different
identifier names. On the other hand, they can identify as clones sequences of tokens that
are semantically different.

Abstract Syntax Tree (AST) based - An abstract Syntax Tree is built from the source
code. The algorithms then compare subtrees and marks as clones subtrees that have
the same structure [BYM+98, Yan91, WSGF04, EFM09]. Like token bases techniques,
AST based techniques are capable of identifying clones with different identifiers and are

20 code clones

impervious to layout. AST can also detect consecutive elements in the same scope (and
thus ignore them). It can also detect cloned methods or other cohesive structures. The
drawback is the time needed to perform the comparisons between the subtrees. The larger
the system the more time is consumed in this task.

Program Dependency Graph (PDG) based -. A PDG [FOW87] is built using semantic
information, like control flow, from the source code and then subgraphs that are isomorphic
are marked as clones [KH01, Kri01, LCHY06]. They have all the benefits of the previous
approaches, and can detect reordered statements and modifications like addition and
removal of code. The problem with PDG approaches is the time consumed in the graphs
comparison making it hard to scale to large systems.

Metric based - These approaches measure several metrics from code fragments. Then
they compare the metrics between them and equal or similar metrics are regarded as
clones [Kon97, MLM96]. Metrics can include number of lines of code, function calls or
even control flow metrics. These techniques can produce many false positives, and can fail
to identify fragments of methods as clones as they take the metrics for the entire method.

Table 2.2 shows a summary of the techniques in regard to four parameters. The
portability parameter indicates how well a technique responds to the change of the
programming language. Precision reflects the number of false positives the technique
detects, while recall indicates the number of clones it detects. Scalability reflects how the
technique copes if the size of the system to be analyzed increases.

Technique Portability Precision Recall Scalability

Line-based High 100% exact clones Low, only detects Depends on comparison
No false positives exact copies algorithms

Token-based
Medium, Low, returns High, can
needs lexer many detect most High

transformation rules false positives clones

AST-based Low, High Low Depends how
needs parser comparison is made

PDG-based Low, needs High Medium, cannot LowPDG generator detect all clones

Metrics-based Low, needs parser/PDG Medium, returns Low, cannot detect High, metrics
generator for the metrics false positives many clones comparison is fast

Table 2.2: Detection Techniques Comparison (adapted from [RC07]).

2.5 Dealing with Code Clones
Code clones can either be removed or managed. But the preferred way of dealing with
clones would be to avoid them in the first place.

dealing with code clones 21

2.5.1 Removing code clones

Code clones can be eliminated by better design [BMD+99] or refactoring [Fow99]. Refac-
toring consists in changing a system’s code without changing its external behavior.
There are also several tools, with different automation levels, to assist in clone removal
[RC07]. Many of the clone removal tools use refactorings, especially Extract Method
[BMD+00, FR99, HKKI04, HKI08, KH00]. Refactoring techniques that can be used to
remove code clones are described next.

Extract Method

When blocks of code are similar or differ only in identifiers we can put that block inside
a method and use the method instead of the code (see figure 2.1). For this to work,
though, the code must be part of the same class and the clones must have consecutive
statements. It can also be used when preparing for some other technique that uses a
method granularity.

Figure 2.1: Example of Extract Method usage.

Extract Superclass

If classes duplicate structure and behavior the duplicated code is placed in a superclass and
reused using inheritance (see figure 2.2). If classes already have a common superclass then
Pull Up Method or Pull Up Field can be used. If classes have different superclasses
them Extract Class can be used.

Pull Up Method + Pull Up Field

When classes have an identical method it can be moved to a common superclass. The
same procedure is used when dealing with fields. This procedure is depicted in figure 2.3.
This refactoring can be used if classes are related and share a common superclass and
developers have access to that superclass. If classes do not have superclasses Extract
Superclass can be used.

22 code clones

Figure 2.2: Example of Extract Superclass usage.

Figure 2.3: Example of Pull Up Method and Pull Up Field usage.

Extract Class

If classes share structure and behavior but have different superclasses, or inheritance is
not conceptually an option, the common code is moved to a new class. The new class is
then used by the original classes as shown in figure 2.4. This forces original classes to have
methods that call the corresponding methods of the new class.

Figure 2.4: Example of Extract Class usage.

Form Template Method

Used when subclasses have a method that perform the same steps in the same order, but
each step is done slightly different in each class. To overcome this, each step is placed
inside a method with the same signature. The original method is modified to call the step
methods in the intended order. This way the original method becomes identical in all
subclasses (see figure 2.5), and Pull Up Method can be used.

dealing with code clones 23

Figure 2.5: Example of Form Template Method usage.

2.5.2 Avoiding Code Clones

To avoid clones there are some available options. The clone detection tools can be used
in the development process to ensure that when adding new functionalities (or simple
methods) to the system they do not introduce clones. Detected clones can either be fixed
or they can remain in special, and thoroughly thought of, circumstances [LPM+97].

Some clones could be avoided if a language had other composition mechanisms. In
particular crosscutting concerns would benefit from the use of a composition mechanism
where a class could be composed of several pieces of software. Several proposals for
composing class are available, like inheritance, mixins [BC90], traits [SDNB03, DNSB06],
features [AK09], aspects [KHH+01] and roles [Kri95, Rie00, Gra06].

2.5.3 Managing Code Clones

When the introduction of clones is necessary, due to performance reasons, cost, limitations,
etc., they must be managed to reduce the risk of update inconsistencies.

Some clone management techniques involve the use of simultaneous editing. With the
help of some tool the developer selects and links specific code regions. The developer can
then edit and see how all the regions will be affected [NS03, TBG04]. This greatly reduces
the time spent in updating several pieces of code.

Some automated tools keep track of the clones and of the changes made to the clones.
They can notify developers whenever they change cloned code. They also support the
simultaneous editing of clone regions [CH07, DER07].

24 code clones

2.6 Summary
Code clones have significant drawbacks in a system, ranging from program comprehensibility
to a higher maintenance cost and a greater evolution effort. So much so that they are
considered a major indicator that the system needs to be refactored and ways of eliminating
the code clones have to be devised.

To remove clones from a system, first they must be detected. The clone detection
problem lead to a vast research field and several techniques were proposed, underlining the
importance of this problem. The techniques range from simple line by line comparisons to
the construction of abstract syntax trees later compared for similarities. Clones can be
categorized into four types, each type being more complex than the previous and harder
for the detection techniques to find.

Tools to aid the removing of clones have also been proposed. The techniques used to
remove the clone code, either with tools or by hand, rely mostly on the use of refactorings.
We listed and explained the most used refactorings to remove clones. But these refactorings
are not capable of removing all the clones, so we need a new categorization of these clones.

To tackle the clone code problem right from the development stage, and not only after
the system is implemented, we need to understand why they appear in the first place.
Only after this understanding can we begin to devise ways of preventing them to appear.
We can also devise ways to manage the appearance and maintenance of code clones when
they are required, for example, due to performance reasons.

Chapter 3

Decomposition Techniques

3.1 Sample Frameworks . 26
3.2 Object-Oriented Decomposition 27
3.3 Aspect-Oriented Programming 36
3.4 Traits . 41
3.5 Feature-Oriented Programming 43
3.6 Multiple Dimension Separation of Concerns 44
3.7 Other Approaches . 45
3.8 Summary . 46

To show how several decomposition techniques work and their key aspects we will
present two frameworks developed using three decomposition techniques. We opted to use
object-oriented decomposition and some popular derivations, because it is the most used
technique today. The decomposition strategies that we will address are:

• Object-Oriented;

• Aspect-Oriented.

• Roles;

From these we present, in this chapter, the OO and AOP versions. The role version
is presented in its own chapter (4). We will briefly present each technique. We then
discuss how the various decomposition techniques facilitate code reuse but still fall short
in reducing some code replication, i.e., there are always some (sometimes large) pieces of
code that are almost identical in several modules.

We will also present other approaches but not at the same level of the previous.

26 decomposition techniques

3.1 Sample Frameworks
In this section we present the sample frameworks that will be analyzed in the light of
the three different decomposition techniques. We selected two frameworks from different
domains to show how each technique deals with the problems posed in each framework.
From the study we can show how code replication is present in each framework and that
it does not depend on the domain. Another reason to select two frameworks was to show
that there is code replication between them, even if they are from different domains.

3.1.1 Figure Handling Framework

The first framework presented is based on the JHotDraw Framework and represents a
framework for dealing with technical and structured graphics applications. For the purpose
of this thesis we will refer only to the figures that the user can create and manipulate.
The user can create different kinds of figures such as lines, rectangles, hand drawn lines,
circles, text, etc. The user can also aggregate some figures into one single figure – a group
figure. The figures that the user creates are all part of a drawing. The drawing is drawn in
the client part of the application’s window. The user manipulates the figures by using the
mouse. Every figure may have a different line color, width and style as well as different
filling patterns. Every figure also has a bounding box – the smallest possible box that
contains the entire figure - useful for manipulating the figure’s dimension and position.
Figure 3.1 shows a possible application.

Figure Framework

• A framework for applications that deal with
technical and structured graphics

F. Sérgio Barbosa 4

Figure 3.1: Example of an application that uses the figure framework

object-oriented decomposition 27

3.1.2 Graphical User Interface Framework

The second framework presented is based on the Java AWT/Swing frameworks and
represents a framework to build graphical user interfaces (GUI). The elements present in
the framework represent all the widgets (referred to as components) that usually appear in
a GUI, like windows, buttons, menus, toolbars, scrollbars, etc. This is a large framework
but we will focus only on some of the elements and the basic structure of the framework.

Some components may own other components. For example, a window may own several
toolbars, and a toolbar may own several buttons. An example is shown in figure 3.2.

Component Framework

• A framework for creating applications with
a Graphical User Interface

F. Sérgio Barbosa 5

Figure 3.2: Example of a GUI created with the GUI framework.

3.2 Object-Oriented Decomposition
This section does not intend to review all the object-oriented (OO) concepts but merely
present a summary of the most relevant ones.

Objects and classes are the traditional modeling concepts of object-oriented software
systems. A class defines a new type of data, specifying its structure and behavior. The
class defines the operations that may be used on its instances and how these operations
affect the state of those instances. Ideally a class should model one, and only one, specific
concept. From our sample frameworks we can use as an example the Figure class that
models the concept of a figure in the Figure framework. An object is an instance of a class.
In most OO based programming languages objects are the only entities that exist in run
time.

28 decomposition techniques

Another, very important, concept associated with OO is inheritance. Inheritance is
the capability that a class (subclass) has to inherit all the structure and behavior from
another class (superclass). From a code reuse point of view this is a great advantage as the
methods defined in a superclass are inherited by the subclass, preventing them from being
duplicated in both classes. The same holds for the structure of the superclass. Inheritance
is also called specialization as the subclass is, conceptually speaking, a specialization of
the concept modeled by the superclass. A LineFigure class, for example, is said to be a
specialization of the Figure class.

We must distinguish between single inheritance and multiple inheritance. Single
inheritance occurs when a class has only one superclass. In multiple inheritance a class
may have two or more superclasses. Many programming languages allow single inheritance
only, because multiple inheritance also brings multiple problems, namely, name collisions
and the diamond problem. Name collisions occur when a class inherits from two classes
that have either fields or methods with the same name. Whenever this occurs the compiler
generates an ambiguity error. The diamond problem occurs when a class inherits twice
from the same class through different paths. For example: consider the classes from figure
3.3. Class D inherits from B and C and it is inheriting from A twice: from D->B->A and
D->C->A. The diamond problem means that all members of A will be doubled in class D.
When foo() is called on a D object the compiler cannot disambiguate between the foo()
inherited from B or that inherited from C and raises an error. There are solutions to these
problems but they imply knowing the inheritance structure, and that is either not always
known or is not supposed to be known. Other solutions, like virtual base classes in C++,
need developers of the A class to foresee this problem and prevent it when first developing
the class. Over the time multiple inheritance problems have been considered to overcome
its benefits, and modern languages like Java and C# don’t support it.

Figure

<<interface>>

Subject

Child
(FigureComposite)

RFigure

Picture

PictureFigure

Picture
Figure

<<interface>>

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseOvserver()

removeMouseObserver()

Code replicated from DefaultFigure

PictureFigure

Subject
(FigureObserver)

(FigureComposite)

Child
(FigureComposite)

RFigure

Subject
(FigureObserver)

A

var

foo()

bar()

B

meth()

C

method()

D

function()

A

var

foo()

bar()

B

meth()

C

method()

D

function()

Figure 3.3: The classic diamond problem.

Another form of inheritance is interface inheritance. An interface defines a set of

object-oriented decomposition 29

methods that classes must implement to be considered implementers of that interface. Since
the methods in the interface are not implemented, and interfaces are not allowed to declare
any structure, except constants, it is possible to allow multiple interface inheritance without
the problems associated with multiple inheritance. Hence programming languages that do
not support multiple inheritance often offer support for multiple interface inheritance. It
is common in interface inheritance to place an interface at the top of every hierarchy. The
interface defines the interface that all classes in the hierarchy must adhere to, and then a
class (usually an abstract class) implements the default behavior. Normally all the classes
in the hierarchy inherit from the abstract base class to get the default behavior but they
may choose to rewrite all the code from scratch and implement the interface directly. This
overcomes some of the limitations of not having multiple inheritance, as implementing
the interface frees the class to inherit from a class not belonging to that hierarchy. The
downside is that some code replication is, probably, needed, as we will discuss in 3.2.3.

With inheritance comes polymorphism, also known as substitutability. With polymor-
phism an object of a more specific class may substitute an object from a more generic
class. For example, whenever a Figure is expected a LineFigure can be used. This allows
for a uniform treatment of objects from the class hierarchy, without knowing the real type
of the objects.

Delegation also plays a very important role in reusing code in Object Oriented systems.
An object instead of doing the work itself delegates the work on another object. This
mechanism is shown in figure 3.4. This way the class does not have to replicate the
behavior, just define to whom it delegates the work on. In the example the B class
delegates the work to the A class.

The implementation of delegation depends on the programming language itself. Some
languages use delegation in its purest form while others just use a simple variation that we
may call forwarding. The difference between the two can be made by what is known as the
self problem [Lie86]. Again, consider the example from figure 3.4: the B class delegates the
work of foo to the A class. The A and B classes have a bar method each. The difference
between the pure delegation and simple forwarding is done when we call foo() on a B
instance. Which bar method is called from the foo method in A? Or in other words the
this reference in A.foo refers to which object: the A instance or the B instance? In pure
delegation this should always refer to the original object - the B instance - and thus print
“b.bar”. In forwarding the this reference refers to the A instance - and thus prints “a.bar”.

There are authors that recommend the use of delegation instead of inheritance [KS08,
SG99, JO93]. With inheritance the subclass cannot choose which members to inherit
and so inherits all methods and fields even if they are useless, or even unwanted, for its
purposes. With delegation the delegator does not have to inherit all the interface of the

30 decomposition techniques

class A {
void foo() {

this.bar();
}
void bar() {

System.out.println("a.bar");
}

}

class B {
private A a; // the delegate

public B(A a) {
this.a = a;

}
void foo() {

a.foo(); // call foo() on the delegate
}
void bar() {

System.out.println("b.bar");
}

}

a = new A();
b = new B(a); // defining the delegate object of b

Figure 3.4: Implementation of delegation.

delegatee and can choose which methods it actually uses. We can exemplify this with the
common example of a stack. In Java the Stack class inherits from Vector, and so it inherits
methods like insertAt or removeAt, that really do not make part of a stack interface. If
delegation was used then the Stack class could implement only those methods it really
wanted. This example is shown in figure 3.5.

Another problem with this implementation is that, due to polymorphism, we can use a
stack whenever a Vector is used, so we could write the code
Vector v = new InheritanceStack();

...

v.insertAt(5, object);

This would break the specifications of the Stack class as we are inserting elements into it.
Looking at the code, however, it is not obvious that we are breaking the Stack because it
seems that we are using a Vector.

The disadvantage of delegation is that we must define the interface of the class. This, if
the interface is big, can be a tedious and error prone task. Again this can be implementation
specific and depends on the delegation model of the underlying language. Some languages
only require the definition of the delegatee and any method call that is undefined in the
delegator is automatically searched for in the delegatee.

object-oriented decomposition 31

class StackUser {
Stack s = new Stack();
...
s.push(...);
if (s.size() ...

}
// class Stack using inheritance
public class InheritanceStack extends Vector {

public Stack() {}
public Object push(Object item) {

addElement(item);
return item;

}
}
// class Stack using delegation
public class DelegationStack {

protected Vector delegatee;
public Stack() {

delegatee = new Vector();
}
public Object push(Object item) {

delegatee.addElement(item);
return item;

}
public int size() {

return delegatee.size();
}

}

Figure 3.5: The impementation of a Stack class using delegation and inheritance. Adapted from
[KS08]

Patterns [GHJV95] are not a concept of OO but are, nevertheless, a very important
concept in the OO modeling and design. Every good software engineer knows and uses
them. Most frameworks have them in their design. They allow the design reuse of a proven
solution to a recurring problem.

3.2.1 Object-Oriented Figure Framework

The main concepts in the Figure framework are the figures. Therefore it is natural to
create classes that model each figure. As all the figures share a common concept, and
even may share code and behavior, an inheritance hierarchy is therefore created. Some
figures may contain other figures, like the group figure or even the drawing (it may be
considered a figure itself) so the Composite pattern [GHJV95] was used. Since the view
has to draw the figures it must know when they have changed. We used the Observer
pattern [GHJV95] for this purpose. Figure 3.6 shows a possible class diagram of this
framework.

32 decomposition techniques

DefaultFigure

properties

observers

setProperty()

getProperty()

setBoundingBox()

getBoundingBox()

addFigureObserver()

removeFigureObserver()

0..*

FigureObserver

<<interface>>

figureChanged()

0..*

Figure

<<interface>>

draw()

move()

setProperty()

getProperty()

setBoundingBox()

getBoundingBox()

addFigureObserver()

removeFigureObserver()

CompositeFigure

childs

draw()

move()

addFigure()

removeFigure()

figureChanged()

LineFigure

draw()

move()

RectangleFigure

draw()

move()

GroupFigureDrawing

draw()

Figure 3.6: Class diagram of the Figure framework

3.2.2 Object-Oriented GUI Framework

The main concepts in the GUI framework are the components, therefore it is natural
to create classes that model each component. As all the components share a common
concept, and even may share code and behavior, an inheritance hierarchy is created. Some
components have other components, as the toolbar or even the window so the Composite
pattern was again used. Since the programmers may be interested to know when the
mouse is hovering (or clicking) a component the Observer pattern is used. Other instances
of the Observer pattern are used as the programmers may be interested in other user’s
actions as pressing a key or if a component has lost/gained focus, etc. Figure 3.7 shows a
possible class diagram of this framework.

object-oriented decomposition 33

DefaultComponent

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseObserver()

*

FocusObserver

<<interface>>

focusGained()

focusLost()

*

Component

<<interface>>

draw()

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseObserver()

removeMouseObserver()

putProperty()

getProperty()

hasProperty()

MouseObserver

<<interface>>

mouseMoved()

mouseDragged()

*

addMouseObserver()

removeMouseObserver()

CompositeComponent

children

draw()

move()

addComponent()

removeComponent()

TextField

draw()

Button

draw()

Window

draw()

ToolBar

draw()

Figure 3.7: Class diagram of the GUI framework

3.2.3 Code Replication in the Object-Oriented Solution

Because we did not use multiple inheritance we used the interface approach on both
solutions. As already mentioned this may lead to code replication. Suppose we pretend to
introduce a Picture class that supports a number of known picture formats. Most likely
that class already exists so we wish to use it in our application but as it is not part of the
framework it does not comply with the interface of the Figure hierarchy.

With multiple inheritance we could define a new class, PictureFigure, inheriting from
the Picture class and the Figure class, thus reusing the Picture and Figure code making
it part of the hierarchy. This solution implies some adaptation code, but we can assume
that a great part of the Figure code is reused.

34 decomposition techniques

With the interface approach we may choose to make the PictureFigure class inherit
from the Picture class and implement the Figure interface. As interfaces do not provide
code to its implementers we are forced to replicate the DefaultFigure code that applies to
this class. This situation is depicted in Figure 3.8. One example of replicated code would
be the implementation of the Observer pattern. Another solution would be to use the
Adapter pattern [GHJV95].

Figure

<<interface>>

Subject

Child
(FigureComposite)

RFigure

Picture

PictureFigure

Picture
Figure

<<interface>>

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseOvserver()

removeMouseObserver()

Code replicated from DefaultFigure

PictureFigure

Subject
(FigureObserver)

(FigureComposite)

Child
(FigureComposite)

RFigure

Subject
(FigureObserver)

A

var

foo()

bar()

B

meth()

C

method()

D

function()

A

var

foo()

bar()

B

meth()

C

method()

D

function()

Figure 3.8: Code replication originated by not using multiple inheritance.

The same consideration applies to the component hierarchy if we wish to use a complex
component that is not part of the Component hierarchy: to use the previous solution we
must replicate most of the DefaultComponent’s code.

Another source for code replication is the use of the patterns Composite and Observer.
Not that the patterns forces us to replicate code or are bad solutions, quite the contrary.
Since these patterns proved to be very good solutions they are widely used. But, in
these patterns case, the code for each instance of the pattern is very similar and so the
programmer tends to use the same mechanisms over and over.

The composite pattern uses a collection, to keep track of the children, and offers two
methods: one for adding children and another for removing children. Most of the actions
are processed in the same way: iterate through the collection and for each child the
corresponding method is called. This is shown in figure 3.9. The Composite pattern in
the component framework is very similar and is not shown.

The observer pattern uses a collection of observers to keep track of the registered
observers and usually offers, at least, two methods: one for adding observers and another
for removing observers. When an event occurs and the observers must be notified a
notification method is called. This method iterates through the collection and calls the
observer’s update method. Figure 3.10 shows an extract of the observer code from the
component framework where the similarities are evident between the focus observers and

object-oriented decomposition 35

public class CompositeFigure {
private Collection<Figure> childs;
public void addFigure(Figure f){

childs.add(f);
}
public void removeFigure(Figure f){

childs.remove(f);
}
public void move(int dx, int dy){

Iterator<Figure> iter = childs.iterator();
while(iter.hasNext()){

iter.next().move(dx, dy);
}

}
public void draw(){

Iterator<Figure> iter = childs.iterator();
while(iter.hasNext()){

iter.next().draw();
}

}
// ...

}

Figure 3.9: Code from the composite pattern in the Figure Framework.

the mouse observers in the add, remove and notify methods.
We can also verify that a lot of the code from the observer and the composite patterns

is very much the same, especially the use of a collection and the add and remove methods,
but we have no means to avoid replicating it.

36 decomposition techniques

public class DefaultComponent implements Component {
Collection<MouseObserver> mouseObs; // collections to keep
Collection<FocusObserver> focusObs; // the observers

public void addFocusObserver(FocusObserver fo) {
focusObs.add(fo);

}
public void addMouseObserver(MouseObserver mo) {

mouseObs.add(mo);
}
public void removeFocusObserver(FocusObserver fo) {

focusObs.remove(fo);
}
public void removeMouseObserver(MouseObserver mo) {

mouseObs.remove(mo);
}
private void notifyFocusLost(){

Iterator<FocusObserver> iter = focusObs.iterator();
while(iter.hasNext()){

iter.next().focusLost(this);
}

}
private void notifyFocusGained(){

Iterator<FocusObserver> iter = focusObs.iterator();
while(iter.hasNext()){

iter.next().focusGained(this);
}

}
private void notifyMouseMoved(){

Iterator<MouseObserver> iter = mouseObs.iterator();
while(iter.hasNext()){

iter.next().mouseMoved(this);
}

}
private void notifyMouseDragged(){

Iterator<MouseObserver> iter = mouseObs.iterator();
while(iter.hasNext()){

iter.next().mouseDragged(this);
}

}
// ...

}

Figure 3.10: Code from the two instances of the observer pattern in the Component Framework.
The similarities between their add, remove and notify methods are clear.

3.3 Aspect-Oriented Programming
In the object-oriented decomposition programs are decomposed in terms of objects and
classes. But there are some properties that often cannot be assigned to individual objects
as memory management, synchronization, scheduling, persistence, communication, etc. As
these properties affect several classes this leads to the spreading of the code that deals

aspect-oriented programming 37

with them. In Aspect-Oriented Programming (AOP) terms [KLM+97] such properties
are referred to as concerns and as they are spread over several units they are referred as
crosscutting concerns. The fact that the crosscutting code is spread over several classes
and that code is not related to the main concerns of the class itself, but is often mixed
with the main concern code, leads to what is called the code-tangling problem.

AOP also decomposes the system, but does so in two different dimensions: components
and aspects. Components derive from those properties that can be pinpointed to a class
or procedure. An aspect is a property that cannot be assigned to any particular class
or procedure. This separation of components and aspects is the goal of AOP, allowing
the programmer to handle them separately, and giving the mechanisms to compose them
together to produce the final system.

In a number of AOP languages aspects include pointcuts and advices. The pointcut is
a predicate over join points that defines at which join point, or sets of joint points, the
aspect takes effect. The advice itself specifies what is to be executed at that particular
joint point. The advice can then insert code before, after or instead of (around in some
aspect languages) the referred join point, in most aspect languages. Like in the case of the
join point, types of pointcuts and advices are language specific.

Aspect-oriented programming has become, in the last decade, very popular. Even
though its focus is on the crosscutting concerns, we want to explore if it can be used to
reduce code replication, as crosscutting concerns tend to have replicated code [BvDvET05].

AOP is related to OO but deviates somewhat from this approach and requires learning
many new concepts. And while the modularization of crosscutting concerns is the flagship
of AOP several authors disagree [Prz11, Ste06]. Concepts like pointcuts and advices are
not easy to understand. Furthermore the effects of these constructs are more unpredictable
than any OO concept. A particular one is the fragile pointcut [KS04]. This problem arises
when simple changes made to a method’s code make a pointcut either miss or incorrectly
capture a joint point thus incorrectly introducing or failing to introduce the necessary
advice. Thus simple changes in the class code can have unsought effects [KAB07].

The obliviousness feature of AOP [FF00] means that a class is aspect unaware so
aspects can be plugged or unplugged as needed. But it also introduces problems in
comprehensibility [GSS+06]. To fully understand the system we must not only know the
classes but also have to know the aspects that affect each class. This is a major drawback
when maintaining a system, since the dependencies aren’t always explicit and there isn’t
an explicit interface between both parts.

38 decomposition techniques

3.3.1 AOP Figure Framework

One hint that crosscutting concerns are present is multiple interface inheritance [MF06].
If a class implements several interfaces it is likely that it performs several roles, some of
them superimposed, because the class participates in a collaboration [HK02]. This is the
case with both our sample frameworks, if we implement an interface for each concerns
each class deals with.

Hannemann and Kickzales propose in [HK02] some implementations of the GoF patterns
[GHJV95]. We will adapt those implementations and apply them to the OO version of the
example framework. One of the patterns used is the Observer. In the proposed solution
the observer code is removed from the Figure (actually implemented in the DefaultFigure)
and placed in an aspect. Figure 3.11 shows the code for the aspect as proposed in [HK02].
Figure 3.11 also shows the concrete FigureObserver aspect used in the framework.

The proposed solution in [HK02] for the Composite aspect, shown in figure 3.12 is
somewhat awkward to use. Worse still: some methods that are indeed part of the Figure
concept must be also moved to the aspect. It is important to say that deciding if a given
method should be or not part of the class main concern is a developer decision. In our
opinion some of the methods that are required to move to the aspect are indeed part of
the core concept. That is the case with the setProperty method, for example. Thus we
believe that the OO solution is better so we maintained it.

3.3.2 AOP GUI Framework

The AOP solution for the GUI framework is analogous to the Figure framework. The
ObserverProtocol aspect is reused and a MouseObserver and FocusObserver are added.
The composite solution is still too cumbersome to use, so we again opted to use the OO
version.

3.3.3 Code Replication in the AOP solution

The AOP solution does reduce code replication. The code for the observer pattern is now
placed inside an aspect that is reused by both frameworks.

To solve the Picture class problem, however, AOP does not offer a generic solution,
even though some workarounds could be arranged.

But some code replication is still visible even in the AOP solution. A closer look at
the code from the Observer and Composite generic aspects (see Figure 3.11 and Figure
3.12, respectively) reveals that both have a Collection for the observers/children and the
addX and removeX methods.

aspect-oriented programming 39

public abstract aspect ObserverProtocol {
protected interface Subject { }
protected interface Observer { }
private WeakHashMap perSubjectObservers;
protected List getObservers(Subject s) {

if (perSubjectObservers == null) {
perSubjectObservers = new WeakHashMap();

}
List observers = (List)perSubjectObservers.get(s);
if (observers == null) {

observers = new LinkedList();
perSubjectObservers.put(s, observers);

}
return observers;

}
public void addObserver(Subject s,Observer o){

getObservers(s).add(o);
}
public void removeObserver(Subject s,Observer o){

getObservers(s).remove(o);
}

abstract protected pointcut subjectChange(Subject s);
abstract protected void updateObserver(Subject s, Observer o);

after(Subject s): subjectChange(s) {
Iterator iter = getObservers(s).iterator();
while (iter.hasNext()) {

updateObserver(s, ((Observer)iter.next()));
}

}
}

public aspect FigureObserver extends ObserverProtocol {
declare parents: LineFigure implements Subject;
declare parents: RectangleFigure implements Subject;
// add other figures
declare parents: View implements Observer;

protected pointcut subjectChange(Subject s):
(call(void LineFigure.setProperty(String, Object)) ||
call(void LineFigure.setBoundingBox(int , int , int , int))
call(void LineFigure.move(int , int))
// do the same for the other figures ...
) && target(s);

protected void updateObserver(Subject s, Observer o) {
((View)o).updateView();

}
}

Figure 3.11: Code for the generalized observer aspect as proposed by Hannemann and Kickzales,
and the concrete FigureObserver aspect for the figure framework.

40 decomposition techniques

public abstract aspect CompositeProtocol {
public interface Component {}
protected interface Composite extends Component {}
protected interface Leaf extends Component {}

private WeakHashMap perComponentChildren = new WeakHashMap();

private Vector getChildren(Component s) {
Vector children = (Vector)perComponentChildren.get(s);
if (children == null) {

children = new Vector();
perComponentChildren.put(s, children);

}
return children;

}
public void addChild(Composite composite, Component component) {

getChildren(composite).add(component);
}
public void removeChild(Composite composite, Component component) {

getChildren(composite).remove(component);
}
public Enumeration getAllChildren(Component c) {

return getChildren(c).elements();
}

}

Figure 3.12: Code excerpt from the generalized composite aspect as proposed by Hannemann
and Kickzales.

Furthermore the Aspect solution for the Observer is not modular. Whenever we add a
Figure class we must change the aspect. Further changes to the aspect are needed if we
alter the Figure interface. For each inserted method that may change the figure we must
add it to the aspect, for each method removed we must remove it from the aspect, for each
method renamed we must rename it in the aspect. Even if we don’t rename a method but
it no longer changes the figure it must be removed from the aspect. This means that the
hierarchy builder must be aware of the aspect and change it. This is against the principle
of obliviousness that is advocated for AOP [FF00]. Steimann is one of many that say AOP
is not modular at all and even goes against modularity [Ste06]. We agree with him in this
case.

The fact that the observer aspect must know the type of the observer is also a major
flaw. In the code from figure 3.11 we can see that the observer aspect assumes that
observers are of type View. If we add another type of observer this will break the aspect
code. The only solution to this problem is to make all possible observers have the same
update method (like in the original Observer pattern). But this means that observers
must be aware of the pattern and then AOP solution rolls back to the OO solution.

Another drawback from the observer aspect is the lack of fine granularity. The join

traits 41

point (in most languages) must be a method (setProperty, for example) but there are
operations that may or may not change the subject. For example if we set a property with
the same value a change does not occur, but the aspect still notifies every observer with,
possibly large, costs in performance.

Java style observers, listeners, also associate, with every change, an Event class that
holds important information from the change context. With AOP this context information
is lost because the context is element specific. The aspect could compute the context,
but that would need code replication and performance cost again. This is especially the
case with the GUI framework where a lot of events may be generated and the context
information is very important. The mouse observers, for example, may inform observers
of the relative position of the mouse at the time of an event, along with other information.
The aspect must query the component for this information because it may not be available
elsewhere. This requires the component to provide an interface to supply this information
to the aspect if it does not supply it already. Thus an invasive modification in the
component is required which, again, goes against some AOP principles.

Yet another change that is required is, again from Java listeners, the possibility to
use different notifying mechanisms for each change (mouseMoved or mouseDragged, for
example). If a single method is capable of firing several events then the AOP solution is
inefficient because it will signal all events, even if only one occurs, or it must compute,
again, which event took place.

All things considered we believe that the AOP solution is not generally applicable
and, for the sample frameworks, especially the GUI framework where many observers are
expected, each of which may have several notification methods, it seems not to be a good
solution and it is poorer than the OO version.

3.4 Traits
Traits are units of code reuse and a class can be constructed using several traits [DNSB06,
SDNB03]. Traits have a flattening property: a class can be seen indifferently as a collection
of methods or as composed by traits. The fact that the class can be seen as a whole
promotes understanding and the fact that it can be composed promotes reuse. In Traits
a class can be constructed by using inheritance and by adding traits. The class must
supply all state variables and glue code. The glue code is the set of methods that the trait
requires the class to provide (for example, accessor methods for the state variables). Thus
a class can be decomposed into a set of coherent features and the glue code connects the
various features together. According to [DNSB06], Traits have the following properties:

• A trait provides methods that implement behavior.

42 decomposition techniques

• A trait requires a set of methods that serve as parameters for the provided behavior.

• Traits do not specify state variables, and methods provided by traits never access
state variables.

• Classes and traits can be composed from traits.

• The composition order of traits is irrelevant.

• Conflicting methods must be explicitly resolved.

• Trait composition does not affect the semantics of a class: the meaning of the class is
the same as it would be if all of the methods obtained from the trait(s) were defined
directly in the class.

• Similarly, trait composition does not affect the semantics of a trait.

A class can redefine its superclass’s and its trait’s methods. Conflicts arise when
unrelated traits have methods with the same signature. The conflict must be solved
explicitly by redefining the conflicting method in the class. The conflict is thus resolved
locally. To access the conflicting methods Traits support aliases. It works by giving an
alias to a method so it can be used in the class without trouble. To prevent conflicts from
occurring in the first place traits also support the exclusion of methods.

Some attempts to bring traits into Java-like languages have been made [QB04, SD05].
The following traits examples are presented using the Chai syntax [SD05] and derive from
the examples shown in [SD05]. Figure 3.13 shows trait declaration in Chai and its use by
classes. We can see requirement of methods in the TEmptyCircle: it offers a draw method
and requires the class to provide the drawPoint and getRadius, with the specified signature.
The same methods are also required by TFilledCircle. The code also shows a Circle class,
representing a circle, and two subclasses composed by traits and that inherit from Circle.
The ScreenEmptyCircle class is an empty circle that can be drawn in the Screen, so it uses
TEmptyCircle and TScreenShape. The methods required by TEmptyCircle are supplied
by Circle and TScreenShape, so ScreenEmptyCircle does not need to provide them itself.
PrintedFilledCircle is a filled circle than can be printed in a printer, so it inherits from
Circle and uses TFilledCircle and TPrintedShape. TFilledCircle required methods are
supplied by Circle and TPrintedShape. In the TPrintedShaped case the class needed to
alias the trait method for the required name.

feature-oriented programming 43

class Circle {
int radius;
int getRadius() { ... }

}
trait TEmptyCircle {

requires { void drawPoint(int x, int y);
int getRadius(); }

void draw() { ... }
}
trait TFilledCircle {

requires { void drawPoint(int x, int y);
int getRadius(); }

void draw() { ... }
}
trait TScreenShape {

void drawPoint(int x, int y) {...}
}
trait TPrintedShape {

void printPoint(int x, int y){...}
}
class ScreenEmptyCircle extends Circle uses TEmptyCircle,TScreenShape {
}
class PrintedFilledCircle extends Circle uses TFilledCircle,

TPrintedShape {
alias { void printPoint(int x, int y) from TPrintedShape as

void drawPoint(int x, int y) }
}

Figure 3.13: Trait example, adapted from [SD05].

3.5 Feature-Oriented Programming
The decomposition strategy of Feature-Oriented Programming (FOP) is to decompose the
system into features [AK09]. A feature is a unit of functionality of a software system that
satisfies a requirement, represents a design decision, and provides a potential configuration
option. Features are the main abstractions in FOP during design and implementation.
A distinguishing property of FOP is that it aims at a one-to-one mapping between the
representations of features across all phases of the software life cycle. That is, features
specified during the analysis phase can be traced through design and implementation.
Features reflect user requirements and incrementally refine each other. FOP relies on a
step-wise refinement of applications by adding new features or refining existing ones.

Because features are the distinguishing product characteristics of Software Product
Lines (SPL), FOP is mainly used for SPL and program generators. To compose a system
we just state which features it has. The composition is made automatically with tool
support, like AHEAD [BSR04]. AHEAD uses several tools for composing the code and
extra files for configuring the composition step.

AHEAD can be used to compose classes. For example, we can develop a class that

44 decomposition techniques

defines the basic behavior of a class, indistinguishable from a normal Java class, except
that it has a feature keyword indicating to which feature it is associated to (see figure
3.14). We can then construct several refinements to that class. Each refinement must
indicate the associated feature and the class it refines (see figure 3.15). One technique
used to implement features is Mixin layers [SB02]. The rationale is that a feature often
appears in several classes that collaborate. Each mixin layer contains the code for the
role(s) that each class plays in a given feature and composes them in a static component.

feature Single;

class List {
Node head;
void push(Node n){

n.next = head;
head = n;

}
}
class Node {

Node next;
}

Figure 3.14: Class definitions

feature Reverse;

refines class List {
Node tail;
void hsup(Node n){
n.prev = tail;
tail = n;

}
}
class Node {

Node prev;
}

Figure 3.15: Class refinements

3.6 Multiple Dimension Separation of Concerns
Multi-dimensional separation of concerns (MDSOC) allows developers to encapsulate
overlapping, interacting and crosscutting concerns, including features, aspects, variants,
roles, business rules, components, frameworks, etc., simultaneously [DBB+03]. One does
not have to choose between a data decomposition and a feature decomposition, since
both can coexist, and each can be used when appropriate. All concerns are first-class
components that can be integrated flexibly. MDSOC is a natural evolution of subject
programming [HO93].

MDSOC claims that crosscutting concerns are the consequences of the "tyranny of
the dominant decomposition" [TOHS99]. A key reason is that one needs different de-
compositions according to different concerns at different times, but most languages and
modularization approaches support only one "dominant" kind of modularization [OT00].

In MDSOC concerns are placed in hyperslices that are composed together in hypermod-
ules following a set of composing rules. Hyperslices may be used by many hypermodules.
Hypermodules may be reused and can contain other hypermodules.

In the figure framework a figure could be decomposed in several hyperslices, one for
each concern. For example we could have the properties hyperslice, the observer hyperslice,

other approaches 45

etc. The Figure hypermodule would compose the several hyperslices. Extensions to
the application can be made by adding new hyperslices and composing them in a new
hypermodule. For example, if we wish to save the figures in an SVG or any other format
we need to add a hyperslice for each format defining how each figure should be saved in
that format. In an OO version we would need to add a saveXFormat method in each
class or use a Visitor pattern [GHJV95]. A further advantage of hyperslices is that we
can mix-and-match them. This means we could add/remove the support for one format
simply by including/not including the respective hyperslice.

Nevertheless code replication is still found between hyperslices. Several hyperslices
that could implement observers would have code replication. And as MDSOC add another
layer(s) to existing techniques if we can find a way of reducing code replication then
MDSOC will also gain.

3.7 Other Approaches
Jiazzi [MFH01] is based on Units [FF98] and aims at building systems out of reusable
components integrated with the language. Jiazzi has two types of units: Atoms (composed
of java classes) and Compounds (composed of atoms or other compounds). Jiazzi supports
the addition of features to classes without editing their source code.

Open classes as used by MultiJava [CLCM00, CMLC06] allow external methods to be
added to a class, without changing the class. They also support multi method dispatching.
So they are used to extend a class interface like our approach but from a different
perspective: we focus on constructing the class and open classes in adding methods to
existing classes.

Caesar [MO03] also uses aspect technology to modularize crosscutting concerns and
enhance the reuse of aspects leading to a greater reduction of repeated code. Caesar uses
an Aspect Collaboration Interface that decouples aspects binding and implementations by
defining them in a separated module.

These approaches deal with the extensibility of classes. Our work’s goal is not to
extend existing classes but to reuse code that otherwise would be replicated in several
classes. However these techniques reduce the amount of code that still is duplicated so we
included them.

In Classboxes [BDN05] classes are defined within a kind of module, or unit of scoping.
In each classbox we can define classes but can also import classes from other classboxes
or refine other classes. Refinements may consist in adding or redefining new behavior or
state from an imported class. Since these refinements are only visible within the classbox
or classboxes that import from it, existing clients of the refined class are not affected.

46 decomposition techniques

Virtual classes [EOC06] are used by Caeser. A class can define nested classes. Nested
classes are the virtual classes and they can be redefined by subclasses of the enclosing
class. Each virtual class has therefore an enclosing object - the object of the container
class or one of its subclasses. At run time, the inner class to use depends on the type of
the outer object.

3.8 Summary
There are several approaches to composing or extending classes. We showed how some of
them are used by applying them to two simple frameworks. This simple exercise showed
that the decomposition capabilities of these solutions are able to produce a good solution
for both frameworks. On the other hand it also showed that these solutions still suffer
from code replication. In all the approaches we identified replicated code that no technique
offered by the decomposition approaches could mitigate.

The conclusion we can draw from this chapter’s discussion is that the existing decom-
position techniques could be improved. This is the motivation for our work.

Chapter 4

Roles

4.1 What are roles? . 48
4.2 Modeling with Roles . 50
4.3 Dynamic Roles Characteristics 55
4.4 Summary . 62

Object-oriented decomposition assumes that a given concept may be modeled by a
single entity, such as a class. This one to one mapping from concepts to classes is, however,
too simplistic. Classes do not do all the work themselves and must collaborate with other
classes. In a collaboration each class plays a certain role that falls somewhat outside the
main concept of the class. For example the Figure class from the example frameworks
(see section 3.1) plays the child role in the Composite pattern. This role is clearly not
the class main concern and does not fit well with the idea of a figure. This means that a
class may, in fact, play several roles, just because it must cooperate with other classes.
Furthermore, objects from the same class may play different roles while interacting with
each other. One such example is the CompositeFigure that may also play the child role in
the composite pattern.

In order to better model a specific concept we need the notion of a role. The research of
roles in the object-oriented area is extensive. But the definitions, modeling ways, examples
and targets are often different [Ste00][Gra06].

In this chapter we discuss the various natures of roles and how can we model a system
using roles, giving as an example the modeling of the frameworks described in section 3.1.

48 roles

4.1 What are roles?
Currently it is hard to put forward a definition of a role, because there are too many. The
role concept is considered to have been first introduced in the work of Bachman and Daya
in [BD77] and [Bac80]. They stated in [BD77] that

most conventional file records and relational file n-tuples are role-oriented. These
files typically deal with employees, customers, patients, or students, all of which are
role types. This role orientation is in contrast with the integrated database theory,
which has taught that each record should represent all aspects of some entity in the
real world. This difference in viewpoint has caused a great deal of confusion. The
reason for the confusion is understood when it is realized that neither the roles of the
real world nor the entities of the real world are a subset of the other.

Sowa [Sow84] introduced a distinction between natural type and role type. Natural
types are related to the essence of an entity (today considered a class) and roles types
are the characteristics that depend on an accidental relationship to other entities. This is
a distinction that is still used today by many role models. Guarino [Gua92] developed
Sowa’s work further. To Guarino to be considered a role it is required that its individuals
stand in relation to other individuals, and that they can enter and leave a extent of the
concept without losing their identity. A natural type is characterized by semantic rigidity
and lack of foundation, i. e. , an individual of a natural type cannot drop its type without
losing its identity. Furthermore an individual of a natural type is not requested to stand
in relationship to others. For example, A person is a natural type because a person
individual will always be (and have been) a person, and being a person is independent of
any relationship. A student is a role since to be a student it must be enrolled in a school
and leaving school does not lead to a loss of identity.

Roles surveys are not very common and we can identify three attempts by Kniesel
[Kni96], Steimann [Ste00] and Kappel et al [KR98]. An overview and comparison of the
tree surveys can be found in [Gra06]. Neither presented a definite definition of what roles
are. We present here the list of features proposed by Steimann. It is noteworthy that some
of the features are conflicting and it is possible that a definition of roles does not integrate
all of them (most do not). This is not meant to be a definition of what a role is, but a
collection of what various authors assumed in their definitions.

• 1. A role comes with its own properties and behavior. This suggests that roles are
types.

• 2. Roles depend on relationships. Many follow [Sow84] and Guarino [Gua92] work
and consider that roles are meaningful only in the context of a relationship.

what are roles? 49

• 3. An object may play different roles simultaneously. This is one of the most accepted
properties of roles concepts.

• 4. An object may play the same role several times, simultaneously. For example a
student may be enrolled in different schools (a university, a language school and a
music school), or an employee having two jobs.

• 5. An object may acquire and abandon roles dynamically. A person may become an
employee at a given time then quit it later.

• 6. The sequence in which roles may be acquired and relinquished can be subject to
restrictions. A person may only be a teaching assistant after becoming a student.

• 7. Objects of unrelated types can play the same role. This is not acknowledged by all
authors, but complements items 3 and 4.

• 8. Roles can play roles. For example a teacher is an employee of a school.

• 9. A role can be transferred from one object to another. For example the role of club
president may be transferred from a club member to another club member.

• 10. The state of an object can be role-specific. The state of an object may vary
depending on the role in which it is being addressed.

• 11. Features of an object can be role-specific. Different roles may declare the same
features but realize them in different ways.

• 12. Roles restrict access. When addressed in a certain role, features of the object
itself may remain invisible.

• 13. Different roles may share structure and behavior. Roles can inherit from one
another, or they can rely on the features of the object using delegation.

• 14. An object and its roles share identity. An object and its roles are viewed as the
same entity.

• 15. An object and its roles have different identities.

Roles have been mainly used to express dynamic situations where the roles are attached
to objects in order to provide new features or override the object’s default behavior. The
previous list enforces this view. There are works that proposed languages that support
roles as a primitive type, such as Clovers [SZ89], Fibonnaci [AGO95], DOOR [WCL97],
etc. There also a number of extensions to existing languages like Objects Teams [Her05],
Chameleon [GB02], Powerjava [BSI07], etc.

50 roles

Roles also have been used as a way to model the behavior of a class in a system. This
is the primary use of roles in the OORam Method [RWL96] and in the work of Riehle
[Rie00]. This is the use that we will make of roles. In our work we assume the definition
of role by Riehle [Rie00]:

“a role is an observable behavioral aspect of an object”.

Riehle also defines a role type as something

“that defines the behavior of a role an object may play. It defines the operations
and the state of the role, as well as the associated semantics”.

It should be clear though that Riehle only used roles as a modeling construct, not as a
programming primitive. Actually, in the works of Rielhe and Reenskaug roles were used
in modeling only. We intend to extend their work by using roles in the implementation
phase also.

4.2 Modeling with Roles
To capture the complexities of the world abstractions are created. Abstractions try to
model a concept present in the real world. Every language provides their own abstraction
mechanisms. In OO languages usually the abstraction mechanism is the class. A concept
can be specialized to a more specific concept. An animal can be specialized to a mammal
or a reptile, or even to a quadruped or a biped, depending on the focus of the analysis.
This specialization is, in OO systems, generally modeled by inheritance. Aggregating other
concepts can also compose a concept. These are known as the "is-a" or "has-a" hierarchies
[Boo95].

But as an approximation of the real world OO modeling techniques cannot capture
all the dynamics present. OO Systems are founded on the Aristotelian view of the world
with ideas (classes) and phenomena (objects). Each phenomenon is a manifestation of an
idea: a particular chair is a manifestation of the idea of a chair. Ideas and phenomena
do not exist with one to one correspondence, though. A phenomena can be classified in
several different ideas: a river may be viewed as a food resource by a fisherman, a living
place by a fish, a transport route for boats, etc. In programming terms it is not possible
to accommodate all possible views of a phenomena with a single idea as we cannot foresee
all its uses. Thus objects need to evolve overtime.

Steimann [Ste00] states that Lodwick was the first to break with the Aristotelian vision
according to which the nouns of a language govern its structure and meaning. As an
example the act of murder has the roles "murderer" and "murdered". These names define

modeling with roles 51

the individuals involved in the murder context. Outside this context the individuals have
their own proper names. This calls for another modeling construct than classes. One that
can model the roles some phenomena plays when in a given context. One such construct
are roles.

Roles represent the behavior of an object within a specific object collaboration task. As
we have seen, objects behave in different ways when acting in different contexts. Therefore,
in each context the object plays a different role. This introduces the notion of multiple
views. The role is determined by the view the client holds on the object that plays the
role. The view is a set of the properties of the object, modeled by a set of methods. Other
objects in the collaboration can access the selected set of methods. Furthermore views can
change dynamically. This means that an object’s set of methods may have additive and
subtractive properties [Kri95]. Thus, roles allow objects to evolve over time.

If roles allow such evolution of objects a question that may occur is: are classes a
superfluous concept or do roles need classes? An argument for classes and roles is that
classes represent what is static and roles describe what is dynamic. A class defines an
entity, while a role only refines an entity in a certain context. Another argument is that
with both concepts separated we can have inheritance hierarchies of both classes and roles,
as shown in figure 4.1.

Animal

Hervibore Carnivore

FoodSearcher

Hunter

Wolf

PackHunter

Tiger

LonelyHunter

Figure 4.1: An example of inheritance hierarchies of both roles and classes.

Since both roles and classes contain properties and methods a class may be reduced
to a mere container of roles - an entity whose sole purpose is to be extended by roles. If
this is the case then roles can be promoted to classes as they are the only concept that
contains properties.

52 roles

Some languages took the approach of unifying roles and classes. Fibonacci [AGO95]
used the concept of null-object because that allows the writing of roles for a more abstract
entity than a concrete class. Pernicci [Per90] define a class as consisting in one to many
role descriptions, where the first role description is equivalent to a "normal" class.

4.2.1 Advantages of Role Modeling

Role modeling has several advantages in system comprehension, reuse, development and
documentation [Rie00]. Describing a class as a set of roles helps to separate the various
ways in which a class is used. Documentation can be done in these terms as well. This helps
clients to focus on whichever aspect they are interested in, providing a better understand
and use of the class. Designing the class can also be done in role terms, thus developers
are able to focus only on one aspect of the class. This enables independent development
of a class with all its benefits in terms of reduced development time and complexity.

Class relationships are reduced to role relationships. Since roles focus on a particular
view of a class we need not to understand the player in its whole. This eases the
understanding and development of these relationships. Whenever needed the broader
perspective can also be used. Role modeling allows shifting between role level and class
level without any information loss.

Role modeling also allows for better understanding using previous experiences. When
a developer knows how to use roles that have a relationship in a system, then when he
encounters different roles with similar relationships the past experience will allow a quicker
understanding. One such example is the use of the Observer pattern. When experienced
with a FigureSubject and how it works with a FigureObserver to use another instance of
the pattern is much simpler and straightforward.

Roles can also be used to model crosscutting concerns. Because a role is a smaller
composition unit than a class we can put the crosscutting concern in a role, or a set of
roles, and the classes that have the crosscutting concern play those roles. Any changes to
the crosscutting concern are limited to the roles thus greatly improving maintenance and
reducing change propagation.

4.2.2 Role Figure Framework

We can modify the Figure framework by introducing the roles that Figures play. It is not
the figure’s main concern to act like a Subject but it has that role superimposed on it.
That pattern defines two roles: the subject role and the observer role. A Figure plays the
subject role and the view plays the observer role. With roles we are able to extract those

modeling with roles 53

concerns from the class and reduce code scattering. Furthermore, those roles are reusable
whenever we need a class to address those concerns, even if it is not a Figure.

We can also argue that managing properties is not the figure’s main concern. Thus
we can model that behavior using a PropertyProvider role. Another used pattern was
the Composite pattern. This pattern defines two roles: the parent role and the child role.
CompositeFigure plays the parent role and every Figure plays the child role. The child
role does not impose a specific interface nor semantic, so it is considered a no-semantic
role type [Rie00].

AbstractFigure

LineFigure

draw()

move()

RectangleFigure

draw()

move()

Figure

<<interface>>

draw()

move()

setProperty()

getProperty()

setBoundingBox()

getBoundingBox()

addFigureObserver()

removeFigureObserver()

FigureParent

<<role>>

addComponent()

removeComponent()

FigureSubject

<<role>>

addFigureObserver()

removeFigureObserver()

FigureChild
PropertyProvider

<<role>>

putProperty()

getProperty()

hasProperty()

FigureObserver

<<interface>>
*

*

BasicFigure

<<role>>

draw()

move()

setBoundingBox()

getBoundingBox()

figureChanged()

AbstractFigure

CompositeFigure

draw()

move()

LineFigure

draw()

move()

RectangleFigure

draw()

move()

Figure

<<interface>>

FigureSubject

FigureChild

FigureChild

FigureParent

BasicFigure BasicFigure

FigureObserver

0..*

FigureSubject

0..*

PropertyProviderPropertyProvider

AbstractFigure

properties

observers

setProperty()

getProperty()

setBoundingBox()

getBoundingBox()

addFigureObserver()

removeFigureObserver()

CompositeFigure

children

draw()

move()

addFigure()

removeFigure()

figureChanged()

GroupFigure

0..*

FigureObserver

<<interface>>

figureChanged()

0..*

Figure 4.2: Roles created for the Figure framework.

Besides the roles defined by the patterns we can assume that the Figure concept is itself
a role, named BasicFigure. Since roles are components of classes and are not visible to the
class clients we prefer to name the role BasicFigure and maintain the name Figure for the
interface. This role defines only the structure and behavior of a figure, and is played by
all the classes in the hierarchy. The best way to model this is still using an inheritance
hierarchy, but somewhat modified. Figure 4.2 shows the roles defined for this framework
and figure 4.3 shows the class diagram of the relevant part of the Figure hierarchy.

4.2.3 Role GUI Framework

The transformations for the GUI framework are similar to the Figure framework. We
identified the several concerns that components deal with and place each set in a role.
There will be a role for the Composite concept, a Subject role and an Observer role for
each of the various Observer patterns, and a Child and Parent role for the Composite
pattern. Also a PropertyProvider role is used. The roles used in this framework are shown
in 4.4 and the class diagram of this framework is shown in 4.5.

54 roles

Figure

<<interface>>

FigureSubject

FigureChildBasicFigure

PropertyProvider

AbstractFigure

CompositeFigure

draw()

move()

LineFigure

draw()

move()

RectangleFigure

draw()

move()

FigureChild

FigureParent

BasicFigure

FigureObserver

0..*

FigureSubject

0..*

PropertyProvider

Figure 4.3: The Figure hierarchy (excerpt) with roles.

4.2.4 Code Replication in the Role Solution

Roles overcome the problems with multiple inheritance for the languages that do not
provide it. That is the case of the Picture class mentioned in the OO version. We created
a PictureFigure class and made it inherit from the Picture class and implement the
Figure interface. But we had to replicate the code common to all figures (the one in the
DefaultFigure class). Now we can make PictureFigure play the role of BasicFigure thus
reusing the code in the role, avoiding such code replication. Figure 4.6 shows the class
diagram of this solution. We can verify how roles can in fact be used to perform a kind of
multiple inheritance.

The roles for the observer patterns are reusable too. Whenever we need to use a
FigureObserver subject we only have to make the class play the subject role. That too is
a code replication saver, but somewhat limited: FigureObservers are unlikely to be used
in another context.

The various observer roles, from both frameworks, still share a lot of semi-identical
code. The same is still true for both composite patterns.

dynamic roles characteristics 55

DefaultComponent

CompositeComponentTextField Button

Component

<<interface>>

FocusSubject

CompositeChild
BasicComponent

PropertyProvider
MouseSubject

FocusSubject

BasicComponent

MouseSubject

CompositeChild

PropertyProvider

*

CompositeComponent

draw()

TextField

draw()

Button

draw() CompositeParent

CompositeParent

<<role>>

addComponent()

removeComponent()

FocusSubject

<<role>>

addFocusObserver()

removeFocusObserver()

MouseSubject

<<role>>

addMouseObserver()

removeMouseObserver()

CompositeChild

PropertyProvider

<<role>>

putProperty()

getProperty()

hasProperty()

FocusObserver

<<interface>>
*

MouseObserver

<<interface>>
*

*

PropertyClient
BasicComponent

<<role>>

draw()

setLocation()

getLocation()

setDimension()

getDimension()

ComponentClient

mouseMoved()

mouseDragged()

focusGained()

focusLost()

Figure 4.4: Roles created for the Component framework.

4.3 Dynamic Roles Characteristics
Even though we do not use dynamic roles this chapter would not be complete if we did not
include a description of their use, so this section presents the characteristics of dynamic
roles.

There are several languages that support dynamic roles, and many role models. Ev-
eryone chooses a set of role characteristics that suits their needs. A complete description
of roles characteristics is therefore lacking if we take a language only. This section tries
to present some properties of roles and practical considerations and is largely based on
[Gra06].

4.3.1 Classes Playing Roles

A class may have restricted role-playing capabilities ranging from the number of roles and
the type of roles it can play. A definite class may not play any role. Examples are final
classes in Java. Since playing roles is a mean of extending a class, final classes must not
play any role. In some languages a class must have at least one role attached, such as
Fibonnaci [AGO95] where a class is a null-object. A class may also play a fixed number of
roles even though it is not common. More normally a class may play an undetermined
number of roles.

Even if a class may play several roles it may put restrictions on the roles it can play.
Playing the same role more than once is prohibited in languages that rely on role type
for method dispatching. Other languages like ObjectTeams [Her05] allow a class to play
the same role several times but in different contexts. A class can have conjunctive or

56 roles

DefaultComponent

CompositeComponentTextField Button

Component

<<interface>>

FocusSubject

CompositeChild
BasicComponent

PropertyProvider
MouseSubject

FocusSubject

BasicComponent

MouseSubject

CompositeChild

PropertyProvider

*

CompositeComponent

draw()

TextField

draw()

Button

draw() CompositeParent

CompositeParent

<<role>>

addComponent()

removeComponent()

FocusSubject

<<role>>

addFocusObserver()

removeFocusObserver()

MouseSubject

<<role>>

addMouseObserver()

removeMouseObserver()

CompositeChild

PropertyProvider

<<role>>

putProperty()

getProperty()

hasProperty()

FocusObserver

<<interface>>
*

MouseObserver

<<interface>>
*

*

PropertyClient
BasicComponent

<<role>>

draw()

setLocation()

getLocation()

setDimension()

getDimension()

ComponentClient

mouseMoved()

mouseDragged()

focusGained()

focusLost()

Figure 4.5: The Component hierarchy (excerpt) with roles.

disjunctive attachment of roles. In conjunctive attachment roles are like wrappers that fully
cover the intrinsic (attached object). Attaching another role means wrapping the previous
role with the new role. In disjunctive attachment a role may be attached directly to the
object even if it already plays other roles. Figure 4.7 shows the two kinds of attachments.

Classes conceptually cannot inherit from roles [Kri96]. Roles are typically written for
a class, or its subclasses. Abstract roles are those not written for a particular class.

That an object may play several roles is unquestioned, but what about how many
objects can a role be attached to? Traditionally roles can be attached to only one object.
Multiroles are roles that can be attached to several objects.

Visibility of roles is also important. Normally roles are public because roles usually
model object interactions but there can also be private, and protected, roles. Here the
notion of private can vary: a role can be private to the object it is attached to or private
to the class that defines it, if it’s defined inside a class.

4.3.2 Roles Playing Roles

A role may also play other roles. The same thought for classes apply here: roles can play
no roles, play a fixed or an unlimited number of roles. Definite roles cannot play another

dynamic roles characteristics 57

Figure

<<interface>>

BasicFigure

Picture

PictureFigure

Picture
Figure

<<interface>>

setLocation()

getLocation()

setDimension()

getDimension()

addFocusObserver()

removeFocusObserver()

addMouseOvserver()

removeMouseObserver()

Code replicated from DefaultFigure

PictureFigure

Subject
(FigureObserver)

Child
(FigureComposite)

Child
(FigureComposite)

BasicFigure

Subject
(FigureObserver)

A

var

foo()

bar()

B

meth()

C

method()

D

function()

Figure 4.6: Possible solution for the Picture problem. Shows how roles can mimic multiple
inheritance.

Animal

Hervibore Carnivore

FoodSearcher

Hunter

Wolf

PackHunter

Tiger

LonelyHunter

DefaultFigure

properties

observers

setProperty()

getProperty()

setBoundingBox()

getBoundingBox()

addFigureObserver()

removeFigureObserver()

Figure

<<interface>>

draw()

move()

setProperty()

getProperty()

setBoundingBox()

getBoundingBox()

addFigureObserver()

removeFigureObserver()

Obj.

R1

R2

Obj.R1 R2

R3

R4

removeFigureObserver()

Figure 4.7: Examples of Conjunctive role attachment (left) and Disjunctive role attachment
(right)

role. Like classes the type of roles a role can play can vary (see previous section).
Limits on the number of role instances can also be applied. A singleton role is a role

with only one instance. A singleton role implies others decisions: is the role a singleton as
in the Singleton pattern [GHJV95] or is it shared between objects? It may also indicate
that when the role is attached to a new object it is detached from the previous object. All
variations are possible. An instance of a role can also be attached only to a single object
but several instances of the same role can be attached to the same object (if a class can
play multiple times the same role).

4.3.3 Supertypes or Subtypes

Controversy exists whether roles are considered as subtypes or supertypes of its intrinsic.
We can see why in the following paradox: at compile time a role may be considered a
supertype because its concept is wider than that of its intrinsic (a costumer may be played

58 roles

by a person or a company) but at run-time the opposite holds (not every person plays the
role of costumer). The subtype view is the more consensual view, though.

Another view states that roles are an unrelated type of their intrinsic. This is the view
adopted by many role models that are implemented as design patterns [GHJV95]. A role
can extend a class, even though they are conceptually different. This is done for code
reuse. Roles can extend other roles but some restrictions apply. If a role is an abstract
role there are no restrictions. If a role has an intended intrinsic this restricts the subrole as
the subrole intrinsic specification cannot be of a reduced type compared to the superrole
intrinsic. Here reduced is used in the sense that the type cannot have fewer properties. A
subrole may, on the other hand, extend the intrinsic specification.

4.3.4 Defining Properties in Roles

If we allow roles to have fields and methods this will eventually lead to name collisions.
This happens if an object has two attached roles with the same methods (or fields). This
is bound to happen if the same role is attached more than once to the same object. If
this is an intended procedure then bookkeeping of the fields must be ensured. If it is not
intended then accidental attachment of the same role has to be prevented. The solution
to these problems are language specific and even role specific.

With methods there is a further question: the methods in the role overrides the ones
in the objects or vice-versa? The answer may depend on whether the relation between the
role and the intrinsic is of a super or sub type nature. It may also depend on the language
(C++ allows only the overriding of virtual methods. In Java all methods are virtual and
overriddable, except those declared final).

A possible solution is to prevent name collisions. This however renders dynamic
attachment of roles impossible if there are abstract roles. It also prevents multiple
attachments of the same role. Another solution is to allow renaming of methods.

4.3.5 Method Call

When entity A sends a message to some entity B what happens? The answer depends very
much on the role model being used. First it must be known to which entity A is referring
to. If A is referencing a role (as in most role languages) then A is calling a method in
the role. If A is referencing the object then the method must be dispatched to the role
by some mean. This can take a very complicated route because a role may be playing
another role.

What happens when several roles define the same method? Some languages call all the
methods, others have some mechanism to select one method. The problem with calling

dynamic roles characteristics 59

all the methods is the return value. ObjectTeams [Her05] for example leaves the result
undefined. Some mechanisms involve selecting the last attached role. Others techniques
forces the caller to disambiguate the call by using casts.

There are other considerations such as: may a role call its intrinsic methods or vice
versa? Can a role place calls on other roles? What if a role and an intrinsic have the
same methods? Note that this situation is different from a method called from an external
entity. Some languages define a reference self to contrast with the this reference. The this
reference indicates the intrinsic while self references the role, thus disambiguating the call.
Some impose a restriction on the intrinsic calling its role’s methods. It does assume that
the intrinsic knows its roles and may depend on them. In dynamic situations this cannot
be allowed as the role may not be there. An alternative way is the intrinsic querying its
roles for the presence of a particular one and then call its methods.

To further complicate matters, around methods may be added. An around method
is a method that overrides the method in the intrinsic. These introduce more method
dispatch problems if different roles with the same around methods are attached to the
same object. When the method is called which around method is called? This is a semi
identical problem with normal method calling. A further problem is if the around method
calls the intercepted method: is the other around method called or is the intercepted
method called? The situation in which the around method does not call the intercepted
method also presents problems: does the other around method gets called or not? If it is
not then the first around method does not only overrides the intended method as it does
every other around method. Since roles must not depend on each other, this may break the
other role. If it does call the other around method then it in turn may call the intercepted
method, which the first around method prevented from being called, thus breaking the first
role. This is similar to the composing of aspects problem in aspect-oriented programming
[LHBL06].

4.3.6 Role Identity

The question is whether a role has an entity of its own or shares the identity of its intrinsic.
Considering that roles are not independent entities the roles should not have an identity of
their own. The objects and its roles are referenced as one. If roles can evolve objects they
cannot modify its identity, otherwise it ceases to be the same object. To identify the role
to be addressed casts are used. This however prevents multiple roles of the same type.

Roles can have identity if it is separated from references. This calls for the use of
methods to compare identities. But further distinctions must be made: if two roles are
the same and if two roles have the same intrinsic.

60 roles

4.3.7 Roles Lifecycle and Movement

Roles can be taken on by the object or imposed from the outside. When a role is
superimposed it is automatically attached when the object enters a specific context. Either
way attaching a role does not necessarily imply memory allocation. Roles can be cached
and when a new role is needed old ones can be used. Roles that are not referred to are
cached instead of garbage collected. Languages that permit only one instance of the same
type can verify if the role is already attached and reuse the same role, instead of creating
a new one. Attachment strategy is discussed in section 4.3.1.

Role movements reflect the dynamicity of the real world, but it may be hard to achieve
and poses many real problems. The major problems with role movement are the dynamic
situations that may arise.

The example in Kristensen and Osterbye [KO96] refers to the role Mayor. When a
person is elected Mayor it assumes the role and when another person is elected the role
gets transferred. But if we move the role then the person that played the role of mayor
does not recall being a mayor. It is possible that other clients knew the person as a mayor
and after the move they now know the new mayor and don’t remember the other person.
There are cases in which only the functionality of the role is important and not who plays
the role. In these cases the role may be moved freely without the previous problems (it
may have others, though).

Moving a role must also take into account if a role is currently executing or not. If the
role is not executing then it may be safe to move it. If roles have identity then clients may
have the knowledge that a role is attached to a specific object and moving the role may
invalidate that knowledge. The same can be true if a client does not know the specific
object but depends on a particular state of that object, when moving a role to another
object the state may be changed without the client knowing it. Kniesel [Kni96] presents
other reasons to invalidate roles from moving.

If a role is executing then the problems only get bigger. When the role resumes its
execution the environment has changed! Some solutions let the role finish its execution
and then perform the movement, but that may not always be possible (it may even lead
to deadlocks). Solutions for dynamic situations are very difficult to obtain because there
are infinite possibilities.

Moving roles must consider the fact that roles may play other roles. Thus when moving
a role it makes sense to move along all the roles it plays. But that may be untrue if the
target intrinsic has restrictions on the roles it may play. It may play role r1, but may not
play role r2. If role r2 is attached to role r1 then the move fails. What to do? Not move
role r1 or detach role r2 from r1 and then perform the move? The correct way depends
on the concrete case, even though a default behavior can be enforced. Either way new

dynamic roles characteristics 61

problems arise. Detaching role r2 may not be possible or if it is detached should it be
replaced by another role?

Because of multiple views when moving a role all the references to that role must be
updated. A notification method should also be called to prevent the problems mentioned
above when a client depends on a specific object or specific object state.

Because of the many problems involved many languages forbid the movement of roles.
Once a role has been attached it cannot move. This increases code predictability [BW00].

A similar problem with moving roles is removing roles. The main problem is the past
being removed with the role. When a student ceases to be a student it has nevertheless a
record of grades, etc. When the role is detached it is as if the object never has been a
student. There is also the fact that clients have the references to the role. The school still
has references to the student’s role. It may depend on the role to know the name of the
student. If the role is detached then the school loses this information.

A solution for role removing is role replacement. We could replace the student role
with a graduate role that stores the record information. But that is done on a case by
case scenario. There are also all the problems with role movement to be dealt with, like
removing a role when it is executing and so forth.

Another solution is not to allow the removal of roles. When attached it remains
attached and only terminates when the object terminates: it is a life role. Roles may
be removed explicitly or implicitly. When explicitly removing a role language support
is important. C++ for example offers explicit removal of objects. Java on the other
hand does not. So it may be difficult to know when a role is terminated or not. In C++
explicit removal implies memory management that can be very hard with roles and may
be hazardous as it may leave dangling pointers. A common way of avoiding it is to mark
a role as active or inactive. Roles are removed implicitly when no one is referring them. If
an object has references to the roles it plays then the role will never be garbage collected.
If soft references are used then the role is removed if no one else is referencing it.

4.3.8 Role Visibility

A class can have inner roles and a role can have inner roles as well. Conceptually there is
nothing against it. Making the inner roles visible to the outside is forbidden. An inner role
should only be used by the outer class (or role) itself, by a mean of alternating between
states, or attached at inner class’s objects. A justification for making inner roles public is
the fact that particular role should be applied to that class only. Since any role may be
written for a specific intrinsic this invalidates this argument, leaving no other argument to
make inner roles visible.

62 roles

A consideration to have in mind is the role interface. Since it will expand the intrinsic
interface, how will the various properties that the role defines be seen from outside?
Traditional access modifiers are the private, protected and public. We expect that these
access modifiers apply to the role as well.

The interface between roles and intrinsics must also be debated. Does a role have
access to the intrinsic properties? Does an intrinsic have access to the role properties?
How to apply the public, private, protected interfaces here? Some answers depend on
the relation between roles and classes. If a role is a supertype of the intrinsic it cannot
access intrinsic properties. The intrinsic can access the public and protected ones from
the role. If a role is a subtype of the intrinsic then the intrinsic cannot access properties
of the role but the role can access the public and protected ones. If roles and classes are
unrelated the question of the role-intrinsic interface raises. Can each other only depend on
the public interface or can they rely on protected interface or even on private interface? It
may be useful to create other access modifiers as roleprotected (or classprotected) [Gra06]
that enables a special interface between roles and classes. Of course this can only work if
a class knows the roles it may play. If it does not then it won’t provide the interface the
role may need and won’t rely on the role interface.

4.3.9 Exceptions

Several languages deal with exceptions and some have the notion of checked exceptions,
meaning that a method that may throw an exception must declare it in the method
signature. Roles may override a method thus altering its exceptions signature. In contexts
where the role is expected this is not a problem, because the role interface is known.
Where a role is not expected then this is not allowed, because that would alter the method
signature the client was expecting.

4.3.10 Renaming Properties

A solution to the name conflicts would be to allow the renaming of the methods or fields
that the role offers. The role itself can also make an alias of the intrinsic fields. Another
reason for renaming is to allow the attachment of a role to an otherwise incompatible class.
Few languages support this.

4.4 Summary
In this chapter we discussed the role concept in its several uses throughout the literature.
It has been used mainly to describe dynamic situations but it can also be used as a way of

summary 63

composing classes in a static way.
The dynamic situations offer developers a way to extend an object but when supporting

full dynamic situations several problems arise that may render the dynamic approach
impossible. Hence a limitation on the attachment/detachment of roles is imposed. Another
solution implies the use of contexts where the object gains the roles when it enters that
context and they remain active only in the context, thus limiting role interactions and
possible incompatibilities.

The static version of roles have been used mainly for modeling and the few role
supporting languages do not allow for an advanced class composition, treating roles
as little more than interfaces. When faced with the problem of code cloning proposed
languages do not provide a full set of features that reduces this replication to a minimum.

64 roles

Part II

Problem and Solution

Chapter 5

Research Problem and Solution

5.1 Open Issues . 68
5.2 Research Questions . 69
5.3 Research Focus . 69
5.4 Thesis Statement . 70
5.5 Research Goals . 72
5.6 Proposed Approach . 74
5.7 Validation Methodology . 75
5.8 Summary . 76

Code cloning is a problem in many systems, especially large ones. While some clones
are intentional and need to be monitored the majority should be removed. To remove
clones the available tools and techniques often resort to refactorings [BMD+00, FR99,
HKKI04, HKI08, KH00]. But there are still clones that cannot be removed using these
tools or techniques.

Class composition also has an impact on code clones as more ways to compose classes
provide more means to reduce replicated code. Thus with a better compositional strategy
we could prevent the appearance of clones. Roles have been used as a way to expand
classes and also as a way of modeling systems. Can roles also be used to compose classes
and thus provide more ways to reduce code clones?

In this chapter, several open research issues are raised focusing on clone removal and
the benefits that roles can bring both in terms of class composition and clone removal.
The research questions and thesis statement are presented and explained, as well as the
proposed solution approach. Finally, the research and validation strategies are debated as
the baseline to pursue empirical studies.

68 research problem and solution

5.1 Open Issues
From the state-of-the-art review presented in the previous chapters, a number of open
research issues arise. An insight of the most relevant ones follows, intended to focus the
scope of the work presented in this dissertation:

• Not all clones can be removed. Not all clones must be removed either. In this
category are included clones for risk reduction purposes or performance issues. But
there are still clones that are not intentional and should be removed. These clones
are the focus of interest in this thesis. A description of these clones and why they
cannot be removed is given in chapter 7.

• A single decomposition strategy is not enough. In Object Oriented decom-
position, programs are decomposed in terms of objects and classes. But often classes
have to deal with concerns that are not directly associated with their main concern.
Some of these concerns tend to affect a set of classes in the same or similar way, which
leads to replicated code. These concerns are called the crosscutting concerns. The
use of a single decomposition strategy is not enough to deal with these crosscutting
concerns and this motivated the development of several decomposition strategies.
As we have discussed in chapter 3 code clone still exist in spite of the use of these
techniques.

• Roles are used in the design but not in the code. The work by Riehle
[RG98, Rie00] and the OORam method [RWL96] showed how roles can be used
to model a system, neatly modeling all the various views we have from an object.
However, they did not propose a language that deals specifically with roles and
only described how the design could be implemented using traditional classes. This
introduces an important gap between modeling and implementation. The use of
roles in programming is restricted to dynamic languages as discussed in chapter 4.
This type of roles, due to their dynamic nature, does not deal well with the problem
of code clones that we are interested in. Also, in these dynamic languages, roles are
developed for a specific class or, at the most, classes of a certain type. To deal with
code clones we need a static approach to roles and one which enables the roles to
adapt to their players and not the other way around as is the case with dynamic
role approaches.

research questions 69

5.2 Research Questions
From the aforementioned open research issues, a few research questions revolve around a
major question that is considered central to the presented research work: How to reduce
code clones? Those questions are listed next.

• What are the limitations of existing clone removal refactorings?

• How can we prevent clones to appear in the first place?

• What language limitations may force developers to introduce clones? How can we
overcome such limitations?

• How existing decomposition techniques cope with code clones?

• Are roles useful for the implementation phase or are they useful only for modeling?

• How can roles tackle the code cloning problem?

5.3 Research Focus
The research work presented in this dissertation covers subjects from all of the fields and
topics described in the earlier chapters (Chapters 2, 3 and 4). Due to the complexity of
such areas we do not intend to address all the problems identified in those chapters. From
each described area we will be taking a subset that will allow us to reach the thesis goals,
that is, the reduction of replicated code.

The major focus of the thesis is on reducing code clones. But as we have seen in chapter
2 not all clones are undesirable and not all clones are casual, some are intentional and
serve a well defined purpose. Of course we are not interested in removing these clones too.
We are more focused on removing clones that arise from language limitations, especially
from composition limitations. To make the focus of the research more clear, table 5.1
shows, for each of the clone factors described in table 2.1 and discussed in section 2.1, the
interest level for the research..

Like shown on table 5.1, we intend to focus especially on reducing clones that are due
to the lack of composition techniques. For that we will concentrate on the object-oriented
technologies, since these are the most used today. From all the described composition
we discarded the AOP approach as it strays a bit from pure OO decomposition. We will
focus our approach on the role modeling, taking it all the way to the implementation stage.
For clarity in the domain areas and focusing of the research, Figure 5.1 depicts the area
in the decomposition techniques where the results of the work are focused on and where
expected to bring the most contribution.

70 research problem and solution

Category Subcategory Factor Scope Priority

Development
Strategy

Reuse Approach

Simple reuse by copy and paste
Forking
Design reuse * ***
Functionalities/Logic reuse * ***

Programming
Approach

Generative programming
Merging similar systems
Delay in restructuring

Maintenance
Benefits

Avoiding Risk
Unwanted design dependencies

Ensuring Robustness
Better performance in real time programs

Reflecting Design decisions (e.g., crosscutting) * ***

Overcoming
Underlying
Limitations

Language
Limitations

Lack of reuse mechanisms * ***
Abstraction creates complexity * **
Abstraction is error-prone * *
Significant efforts in making abstractions * **

Programmers’
Limitations

Time Limitations
Performance by LOC
Lack of ownership
Lack of knowledge in the domain * *
Difficulty in understanding large systems * *

Cloning by
Accident

Language Paradigm Protocols to interact with API and Libraries

Programmers
Working Style

Programmers mental model * *
Unknowingly implementing the same logic by
different programmers

* **

Table 5.1: Clone Factors that are the focus of the research.

5.4 Thesis Statement
Based on the research challenges presented (sections 5.1 and 5.2) and the state-of-the-art
review (Chapters 2, 3 and 4), the author states that:

“The use of roles is an effective way of preventing and reducing code replication,
which provides better results than traditional approaches, and contributes to enhance
the system modularity, while closely following object-oriented principles.”

This statement uses terms whose meaning may not be consensual, and therefore leads
to questions that deserve further discussion:

• What is meant by “effective way”?

Effective can refer to a good performance, a good design or simply that it does
reduce the code replication. When we mean effective we apply it in all these senses.
Roles can in fact reduce code replication, so they are effective in that respect, but
they also do it without incurring in a performance loss or by introducing significant
design changes. Significant changes being described as not having to create new
classes (new roles may be created) or changing the classes hierarchies or even the

thesis statement 71

Decomposition Strategies

Functional

Decomposition
Algorithmic

Decomposition

Object Oriented

Decomposition

Aspect Oriented

Decomposition
Others

Features

Traits

Mixins

Roles

Dynamic

Roles

Static

roles

Others

Figure 5.1: Research focus on the Decomposition Methodologies

way it relates to other classes. Thus design changes introduced by roles affect only
the classes that contain clones and, in that respect, only the part of the class that
has the clone. Class clients should suffer no change.

• How can we measure “better results”?

Better results once again may be seen as better performance or even better design.
We apply the term here in the sense that roles can remove clones that traditional
approaches cannot while preserving most of the basic code structure. As stated
previously, both performance and class clients are not affected, so roles provide
better results than approaches that need to significantly change the design. So better
results refer to a greater number of clones being removed while retaining most of the
initial system design.

• What are the “traditional approaches”?

Traditional approaches (section 2.5.1) refer mainly to the refactorings used in most
clone removal tools available or clone removal proposals. But this term can also
be used to some of the class composing techniques that are described in chapter 3.
Some class composition approaches do not deal directly with cloned code but deal
with crosscutting concerns that ultimately leads to duplicated code. We include in

72 research problem and solution

the terms traditional approaches those approaches that can be used to reduce code
clones, like AOP and Traits .

• What is the meaning of “enhance the system modularity”?

Code clones are often a by-product of language limitations to cope with crosscutting
concerns. We expect our approach to reduce the amount of replicated code that
originates from this. Furthermore we will be able to encapsulate such code replications
in a role that may be reused. This role reuse is what we mean with the ”enhancing
the system’s modularity” statement. We expect some developed roles to be generic
enough to allow us to build a role library.

• Why is it relevant to follow object-oriented principles ?

Object-oriented programming is the most used decomposition strategy today. If
we want an approach to be adopted by a large number of developers we must not
impose a completely different mental model. Despite its limitations OO development
has proved efficient and developers are comfortable and efficient in its use. It feels
a better choice to introduce small changes to the OO model. This way developers
remain in known ground and there is not a paradigm shift. The adherence to the
object-oriented model means that our roles must be abstractions from the solution
model and not mere artifacts to reduce code. Developed roles must represent a
specific concept present in the solution model. Complete replicated code removal
could be achieved but that would lead to developing roles that did not have any
particular purpose except that of reducing code replication.

The original thesis statement can be decomposed in the following hypothesis, as a more
objective means to validate the author’s assumptions:

• H1: Roles can be used to compose classes.

• H2: Roles can be reused.

• H3: Roles can be used to remove more code clones than traditional approaches.

• H4: Roles can be used to prevent code clones.

5.5 Research Goals
The primary outcomes of this thesis encompass the following aimed contributions to the
body of knowledge in software engineering:

research goals 73

1. Reduce code replication using roles as a composition mechanism;. The
main goal of the proposed thesis is the reduction of code replication. One way to
reduce it is to enhance system composition. This allows the same code to be reused
by composing it in different ways throughout the system. In our opinion roles are
well suited for this task as they offer a good mechanism for code composition, and
act at a finer grain level, such as classes or other roles. With roles we can have a
smaller module than the class, thus enhancing code reuse. Role researchers have
concentrated in dynamic roles or modeling using roles. We will head a different way,
by creating generic roles: roles that can be easily tuned to fit a particular class. A
major contribution that we make is to build a library of generic roles that may be
used as building blocks for more specific roles or classes.

2. Explore new ideas in role composition. The focus will be on avoiding code
replication but it is also a thesis goal to explore new ideas on role composition.
Specifically we will try to simplify the declaration of roles. Many role languages
assume that roles are associated with a context so they include contexts as a first
class construct. By doing this the language becomes cluttered with many new
concepts making OO developers feel uncomfortable. This may be a reason why roles
have not yet reached mainstream languages. A new role model may have to be
developed or existing role models have to be extended. There is also a limitation
in roles languages that we seek to overcome: many role models require the role to
declare beforehand its possible players by means of a ”played by” clause. This can
be done using the name of the player class or even an interface. One reason to use
the ”played by” clause in the role is to impose a constraint on the classes that may
play that role, to ensure that the player has a certain interface (or structure) that
the role uses. Our solution will take a novel approach as we want to let classes
configure the roles they play and not the roles that define which classes can play
them. The inversion of declaration from the role to the class will allow us to provide
a renaming mechanism that configures the role as it should be used by the class.
The role must, nevertheless, impose some restrictions on the player interface when it
needs to communicate with the player, therefore we must provide a way of stating
these restrictions but keep it to a minimum.

3. Enhanced modularity. With roles we expect to have a higher modularity than
with traditional OO approaches. Since roles can be seen as a smaller module than
the class then we have an all new level of modularity. Roles can represent concepts
that would not be directly allocated to a specific class but would appear in several
classes that must perform similar tasks because the way they interact with other

74 research problem and solution

classes. By pinning these concepts to roles we can therefore reuse them whenever we
want. Future changes are also limited to the role, instead of having to perform the
changes in the various classes.

4. Propose language extensions and tools. We propose an extension to the Java
programming language for validation purposes. A compiler that supports these
extensions has been developed. It must be stressed that easy of use is a central point
in the intended work, so building a whole new language would refrain programmers
from considering our approach. Extensions to the selected language were also kept
to a minimum, without compromising expressiveness.

5.6 Proposed Approach
There are many reasons for the occurrence of clones (see section 2.1), one of them are
crosscutting concerns, that is, concerns that a class must deal with that are not its main
concern. When several classes deal with the same concern they tend to use similar code.
This is more frequent in languages that do not support multiple inheritance. With multiple
inheritance we could place the concern in a superclass and all classes would inherit the
same behavior. With single inheritance we tend to replicate the common behavior in all
classes, if we cannot find a common superclass.

Some clones could be avoided if a language had other composition mechanisms. In
particular crosscutting concerns would benefit from the use of a composition mechanism
where a class could be composed of several pieces of software. We believe that if we explore
the way roles can be used to compose classes we’ll find that roles are capable of reducing
several clones that traditional clone removal techniques cannot.

There are many definitions of the role concept in the literature (see chapter 4) but we
are interested in using roles as components of classes. For that purpose we use the role
definition used by Riehle [Rie00], where roles are an observable behavioral aspect of an
object. We can use roles to compose classes, meaning that an object’s behavior is defined
by the composition of all roles it plays.

We propose to use static roles as a basic unit from which we can compose classes. Roles
provide the basic behavior for concerns that the classes deal with but are not their main
concern. Thus we can better modularize those concerns. Static roles have been used for
modeling [RG98, Rie00] but despite their benefits no programming language has appeared
that deals with this static nature. To overcome this we will develop a Java extension that
supports static roles.

When we started developing our role model the main goal was to enhance code reuse
while maintaining the model as close as possible to OO decomposition. We believe that

validation methodology 75

this approach is more likely to get the acceptance from the OO community than a model
that would introduce many new concepts.

One goal of our proposal is to make roles modular and therefore reusable, thus
contributing to diminish code replication. If we consider roles as modules then they can be
reused and we can build a library of roles. Using modularization [Par72] we can build a set
of independent modules meaning we can develop and change each module independently
from other modules. This shortens development time and augments comprehensibility
because one needs only to deal with a module at a time. Modularization allows the
development of libraries thus enhancing code reuse and reducing the amount of code one
needs to write. We intend to prove that roles are reusable by developing a library of roles.
If such a library can be built it also shows that roles are capable of preventing code clones.

To expand the re-usability of roles replacing the ”playedBy” for a list of requirements
can be complemented with a renaming mechanism. A name of a method must clearly
state the purpose of the method but when creating a full purpose role those names are
difficult to achieve. The methods’ names for a role are tuned for a particular interaction.
In similar interactions, however, where we could reuse the same role those names would
be inadequate or just plain misleading. As an example, the Observer pattern [GHJV95]
describes an interaction between subjects and observers that is present in many different
systems with only minor changes, most notably the names of the methods to register an
observer with a subject and the methods used by the subject to notify its observers. A
Subject role for a MouseMotionListener instance of the pattern would define methods
like addMouseMotionListener, or removeMouseMotionListener. That role could not be
reused for an instance of the same pattern but for a KeyListener which uses methods like
addKeyListener or removeKeyListener. Because a method name must somehow indicate
its functionality, using a generic name like addListener would not be correct as it would
reduce the comprehensibility of the code.

5.7 Validation Methodology
A compiler that supports the language extensions was developed. This tool could be
overlooked but that would lead the evaluation to be based only on theoretical and
argumentative terms. We feel that this is somewhat against the spirit of the thesis, as it
focus on a rather practical problem. One reason to choose Java for the extended language
is the OpenJDK project, namely its compiler group, which eases the addition of new
features to the language.

Since we will focus on code replication, a large amount of code has to be analyzed. We
will look for duplicated code in public frameworks and applications. The tool to be used is

76 research problem and solution

the Clone Detection tool CCFinder [KKI02]. Framework analysis serves both the purpose
of gaining more experience of code replication within real world code and the purpose of
validating the approach as they will be the subject of the case studies.

To validate our approach we will conduct a series of case studies. The case studies
include two frameworks and one application. For each framework/application we detect
replicated code using clone detection tools. Then we try to develop roles that are suitable
for the concerns involved in each detected clone. This will allow us to show to what extent
our approach can reduce the replicated code.

In order to focus only on the reduced replicated code and to ensure an unbiased
comparison we will not change any class interface or the way each concern is implemented.
The point is to compare code reduction and not to compare the framework solution with
and without roles, even if this would be useful to express the advantages on the use of roles
for modeling. But modeling advantages have already been shown in [RWL96] and [Rie00]
so we need not repeat that study. So, if we started to change the framework around roles
we could not later pinpoint the advantages of roles in directly reducing replicated code.
The amount of replication saved between the original and final versions will be used as a
measure of the approach impact.

Further validation is obtained from developing a library of generic roles that may be
used to create more specific roles or classes. If such a library can be produced then it means
that the approach is indeed capable of creating generic roles and thus to better modularize
the system. We expect to use some of these roles in the target frameworks/application.
If we succeed we can safely say that due to the reuse of these roles we did not have to
reproduce their code in the system thus preventing clones from occurring.

5.8 Summary
The research in the three fields that are covered by this thesis (code clones, composition
techniques and roles) has been abundant but some issues still remain. The clone problem
is a serious one and existing refactoring techniques are not enough to reduce it in a
satisfactory way. In the roles field of work several approaches exist but few deal with the
static nature of roles and none proposes a supporting language and how they can be used
to reuse code. We propose to merge all the fields and, specifically, we propose to tackle
the code clone problem by using roles as a composition mechanism. For that we propose a
new role language and use it in a series of case studies that show how it can be used to
reduce the clones found within each case study. We also show how roles can be used to
provide a better modularization of crosscutting concerns by developing a role library for
well known patterns.

Chapter 6

JavaStage

6.1 Development . 77
6.2 Syntax . 83
6.3 Implementation . 94
6.4 Limitations . 97
6.5 Implementation Alternatives 99
6.6 Comparison with Other Approaches 101
6.7 Summary . 109

This chapter is dedicated to the presentation of the JavaStage language. To explain
the nature of the language and the various options made when developing it we describe
the motivations that drove its development. We then proceed to present the JavaStage’s
syntax and how to use it.

The JavaStage implementation is described and the strengths and weaknesses of the
language are described in the light of that implementation. Also presented are some
implementation alternatives that were considered during the language development and
the reasons for not selecting them. To end the chapter a comparison between JavaStage
and other approaches is made.

6.1 Development
One of the forces that drove the implementation of JavaStage was Modularity. We
intended to build a library of roles to prove that roles could be reused. For that purpose
Modularization [Par72] is one of the most important concepts in software development.
Breaking a system into modules allows the independent development of each module.
This shortens the development time as each team may develop their assigned modules

78 javastage

simultaneously. Independent development also enables the modification of a module, even
drastic ones, without any changes to other modules. Another advantage of modularization
is comprehensibility because one can study the system one module at a time. There are
numerous advantages of modularization like enhanced error tracing and fixing, reduced
system compiling time, etc, but the one that we, as developers, treasure most is the high
reusability of modules. This allows the development of libraries which in turn reduces the
amount of code one must write in order to build a system and with extreme benefits in
system reliability (assuming libraries have been thoroughly tested).

A key concept in modularization is encapsulation. When a module is well encapsulated
changes in that module do not affect any other module. A module has an interface and an
implementation. The implementation is the way the module is built. The interface defines
how clients interact with the module. Since this is what clients see and use it should not
change much along the module’s life-cycle as clients must be aware of the changes and in
turn change their implementation accordingly.

Modules interact with each other but some modules are more tightly connected than
others. The scaling property of modules allows the building of a module using several other
modules. The inner modules interactions are more intense than outer modules interactions.
These interactions may require a specialized interface that the outside modules don’t need,
and should not know of. To cope with this, most languages declare different levels of
access to the modules members. In traditional OO programming languages there are, at
least, 3 levels of access: private, protected and public.

6.1.1 Roles as modules

We will contribute to overcome the composition problems of existing OO languages by
introducing a new and smaller module than the class: the role. Our view of roles is
somewhat different from others as we focus more on the static nature of roles, as used by
[Rie00], rather than on its dynamic nature as seen in PowerJava [BSI07] and ObjectTeams
[Her05]. We also tried to stick as close to the OO model as possible and the syntax
additions at the minimum. We, therefore, dismissed the ObjectTeams’ Context concept
and the PowerJava’s Institution concept as they introduce greater complexity to the model.
We believe that the small changes we introduced in the OO decomposition will be better
accepted by the developer community than a completely new concept. The small learning
curve aims also to be an advantage towards that acceptation.

For roles to be considered as modules they must provide an interface, ensure encapsula-
tion and have to be developed independently from other modules. Providing an interface is
straightforward. Ensuring encapsulation and independent development raises a few issues.
One must consider the fact that a role only makes sense when "played" by a class. Does

development 79

this mean that the class playing the role has access to the role members and vice-versa? If
this was so then the role could not be developed independently from the classes that play
that role, because any change in the role implementation could cause changes in the class.
The same holds if we grant the role with access to the class members. Then changes in the
class may force changes in the role. From this discussion we can see that roles and classes
have to be independent and rely solely on interfaces. Because roles and classes have a
special relationship, even closer than a superclass-subclass relationship, it may be the case
that we need a special role-class interface. For that we could use yet another access level,
or redefine the meaning of the protected level to include the role-class relationship. We
will discuss our option when we present our role model.

6.1.2 Extending the reuse of roles

Traditionally roles declare which classes can play them, whether by name or by interface,
using a "played by" clause or similar. We believe that declaring predefined players is a
great limitation in the reusability of roles. The same role used for a class could be reused
for another class were not for the fact that the role developer did not foresee all its possible
uses. One can argue that a role only makes sense in an interaction between classes and thus
restrict the player classes to the ones involved in that interaction. However the same role
could be reused in another, similar, interaction but with different players. If the "played
by" clause specified an interface instead of a class it would be possible for the role to be
played by many different classes but even this is not enough. A hindrance to this reuse is
the name of the methods that are specific to an interaction. As an example, the Observer
pattern [GHJV95] describes an interaction between subjects and observers that is present
in many different systems with only minor changes, most notably the names of the methods
to register an observer with a subject and the methods used by the subject to notify
its observers. A Subject role for a MouseMotionListener instance of the pattern would
define methods like addMouseMotionListener, or removeMouseMotionListener. That role
could not be reused for an instance of the same pattern but for a KeyListener which
uses methods like addKeyListener or removeKeyListener. Because a method name must
somehow indicate its functionality, using a generic name like addListener would not be
correct as it would reduce the comprehensibility of the code. Another major drawback is
that it would limit the class to play only one subject role. Considering this, we believe
that a renaming mechanism must be used in order to expand the reusability of the role to
several situations. Of course some restrictions must apply, because a class that plays a
role must ensure a specific interface, but that interface should be configurable, at least in
what respects to method names.

Some languages [TUI07] use a "rename" clause that allows player classes to rename

80 javastage

method names. If the role interface is big then this task is tedious and error prone.
There is also the problem of the role calling the player methods. Again method naming

is important. In the Subject role each subject has a method that calls the observer’s
update method. In the Java AWT-like implementation of the pattern such method is not
called update but several methods like mousePressed, mouseReleased, etc., are used. The
"rename" clause is not usable here because the number of methods that get called varies
between instances of the subject role.

We need a mechanism that allows fast renaming for both role methods and methods
that are called by the role.

To summarize, for roles to be fully reusable then they must:

• provide an interface;

• ensure encapsulation;

• have to be developed independently from its players;

• provide a method renaming mechanism that enables the role to be played by any
class that fulfills some requisites.

6.1.3 Removing the playedBy

Existing role supporting languages use a playedBy clause or similar. That clause is placed
on the role definition and it restricts the objects that can have that role attached. It
means that only objects of that class, or its subclasses, or, if interfaces are used, its
implementators, may have a role instance attached to it. We argue that this restricts the
use of the role that otherwise could be reused in another context or with other, not yet
developed classes. We believe that other forms of restricting which classes can be used
may be useful, and we will present our solution.

The use of the playedBy clearly indicates that a role is developed for a set of classes in
mind, that is, first we have the classes and then we build the roles. One can argue that
in dynamic situations, where we want to extend the behavior of existing classes, this is
acceptable, because we know which classes we want to expand. On the other hand the
same role could be used for extending other classes that were later introduced. We will
explain our point of view using some examples.

Considering the example from the figure 6.1, adapted from [IE11], where Point is a
class that represents a point in a plane in a Cartesian coordinate system. Location is a
role that is played by Point and provides a view of Point in the plane as physical locations
on a map of the world. The syntax used is similar to the one used in the JavaStage. The
performer keyword represents the intrinsic of the role, which we often refer to as the player.

development 81

class Point {
int x;
int y;
Point(int x, int y) {

this.x = x;
this.y = y;

}
}

role Location playedBy Point {
String getCountry() {

int x = performer.x;
int y = performer.y;
String country = "PT"; // placeholder for

// computation converting a point in
// the plane to the name of a country

return country;
}

}

Figure 6.1: Example of a simple role.

What we can see from the role’s code is that the role assumes knowledge of its intrinsic,
like the use of the x and y fields. This means that any modifications to the fields in the
class will lead to changes in the role as well. Since we want to enhance role reuse we must
impose some constraints on the role-class interaction. Roles should be limited to use only
the class interface as any other client. For this situation the Point class should provide the
getX() and getY() methods. In the example the class does not have them, but in a well
developed class those methods should be there in the first place, so we could use them.

What we can also see from the code is that the role is developed specifically for the
Point class and cannot be used for any other class, except subclasses of Point. This is
limiting as we could reuse the role for another class like PolarPoint which represents a
coordinate in a polar coordinate space. This class instead of an x and y values stores a r
and beta values. The r represents a distance (the distance from the pole of the plane) and
beta an angle (the angle that a ray from the pole must have to reach the point). Figure 6.2
shows that new class and a role developed for that class. In this example we have already
assumed that all class-role interaction is done via interfaces and that the PolarPoint has a
getX and getY method to convert from polar to Cartesian coordinates.

What strikes immediately from the code is that the code for PolarLocation and Location
is exactly the same, assuming we used the getter methods in the Location role. Nevertheless
we cannot use a single role for both classes because of the playedBy clause. Since neither
Point is a subclass of the other then we cannot use a single one to refer to them both.
Making one a subclass of the other is not an option as this would violate the "is a" principle
of inheritance. The only solution using the playedBy clause to prevent this duplicated

82 javastage

class PolarPoint {
int r;
double beta;
PolarPoint(int r, double b) {

this.r = r;
beta = b;

}
int getX() { return r * Math.cos(beta); }
int getY() { return r * Math.sin(beta); }

}

role PolarLocation playedBy PolarPoint {
String getCountry() {

int x = performer.getX();
int y = performer.getY();
String country = "PT"; // placeholder for

// computation converting a point in
// the plane to the name of a country

return country;
}

}

Figure 6.2: Example of a PolarLocation role identical to the Location role.

code would be to declare an interface Coordinate with the getX and getY methods and
make both classes implement that interface. This is not doable because, in a dynamic
context, we assume that both classes are already developed and cannot be modified.

We can argue that we could use a getPoint method in the PolarPoint that converted it
to a Point and reuse the Location role on that returned point. But, although that solution
is possible for this concrete example, it may not be so, and it hardly will, for all cases
where classes share some of the behavior (getX, getY methods) but are not convertible to
one another.

6.1.4 The need for a Renaming Mechanism

To expand the reusability of roles, replacing the playedBy for a list of requirements can
be complemented with a renaming mechanism. A name of a method must clearly state
the purpose of the method but when creating a full purpose role those names are difficult
to achieve. The methods’ names for a role are tuned for a particular interaction. In
similar interactions, however, where we could reuse the same role those names would be
inadequate or just plain misleading.

We refer to the Observer example given earlier. The Subject role for a MouseMotion-
Listener would define the methods addMouseMotionListener and removeMouseMotionLis-
tener. The Subject role for a KeyListener would use methods like addKeyListener and
removeKeyListener. Using a name like addListener would reduce the comprehensibility of

syntax 83

the code and limit the class to play only one subject role. The class that plays the Subject
role for a KeyListener role could not play the same role for a MouseMotionListener.

Considering the previous example, a renaming mechanism expands the reusability of
the role to several situations. Of course some restrictions must apply, because a class that
plays a role must ensure a specific interface, but that interface should be configurable, at
least in what respects to method names. A "rename" clause that allows player classes to
rename methods that is done on a method by method basis is tedious so we need a more
expedite way.

There is also the problem of the role calling the intrinsic methods or interacting with
other objects. Again method names are important. In the Subject role each subject must
notify its observer calling the observer’s update method. The java’s AWT implementation
of the pattern, for the MouseMotionListener, does not use a single update method and
uses several methods like mousePressed, mouseReleased, etc. The "rename" clause is not
usable here because the number of methods that get called varies between instances of the
subject role.

So even if we had a renaming mechanism for the role methods we still would not be
able to produce a subject role that could be reused by every class. To accommodate this
we need a mechanism that allows fast renaming for both role methods and methods that
are called by the role.

To summarize, our guidelines when developing JavaStage, were:

• treat roles as modules, so roles must have an interface, state and behavior;

• roles and classes communicate via interfaces;

• introduce few language extensions;

• drop the playedBy clause.

• provide a method renaming mechanism that enables the role to be played by any
class that fulfills some requisites while adapting its interface to each class demands

6.2 Syntax
We tried to introduce as few extensions to the language as possible and we only introduced
5 new keywords, which are responsible for the definition of a role, the requirements list,
declaring that a class plays a role and representing the player type and object [BA13c].
We also introduced a renaming mechanism that makes use of a special character: #. The
JavaStage syntax is presented in figure 6.3.

84 javastage

type_decl ::= (role_decl | class_decl | ...) ";"
role_decl ::= {class_modifier} "role" identifier

["extends" class_name] "{" role_body "}"
role_body ::= (requires | class_body)
requires ::= "requires" type "implements"

((type method_decl) | constructor_decl)
[throws] ";"

class_body ::= (plays | ...)
plays ::= {access_modifier} "plays" class_name [configs]

identifier [role_params] ";"
configs ::= "(" config {"," config} ")"
config ::= identifier "=" identifier
role_params ::= "(" args_list ")"

Figure 6.3: The extension of java syntax in JavaStage.

6.2.1 Declaring Roles

The syntax to declare a role is similar to that of a class. Roles can declare fields and
methods like a class. When we want a class to play a specific role we use the plays directive.
We must state that in most role models it is the role that states which classes plays them.
As discussed in section 6.1.3, this is restricting the reuse of the role, so in JavaStage it is
the class that states the roles it plays.

Role members have all the visibility control available to classes. We extended the
protected level to include the role-class relationship. A protected role member is accessible
to its players and subroles. A protected class member is also accessible to roles. In
JavaStage roles provide an interface, have an implementation and provide encapsulation.
Roles and classes are thus completely independent modules and may be independently
developed.

In figure 6.4 we can see how the PropertyProvider and FocusSubject roles described
for the Components framework in section 4.2.3 could be implemented.

6.2.2 Playing Roles

To play a role the class uses a plays directive and gives the role an identity, as shown in
figure 6.5. To refer to the role the class uses its identity.

When a class plays a role all the non private methods of the role are added to the
class interface. Thus a class can be seen either as being composed of several roles or as an
undivided entity. This means that for clients of the class DefaultFigure the representations
of the class in Figure 3.6 and Figure 4.3 are equivalent.

A class can reduce the visibility of the exported role members. If a class uses protected

syntax 85

public role PropertyProvider {
private HashMap<String,Object> properties = new HashMap<String,Object>();
public Object getProperty(String name){

return properties.get(name);
}
public void putProperty(String name, Object value){

properties.put(name, value);
}
public boolean hasProperty(String name){

return properties.containsKey(name);
}

}

public role FocusSubject {
private Vector<FocusObserver> observers = new Vector<FocusObserver>();

public void addFocusObserver(FocusObserver obs){
observers.add(obs);

}
public void removeFocusObserver(FocusObserver obs){

observers.remove(obs);
}
protected void fireFocusGained(FocusEvent e){

for(FocusObserver obs : observers)
obs.focusGained(e);

}
}

Figure 6.4: Definition of the PropertyProvider and FocusSubject role (first version).

public class DefaultComponent implements Component {
plays PropertyProvider propertyProvider;
plays FocusSubject focusSbj;
plays MouseSubject mouseSbj;
plays BasicComponent basicComp;

public void draw(Graphics g){
Border b=(Border)propertyProvider.getProperty("Border");
if(b != null){

b.draw(g);
}
//...

}
}

Figure 6.5: Definition of the DefaultComponent class (first version).

86 javastage

in the plays clause then all the public role methods are exported as protected. This way a
class can use roles to provide an interface for their subclasses only. A class cannot change
a single role member visibility.

6.2.3 Stating Role Requirements

A role does not know who their players might be but may need to exchange information
with its player, so it must require the player to have a particular interface. We do that
using a requirements list. The list can include required methods from the player but also
required methods from objects which the role interacts with. In the list the role states the
method’s owner and the method’s signature. The requires statement has the following
syntax:
requires supplier implements methodSignature;

To indicate that the owner is the player we use the Performer keyword. Performer
is used within a role as a placeholder for the player’s type. Besides being used in the
requirements list, it also enables roles to declare fields and parameters of the type of the
player.

With this requirement list we could develop a generic subject role. The subject role
can define the observer type with a generic and the concrete type of the observer is defined
by the player class. The role must require that its observers implement an update method.
This generic subject is shown in figure 6.6. Note that the observer type does not need to
implement a specific interface. When the player class defines the concrete observer type
the compiler verifies if that type conforms to the role requirement list using structural
dependency rather than type dependency.

6.2.4 Playing the Same Role More Than Once

A class can play a role more than once as long as there are differences between role
instances. For example the GenericSubject role could be played more than once, as
long as the observer type is changed between instances. If the figure was a subject of a
FigureObserver and a FigureHandleObserver it could play both roles using
plays GenericSubject<FigureObserver> figureSbj;

plays GenericSubject<FigureHandleObserver> figHandlerSbj;

6.2.5 Renaming Role Methods

Consider the PropertyProvider role. It assumes that a property is identified by a name and
that name is a String. It would be more reusable if it used generics for the property type.

syntax 87

public role GenericSubject<ObserverType> {
requires ObserverType implements void update();

private Vector<ObserverType> observers = new Vector<ObserverType>();

public void addObserver(ObserverType o){
observers.add(o);

}

public void removeObserver(ObserverType o){
observers.remove(o);

}

protected void fireChanged(){
for(ObserverType o : observers)

o.update();
}

}

Figure 6.6: A generic subject role requiring its observers to implement an update method (first
version).

We can also use a generic type to specify the value type, of type Object. After a closer
look, the property provider is in fact a map that maps keys to values. We could reuse a
map implementation if we inherited from a Map class, but that would be conceptually
wrong. Our class is not a map: it plays the role of a property map. The right way is to
develop a role that is a Mapper. The only thing that prevents this are methods names. A
more general Mapper cannot use names like getProperty or hasProperty, because these
are only associated with properties.

We propose a renaming method that allows an easy configuration of methods’ names.
Each name may have three parts: a configurable one and two fixed. Both fixed parts are
optional thus leaving the name of a method to be fully configurable by the class. The
configurable part is bounded by # as shown next.

fixed#configurable#fixed

The configuration of the name is done by the class that plays the role in the plays
clause, using the syntax:
plays roleType(configurable = nameToUse) roleId;

We can then build our Mapper role using this renaming strategy. For the Proper-
tyProvider we would use the following plays clause to configure the Mapper:
plays Mapper<String,Object> (Thing = Property) propertyProvider;

The DefaultComponent class retains its original behavior but we now have a role that
is more generic and reusable than the one we started with. In fact the role is able to be
reused in all situations that the PropertyProvider would be used and many more. We

88 javastage

role Mapper<KeyType, ValueType> {
private Map<KeyType,ValueType> map;

Mapper() {
map = new HashMap<KeyType,ValueType>();

}

Mapper(Map<KeyType, ValueType> map) {
this.map = map;

}

ValueType get#Thing#(KeyType name){
return map.get(name);

}

void put#Thing#(KeyType name, ValueType value){
map.put(name, value);

}

boolean has#Thing#(KeyType name){
return map.containsKey(name);

}
}

Figure 6.7: Definition of the Mapper role, that replaces the PropertyProvider role, with config-
urable methods (second version).

used the same approach to the CompositeParent and came up with a Container role (see
a first version in figure 6.10). We must state the fact that reusing the Mapper role for the
PropertyProvider role is an implementation choice and does not invalidate the modeling
design or even the documentation.

6.2.6 Providing Multiple Versions of a Method

It’s possible to declare several versions of a method using multiple definitions of the
configurable name. This way, methods with the same structure are defined only once. For
this feature to be used we must use a configurable called method inside a configurable
role method. We must name the called method after the method it is called from. This is
done using a dot name, where the configuration name before the dot is the configuration
name of the outer method.
void role#Method#(){

performer.called#Method.inner#();

}

This way the compiler knows that both methods are to be used together and can check
if one configuration name has the same number of configurations of the other and it also
checks that they are defined sequentially in the plays clause.

syntax 89

public role GenericSubject<ObserverType, EventType> {
requires ObserverType implements void #Fire.update#(EventType e);

public void add#Observer#(ObserverType o){
observers.add(o);

}

public void remove#Observer#(ObserverType o){
observers.remove(o);

}

protected void fire#Fire#(EventType e){
for(ObserverType o : observers)

o.#Fire.update#(e);
}

}

Figure 6.8: Definition of the generic subject role (second version) now with configurable methods.

We could then build our generic subject role using this renaming strategy, so it no
longer relies on an update method. We can also configure the addObserver method so we
can use an appropriate name. We also added an event parameter to the update method.
Our enhanced version of the role is shown in figure 6.8.

We can now use the generic subject role to be used either as a focus subject or as
a mouse subject, providing all the notification methods. The focus subject would be
configured like:
plays GenericSubject<FocusObserver,FocusEvent>

(Fire = FocusGained, Fire.update = focusGained,

Fire = FocusLost, Fire.update = focusLost,

Observer = FocusObserver) focusSbj;

6.2.7 Making Use of Naming Conventions

Another feature of our renaming strategy is the class directive. When class is used as a
configurable part it will be replaced by the name of the player class. This is useful in
inheritance hierarchies because we just need to place the plays clause in the superclass
and each subclass gets a renamed method. It does imply that calls will rely on naming
conventions.

One such case is the Visitor pattern. This pattern defines two roles: the Element and
the Visitor. The Visitor declares a visit method for each Element. Each Element has an
accept method with a Visitor as an argument that calls the corresponding method of the
Visitor.

Visitor’s methods usually follow a naming convention in the form of visitElementType.

90 javastage

role VisitorElement<VisitorType> {
requires VisitorType implements void visit#visitor.class#(Performer t);

void accept#visitor#(VisitorType v){
v.visit#visitor.class#(performer);

}
}

class DefaultFigure {
plays VisitorElement<FigureVisitor>(visitor = Visitor) visit;
// ... rest of class code

}

class LineFigure extends DefaultFigure {
// no Visitor pattern code

}

interface FigureVisitor {
void visitLineFigure(LineFigure f);
void visitTextFigure(TextFigure f);
//...

}

Figure 6.9: The VisitorElement role, a class Figure that plays the role, a subclass from the
Figure hierarchy and the Visitor interface.

We used this property in our VisitorElement role, as shown in figure 6.9. The example
shows it being used in a Figure hierarchy with figures as Elements. It also shows that
Figure subclasses do not have any pattern code, because they will get an acceptVisitor
method that calls the correct visit method.

6.2.8 Roles Playing Roles or Inheriting from Roles

Roles can play roles but can also inherit from roles. A role cannot inherit from a class
and vice-versa. When a role inherits from a role that has configurable methods it cannot
define them. When a role plays another role it must define all its configurable methods,
but can have its own configurable methods.

For example, managing observers is a part of a more general purpose concern that
is related to containers. We can say that the subject role is an observer container and
develop a generic container role and make the subject inherit from the container. We can
therefore reuse the container role already mentioned for the CompositeParent. We can
also develop a FocusSubject that plays the GenericSubject role (see figure 6.10).

syntax 91

public role GenericContainer<ThingType> {
private Vector<ThingType> ins = new Vector<ThingType>();

public void add#Thing#(ThingType t){
ins.add(t);

}

public void remove#Thing#(ThingType t){
ins.remove(t);

}

protected Vector<ThingType> get#Thing#s(){
return ins;

}
}

role GenericSubject<ObserverType,EventType> extends
GenericContainer<ObserverType>{

requires ObserverType implements void #Fire.update#(EventType e);

protected void fire#Fire#(EventType e){
for(ObserverType o : get#Thing#s())

o.#Fire.update#(e);
}

}

public role FigureSubject {
plays GenericSubject<FocusObserver,FocusEvent>
(Fire= FigureChanged, Fire.update= figureChanged,
Fire= FigureMoved, Fire.update = figureMoved,
Fire= FigureRemoved, Fire.update= figureRemoved,
Thing = FigureObserver) figureSbj;

}

Figure 6.10: Roles extending roles and roles playing roles.

92 javastage

public role GenericContainer<ThingType> {
private List<ThingType> ins;

public GenericContainer(){
ins = new Vector<ThingType>();

}
public GenericContainer(List<ThingType> container){

ins = container;
}
// ...

}

public class CompositeComponent extends DefaultComponent {
plays GenericContainer<Component>(Thing = Component)

components(new ArrayList());
// ...

}

Figure 6.11: Final version of the Container role now supporting constructors. The Composite-
Component plays the GenericContainer role configuring it to use an ArrayList as
the container.

6.2.9 Role Constructors

We may need to parametrize roles. In our container role we may want the container to
be an ArrayList instead of a Vector. We do that allowing roles to have constructors, as
shown in figure 6.11. We support role constructors but we do not allow role instantiation.
To initialize a role we can use the plays clause like (also see figure 6.11 for an example)
plays role(params);

If the role needs to be initialized by the player using fields from the player’s own
constructor(s) this is also supported. For this JavaStage uses an analogous mechanism
used by Java to call the superclass constructor. In Java to call the superclass constructor
we place a super() call in the first line of the subclass constructor. In JavaStage we use
the role identity to represent the role constructor. It must follow the call of super, if it is
present. When playing several roles the calling order of the roles constructors is irrelevant,
as long as they are contiguous, like in
SomeClass(Type1 param1, Type2 param2){

super(param1, param2);

roleID1(param1);

roleID2(param1, param2, 10);

}

syntax 93

6.2.10 Conflict resolution

The methods defined in the class always take precedence over the methods defined in the
roles. Role methods override the class inherited methods. Conflicts may arise when a class
plays roles that have methods with the same signature. When conflicts arise the compiler
issues a warning and the developer can handle the conflict by redefining that method in
the class and calling the intended method. This is not mandatory because the compiler
uses, by default, the method of the first role declared, following the plays clause order.
This may seem like a fragile rule, but we believe that for most situations it will be enough.
We argue that, even if a conflicting method is later added to a role, the compiler does
issue a warning so the class developer becomes aware of the situation and can solve it.
The important part is that the class composer can solve the situation as he wishes and
not as imposed by the role or superclass’ developers.

6.2.11 The self problem and delegation

Roles can be seen as a form of delegation (see also the implementation section) where
the class delegates the work on the role. While this view is possible roles are not really
delegation in its pure form. When a class calls a role method it passes the control to the
role, so it is forwarding the call to the role. In the role the this reference will always refer
to the role instance and not to the player instance. To refer to the player the role uses the
performer keyword instead.

In languages without delegation, when we want to use callback methods (i.e. call
methods of the delegator from the delegate) we must pass the delegator as a parameter or
otherwise make the delegate know the delegator. The role can call methods on the player
using performer, so the implementation of delegation using roles does not need to pass the
delegator to use callback methods.

An advantage of roles over delegation, at least in Java like languages, is that we do not
need to write the delegation methods. This reduces significantly code replication if the
delegate class is used often or if it has a large interface. On the other hand we cannot
remove methods from the interface. Another advantage JavaStage offers is the renaming
mechanism where we can define the interface and are not limited by the delegate interface.

When using delegation the class can always use the delegate instance as a parameter
or a return type in methods. With roles we cannot use this as roles do not define a type.
On the other hand there is a special interface between the player and the role that does
not exist between delegate and delegator. A player can access protected members of the
role and vice-versa, while the delegator can only use the public members of the delegate.

94 javastage

6.3 Implementation
In this section we briefly describe how we implemented our version of roles and the design
decisions we made along the way. We do not claim that the presented implementation is
the best implementation possible, and we are aware of some of its limitations. Nevertheless
we feel that the proposed implementation is powerful enough to reach its goals and to
present developers with a valid development tool.

Supporting our role strategy could be done in various ways. We opted for a version
using inner classes. This decision not only supports all our options for the approach but
also ensures that no performance penalty is introduced in the final code while maintaining
the final code executable in existing virtual machines.

When a class plays a role, the role code is copied to the class as an inner class. There
are no conflicts with other class names as we use names not allowed by the compiler. Figure
6.12 shows an excerpt of how a class playing the FigureSubject configured as indicated in
figure 6.10 would look like after roles were added.

The use of the # character in the inner class name guarantees that there isn’t a name
clash between synthetic classes and developer’s code. The use of the identity in the class
name guarantees that no conflicts may arise when playing the same role twice. For example,
the name of the class for the FigureObserver role is GenericSubject#figureSbj and for the
FigureHandleObserver role would be GenericSubject#figHandlerSbj.

We can see from figure 6.12, that a role is used as an object in the class. This allowed
roles to have constructors. Despite this no one can directly instantiate a role, as roles are
not meant to have instances.

Role methods are copied to the class interface and call the corresponding method
on the role object (see addFigureObserver or fireFigureChanged). This may be seen as
introducing a redirection but it is easily solved by inlining the code. No performance loss
is introduced with our version of roles.

A role that is configurable is always copied to the player class and is not compiled to
bytecodes. Doing so would need to change the Java bytecodes and we wanted to minimize
changes to the language. Also it ensures that a class compiled with JavaStage can be run
on every existing virtual machine.

Those roles that have no configuration or requirements are compiled to bytecodes. A
player class does not get those roles as an inner class, just a role object and a copy of the
non-private methods.

implementation 95

public class AbstractFigureRaw implements Figure {
public void moveBy(int dx, int dy) {

figureSbj.fireFigureChanged();
}

private class GenericContainer#figureSbj {
private java.util.Vector<FigureObserver> ins =

new java.util.Vector<FigureObserver>();

public void addFigureObserver(FigureObserver t){
ins.add(t);

}

protected java.util.Vector<FigureObserver> getFigureObservers(){
return ins;

}
}

private class GenericSubject#figureSbj
extends GenericContainer#figureSbj {

protected void fireFigureChanged(){
for(FigureObserver o : getFigureObservers())

o.figureChanged();
}
// ... other fires

}

private GenericSubject#figureSbj figureSbj =
new GenericSubject#figureSbj();

public void addFigureObserver(FigureObserver t){
figureSbj.addFigureObserver(t);

}

protected void fireFigureChanged(){
figureSbj.fireFigureChanged();

}

protected java.util.Vector<FigureObserver> getFigureObservers(){
return figureSbj.getFigureObservers();

}
}

Figure 6.12: Excerpt of how an AbstractFigureRaw playing the GenericSubject role class would
look

96 javastage

6.3.1 Role Identity

A recurrent question is role identity. Some argue that roles have no identity [Kri95, Kri96]
because they are not independent entities. The object and its roles are referenced as one.
Others argue that roles have an identity, different from its intrinsic [Odb94, Tru04]. With
role identity classes can have multiple instances of the same role and distinguish each one.
There are also those to whom roles share the same identity with its intrinsic and also have
one that distinguishes it from other roles in the intrinsic [SSSM95].

Our roles have an identity associated with the player. The identity is given by the
player in the plays clause. Whenever the player access role members it uses this identity.
If the role is public then its identity is accessed just like any class member. This allows
clients, which know the roles the class plays, to select the role they want. Please note that
while this is possible we consider that a class should not declare their roles as public, for
the same reasons it should not expose fields as public.

The major reason to provide roles with an identity is to add state to roles. Since each
role field must be accessed using the role identity there never is a name conflict between
fields of different roles.

Role identity is also used to distinguish between roles when resolving a conflicting
method. We use the identity to specify which role we want to access. This is better than
using class names, because we can change the role hierarchy and still be able to maintain
the code unchanged. It also helps to decide between role methods and superclass methods,
where super would refer to the superclass and the identity to the role.

6.3.2 The plays Clause

Should not the plays clause be considered equivalent to the extends or implements clauses
and be placed accordingly? After all it does have an impact in the class interface. There
are in fact several reasons for not doing so. One is the role identity which, purposely,
resembles an object declaration (see the implementation section). Yet another reason is
the naming configuration, which would clutter that declaration. A final reason is role
initialization, as roles may have non default constructors. It would be awkward to do
these configurations in an implements-like declaration.

6.3.3 Role Inheritance vs Role Playing Roles

Roles and interfaces are somewhat related [Ste01] so we could let role types have the
polymorphic behavior interfaces have. We could write code that would work with any
class that plays that role. Our method renaming strategy, however, forbids this because

limitations 97

the actual interface a role provides is configured by the class and not by the role itself.
Roles that do not use the renaming strategy could in fact define an interface.

In our approach, where roles can inherit from other roles, making roles as types is a
simple step and would clearly distinguish when we would make a role inherit from another
role or simply play another role. That distinction is clear when a role has configurable
methods. If we want to configure the role we must play it, when we want to extend the
role without configuring any of the configurable methods we extend it. When a role has
no configurable methods inheriting from it or playing it is a semantic choice only. We still
haven’t made a decision on whether there are advantages in considering roles as defining a
type. We will defer that decision to future work.

6.3.4 Aliases vs Method Renaming

Traits use aliases to rename a method within a class to solve conflicts. Because we solve
those conflicts using the role identity there is no need to use aliases. Our renaming
mechanism objective is to enhance the reusability of roles. With it we can:

• configure a role, with meaningful method names, in the context of the player class;

• have fast renaming of several methods;

• provide multiple versions of methods.

6.3.5 Requirements Listing

Requirements in most role languages are made by a playedBy clause that states which
classes can play it. Since our roles are intended to be played by any class this would
restrict role reusability. The role must, nevertheless, impose some restrictions on the player
interface when it needs to communicate with it. In our case those restrictions are imposed
via the requirement list. The inversion of declaration from the role to the class allowed
us to provide a renaming mechanism that configures the role as it should be used. This
statement also allows us to impose restrictions not only in the player itself but also on
other classes that are part of the interaction. For example, in our subject role, we can
configure which interface the observer must implement.

6.4 Limitations
As every language JavaStage has its limitations. We describe here the most relevant ones.

98 javastage

6.4.1 Source Code Must be Available

Some roles in JavaStage cannot be compiled to bytecodes, due mainly to three reasons:

• requiments list;

• configurable methods;

• multiple versions methods.

One of the obstacles is the requirement list. To play a specific role the player class
must adhere to a specific interface dictated by the requirements list. But the required
interface is nameless. We could work around the naming problem if we used a synthetic
interface for each type from which the roles requires a method. This way the role could be
compiled, even thought it would increase the system’s size.

But there is a further problem with requirements: they may contain configurable
methods. In such case the correct interface is known only when compiling the class and
is not available when compiling the role. To cope with this we would need to embed
that information in the bytecodes of the role. We do not want to change the bytecodes
specifications, so JavaStage compiled applications can be executed in every JVM, so we
cannot compile the role code and it must be available.

The third problem is related to the second in which using multiple versions methods
the required interface is known only when compiling the player class. Again the only
solution would be to change the bytecode configuration. But multiple versions raises
another question: when creating the corresponding inner class the role methods are copied
and then modified to fit the player class configuration. For ease of compiler development
this copy requires the source code to be present as it is done based on the AST of the role.

For these reasons the roles that have configurable methods or requirements are not
compiled and their source code must be made available. This is an analogous situation
with the use of templates in C++, where template code is provided in the form of source
code.

6.4.2 No static public Variables

JavaStage uses inner classes as its implementation strategy and Java does not support
inner classes to have static fields unless the inner class is also static. To overcome this we
declared the static private variables in the player class. To cope with playing the same
roles multiple times we changed the name of the static variable to include the role identity,
as we have done to the inner class name (see section 6.3).

The same solution cannot be applied to the public static fields. Since they are public
clients can assess them but when a class plays the same role more than once the static

implementation alternatives 99

fields retain the same name and a conflict arises. Clients accessing the same field would
need to know which roles the class plays and use their identity to disambiguate between
the fields. Played roles are not always known by clients, and we consider bad practice to
do so, because it violates encapsulation principles. Forcing class developers to make their
roles public to work around this problem did not seem a good enough reason to break
encapsulation, so we opted not to support public static fields.

6.5 Implementation Alternatives
When developing JavaStage we had to choose between several ways of implementing the
infrastructure to support JavaStage role features. Of the several options, we will describe
two that we consider could have been selected.

6.5.1 Using Reflection

One of the first attempts to develop JavaStage recurred to the use of reflection. The
intent was to provide every role with a compiled file (a .class file). Reflection was used to
implement the renaming mechanism and supporting the multiple version method.

In this version each role configurable method ”real” name was the one with the # in
it. The methods were only really renamed in the class. This required no great effort to
implement. But it could only be applied to the role methods directly. If the role method
called a configurable from the player or from another participant this solution did not
work.

When a role method called a player configurable method the actual call was made
using reflection. Each role object had a lookup table for each configurable method it called.
Each entry in the table is the method object associated with each configurable method. In
the role code it would call the method based on the table index supplied when the role
method was called. When creating the role object the class filled that lookup table with
the configurations that suited its needs. Each class method then called the role method,
using as a parameter the index of the method to call in the lookup table.

This solution involves modification of the role methods in order to introduce the extra
parameters needed. These parameters were the object making the call (the this reference
in the class) and the index of the methods to call. These modifications were transparent to
the programmer but introduced a complexity in the compiler and a number of indirections
in the code (the class code calls the role code that, via reflection, then called a class
method) that were not straightforward. When making roles playing other roles this would
create a web of indirection with very negative effects on performance.

100 javastage

Inheritance also complicated the solution because a role that inherited from another role
would need to manage the complete lookup table. So in spite of working this alternative
introduced a series of problems that eventually lead it to be discarded.

The main reason for abandoning this implementation alternative was performance.
Using reflection has a negative impact on performance. It also had negative effects on
the memory usage because of the lookup table. Another requisite that it needed was a
performer variable for the role to maintain the reference to its player. In the inner class
version we used the performer is simply the outer class’ this reference.

Further reasons included the requirement lists. For a complete compilation we would
need to code the requirements list and that would need to change the virtual machine
class loader. Our solution would therefore not be usable in every existing JVM and that
was another major drawback of this solution.

6.5.2 Roles as Standalone Classes

Another alternative to using inner classes was to use roles as standalone classes. We could
use the Chai [SD05], a Java extension to implement traits, way of implementing traits.
They used traits as standalone classes in their implementation. Traits also can impose
requirements on the class that uses them. This is done creating a synthetic interface from
the role requirements. When a class uses a trait it automatically implements that interface.
Chai also allows the renaming of traits methods by the class, but that is done only in the
class, the trait method is not really renamed, only the class method that calls the trait
methods gets renamed.

In our case we would need to capture several interfaces because our roles can make
requirements not only to the player class but also to other parties. We would need those
parties to implement a synthetic interface too, and that may be impossible if all we have
from those classes is a compiled class file.

For a complete compilation we would need to code the requirements list and that
would need to change the virtual machine class loader. Our solution would therefore not
be usable in every existing JVM and that is the main reason we dismissed this alternative.

We would also have to create a performer var to store the player object within the
role and that would introduce a size overhead, if insignificant. Another problem with
the standalone class would be the access levels. A protected level implies that the class
can access role fields and vice-versa, but with standalone classes, and both classes being
unrelated this level would be impossible to implement in a straightforward manner.

comparison with other approaches 101

6.6 Comparison with Other Approaches
In this section we compare JavaStage with related approaches. The order in which the
they appear depends on the proximity we feel they are to our approach. In this regard
the Traits approach is the one we feel is the closest to ours so it is the first and we also
dedicated it the more time and effort. The roles approaches for example, and even though
they use roles, are not quite related to ours as they use dynamic roles and intend to extend
objects while we use static roles and aim at composing classes.

6.6.1 Traits

Traits, as discussed in section 3.4, can be seen as a set of methods that provide common
behavior. When a class uses a trait its methods are added to the class. The class also
provides glue code to compose the several traits. Traits cannot store state. State is
maintained by the class that uses the trait. For comparing roles and traits [BA13a] we
follow a few key points that both approaches must deal with and describe how each handled
the situation.

Unit of composition

In roles the unit of composition is the role while in traits it is the trait.

Inheritance

Roles and traits are targeted for single inheritance languages so there is no multiple
inheritance support. Roles can play other roles and traits can use other traits. Both
approaches also support a class using the same unit several times. In a class, to access the
features of the superclass both approaches use the super keyword. In a role, however, the
super keyword refers to the super role, as roles can inherit from other roles. In a trait it
refers to the superclass of the composing class.

State Support

Roles can have state and it does not cause any conflict because to access role state the class
must use the role identity thus no conflicts arise. Traits do not support state. Proposals
to solve this introduced a significant complexity to the trait model and encapsulation
problems [CBDM09]. When modeling a concept we, often, need to express state. For
example, to model a container we need a structure for storage. Forcing the composing
class to supply that structure is rather breaking the container’s encapsulation.

102 javastage

Conflict Resolution

Both approaches follow the same rules for method overriding. The class overrides methods
from roles/traits and roles/traits override the class inherited methods. Conflicts may arise
when methods with the same signature are provided by more than one unit. In traits the
conflict must be resolved explicitly while in roles the method of the first played role is used
(there is a compiler warning). In both cases it is the class composer that decides which
method to use. In traits he can choose to exclude some methods so there is no conflict or
he can redefine the method and use aliases to refer to each of the conflicting methods. In
roles there is no exclusion and the class composer must redefine the conflicting method if
he wishes to override the rule of using the method of the first role.

Composition Order

The order in which traits are composed is symmetric so order of composition is irrelevant.
The same applies to roles when there are no conflicting methods. When there are conflicting
methods the order of the plays will dictate which method is used. This, however, is not
mandatory as discussed in the previous topic.

Method Renaming vs Aliases

There is a fundamental difference between aliases in traits and method renaming in the
roles. The traits aliases are used only by the class for distinguishing conflicting methods,
the class interface is not affected. In roles the renaming affects the class interface. This
means that a class may be able to tailor its interface to suit its needs and not be limited by
the role interface. The renaming mechanism of roles also allows renaming several methods
in one go, while aliases in traits are made one by one. Roles renaming scheme can provide
multiple versions of a method. Traits aliases can be applied to any method, while on roles
only the configurable methods can be configured.

Flat and Composite view

Both approaches support a flat view of the class as well as a composite view. Thus a class
can be seen as a set of methods, the flat view, or as being composed of several units of
composition, the composite view. The class interface in both views is exactly the same.
The main difference between the two is that a trait method is seen just like a class method,
and a role method is always a role method and each reference to other methods will always
refer to role methods. For example, suppose a trait that defines the methods foo and bar,
where bar calls foo. If the class overrides the foo method then the trait bar method will
call the foo method on the class not on the trait. The same situation is handled differently

comparison with other approaches 103

by roles. If the method bar of the role is called then it will call the foo method on the
role and not on the class. For a role method to call a class method it must do it explicitly
using the perfomer keyword.

Visibility control

Traits have no visibility control. Freezable traits [DWBN07] compensate this by allowing
classes to freeze/unfreeze methods, i.e., declare a method as private (freeze) or making it
public (defrost). But there is no way to express access constraints between class and trait.
For example, fields should be accessed directly only by the owner’s code. Traits do no
support this. Roles on the other hand support all Java access levels, so a specific interface
between role and class is possible.

Stating Requirements

The use of generic types is a useful feature in most languages, especially for dealing with
object collections. Traits can require methods from the class that uses them, but cannot
impose restriction on generic types it interacts with. The requires statement of roles
indicates the method signature and which type it is required from. This allows roles not
only to require methods from the class but also from other collaborators types.

6.6.2 Aspect-Oriented Programming

Aspect-Oriented Programming as used in AspectJ [KHH+01] is another approach that
tries to modularize crosscutting concerns as discussed in section 3.3. In [KHH+01] the
authors define pointcuts to identify points in the executing program that may trigger a
different execution path and advices that indicate the new execution path. While the
modularization of crosscutting concerns is the flagship of AOP several authors disagree
[Ste06, Prz11]. The effects of pointcuts and advices, especially when several aspects have
similar pointcuts, may be unpredictable. A particular problem is the fragile pointcut
[KS04]. This problem arises when simple changes made to a method code make a pointcut
either miss or incorrectly capture a joint point thus incorrectly introducing or failing to
introduce the necessary advice. Thus simple changes in the class code can have unsought
effects [KAB07].

The obliviousness feature [FF00] means that a class is aspect unaware so aspects
can be plugged or unplugged as needed. This somewhat resembles dynamic roles and
explain why aspects are used in dynamic role languages. But it introduces problems in
comprehensibility [GSS+06]. To fully understand the system we must not only know the
classes but also have to know the aspects that affect each class. This is a major drawback

104 javastage

when maintaining a system, since the dependencies are not always explicit and there is
not an explicit interface between both parts.

With our approach all dependencies are explicit and the system comprehensibility
is increased when compared to the OO version [RG98]. We do not, however, have the
obliviousness of AOP because the class knows and is aware of the roles it plays. Any
changes to the class code are innocuous to the role, as long as the contract between them
stays the same. As a final point we do not believe that our approach can replace AOP.
We believe that for modeling static concerns our approach is more suitable while AOP is
better suited for pluggable and unpluggable concerns. A case study comparing the two
approaches would be useful to ascertain this point.

We can compare the AOP implementation of the Subject pattern proposed by Hanne-
mann and Kiczales in [HK02] with ours. Even though it is rather unfair to compare just
this pattern, it can help to pinpoint some key differences. In the AspectJ Observer the
aspect uses an update method only, while in ours we can use as many update methods as
we wish, without effort, due to the multiple version feature. The method in AspectJ is
also limited to the name update, because AspectJ does not allow method renaming. In
our version the name of the update method is configurable. In AspectJ the storage of
the observers is made by a different entity that uses a map with the subject as a key to
retrieve all of its observers, while in our version the observers are stored directly in the
role. The granularity of the versions is also different. In AspectJ the pointcut are methods
that must be explicitly defined, and later changes can render this ineffective. On the other
hand the class code is completely free of the aspect code. In our version the class code
must call the firing methods of the role whenever the event occurs. This gives the class
developer a finer degree of control but the class code must acknowledge the role.

From the discussion in section 3.3.3 we can see that there is still code replication between
the several aspects presented there, namely in storing and managing children/observers.
We dealt with those by declaring a Container role that could be used in both cases.

6.6.3 Other Composition Techniques

Feature-Oriented Programming

FOP relies on a step-wise refinement of applications by adding new features or refining
existing ones. To compose a system we just state which features it has. The composition
is made automatically with tool support, like AHEAD [BSR04]. This is a more powerful
technique than JavaStage. AHEAD uses several tools for composing the code and extra
files for configuring the composition step. JavaStage is a programming language that
statically composes classes using only source code. From the point of view of a programmer,

comparison with other approaches 105

JavaStage is more simple to work with and tool free (except the compiler). But JavaStage
can also be used together with AHEAD and be seen as a complementary tool to the FOP
technique. Thus the use of AHEAD does not exclude the use of Roles.

AHEAD can be used to compose classes and later we can construct several refinements
to that class. This is where we can use JavaStage together with AHEAD. Refinements
may be similar between some classes and, in AHEAD, we would duplicate that code in all
refinements. With roles we just place the refinement code in a role and then all refinements
just play the role, thus preventing code replication. To avoid this duplication we could
use Mixins [SB02], but roles offer more ways of configuration and do not have mixins
limitations like a linear composition order.

Multiple Dimension Separation of Concerns

In MDSOC concerns are placed in hyperslices that are composed together in hypermodules
following a set of composing rules. Hyperslices may be used by many hypermodules.
Hypermodules may be reused and can contain other hypermodules. Like FOP/AHEAD
this is a much more advanced tool than JavaStage. And just like FOP, JavaStage can be
used within MDSOC as a complementary tool.

For example, in the figure framework, a figure could be decomposed in several hy-
perslices, one for each concern. We could have the properties hyperslice, the observer
hyperslice, etc. The Figure hypermodule would compose the several hyperslices. Exten-
sions to the application can be made by adding new hyperslices and composing them in a
new hypermodule. For example, if we wish to save the figures in an SVG or any other
format we need to add a hyperslice for each format defining how each figure should be
saved in that format.

Nevertheless code replication is still found between hyperslices. Several hyperslices that
could implement observers would have code replication. We could reuse our GenericSubject
role in those hyperslices. In MDSOC we cannot develop a full purpose Subject role like we
did in JavaStage as it does not support multiple method versions and method renaming.
MDSOC does not exclude the use of roles as they can add yet another form of composition
to its tools. MDSOC also relies heavily on tools and configuration files, which can be
overkill, while our approach is code based only.

Package Templates

Package Templates (PT) [KMPS09] combine the use of packages and templates. Classes
defined in these packages are directly available when the package is instantiated. When
instantiated, classes can be tailored to the use context by getting additions, renaming
elements and type parameters can be given actual types. This tailoring is similar to ours

106 javastage

as we also support renaming and type parameters. PT may also impose restrictions on
type parameters using a constraints declaration that resembles our requirement list.

Classes in a PT can be merged with classes from other PT and can be used more than
once in the same merging operation (like roles can be used multiple times). To avoid
multiple inheritance problems PT imposes a series of restrictions on inheritance inside a
PT. These, however, can be overcome by simple workarounds.

Name clashes are solved via renaming because both fields and methods can be renamed.
The renaming cannot be used on the constraints, which means that intermediate classes
may be needed to provide these constraints and/or methods added to classes just to meet
that requirement.

The main differences between PT and roles are: PT relies on inheritance for the
merging and roles rely on inner classes and forwarding methods, so JavaStage does not
need the PT restriction on inheritance and still allows multiple role playing; JavaStage
allows the renaming of required methods, so it does not need intermediate classes. In PT
a class may be the result of the merge of several classes. To refer to one of those classes
PT uses the construct super(MergedClassName) while we use the role identity. The use
of the class name is more fragile than the identity, because the identity is given by the
class composer and the class name is given by the PT and not the instantiator.

Caesar

Caesar [MO03] uses aspect technology to modularize crosscutting concerns and enhance
the reuse of aspects leading to a greater reduction of repeated code. Caesar uses an Aspect
Collaboration Interface that decouples aspects binding and implementations by defining
them in a separated module. Caesar does not allow method renaming.

We can compare our Subject role with the subject role in [MO03]: our role subject has
fully configurable methods names while in Caesar all subjects must have a addObserver
method. In Caesar if we want a class to be a subject for two different actions (e.g.
MouseListener and MouseMotionListener) we must define a binding class for each action,
while with our approach we can do the configuration in the class alone. Lastly in Caesar
observers are limited to a single notification method, named update. This limits the
observer pattern to report only a change, whereas in ours we can define several notification
methods each with a meaningful name.

Jiazzi

Jiazzi [MFH01] is based on Units [FF98] and aims at building systems out of reusable
components integrated with the language. Jiazzi has two types of units: Atoms (composed
of java classes) and Compounds (composed of atoms or other compounds). Jiazzi supports

comparison with other approaches 107

the addition of features to classes without editing their source code, something that
JavaStage cannot do and it is not designed for.

Nevertheless, roles can be used to specify the features to be added. Furthermore, a
role could be used to add the same behavior for different classes in the same unit (used
as a way of emulating multiple inheritance within a unit), or for the same class but in
different units whenever those units are not composable together.

Open Classes

Open classes as used by MultiJava [CLCM00, CMLC06] allow external methods to be
added to a class, without changing the class. They also support multi method dispatching.
They are used to extend a class interface like our approach but from a different perspective:
we focus on constructing the class and open classes on adding methods to existing classes.

The approaches are complementary because roles can be used to compose the class
and MultiJava can later add new methods. Roles could also be used to add those new
methods. Also MultiJava cannot redefine class methods, and while role methods do not
redefine the class’s defined methods they can redefine the class’s inherited methods.

6.6.4 Role Related Approaches

Chernuchin and Dittrich [CLD05] compared five approaches for role support in OO
languages. They were multiple inheritance, the role object pattern, interface inheritance,
object teams and roles as components of classes. They used criteria such as encapsulation,
dependency, dynamicity, identity sharing and the ability to play the same role multiple
times. Roles as components of classes compared fairly well and the only drawback, aside
dynamicity, was the fact that there were no tools that supported it. With JavaStage that
drawback is eliminated.

Chernuchin and Dittrich [CD05] use the notion of natural types and role types that
we followed. They also described ways to deal with role dependencies which we did not
consider as it would introduce extra complexity to the role language. Their role model is
similar to ours in that it is an extension of the object model. Even though they suggest
programming constructs to support their approach no role language has emerged.

Template Classes

VanHilst and Notkin in [VN96] proposed to use roles in the C++ language. They did not
extend the language to introduce role support, instead they proposed the use of template
classes to implement role like behavior. A role is implemented as a template class and

108 javastage

defines their collaborators via other template types. To play the role a class inherits from
the template role, defining each collaborator type, so roles are a supertype of the player.

Since roles are template classes they can play other roles and inherit from other roles
as in our approach. To support multiple role playing they use intermediate steps to avoid
name clashes and other multiple inheritance problems.

Our roles do not rely on inheritance. Our plays declaration also solves name clashes
without the use of intermediate steps. C++ does not support method renaming, like
JavaStage does, thus a role must provide generic methods, which can make it impossible
to use the same role several times. The C++ template engine is very powerful but its use
makes their approach limited to the C++ language. Our approach seems to require fewer
changes. For example, it would be easier to apply our approach in the C++ language
(which supports inner classes) than supporting templates in Java.

6.6.5 Dynamic Role Approaches

This subsection is dedicated to programming languages that support roles, but on their
dynamic nature. Our approach focus is on static class composition, so a direct comparison
between them and our approach is not feasible.

ObjectTeams

ObjectTeams [Her05] is an extension to Java that uses dynamic roles. They introduce the
notion of team. A team represents a context in which several classes collaborate to achieve
a common goal. Roles are implemented as inner classes of a team. When an object is
used by the team is gets attached one of the defined team roles. Whenever used inside the
team the object has that role attached, whenever used outside the team the role is not
considered (a process named as lifting/lowering). A role from a team cannot be reused by
another, unrelated, team. Roles are limited to be played by a specific type, because of the
playedBy directive.

EpsilonJ

EpsilonJ [TUI07] is another java dynamic role extension that, like Object Teams, uses
aspect technology. In EpsilonJ roles are also defined as inner classes of a context. Roles
are assigned to an object via a bind directive. EpsilonJ uses a requires directive similar to
ours, but, unlike ours, affects only the player. It also offers a replacing directive to rename
method names but that is done on an object by object basis when binding the role to
the object, and does not allow block renaming. It also applies only to the names of the
methods the role offers.

summary 109

PowerJava

PowerJava [BSI07] also supports dynamic roles. In PowerJava roles always belong to a so
called institution. When an object wants to interact with that institution it must assume
one of the roles the institution offers. To access specific roles of an object castings are
needed. Roles are written for a particular institution, so we cannot reuse roles between
unrelated institutions.

6.6.6 Approaches using Class Extensibility

These approaches deal with the extensibility of classes. Our work’s goal is not to extend
existing classes but to reuse code that otherwise would be replicated in several classes.
However these techniques reduce the amount of code that still is duplicated so we included
them. These techniques can be combined with ours so we consider them as complementary
and not as alternatives.

Classboxes

In Classboxes [BDN05] classes are defined within a kind of module, or unit of scoping. In
each classbox we can define classes but can also import classes from other classboxes or
refine other classes. Refinements may consist in adding or redefining new behavior or state
from an imported class. Since these refinements are only visible within the classbox or
classboxes that import from it, existing clients of the refined class are not affected. Roles
could be used here as a way to introduce refinements. Supposing that some, related or
unrelated, classes need a refinement with the behavior common to all, we can use a role to
model that behavior and the refinement would be each class playing that role.

Virtual classes

Virtual classes [EOC06] are used by Caeser. A class can define nested classes. Nested
classes are the virtual classes and they can be redefined by subclasses of the enclosing class.
Each virtual class has therefore an enclosing object - the object of the container class or
one of its subclasses. At run time, the inner class to use depends on the type of the outer
object. Like with Classboxes we can use roles to add the new behavior to virtual classes.

6.7 Summary
Implementing a language extension is not an easy task, especially when we want to enhance
its code reuse mechanisms and introducing new modules. But following the modularization

110 javastage

guidelines we were able to develop the role extension, JavaStage, that offers a powerful
renaming mechanism. JavaStage also supports a role inheritance hierarchy, making roles
more flexible and independent of classes.

JavaStage innovates in the manner in which it allows roles to require other participants
to implement a configurable interface, at the same time allowing the player to define that
concrete interface. This will be a key factor to implement a role library.

The way roles are implemented within JavaStage had a great focus on performance
issues and memory usage, creating the smallest overhead possible. While the way they
were implemented may not be the best possible implementation we believe that it provides
a very good outcome in terms of those factors.

Chapter 7

Removing Clones

7.1 Unresolved Clones . 111
7.2 Clone Removal Role Refactorings 117
7.3 Summary . 132

In this chapter we recall the clone types mentioned in chapter 2 and from those clones
we identify clones that are not removable using current clone removing techniques. We
show how roles, and JavaStage, can be used to remove them. We present four refactorings
that may be used for that purpose.

7.1 Unresolved Clones
The case studies, described in chapter 9, were used as a way to gain more insights in code
cloning. We used that study to identify clones that could not be removed by traditional
refactorings, or cases where the traditional solution could be improved by using roles
[BA13b]. We organized these clones into 4 categories:

• Identical clones in classes with different superclasses;

• Clones that have identical structures but use different, unrelated, types;

• Clones with the same structure and types but using different methods;

• Clones with the same structure that use different types and method names.

We will discuss each of these categories in the following subsections.

112 removing clones

7.1.1 Identical Clones in Classes with Different Superclasses

We detected clones with identical code but that belonged to classes with different super-
classes. An example, from the JHotDraw framework, is shown in figure 7.1. These clones
could be removed using the Extract Superclass if affected classes did not have a superclass.
This solution is not an option in Java, or other single inheritance languages, because we
cannot create a common superclass.

To solve these clones we could use Extract Class refactoring. The downside of this
particular refactoring is that it forces affected classes to create delegate methods to the new
class. In automated and semi-automated refactoring tools this work is done automatically,
but without these tools the work is tedious and error prone. Furthermore, when reusing
the class in future situations those delegation methods need to be made again, thus leading
to replicated code, nonetheless. Our solution using roles seems to be better both in reuse
and code saving as we will explain later.

public class DrawApplet extends JApplet implements PaletteListener /*...*/{

void paletteUserSelected(PaletteButton button) {
ToolButton toolButton = (ToolButton) button;
setTool (toolButton.tool(), toolButton.name());
setSelected(toolButton);

}

public void paletteUserOver(PaletteButton button, boolean inside) {
if (inside) {
showStatus(button.name());

}
else if (fSelectedToolButton != null) {
showStatus(fSelectedToolButton.name());

}
}
// ... rest of class code

}

public class DrawApplication extends JFrame
implements PaletteListener /* ... */ {

/* this class has the paletteUserSelected and

* paletteUserOver methods identical to the

* DrawApplet class */
}

Figure 7.1: Example of a clone in classes that have different superclasses.

unresolved clones 113

7.1.2 Clones That Have Identical Structure but Use Different, Un-
related, Types

We have found, especially in the Spring Framework, some clones that have the exact same
structure, but use different types. If the different types have a common supertype or one
is the supertype of the other, we can use that type throughout the code. If they are not
related we can create a common supertype and use it. This uniforms the type between the
clone code, transforming it to the same kind of clone clones as in the previous subsection.
However, this may not be done for a number of reasons: the types may be unrelated and
we cannot create a common type, either because they already have a supertype or because
they are unrelated and such a common supertype would be conceptually wrong. Even if
the types have a supertype the characteristics of the code may require each code to use its
specific type. If we cannot substitute the types with a common type we cannot refactor
using any of the available refactorings.

Spring has several classes that deal with portlets and servlets. Both have different class
hierarchies but are used in much the same way. Figure 7.2 shows an excerpt of such a
case. In the example all methods call the getRequest method. But the getRequest method
returns a PortletRequest object in the PortletWebRequest class and an HttpServletRequest
in the ServletWebRequest class. The request classes are not related so we cannot return a
common type. We cannot even create a common type because these classes are not part of
the Spring framework and have different sources as they come from different frameworks.

7.1.3 Clones With the Same Structure and Types But Using Differ-
ent Methods

Another type of clones that we cannot remove are clones that have the same basic structure,
use the same types, but each uses different methods. The name differences span from the
clone methods’ names themselves to the methods called inside the clone code. To resolve
these clones we would need to refactor methods’ names in order to uniform their names,
but that is not always possible or desirable.

In figure 7.3 we show an example of such a clone taken from the Spring framework.
In the example the classes have to either expose or ignore methods as MBean operations.
Their code is pretty much the same, except for methods names.

114 removing clones

public class PortletWebRequest extends PortletRequestAttributes
implements NativeWebRequest {

public Locale getLocale() {
return getRequest().getLocale();

}
public String getContextPath() {

return getRequest().getContextPath();
}
public String getRemoteUser() {

return getRequest().getRemoteUser();
}

}

public class ServletWebRequest extends ServletRequestAttributes
implements NativeWebRequest {

public Locale getLocale() {
return getRequest().getLocale();

}
public String getContextPath() {

return getRequest().getContextPath();
}
public String getRemoteUser() {

return getRequest().getRemoteUser();
}

}

Figure 7.2: Example of a clone in classes that use different types.

7.1.4 Clones With the Same Structure That Use Different Types
and Method Names

These Type II clones have the same structure but the types, methods’ names, and called
methods’ names are all different. Such clones cannot be resolved using neither technique
in the refactoring catalog.

An example can be found in JHotDraw, where Tool and Command objects must inform
their listeners of their actions. An excerpt of these classes is shown in figure 7.4.

unresolved clones 115

class MethodNameBasedMBeanInfoAssembler
extends AbstractConfigurableMBeanInfoAssembler {

private Set<String> managedMethods;
private Map<String, Set<String>> methodMappings;

void setManagedMethods(String[] methodNames) {
managedMethods = new HashSet/*...*/;

}
void setMethodMappings(Properties mappings) {

methodMappings = new HashMap</*...*/>();
/* ... */

}
boolean includeReadAttribute(Method method, String beanKey) {

return isMatch(method, beanKey);
}
boolean includeWriteAttribute(Method method, String beanKey) {

return isMatch(method, beanKey);
}

}

class MethodExclusionMBeanInfoAssembler
extends AbstractConfigurableMBeanInfoAssembler {

Set<String> ignoredMethods;
Map<String, Set<String>> ignoredMethodMappings;

void setIgnoredMethods(String[] ignoredMtdNames){
ignoredMethods = new HashSet/*...*/;

}
void setIgnoredMethodMappings(Propertiesmappings){

ignoredMethodMappings = new HashMap</*..*/>();
/* ... */

}
boolean includeReadAttribute(Method method, String beanKey) {

return isNotIgnored(method, beanKey);
}
boolean includeWriteAttribute(Method method, String beanKey) {

return isNotIgnored(method, beanKey);
}

}

Figure 7.3: Example of a clone that uses different methods but same types.

116 removing clones

abstract class AbstractCommand implements Command {

public void fireCommandExecutedEvent() {
Iterator iter = myRegisteredListeners.iterator();
while (iter.hasNext()) {

((CommandListener)iter.next()).commandExecuted(
new EventObject(myObservedCommand));

}
}
public void fireCommandExecutableEvent() {

Iterator iter = myRegisteredListeners.iterator();
while (iter.hasNext()) {

((CommandListener)iter.next()).commandExecutable(
new EventObject(myObservedCommand));

}
}

abstract class AbstractTool implements Tool {

public void fireToolUsableEvent() {
Iterator iter = myRegisteredListeners.iterator();
while (iter.hasNext()) {

((ToolListener)iter.next()).toolUsable(
new EventObject(myObservedTool));

}
}
public void fireToolActivatedEvent() {

Iterator iter = myRegisteredListeners.iterator();
while(iter.hasNext()) {

((ToolListener)iter.next()).toolActivated(
new EventObject(myObservedTool));

}
}

}

Figure 7.4: Example of a clone that has different types and method names but similar structures.

clone removal role refactorings 117

7.2 Clone Removal Role Refactorings
To remove the clones identified in the previous section we sketched a refactoring for each
category. We named our refactorings as: Extract Role; Extract Role Changing Types,
Extract Roles with Configurable Methods; Extract Role with Types and Methods. They
use similar steps but we opted to define all instead of one with several options. This way
there is a one-to-one mapping between clone categories and refactorings.

7.2.1 Extract Role

You have a class that has the same code as another class and it deals with a concern that
is not the class main concern.

Create a new role and move the relevant fields and methods from the old classes into
the new role and make the classes play the role.

Person

name

officeAreaCode

officeNumber

getPhoneNumber()

Company

address

officeAreaCode

officeNumber

getPhoneNumber()

Person

name

Company

address

<<role>>

PhoneNumberHolder

areaCode

number

getPhoneNumber()

plays

plays

EXTRACT ROLE

ResidentialSite

getBillableAmount()

Site

LifelineSite

getBillableAmount()

double base = units * rate * 0.5;

double tax = base * Site.TAXRATE * 0.2;

return base + tax;

double base = units * rate * 0.5;

double tax = base * Site.TAXRATE * 0.2;

return base + tax;

ResidentialSite

getBaseAmount()

getTaxAmount()

LifelineSite

return getBaseAmount() + getTaxAmount();

Site

getBillableAmount()

getBaseAmount()

getTaxAmount()

getBaseAmount()

getTaxAmount()

Figure 7.5: Extract role

Motivation

This refactoring can be applied to the clones of category ”Identical clones in classes with
different superclasses”.

A class should represent a specific concept that has crisp conceptual boundaries.
Nevertheless the classes grow over time and get added responsibilities that are hardly
related to the initial concept. But the added responsibilities sometimes are not enough to
create a class on their own.

To retain the class original concept as clear as possible the class code should deal only
with that concept. You need to consider what the extra code is and, if possible, group
the several added responsibilities in a few coherent sets, as independent of each other as
possible.

118 removing clones

Mechanics

• Group the responsibilities you want to separate in a coherent set.

• Create a role with a name that indicates the concern it deals with.

• Make the class play the role.

• Use Move Field on each field you wish to move.

– try to generalize the role, sometimes the names must change as they are tuned
for the class’s intent and not the role’s intent.

• Use Move Method on each method you wish to move.

– try to generalize the role, sometimes the names must change as they are tuned
for the class’s intent and not the role’s intent, if this is the case then use
Extract Role with Configurable Methods.

• If the moved methods call methods of the class add a requires statement for each
called method.

– again try to generalize the role, if the names of the called methods are generic
enough then use them, otherwise try to prepare them for renaming using
Extract Role with Configurable Methods.

• Compile and test.

– If the moved method does not call other methods to be moved compile and test
after each method move.

Example

Consider the classes presented in figure 7.1. They have the same code that responds to
events when the user of the JHotDraw application selects a button on the tool palette or
simply hovers above it. In this case we can separate this code from the rest of the class
code, because it is fairly independent of the rest of the class code. It just keeps track of
which button is currently selected tool and does not affect the rest of the class behavior.

We start by building a role for this concern and make both classes play the role.
role DefPaletteListener {

}

class DrawApplet extends JApplet implements PaletteListener, /*... */ {

plays DefPaletteListener palListener;

clone removal role refactorings 119

}

class DrawApplication extends JFrame implements PaletteListener, /*...*/ {

plays DefPaletteListener palListener;

}

Now would be the time to move any fields to the role. In this case, however, the code
to be moved does not use any fields.

The next step is to move the methods. In this case we have to move two methods.
The first to move, palleteUserSelected, calls the setTool and setSelected of
the class so we need to put them in the requirements list when we make the move. The
names of the methods are mandatory as they are part of the PalleteListener interface, and
we are very unlikely to encounter the same code related to other types of listeners. This
means that there is no need to configure method names.
role DefPaletteListener {

requires Performer implements void setTool(Tool t, String name);

requires Performer implements void setSelected(ToolButton button);

void paletteUserSelected(PaletteButton button) {

ToolButton toolButton = (ToolButton) button;

performer.setTool(toolButton.tool(), toolButton.name());

performer.setSelected(toolButton);

}

}

Now we can move the other method. It too calls methods on the class so, again, we
need to place them on a requires list. The final role would be
role DefPaletteListener {

requires Performer implements void setTool(Tool t, String name);

requires Performer implements void setSelected(ToolButton button);

requires Performer implements void showStatus(String msg);

requires Performer implements ToolButton getSelectedButton();

void paletteUserSelected(PaletteButton button) {

ToolButton toolButton = (ToolButton) button;

setTool(toolButton.tool(), toolButton.name());

setSelected(toolButton);

}

public void paletteUserOver(

PaletteButton paletteBt, boolean inside) {

ToolButton selected = performer.getSelectedButton();

if (inside) {

performer.showStatus(paletteBt.name());

120 removing clones

}

else if (selected != null) {

performer.showStatus(selected.name());

}

}

}

We suggest that most clones that could be removed with Extract Class should be
solved using Extract Role instead. This way classes do not need to create delegate
methods and all they have to do is to play the role. The use of delegating methods will
cause code clones, which can be significant if there are many methods. In the case of
roles the only repeated code is the play clause. The Extract Class may also impose
the creation of a class that represents only a partial concept. This is conceptually wrong.
The role, according to the definitions we use, is supposed to be a partial concept so it is
conceptually a better solution.

The decision to use Extract Role or Extract Class is made considering the
code nature. If the code represents a standalone concept it should be put into a class, if it
represents a partial concept it should be put into a role. According to Kapser and Godfrey
[KG06b], when refactoring a clone concerns such as stability, code ownership and design
clarity need to be considered. We believe that roles fare better in all these criteria than
the use of an extracted class, in those cases where the concept is just a partial one.

In our example the code reflects only a partial concept, that of an entity that keeps
track of user’s actions over a tool palette, so does not present a full class, it represents a
behavior that a class must have but which does not define it. In this case a role is better
suited than a class, so we opted for the use of Extract Role.

We also argue that Extract Role can be used instead of Extract Superclass.
In this case the use of delegation methods is not required so the decision is purely a
conceptual one. In single inheritance languages we should not use inheritance as a simple
code reuse mechanism. If the concern involved represents just a small set of the class
behavior should the class inherit from another just to reuse this code? Inheritance defines
what a class is and the class should not be defined by a small subset of its behavior, unless
it is the main concern of that class. We believe that a role solution is conceptually better
as it says only that a class has that behavior not that the class is defined by it. It also
leaves the class free to inherit from another class and the role to be reused by another
class that already has a superclass, providing a better reuse scenario.

Again, the decision to use Extract Role or Extract Class depends on the nature
of the concern. If the concern is better modeled by a class then Extract Superclass
should be used. If the concept is better modeled by a role then Extract Role should
be used.

clone removal role refactorings 121

7.2.2 Extract Role Changing Types

You have a class with the same code as another but differ in the types they use and the
similar code is not the main concern of the classes.

Create a new role and move the relevant fields and methods from the old classes to the
new role, using generics for the different types, and make the classes play the role-EXTRACT ROLE CHANGING TYPES

Warehouse

storage : Storage

store(pack: Package) : boolean

Container

interior : RectangularSpace

store(box: Box) : boolean

boolean store(Package pack){

int w = pack.getWidth();

int h = pack.getHeight();

int l = pack.getLength();

return storage.hasRoom(w, h, l);

}

boolean store(Box box){

int w = box.getWidth();

int h = box.getHeight();

int l = box.getLength();

return interior.hasRoom(w, h, l);

}

StorageType

StoredType
boolean store(StoredType stored){

<<bind>>StorageType -> Storage

StoredType -> Package

<<role>>

FiniteStorager

storage : StorageType

StoredType

Warehouse

Container

plays

store(stored: StoredType) : boolean

<<bind>>StorageType -> RectangularSpace

StoredType -> Box

boolean store(StoredType stored){

int w = stored.getWidth();

int h = stored.getHeight();

int l = stored.getLength();

return storage.hasRoom(w, h, l);

}

{requires StoredType implements int getWidth() }

{requires StoredType implements int getHeight() }

{requires StoredType implements int getLength() }

{requires StorageType implements boolean hasRoom(int w, int h, int l) }

plays

Figure 7.6: Extract Roles Changing Types

Motivation

We apply this refactoring to the clones that have identical structure but use different,
unrelated, types.

122 removing clones

Sometime the classes get responsibilities added that are generic enough to be used in
several other situations. However the types they use are different in each situation. It can
be that the types are related. In such cases you can use the most general type and then
try to remove the clone using Extract Role. If a common type cannot be used then
apply this refactoring. You have to capture that general responsibilities and try to factor
out the points of possible generalization, namely types. Then check to see if the whole
makes a clear concept on its own.

Mechanics

• Group the responsibilities you want to separate in a coherent set.

• Create a role with a name that indicates the concern it deals with.

• Make the class play the role.

• Identify the different types used by the code that cannot be replaced by a common
type.

• For each identified type mark it to be replaced by a generic

• Use Move Field on each field you wish to move.

– Check if the field name is adequate for all the uses, and rename it otherwise.

• If the moved field is of a marked type replace the type with the corresponding
generic.

• Update the plays clause to state the concrete type for the generic.

• Use Move Method on each method you wish to move.

– try to generalize the role, sometimes the names must change as they are tuned
for the class’s intent and not the role’s intent, if this is the case then use
Extract Role with Types and Methods.

• If the moved method uses a marked type substitute it for the corresponding generic.

• If the moved methods call methods from the class add a requires statement for each
called method.

– try to generalize the role, sometimes the names must change as they are tuned
for the class’s intent and not the role’s intent, if this is the case then use
Extract Role with Types and Methods.

clone removal role refactorings 123

• If the moved methods call methods from the generic types add a requires statement
for each called method.

– again, try to generalize the role, if the names of the called methods are generic
enough then use them, otherwise try to prepare them for renaming using
Extract Role with Types and Methods.

• Update the plays clause to state the concrete type for the generic after each new
generic added.

• Compile and test.

– If the moved method does not call other methods to be moved compile and test
after each move.

Example

The classes of figure 7.2 use different types to represent a request. We can make a role
specify the type of the request and thus remove the clone. The first steps are identical
to the Extract Role. We create a role, in this case a LetRequest role and make the
classes play the role.
public role LetRequest {

}

public class PortletWebRequest /* ... */ {

plays LetRequest letRequest;

}

public class ServletWebRequest /* ... */ {

plays LetRequest letRequest;

}

When moving the getLocale method it calls the getRequest method, which goes
into the requirements list, in the class which returns a request object of the concrete type
used by each class. For example if we wanted the role to address the PortletWebRequest
we would write the role as
public role LetRequest {

requires Performer implements PortletRequest getRequest();

public Locale getLocale() {

return performer.getRequest().getLocale();

}

}

124 removing clones

This solution works for the PortletWebRequest but not for the ServletWebRequest.
We need to replace the PortletRequest type with a generic. Since we are calling the
getLocale method on this type we must place it in the requirements list. The role
would look like this
public role LetRequest<RequestType> {

requires Performer implements RequestType getRequest();

requires RequestType implements Locale getLocale();

public Locale getLocale() {

return performer.getRequest().getLocale();

}

}

The classes would have their plays updated to
public class PortletWebRequest /* ... */ {

plays LetRequest<PortletRequest> letRequest;

}

public class ServletWebRequest /* ... */ {

plays LetRequest<HttpServletRequest> letRequest;

}

After moving all the methods the role would be
public role LetRequest<RequestType> {

requires Performer implements RequestType getRequest();

requires RequestType implements Locale getLocale();

requires RequestType implements String getContextPath();

requires RequestType implements String getRemoteUser();

public Locale getLocale() {

return performer.getRequest().getLocale();

}

public String getContextPath() {

return performer.getRequest().getContextPath();

}

public String getRemoteUser() {

return performer.getRequest().getRemoteUser();

}

}

We used the RequestType type to represent the type of the request inside the role. We
can also see that the code calls a number of methods on the request object. Every method
is put into the requirements list. .

clone removal role refactorings 125

7.2.3 Extract Role with Configurable Methods

You have classes with the same code but they differ on the names of some methods and
the similar code is not the main concern of the classes.

Create a new role and move the relevant fields and methods from the old classes to the
new role, using the renaming mechanism to allow for different method’s names, and make
the classes play and configure the roleEXTRACT ROLE WITH CONFIGURABLE METHODS

<<config>> Site = Office

<<config>> Site = Support

<<config>> Site = Sales

plays

Company

address

officeAreaCode

officeNumber

supportAreaCode

supportAreaNumber

salesAreaCode

salesAreaNumber

getOfficePhoneNumber()

getSupportPhoneNumber()

getSalesPhoneNumber()

Company

address

<<role>>

PhoneNumberHolder

areaCode

number

get#Site#PhoneNumber()

Figure 7.7: Extract Role with Configurable Methods

Motivation

This refactoring is to be used with clones with the same structure and types but using
different methods. To remove these clones we need to use the renaming mechanism of
JavaStage.

A class may have responsibilities that are generic enough to be used elsewhere. The
problem with this reuse is that the name of the methods are different between its several
uses. If general purpose names can be used then consider using Extract Role. If
general purpose names cannot be used because the names are instance specific and must
reflect the context in which they are used then this refactoring can help. Since the name
of the methods is what contextualizes the code we can make it generic by allowing those
names to be configured.

Mechanics

• Group the responsibilities you want to separate in a coherent set.

• Create a role with a name that indicates the concern it deals with.

126 removing clones

• Make the class play the role.

• Use Move Field on each field you wish to move.

– Check if the field name is adequate for all the uses, and rename it otherwise.

• Identify the methods whose names should be configurable

• Use Move Method on each method you wish to move.

• If the moved method is to be made configurable or calls methods that can be
configurable use the renaming mechanism to mark them as configurable, taking
advantage of naming patterns to reduce the amount of configurations to use.

• If the moved methods call methods of the class add a requires statement for each
called method.

• If the role uses a configurable method of another type add it to the requires list as
well.

• Update the plays clause on each class configuring the methods.

• Compile and test.

Example

Consider the classes in figure 7.3, they have to either expose or ignore methods as MBean
operations. Their code is pretty much the same, except for methods names.

After creating the role and making the classes play the role we move the fields to the
role, renaming them so they are contextualized to the role code and not to a class code.
public role MethodBeanInfoAssembler {

private Set<String> methods;

private Map<String, Set<String>> methodMappings;

}

We then identify the methods to be configured. These are the class methods
setXXXMethods, setYYYMappings. The configurable methods also include the called
methods isZZZ. We then move each method at a time.

Beginning with the setXXXMethod the role would be declared as:
public role MethodBeanInfoAssembler {

private Set<String> methods;

private Map<String, Set<String>> methodMappings;

clone removal role refactorings 127

void set#Action#Methods(String[] methodNames) {

methods = new HashSet/*...*/;

}

}

and the classes would have a plays clause like
class MethodNameBasedMBeanInfoAssembler /*...*/ {

plays MethodBeanInfoAssembler(Action = Managed) infoAssembler;

}

class MethodExclusionMBeanInfoAssembler /*...*/ {

plays MethodBeanInfoAssembler(Action = Ignore) infoAssembler;

}

Finally we move all the methods and update the plays clause to do the configuration
of the role in each class. The final code would be
public role MethodBeanInfoAssembler {

requires Performer implements

boolean is#Include#(Method method, String beanKey);

private Set<String> methods;

private Map<String, Set<String>> methodMappings;

void set#Action#Methods(String[] methodNames) {

methods = new HashSet/*...*/;

}

void set#ActionMethod#Mappings(Properties mappings){

methodMappings = new HashMap</*...*/>();

/* ... */

}

boolean includeReadAttribute(Method method, String beanKey) {

return performer.is#Include#(method, beanKey);

}

boolean includeWriteAttribute(Method method, String beanKey) {

return performer.is#Include#(method, beanKey);

}

}

class MethodNameBasedMBeanInfoAssembler /*...*/ {

plays MethodBeanInfoAssembler(

Action = Managed,

ActionMethod = Method,

128 removing clones

Include = Match

) infoAssembler;

}

class MethodExclusionMBeanInfoAssembler /*...*/ {

plays MethodBeanInfoAssembler(

Action = Ignore,

ActionMethod = IgnoredMethod,

Include = NotIgnored

) infoAssembler;

}

Using this refactoring we could remove the clone identified in figure 7.3. Each class
only retained the method that determines if the method is to be managed or ignored, all
the code, even the fields, moved into the role.

clone removal role refactorings 129

7.2.4 Extract Role with Types and Methods

You have classes with similar code but that code differs on the types and methods names
and the similar code is not the class main concern.

Create a new role and move the relevant fields and methods from the old classes to
the new role, using the renaming mechanism to allow for different method’s names, using
generics for the different types, and make the classes play and configure the role

EXTRACT ROLE WITH TYPES AND METHODS

AbstractCommand

listeners : Vector<CommandListener>

myObservedCommand : Command

fireCommandExecutedEvent()

fireCommandExecutableEvent()

AbstractTool

listeners : Vector<ToolListener>

myObservedTool : Tool

fireToolUsableEvent()

fireToolActivatedEvent()

void fireCommandExecutedEvent() {

Iterator iter = listeners.iterator();

while (iter.hasNext()) {

CommandListener cl = (CommandListener)iter.next();

EventObject eo = new EventObject(myObservedCommand);

cl.commandExecuted(eo);

}

}

<<role>>

SubjectType

ListenerType

void fireToolUsableEvent() {

Iterator iter = listeners.iterator();

while (iter.hasNext()) {

ToolListener tl = (ToolListener)iter.next();

EventObject eo = new EventObject(myObservedTool);

ll.toolUsable(eo);

}

}

void fire#Event#() {

Iterator iter = listeners.iterator();

while (iter.hasNext()) {

<<bind>>SubjectType -> Command, ListenerType -> CommandListener

<<config>> Event = CommandExecutedEvent, Event.listener = commandExecuted,

Event = CommandExecutableEvent, Event.listener = commandExecutable

<<role>>

ListenerSubject

listeners : Collection<ListenerType>

myObserved : ListenerType

AbstractCommand

AbstractTool

playsplays

fire#Event#()

while (iter.hasNext()) {

ListenerType l = (ListenerType)iter.next();

EventObject eo = new EventObject(myObserved);

l.#Event.listener#(eo);

}

}

<<bind>>SubjectType -> Tool, ListenerType -> ToolListener

<<config>> Event = ToolUsableEvent, Event.listener = toolUsable,

Event = ToolActivatedEvent, Event.listener = toolActivated

{requires ListenerType implements void #Event.listener#(EventObject obj }

Figure 7.8: Extract Role with Types and Methods

Motivation

We apply this refactoring to the clones that have identical structure but use different,
unrelated, types and methods.

Sometime classes have responsibilities that are generic enough to be used in several
other situations except that they use different types in each situation and the names

130 removing clones

of the methods are explicit to that particular case. You have to capture that general
responsibilities and try to factor out the points of possible generalization, namely types
and methods names. Then check to see if the whole makes a clear concept on its own.

Mechanics

• Group the responsibilities you want to separate in a coherent set.

• Create a role with a name that indicates the concern it deals with.

• Make the class play the role.

• Identify the different types used by the code that cannot be replaced by a common
type.

• For each identified type mark it to be replaced by a generic

• Use Move Field on each field you wish to move.

– Check if the field name is adequate for all the uses, and rename it otherwise.

• If the moved field is of a marked type replace the type with the corresponding
generic.

• Update the plays clause to state the concrete type for the generic.

• Identify the methods whose names should be configurable

• Use Move Method on each method you wish to move.

• If the moved method is to be made configurable or calls methods that can be
configurable use the renaming mechanism to mark them as configurable, taking
advantage of naming patterns to reduce the amount of configurations to use.

• If the moved methods call methods of the class add a requires statement for each
called method.

• If the role uses a configurable method of another type add it to the requires list as
well.

• Update the plays clause on each class configuring the methods.

• Compile and test.

clone removal role refactorings 131

Example

The AbstractCommand class from figure 7.4, informs its listeners when the command
finishes its execution and when it becomes executable, among other actions: The Abstract-
Tool informs its listeners whenever the tool becomes usable or has been activated. This is
the same behavior but using different types and method names. Furthermore we can see
that this behavior can be generalized for other uses as well.

So we begin by creating a role that represents an Observer, or a Listener. The types of
the listeners, CommandListener and ToolListener, are different so we create a generic to
represent this type and create a storage for them in the role. An EventObject, in each fire
method, is used to represent the source of the event. This is defined as being an Object
so we do not need a Generic for this Type. However each class stores a reference to the
observed tool/command, so we need to move that reference to the role and thus created a
type for the observed: the SubjectType.
role ListenerSubject<SubjectType, ListenerType> {

Collection<ListenerType> myRegisteredListeners;

SubjectType myObserved;

}

Now we need to move the methods. To maximize its reuse some methods need to
be configured. Those methods are the fireXXX methods and the methods called on the
listeners. Thus we can use a fire#Event#() method for the role and, for the listeners a
#Event.listener#(EventObject o) method.

The methods are essentially the same so we can use the multiple version feature of
JavaStage to develop just one method.
role ListenerSubject<SubjectType, ListenerType> {

Collection<ListenerType> listeners;

SubjectType myObserved;

public void fire#Event#() {

Iterator iter = listeners.iterator();

while (iter.hasNext()) {

((ListenerType)iter.next()).#Event.listener#(

new EventObject(myObserved));

}

}

}

Since the role calls methods on the listeners we need to place those methods in a
requirement list.
role ListenerSubject<SubjectType, ListenerType> {

requires ListenerType implements void #Event.listener#(EventObject obj);

132 removing clones

// ...

}

Now all we need to do is update the plays clause to reflect the usage of this role and
its configuration.
abstract class AbstractCommand implements Command {

plays ListenerSubject<Command,CommandListener>(

Event = CommandExecutedEvent, Event.listener = commandExecuted,

Event = CommandExecutableEvent, Event.listener = commandExecutable

) commandListener;

}

abstract class AbstractTool implements Tool {

plays ListenerSubject<Tool,ToolListener>(

Event = ToolUsableEvent, Event.listener = toolUsable,

Event = ToolActivatedEvent, Event.listener = toolActivated

) toolListener;

}

For this refactoring we use all JavaStage features and a combination of the previous
refactorings. With this we can achieve a greater level of reusability. For example we could
derive from this role a full purpose role that could be used for many more kinds of events.

There are also features used in the role that, for simplicity, are not explicitly shown in
the code. One such feature is the role constructor where we can define the type of storage
used for the listeners.

7.3 Summary
This chapter presented a series of clones that could not be refactored and why they could
not. It also presented four refactoring involving roles that can remove the mentioned
clones. The four refactorings were duly explained along with examples of how they can be
applied to the clones found in the target systems of the case studies.

Part III

Validation

Chapter 8

Towards a Role Library

8.1 Roles in Design Patterns . 135
8.2 Summary . 152

In order to prove the validity of our approach we developed a compiler for the JavaStage
specifications, based on the OpenJDK compiler. The ultimate goal is to develop a library
of roles with this tool. This will prove that roles can enhance modularity as a role may be
reused in contexts where classes cannot.

To build such a library we started by analyzing the 23 GoF patterns [GHJV95]. Design
Patterns are a good starting point because they provide solutions to recurring problems in
software development. So it may be possible to build roles that capture the basic structure
of the pattern so we can reuse that basic structure instead of replicating it whenever a
pattern is applied. Another advantage of using patterns as a starting point is that they
are used in many frameworks and so represent a lot of real world code. If we can create
roles for these patterns, it means our approach is likely to have an impact on many of
today frameworks and applications.

8.1 Roles in Design Patterns
Each pattern defines a number of participants that collaborate with each other to carry
out their responsibilities. Some participants in these patterns can be seen as roles while
others cannot. This distinction is made in [HK02] by considering the roles superimposed
or defining, even though their concept of roles differs somewhat from ours.

A defining role is a role that completely defines the class, that is, the class has no other
concern besides its participation in the pattern. Such an example is the State hierarchy in

136 towards a role library

the State pattern. In this pattern there is an object - the Context - that alters its behavior
when its internal state changes. The pattern proposes the State, which is a class (or an
interface) that defines the behavior associated with a particular Context. Each possible
state is then implemented by a subclass (or a class implementing the interface). The
Context object has a state object into which it delegates state-specific requests. When the
Context object changes state it actually changes the state object. Each state subclass has
no other concern than performing the actions the object forwards to it when in that state.

A superimposed role is a role that is assigned to classes that have other concerns
outside their participation in the pattern. In the Chain of Responsibility pattern, for
example, the Handler role is superimposed in every participant that is a link in the chain.
It has to either handle a request or forward it to its successor. This behavior is not the
main concern of the class but is has to perform these actions just because it is part of a
Chain of Responsibility.

For each pattern we took the roles played by each participant and focused on similar
code between instances of the pattern to find reusable code [BA11]. A goal we expected
to reach with our approach is a better modularization in some of the patterns.

For those patterns for which we developed a role we also implemented a sample scenario
that illustrated its use, but those samples will not be discussed here, except the sample for
the Observer pattern that will be used as an indicator of role-player independence. The
results presented here show that it is possible to build reusable roles that are independent
of their players.

We will explore, for each pattern, similarities between its instances in order to discover
replicated code and if that code can be placed inside a role. We will also explore ways to
use roles in each pattern.

Abstract Factory

The Abstract Factory provides an interface for creating families of related or dependent
objects without specifying their concrete classes. This pattern relies mainly on inheritance
where every factory inherits from an abstract class or implements an interface.

Even though the code for each factory is basically the same, creating and returning a
product, the products they create are very different. Because the return types and how to
create the products differ so greatly it is rather difficult to obtain a generic role for this
pattern. Nevertheless roles may be useful for those cases in which multiple inheritance
may be used.

roles in design patterns 137

Builder

The Builder pattern separates the construction of a complex object from its representation
so that the same construction process can create different representations.

Each building process is case specific and therefore no generic role could be developed.

Factory Method

The Factory Method defines an interface for creating an object, but let subclasses decide
which class to instantiate. Factory Method lets classes defer instantiation to subclasses.

The normal implementation of this pattern is clearly instance dependent and provides
no common code between instances. There is, however, a variation whose purpose is to
connect parallel class hierarchies. In this variation each class belonging to a hierarchy
delegates some responsibilities to a corresponding class belonging to another hierarchy.
For this variation of the Factory Method pattern there is one similarity between instances
that we can explore: each class has a method that creates the corresponding object. What
we did was to put the creation of the product in a creator class. The creator class provides
methods that create the required product, one method for each product. Then the classes
just have to call the corresponding method in the creator. One advantage of this solution
is the modularization of the pattern in which the correspondence between classes is made
in a separate class rather than on a class by class basis. Future additions and changes are
made in this class only. Because the creation process is now delegated to a single class
this means that, as an extra advantage, we can change the creator dynamically.

We developed a role that allows the specification of the factory method that creates
the object of the corresponding class. The method uses the class directive in the renaming
feature which allows the plays reference to be made only in the top class of the hierarchy.
On the other hand the use of the class directive implies that the creator must rely on
method naming conventions. This is, however, a small price to pay for the extra modularity
gained.

In a sample implementation we simulated a Figure hierarchy in which each figure
has a specific manipulator. The Figure class plays the FactoryMethod role where it
defines that the product created is of the type FigureManipulator and the creator is a
ManipulatorCreator object. Only the Figure class has the plays declaration, as stated
above, but each subclass has it’s own createManipulator method that redirects the call
to the ManipulatorCreator. This is the class responsible for the creation of the correct
Manipulator for each subclass. As said above, if we wish to change the way manipulators
are created or even which manipulator is created for each subclass we do it in this class
alone and we need not to change the Figure subclasses. Figure 8.1 illustrates this example.

138 towards a role library

{ requires CreatorType implements ProductType create#Product.class#() }

<<role>>

FactoryMethod

creator: CreatorType

CreatorType, ProductType

<<bind>>CreatorType -> ManipulatorCreator,ProductType->FigureManipulator

<<config>> Product= Manipulator

plays

create#Product#() : ProductType

set#Product#Creator(creator : CreatorType) : void

Figure

createManipulator() : FigureManipulator

FigureManipulator

FACTORY METHOD

setManipulatorCreator(creator : FigureManipulator) : void

LineFigure

createManipulator()

TextFigure

createManipulator()

ManipulatorCreator

createFigureManipulator() : FigureManipulator

createLineFigureManipulator() : LineFigureManipulator

createTextFigureManipulator() : TextFigureManipulator

LineFigureManipulator

TextFigureManipulator

1

Figure 8.1: The use of the FactoryMethod role to relate a Figure subclass to the corresponding
FigureManipulator.

Prototype

The Prototype pattern specifies the kinds of objects to create using a prototypical instance,
and creates new objects by copying this prototype. This pattern relies on the prototype
class to have a clone method that produces an identical copy of the object.

While every class has its own mechanisms for cloning its objects it may not be sufficient
because of the deep copy vs shallow copy problem. The clone method may do just a shallow
copy where a deep copy is needed, or vice-versa. If the client, when it really matters, could
choose how the copy is made it would be more practical. For this we developed a role that
moves the creation of the copy to another class. This mechanism is similar to the one
used in our solution to the FactoryMethod pattern role. This means that the new class is
responsible for creating the copies of all classes that may be used as prototypes and thus
may choose how to make the copy.

For demonstration purposes we took the Figure hierarchy again and made Figure play
the Prototype role. We also created a FigureCloner class which is the responsible for the
clone creation. With this solution we can change the way the clones are created (deep
or shallow copy) without changing the hierarchy classes. This allows for a more modular
approach. We can also change the way clones are created, dynamically, by changing the
cloner.

roles in design patterns 139

{ requires ClonerType implements Performer clone#Clone.class#() }

<<role>>

Prototype

cloner: ClonerType

ClonerType

<<bind>>ClonerType -> FigureCloner

<<config>> Clone = Figure

plays

clone#Clone#() : Performer

set#Clone#Cloner(cloner : ClonerType) : void

Figure

cloneFigure () : Figure

setFigureCloner(cloner : FigureCloner) : void

FigureCloner

cloneFigure() : Figure

cloneLineFigure() : LineFigure

1

PROTOTYPE

setFigureCloner(cloner : FigureCloner) : void

LineFigure

cloneFigure()

TextFigure

cloneFigure()

cloneLineFigure() : LineFigure

cloneTextFigure() : TextFigure

Figure 8.2: The use of the Prototype role to create clones for a figure hierarchy.

Singleton

The Singleton pattern’s intent is to ensure that a class has only one instance, and provide
a global point of access to it. It defines only one role: the singleton role. The purpose of
the role is to ensure that only one instance is created, maintain that single instance and
providing access to it.

The suggested implementation of this pattern involves the use of a static reference and
the static method that provides access to the instance. It also needs the class constructor
to be declared private. The variations between different instances of this pattern are:

• type of the singleton

• name of the access method

In our singleton role the name of the access method is configured using the renaming
feature. The type of the singleton is the class that plays the role (Performer) and the role
creates a new instance via new Performer(). The programmer still has to make the
constructor private, though.

Adapter

The Adapter pattern converts the interface of a class into another that the client expects.
Adapter lets classes work together that could not otherwise because of incompatible
interfaces.

The code in this pattern depends on the nature of the adaptee and no specific role could
be developed. The single similarity that we found was that some methods are forwarded

140 towards a role library

directly to the adaptee. But each method may have multiple parameters and return types
that it is impossible to create an all purpose forward method. This is a pattern in which
the multiple inheritance may be useful, so instance specific roles can be developed as a
way to emulate multiple inheritance.

Bridge

The Bridge pattern decouples an abstraction from its implementation so the two can vary
independently. To do this the pattern defines an interface for the abstraction and another
interface for the implementation. The way they are connected is unique to each pattern
instance. The sole similarity between several implementations is the field that the interface
class has to reference the concrete implementer. We thought that this was not enough to
provide a role for this pattern.

Composite

The Composite pattern composes objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects and compositions of objects
uniformly.

Each composite must maintain a collection of child components and implement the
operations defined by the component hierarchy. There are common operations for all
composite instances that are related to maintaining the collection of children (like addChild,
removeChild, ...). The operations defined by the component hierarchy are instance depen-
dent and are not suitable for generalization, even thought most of their implementations
is the traversal of the children collection and performing the corresponding operation on
each child. A map function, popular within functional programming, would be useful here.

For this pattern we did not develop a particular role, but we reused the Container
role, which takes care of children management in the composite role. This role allows the
definition of the management methods via the renaming mechanism

Decorator

The Decorator pattern attaches additional responsibilities to an object dynamically. To
achieve this the decorated component is enclosed in another object that adds the required
functionality. This pattern is based on an inheritance hierarchy in which the component
and the decorators share the same interface. This allows for the use of roles as a multiple
inheritance both for roles and components.

If there are many components then we can define a role that contains the default behavior
of the components and another role that defines the default behavior for the decorators.

roles in design patterns 141

This way they only share the same interface while having a default implementation for
each.

Facade

The Facade pattern provides a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem easier to use. Because
this pattern implementation depends exclusively on the system it provides an interface for
there is no similar code between instances of the pattern. There was no role that could be
developed for this pattern.

Flyweight

Flyweight uses sharing to support a large number of fine-grained objects efficiently. It
depends on small sharable objects that the client manages and on a factory of flyweights
that creates, manages and ensures the sharing of the flyweights.

The concrete flyweights and their interface are instance dependents and are not open
to reusability between instances. The same is not true for the flyweight factory as most
share the same behavior: verify if the required flyweight already exists and, if so, return it
or, otherwise, create it, store, and then return it.

We developed a role for the flyweight factory that relies on a map to manage the
flyweights and also supplies the management method. The flyweight creation method is
the only instance specific method the factory needs so we require the player to supply
such a method. The types of the flyweights are defined using generics and the methods
names are configured using the rename strategy.

In a sample implementation (see figure 8.3) we created a Glyph factory where the
glyph’s key is a character. There are two types of glyphs: alphanumeric, for letters and
numbers, and symbol glyphs, for other characters. The factory takes the character and
returns the corresponding glyph.

Proxy

Proxy provides a surrogate or placeholder for another object to control access to it. The
real subject is placed inside one object, the proxy, which controls access to it. Some, simple,
operations are dealt by the proxy itself, while others, more complicated, are forwarded to
the subject and handled by it.

Which methods are forwarded or handled by the proxy are instance dependent as is the
creation of the subject, but the forward mechanism and checking if the subject is already
created or accessible is similar between instances. We therefore developed a proxy role

142 towards a role library

{ requires Performer implements create#Fly.create# (key : KeyType) : FlyType }

<<role>>

FlyweightFactory

flyMap: Map

FlyType,KeyType

<<bind>>FlyType -> FigureCloner, KeyType->Character

<<config>> Fly = Glyph, Fly.create = Glyph

plays

get#Fly#(key : KeyType) : FlyType

GlyphFactory

getGlyph(key : Character) : Glyph

createGlyph(key : Character) : Glyph

<<interface>>

Glyph

print(uppercase : bool)

FLYWEIGHT FACTORY

createGlyph(key : Character) : Glyph

TextGlyph

print(uppercase : bool)

AlphaGlyph

print(uppercase : bool)

Figure 8.3: Flyweigth Factory example

that provides this similar behavior. It stores the reference to the subject and provides the
method to check the existence of the subject and triggers its creation otherwise.

Chain of Responsibility

The purpose of the Chain of Responsibility pattern is to avoid coupling the sender of a
request to its receiver by giving more than one object a chance to handle the request. The
receiving object passes the request along the chain until an object handles it.

The implementation of this pattern, in Java, often involves the use of a reference to the
successor and the code to handle or pass the request. The specific code for each instance
relates to how the request is handled and how each handler determines if it can or cannot
handle the request. Apart from that, the variations between different instances of this
pattern are:

• type of the handler

• type of the request

• name of the request method

• name of the method that verifies if the request can be handled

• name of the method that does the handling

This pattern has some variations that we observed. There are some implementations
that require no request information to be passed, that is, the request method has no

roles in design patterns 143

<<role>>

ChainOfResponsability

successor: HandlerType

HandlerType

<<bind>>HandlerType -> HelpHandler

plays

get#Successor#() : HandlerTypeType

set#Successor#(suc : HandlerType)

has#Successor#() : bool

<<interface>>

HelpHandler

handleHelp()

CHAIN OF RESPONSABILITY

<<role>>

ChainOfResponsabilityNoRequestVoid

#handle#()

<<bind>>HandlerType -> HelpHandler

<<config>> Successor = HelpHandlerSuccessor

handle = handleHelp

<<role>>

BasicHelpHandler

helpMessage : String

getHelpHandlerSuccessor() : HelpHandler

setHelpHandlerSuccessor(suc : HelpHandler)

hasHelpHandlerSuccessor() : bool

handleHelp()

Component

Window Panel Button

plays

Figure 8.4: Using a role to play another, more generic role, in an example Chain of Responsibility
implementation.

parameter. There are also implementations in which the request method returns a value.
To accommodate these variations we developed a role for each.

In our roles the names of the methods are configured using the renaming feature. The
types of the handlers, the request (in those roles that use it) and return type (where in use)
are defined by generics. The roles also define the get and set methods for the successor,
which are also configurable via renaming.

In our example we needed a help handler for graphical components. These components
form an inheritance hierarchy that is similar to a real component hierarchy. Since the main
concern for the components is not the handling of help messages and because they are
already part of an inheritance path we developed a role for the help handling part. The role
we developed for this example, BasicHelpHandler, plays the ChainOfResponsabilityNoRe-
questVoid role that is part of our role library. This particular role implements a chain of
responsibility in which the request methods return no value and has no request parameter
and extends the ChainOfResponsability role. The BasicHelpHandler implements basic help
methods such as the use of a help message and defines the request handling methods’ names.
The component superclass then plays the BasicHelpHandler role, enabling all components
to handle help requests. Because of the multiple inheritance emulation capabilities of roles
even non components can play this role, or components that are not directly subclasses of
component may play this role.

It is worth to mention that the BasicHelpHandler role could be reused in several other

144 towards a role library

applications because it is in no way associated with the component hierarchy.

Command

The purpose of the Command pattern is to encapsulate a request as an object, thereby
letting developers parameterize clients with different requests, queue or log requests, and
support undoable operations. Commands are usually organized in a inheritance hierarchy.
Due to the specific nature of each command hierarchy we could not provide a role for this
pattern.

Interpreter

The intent of the Interpreter pattern is to, given a language, define a representation for its
grammar along with an interpreter that uses the representation to interpret sentences in
the language. This is done by creating a class for each grammar rule of the language. As
each language has its own grammar therefore each class is unique as is the way to interpret
the grammar. Hence the difficulty to find similarities between instances of this pattern
that lead to no roles being developed.

Iterator

The purpose of the Iterator pattern is to provide a way to access the elements of an
aggregate object sequentially without exposing its underlying representation. This is done
by creating a common interface for the iterators while each aggregate is responsible for
the creation of a specialized iterator. Since all that is common between iterators is their
interface there is no role developed for this pattern.

Mediator

The Mediator pattern defines an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently. The pattern suggests the use of a
mediator class, also called the director, that the several colleague classes communicate with
when they have changed state. The mediator class is the responsible for the interaction
between the colleagues. Since each instance requires a different director and the needed
interactions are also instance dependent we found no common ground to build a role. The
communication with the director, however, is usually done with the observer pattern for
which we developed a generic role, so our role library would be used in this pattern as well.

roles in design patterns 145

Memento

Memento captures and externalizes an object’s internal state so that the object can be
restored to this state later, without violating encapsulation. The internal state, or enough
information to compute that state, of the originator object is stored in a separate class,
the memento, that is passed to a caretaker. If later on the originator state must be reset
the caretaker passes the memento object back to the originator. The caretaker does not
operate on the memento, only the originator does. Because the internal state of an object is
known only to the object it is impossible to develop a generic role to represent a memento.
The way the memento is stored and passed to the originator is also highly dependent on
the actual use of the pattern so no appropriate role was developed.

Observer

The observer pattern’s intent is to define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated automatically.
For that purpose it defines two roles: the subject and the observer. The subject must
notify all the observers upon a change in its state therefore it must know its observers.
The observer must implement the updating interface and respond to the notifications.

This pattern has several implementation alternatives, in particular for the updating
mechanism. Besides the update method name there is the question of its parameters. It
may have none to several. Some usual parameters are the subject of the update, some info
to indicate which state item has been changed, and the new value for that item. In the
Java’s AWT approach, a widely used and well known example, the update mechanism
makes use of an Event which aggregates several information about the updating, including
the previously referred information. It is therefore possible to pass several items of
information in one single parameter. Furthermore there is not a single update method but
several methods, each implying a specific change (such as: mouseMoved, mousePressed,
...). For our approach we will follow Java’s AWT observer style not only because it is well
known but also because it is adaptable to many different scenarios.

In this pattern there are things that are instance specific such as the actions taken
by the observer when an update method is called or deciding whether or not to trigger
the update mechanism. Using the event approach the nature of the event is also instance
specific. The several update methods names are also specific to an instance. But there
are several questions that are common to all instances such as: there is a collection of
observers per each subject, the methods to manage those observers and the notifying
methods.

Our subject role makes it possible for the programmer to specify which Container
to use via the constructor. With the name renaming feature it also allows to specify

146 towards a role library

{ requires T implements #Event.notify# (e : EventType) }

<<role>>

Container

storage

T

<<bind>>T -> FlowerObserver, EventType->FlowerEvent

<<config>> Thing = Flower

Event=FlowerOpen,Event.notify=flowerOpenedGlyph

plays

add#Thing#(t : T)

remove#Thing#(t : T)

<<interface>>

FlowerObserver

flowerOpened(e : FlowerEvent)

Observer

Flower

open()

addFlowerObserver(t : FlowerObserver)

removeFlowerObserver(t : FlowerObserver)

fireFlowerOpened()

<<role>>

Subject

fire#Event#()

EventType

FlowerEvent

*

Bee

flowerOpened(e : FlowerEvent)

Figure 8.5: Sample implementation of a subject role.

the names of the update methods as well as the event firing methods. The observers
management methods are also specified by using the renaming feature. It must be pointed
that the management of the observers is done using our Container role. The observers
and event types are defined using generics. We thus built a role that fulfills all the needs
for a subject role. Its use it illustrated in figure 8.5.

We did not implement an observer role because all observers are implementation
specific. For the same reason we did not implement an event role. Another aspect that
we did not include is the firing of the events, once again because that is implementation
specific. Nevertheless our role implements all the firing methods, the programmer needs
only to call them at the correct site.

State

The State pattern’s allows an object to alter its behavior when its internal state changes.
There are almost no variations in this pattern because each instance is specially made

for the task at hand. The only possible similarity between several instances is the state
change mechanism, which can be made in one method. We therefore developed a role that
is responsible for the state transitions and keeping the current state. The state change
method terminates the actual state before updating to, and starting, the new state. The
name of the state change method and the state terminating and starting methods are
configured by the rename feature, while the state class is configured by generics.

Strategy

The purpose of the Strategy pattern is to define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets the algorithm vary independently from

roles in design patterns 147

clients that use it. The pattern proposes an inheritance hierarchy of algorithms with each
subclass implementing its version of an algorithm. In most strategy patterns each strategy
class has only one method: the one that implements the intended strategy. There is no
similar code between instances of the pattern, apart the fact that some instances store
the currently selected strategy, so no generic role could be produced. The mechanisms for
selecting and using the strategy are also instance specific so no role for the context was
produced.

Template Method

Template Method defines the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Methods lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure. Template methods are mostly defined in
superclasses with the general algorithm based on method calling. The subclasses specify
the behavior of the several methods required by the algorithm. This is clearly a case in
which inheritance is the optimal solution. As the template method structure is dictated
by the concrete application there is no role available for this pattern.

Visitor

The Visitor pattern’s intent is to represent an operation to be performed on the elements of
an object structure. Visitor allows the definitions of a new operation without changing the
classes of the elements on which it operates. This pattern defines two roles: the element
and the visitor. The element must provide an accept method that takes a visitor as an
argument. The visitor must declare a visit method for each element type. The variations
between different instances of this pattern are:

• type of the element classes;

• type of the visitor;

• name of the accept method;

• name of the visit methods;

• what to do in each visit method.

For this pattern we implemented an element role that permits the specification of the
accept method name and where the type of the visitor is configured using generics. The
visit methods names are also configurable via the renaming mechanism where we used the
class construct. The element classes are typically part of an inheritance tree, meaning that
they all (or most of them) have a common superclass. Thus the declaration of the element

148 towards a role library

<<role>>

VisitorElement

VisitorType

<<bind>>VisitorType -> PeopleVisitor

<<config>> Visitor= Visitor

plays

accept#Visitor#(v VisitorType)

<<interface>>

PeopleVisitor

visitPerson(e : Person)

visitMale(e : Male)

visitFemale(e : Female)

Visitor

Person

acceptVisitor(v : PeopleVisitor)

{ requires VisitorType implements visit#Visitor.class# (e : Performer) }

Male

acceptVisitor(v : PeopleVisitor)

Female

acceptVisitor(v : PeopleVisitor)

ConcretePeopleVisitor

visitPerson(e : Person)

visitMale(e : Male)

visitFemale(e : Female)

acceptVisitor(v : PeopleVisitor) acceptVisitor(v : PeopleVisitor)

Figure 8.6: An implementation of the visitor pattern with roles.

role may be done in the superclasse only. If the element classes are not related then each
must play the element role. In this case it would be better to create a specific role. This
role would play the generic role fully configured for this particular instance, much like
what we did in our sample implementation of the chain of responsibility pattern. We did
not create a visitor role because they are instance specific and have no common code.

In our implementation of a visitor pattern instance, shown in figure 8.6, we created a
simple hierarchy of Person with two subclasses: Male and Female. The Person superclass
plays the VisitorElement role. Since this role uses the .class configuration every subclass
will have the acceptVisitor method configured to call the correct visit method of the
PeopleVisitor without having to implement it.

Discussion

Table 8.1 resumes the previous discussion. The table presents, for each pattern, the
similarities found between instances and the name of the role developed, if any. For each
role we stated the reusability of that role, its additional advantages and limitations. Every
role that we developed has the advantage of reducing the code programmers need to write
to implement a pattern and so we did not include it in the table, to save space, and named
that column "additional advantages".

In table 8.2 we reproduce the information from our roles stating which methods are
required and who must supply them and which methods they supply to the intrinsic. From
the table we can see that every supplied method uses the renaming mechanism, showing
that it would be difficult to achieve role reuse without it. The table also shows that the
required methods are not all related to the performer but also to the participants in the
collaboration. In fact, some roles do not depend on the Performer at all. The playedBy

roles in design patterns 149

Developed role properties
Pattern Similarities between

instances
Role name Additional

advantages
Limitations

Abstract
factory

Same basic structure but differs
greatly in return types and prod-
uct creation methods

Builder None
Factory
Method

None in the general case.
When connecting parallel hierar-
chies each subclass creates a spe-
cific product, and the creation is
done by a single method

Creator More modular.
Allows a dynamic
creator.
Subclasses without
pattern code

For connecting par-
allel class hierar-
chies only

Prototype Every class must have a clone
method

Prototype More modular.
Allows dynamic
cloner.
Subclasses without
pattern code

Singleton Static reference.
Static method.
Private constructor

Singleton

Adapter Some methods just forward the
request to the adaptee

Bridge Reference to the implementer
Composite Child management

Some methods just traverse the
children

reuses
Container

child management
already imple-
mented

Decorator Decorator forwards requests to the
decorated

Facade None
Flyweight Flyweight management FlyweightFactory Flyweight manage-

ment only
Proxy Proxy forwards requests to the

real object
Proxy creates the real object

Proxy Proxy management
only

Chain of
Responsi-
bility

Each handler forwards the request
to the successor

Handler

Command None
Interpreter None
Iterator None
Mediator Usually uses the observer pattern
Memento None
Observer Observer bookkeeping

Fire events call an update method
in the observer

Subject

State Current state field
When changing state the old and
new states usually perform main-
tenance tasks

State State management
only

Strategy Some implementations store the
actual strategy

Template
Method

None

Visitor Each class calls a corresponding
method on the visitor

VisitorElement More modular
Subclasses without
pattern code

Table 8.1: Summary of the roles developed for the GoF patterns

150 towards a role library

Pattern Supplied/ Relevant Methods
Required

Singleton Performer Default constructor
Supplied Performer get#instance#()

Observer ObserverType void #Event.notify#(EventType event)
Supplied void fire#Event#(EventType e)

Visitor VisitorType void visit#visitor.class#(Performer t)
Supplied void accept#visitor#(VisitorType v)

State StateType void #state.end#()
void #state.start#()

Supplied StateType change#state#(StateType s)
Proxy Performer ProxyType create#proxy.create#()

Supplied ProxyType get#proxy#()
boolean has#proxy#()

Prototype ClonerType Performer clone#clone.class#(Performer proto)
Supplied Performer clone#clone#()

void set#clone#Cloner(ClonerType c)
Flyweight Performer FlyType create#fly.create#(KeyType key)

Supplied FlyType get#fly#(KeyType key)
Factory CreatorType ProductType create#product.class#()
Method Supplied ProductType create#product#()

void set#product#Creator(CreatorType c)
Chain Of Performer boolean #handle.canDo#(RequestType req)
Reponsability void #handle.do#(RequestType req)

HandlerType void #handle.pass#(RequestType req)
Composite Supplied Please see Fig. 4
(Container)

Table 8.2: The developed roles summary description

clause cannot state this dependency from the other participants as it focus only on the
intrinsic’s class. Our requires list is of a more general use and conveys more information
than the "playedBy" clause.

From our study there are a few patterns that do not gain from the use of roles, namely:
Builder, Facade, Iterator, Mediator, Memento, Strategy and Template Method. These
roles are quite instance specific and the classes built for their implementation are usually
case specific and are not reusable outside that pattern. An Iterator, for example, is made
for a particular collection and cannot be reused for another type of collection, even if it is
of a similar type.

There are a few patterns that could benefit from the use of roles like a way to emulate
multiple inheritance and to provide a default implementation to some operations done
in a class inheritance hierarchy. These are the Abstract Factory and specially Decorator.
This is also valid for the State if states share some common code.

We also found some similar code between instances that we could not isolate and put
in a generic role. This was the case of patterns that forwarded method calls, like Adapter,
Decorator, Proxy and Chain of Responsibility. The variations were not supported by

roles in design patterns 151

public role FlowerSubject {
plays Subject<FlowerObserver,FlowerEvent>(

Thing=FlowerObserver,
Event=Open, Event.notify=flowerOpened) sbj;

}
}

public class Flower {
plays FlowerSubject flwrSubject;
private boolean opened = false;

public void open(){
opened = true;
fireOpen(new FlowerEvent(this));

}
}

Figure 8.7: The FlowerSubject role and the Flower class from our subject role sample.

roles because they were in the methods return type and parameters types and number.
Arranging support for such variations would make the role heavily configurable and just
the configuration alone would be more complex than to write the code in the first place.

We developed roles for a total of 10 patterns out of 23, which is a good outcome,
especially because every role has a high reusability factor. We believe that our Subject
role, for example, will be useful for a large number of Observer instances. There are also
additional advantages in some roles, like a better modularity, in the Factory Method and
Prototype. Other roles are limited in their actions, like Factory Method, which addresses
a particular variation, but are nevertheless highly reusable for that purpose.

To test if roles and player are truly independent we produced a dependency structure
matrix (DSD) for each sample of the developed roles. For the Observer role sample we
developed a Flower subject that must notify its observers when it opens. For that we
developed a FlowerObserver that has the flowerOpened(FlowerEvent e) method. As an
observer we developed a Bee class that, when notified, will print a message that the bee is
seeing an open flower. The Flower class plays the FlowerSubject role, which is the Subject
role configured to this particular scenario. Figure 8.7 shows the code for both role and
class. The code for the bee, observer interface and the flower event are not shown for
simplicity. The FlowerSubject role is not really necessary as the Flower could configure
the Subject role directly but it is a good programming practice to do so.

From that sample, we obtained the DSM of Figure 8.8. Here we can find that there is
no dependency between the Subject role and the Flower class and that the FlowerSubject
depends only on the Subject role and not vice-versa. That would hold even if we did not
declare the FlowerSubject role and used the direct configuration as discussed before. If we
group the classes into modules as shown in the figure we can see that the module where

152 towards a role library

Name 1 2 3 4 5 6 7 8
Bee 1

Flower 2 1 1

FlowerSubject 3 1

FlowerObserver 4 1 1
FlowerEvent 5 1 1 1 1

Subject 6 1

ObserverType 7 1
EventType 8 1 1

Name 1 2 3 4 5 6 7 8

EventType 1

ObserverType 2 1
Subject 3 1 1

FlowerEvent 4 1

FlowerObserver 5 1

FlowerSubject 6 1 1 1
Flower 7 1 1

Bee 8 1 1 1

Figure 8.8: Dependency Structure Matrix for the Observer role sample.

the role is included does not depend on any other module. It shows that the flower module
is dependent from the role module via the role. It also shows that the Flower module does
not depend on its concrete observers, as expected from the observer pattern. The Subject
role is therefore independent of its players. We may also add that we also used that same
role in the JHotDraw Framework.

8.2 Summary
In this chapter we showed that it is possible to write a library of reusable roles. We did
this by developing roles for the GoF design patterns. We were not able to develop roles
for each pattern, mainly because patterns instances shared no common code, i. e., their
implementation is specific to a particular problem. Nevertheless we did develop roles for
those patterns that have similar structures or behaviors between instances.

With the developed roles we were able to use them in sample implementations of the
respective pattern. Even though the sample implementations are simple and focused on
the pattern they provided a way to test each role effectively. They also enabled us to test
the roles and players independence by constructing and analyzing a dependency structure
matrix. These tests proved that roles are independent of their players.

This study also showed that the role feature of renaming methods is a crucial one in
developing generic roles. This feature makes the use of roles to be easily configured for
each specific instance of a pattern, so methods names are adequate in the context of that
specific instance. The feature of requiring methods from other collaborators and not just
from the player also plays a very important part in this process, as it enables the role
to require a suitable method name from their collaborators and not a generic method,
enhancing the role adaptation for each specific instance of a pattern.

Chapter 9

Case Studies

9.1 The Target Systems . 153
9.2 The Case Study Setup . 154
9.3 JHotDraw . 159
9.4 OpenJDK Compiler . 170
9.5 Spring Framework . 181
9.6 Discussion . 192
9.7 Threats to Validity . 194
9.8 Summary . 195

In order to support our claim that roles can be used to remove code clones we have
conducted case studies using three open source systems. For each system we detected,
using a clone detection tool, which clones were present. We then analyzed each found
clone and its surrounding code to perceive the nature of the concern it dealt with.

We grouped clones that addressed the same concern. This step is crucial to the
development of roles for the clones. We intend our roles to represent a concept and to
deal with a concrete concern and not just to reduce replicated code. For each concern we
tried to develop a role that could handle it in a satisfactory way and to reuse that role in
all clone instances.

The number of clones that we were able to reduce with roles is a measure we can use
to validate our claim, if it reflects a great number of concerns.

9.1 The Target Systems
For the case studies we used three open source systems: the JHotDraw framework, the
OpenJDK compiler and the Spring Framework. We wanted the systems to be from different

154 case studies

fields of usage. This way we can show that roles are applicable in a variety of systems and
not confined to a particular use in a specific field. It also enables us to gain more insights
on how the code cloning affects different systems and how roles can be used to remove
such clones.

JHotDraw is a Java GUI framework for technical and structured Graphics. The
JHotDraw framework defines the basic structure for a GUI-based editor with tools in a tool
palette, different views, user-defined graphical figures, and support for saving, loading, and
printing drawings. JHotDraw was used as a case study in several works by other authors
[CMM+05, Deu05, MDMR09] as well as in a previous work of ours [Bar08] making it a
natural candidate for this thesis. The version used is 5.4b, one of the most used versions
in the mentioned works. The JHotDraw was developed by Erich Gamma (one of the GoF
authors) and Thomas Eggenschwiler as a “design exercise” for the application of design
patterns. As a “design exercise” its development followed the software development rules
with great care.

The OpenJDK compiler (javac) is an open source Java compiler, and other tools,
that has support from Oracle. This compiler formed the base from which we started to
build our own JavaStage compiler. The author’s familiarity with the compiler and the
compiler implementing properties that deviated somewhat from the traditional software
development techniques made it a good candidate to become a case-study. The use of
public variables, for performance reasons, is a good example of such coding techniques that
go against the traditional rules of software development. With this case study we expect
to gain insights on how roles can cope with systems more focused on performance issues.

Spring is a layered Java application platform for building enterprise solutions. Spring
framework provides a powerful and flexible collection of technologies to improve the
development of enterprise Java applications and is claimed to be used by millions of
developers. It is also a framework that has been used in a number of studies [LLT11, RJ07,
MTB11]. Since it is a widely used framework and has been thoroughly tested is should
pose an interesting challenge.

All the selected systems are mature so we expect to find few clones that cannot be
removed by refactoring alone.

9.2 The Case Study Setup
To detect clones we used CCFinder [KKI02]. CCFinder is a token-based clone detection
tool (see 2.4). Due to this nature CCFinder can detect Type I and Type II clones. With a
bit of manual work we can use CCFinder to identify Type III clones. It does not detect
Type IV clones. CCFinder makes a token sequence from the input code through a lexical

the case study setup 155

analyzer and applies a, language specific, rule-based transformation to the sequence. The
purpose is to transform code portions in a regular form to detect clone code portions
that have different syntax but have similar meaning. Another purpose is to filter out
code portions with specified structure patterns. After the detection the user has several
browsing capabilities: view the metrics of all the clones, filter the clones based on source
files or metrics, highlighting the various places in which a specific clone (or clones) is
reproduced, etc.

For the clone detection, we used the standard options of CCFinder. Since we are
interested only in clones that are not solvable with the traditional refactorings we need
to filter those clones that are. One of such refactoring is the Extract Method that
usually deals with concerns inside a unique class. So in order to filter out such clones we
only considered clones that appeared in, at least, two files. This also filter clones that do
not deal with crosscutting concerns as a concern must be present in at least two classes to
be considered a crosscutting concern.

We manually inspected all remaining clones to identify its nature and the concern
they dealt with. The tool several browsing capabilities made this task easier. All we had
to do was select the clone set to inspect and the tool showed the various places where
the clone was reproduced. Because the tool does not take into account the names of the
identifiers some clones have code that are unrelated (meaning false clones). These clones
were removed. We also took into consideration the rest of the class code to gain an insight
on the purpose of the class and its main concern as well as how clone concern fits into the
class. We did not, however, made a profound analysis of the rest of the class, just enough
to assess if the clone addresses specific aspects of the class or if it is really a crosscutting
concern. In this phase we also dismissed false clones. We also ignored clones that used
deprecated code or code marked for substitution.

Clones were grouped according to the concerns they dealt with. A role must focus on
a specific concern, and not on a clone, so this grouping step helped us reasoning which
roles we should develop.

In order to reason if the use of roles affected or not the code clone we set a rule of not
changing the clients of any class that plays a role. This way the impact of making a class
play a role instead of writing the code in the class itself in the system is null. We also
have set a rule not to change the way a concern is implemented, even if it meant that
their clients would not change. This was done to retain as much as possible the author’s
initial intent. The enforcement of this rule was, however, less restrict than the first. Minor
changes in the implementation would not compromise the way it was supposed to work.
With minor changes we mean changing the name of a variable or changing the order of
some, non interdependent, instructions.

156 case studies

Another rule was that we only developed roles that conform to our vision of roles and
not just to reduce replicated code for the sake of it. We detected some clones that could
be removed simply by using a different inheritance hierarchy. We could develop a role that
reduced that replicated code, but since changing the inheritance hierarchy was a better
solution we did not do so.

The purpose of these rules is to maintain each system as close as possible to the original,
with the only difference being the use of roles instead of replicating code. The previous
rules can indeed restrict the development of roles but the purpose of the case studies is to
assess the impact of roles in reducing code replication and not building improved systems.
To prove the validity of roles in developing frameworks we refer to the work of Riehle in
[Rie00] where he describes how the JHotDraw framework could be developed using roles.
It is not the purpose of this thesis to prove that the use of roles can provide a better
system, even if we assume that a system without code clones is better than one with. We
only claim that roles can reduce the amount of replicated code. If we started changing the
framework then we would lose our reference point and could not pinpoint the advantages
of roles regarding the reduction of code clones. Nevertheless, we did find situations in
which refactoring the code would bring benefits to the system structure but refrain from
doing so.

It must be mentioned that some clones do overlap, i. e., a larger code clone may
include a smaller code clone, leading to clone sets overlapping. We grouped the clones in
one single entry, according to the concern they dealt with, even if some clones do appear
in more than one concern. When a clone contains code related to several concerns we
included them in each concern. That will lead to a clone being resolved by more than one
role, as we developed a role for each concern. Sometimes a concern also contains several
clone sets, not just one. In fact, due to small changes, not on the clone itself, but on the
code surrounding it, when a concern was scattered over many classes it usually had several
clone sets associated with it. An example of this situation is the case with the "‘Creating
UndoActivity"’ concern, from the JHotDraw case study, that has 14 clones associated with
its implementation. In each case study we present a table showing the results of these
steps, namely the concerns identified and the clones associated with each concern and the
number of classes affected by the concern.

To remove the clones we developed roles using JavaStage and the role refactoring we
proposed in Section 7.2. To present the concerns we grouped them into four categories.
These categories reflect how the concern was solved using roles and are:

• Purpose Built Roles

• Roles From Library

the case study setup 157

• Roles Placed in the Library

• Unresolved

Purpose built roles - Into this category we placed those concerns that needed the role
to be specifically developed. We expect this category to be the one that contains the
largest number of concerns.

Roles From Library - In this category we placed concerns that used roles that are part
of the role library we started to build in chapter 8. We expect some concerns to be placed
into this category.

Roles Placed in the Library - Roles can also find their way into the library if we consider
that the concern is of a general purpose or can be transformed into a general purpose role.
We hope to increase our library with these roles.

Unresolved - these are the concerns for which we could not develop a role. Hopefully
this will be the category with the least number of concerns.

We will not describe every concern in detail, for that would be too verbose and space
consuming. For that reason we will only briefly describe the ones that used roles from
the library and the ones that have roles that were placed in the library. The unresolved
concerns will be described with a bit more detail and the reasons why they could not be
resolved are presented and debated.

We will also show, for each concern, which proposed role refactoring was used (see
Section 7.2).

We also counted the lines of code (LOC) used for each concern in the original system
and in the system with roles. This way we can determine if the role system is better than
the original system or, at least, has fewer lines of code. One can argue that LOC count is
not a good measure for the effort when using different languages, but since JavaStage is
an extension to Java and the development of a role in JavaStage is very similar to that of
a class in plain Java, we can apply it here with relative confidence. The concerns that
had more LOC than the original code were concerns with few lines of code where the role
requirements and configuration overhead did not overcome the replicated code.

Since roles introduce new statements it is necessary to explain how we counted the
LOC number in each case. Each requires statement was counted as one LOC and each
play statement was counted as another LOC. The role methods configuration was counted
as another LOC. The LOC count of the roles is higher than the classes for this reason.
Assume one concern that presents 8 lines of replicated code in each class which could be
resolved with a simple role. We would expect this role to have the same 8 LOC. That is
not so because we do not count the class declaration as a clone LOC (the class does other
things) but count the role declaration as a solution LOC. Roles may also require methods,

158 case studies

and these requirements are counted as LOC. Thus for the 8 LOC clone the role would
have 1 more fixed, 1 more for each player and 1 more for each requirement. If the role
requires 3 methods and the concern appears in two classes then the clone has 16 LOC
and the role solution would count 14 LOC. If one of the required methods is not available
in the class then it must be implemented and is counted in the solution LOC but not
in the original LOC. If a getter method is required then it adds 2 more lines (method
declaration and return statement), and since the role is used in two classes then it adds
4 LOC to the solution role, leaving a final 18 LOC count, greater than the original 16
LOC. This apparently is worse than the original solution but LOC do not account for
the modularity and maintenance issues. Removing the clone gives the system a great
advantage in modularity terms.

jhotdraw 159

9.3 JHotDraw

9.3.1 JHotDraw Overview

JHotDraw is a Java GUI framework for technical and structured Graphics. JHotDraw
was originally developed by Erich Gamma Thomas Eggenschwiler as a "design exercise",
a way to demonstrate the use of several of the GoF patterns. JHotDraw derives from
other drawing editor frameworks and it is an evolution of the HotDraw framework [Joh92],
originally developed in Smalltalk and that gains from the authors’ previous experience
with ET++, a previous version of a user interface framework written in C++ [WGM89].

The JHotDraw framework defines the basic structure for a GUI-based editor with tools
in a tool palette, different views, user-defined graphical figures, and support for saving,
loading, and printing drawings. The framework can be customized using inheritance and
combining components.

We can say that the JHotDraw framework is structured around four main inheritance
hierarchies. These hierarchies reflect the main classes used in the framework. These are the
Figures, Views, Tools and Handles. The relations between these hierarchies are depicted
in Figure 9.1.

The Figures classes represent all the figures that can be drawn using the target
application. This allows each application developed with this framework to be targeted at
a specific domain by providing specific figure types as well as figure connectors. Such an
example would be an editor for the UML modeling language. For such an editor figures
like UMLClassFigure and connectors like UMLInheritanceConnector would be created.

The Views classes provide the various renderings of the figures and how they are shown
in the application window. There can be views with zoom, for example, or any other view
the application developer need to have, like mini-maps. The view is also where the user
interacts with the figures.

The Tool classes represent the various operations the user can perform on the figures
or on the application itself. Tools like creating figures, moving, grouping, etc, form the

Figure 9.1: Relationships between the main classes of JHotDraw

160 case studies

default tool set of the framework. Each user action may be undone and redone so tools
must support this behavior.

The default way of interacting with an already created figure is to use its various
handles. Each handle represents a specific action than can be performed to a figure: there
are handles for each corner of a figure’s bounding box (used to resize the figure), handles
to rotate the figure, manipulate its points, etc.

9.3.2 JHotDraw Results

The first result included 271 clone sets. After filtering clone sets with a file span less than
2 they were reduced to 146. These 146 clone sets were then manually inspected. After
inspection 41 clones were discarded leaving a final 105 clone sets.

We then proceed to identify the concerns these clone sets dealt with. As already
mentioned, sometimes the clone itself did not provide enough information to achieve a
conclusion, but examining the surroundings of the clones for a wider vision was enough
to detect some crosscutting. The most expressing one is the undo concern: while several
clone sets contributed to this concern it was when the surroundings were examined that
we found that every class implementing undo had an UndoActivity inner class.

We identified a total of 42 concerns. From those 42 we removed 4 because 1 could
be removed by using traditional refactorings, 1 was deprecated code and 2 belonged to
identical classes where one will substitute the other which will be deprecated. Table 9.1
shows the identified concerns and how they relate to the number of clones and number
of classes. It shows that although most of the concerns have only 1 clone set associated
they may have up to 14 clone sets. We can also see that a clone may affect from 2 classes
(most cases) up to 24.

After associating each clone with a concern we proceed with the development of roles
for each concern, using the refactorings described in section 7.2. For the developed roles
we either develop a special purpose role, or have used some role from the library developed
in chapter 8. Unfortunately not all concerns were resolved. We show the concerns that
were resolved in table 9.2. For these concerns we also present which refactoring was used.
Unresolved concerns are shown in table 9.3.

Table 9.2 shows that of the 38 concerns we were able to develop roles for 30, leaving
only 8 concerns (see table 9.3) with no available role. The final outcome is better than
these numbers indicate as we discuss in the unresolved concerns section.

After the concerns we made the LOC count. The results are shown in table 9.4. We
can see that, for the majority of the resolved concerns, roles needed fewer lines of code,
a 30% reduction in code size. This seems to indicate a smaller effort when developing a
system with roles.

jhotdraw 161

#
Concern Associated Affected

Clones Classes
Drawing Handles 7 11
Setting up the undo activity before executing a Command 2 8
BringToFront/SendToBack Commands 1 2
Desktop initial configurations 1 2
Undo/Redo Commands 1 2
Handle creation 11 14
Drawing polygons 1 2
Persistence (read/write) 3 6
Changing connection handles 1 2
UndoActivity 13 24
Polygon and PolyLine Handles 3 2
Palette Listener 1 2
DisplayBox persistence 2 5
DisplayBox handling 6 8
Tools and Commands Dispatchers 6 4
Creating UndoActivity 14 18
Handle manipulation starting action 3 5
Figure/Handle and Enumerator 1 2
DesktopListener Subject 2 3
Polygon locator 1 2
Changing connections 3 3
Point is inside Figure 3 6
Finding connectable figure 1 3
Testing command executability 5 7
Floating text holder 2 2
DrawingView Listener Subject 2 4
Setting text in a text Figure 2 2
Enumerator 1 3
Figure Listener that resends notifications 2 3
DrawingView Listener 1 2
Menu enabling 1 2
Version control 1 2
Drawing editor 1 3
Selected button manager 1 2
Text attributes management 2 2
Updating DrawingView Strategy 1 2
Mouse motion handling 1 2
Connection insets computing 1 3

Table 9.1: JHotDraw’s identified concerns associated with the corresponding clone sets.

162 case studies

Used
Concern Refactoring
Resolved With Purpose Built Roles

Drawing Handles ER
Setting up the undo activity before executing a Command ER
BringToFront/SendToBack Commands ER
Undo/Redo Commands ERTM
Handle creation ER
Drawing polygons ER
Changing connection handles ERTM
Polygon and PolyLine Handles ERCT
Palette Listener ER
DisplayBox persistence ER
DisplayBox handling ER
DesktopListener Subject ER
Polygon locator ERCT
Changing connections ERCM
Finding connectable figure ERCM
Testing command executability ER
Floating text holder ER
Setting text in a text Figure ER
Menu enabling ER
Version control ER
Selected button manager ER
Text attributes management ER
Updating DrawingView Strategy ER
Connection insets computing ER

Resolved With Roles From Library
Tools and Commands Dispatchers ERTM
DrawingEditor ERTM

Resolved With Roles Placed in the Library
Figure/Handle and Enumerator ERTM
DrawingView Listener Subject ERTM
Enumerator ERTM
Figure Listener that resends notifications ERTM

ER = Extract Role, ERCT = Extract Role Changing Types, ERCM = Extract Role with Configurable
Methods, ERTM = Extract Role with Types and Methods

Table 9.2: JHotDraw resolved concerns

Unresolved Concern Reason
Desktop initial configurations required too much configuration
Persistence (read/write) similar but not quite clone code
UndoActivity Inner classes constructors mainly
Creating UndoActivity after other roles was just a line of code
Handle manipulation starting action required too much configuration
Point is inside Figure just a (rather different) line of code
DrawingView Listener perfomance issues
Mouse motion handling

Table 9.3: JHotDraw unresolved concerns

jhotdraw 163

Concern Original Roles Roles/
LOC LOC Original

Drawing Handles 64 40 63%
Setting up the undo activity before executing a Command 56 44 79%
BringToFront/SendToBack Commands 20 12 60%
Handle creation 70 87 124%
Drawing polygons 12 11 92%
Palette Listener 20 17 85%
DisplayBox persistence 35 12 34%
DisplayBox handling 58 29 50%
DesktopListener Subject 63 45 71%
Changing connections 98 53 54%
Finding connectable figure 98 53 54%
Testing command executability 14 14 100%
Floating text holder 47 36 77%
DrawingViewListener Subject 63 26* 41%
Setting text in a text Figure 36 22 61%
Enumerator 33 11* 33%
Figure Listener that resends notifications 35 23* 66%
Menu enabling 20 14 70%
Version control 12 9 75%
Selected button manager 18 12 67%
Text attributes management 206 120 58%
Updating DrawingView Strategy 29 26 90%
Connection insets computing 10 7 70%
Undo/Redo Commands 32 31 97%
Changing connection handles 20 19 95%
Polygon and PolyLine Handles 32 28 88%
Tools and Commands Dispatchers 89 32* 36%
Figure/Handle and Enumerator 33 2* 6%
Polygon locator 13 20 154%
Drawing editor 54 28* 52%

* used role from library

Table 9.4: JHotDraw LOC count

164 case studies

9.3.3 Solved Concerns

In the solved concerns we count 30 concerns. In 2 concerns we were able to remove then
using solely roles from our role library (see chapter 8) and from 4 concerns we placed their
roles in the library.

From the 24 purpose built concerns we find that 18 (75%) used the Extract Role
refactory. This is somewhat expected because when developing a purposely built role
the methods and types are specific to the purpose. The other role refactorings were used
in cases where the code was similar, like in the "undo/redo command" where they are
quite identical in their structure, the only difference being the methods that both call
on the undo/redo manager object or on the command being undone/redone. While the
UndoCommand class calls methods like popUndo and isUndoable, the RedoCommand
class calls popRedo and isRedoable. We used the Extract Role with Types and
Methods to capture the structure of both commands in a role that enabled us to configure
the type of the manager and the method naming was left to the renaming mechanism.

An example of the use of the Extract Role Changing Types is the "Polygon and
PolyLine Handles". This role is responsible for handling the several invokeStart/Step/End
methods called during a manipulation of the handles in a polyline or polygon figure. The
type of the figure is configurable by the role.

An example of the use of Extract Role with Configurable Methods is the
"Changing connections" concern. There is code similar between two connection handles
and a tool that handles connections. That code is responsible for two tasks: finding a
suitable connection between two figures, tracking which figure is being manipulated by the
user and which is currently the target figure, and changing that connection. We assigned
those tasks to a single role and therefore the code can be reused by totally different classes
like a handle or a tool.

A concern, with significant LOC, in which roles had more LOC than the original
was the ”Handle creation” concern. It deals with the creation of handles for each figure.
We placed the creation of the handles in a handle creator class that has a method for
the handle creation for each class. Since some clones only have similar code we had to
reproduce every method in this creator class. That, along with the fact that the original
classes have to declare that they play the role and the definition of the role itself lead to
more lines of code than the original implementation. But the role has an advantage over
the original code: it can dynamically change the handle creator.

The “Polygon Locator” is responsible for returning a point inside a polygon given a
point index. It is used in two classes but one of them uses an anonymous class that defines
this behavior. Currently JavaStage’s roles cannot be applied to anonymous classes so we
had to develop an inner class to play that role and then use it. This introduced a higher

jhotdraw 165

overhead that made the role have more code than the clone.

The Observers

From the concern list we see that there are some instances of the Observer pattern, referred
to as Listeners because the authors of the framework followed Java’s approach to the
Observer pattern. We will use both terms indiscriminately. Clone detection found some
subjects and a few listeners. After a code inspection we were able to find for each instance
its subjects and its observers. These are the instances of the Observer pattern that were
found:

• DrawingView Listener

• Pallete Listener

• Figure Listener

• Tool Listener

• Command Listener

• Drawing Listener

• Desktop Listener

Even though they are all instances of the same pattern they were not implemented
in the same way. One reason that explains this is that the framework was developed by
several authors each with its own experience and programming habits. We believe that if
they had our role library they would have used it and then all listeners would be pretty
much the same.

Some of the instances followed Java’s Swing style subject that consists in having a
single listener list for all kinds of observers’ type. The notification methods have to
check each observer’s type, and cast it appropriately, before calling the corresponding
updating methods. Some instances followed the Java’s AWT style subjects using a
AWTEventMulticaster, by developing an extension to this java class. The extension deals
with its specific kind of listeners. Other instances followed the Java’s way of using events
but implemented a separated list of listeners for each kind of observer type. Other instances
used a list for each kind of listener type but the updating methods did not have an event
parameter, and some even had two parameters.

The palette listener subject is different from the rest as it cannot add or remove
listeners: it uses a single listener that is set when the subject (PaletteButton) is created.
It could be argued that it is not an instance of the pattern, but we referred it because the

166 case studies

names used for classes and objects suggested that it was intended to follow the pattern
style.

If we changed the code so that each instance was using the same implementation we
could use a single role for them all but that would either imply changing the concern
implementation (the swing version) or changing their clients (the two parameter version).
As mentioned we set a goal of not changing the code except in what refers to the role
playing. This lead us to use 3 roles, one for each version of the pattern. One concern
- "Tools and Commands Dispatchers" - reused the subject role developed for the GOF
pattern already in the library. We used the Subject role for the Tool listener subject and
Command listener subject concerns. We did not use it directly in the Tool or Command
classes because of the way it was implemented: each class developed an EventListener
class that performs the actions associated with the management and the notification of
observers. It is this dispatcher inner class that uses our subject role.

One of the observer pattern instances was based on the Java’s swing style, namely
"DrawingView Listener Subject". We developed a role, SwingSubject, which uses an
EventListenerList. When a listener is added to the subject it stores not only the listener
but also its class. Because the list can contain any type of listener, the class is used to
check if the listener is of the appropriate type. If it is, then the listener is cast to the
intended type and the notification method is called, otherwise the listener is ignored.

Comparing this implementation from the one used for our Subject role from the GoF
library we only see one advantage that is the fact that a single list can store several types
of listeners, while we declare a container for each type of listener. But that comes with the
cost of having to store the class along with the listeners for type checking. The single list
is good for subjects that have multiple types of listeners like a Swing Component does. In
the case of the JHotDraw framework the subjects only have a type of associated listener
so our implementation is better suited.

We could use our Subject role wherever we used the SwingSubject, without breaking
client code, but we followed the rule of keeping the original implementation as much as
possible. A further analysis of the role suggested that it could be generalized. After that
generalization the role was no longer tied to the JHotDraw framework and so we decided
to put it into the library. It can now be used whenever we want a subject that follows
swing subject rules.

The Adapters

In Java, each listener has a defining interface type and most have an associated Adapter
class. The Adaptor class defines the default behavior of each listener, which is doing
no action at all. Concrete listeners have to either implement the listener interface, and

jhotdraw 167

implement every method defined, or inherit from the Adaptor class, and implement only
those which are relevant for their case. If a listener happens to be also a subclass then it
is limited to implement the interface since it cannot inherit from the adaptor class.

We developed a solution that resembles the Java way but with roles. Instead of defining
an adapter class we developed an adapter role. That role implements the no action default
implementation for each method of the listener interface. This way a listener can always
play the adapter role, even if it is a subclass, having to implement only the relevant
methods. That role was then generalized and became a configurable role where the type
of the listeners and events are defined by generics and the method names by our renaming
mechanism. This role found its way to our role library.

In JHotDraw we found several instances of the observer pattern that could use this
role. For each instance we developed a dedicated version by configuring the generic role
for each purpose. We could write a generic role for each instance of the observer pattern,
but once again our goal was not to improve the framework, but reduce replicated code
using roles. Therefore we developed an Adaptor role for the following concerns:

• DrawingView Listener

• Figure Listener

• Tool Listener

• Command Listener

Other library candidate roles

There are figures that contain other figures, like composite figures or decorator figures.
This means that they are subjects of a figure observer pattern, but because they must react
to changes in their contained figures they also play the role of figure listeners. Whenever
their contained figures change they need to notify their own listeners. This is done simply
by forwarding the notification method.

We found this role useful for other situations so we generalized it using generics to
configure listeners and event types. With the renaming mechanism we can configure
method names. Finally we putted the role - NotificationResender - into the library. For
the framework we developed a specific role - FigureChangeResender - that plays and
configures the library role to the figure context.

During some operations, we need to traverse a list of figures or handles that we referred
to as the "Figure/Handle and Enumerator" concern. We even found a use for a reverse
traverse of a list of figures. Each enumerator, even for the reverse, has a code very similar

168 case studies

to the others, so we develop a role for that concern. We even did find it useful enough to
put it into the role library.

The developed role has methods to return the next element in a collection and see
if it has more elements. It also lets clients define the collection it handles and reset the
traversal. It used generics for the types and allows the renaming of the methods that
return the next element and whether there are more elements.

9.3.4 Explaining Unresolved Concerns

A surprising result is that for the 2 concerns with the most clone sets and class involved
neither technique works. This is due to the nature of the clones. They are clones only
in the structure and not on the code itself. The ”Creating Undo Activity” concern must
create an undo activity object for each of the various tools and commands supported by
the framework. Each tool class has an UndoActivity inner class hence the undo activity
creation is just a line of code instantiating an object of the respective inner class. Because
each inner class constructor has different parameters in number and types, roles could not
resolve this concern. UndoActivity concern clones are due to the inner classes, because
they all have the same name and constructors with the same structure, even if not equal.
Another example of such a concern is the Handle manipulation starting action: code was
similar but not quite identical because methods called had different parameters and most
code would disappear with refactoring.

Another example is Persistence: because figures must be streamed they have a write
and read methods that have similar structures, but not quite identical code. It is enough
for two figures to have a single field and store/read that field to have identical code in this
concern, even if the fields are unrelated and of different types. Some figures have to write
longs while others have to write integers. We have considerably reduced this duplicated
code with our DisplayBoxed role, though, since figures have to deal with their display box
they need to write/read the display box.

Another unresolved concern is the DrawingView listener. The replicated code is redefin-
ing the original method, apparently for performance issues that we failed to understand.
It is our belief that if we deleted the method, the code would be equally effective.

One unresolved clone - ”Desktop Initial configuration” - dealt with a Desktop’s panel
initialization, which initializes panel titles and adjusts a scrollPane. Each possible initial-
ization is similar so we could configure a role for every way a scroll pane is configured and
then reuse them whenever we created a Desktop. But configuring a role would be more
confusing as there would be several roles, one for each configuration, and knowing them
would require more effort than to know how to configure the scroll pane.

The others unresolved concerns where a single line in the form of

jhotdraw 169

return getSomeObject().doSomething(). Since the first method returns
different objects that calls different methods we could develop a role, but role configuration
would be harder than writing the code itself.

If we had not considered some of these concerns as clones then roles would count only
4 unresolved clones.

9.3.5 Other Considerations

Because JHotDraw was developed as a design exercise and used as a pedagogical tool the
code had several characteristics that facilitated the development of roles. One of those
was the field access. Classes never accessed their fields directly but always through the
use of getters and setters methods. This helped when we moved the fields to a role. The
methods that accessed that field but were not moved to the role needed no modification
whatsoever. It also helped when the field was not moved to the role but was accessed by
the role. The required methods that were needed were already developed in the class.

170 case studies

9.4 OpenJDK Compiler

9.4.1 OpenJDK Compiler Overview

The OpenJDK 1 is an open source implementation of the Java Platform, Standard Edition
and related projects. One of those projects is the Compiler Group comprised of developers
involved in the design, implementation, and maintenance of the javac compiler for the Java
programming language, and associated components. The purpose of the javac compiler is
to read source files written in the Java programming language and compile them into class
files. Optionally, the compiler can also process annotations found in source and class files
using the Pluggable Annotation Processing API. The compiler is a command-line tool but
can also be invoked using the Java Compiler API.

The compiler of JavaStage was developed by adapting the javac compiler code found
in the Compiler group 2, version 1.6.0. javac is written in the Java programming language,
thus selecting this system as a case study was a natural choice.

The javac compiling process can be divided into three stages, as shown in figure 9.2.
Different parts of source files may proceed through the process at different rates, on an
“as needed” basis. This process is handled by the JavaCompiler class. We can summarize
it as:

• Parse and Enter - All the source files specified are read, parsed into syntax trees,
and then all externally visible definitions are entered into the compiler’s symbol
tables. The reading is done by a Scanner that converts the text to tokens. Tokens
are then read by the Parser that builds the syntax tree. Each tree is passed to Enter
that enters symbols for each definition. Enter starts by entering symbols for all top
levels classes, interfaces or enums. Enter has a MemberEnter auxiliary class that
processes the symbols of class members.

• Annotation Processing - All appropriate annotation processors are called. If any
annotation processors generate any new source or class files, the compilation is
restarted, until no new files are created.

• Analyze and Generate - Finally, the syntax trees created by the parser are analyzed
and translated into class files. The work to analyze the trees and generate class files
is performed by a series of visitors. During the course of the analysis, references to
additional classes may be found. The compiler will check the source and class path
for these classes; if they are found on the source path, those files will be compiled as
well, although they will not be subject to annotation processing.

1 http://openjdk.java.net/
2 http://openjdk.java.net/groups/compiler/

openjdk compiler 171

Figure 9.2: javac compiling stages

The principal visitors for the Analyze and Generate stage are:

• attr - the top level classes are "attributed", i.e., names, expressions and other elements
within the syntax tree are resolved and associated with the corresponding types and
symbols. Many semantic errors may be detected here, either by Attr, or by Check.

• Flow - responsible for checking definite assignment to variables, and unreachable
statements, which may result in additional errors.

• TransTypes - deals with generic types by replacing them with code without generics.

• Lower - processes "syntactic sugar". This takes care of nested and inner classes, class
literals, assertions, foreach loops, and so on.

• Gen - generates the bytecodes that are associated with the code attributes of the
method trees. If that step is successful, the class is written out by ClassWriter.

The OpenJDK compiler is not limited to the compiler, it also includes several tools like
javadoc that generates documentation in HTML format from doc comments in the source
code. In this tool there are several classes responsible for generating the html information
for methods, fields, classes etc. A subtype of doclet is available for each of these types of
information.

9.4.2 OpenJDK Results

Initially 581 clone sets were obtained. After the filtering of the clone sets appearing
only in two, or more, classes these were reduced to 148. For an explanation of this great
reduction see section 9.4.5. After inspection, 20 clone sets were considered false clones
and disregarded. This left a final 128 clone sets to consider and determine the concern
they addressed.

We identified a total of 37 concerns, from which we removed 5. Methods associated
with one of the removed concerns were listed in the "to do" list to be removed from one of
the classes involved. Another concern was an enum duplicated in another package. This
duplication is a change in Java from version 1.5 to version 1.6, that moved the enum from
one package to the other. Another of the removed concerns was a class duplicated for no

172 case studies

apparent reason, but we suppose one of them is going to be removed. The final 2 concerns
could be easily removed by placing a method in one of the available utility classes. The
considered 32 concerns are shown in table 9.5. Also shown in the table, for each concern,
is the number of clone sets associated with it and the number of classes that deal with
that concern.

After associating each clone with a concern we proceed with the development of roles
for each concern, using our role related refactorings (see section 7.2). Used roles were
developed purposely to each concern but we were also able to place one role in the role
library (chapter 8). We show the concerns that were resolved in table 9.6. For these
concerns we also present which refactoring was used. Unfortunately, not all concerns were
resolved. Unresolved concerns are shown in table 9.7.

Table 9.2 shows that we developed roles for 25 concerns out of the 32 concerns, leaving
only 7 concerns (see table 9.3) with no available role. After analyzing the unresolved
concerns we can say that the results are quite satisfactory and that the 7 unresolved
concerns are, for its majority, not due to roles limitations.

After the concerns we made the LOC count. The results are shown in table 9.8. We
can see that for the majority of the resolved concerns roles needed fewer lines of code, a
37% reduction in code size. This seems to indicate a smaller effort when developing the
system with roles.

9.4.3 Solved Concerns

In the solved concerns we count 25 concerns. In 1 concern we were able to generalize it
and place its role in the role library (see chapter 8). We did not use any role of the library,
though.

From table 9.6 we find that two concerns were resolved by a combination of refactorings.
This is explained because the classes involved dealt with the same concern but they were
not implemented in the exact same way among them. This explains why there are various
clone sets associated with this concern. In both cases we developed two different roles,
using role inheritance, to accommodate the differences observed between implementations.
The "Writing headers" concern, for example had 15 associated clones and affected 5
classes. This means that all classes share the same behavior but they implemented it with
variations among them. To fully capture those varieties we developed two roles using the
two mentioned techniques and also used the role inheritance for one role to extend the
other. It must be mentioned that the ERTM refactory was used because one method
had a slight change in the name, so we had to use the renaming mechanism. If roles
were developed in the first place we suppose that the name would be the same, and no
configuration would be needed, simplifying the role.

openjdk compiler 173

#
Concern Associated Affected

Clones Classes
Writing headers 15 6
Taglet information 3 6
Building fields 6 10
Message formatting and retriever 1 2
Reading formatted chars 3 3
Writing headers for html doclets 3 6
Annotation proxy maker 1 2
Loop visitor 1 2
Returning Objects as types 1 2
Class member 1 2
Writing navigation links 5 4
Storing information for local vars 2 3
Value visitor for annotations 2 2
Converting files to URL and vice versa 2 4
Creating scanners 1 2
Local class info 4 7
Returning annotation descriptions 1 3
Version flags 6 2
Visitor subjects 4 8
Converting types to String 27 3
Printing navigation bar 1 2
Printing error messages 1 2
Converting a list of a type to a list of another type 1 2
Generating file from builder 3 7
Member document implementer 1 2
Returning formal type parameters 1 2
Initiating tree visiting with environment preservation 1 2
Get declared type 1 2
Mnemocodes initializer 1 2
Determining opcode names and lengths 2 2
Building a set of modifiers 9 2
Building access modifiers string 4 4

Table 9.5: OpenJDK compiler’s identified concerns associated with the corresponding clone sets.

174 case studies

Used
Concern Refactoring
Resolved With Purpose Built Roles

Writing headers ER + ERTM
Taglet information ER
Building fields ERTM
Message formatting and retriever ER
Reading formatted chars ERCT + ER
Writing headers for html doclets ERCM
Annotation proxy maker ER
Loop visitor ER
Returning Objects as types ER
Class member ER
Writing navigation links ERTM
Storing information for local vars ER
Value visitor for annotations ER
Converting files to URL and vice versa ER
Creating scanners ERCT
Local class info ERTM
Returning annotation descriptions ER
Visitor subjects ERTM
Printing navigation bar ERCM
Printing error messages ERCT
Generating file from builder ERCT
Member document implementer ER
Returning formal type parameters ER
Initiating tree visiting with environment preservation ERTM

Resolved With Roles Placed in the Library
Converting a list of a type to a list of another type ERTM

ER = Extract Role, ERCT = Extract Role Changing Types, ERCM = Extract Role with Configurable
Methods, ERTM = Extract Role with Types and Methods

Table 9.6: OpenJDK compiler resolved concerns

Unresolved Concern Reason
Version flags code in enums
Converting types to String flag comparison only
Get declared type too small code
Mnemocodes initializer code uses constants defined in different classes
Determining opcode names and lengths code uses constants defined in different classes
Building a set of modifiers static and non static methods
Building access modifiers string consecutive flag checking

Table 9.7: OpenJDK compiler unresolved concerns

openjdk compiler 175

Concern Original Roles Roles/
LOC LOC Original

Writing headers 224 125 56%
Taglet information 40 19 48%
Building fields 251 122 49%
Message formatting and retriever 84 63 75%
Reading formatted chars 112 60 54%
Writing headers for html doclets 62 41 66%
Annotation proxy maker 54 34 63%
Loop visitor 16 23 144%
Returning Objects as types 24 17 71%
Class member 28 23 82%
Writing navigation links 191 120 63%
Storing information for local vars 24 18 75%
Value visitor for annotations 64 42 66%
Converting files to URL and vice versa 126 40 32%
Creating scanners 16 13 81%
Local class info 38 29 76%
Returning annotation descriptions 18 18 100%
Visitor subjects 20 6 30%
Printing navigation bar 32 23 72%
Printing error messages 34 32 94%
Generating file from builder 73 71 97%
Returning formal type parameters 12 14 117%
Initiating tree visiting with environment preservation 18 27 150%
Converting a list of a type to a list of another type 10 6* 60%

* used role from library

Table 9.8: OpenJDK compiler LOC count

176 case studies

The Extract Role refactory, was the most used with 14 (56%).concerns This is
somewhat expected because when developing a purposely built role the methods and
types are specific to the purpose. The somewhat unexpected result was that the second
most used refactoring was the Extract Role with Types and Methods, the most
complex one, used in 6 concerns (24%). This may be explained by the fact that most of
the usage was done in concerns that treated several types the same way. For example, the
"Building Fields" concern was responsible for building documentation for the members of a
class. Each member has a builder class responsible for creating the documentation of such
entities like fields and methods. The code for each class was similar but each class dealt
with a different kind of writer, because there was a writer class for each kind of member,
and some methods were named differently. To solve these clones we developed a role that
enables method configuration, as well as type configuration for the writers.

An example of the use of the Extract Role Changing Types is the "Creating
scanners" concern. There are several classes that act as scanners, either to read the Java
code or to read the document files. Each Scanner class has an inner factory that creates a
scanner of its respective type. Factories differ only in the types of scanners created, so we
created a role where the type of the scanner can be configured.

The concern "Writing headers for html doclets" is among the ones that use the Extract
Role with Configurable Methods refactory. This is one of the concerns that deals
with the writing of the documentation in the html format. To do this each class uses
methods like printBottom(), printBodyHtmlEnd(). The class methods are named like
printClassUseFooter() or printPackageUseFooter(). Our role has configurable methods
allowing the player classes to tailor the methods’ names to their needs.

This case study has 3 concerns that needed more code to remove the clone than the
code of the clone itself. The reason for this is the same in all the concerns. It was the fact
that in javac many fields are used as public so there are no getters and setters methods
to access them. This resulted in an overhead for the roles as they needed to access class
fields, and thus these methods had to be created, and were counted as a solution LOC.
Since roles also required other methods from the class the sum of these requirements and
the getters methods code resulted in a LOC number higher than the clone code itself.

Visitors

If there is a pattern extensively used in this case study it is the Visitor pattern. It is
used by every pass of the compiler to transverse the syntax tree. It is also used in other
situations for other types of trees. The clone detector did not find the use of this pattern
for the syntax tree nodes. This occurred despite the fact that there are several classes, one
for each language construct like import, class, variable declarations, method declaration,

openjdk compiler 177

method call, etc. Each class even has two accept methods that call the corresponding
visitor method, one for TreeVisitors and another for simple Visitors.

The reason why the clone detector did not capture this concern was the filtering of the
clones that did not span two files. We expected each class to have its how file, but in this
case all the node classes were developed inside the same file, as inner classes of the JCTree
class, that acted simultaneously as the superclass for all the node classes.

The only visitor pattern detected was the one used in the "Visitor subjects" concern
that was used for visiting attributes associated with the nodes. And even in this case not
all the subjects were detected. In this case the number of tokens was probably the cause
for not detecting these clones. In fact the accept method has a small signature that fails
the 12 token minimum used by the clone detection tool. The ones detected also included
code unrelated to the concern like constructors, or a get method, thus making it exceed
the 12 token limit.

In our role library we developed a Visitor role, so this concern should be in the resolved
with roles from the library. Nevertheless we could not reuse our library visitor role. This
comes from a limitation of roles but also from Java’s Generics. The accept method was
defined using generics for the attributes visitor type like this
<R,D> R accept(Attribute.Visitor<R,D> visitor, D data);

This definition allows each visitor to define the type of the parameter and the type
of the result of the visit method. Java’s generics do not allow us to have generic type
configured with generic types, so we could not develop a role where we declared visitor to
be of an unknown type like in
role<VisitorType>{

public <R,D> R accept(VisitorType<R,D> visitor, D data){

visitor.visit#class#(this, data);

}

}

This situation forces us to develop a specific role for each visitor instance. We did not
develop a role for the syntax tree because it was not detected by CCFinder, but that one
would be similar to the attributes role, just changing the visitor’s type.

Our visitor role also assumes name conventions for the visit methods that are not
followed in the OpenJDK compiler. To use the visitor pattern in this case we had to
rename the visit methods in order to follow the naming conventions. Since the code is
not part of a framework or the compiler’s API this change is innocuous to the systems’s
clients. If roles were to be used right from the start the name conventions required for the
visitor pattern would not be a practical problem.

178 case studies

Library candidate roles

From this case study we only encountered a possible candidate for a library role. The
"Converting a list of a type to a list of another type" concern is used by its classes to
convert a list of one type into a list of another type. The conversion is done on an object
by object basis and it ensures that the order of the objects is the same. Since this is a
concern that other classes may have we placed this role in the role library. Both initial and
final types are configurable with generics and the conversion method uses the renaming
mechanism..

9.4.4 Explaining Unresolved Concerns

Some of the non removed clones could be considered as not real clones by some authors,
but we considered them nevertheless because they addressed the same concern. Such
are the cases of the concerns "Converting types to String" and "Building access modifiers
string". In these concerns the replicated code is mostly an if statement followed by an
action. For example, in the converting types to strings the code was just a sequence of ifs,
one for each type present, and returning the string equivalent of that type, as shown next
else if(elmT.equals("byte"))return "jbyteArray";

However the returned type names were different between classes (in one class it would
be "jbyteArray" and in another it would be "jbyte") and in some cases even the type was
different (one using "byte" and another using "B"). This is a case in which the code is not
similar, only its structure is, and we could mark it as a false clone.

In the other concern the code was just a series of ifs testing if a given flag is set. An
example is:
if ((access & ACC_ABSTRACT) !=0) v.addElement("abstract");

Depending on the class, the number and flags tested were different. Some tested only
access levels, others tested modifiers like static, synchronized, etc.

The "Get declared type" concern contained just two lines of code with an if statement
followed by a return or a throws. To address this concern we would need to build a
configurable role because it uses different types and would require methods from the player.
Since this code was so small the use of such role was disregarded as it would be more
complex than to replicate the code.

Some concerns were not resolved due to role limitations. One of such limitations is
that roles can not be played by enumerations (enums). Our reasoning for roles is that
they represent a concept that is to be played by a class and not just a set of methods
that are added to the class. Thus we limited the role playing capability to classes. In this

openjdk compiler 179

case study, and in the "Version flags" concern, we found duplicated code inside enums, but
roles are not an option for their removal.

Methods having different attributes for each player class are not supported by roles. If
a method is static in a role it is static in all its players and if it is not static we cannot
make it static in any player. This limitation prevented us to develop roles for the concern
"Building a set of modifiers". In this concern a class has the method static and the other
uses a non static method.

The "Mnemocodes initializer" and "Determining opcode names and lengths" are related
concerns as they affect the same classes and use related code. However we could not
remove either. The reason for that is that both classes use a set of constants that have the
same name and values, but are defined in different places. Those constants are the opcodes
used in the JVM. The reason for replicating the definition of such constants we could not
ascertain, but while in a case a class defines its own constants the other inherits them
from an interface which is autogenerated and contains constants defined in the interpreter.
Since the code used such constants and we cannot be sure that they will stay equally
named and valued, one of them being automated, we decided not to develop a role.

9.4.5 Other Considerations

One distinguishing feature of this case study is that the code uses a lot of public fields
for, possibly, performance reasons. This affected the way the roles were developed. In
some cases we had to rename those public fields to uniform the names. The renaming
mechanism can be used to define methods names but it cannot be used to define field
names. This refactoring was done because these classes did not make part of the compiler
API so it would not compromise any client.

The development of roles also suffered from the lack of proper getters and setter
methods. Whenever we moved a field from a class to a role and that field was accessed
inside the class, most of the times it did not have a corresponding get or set method and
we had to define one. This was a reason why some concerns had more code than the clone.
The results could also be better if these methods were already developed, because then we
would not count them as solution LOC.

An important consideration in this case study is the high number of clones detected
prior to the filtering of clones with the two file span. This filtering reduced 581 clone sets
to 148. This may imply that this filtering could have removed important data. It did
remove the visitors data from the syntax tree classes. Since these classes also share some
common behavior it should be expected that a large number of clones were originating in
this file alone.

The development of subclasses as inner classes of their superclass was also used in

180 case studies

other situations, like the symbols classes that are all subclasses of the Symbol class and
inner classes as well. This use explains the large number of clones removed when filtering
clones only present in two files.

So, did we lose important data by using this filter? The short answer is yes. Does it
compromise the case study? Maybe, but some filtering would have to be done because
581 clone sets to be analyzed is just too much data for manual inspection. A reason
why we believe that this does not affect the results much is that the inner classes are
always subclasses of their outer classes so much of the cloning that could arise inside that
hierarchy could be removed by using traditional refactorings.

spring framework 181

9.5 Spring Framework

9.5.1 Spring Framework Overview

Spring framework3 is a layered Java application platform for building enterprise solutions.
Spring framework provides a powerful and flexible collection of technologies to improve
the development of enterprise Java applications and is claimed to be used by millions of
developers. Since it is a widely used framework and has been thoroughly tested is should
pose an interesting challenge.

The Spring Framework consists of features organized into about 20 modules. These
modules are grouped into Core Container, Data Access/Integration, Web, AOP (Aspect-
Oriented Programming), Instrumentation, and Test, as shown in Figure 9.3.

Spring Framework Spring Framework Spring Framework Spring Framework RuntimeRuntimeRuntimeRuntime

Data Access/Data Access/Data Access/Data Access/IntegrationIntegrationIntegrationIntegration

JDBCJDBCJDBCJDBC ORMORMORMORM

OXMOXMOXMOXM JMSJMSJMSJMS

WebWebWebWeb
(MVC/(MVC/(MVC/(MVC/RemotingRemotingRemotingRemoting))))

WebWebWebWeb ServletServletServletServlet

OXMOXMOXMOXM JMSJMSJMSJMS

TransactionsTransactionsTransactionsTransactions
PortletPortletPortletPortlet StrutsStrutsStrutsStruts

AOPAOPAOPAOP AspectsAspectsAspectsAspects InstrumentationInstrumentationInstrumentationInstrumentation

Core Core Core Core ContainerContainerContainerContainer

BeansBeansBeansBeans CoreCoreCoreCore ContextContextContextContext
ExpressionExpressionExpressionExpression

LanguageLanguageLanguageLanguage

TestTestTestTest

Figure 9.3: Spring Framework overview

The Web layer consists of the Web, Web-Servlet, Web-Struts, and Web-Portlet modules.
Spring’s Web module provides basic web-oriented integration features such as multipart
file-upload functionality and the initialization of the inversion of control container using
servlet listeners and a web-oriented application context. It also contains the web-related
parts of Spring’s remoting support.

The Web-Servlet module contains Spring’s model-view-controller (MVC) implementa-
tion for web applications. Spring’s MVC framework provides a clean separation between
domain model code and web forms, and integrates with all the other features of the Spring
3 http://www.springsource.org/

182 case studies

framework. The Web-Portlet module provides the MVC implementation to be used in
a portlet environment and mirrors the functionality of the Web-Servlet module. This
mirroring will be responsible for many code clones.

The Core Container consists of the Core, Beans, Context, and Expression Language
modules. The Core and Beans modules provide the fundamental parts of the framework,
including the inversion of control and dependency injection features. The BeanFactory is a
sophisticated implementation of the factory pattern. It removes the need for programmatic
singletons and allows the decoupling of the configuration and specification of dependencies
from the actual program logic.

Spring’s AOP module provides an AOP Alliance-compliant aspect-oriented program-
ming implementation allowing the definition of, for example, method-interceptors and
pointcuts to cleanly decouple code that implements functionality that should be sepa-
rated. Using source-level metadata functionality, it is possible to incorporate behavioral
information into the code, in a manner similar to that of .NET attributes.

The separate Aspects module provides integration with AspectJ. Since JavaStage does
not support aspects this source code was ignored in the case study.

The Instrumentation module provides class instrumentation support and classloader
implementations to be used in certain application servers.

9.5.2 Spring Framework Results

Even after the filtering of those clones with less that two files there were 416 clones. Due
to this great amount of clones and because we wanted to manually inspect all clones, we
filtered out the clones with less than 20 tokens. The clones to be inspected were thus
reduced to 164 clones. After manual inspection 31 clones were discarded leaving a final
133 clones.

We then began the process of grouping the clones by concerns and identified 89 concerns.
From these concerns 5 were discarded because 1 could be resolved with simple changes
in the inheritance hierarchy and 2 could be well resolved with normal refactorings and
the last 2 included deprecated code. We thus obtained 84 concerns. Table 9.9 shows the
identified concerns and how they relate to the number of clones and number of classes. It
shows that most of the concerns have only 1 clone set associated, but some have up to 5
clone sets. We can also see that a clone may affect from 2 classes (most cases) up to 5.

After associating each clone with a concern we proceed with the development of roles
for each concern, using the refactorings described in section 7.2. For the developed roles
we either develop a special purpose role, or have used some role from the library developed
in chapter 8. Unfortunately, not all concerns were resolved. We show the concerns that

spring framework 183

were resolved in table 9.10. For these concerns we also present which refactoring was used.
Unresolved concerns are shown in table 9.11.

Table 9.10 shows that of the 84 concerns we were able to develop roles for 81, leaving
only 3 concerns (see table 9.11) with no available role. After the concerns we made the
LOC count. The results are shown in table 9.9. We can see that for the majority of the
resolved concerns roles needed fewer lines of code, a 29,5% reduction in code size. This
seems to indicate a smaller effort when developing a system with roles.

9.5.3 Solved Concerns

This case-study had the most identified concerns, 84, but at the same time was the one
with the least unresolved concerns, only 3 unresolved concerns. From all the 81 solved
concerns 1 was placed in the library.

From the 80 purposely resolved concerns the most used refactory was the Extract
Role which was used in 33 (46,9%) concerns. This was used when the code was identical, for
example, in the case of the ”Basic trigger behavior”. In this concern the SimpleTriggerBean
and CronTriggerBean classes are convenience classes to ease a beans-style usage. Each
class is a subclass of an already existing bean class (different superclasses of course), that
lacks sensible defaults. So they set as defaults the Spring bean name as job name, the
Quartz default group as job group, the current time as start time, and indefinite repetition,
if not specified. These classes should also register the trigger with the job name and group
of a given JobDetail, allowing the scheduler factory bean to automatically register a trigger
for the corresponding JobDetail, instead of registering the JobDetail separately. Their
code was very similar and could not be reused because of the different class hierarchies
each came from. We placed that code in the StdTriggerBean and solved this concern by
making both classes play the role.

Extract Role with Types and Extract Role with Types and Methods
were also used extensively with 21 (25,9%) and 20 (24,7%), respectively. This is somewhat
unexpected since these are the refactories that are the most complex. The Extract
Role with Types and Methods is the one we expected to use the least, and we
expected it to be used more in the library roles or library candidate roles, because of the
high level of configuration it provides. This unexpected usage is due to the portlet and
servlet support that Spring has. The way Spring handles each of the two services is very
similar. So there is much code that handles servlets that is equal to the code that handles
portlets. This code is a significant part of the Spring framework.This alone was responsible
for 25 concerns of the 81 resolved concerns (30,9% of resolved concerns). Since much of the
handling code differs only in the types used (servlet-portlet, HttpRequest-PorletRequest,

184 case studies

#
Concern Associated Affected

Clones Classes
Context resource for servlets/portlets 1 2
Nested Exception 1 2
Link for JPA Dialect 1 2
Data binder for servlets/portlets 1 2
Basic trigger behavior 1 2
Managing methods in MBeans operations 1 2
Adapters for requests 1 2
Mock implementation for multipart requests 1 2
Property accessor for traversing beans 1 2
Abstract handler mapping 2 2
Invocation Handler Adapter 1 2
Metadata bean initializer 1 2
Mapping exceptions class names to view names 2 2
RMI Client Interceptor 2 2
Web context scope for porlets/servlets 1 2
Common multiparts resolver 1 2
Resource Editor 1 2
Dispatcher for servlets/portlets 7 2
Trigger interceptors after some action 3 2
Context aware processor 1 2
Multimapper 1 2
Handler methods invoker 3 2
Lob Creation Synchronization 1 2
Session Bean Manager 1 2
Mock config implementation 1 2
Configurable application context 4 4
Transaction Manager 2 2
String Expression 1 2
HandlerExecutionChain 1 2
Servlet/portlet Framework 1 2
Proxy Bean Factory 2 5
Support for ObjectXXXFailureException 1 2
Alternate implementation of Property Editor 1 2
Multipart Parameter Manager 1 2
Supporting class for closing suppressing invocation handlers 2 4
Simple service exporter 1 2
Portlet/servlet bean 1 2
Connection Factory Manager 1 2
Connection Factory Getter 1 2
Creating instances of container factory beans 2 3
Managing cookies for mock responses 1 2
Managing sets and lists 3 4

Table 9.9: Spring’s identified concerns associated with the corresponding clone sets (Part I).

spring framework 185

#
Concern Associated Affected

Clones Classes
JpaVendorAdapter 1 2
AnnotationMethodHandlerAdapter 1 2
Template Dao Support 1 2
Custom Editor for maps and Collections 2 2
Isolation level setter 1 2
ProxyFactory holder 1 2
Entry with strings 1 2
Dealing with Configuration Property Values 1 3
Test support 3 2
PostProcessInstantiation tasks 1 2
Looking up and logging Jndi templates 1 2
Checking for SQL Script delimiters 1 2
Defining names to use within Metadata providers 1 2
Validating handler for HandlerMappings 1 2
Setting base names for resource bundles message source 1 2
Session and request management for request Attributes 1 2
Character encoding and content management for requests 1 2
Single Connection Factory 1 2
Session holder for mock requests 1 2
Shutdown and destroy executors 1 2
Manipulating outputstream for MockResponses 1 2
AnnotationMethodHandlerExceptionResolver common code 3 2
Web service feature conversion 1 2
Standard ThreadPoolTask Executor 2 2
Static Factories 1 2
Creating Rmi registry 1 2
Hibernate AccessException conversion 1 2
TaskScheduler 3 2
Generating maxValue incrementer as auto incrementer 1 2
Abstract handler exception resolver for Portlets/Servlets 1 2
HttpInvokerRequestExecutor response validator and Gzip

Response body 1 2
Deciding parameter name to use in a database call

metadata provider 1 2
Model+View for Portlets/Servlets 1 2
Setting concurrent limits 1 2
Parameter manager for mockers 1 2
Invoking methods in invocation handlers 1 2
Convert comma delimited strings 1 2
PortletServlet utils 5 2
Binding information to threads 1 2
Check parameters and headers 3 2
Request parsing 5 2
Locating a constructor/method on a type 2 2

Table 9.9: Spring’s identified concerns associated with the corresponding clone sets (Part II).

186 case studies

Used
Concern Refactoring
Resolved With Purpose Built Roles
Context resource for servlets/portlets ERTM
Nested Exception ER
Link for JPA Dialect ERCT
Data binder for servlets/portlets ERCT
Basic trigger behavior ER
Managing methods in MBeans operations ERCM
Adapters for requests ERTM
Mock implementation for multipart requests ER
Property accessor for traversing beans ERTM
Abstract handler mapping ERCT
Invocation Handler Adapter ER
Metadata bean initializer ER
Mapping exceptions class names to view names ERCT
RMI Client Interceptor ER
Web context scope for porlets/servlets ERCT
Common multiparts resolver ERCT
Resource Editor ER
Dispatcher for servlets/portlets ERTM
Trigger interceptors after some action ERTM
Context aware processor ERTM
Handler methods invoker ERCT
Lob Creation Synchronization ER
Session Bean Manager ER
Mock config implementation ER
Configurable application context ERTM
Transaction Manager ERTM
String Expression ER
HandlerExecutionChain ERCT
Servlet/portlet Framework ERTM
Proxy Bean Factory ER
Support for ObjectXXXFailureException ER
Alternate implementation of Property Editor ER
Multipart Parameter Manager ER
Supporting class for closing suppressing invocation handlers ERCT
Simple service exporter ER
Portlet/servlet bean ERTM
Connection Factory Manager ERCT
Connection Factory Getter ERTM
Creating instances of container factory beans ERTM
Managing cookies for mock responses ERCM
Managing sets and lists ERCM

ER = Extract Role, ERCT = Extract Role Changing Types, ERCM = Extract Role with Configurable
Methods, ERTM = Extract Role with Types and Methods

Table 9.10: Spring resolved concerns (Part I)

spring framework 187

Used
Concern Refactoring
Resolved With Purpose Built Roles
JpaVendorAdapter ERCT
AnnotationMethodHandlerAdapter ER
Template Dao Support ERTM
Custom Editor for maps and Collections ERCM
Isolation level setter ER
ProxyFactory holder ERCT
Entry with strings ER
Dealing with Configuration Property Values ERTM
Test support ERCT
PostProcessInstantiation tasks ER
Looking up and logging Jndi templates ERTM
Defining names to use within Metadata providers ERCM
Validating handler for HandlerMappings ERCT
Setting base names for resource bundles message source ER
Session and request management for request Attributes ERTM
Character encoding and content management for requests ER
Single Connection Factory ERTM
Session holder for mock requests ERTM
Shutdown and destroy executors ERCT
Manipulating outputstream for MockResponses ERCT
AnnotationMethodHandlerExceptionResolver common code ER
Web service feature conversion ER
Standard ThreadPoolTask Executor ERCT
Creating Rmi registry ERCM
Hibernate AccessException conversion ER
TaskScheduler ER
Generating maxValue incrementer as auto incrementer ER
Abstract handler exception resolver for Portlets/Servlets ERCT
HttpInvokerRequestExecutor response validator and Gzip

Response body ERTM
Deciding parameter name to use in a database call

metadata provider ER
Model+View for Portlets/Servlets ER
Setting concurrent limits ERCM
Parameter manager for mockers ER
Invoking methods in invocation handlers ER
Convert comma delimited strings ER
PortletServlet utils ERCT
Binding information to threads ERTM
Check parameters and headers ERCT
Request parsing ERCT
Resolved With Roles Placed in the Library

Multimapper ER ERTM
ER = Extract Role, ERCT = Extract Role Changing Types, ERCM = Extract Role with Configurable

Methods, ERTM = Extract Role with Types and Methods

Table 9.10: Spring resolved concerns (Part II)

188 case studies

Unresolved Concern Reason
Checking for SQL Script delimiters Static and normal methods
Static Factories Small inner static classes
Locating a constructor/method on a type Uses anonymous classes

Table 9.11: Spring unresolved concerns

etc) the ERCT was much used. When some of the methods were also different the ERTM
was used.

While servlet/portlet were responsible for the majority of ERCT and ERTM some
similar relations were also present. Some beans had the same handling but different types,
some transactions just used different types, service experts also, among others. These all
contributed to a larger amount of the use of these refactorings.

The ”Multimapper” concern deals with maps that can have various values with the
same key. It was used in the HttpHeaders and LinkedMultiValueMap classes. The key and
value types are represented by generics and the methods names needed no configuration
as they had the same name in both classes. However to be able to add them to the library
we need to let method names be configurable. We did not count this as a ERTM refactory
but as an ER library because in the Spring framework all methods had the same name
and the types were already generic.

The number of concerns with greater LOC count in the roles was 13 (18,5%). 4 of those
have less than 15 LOC and while having few requirements it still it does not compensate
for the required methods that need to be implemented. All the others have many requires,
some have more than 10 requires, and they all had at least two required methods that
needed to be implemented. Adding to this many also had configurations to be done and
this also contributed to the higher LOC count. As an example, in the ”Handler methods
invoker” one class has 34 and the other 35 lines so the total is 69 LOC. The role has a
total of 57 code lines, 8 of them due to the required methods. The role also had to store
the types of some classes that the clone used as arguments for some methods (example:
PortletRequest.class). The assignment and variables were responsible for 10 more lines
of code in the role. The required methods that needed to be implemented in the player
classes also contributed to a greater LOC in the use of roles.

9.5.4 Explaining Unresolved Concerns

Spring had only 3 unresolved concerns. They all were due to JavaStage limitations. The
”Checking for SQL Script delimiters” concern had a clone with identical methods. The
problem was that in the ResourceDatabasePopulator class this method was a normal
method whereas in the JdbcTestUtils class this was a static method. The method to be

spring framework 189

Concern Original Roles Roles/
LOC LOC Original

Context resource for servlets/portlets 74 49 66%
Nested Exception 56 34 61%
Link for JPA Dialect 32 25 78%
Data binder for servlets/portlets 18 20 111%
Basic trigger behavior 55 43 78%
Managing methods in MBeans operations 32 26 81%
Adapters for requests 67 55 82%
Mock implementation for multipart requests 36 21 58%
Property accessor for traversing beans 16 15 94%
Abstract handler mapping 104 78 75%
Invocation Handler Adapter 39 27 69%
Metadata bean initializer 18 14 78%
Mapping exceptions class names to view names 98 62 63%
RMI Client Interceptor 110 65 59%
Web context scope for porlets/servlets 56 37 66%
Common multiparts resolver 78 56 72%
Resource Editor 20 17 85%
Dispatcher for servlets/portlets 292 218 75%
Trigger interceptors after some action 138 46 33%
Context aware processor 28 35 125%
Multimapper 62 2* 3%
Handler methods invoker 69 77 112%
Lob Creation Synchronization 20 16 80%
Session Bean Manager 26 32 123%
Mock config implementation 34 25 74%
Configurable application context 108 50 46%
Transaction Manager 90 69 77%
String Expression 86 57 66%
HandlerExecutionChain 82 74 90%
Servlet/portlet Framework 108 98 91%
Proxy Bean Factory 54 43 80%
Support for ObjectXXXFailureException 28 18 64%
Alternate implementation of Property Editor 16 18 113%
Multipart Parameter Manager 58 53 91%
Supporting class for closing suppressing invocation handlers 77 35 45%
Simple service exporter 28 31 111%
Portlet/servlet bean 50 46 92%
Connection Factory Manager 22 20 91%
Connection Factory Getter 16 14 88%
Creating instances of container factory beans 82 63 77%
Managing cookies for mock responses 24 19 79%
Managing sets and lists 104 38 37%

* used role from library

Table 9.12: Spring LOC count (Part I).

190 case studies

Concern Original Roles Roles/
LOC LOC Original

JpaVendorAdapter 42 46 110%
AnnotationMethodHandlerAdapter 78 61 78%
Template Dao Support 30 22 73%
Custom Editor for maps and Collections 28 31 111%
Isolation level setter 22 21 95%
ProxyFactory holder 49 39 80%
Entry with strings 12 15 125%
Dealing with Configuration Property Values 30 26 87%
Test support 84 55 65%
PostProcessInstantiation tasks 22 17 77%
Looking up and logging Jndi templates 18 15 83%
Defining names to use within Metadata providers 75 28 37%
Validating handler for HandlerMappings 12 15 125%
Setting base names for resource bundles message source 24 17 71%
Session and request management for request Attributes 48 47 98%
Character encoding and content management for requests 40 27 68%
Single Connection Factory 64 53 83%
Session holder for mock requests 32 32 100%
Shutdown and destroy executors 22 32 145%
Manipulating outputstream for MockResponses 82 51 62%
AnnotationMethodHandlerExceptionResolver common code 142 75 53%
Web service feature conversion 28 18 64%
Standard ThreadPoolTask Executor 100 73 73%
Creating Rmi registry 97 66 68%
Hibernate AccessException conversion 12 13 108%
TaskScheduler 88 57 65%
Generating maxValue incrementer as auto incrementer 58 37 64%
Abstract handler exception resolver for Portlets/Servlets 55 32 58%
HttpInvokerRequestExecutor response validator and Gzip

Response body 16 16 100%
Deciding parameter name to use in a database call

metadata provider 14 15 107%
Model+View for Portlets/Servlets 92 51 55%
Setting concurrent limits 18 15 83%
Parameter manager for mockers 62 34 55%
Invoking methods in invocation handlers 18 16 89%
Convert comma delimited strings 30 20 67%
PortletServlet utils 144 87 60%
Binding information to threads 40 30 75%
Check parameters and headers 92 54 59%
Request parsing 232 160 69%

* used role from library

Table 9.12: Spring LOC count (Part II).

spring framework 191

declared on the role must be either static or non-static, and the player class cannot change
its nature. We could put the methods as static and both classes could play the same
role. However, we did not know the intentions of the class developer, and if marking the
methods as static would be an acceptable move.

The ”Static Factories” concern could not be resolved because the replicated code
was inside static inner classes in the WebApplicationContextUtils and PortletApplica-
tionContextUtils class. These inner classes represented factories for various objects like
SessionObjects or WebRequestObjects. Since roles do not support static inner classes we
could not develop such a role.

Finally, the ”Locating a constructor/method on a type” used replicated code inside an
anonymous class. Currently JavaStage does not allow roles to be played by anonymous
classes so we could not develop a role for this concern.

9.5.5 Other Considerations

One distinguishing feature of this case study is the presence of several blocks of code that
seem equal but vary in the types, where the best example is the servlet-portlet support.
This resulted in various clones using the ERTM and EMCT refactories.

The development of the Spring framework also proved mature and very few clones
could be resolved by other refactorings. This may be because the spring framework is very
mature but it can also be a consequence of the 20 tokens filtering we did. This filtering
could have removed these and other types of clones. Since we would ignore these clones
all the same we feel that the number of clone left after the filtering still provided a good
case study.

Various roles required several accessor methods, because the framework relied on
protected fields. One such example is the logger. It was common for superclasses to have
a logger object, that was used by subclasses. The logger object was declared protected so
all subclasses had access to it directly and no getLogger() method was used. Several roles
required such a method so it had to be developed for the player classes. If the logger was
declared private and the getLogger() method available in the superclass, many roles would
have even less code associated with it. For the majority of fields, however, the framework
used the good habit of accessing them using the getter-setter methods.

192 case studies

9.6 Discussion
We present a summary of the case results in table 9.13. The first observation we can
make is that the presence of concerns with clones that could be resolved with traditional
refactorings is low. The clones removed with Extract Role could also be removed using
Extract Class or even Extract Superclass but roles were always a better solution
(code length and/or modeling) so we opted for roles.

We can also observe that the number of unresolved concerns is low. The greater value
belongs to JHotDraw with 8 (19.5%). But they can be easily explained and derives from the
fact that we considered as clones some code that could be considered false clones. They are
clones only in the structure and not on the code itself. A "Creating undo activity" concern
creates an undo activity object for each of the various tools and commands supported by
the framework. Each tool class has an UndoActivity inner class hence all the constructors
of these inner classes have similar structures and were marked as clones. Each tool class
also has a method that creates an undo activity. Since this method is somewhat similar, it
was marked as a clone too. We opted to maintain this code as clones because they dealt
with the same concern.

System JHotDraw Open JDK Spring
Concerns

Considered 38 31 84
Solved 30 (79%) 24 (77%) 81 (96%)
Unsolved 8 (21%) 7 (23%) 3 (4%)

Refactorings Used
ER 18 13 33
ERCT 2 4 21
ERCM 2 2 7
ERCM 9 7 20

Code Statistics
Original clone LOC 1390 1571 4763
Final clone LOC 883 986 3360
Size Reduction 36,5% 37,2% 29,5%
Roles with less LOC 27 20 66
Roles with more LOC 2 3 13
Roles with same LOC 1 1 2

ER = Extract Role, ERCT = Extract Role Changing Types, ERCM = Extract Role with Configurable
Methods, ERTM = Extract Role with Types and Methods

Table 9.13: Clone removal results summary

Another example from JHotDraw is persistence: figures are streamed so they all have
a write and read methods with similar structures, but not quite identical code. Our role
DisplayBoxed considerably reduced this duplicated code, though. In another unresolved

discussion 193

concern the clone method overrides the superclass method for performance issues that we
failed to understand. We think that if the method was deleted, the code would be equally
effective.

Some clones (3 from JHotDraw and 4 from javac) could be removed with roles but
their configuration would be complex and since clones had, at most, 4 simple lines of code,
we decided that the clone was a better solution.

Interestingly the system with more concerns was the one with the least (only 3)
unresolved concerns. These concerns could not be resolved because of use JavaStage
limitations. One concern could not be resolved because the clone was a static method
in one class and a regular method in another class. Roles do not support changing the
nature of a method, so it was left unresolved. Javac also had such an unresolved clone.
The other limitations include the use of roles inside an anonymous class - responsible for
one concern in Spring - the use of roles in enums - responsible for one role in javac - and
the use of static inner classes in roles - responsible for one concern in Spring.

The remaining javac unresolved clone was a declaration of static constants in different
classes. The initialization was made in a static block so we could not put them into a role.
Our roles also do not support public static variables.

We can observe that in Spring the use of Extract Roles Changing Types is
proportionally greater than in the other systems. This is explained by the number of clones
that dealt with Portlets and Servlets. Nearly every class that dealt with one concern had
a corresponding class that dealt with the other concern, and most used Extract Role
Changing Types or Extract Role with Types and Methods. This shows that in
these situations roles are really useful.

From this discussion we can see that roles could remove almost all the clones and the
ones it didn’t resolve were some too small (less than 4 lines), some could be counted as
not real clones, and some had rarely used particularities.

We can see that for the majority of the resolved concerns roles needed fewer lines
of code, ranging from a 29,5% to 37% reduction in code size. This seems to indicate a
smaller effort when developing a system with roles. The concerns that had more LOC than
the original code were concerns with few lines of code where the role requirements and
configuration overhead did not overcome the replicated code. LOC are a good measure of
the effort that each approach requires but, as already mentioned, it does not account for
the modularity and maintenance issues. Since roles can place code in a single place thus it
becomes more modular as changes are confined to that place.

One thing that affects LOC count is the way the systems is programmed. If a role
needed to access a player’s field it would require a getter or a setter method. If the system
makes use of getters and setter to access fields as recommended by good practices then

194 case studies

those required methods are already present. On the other hand if the system relies on
public (like Open JDK) or protected fields (like Spring) then those getters/setters are
needed. Since they were not present in the original code we counted them as a solution
LOC and not as a clone LOC. This affects LOC count and roles suffer when comparing
with the initial solution. This explains some roles greater LOC count, especially in the
Spring framework where the protected fields were widely used by subclasses.

9.7 Threats to Validity

9.7.1 Complexity of JavaStage

This study did not take into account the difficulty in learning the JavaStage language.
Nevertheless we believe that the few extensions that JavaStage introduces are simple to
understand and do not pose great difficulties. The renaming mechanism with the # use is
the feature that may raise more comprehension problems. In our opinion, however, its
great usefulness makes for the extra complexity. To address this issue we must conduct
experiments involving developers.

9.7.2 System Comprehension and Evolution

Using roles to remove code clones does not mean that our solution is easier to understand
and to develop than using clones. We believe that all roles we developed contributed to a
better system, some more than others. Nevertheless some studies must be made to assess
if systems with roles are easier to maintain/evolve than without roles. For this we intend
to analyze the newer versions of these target systems and analyze the impact roles have
on issues like maintenance and evolution.

There is also the work of Riehle [Rie00] that shows that modeling a system with roles
is easier and provides a better comprehension so we expect to find those advantages when
they are used in programming as well.

9.7.3 Analyzed Systems

We analyzed 3 open source systems from different fields, each with its particularities. We
believe that they make a good case study, but nevertheless results could be different if we
used other systems and/or a bigger number of systems. The uniformity of results from
these three very different systems is somewhat reassuring, though.

summary 195

9.7.4 Case Study Setup

The clone detecting settings can also affect the detected clones and that would lead to
different concerns. That and the removal of clones from the same file could have removed
important clones. However, we would need to reduce the amount of clone sets to a
manageable number, otherwise there would be a greater number of false clones. We even
went under the limit of 30 tokens recommended in [KKI02] for the limitation of false
clones.

9.7.5 Clone Detecting Technique Used

We used a token-based clone detection tool for detecting clones. A characteristic of such
tools is that results tend to have too much noise (false clones), and that was evident from
our study. The need to filter the results, like we did on the Spring framework, may lead to
concerns being disregarded. If we used another clone detection technique we could have
different clones and therefore different results. Nevertheless, we believe that the amount
of clones detected in our study is enough to provide a good code base from which to draw
conclusions. This technique also does not detect all the code associated with a concern
so when analyzing the code we must not limit ourselves to the clone code but also to its
surrounding and associated methods. This implies an additional effort, which we did in
our case study.

9.8 Summary
In this chapter we presented a case study where we identified and removed clones from
three open source systems. We presented the case study setup and briefly described each
analyzed system. The case study results showed that roles are capable of significantly
reducing the amount of clones in a system. Results also showed that role could reduce the
amount of code one has to write. The case study also gave insights on roles limitations,
but none seemed to be a major limitation.

196 case studies

Chapter 10

Conclusions

10.1 Key contributions . 198
10.2 Future work . 199

This dissertation focused on the issues behind the replication of code in a system,
especially on those clones that are present due to lack of composition mechanisms by using
roles as a class composition block.

Object-oriented decomposition is a good methodology for developing large scale systems.
So much so that it is the most used decomposition in today’s systems. There are several
reasons for its success, from inheritance to an easily implemented information hiding. These
characteristics allow object-oriented modules to be reused and, with inheritance, easily
extended. However, in spite of these characteristics, we still encounter replicated code in
OO systems. And replicated code that cannot be avoided by using OO techniques, or
would be so difficult to avoid that using replicated code is a better solution. The presence
of clones in a system may be an indicator that it was badly designed or implemented, but
sometimes it just means that the design has been impaired by the lack of better ways of
decomposing the system.

Not all clones have negative consequences for a system. There are clones present for
performance reasons, especially in real time systems or in systems where the risk of using
new algorithms is great, like financial applications. Apart from these specific reasons the
majority of clones do have a negative impact on the system they appear on. They require
a greater effort in maintaining and evolving a system. This means that for the majority of
systems clones are to avoid and that a system without code clones is a better system than
one with clones.

This dissertation intended to prove that the use of another decomposition technique
could be used to remove code clones or at least, reduce code cloning. Since most systems

198 conclusions

are built around the object-oriented paradigm we wanted to provide a new decomposition
technique that was an extension of the object-oriented one. Because roles were a canonical
extension of OO [CD05] and provided a way of decomposing a class into sets of functionality
it provides to each client we opted to use roles as the decomposition strategy.

The evidence collected from the various case studies showed that roles are indeed
capable of reducing the replicated code. Furthermore they showed that roles can be used
to build reusable code giving developers another way of effectively reuse code. To support
this claim a library of roles was developed.

10.1 Key contributions
Briefly, the main contributions of the work presented in this dissertation are:

• Providing roles with a supporting language. Despite the fact that several
authors proposed roles as a mechanism useful in system design and modeling, no
role supporting language existed. To bridge this gap a role language was proposed
- JavaStage - and a suitable compiler developed. The language extended the Java
language by supporting roles as class building blocks. The language syntax and
its implementation made it backward compatible with Java specifications. This
means that prior systems are compilable with the JavaStage compiler without any
modifications. It also means that systems that use roles are executable with every
existing JVM transparently.

• Refactorings for removing code clones. The removal of clones is the primary
focus of this dissertation so explaining how to use roles to remove duplicated code
is a necessary contribution. To reduce the replicated code the identification of the
clone types that cannot be removed using the available refactorings was a first step.
Then the author presented a collection of four refactorings, each one for dealing with
one of the clone types identified. These were presented with real examples taken
from the case studies target systems..

• A role library. To demonstrate the reusability of roles a role library was developed.
This library started with the study of the design patterns present in the seminal book
of patterns [GHJV95]. These patterns provided several roles for the library. The
library grew further when adding roles that were used in the other case studies. In
these case studies some developed roles turned out to be generic enough to make it
to the library. Some of the library roles could even be reused in the case studies. The
development of such a library also proves that roles provide a better modularization
than just classes as the library roles could not be developed using classes alone.

future work 199

• Evaluation of the extent roles can reduce code clones in a system. Insight
on the impact that roles have on reducing code clones was ascertained by using a series
of case studies. In these case studies clones were identified and grouped according
to the concerns they dealt with and then removed using one of the refactorings
proposed. The results of these case studies supported our claim that roles can reduce
the amount of replicated code. Not only the replicated code was decreased but the
line count of the system also decreased. The target systems in the case studies
represented a wide range of applications. In each system the amount of clones
reduced as well as the reduction of lines of code, which seems to indicate that the
final system is better than the original one.

10.2 Future work
Scientific research is always a work in progress and new directions emerge constantly,
whether to improve the present findings or to explore new possibilities. The research paths
described in the next sections are deemed, by the author, worth of pursuit.

10.2.1 Improve and Enhance the JavaStage Compiler

The JavaStage compiler is a functional one but it is a line of command tool and it is
not part of an integrated development environment (IDE) like Eclipse or NetBeans. The
development of the compiler need to focus on the following items

• Java 1.7 Support. The compiler need to be upgraded to support the current
version of the Java language, so it stays up to date with the new language features.

• IDE integration. The use of an IDE is a must on today’s development environments.
The JavaStage compiler can be used as a command line tool, and called from inside an
IDE. This was done in the case studies where we used NetBeans as the development
environment and customized it to use the JavaStage compiler. But this leaves out
some key functionalities from IDE, like auto complete code. So the first goal is to
develop a compiler for the Eclipse platform and the NetBeans platform. .

• Debugger. The debugging of the code is not supported in the compiler, as the
debugging occurs in the compiled code that has no link to the role code. We need
to improve that part to provide debugging to be done in the role code. This is
important to detect bugs when developing a role and perform other features like
profiling.

200 conclusions

• Expanding javadoc. We need to expand javadoc so it incorporates the roles related
information into the documentation. For example it needs to inform on the roles each
class plays. For roles it should inform the required methods and the configurable
methods it offers.

• Compiler robustness. The compiler needs to gain more robustness as sometimes
the errors messages report to the synthesized role code instead of the source role
code they originate. There are also some bugs that sometimes cause the compiler to
abort compilation. Unfortunately this is a situation common to many systems.

10.2.2 Improve the JavaStage Language

Besides the improvements to the compiler, some improvements to the language may be
proposed.

One possible improvement is in the requirements list as it tends to be repetitive, when
a supplier appears several times. We intend to study ways to reduce that repetition. With
IDE support some of these features could be automatized.

10.2.3 Refine and Extend the Refactorings

The refactoring proposed cover the removal of code clones. These proved useful in the
case studies, but, as everything, they can be improved and replaced by newer and better
refactorings.

In this dissertation we only developed clones related refactorings as it was the scope
of the dissertation. However many refactorings can be proposed that are not related to
clones. Some of the refactorings catalogs could be improved by introducing roles and new,
role related, additions can be made. There is much work here to be done.

10.2.4 Extend the Role Library

We started the role library using design patterns as a starting point. We increased it
when reducing the replicated code from the systems used in the case studies. Nevertheless
this library can be increased further. This will be an ongoing task as the work on roles
programming advances.

10.2.5 Further Studies

The performed experiment presented in chapter 9, provided supporting evidence for the
benefits brought by the proposed contributions. Even so, further studies are required to
solidify the results and consolidate the research.

future work 201

Developers feedback

JavaStage proved to reduce the clone code, and roles proved to be a good way of composing
classes. But the view of developers on the language and the ease or difficulties in the
development of roles using the language is an important study. We designed JavaStage to
have a practical and intuitive syntax but developers may find it otherwise. We need to
conduct a series of studies to assess what developers think of the proposed extensions and
how they perform using it to do a series of tasks.

Impact on system maintenance and evolution

Our studies showed that the replicated code was greatly reduced and the code was restricted
to a single place. This means that to change the code, either to remove bugs or to add
new features one needs only to change the code in that restricted place. With this we
can expect the maintenance and evolution of the system to be improved. But we need
to conduct such tests. We propose to analyze the newer versions of the target systems
and identifying the evolutions made to the original code. We could then assess the impact
that the developed roles would have on the evolutions made.

Using roles in programming

The advantages of using roles in the modeling and documentation process are already
established. With JavaStage we can take those modeling principles into the implementation.
But do they actually bring benefits to the code? To study this a series of case studies
should be made. We can make two kinds of studies. We can make studies where we
develop a system from the ground up using roles all the way in the development process
and compare it to the same system developed without roles. This case study allows us to
see the practical benefits of roles. We can also refactor an existing system to use roles and
compare it to the original. This kind of study is less time consuming but its outcome may
not be enough to assess the amount of work needed to develop a role system as we cannot
compare development time.

Using roles in frameworks

The case studies we conducted included two frameworks, JHotDraw and Spring, and
a systems with an API, the OpenJDK. We did not, however, study the impact that
roles could have on the clients of such systems. We even set a rule of not changing the
framework interface so that clients would not be affected. But using roles can bring
benefits to framework design. A framework has hot spots that enable clients to extend
the framework, for example, by subclassing a framework class. Providing roles to their

202 conclusions

clients can be a useful way of extending a framework. The clients just need to play the
role (or a set of roles) to take full advantage of the framework. This can open a new door
in framework usage.

Industrial settings

Empirical studies should be performed in a professional, non-academic setting, with
developers engaged in full-scale software projects with defined time frames and development
process. These case-studies should engage in critical reflection of results with periodic
interviews, questionnaires and focus groups over an extended period of time. Lessons
should be learned that might be useful to help others and to act as agents of change in a
real-life problem setting.

Thank you for reading.

Appendices

Appendix A

Publications

A.1 Papers
2013

• Fernando Barbosa and Ademar Aguiar, “Using Roles to Model Crosscutting Con-
cerns”, Proceedings of Aspect Oriented Software Development (Modularity aosd13),
Fukuoka, Japan, 2013.

• Fernando Barbosa and Ademar Aguiar, “Composing Classes: Roles vs Traits”,
Proceedings of the 8th Evaluation of Novel Approaches to Software Engineering
(ENASE2013), Angers, France, 2013

• Fernando Barbosa and Ademar Aguiar, “Removing Code Duplication with Roles”,
Proceedings of the 12th International Conference on Intelligent Software Methodolo-
gies, Tools and Techniques (SoMeT13), Budapest, Hungary, 2013.

2012

• Fernando Barbosa and Ademar Aguiar, “Roles as Modular Units of Composition”,
Proceedings of the 7th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE 2012), Wroclaw, Poland, 2012.

• Fernando Barbosa and Ademar Aguiar, “Modeling and Programming with Roles:
Introducing JavaStage”, Proceedings of the 11th International Conference on In-
telligent Software Methodologies, Tools and Techniques (SoMeT12), Genoa, Italy,
2012.

206 publications

• Fernando Barbosa and Ademar Aguiar, “Modeling Crosscutting Concerns with
Roles”, Proceedings of the 7th International Conference on Software Engineering
Advances (ICSEA 2012), Lisbon, Portugal, 2012.

2011

• Fernando Barbosa and Ademar Aguiar, “Reusable Roles, a test with Patterns”, 18th
Conference on Pattern Languages of Programs (PLoP11), Portland, Oregon, USA,
2011.

A.2 Book Chapters
• Fernando Barbosa and Ademar Aguiar, “Using Roles as Units of Composition”,

Evaluation of Novel Approaches to Software Engineering, Springer Berlin Heidelberg,
2013

A.3 Posters
• Fernando Barbosa and Ademar Aguiar, “Developing a role library with JavaStage”,

2nd Workshop on Relationships and Associations in Object-Oriented Languages
(RAOOL’09), Genoa, Italy, 2009

Glossary

AOP Acronym for Aspect Oriented Programming [KLM+97].

API Acronym for Application Programming Interface.

ER Acronym for Extract Role.

ERCM Acronym for Extract Role with Configurable Methods.

ERCT Acronym for Extract Role Changing Types.

ERMT Acronym for Extract Role with Types and Methods.

FOSD Acronym for Feature-Oriented Software Development [AK09].

FOP Acronym for Feature-Oriented Programming [AK09].

GUI Acronym for Graphical User Interface.

HTML Acronym for HyperText Markup Language.

IDE Acronym for Integrated Development Environment.

J2EE Java Platform, Enterprise Edition. A platform for server programming in
the Java programming language.

JVM Acronym for Java Virtual Machine.

kLOC Acronym for kilo Lines Of Code — effectively thousands of LOC.

LOC Acronym for Lines Of Code.

MVC Acronym for Model-View-Controller .

OO Acronym for Object-Oriented.

SDK Acronym for Software Development Kit.

UML Acronym for Unified Modeling Language .

208 glossary

References

[AGO95] Antonio Albano, Giorgio Ghelli, and Renzo Orsini, Fibonacci: a programming language for
object databases, The VLDB Journal 4 (1995), 403–444. Cited on pp. 49, 52, and 55.

[AK09] Sven Apel and Christian Kästner, An overview of feature-oriented software development,
Journal of Object Technology 8 (2009), no. 5, 49–84. Cited on pp. 23, 43, and 207.

[BA11] Fernando Sergio Barbosa and Ademar Aguiar, Reusable roles, a test with patterns, In
proceeding of the 18th Conference on Pattern Languages of Programs (PLoP11), 2011.
Cited on p. 136.

[BA13a] , Composing classes: Roles vs traits, In Proceedings of the 8th Evaluation of Novel
Approaches to Software Engineering (ENASE2013), July 2013. Cited on p. 101.

[BA13b] , Removing code duplication with roles, Proceedings of the 12th International Confer-
ence on Intelligent Software Methodologies, Tools and Techniques (SoMeT13), September
2013. Cited on p. 111.

[BA13c] , Using roles to model crosscutting concerns, Proceedings of the Aspect Oriented
Software Development (Modularity aosd13), March 2013. Cited on p. 83.

[Bac80] Charles W. Bachman, The role data model approach to data structures., ICOD’80, 1980,
pp. 1–18. Cited on p. 48.

[Bak92] Brenda S. Baker, A program for identifying duplicated code, Computer Science and Statistics:
Proc. Symp. on the Interface, March 1992, pp. 49–57. Cited on p. 11.

[Bak95] B. S. Baker, On finding duplication and near-duplication in large software systems, Proceed-
ings of the Second Working Conference on Reverse Engineering (Washington, DC, USA),
WCRE ’95, IEEE Computer Society, 1995, pp. 86–. Cited on pp. 2, 11, 12, and 19.

[Bar08] Fernando Sergio Barbosa, Comparing three aspect mining techniques, Simpósio Doutoral em
Engenharia Informática (DSIE’08) (Porto), February 2008. Cited on p. 154.

[BB02] Elizabeth Burd and John Bailey, Evaluating clone detection tools for use during preventative
maintenance, Proceedings of the Second IEEE International Workshop on Source Code
Analysis and Manipulation (Washington, DC, USA), SCAM ’02, IEEE Computer Society,
2002, pp. 36–. Cited on p. 16.

[BC90] Gilad Bracha and William Cook, Mixin-based inheritance, Proceedings of the European con-
ference on object-oriented programming on Object-oriented programming systems, languages,
and applications (New York, NY, USA), OOPSLA/ECOOP ’90, ACM, 1990, pp. 303–311.
Cited on p. 23.

[BD77] Charles W. Bachman and Manilal Daya, The role concept in data models, Proceedings of
the third international conference on Very large data bases - Volume 3, VLDB ’1977, VLDB
Endowment, 1977, pp. 464–476. Cited on p. 48.

210 REFERENCES

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz, Classbox/j: controlling the
scope of change in java, Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications (New York, NY, USA),
OOPSLA ’05, ACM, 2005, pp. 177–189. Cited on pp. 45 and 109.

[BMD+99] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas Kontogian-
nis, Measuring clone based reengineering opportunities, Proceedings of the 6th International
Symposium on Software Metrics (Washington, DC, USA), METRICS ’99, IEEE Computer
Society, 1999, pp. 292–. Cited on pp. 16 and 21.

[BMD+00] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lagüe, and Kostas Konto-
giannis, Advanced clone-analysis to support object-oriented system refactoring, Proceedings
of the Seventh Working Conference on Reverse Engineering (WCRE’00) (Washington, DC,
USA), WCRE ’00, IEEE Computer Society, 2000, pp. 98–. Cited on pp. 21 and 67.

[Boo95] Grady Booch, Object-oriented analysis and design with applications (2. ed.), Benjamin/Cum-
mings series in object-oriented software engineering, Addison-Wesley, 1995. Cited on p. 50.

[BSI07] Matteo Baldoni, Università Studi, and Torino Italy, Interaction between objects in powerjava,
Journal of Object Technology 6 (2007), 7–12. Cited on pp. 49, 78, and 109.

[BSR04] D. Batory, J. N. Sarvela, and A. Rauschmayer, Scaling step-wise refinement, IEEE Trans.
Softw. Eng. 30 (2004), no. 6, 355–371. Cited on pp. 43 and 104.

[BvDvET05] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwe, On the use
of clone detection for identifying crosscutting concern code, IEEE Trans. Softw. Eng. 31
(2005), no. 10, 804–818. Cited on p. 37.

[BW00] Martin Büchi and Wolfgang Weck, Generic wrappers, Proceedings of the 14th European
Conference on Object-Oriented Programming (London, UK), ECOOP ’00, Springer-Verlag,
2000, pp. 201–225. Cited on p. 61.

[BYM+98] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier,
Clone detection using abstract syntax trees, Proceedings of the International Conference on
Software Maintenance (Washington, DC, USA), ICSM ’98, IEEE Computer Society, 1998,
pp. 368–. Cited on pp. 2, 11, 15, 16, and 19.

[CBDM09] Tom Cutsem, Alexandre Bergel, Stéphane Ducasse, and Wolfgang Meuter, Adding state
and visibility control to traits using lexical nesting, Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming (Berlin, Heidelberg), Genoa,
Springer-Verlag, 2009, pp. 220–243. Cited on p. 101.

[CD05] Daniel Chernuchin and Gisbert Dittrich, Role types and their dependencies as components of
natural types, Roles, An Interdisciplinary Perspective (University of Dortmund), American
Association for Artificial Intelligence, The AAAI Press, 2005. Cited on pp. 107 and 198.

[CH07] Andy Chiu and David Hirtle, Beyond clone detection: Cs846 course project, Tech. report,
Cheriton School of Computer Science, University of Waterloo, 2007. Cited on p. 23.

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein, Multijava: modular
open classes and symmetric multiple dispatch for java, Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications
(New York, NY, USA), OOPSLA ’00, ACM, 2000, pp. 130–145. Cited on pp. 45 and 107.

[CLD05] Daniel Chernuchin, Oliver S. Lazar, and Gisbert Dittrich, Comparison of object-oriented
approaches for roles in programming languages, Roles, An Interdisciplinary Perspective
(University of Dortmund), American Association for Artificial Intelligence, The AAAI Press,
2005. Cited on pp. 3 and 107.

REFERENCES 211

[CMLC06] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers, Multijava: Design
rationale, compiler implementation, and applications, ACM Trans. Program. Lang. Syst. 28
(2006), no. 3, 517–575. Cited on pp. 45 and 107.

[CMM+05] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwe, A qualitative
comparison of three aspect mining techniques, Proceedings of the 13th International Workshop
on Program Comprehension (Washington, DC, USA), IWPC ’05, IEEE Computer Society,
2005, pp. 13–22. Cited on p. 154.

[Cor03] J.R. Cordy, Comprehending reality: Practical challenges to software maintenance automation,
Int’l Workshop on Program Comprehension, IEEE Computer Society Press, 2003, pp. 196–
206. Cited on pp. 13 and 15.

[DBB+03] Premkumar Devanbu, Bob Balzer, Don Batory, Gregor Kiczales, John Launchbury, David
Parnas, and Peri Tarr, Modularity in the new millenium: a panel summary, Proceedings of
the 25th International Conference on Software Engineering (Washington, DC, USA), ICSE
’03, IEEE Computer Society, 2003, pp. 723–724. Cited on p. 44.

[DER07] Ekwa Duala-Ekoko and Martin P. Robillard, Tracking code clones in evolving software,
Proceedings of the 29th international conference on Software Engineering (Washington, DC,
USA), ICSE ’07, IEEE Computer Society, 2007, pp. 158–167. Cited on p. 23.

[Deu05] Arie Van Deursen, Ajhotdraw: A showcase for refactoring to aspects, In: Workshop on
Linking Aspect Technology and Evolution. (2005, 2005. Cited on p. 154.

[DNSB06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, and Andrew P. Black, Traits: A
mechanism for fine-grained reuse, Transactions on Programming Languages and Systems
28 (2006), 331–388. Cited on pp. 23 and 41.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer, A language independent approach
for detecting duplicated code, Proceedings of the IEEE International Conference on Software
Maintenance (Washington, DC, USA), ICSM ’99, IEEE Computer Society, 1999, pp. 109–.
Cited on pp. 11 and 19.

[DWBN07] Stéphane Ducasse, Roel Wuyts, Alexandre Bergel, and Oscar Nierstrasz, User-changeable
visibility: resolving unanticipated name clashes in traits, Proceedings of the 22nd annual
ACM SIGPLAN conference on Object-oriented programming systems and applications (New
York, NY, USA), OOPSLA ’07, ACM, 2007, pp. 171–190. Cited on p. 103.

[EFM09] William S. Evans, Christopher W. Fraser, and Fei Ma, Clone detection via structural
abstraction, Software Quality Control 17 (2009), no. 4, 309–330. Cited on p. 19.

[EOC06] Erik Ernst, Klaus Ostermann, and William R. Cook, A virtual class calculus, Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (New York, NY, USA), POPL ’06, ACM, 2006, pp. 270–282. Cited on pp. 46
and 109.

[FF98] Matthew Flatt and Matthias Felleisen, Units: cool modules for hot languages, Proceedings of
the ACM SIGPLAN 1998 conference on Programming language design and implementation
(New York, NY, USA), PLDI ’98, ACM, 1998, pp. 236–248. Cited on pp. 45 and 106.

[FF00] Robert E. Filman and Daniel P. Friedman, Aspect-oriented programming is quantification
and obliviousness, Tech. report, 2000. Cited on pp. 37, 40, and 103.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren, The program dependence graph
and its use in optimization, ACM Trans. Program. Lang. Syst. 9 (1987), no. 3, 319–349.
Cited on p. 20.

212 REFERENCES

[Fow99] Martin Fowler, Refactoring: Improving the design of existing code, Addison-Wesley, Boston,
MA, USA, 1999. Cited on pp. 12 and 21.

[FR99] Richard Fanta and Václav Rajlich, Removing clones from the code, Journal of Software
Maintenance 11 (1999), no. 4, 223–243. Cited on pp. 11, 12, 21, and 67.

[GB02] Kasper B. Graversen and Johannes Beyer, Chameleon, August 2002, Masters thesis. IT-
University of Copenhagen. Cited on p. 49.

[GFGP06] Reto Geiger, Beat Fluri, Harald C. Gall, and Martin Pinzger, Relation of code clones
and change couplings, Proceedings of the 9th international conference on Fundamental
Approaches to Software Engineering (Berlin, Heidelberg), FASE’06, Springer-Verlag, 2006,
pp. 411–425. Cited on p. 15.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design patterns: Elements
of reusable object-oriented software, Addison-Wesley, 1995. Cited on pp. 2, 6, 14, 31, 34, 38,
45, 57, 58, 75, 79, 135, and 198.

[Gie07] Simon Giesecke, Generic modelling of code clones, Duplication, Redundancy, and Similarity
in Software (Dagstuhl, Germany) (Rainer Koschke, Ettore Merlo, and Andrew Walen-
stein, eds.), Dagstuhl Seminar Proceedings, no. 06301, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. Cited on p. 15.

[Gra06] Kasper Bilsted Graversen, The nature of roles—a taxonomic analysis of roles as a language
construct, Ph.D. thesis, IT University of Copenhagen, Denmark, 2006. Cited on pp. 23, 47,
48, 55, and 62.

[GSS+06] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit Tewari,
Yuanfang Cai, and Hridesh Rajan, Modular software design with crosscutting interfaces,
IEEE Softw. 23 (2006), no. 1, 51–60. Cited on pp. 37 and 103.

[Gua92] Nicola Guarino, Concepts, attributes and arbitrary relations: some linguistic and ontological
criteria for structuring knowledge bases, Data Knowl. Eng. 8 (1992), no. 3, 249–261. Cited
on p. 48.

[Her05] Stephan Herrmann, Programming with roles in objectteams/java, 2005. Cited on pp. 49, 55,
59, 78, and 108.

[HK02] Jan Hannemann and Gregor Kiczales, Design pattern implementation in java and aspectj,
Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (New York, NY, USA), OOPSLA ’02, ACM, 2002,
pp. 161–173. Cited on pp. 38, 104, and 135.

[HKI08] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue, A metric-based approach to identifying
refactoring opportunities for merging code clones in a java software system, J. Softw. Maint.
Evol. 20 (2008), no. 6, 435–461. Cited on pp. 21 and 67.

[HKK+04] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue, and Key Words, Aries:
Refactoring support environment based on code clone analysis, In The 8th IASTED Interna-
tional Conference on Software Engineering and Applications(SEA 2004, ACTA Press, 2004,
pp. 222–229. Cited on p. 12.

[HKKI04] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, Refactoring support
based on code clone analysis, Kansai Science City, Springer, 2004, pp. 220–233. Cited on
pp. 11, 12, 21, and 67.

REFERENCES 213

[HO93] William Harrison and Harold Ossher, Subject-oriented programming: a critique of pure
objects, Proceedings of the eighth annual conference on Object-oriented programming
systems, languages, and applications (New York, NY, USA), OOPSLA ’93, ACM, 1993,
pp. 411–428. Cited on p. 44.

[HSHK10] Keisuke Hotta, Yukiko Sano, Yoshiki Higo, and Shinji Kusumoto, Is duplicate code more
frequently modified than non-duplicate code in software evolution?: an empirical study on
open source software, Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution (IWPSE) (New
York, NY, USA), IWPSE-EVOL ’10, ACM, 2010, pp. 73–82. Cited on p. 15.

[IE11] Matthias Diehn Ingesman and Erik Ernst, Lifted java: a minimal calculus for translation
polymorphism, Proceedings of the 49th international conference on Objects, models, compo-
nents, patterns (Berlin, Heidelberg), TOOLS’11, Springer-Verlag, 2011, pp. 179–193. Cited
on p. 80.

[JDHW09] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner, Do code
clones matter?, Proceedings of the 31st International Conference on Software Engineering
(Washington, DC, USA), ICSE ’09, IEEE Computer Society, 2009, pp. 485–495. Cited on
pp. 2, 11, and 15.

[JH06] N Juillerat and B Hirsbrunner, An algorithm for detecting and removing clones in java code,
pp. 63–74, 2006. Cited on pp. 11 and 12.

[JMSG07] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu, Deckard: Scalable
and accurate tree-based detection of code clones, Proceedings of the 29th international
conference on Software Engineering (Washington, DC, USA), ICSE ’07, IEEE Computer
Society, 2007, pp. 96–105. Cited on pp. 2 and 11.

[JO93] Ralph E. Johnson and William F. Opdyke, Refactoring and aggregation, Proceedings of
the First JSSST International Symposium on Object Technologies for Advanced Software
(London, UK, UK), Springer-Verlag, 1993, pp. 264–278. Cited on p. 29.

[Joh92] Ralph E. Johnson, Documenting frameworks using patterns, SIGPLAN Not. 27 (1992),
no. 10, 63–76. Cited on p. 159.

[Joh93] J. Howard Johnson, Identifying redundancy in source code using fingerprints, Proceedings of
the 1993 conference of the Centre for Advanced Studies on Collaborative research: software
engineering - Volume 1, CASCON ’93, IBM Press, 1993, pp. 171–183. Cited on pp. 15
and 19.

[Joh94] , Substring matching for clone detection and change tracking, Proceedings of the
International Conference on Software Maintenance, IEEE Press, 1994, pp. 120–126. Cited
on p. 15.

[KAB07] Christian Kastner, Sven Apel, and Don Batory, A case study implementing features using
aspectj, Proceedings of the 11th International Software Product Line Conference (Washington,
DC, USA), SPLC ’07, IEEE Computer Society, 2007, pp. 223–232. Cited on pp. 37 and 103.

[KBLN04] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin, An ethnographic study
of copy and paste programming practices in oopl, Proceedings of the 2004 International
Symposium on Empirical Software Engineering (Washington, DC, USA), ISESE ’04, IEEE
Computer Society, 2004, pp. 83–92. Cited on pp. 11 and 15.

[KdMM+96] Kostas Kontogiannis, Renato de Mori, Ettore Merlo, M. Galler, and Morris Bernstein,
Pattern matching for clone and concept detection., Autom. Softw. Eng. 3 (1996), no. 1/2,
77–108. Cited on pp. 11 and 15.

214 REFERENCES

[KG04] Cory Kapser and Michael W. Godfrey, Aiding comprehension of cloning through catego-
rization, Proceedings of the Principles of Software Evolution, 7th International Workshop
(Washington, DC, USA), IWPSE ’04, IEEE Computer Society, 2004, pp. 85–94. Cited on
p. 16.

[KG06a] , "cloning considered harmful" considered harmful, Proceedings of the 13th Working
Conference on Reverse Engineering (Washington, DC, USA), WCRE ’06, IEEE Computer
Society, 2006, pp. 19–28. Cited on p. 15.

[KG06b] Cory J. Kapser and Michael W. Godfrey, Supporting the analysis of clones in software
systems: Research articles, J. Softw. Maint. Evol. 18 (2006), no. 2, 61–82. Cited on pp. 2,
11, and 120.

[KH00] Raghavan Komondoor and Susan Horwitz, Semantics-preserving procedure extraction, Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (New York, NY, USA), POPL ’00, ACM, 2000, pp. 155–169. Cited on pp. 11, 12,
21, and 67.

[KH01] , Using slicing to identify duplication in source code, Proceedings of the 8th Interna-
tional Symposium on Static Analysis (London, UK, UK), SAS ’01, Springer-Verlag, 2001,
pp. 40–56. Cited on p. 20.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold, An overview of aspectj, Springer-Verlag, 2001, pp. 327–353. Cited on pp. 23
and 103.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code, IEEE Trans. Softw. Eng. 28
(2002), no. 7, 654–670. Cited on pp. 11, 16, 19, 76, 154, and 195.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean marc
Loingtier, and John Irwin, Aspect-oriented programming, Springer-Verlag, 1997, pp. 220–242.
Cited on pp. 37 and 207.

[KMPS09] Stein Krogdahl, Birger Møller-Pedersen, and Fredrik Sørensen, Exploring the use of package
templates for flexible re-use of collections of related classes, Journal of Object Technology 8
(2009), no. 7, 59–85. Cited on p. 105.

[Kni96] Günter Kniesel, Objects don’t migrate! – perspectives on objects with roles, Technical report
IAI-TR-96-11, ISSN 0944-8535, CS Dept. III, University of Bonn, Germany, nov 1996. Cited
on pp. 48 and 60.

[KO96] Bent Bruun Kristensen and Kasper Osterbye, Roles: conceptual abstraction theory and
practical language issues, Theor. Pract. Object Syst. 2 (1996), 143–160. Cited on p. 60.

[Kon97] K. Kontogiannis, Evaluation experiments on the detection of programming patterns using
software metrics, Proceedings of the Fourth Working Conference on Reverse Engineering
(WCRE ’97) (Washington, DC, USA), WCRE ’97, IEEE Computer Society, 1997, pp. 44–.
Cited on pp. 11, 12, 16, and 20.

[KR98] Gerti Kappel and Werner Retschitzegger, A comparison of role mechanisms in object-oriented
modeling, In Proc. of the GI-Workshop Modellierung'98, 1998, pp. 105–109. Cited on
p. 48.

[Kri95] Bent Bruun Kristensen, Object-oriented modeling with roles, Proceedings of the 2nd In-
ternational Conference on Object-Oriented Information Systems, Springer-Verlag, 1995,
pp. 57–71. Cited on pp. 23, 51, and 96.

REFERENCES 215

[Kri96] Bent Bruun Kristensen, Architectural abstractions and language mechanisms, Proceedings of
the Third Asia-Pacific Software Engineering Conference (Washington, DC, USA), APSEC
’96, IEEE Computer Society, 1996, pp. 288–. Cited on pp. 56 and 96.

[Kri01] Jens Krinke, Identifying similar code with program dependence graphs, Proceedings of the
Eighth Working Conference on Reverse Engineering (WCRE’01) (Washington, DC, USA),
WCRE ’01, IEEE Computer Society, 2001, pp. 301–. Cited on pp. 12 and 20.

[KS04] Christian Koppen and Maximilian Störzer, PCDiff: Attacking the fragile pointcut problem,
European Interactive Workshop on Aspects in Software (EIWAS) (Kris Gybels, Stefan
Hanenberg, Stephan Herrmann, and Jan Wloka, eds.), September 2004. Cited on pp. 37
and 103.

[KS08] Hannes Kegel and Friedrich Steimann, Systematically refactoring inheritance to delegation
in java, Proceedings of the 30th international conference on Software engineering (New
York, NY, USA), ICSE ’08, ACM, 2008, pp. 431–440. Cited on pp. xi, 29, and 31.

[KSN05] Miryung Kim, Vibha Sazawal, and David Notkin, An empirical study of code clone genealo-
gies, 13th ACM SIGSOFT international symposium on Foundations of software engineering,
2005. Cited on pp. 12 and 15.

[LCHY06] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu, Gplag: detection of software plagiarism
by program dependence graph analysis, Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining (New York, NY, USA), KDD ’06, ACM,
2006, pp. 872–881. Cited on p. 20.

[LHBL06] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer, A disciplined approach
to aspect composition, Proceedings of the 2006 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation (New York, NY, USA), PEPM ’06,
ACM, 2006, pp. 68–77. Cited on p. 59.

[Lie86] Henry Lieberman, Using prototypical objects to implement shared behavior in object-oriented
systems, Conference proceedings on Object-oriented programming systems, languages and
applications (New York, NY, USA), OOPLSA ’86, ACM, 1986, pp. 214–223. Cited on p. 29.

[LLMZ06] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou, Cp-miner: Finding copy-paste
and related bugs in large-scale software code, IEEE Trans. Softw. Eng. 32 (2006), no. 3,
176–192. Cited on pp. 2, 11, 12, 15, 16, and 19.

[LLT11] Tadeusz Lasota, Tomasz Luczak, and Bogdan Trawiński, Experimental comparison of
resampling methods in a multi-agent system to assist with property valuation, Proceedings
of the 5th KES international conference on Agent and multi-agent systems: technologies
and applications (Berlin, Heidelberg), KES-AMSTA’11, Springer-Verlag, 2011, pp. 342–352.
Cited on p. 154.

[LPM+97] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore M. Merlo, and John Hudepohl, Assessing
the benefits of incorporating function clone detection in a development process, Proceedings
of the International Conference on Software Maintenance (Washington, DC, USA), ICSM
’97, IEEE Computer Society, 1997, pp. 314–. Cited on p. 23.

[MDMR09] Marius Marin, Arie Deursen, Leon Moonen, and Robin Rijst, An integrated crosscutting
concern migration strategy and its semi-automated application to jhotdraw, Automated
Software Engg. 16 (2009), no. 2, 323–356. Cited on p. 154.

[MF06] Miguel P. Monteiro and João M. Fernandes, Transactions on aspect-oriented software
development i, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 214–258. Cited on p. 38.

216 REFERENCES

[MFH01] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh, Jiazzi: new-age components for
old-fasioned java, Proceedings of the 16th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (New York, NY, USA), OOPSLA ’01,
ACM, 2001, pp. 211–222. Cited on pp. 45 and 106.

[MLM96] Jean Mayrand, Claude Leblanc, and Ettore Merlo, Experiment on the automatic detection
of function clones in a software system using metrics, Proceedings of the 1996 International
Conference on Software Maintenance (Washington, DC, USA), ICSM ’96, IEEE Computer
Society, 1996, pp. 244–. Cited on pp. 2, 11, 15, 16, and 20.

[MNK+02] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and Ken-ichi Matsumoto,
Software quality analysis by code clones in industrial legacy software, Proceedings of the
8th International Symposium on Software Metrics (Washington, DC, USA), METRICS ’02,
IEEE Computer Society, 2002, pp. 87–. Cited on p. 15.

[MO03] Mira Mezini and Klaus Ostermann, Conquering aspects with caesar, Proceedings of the 2nd
international conference on Aspect-oriented software development (New York, NY, USA),
AOSD ’03, ACM, 2003, pp. 90–99. Cited on pp. 45 and 106.

[MTB11] Anshuman Mukherjee, Zahir Tari, and Peter Bertok, A spring based framework for ver-
ification of service composition, Proceedings of the 2011 IEEE International Conference
on Services Computing (Washington, DC, USA), SCC ’11, IEEE Computer Society, 2011,
pp. 258–265. Cited on p. 154.

[NS03] E Nickell and I Smith, Extreme programming and software clones, 2003. Cited on p. 23.

[Odb94] Erik Odberg, Category classes: flexible classification and evolution in object-oriented
databases, Proceedings of the 6th international conference on Advanced information sys-
tems engineering (Secaucus, NJ, USA), CAiSE ’94, Springer-Verlag New York, Inc., 1994,
pp. 406–420. Cited on p. 96.

[OT00] H. Ossher and P. Tarr, Multi-dimensional separation of concerns and the hyperspace approach,
Proceedings of the Symposium on Software Architectures and Component Technology: The
State of the Art in Software Development, Kluwer Academic Publishers, 2000. Cited on
p. 44.

[Par72] D. L. Parnas, On the criteria to be used in decomposing systems into modules, Communica-
tions of the ACM 15 (1972), 1053–1058. Cited on pp. 1, 75, and 77.

[Per90] B. Pernici, Objects with roles, Proceedings of the ACM SIGOIS and IEEE CS TC-OA
conference on Office information systems (New York, NY, USA), COCS ’90, ACM, 1990,
pp. 205–215. Cited on p. 52.

[Prz11] Adam Przybylek, Systems evolution and software reuse in object-oriented programming and
aspect-oriented programming, Proceedings of the 49th international conference on Objects,
models, components, patterns (Berlin, Heidelberg), TOOLS’11, Springer-Verlag, 2011,
pp. 163–178. Cited on pp. 37 and 103.

[QB04] Philip J. Quitslund and Andrew P. Black, Java with traits - improving opportunities for
reuse, In The MASPEGHI Workshop at ECOOP, 2004. Cited on p. 42.

[RC07] Chanchal Kumar Roy and James R. Cordy, A survey on software clone detection research,
SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNIVERSITY 115 (2007). Cited on
pp. xv, 2, 12, 13, 15, 16, 20, and 21.

[RD04] Filip Van Rysselberghe and Serge Demeyer, Evaluating clone detection techniques from a
refactoring perspective, Proceedings of the 19th IEEE international conference on Automated
software engineering (Washington, DC, USA), ASE ’04, IEEE Computer Society, 2004,
pp. 336–339. Cited on pp. 11 and 12.

REFERENCES 217

[RG98] Dirk Riehle and Thomas Gross, Role model based framework design and integration, Pro-
ceedings of the 13th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (New York, NY, USA), OOPSLA ’98, ACM, 1998, pp. 117–133.
Cited on pp. 3, 68, 74, and 104.

[Rie00] Dirk Riehle, Framework design: A role modeling approach, Ph.D. thesis, ETH Zürich, Zürich,
Switzerland, 2000. Cited on pp. 23, 50, 52, 53, 68, 74, 76, 78, 156, and 194.

[RJ07] Ekaterina Razina and David Janzen, Effects of dependency injection on maintainability,
Proceedings of the 11th IASTED International Conference on Software Engineering and
Applications (Anaheim, CA, USA), SEA ’07, ACTA Press, 2007, pp. 7–12. Cited on p. 154.

[RWL96] Trygve Reenskaug, Per Wold, and Odd Arild Lehne, Working with objects - the ooram
software engineering method, Manning, 1996. Cited on pp. 3, 50, 68, and 76.

[SB02] Yannis Smaragdakis and Don Batory, Mixin layers: an object-oriented implementation
technique for refinements and collaboration-based designs, ACM Trans. Softw. Eng. Methodol.
11 (2002), no. 2, 215–255. Cited on pp. 44 and 105.

[SD05] Charles Smith and Sophia Drossopoulou, Chai: traits for java-like languages, Proceedings
of the 19th European conference on Object-Oriented Programming (Berlin, Heidelberg),
ECOOP’05, Springer-Verlag, 2005, pp. 453–478. Cited on pp. xi, 42, 43, and 100.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black, Traits:
Composable units of behaviour, Lecture Notes in Computer Science 2743 (2003), 248–274.
Cited on pp. 23 and 41.

[SG99] Benedikt Schulz and Thomas Genssler, Transforming inheritance into composition., Euro-
PLoP (Paul Dyson and Martine Devos, eds.), UVK - Universitaetsverlag Konstanz, 1999,
pp. 93–102. Cited on p. 29.

[Sow84] J.F. Sowa, Conceptual structures: Information processing in mind and machine, Addison-
Wesley, 1984. Cited on p. 48.

[SSSM95] Pedro Sousa, António Rito Silva, Ant'onio Rito Silva, and José Alves Marques, Object
identifiers and identity: a naming issue, In International Workshop on Object Orientation
in, IEEE Press, 1995. Cited on p. 96.

[Ste00] Friedrich Steimann, On the representation of roles in object-oriented and conceptual mod-
elling, Data Knowl. Eng. 35 (2000), 83–106. Cited on pp. 3, 47, 48, and 50.

[Ste01] , Role = interface: a merger of concepts, Journal of ObjectOriented Programming
14 (2001), no. 4, 23–32. Cited on p. 96.

[Ste06] , The paradoxical success of aspect-oriented programming, Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications (New York, NY, USA), OOPSLA ’06, ACM, 2006, pp. 481–497. Cited on
pp. 37, 40, and 103.

[SZ89] Lynn A Stein and Stanley B. Zdonik, Clovers: The dynamic behavior of types and instances,
Tech. report, Providence, RI, USA, 1989. Cited on p. 49.

[TBG04] M. Toomim, A. Begel, and S.L. Graham, Managing duplicated code with linked editing, Proc.
IEEE Symp. Visual Languages: Human Centric Computing, IEEE Press, 2004, pp. 173–180.
Cited on pp. 13 and 23.

[THP92] Walter F. Tichy, Nico Habermann, and Lutz Prechelt, Summary of the dagstuhl workshop
on future directions in software engineering: February 17-21, 1992, SIGSOFT Softw. Eng.
Notes 18 (1992), no. 1, 35–48. Cited on p. 4.

218 REFERENCES

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr., N degrees of
separation: multi-dimensional separation of concerns, Proceedings of the 21st international
conference on Software engineering (New York, NY, USA), ICSE ’99, ACM, 1999, pp. 107–
119. Cited on p. 44.

[Tru04] Eddy Truyen, Dynamic and context-sensitive composition in distributed systems, Ph.D.
thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium, November 2004.
Cited on p. 96.

[TUI07] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama, Objects as actors assuming roles in
the environment, Software Engineering for Multi-Agent Systems V (Ricardo Choren, Alessan-
dro Garcia, Holger Giese, Ho-Fung Leung, Carlos Lucena, and Alexander Romanovsky,
eds.), Springer-Verlag, Berlin, Heidelberg, 2007, pp. 185–203. Cited on pp. 79 and 108.

[VN96] Michael VanHilst and David Notkin, Using role components in implement collaboration-
based designs, Proceedings of the 11th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (New York, NY, USA), OOPSLA ’96,
ACM, 1996, pp. 359–369. Cited on p. 107.

[WCL97] Raymond K. Wong, H. Lewis Chau, and Frederick H. Lochovsky, A data model and semantics
of objects with dynamic roles, Proceedings of the Thirteenth International Conference on
Data Engineering (Washington, DC, USA), ICDE ’97, IEEE Computer Society, 1997,
pp. 402–411. Cited on p. 49.

[WGM89] André Weinand, Erich Gamma, and Rudolph Marty, Design and implementation of et++,
a seamless object-oriented application framework, Structured Programming 10 (1989), no. 2,
63–87. Cited on p. 159.

[WSGF04] Vera Wahler, Dietmar Seipel, Jurgen Wolff v. Gudenberg, and Gregor Fischer, Clone
detection in source code by frequent itemset techniques, Proceedings of the Source Code
Analysis and Manipulation, Fourth IEEE International Workshop (Washington, DC, USA),
SCAM ’04, IEEE Computer Society, 2004, pp. 128–135. Cited on p. 19.

[Yan91] Wuu Yang, Identifying syntactic differences between two programs, Softw. Pract. Exper. 21
(1991), no. 7, 739–755. Cited on p. 19.

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace, Experimental models for validating technology,
Computer 31 (1998), no. 5, 23–31. Cited on pp. 4 and 5.

	Abstract
	Resumo
	Preface
	Introduction
	Software Reuse
	Research Goals
	Research Strategy
	Expected Results
	How to Read this Dissertation

	I State of the art
	Code clones
	Origins of Clones
	Development Strategy
	Maintenance Benefits
	Overcoming Underlying Limitations
	Cloning by Accident

	Consequences of Clones
	Types of Clones
	Type I Clones
	Type II Clones
	Type III Clones
	Type IV Clones

	Detecting Clones
	Dealing with Code Clones
	Removing code clones
	Avoiding Code Clones
	Managing Code Clones

	Summary

	Decomposition Techniques
	Sample Frameworks
	Figure Handling Framework
	Graphical User Interface Framework

	Object-Oriented Decomposition
	Object-Oriented Figure Framework
	Object-Oriented GUI Framework
	Code Replication in the Object-Oriented Solution

	Aspect-Oriented Programming
	AOP Figure Framework
	AOP GUI Framework
	Code Replication in the AOP solution

	Traits
	Feature-Oriented Programming
	Multiple Dimension Separation of Concerns
	Other Approaches
	Summary

	Roles
	What are roles?
	Modeling with Roles
	Advantages of Role Modeling
	Role Figure Framework
	Role GUI Framework
	Code Replication in the Role Solution

	Dynamic Roles Characteristics
	Classes Playing Roles
	Roles Playing Roles
	Supertypes or Subtypes
	Defining Properties in Roles
	Method Call
	Role Identity
	Roles Lifecycle and Movement
	Role Visibility
	Exceptions
	Renaming Properties

	Summary

	II Problem and Solution
	Research Problem and Solution
	Open Issues
	Research Questions
	Research Focus
	Thesis Statement
	Research Goals
	Proposed Approach
	Validation Methodology
	Summary

	JavaStage
	Development
	Roles as modules
	Extending the reuse of roles
	Removing the playedBy
	The need for a Renaming Mechanism

	Syntax
	Declaring Roles
	Playing Roles
	Stating Role Requirements
	Playing the Same Role More Than Once
	Renaming Role Methods
	Providing Multiple Versions of a Method
	Making Use of Naming Conventions
	Roles Playing Roles or Inheriting from Roles
	Role Constructors
	Conflict resolution
	The self problem and delegation

	Implementation
	Role Identity
	The plays Clause
	Role Inheritance vs Role Playing Roles
	Aliases vs Method Renaming
	Requirements Listing

	Limitations
	Source Code Must be Available
	No static public Variables

	Implementation Alternatives
	Using Reflection
	Roles as Standalone Classes

	Comparison with Other Approaches
	Traits
	Aspect-Oriented Programming
	Other Composition Techniques
	Role Related Approaches
	Dynamic Role Approaches
	Approaches using Class Extensibility

	Summary

	Removing Clones
	Unresolved Clones
	Identical Clones in Classes with Different Superclasses
	Clones That Have Identical Structure but Use Different, Unrelated, Types
	Clones With the Same Structure and Types But Using Different Methods
	Clones With the Same Structure That Use Different Types and Method Names

	Clone Removal Role Refactorings
	Extract Role
	Extract Role Changing Types
	Extract Role with Configurable Methods
	Extract Role with Types and Methods

	Summary

	III Validation
	Towards a Role Library
	Roles in Design Patterns
	Summary

	Case Studies
	The Target Systems
	The Case Study Setup
	JHotDraw
	JHotDraw Overview
	JHotDraw Results
	Solved Concerns
	Explaining Unresolved Concerns
	Other Considerations

	OpenJDK Compiler
	OpenJDK Compiler Overview
	OpenJDK Results
	Solved Concerns
	Explaining Unresolved Concerns
	Other Considerations

	Spring Framework
	Spring Framework Overview
	Spring Framework Results
	Solved Concerns
	Explaining Unresolved Concerns
	Other Considerations

	Discussion
	Threats to Validity
	Complexity of JavaStage
	System Comprehension and Evolution
	Analyzed Systems
	Case Study Setup
	Clone Detecting Technique Used

	Summary

	Conclusions
	Key contributions
	Future work
	Improve and Enhance the JavaStage Compiler
	Improve the JavaStage Language
	Refine and Extend the Refactorings
	Extend the Role Library
	Further Studies

	Appendices
	Publications
	Papers
	Book Chapters
	Posters

	Glossary
	References

