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Abstract

The determination of precise and accurate stellar parameters has become one of the major chal-

lenges in current astrophysics. In particular, the amount of data currently being made available by

large survey programs, like the GAIA-ESO survey makes the existence of quick methods for stellar

parameter determination a necessity.

This project was aimed at the computation of a new spectroscopic calibration for quick effective tem-

perature determinations for a wide range of stellar spectral types. This new calibration was accomplised

by building upon existing techniques based on line-ratio relations.

We used spectra from three different stellar samples and homogeneously determined parameters in

order to obtain the new temperature calibration. The new calibration is adequate for both FGK-dwarfs

and GK-giant stars with parameters within the intervals: 4500 K < Teff < 6500 K , 2 < log g < 4.9, −0.8 <

[Fe/H] < 0.5. There was a definite improvement of the new calibration with the standard deviation going

from 112 K to 74 K for a sample composed of both giants and dwarfs.

We also successfully used two independent samples to test our new calibration. We have found that

the new calibration produces results with a good agreement with the values from other methods if we

consider only stars within the applicability range.

We have obtained new effective temperature values for the GES benchamrk stars which will be used

by the GES-CoRoT collaboration.

We have developed a new computational code, GeTCal, which can determine new calibrations given

any stellar spectra and line-list as calibration samples. This code has been made available online.

The new calibration will be included in one of the ESPRESSO data analysis pipelines.
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Resumo

A determinação de parâmetros estelares com precisão e exactidão tornou-se um dos maiores de-

safios da astrofísica recente. Em particular, a quantidade de dados que vão sendo tornados públicos

por grandes programas de observação, tal como o programa GAIA-ESO, torna a existência de méto-

dos rápidos para a determinação de parâmetros numa necessidade.

Este projecto foi focado na obtenção de uma nova calibração espectroscópica para determinações

rápidas de temperatura para um conjunto alargado de classes espectrais estelares. Esta nova cal-

ibração foi conseguida utilizando técnicas existentes baseadas em relações entre rácios de linhas

espectrais.

Utilizamos os espectros de três diferentes amostras de estrelas e parâmetros determinados de forma

homogênea de modo a obter a nova calibração de temperatura. A nova calibração é adequada tanto

para estrelas FGK-anãs como para estrelas GK-gigantes desde que estejam nos intervalos: 4500 K <

Teff < 6500 K , 2 < log g < 4.9, −0.8 < [Fe/H] < 0.5. Houve uma melhoria definitiva na nova calibração,

o desvio padrão passou de 112 K para 74 K para uma amostra de anãs e gigantes.

Também usamos com sucesso duas amostras independentes para testar a nossa nova calibração

. Determinamos que a nova calibração produz resultados em concordância com os valores de outros

métodos se considerarmos apenas as estrelas dentro do nosso intervalo de aplicabilidade.

Obtivemos novas temperaturas effectivas para estrelas standard do programa GES, os quais serão

usados na colaboração GES-CoRoT

Desenvolvemos um novo código computacional, o GeTCal, o qual pode determinar novas cali-

brações dada uma qualquer amostra de calibração e lista de linhas espectrais. Este código foi disponi-

bilizado online.

A nova calibração vai ser incluída num dos pipelines de análise de dados do ESPRESSO.

11
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Chapter 1.

Introduction

One of the main challenges in our current understanding of stellar astrophysics is how to derive

accurate stellar parameters. Although fundamental parameters such as mass, and age are of the up-

most importance to stellar studies, they are observationally impossible to obtain by any direct method.

As such, the determination of these fundamental parameters depends entirely on the precision with

which we can directly measure stellar atmospheric parameters. Stellar atmospheric parameters, such

as effective temperature, Teff , surface gravity, log g, and metallicity, [Fe/H], are basic properties that

can be obtained through spectroscopic and/or photometric analysis, e.g. Sousa et al. (2007, 2010),

Casagrande et al. (2010), Tsantaki et al. (2013).

The relevance of properly determining stellar parameters cannot be understated. Presently, stellar

parameters have assumed an increased importance in lines of research such as studies of planet-host

stars, galactic population studies, among others (Casagrande et al. 2010).

Studies of planet-host stars use stellar parameters to explore possible correlations between the pa-

rameters of the host-star and the presence of planets, and with the characteristics of the planets them-

selves, hopefully leading to the improvement of current planet-formation theories (Santos et al. 2004,

Mortier et al. 2013, Tsantaki et al. 2014). Even a more fundamental use for stellar parameters is that

they are essential to the determination of planetary mass and radius. Meanwhile, some recent galactic

population studies have been focusing on how the galactic birth place may relate to stellar properties

(Adibekyan et al. 2014).

Since the formation of spectral lines is conditioned by the stellar atmospheric properties, spec-
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troscopy can help to unveil a wealth of information about the star itself.

Spectral lines act like tracers of elements and molecules present in stellar atmospheres as each

wavelength is unique to a single transition of states of a element or molecule. Spectral lines, both in

absorption and in emission can be formed by a variety a mechanisms, our work concerns those which

are formed by the absorption of photons following the jump of an electron from one atomic level to

another (Gray 2005).

The amount of absorbed light depends on the abundance of each given element, on the number

of electrons present in each atomic energy level, and the element itself. Element abundance and

the number of electrons in each energy level are severely influenced by the conditions of the stellar

atmosphere such as Teff , log g, and also microturbulent velocity, vmic (Gray 2005).

Therefore, one can extrapolate the abundance of each elemental in a stellar atmosphere if the

strength of each spectral line present in the spectra is measured and these atmospheric parameters

are known.

In the last decades, there has been an emergence of a number of methods that determine stellar

parameters from spectroscopy. One of the problems with most of these methods is that they are,

usually, computational- and time-consuming. As such, a need for tools capable of correctly and quickly

estimating these atmospheric parameters or, at least, some of them, has become a pressing concern

(Sousa et al. 2012).

The main problem associated with building such general-purpose tools is tied with the fact that

stars of different spectral types present different spectral features formed by the different atmospheric

characteristics which characterize each stellar type. Therefore, any generalized method must be able

to take these different characteristic into account and, as such, be calibrated in a way that reflects the

inherent differences of spectral type.

1.1 METHODS FOR DETERMINING STELLAR PARAMETERS

There are a plethora of methods to determine stellar parameters but they can be grouped into two

main categories of techniques: photometry and spectroscopy. Each of these categories has advan-

tages and disadvantages that should be weighed in order to choose the method that better suits the

Guilherme Domingos Carvalho Teixeira
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desired scientific goal.

1.1.1 Photometry

There are several photometry-based techniques to determine stellar parameters. Most of them are

plagued by similar problems: dependency on the accuracy of the atmospheric models, reliance on

the correct determination of the angular diameter of the star, reddening effects, uncertainties in the

determination of stellar fluxes, just to name a few.

Figure 1.1: From Casagrande et al. (2010). Left upper panel: comparison between the ob-
served HD 209458 CALSPEC spectrum (black line) and the synthetic spectra derived for two
different Teff , using an absolute calibration (blue line) and increasing the infrared absolute cal-
ibration by 5% (red line). Left lower panel: ratio of synthetic to observed spectra. Full circles
are the ratio between the fluxes obtained once the Vega calibration is used with the observed
magnitudes and the fluxes obtained directly from the convolution of the CALSPEC spectrum with
the appropriate filter transmission curve. Error bars take into account uncertainty in the Vega
calibration and zero points, as well as in the observed magnitudes. Right panel: reduced χ2

for various Teff solutions corresponding to different adopted absolute calibrations. The choice
of Casagrande et al. (2010) always lies very close to the minima obtained fitting a parabola to
the data (lines of different style). Different symbols correspond to cut longward of 0.66 µm (di-
amonds), 0.82 µm (squares) and 1.46 µm (triangles) as explained in Casagrande et al. (2010).
The sigma levels have been computed using the incomplete gamma function for the number of
degrees of freedom longward of our cuts..

Our brief summary of a photometric method will be focused on a method which is considered to be

one of the most reliable and used photometric methods, the infra-red flux method, hereafter IRFM. The

reason for the increased usage of IRFM is linked to the fact that this method has a small dependency

on models and is particularly suited for the determination the Teff of F, G and K stars (Casagrande et

al. 2010, Sousa et al. 2008).

The basis of the IRFM relies on the fact that the monochromatic infrared flux depends only on the

first power of Teff . On the contrary, the integrated flux is strongly dependent on the temperature, T 4
eff .

The IRFM has a small dependency on other stellar parameters, like log g and [M/H], which are required

to interpolate atmospheric models on a grid (Casagrande et al. 2010).

The IRFM evaluates the ratio between the bolometric flux, Fbol, and the monochromatic flux at a

given infrared wavelength, F(λIR), as measured from the surface of the earth. Consequently, this ratio

Guilherme Domingos Carvalho Teixeira
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is used as a tracer for Teff (Casagrande et al. 2010).

Given that Teff plays a very important role on the determination of stellar abundances, the IRFM,

which provides an accurate and mostly model-independent method to determine Teff , has been used

with increasing frequency (Casagrande et al. 2010).

Another reason for the increased usage of the IRFM over the last few years was the advent of infrared

surveys, like 2MASS. Since the IRFM requires infrared photometry, the appearance of homogeneous

and all-sky surveys like 2MASS, allowed for the implementation of the IRFM on multiple stars and,

consequently, the determination of colour-temperature relations (González Hernández et al. 2009).

The temperatures obtained using the IRFM are frequently considered as benchmark values. Its only

caveat is that, in spite of the high accuracy it consistently produces, and the fact that its results are free

from non-LTE and granulation effects, both the adopted redenning and the absolute flux calibration can

induce systematic errors in the results (González Hernández et al. 2009, Casagrande et al. 2010).

1.1.2 Spectroscopy

There are several spectroscopic techniques for stellar parameter determination. Some of those

techniques rely on the intensity of each spectral line while others rely on the value of the equivalent

width(EW) of each line.

Spectral synthesis methods rely on the production of synthetic spectra and fitting it to observations.

The synthetic spectra is computed using different stellar atmospheric parameters and abundances and

then, using a minimization code, fitting it to observations. Figure 1.2 shows the fit of a part of such a

synthetic spectra to the observed spectra of the sun. These methods are, however, time consuming

and their dependence on observed parameters introduces systematic errors that can only be mitigated

using an uniform analysis (Tsantaki et al. 2014).

The TMCalc code and the ARES+MOOG methods which were used during this work are, in essence,

EW methods. For this reason, we will present a short summary of the steps that are the foundation for

all EW methods.

Before explaining the EW methods it is important to first present the definition of what is a EW. The

EW of a spectral line is, essentially, a way to measure the area of the spectral line on a normalized

intensity versus wavelength plot. It is defined as the width of a rectangle centered on a spectral line

Guilherme Domingos Carvalho Teixeira
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Figure 1.2: An example of the spectral synthesis method for the sun. The synthetic spectra
is the blue line, the black line is the observed spectra. The dark areas are the line points
recognized by the code while the pink areas are the continuum points. This plot was obtained
using the Spectroscopy Made Easy (SME), version 3.3 software (Valenti & Piskunov 1996).

and which has the same area as the line in a normalized spectrum, a visual representation of an EW

is shown in figure 1.3. The EW of a line is a measure of the strength of a given spectral line, with the

obvious advantage that its value does not depend on the shape of the line, only on the method used to

measure the area, making the EW more or less immune to effects such as line broadening. In certain

conditions, and assuming local thermodynamical equilibrium (LTE), the EW of a line can be used to

obtain the number of emmiting or absorbing atoms (Carroll et al. 2006).

Any EW method can easily be summarized by the following steps:

1. A list of absorption lines with the corresponding atomic data is selected for the analysis for several

elements;

2. A line-by-line analysis of the observational spectrum is performed and the EWs are measured

independently;

3. Given the correspondent atmospheric parameters a stellar atmospheric model is adopted;

4. The measured lines and the atmospheric models are used to compute the individual line abun-

dances;

5. The spectroscopic parameters are found once the excitation and ionization balance are valid
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Figure 1.3: Diagram that presents the definition of Equivalent Width(EW). It is the width of a
rectangle centered on a spectral line and which has the same area as the line.

for all the analyzed individual lines (see chapter 2), otherwise the process iterates from point 3

adopting new parameters;

The EW-based methods that can be found in literature usually differ in one or several of the following

points: the choice of line-list, the choice of atmospheric models, and the computational code used to

perform the steps described above (Sousa 2013).

1.1.3 Line-ratios

The use of line-ratios as a way to find the effective temperature of a star is deeply connected with

the use of metal lines in a manner quite similar to finding out the spectral type of a star. Spectral lines

of metals have varying sensitivities to Teff . It is important to note that the origin of weak metal lines

takes place, essentially, in the same photospheric layer which forms the continuum. EWs can be used

for Teff determinations but EW values can be greatly enhanced by factors such as microturbulence and

other mechanisms. Of course, this leads to the preferred use of weak lines but these lines are difficult

to measure and can be easily distorted by line blends (Gray 2005).

In order to solve some of the problems of Teff determination from EW it is possible to use line-ratios.
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The basic principle in this use is that using the ratio of two lines, preferably of the same element, we

can dispense with factors such as abundance dependence. There is another interesting property of

line ratios which is, if the lines used are close together, any errors associated the determination of the

continuum will be greatly minimized. Also, if the lines are of similar strength, there is a compensation

to the first order of macroturbulent broadening and chemical composition (Gray 2005).

Previous studies have shown that line-ratio calibrations can be used to return good estimates of

temperatures, even for solar-type stars, up to relatively high rotation rates, up to 18 km/s (Sousa et al.

2010, Desidera et al. 2011). This limit is inexorably connected with the blending effect present at high

rotation rates as shown in figure 1.4. It is also quite present in the larger innacuracy in temperature

determination patent in figure 1.5 which shows how temperature determination gets increasingly worse

with rotation. This figure also shows us that lower resolution spectra will result in higher errors and

larger uncertainties. The limit 18 km/s exceeds the capacity of typical EW methods due, in part, to the

increase in the number of blends in higher rotation stars. In contrast, it has been recently shown that

methods relying on synthesis for Teff determination work well into the regime of fast-rotators, up to 50

km/s (Tsantaki et al. 2014), and are also effective with lower resolution spectra.

Figure 1.4: From Tsantaki et al. (2014). Solar absorption lines(solid line), broadened by υ sin i
10 km/s (pink), υ sin i 15 km/s(blue) and 20 km/s(red). Blending at these rates due to rotation
makes the determination of EW harder.

The line-ratio calibrations made are based on weak metal lines all of which depend mainly on tem-
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Figure 1.5: From Desidera et al. (2011). Effective temperature with ARES on solar spectra
artificially broadened to various values of υ sin i. Up to values of υ sin i of 18 km/s results are
robust.

perature. These lines are also less dependent on other parameters such as surface gravity and micro-

turbulence. Most of metals on stellar atmospheres of sun-like stars are ionized so, changes in surface

gravity will have a small impact in the abundance of neutral metals (Gray 2005, 1994, Kovtyukh et al.

2003). On the other hand, since we are dealing with weak lines any effect that microturbulence could

have, which is noticeable in the wings of saturated lines, is also almost non-existent.

In order to choose line-ratios which have the required dependence on temperature and are inde-

pendent of log g and vmic, the line-ratios have to fulfill important conditions: the distance between the

lines in the denominator and the numerator should be small, they should have an excitation potential

difference larger than 3 eV, and they should have the same ionization state. The distance condition is

a way to restrict the line-ratios to lines lying close together in the wavelength domain and, therefore,

avail adverse effects that could arise from a poor continuum determination. The excitation potential

condition, on the other hand, works as a way to limit line-ratios to those that are more sensible to tem-

perature variations, since lines with higher excitation potential change faster with temperature (Sousa

et al. 2010).
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Chapter 2.

The ARES+MOOG method

During the course of this dissertation project we used a method based on the EW of spectral lines,

this method is known as the ARES+MOOG method. The ARES+MOOG method, like other EW meth-

ods, first determines the strength of selected and well-defined absorption lines, assumes a certain

atmospheric model, and translates the values into individual line abundances. A comparison is subse-

quently performed between the computed abundances and the theoretical predictions in order to obtain

the correct parameters (Sousa 2013).

The ARES+MOOG method uses two software programs: ARES, an automatic code that measures

EWs, and MOOG, a spectral analysis and synthesis software tool.

Figure 2.1 shows a flowchart that describes the ARES+MOOG method with some detail. First the

spectrum and line-list are used with the ARES code to obtain the EW. Then the MOOG code is used

to produce an atmospheric model, a minimization code is applied using the Downhill Simplex Method

and in the end of this minimization code the stellar parameters are obtained (Sousa 2013).

Like other EW methods, one of the most crucial points of the method is the selection of lines to use.

The choice of the lines will determine the accuracy and precision of the final results. As referred above,

different EW methods use different line-lists. Line-lists with a large number of lines are able to produce

statistically confident derived parameters. While, on the other hand, line-lists with a reduced number of

lines usually have only well-known lines, which are well adapted for a specific type of stars, e.g. giants.

Another important factor of any EW method, including the ARES+MOOG method, is the adopted

atomic data of the selected lines. Although values for the rest wavelengths and excitation potentials for
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Figure 2.1: Flowchart detailing the ARES+MOOG method (Sousa 2013). See the text for
details.

the lines can be considered to be consistent, the oscillator strengths, log gf , are not precise between

different line datasets. These laboratory values present large uncertainties that propagate and affect

both the precision and accuracy of the derived stellar parameters (Sousa 2013).

The determination of elemental abundances is achieved by combining the effect of all the referred

stellar atmospheric parameters, Teff , log g, vmic, and [Fe/H].

2.1 ARES

The abbreviation ARES stands for Automatic Routine for line Equivalent widths in stellar Spectra. As

the name indicates, it is an automatic code that measures the EWs of the selected absorption lines in

an input spectra (Sousa et al. 2007).

The approach taken by ARES is to have an estimation of the continuum position and determine the

number of lines (in the case of blending) required for the best fit solution to the normalized spectrum

around the selected line (Sousa et al. 2007).

ARES takes as input an one-dimensional spectrum, a list of spectral lines to measure and a file

containing the parameters necessary for the computation of EWs. The code proceeds to select a

region neighbouring the line, sets the continuum position and identifies the number and position of the
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lines, each line fitted to a Gaussian profile, required to fit the local spectrum. The parameters of each

fit are used to calculate the value of the EW of each line. The resulting values are then produced into

a user-defined file (Sousa et al. 2007, Sousa 2013).

In order to successfully execute ARES a series of input parameters are required. Among these

parameters are: the input spectra 1D-fits filename, the line-list, the output filename, the wavelength

domain to be used, the minimum interval between sucessive lines, the wavelength interval to be con-

sidered around each line, the minimum value accepted for the EW, the calibration parameters for the

continuum determination and noise control, and the display parameters. It is important to note that the

input spectrum must have already been reduced and corrected for the Doppler-shift (Sousa et al. 2007,

Sousa 2013).

The computation of each EW is done locally around each line, as noted above, with this parameter

space being defined by the user input parameters. The continuum will, consequently, be obtained

iteratively by choosing points above the fit of a second order polynomial function multiplied by a value

defined by the user input parameter rejt. The rejt parameter is crucial in order to deal with the S/N of

the spectra. Each spectra used had a predetermined S/N which was then used to determine the value

of the rejt parameter, which was defined according to the table shown in Mortier et al. (2013).

The impact that changes in the rejt parameter can have on the measurement of the EW of a line

is presented in figure 2.2. When working with spectra with higher values of S/N this parameter should

be closer to 1. Again, it is important to stress that the input spectrum should be reduced, calibrated in

wavelength, without cosmic rays and normalized (Sousa et al. 2007).

In order to find the peaks of the lines ARES uses the well-known properties of derivatives of a function

and computes the first three derivatives of each line profile (Sousa et al. 2007).

Another problem which is addressed by ARES is overcoming the problem of noise. In order to do

that, ARES applies a numerical smoothing to the array of the derivatives and reduces some of the

noise. An additional input parameter, smoothder, is important since it takes into account the numerical

resolution of the spectra (Sousa et al. 2007, Sousa 2013).

Considering that with a noise value high enough, the procedure could, in principle, mistankenly

identify lines that are close to one another but which are in reality the same line, an additional parameter

of ARES, lineresol can be used to deal with this, the parameter sets the allowed minimal distance
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Figure 2.2: From Sousa et al. (2007). A synthetic spectrum region with a signal-to-noise ratio
around 50. The filled line represents the fit to the local continuum through a 2nd-order polynomial
based on the points that are marked as crosses in the spectrum. The variations induced by
different values of the parameter rejt are readily visible.

Guilherme Domingos Carvalho Teixeira



FCUP 33
Spectroscopic Calibrations for a Better Characterization of Stars and Planets

between two consecutive lines (Sousa et al. 2007, Sousa 2013).

Guilherme Domingos Carvalho Teixeira



FCUP 34
Spectroscopic Calibrations for a Better Characterization of Stars and Planets

2.2 MOOG

MOOG is a code that is able to perform a variety of spectral line analysis and synthesis computations

under LTE conditions. Typically, it is used to help with the determination of the chemical compositions of

any given star. For the purposes of our work MOOG is used to measure the individual line abundances

and to derive the parameters of the stellar atmosphere that fits the measured EWs (Sousa 2013,

Sousa et al. 2008, Tsantaki et al. 2013).

Although one of the main features of MOOG is its ability to produce on-line graphics, this property is

not required when using the ARES+MOOG method. The visualization of different plots can be useful

in order to properly understand the dependency of the different parameters with individual abundances

determination. But, since no higher plotting functions were required, a simple python code was used

to visualize the required plots. The only purpose of this code was to show the parameter dependences

and respective correlations (Sousa 2013).

MOOG needs to read the atomic data of each line to accomplish individual abundances calculations,

therefore, an additional code was used in order to transform the output of ARES into a formated file

that could be read by MOOG (Sousa 2013).

Our iterative process starts by creating an atmospheric model using an initial guess value, running

MOOG and plotting the results of the values determined by MOOG. An example of the correlation

plots is shown in figure 2.3 (Sousa 2013). This figure clearly shows the correlations between the

iron abundance, Ab(FeI), and the excitation potentital (E. P.), and the reduced equivalent width (R.W.).

Also shown in the same plot are the respective slopes of the correlations, the difference between the

average abundances of FeI and FeII (<Ab(FeI)> - <Ab(FeII)>). Our iterative process will tweak the

atmospheric parameters in such a way as to leave the slopes as close to zero as possible.

A minimization algorithm was used in order to compute the best parameters of the stars using MOOG.

This minimization code has been described in Press et al. (1992), Saffe (2011).

Keep in mind that the errors of the parameter estimation are directly connected with the point disper-

sion present on each correlation. The dispersion is a result from several effects. Namely the quality

of the spectra, the accuracy of the atomic data, and the errors of the EW determinations. In order to

compute all the errors for each star a python algorithm was used.
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We know from theoretical studies that there is a strong influence of the effective temperature value

on the correlation Ab(FeI) vs. E.P. There is also a strong dependency between microturbulence and

the correlation Ab(FeI) vs. R.W., finally the value of the surface gravity influences the behaviour of

<Ab(FeI)>-<Ab(FeII)> (Sousa 2013). The extent of the influence that each of these parameters has

on the correlations will be described further in the following sections .

2.2.1 Dependence on the effective temperature

Considering that spectral lines are formed by electron transitions, the number of electrons in a given

atomic level can, in a first approach, be approximated function with a dependency on Teff . The different

line strengths of the same element, each produced at a different energy level, will be a function depen-

dent on the number of absorbers and Teff . Any temperature estimated should, therefore, be such that

the observed lines required the same element abundance, independently of the excitation potential.

Temperature changes influence dramatically the slopes of two of the correlations, as shown in figure

2.3. These changes manifest on the Ab(FeI) vs. E.P. plot but also on the Ab(FeI) vs. R.W.. Given

that Ab(FeI) vs. R.W. is a correlation more strongly influenced by microturbulence, the fact that both

correlations are affected by a change in temperature, proves, once more, the interdependency of the

various stellar parameters (Sousa 2013).

Since we know how variations on temperature affect the slope of Ab(FeI) vs. E.P., in practice it is

possible to react accordingly and adjust the Teff value. In fact, we know that when the temperature is

underestimated the slope of the correlation is positive and when the temperature has been overesti-

mated the slope is negative. Considering both of these behaviours it is a trivial matter to adjust our

initial guesses simply by looking at the slope of the Ab(FeI) vs. E.P. correlation (Sousa 2013).

2.2.2 Surface Gravity dependence

As stated above, the rate of ionization is mainly dependent on temperature but this is not the case of

the recombination rate since, this rate depends, not only on the temperature but also on the electronic

pressure of the stellar atmosphere. Given that electronic pressure is also inexorably linked to the stellar

surface gravity these two parameters, Teff and log g, will manifest with opposing effects on the rate of

recombination. Higher effective temperatures will increase the ionization rate but higher surface gravity
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Figure 2.3: From Sousa (2013). Abundance of FeI as a function of excitation potential (E.P. )
and reduced wavelength (R. W.). The top panel shows the result for the correct stellar param-
eters while in the bottom panels the temperature was changed to a lower value (5600K) - left
panel, and an upper value (5900K) - right panel.

will increase the recombination rate (Gray 2005).

After having found a value for Teff , it is necessasry to fit the value of log g. We know that the value of

log g has a strong effect on the correlation of <Ab(FeI)> - <Ab(FeII)>. Just as before, the behaviour of

the slope of the correlation with respect to changes of the value of the surface gravity has been studied.

When the value of the surface gravity has been underestimated the slope of the correlation is positive,

in a simmetric behaviour, when the value of log g has been overestimated the slope of the correlation

becomes negative. We can use the ionization balance to constrain surface gravity since atomic iron is

nearly unnafected by changes in surface gravity, while ionized iron changes with surface gravity, owing

to the role that recombination assumes in those cases (Sousa 2013).

It is also an interesting fact that the changes in surface gravity have nearly no effect on the Ab(FeI)

vs. E.P. correlation. We can conclude from this lack of effect that the value of log g obtained using this

method is nearly independent of Teff and vice-versa. This is a clear advantage of this method since the

temperature and the iron abundance values are independently well-constrained. There is, however,

a disadvantage inherent to this independence: the value of log g is not well-constained. Considering

these determinations we can conclude that our values for temperature and iron abundance are well
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determined but the value of log g needs to be taken with a grain of salt as it relies on a very small

number of ionized lines (Sousa 2013).

2.2.3 Microturbulence

Finally, the effect of microturbulence on spectral lines is more noticeable in strong spectral lines.

Microturbulence is a non-thermal motion on the stellar atmosphere. It manifests itself by blue- or red-

shifting the absorbers present in saturated lines and, consequently, it will affect the wings of the spectral

lines and increase the amount of light absorbed by the line (Gray 2005).

The microturbulence parameter is closely connected with the saturation of the stronger iron lines. A

good value for microturbulence will allow us to derive the same abundances for weak and strong lines.

When the value of microturbulence is underestimated, the slope of the Ab(FeI) vs. R.W. correlation will

be positive but, when the value of microturbulence is overestimated, the correlation will have a negative

slope (Sousa 2013).

2.2.4 Minimization code

The Downhill simplex method is a nonlinear optimization technique, and a well-known numerical

method for problems with unknown derivatives. It can be used for the minimization of a function of n

variables and it depends on the comparison of the variables at the vertices of a simplex. The simplex

is constantly adapting itself and contracts to a local minimum (Saffe 2011, Press et al. 1992).

The method is computational compact. Its only assumption is that the function is continuous and has

a unique minimum on the selected parameter area. Since the method can converge in local minima a

restart criteria is applied as described in Press et al. (1992): if the solution has χ2 > 1 the code will

restart after reducing the tolerance criteria (Saffe 2011).
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Chapter 3.

The TMCalc code

TMCalc is a software code that, using a given line-ratio calibration and metallicity calibration, is able

to quickly and automatically determine the effective temperature and metallicites of a star having the

values of the stellar spectra EWs. The temperature determined using TMCalc can easily be used to

compare the spectroscopic temperature determined by other procedures.

The foundation of the use of line-ratios to obtain the temperature of a stellar atmosphere is the fact

that spectral lines, as mentioned in chapter 1, change their strength with temperature and, as described

in Gray (2005), the ratios of two spectral lines can be used as a thermometer for stars. The use of

line-ratios can also minimize the errors of continuum determination.

The main factor behind the use of line-ratios to determine Teff is a well performed calibration. In

fact, TMCalc is only a tool but using the same line-ratio calibration any other software can be used

to compute the same Teff values. The most important aspect influencing the results of TMCalc is the

calibration of the line-ratios used. The line-ratio calibrations are based mainly on weak FeI lines and

other metals (e.g. Mg, Si, V, Ni, Ti, Cr) all of which depend mainly on temperature. The choice of iron

can be easily justified by the simple fact that it has a high number of absorption lines. The element

lines are also less dependent on other parameters such as surface gravity and microturbulence. As

mentioned in chapter 1, changes in surface gravity will have a small impact on the strength of FeI lines,

and any effect that microturbulence might have is almost non-existent since we are dealing with weak

lines.

Because of this, a successful calibration requires only a pre-determination of the stellar parameters
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and respective errors of a calibration sample of stars.

Figure 3.1 shows the comparison of the temperatures obtained using this line-ratio calibration of

Sousa et al. (2010) with those derived using the standard spectroscopic procedure Sousa et al. (2008).

The top plot shows the comparison only for the sample of calibrator stars. As expected, the consistency

is very good.

In the bottom plot of the same figure, the same comparison is shown for a sample of independent

stars that were not used for the line-ratio calibration. Again, this plot shows a high degree of consis-

tency. Both plots serve as reminders that the temperature inferred from the line-ratio is consistent with

the standard spectroscopic method. This is a true indication that the line-ratio calibration can be used

to determine the temperature of a star but the plot also shows the limits of stellar parameters for which

the calibrations can be effectively used.

Since the line-ratio calibration is the most important factor for the TMCalc results, the development

of a new calibration using more stars of different spectral types should produce a calibration file which

can be used with TMCalc to estimate the temperatures of stars for a larger number of spectral types

and larger sets of parameters.
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Figure 3.1: From Sousa et al. (2012). In the top panel, the comparison between the effective
temperatures derived from the ARES+MOOG method and the ones derived using TMCalc for
the calibration sample of Sousa et al. (2010). In the bottom plot, a similar plot is shown but for
the sample of stars of Sousa et al. (2010), a sample independent of the calibration. Both panels
also show the mean difference and the standard deviation for the comparisons.
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3.1 THE CALIBRATION ALGORITHM: GETCAL

The choice of which line-ratios to use is one of the most important factor which impacts the results

of TMCalc. As such, it is of the upmost importance to properly determine the line-ratios by means

of calibration techniques. Given this fact, one of the goals of this dissertation work was, given a

sample of giant stars, to perform a recalibration of the line-ratios that TMCalc would use. To this

effect, a recalibration code, the Great Tool for Calibrations, GeTCal, which performs the line-ratios

recalibration was built using Python v2.66 and was structured in such a way as to be compatible

with EW measurements from ARES and to take into account the parameters determined using the

ARES+MOOG method, as well as the errors of those parameters. These errors were, in the context of

our work, determined by a pre-existing python algorithm, however, GeTCal does not require the use of

this additional python code, only that the errors of the parameters have been previously determined.

Figure 3.2: Flowchart of the calibration algorithm GeTCal. The boxes represent files, the losan-
gles represent subroutines and the elipses represent data stored in memory.

The flowchart on figure 3.2 shows a simple overview of the algorithm that is the essence of GeT-
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Cal. First GeTCal starts by reading the line list and computes which are the line-ratios, that fulfill the

conditions already explained on the previous chapter:

1. The distance between the lines in the denominator and the numerator cannot be larger than 70

Å, thus diminishing the influence of continuum determination errors.

2. The excitation potential must be larger than 3 eV which will ensure that the lines of these elements

vary greatly with temperature.

After having a list of the allowed line-ratios, the output files from ARES are read and all line-ratios

are computed for each star. The list of ratios is then stored as a variable and reordered.

Concurrently the file which has the stellar parameters and respective errors is read and stored as a

variable. Both variables are combined as a new variable.

A subsequent subroutine uses this variable. This is one of the most crucial steps of the entire

algorithm, since this subroutine computes the best fit function for every line-ratio. Initially the value of

the line-ratio and the temperature are extracted from the variable. An upper limit of 100 and a lower

limit of 0.01 are choosen for the value of the ratios. These limits are choosen so that the difference

between lines cannot be higher than two orders of magnitude, this way very strong lines which are

not well fitted by Gaussian profiles are excluded, and weak lines, prone to measurement errors, are

also removed. An additional cut is also put into place which does not allow line-ratio values higher

than twice the mean of the values in order to remove outlier stars. Finally another cut is performed to

the list of allowed ratios under the form of the well-known and robust Interquartile range(IQR) method,

which is a measure of statistical dispersion that effectively trims the outliers (Upton et al. 1996). The

IQR method requires the calculation of the IQR, which is defined as the difference between the third

and first quartile of a data distribution, Q3 and Q1, respectively. An outlier, using this method is any

data point outside of the interval of values defined by [Q1 − 1.5IQR, Q3 + 1.5IQR]. This method is

less sensitive to extreme outliers than other methods relying on sample variance or sample standard

deviation (Upton et al. 1996).

After the outlier-removal procedure outlined above is performed, two functions are fitted to the re-

maining points, a linear and a 3rd degree polynomial function. Additional outliers are then removed by

way of a 2-σ cut which removes points that deviate from the fitted function more than twice the value

Guilherme Domingos Carvalho Teixeira



FCUP 44
Spectroscopic Calibrations for a Better Characterization of Stars and Planets

of the standard deviation ensuring a 95% confidence interval. As soon as this removal is done, the

remaining datapoints are then used to once more fit a linear and 3rd degree polynomial function, and

the coefficients of both fits are stored in a variable. An example of this 2-σ cut is shown in figure 3.3,

this plot shows the removal process for the ratio between lines SiI(6142.49 Å) and TiI (6126.22 Å). In

the plot the black dots represent the stars removed by this final 2-σ removal procedure. This particular

ratio was choosen in order to show the good agreement of GeTCal when compared with the process

used by Sousa et al. (2010) which presents a plot of the same line-ratio in figure 2 of that work.

Figure 3.3: Plot of the 3rd degree polynomial fit for the ratio between the lines: SiI(6142.49 Å)
and TiI (6126.22 Å). The dashed lines represent the 2-sigma of the fit. The black dots represent
the stars removed using the 2− σ cut. Also shown is the error of the fit which is 82K.

The outlier-removal and fitting processes described above are part of the UltimatePlotter2 subroutine

and are repeated for the line-ratios, r, the inverse of the line-ratios, 1/r, and also for the logarithm

of the line-ratios, log r. The subroutine plots these graphs, calculates the standard deviation of each

fit, selects the function whose fit has the lowest standard deviation, and then stores the data of the

choosen function as an output. Figure 3.4 shows the plots for the fits of the line-ratio between line

6739.52 Å, FeI, and line 6793.26 Å, FeI. The best fit function is then stored.

The best fit computed is stored on a TMCalc compatible calibration file. As mentioned above the

calibration file and the line-ratios choosen, ultimately depend on the type of stellar spectral type, the
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Figure 3.4: Plot of the fits for the ratio, the inverse of the ratio and the logarithm of the ratio
between lines FeI 6739.52 Å and FeI 6793.26 Å, respectively from left to right. The blue lines
are the linear fit, the green lines are the 3rd degree polynomial fit. The P_sigma is the error of
the 3rd degree polynomial fit, L_sigma is the error of the linear fit and STARS is the number of
stars used for the fit. In this case the polynomial of the inverse of the ratio was choosen as it
had the lowest error, ∼ 89K.

number of stars used in the calibration sample and, of course, on the quality of the calibration sample

spectra itself.
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3.2 THE NEW CALIBRATION

In order to obtain a new calibration file using GeTCal, a sample of stars to be used as the calibration

sample had to be choosen. Therefore, in order to obtain the new calibration, two distinct datasets

were used. One was the well-known and well-documented sample of 451 FGK-dwarf stars obtained by

Sousa et al. (2008), hereafter Sousa-sample, the other was a sample of 256 K and G giant stars whose

parameters had been determined by Alves et al. (2014), hereafter Alves-sample. The Alves-sample is

composed of 256 GK giant stars, with spectra obtained using the UVES spectrograph at the La Silla

Observatory. The spectra for all stars in the Alves-sample is high-resolution, λ/∆λ ∼ 110000, and has

a high S/N of ∼ 150. The steps necessary to obtain the new calibration were: re-derivation of stellar

parameters for the Sousa-sample and recalibration, attempt to use the new calibration in giants, final

recalibration with a joint sample of the Sousa- and Alves-sample.

Re-derivation and calibration of the Sousa sample

Even though the Sousa-sample has been well-documented, it has a problem, since the stars in

this sample with temperatures below 5000 K have been shown to have higher offsets in the lower-

temperature regime. It was, therefore, necessary to first re-determine the parameters for all the stars

in the lower-temperature regime, in order to be more cautious in our analysis we defined stars in the

lower-temperature regime those with Teff < 5200 K . In order to perform this re-determination a different

line-list was required, specifically the Tsantaki line-list (Tsantaki et al. 2013). The Tsantaki line-list was

obtained by carefully taking into account the effects that the lower temperatures have on solar-type

stars, particularly in what weak spectral lines are concerned. The parameters for the Sousa-sample

were redetermined using the Sousa line-list for the 310 stars with Teff > 5200 K and the Tsantaki

line-list for the remaining 141 stars, using the described ARES+MOOG method. The reason for the

redetermination of the parameters for the entire 451 stars of the Sousa-sample was simply to verify the

homogeneity and consistency of our methods. The error determination code was applied to the results

of the ARES+MOOG method and an output file with the parameters and errors was produced.

The redetermined stellar parameters of the 141 stars in the low-temperature regime were used to

update the 451 FGK-dwarf star catalogue. A comparison with the work presented by Sousa et al.
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(2008) showed only minor differences in the parameter values with the exception, as expected, of

stars in the low-temperature regime since these parameters were computed using the Tsantaki line-list.

Given that the ARES+MOOG method relies on a minimization method, it is no surprise that the values

of the redetermined parameters are not equal to the values determined by Sousa et al. (2008). These

small differences (∼ 10 K) can be easily explained since they arise from numeric fluctuations of the

minimization algorithm and the convergence criteria used.

GeTCal was used to obtain the new calibration files for TMCalc using the Sousa-sample for cali-

bration, since the parameter values are similar for most Sousa-sample stars and the fact that GeTCal

mostly emulates the calibration method presented in Sousa et al. (2010), the calibration file produced

by GeTCal is quite similar to the calibration already made available with the current distribution of TM-

Calc. The calibration file produced from this sample uses 406 line-ratios. Hereafter this calibration will

be referred to as the Sousa+Tsantaki, or S+T calibration. TMCalc computes the Teff for each line-ratio

and then computes the mean value weighted by the standard deviation of each line-ratio.

Application of the S+T-calibration

As it is shown in figure 3.5, which uses the new S+T-calibration to obtain the temperature for the

Sousa-sample, the significative difference is for stars in the low-temperature regime. An additional

deviation from linearity was also observed for the stars with high temperatures. Both offsets have

been addressed by the new calibration obtained with the GeTCal code. The comparison between the

mean difference between the ARES+MOOG and the values obtained by the S+T calibration for the

Sousa-sample can be seen in table 3.1. A refinement of the results obtained by the original calibration

is observed, with the mean difference, previously −22 K, becoming −1 K and the standard deviation

going from 69 K to 58 K.

We also had the values of the stellar parameters of the 256 giants of the Alves-sample, which had

been kindly provided to us by Lisa Benamati. Nevertheless, we also performed a re-derivation of the

parameters using the ARES+MOOG method as a way to again check the consistency of the results

and ensure the homogeneity of our method. Again the difference in values was not significative (∼ 10

K) and, as such, we choose to use the values provided by Lisa Benamati.

Given that we had a new improved S+T-calibration, we applied it with TMCalc to the Alves-sample
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Figure 3.5: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for the sample of 451-FGK dwarf stars. The red circles are the results
obtained for the original calibration, the blue open squares are the values using the new S+T
calibration. The black line represents the identity line. A clear improvement can be seen for cool
stars and for hot stars.

Table 3.1: Mean and standard deviation of the difference between the Teff obtained using the
ARES+MOOG method and the one obtained by applying each calibration file to TMCalc.

Sousa-sample Alves-sample

Calibration Mean_dif (K) σ (K) Mean_dif (K) σ (K)

Original −22 69 −208 70

S+T −1 58 −168 62

B 259 246 8 69

J 17 77 −32 58

of giant stars and checked how the results of the new temperatures obtained using S+T-calibration

stacked up against the temperatures obtained using the standard ARES+MOOG method. Given that

the differences were high, with a mean difference of −168 K, see table 3.1, we computed with GeTCal

a calibration file for the Alves-sample. This new calibration file will, hereafter, be referred to as the B-

calibration. Figure 3.6 shows the comparison between the results obtained using the S+T-calibration,

in red circles, and the results of the B-calibration, open blue squares. It is clear that, for this sample,

the B-calibration is a clear improvement.
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Figure 3.6: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for the sample of 256 giant stars. The red circles are the results ob-
tained for the S+T-calibration, the blue open squares are the values using the new B calibration.
The black line represents the identity line. A clear improvement can be observed.

Obtaining the joint calibration

Since the B-calibration was obtained using the Alves-sample of giant stars, it was not expected that

it would be useful for the determination of the temperatures of the Sousa-sample, composed by FGK-

dwarfs. Nevertheless, the B-calibration was used in TMCalc to try to obtain the temperatures of the

Sousa-sample. The result of this application of TMCalc and the comparison with the results obtained

for the same sample using the S+T-calibration is shown in figure 3.7. Clearly the S+T-calibration is

preferred for the Sousa-sample, as was expected. The B-calibration has a clear trend deviating from

linearity. The mean difference between the ARES+MOOG and the TMCalc temperatures is of −1 K

using the S+T-calibration, but when using the B-calibration it reaches a value of 259 K as shown in

table 3.1.

Given that neither the S+T- nor the B-calibrations were adequate for the full range of stars used,

the calibration code was once again used. In this run of GeTCal a joint sample, composed by both

the Sousa- and the Alves-sample of stars was used. The reasoning for this joint calibration was the

fact that using both FGK-dwarfs and giants as calibration the selected line-ratios would be such as
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Figure 3.7: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for the sample of the 451 FGK-dwarfs. The red circles are the results
obtained using the S+T-calibration, the blue open squares are the values using the B-calibration.
The black line represents the identity line. A clear deviation from linearity is observed using the
B-calibration.

to take into account the diversity of stellar evolutionary stages involved. The calibration file produced

from this joint sample shall be referred during the remainder of this text as the J-calibration. Figure 3.8

shows the contrast between the temperature determination for the joint sample of stars using the S+T

calibration and the J-calibration. Present in figure 3.8 is the clear improvement of the J-calibration over

the S+T-calibration, a fact which can also be observed in table 3.1.

These results show that the J-calibration file can be accurately used by TMCalc to obtain temper-

atures for both FGK-dwarfs and giant stars. During the remainder of this work we used TMCalc in

tandem with the J-calibration.

Table 3.2 presents a summary of the calibration files, showing the number of line-ratios present, the

number of stars used for the calibration, the standard deviation obtained from comparing Teff obtained

by TMCalc for the calibration sample and the one from the ARES+MOOG method, the mean difference

of the same comparison, Teff of the coldest star in the sample and of the hottest and finally the lower

and highest log g in the calibration sample used.

The new calibration files will be made available as soon as GeTCal is improved to also calibrate the
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Figure 3.8: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for a sample composed by the 451 FGK-dwarfs and the Alves-sample
of giants. The red circles are the results obtained using the S+T-calibration, the blue open
squares are the values using the J-calibration. The black line represents the identity line. The
J-calibration is able to compute the temperatures for both type of stars.Table 3.2: Summary of each calibration file used.

Calibration num_ratios num_stars Mean_dif σ Teff min Teff max log g min log g max

Original 433 451 −22 69 4483 6403 3.63 4.92

S+T 380 451 −1 58 4483 6403 3.63 4.92

B 752 257 8 69 4724 5766 2.37 3.92

J 322 708 −1 74 4483 6403 2.37 4.92

[Fe/H] and is presented in the Teixeira et al. (2014) paper, currently in preparation.
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Chapter 4.

The new parameters

The ARES+MOOG method detailed above and the results of TMCalc using the J-calibration file were

used in tandem in order to re-derive stellar parameters for our spectra. The following chapter describes

the new derived parameters. The comparison between the old parameters and the newly determined

ones is also shown in the cases when it is applicable. The ASCII tables of the new parameters have

been made available online on http://astro.up.pt/~gteixeira/new_parameters/.

4.1 NEW PARAMETER TABLES

The first table, a sample of which is shown in table 4.1, shows the rederivation of parameters for

the Sousa-sample. Significative differences were only found for stars in the low-temperature regime,

Teff < 5200 K, which were computed using the Tsantaki line-list. The number of stars rederived using

the Tsantaki line-list was 141 FGK-dwarfs from the full Sousa-sample. The full table can be found

in http://astro.up.pt/~gteixeira/new_parameters/sousa_jcal_table.dat. As was previously

shown there is a good agreement between the Teff obtained using the J-calibration in TMCalc and

the temperature obtained using the ARES+MOOG method. The temperature value and the respective

errors obtained using TMCalc are also present in the table under the names Teff_tm and err_Teff_tm

respectively. The standard deviaton of the difference between the ARES+MOOG method and the

TMCalc computation with the J-calibration was 77 K.

A similar table was produced for the Alves-sample, a sample of this is shown in table 4.2. For this
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Table 4.1: Parameters for the Sousa-sample of FGK-dwarf stars. This is only a small sample
of the parameters. The full table can be found at http://astro.up.pt/~gteixeira/new_
parameters/sousa_jcal_table.dat.

Star Teff er_Teff log g er_log g vt er_vt M/H er_M/H Teff _tm er_Teff _tm Teff _diff

HD10002 5313 44 4.4 0.07 0.82 0.09 0.17 0.03 5145 22 168

HD100508 5449 61 4.42 0.09 0.86 0.09 0.39 0.05 5257 29 192

HD100777 5536 26 4.33 0.05 0.81 0.04 0.25 0.02 5447 17 89

HD10166 5221 31 4.48 0.07 0.74 0.07 -0.39 0.02 5159 33 62

HD10180 5911 19 4.39 0.03 1.11 0.02 0.08 0.01 5874 14 37

HD102117 5657 24 4.31 0.04 0.99 0.03 0.28 0.02 5556 19 101

HD102365 5629 29 4.44 0.03 0.91 0.04 -0.29 0.02 5659 25 -30

HD102438 5560 13 4.41 0.03 0.84 0.02 -0.29 0.01 5649 18 -89

HD104263 5477 23 4.34 0.04 0.81 0.03 0.02 0.02 5422 10 55

HD104982 5692 14 4.44 0.02 0.91 0.02 -0.19 0.01 5756 12 -64

... ... ... ... ... ... ... ... ... ... ... ...

Table 4.2: Parameters for the Alves-sample of giant stars. This is only a small sample
of the parameters. The full table can be found at http://astro.up.pt/~gteixeira/new_
parameters/benamati_jcal_table.dat.

Star Teff er_Teff log g er_log g vt er_vt M/H er_M/H Teff _tm er_Teff _tm Teff _diff

HD74006 5766 149 3.92 0.151 4.28 0.422 -0.02 0.116 5355 71 411

HD177389 5102 24 3.5 0.04 1.08 0.032 -0.03 0.02 5075 7 27

HD6793 5367 33 3.49 0.105 1.7 0.041 0.03 0.027 5225 17 142

HD175145 5382 23 3.49 0.057 1.41 0.028 0.02 0.021 5283 15 99

HD6080 5118 25 3.46 0.038 1.12 0.031 -0.07 0.02 5081 10 37

HD87896 5324 37 3.46 0.094 1.51 0.042 0.13 0.03 5171 31 153

HD67762 5010 27 3.42 0.055 1.1 0.032 -0.01 0.02 4973 8 37

HD141832 5046 43 3.41 0.069 1.3 0.054 0.11 0.035 4984 14 62

HD140329 5043 30 3.4 0.066 1.15 0.036 0.02 0.022 5018 9 25

HD85612 5108 22 3.38 0.039 1.18 0.026 -0.05 0.018 5075 8 33

... ... ... ... ... ... ... ... ... ... ... ...

case the standard deviation of the difference between the temperatures obtained by each method was

of 58 K.

Guilherme Domingos Carvalho Teixeira

http://astro.up.pt/~gteixeira/new_parameters/sousa_jcal_table.dat
http://astro.up.pt/~gteixeira/new_parameters/sousa_jcal_table.dat
http://astro.up.pt/~gteixeira/new_parameters/benamati_jcal_table.dat
http://astro.up.pt/~gteixeira/new_parameters/benamati_jcal_table.dat


FCUP 55
Spectroscopic Calibrations for a Better Characterization of Stars and Planets

4.2 AN INDEPENDENT 56 GIANT-STAR SAMPLE

The parameter derivation for an independent sample of 56 giant stars (Santos et al. 2009) was

performed using the ARES+MOOG method and, subsequently, TMCalc. Table 4.3 shows a sample

of the determined parameters. The full table can be found in http://astro.up.pt/~gteixeira/

new_parameters/56_independent_jcal_table.dat. Looking at figure 4.1, showing a plot of the

TMCalc temperatures using the J-calibration against a plot of the ARES+MOOG temperatures, it is

clear that there are some outliers which can be explained if we look at the fact that these stars have

low temperatures and extremely low log g values, thus making the EW measurement harder.
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Figure 4.1: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for the sample of 56 giant stars used. The black line represents the
identity line.
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Table 4.3: Parameters for the sample of 56 giant stars. This is only a small sample of the param-
eters. The full table can be found at http://astro.up.pt/~gteixeira/new_parameters/
56_independent_jcal_table.dat.

Star Teff err_Teff log g err_log g vt err_vt M/H err_M/H T_tm err_T_tm T_diff

IC2714No110 5127.0 45 2.84 0.11 1.52 0.05 0.04 0.04 5119 19 8

IC2714No53 5165.0 37 2.77 0.13 1.5 0.04 0.03 0.03 5181 21 -16

IC2714No87 5210.0 42 2.81 0.13 1.57 0.05 0.04 0.04 5202 24 8

IC4651No10393 4827.0 53 2.48 0.24 1.26 0.06 0.06 0.04 4941 16 -114

IC4651No7646 4957.0 41 2.75 0.13 1.5 0.04 0.1 0.04 5030 18 -73

IC4651No9122 4686.0 51 2.6 0.20 1.38 0.06 0.09 0.04 4858 16 -172

IC4756No125 5172.0 29 2.93 0.09 1.45 0.03 0.01 0.03 5222 19 -50

IC4756No38 5177.0 24 3.01 0.07 1.34 0.03 0.03 0.02 5223 17 -46

IC4756No42 5245.0 30 3.1 0.07 1.37 0.03 0.03 0.03 5258 20 -13

NGC2287No21 4157.0 18 1.15 0.18 2.26 0.02 0.32 0.19 4695 39 -538

... ... ... ... ... ... ... ... ... ... ... ...

4.3 THE GAIA-ESO SURVEY BENCHMARK STAR SAMPLE

The GAIA-ESO Public Spectroscopic Survey aims to obtain quality spectroscopy for nearly 100000

stars, down to magnitude 19 and will cover sistematically the major components of our galaxy. The

survey is expected to deliver improved astrophysical parameters for each star using, as basis, CoRoT

benchmark stars. These stars have their log g values well-determined from asteroseismology. As such

we used TMCalc to obtain the temperatures of these stars with the J-calibration file.

The computation of the temperature values for CoRoT benchmark stars was performed using our

J-calibration. These new temperature values will be used in the remainder of the GAIA-ESO survey

program. A plot similar to the ones presented before, comparing the results obtained by TMCalc and

the ARES+MOOG method is shown as figure 4.2. The cooler stars deviate further from the identity line,

which is not a surprise considering that the catalogue of benchmark stars has some members that are

well into the low-temperature regime with temperatures below our calibration samples. As such it was

decided that the survey would only consider the rederivation of stars within the temperature interval

4900 K < Teff < 6500 K. This consideration allows for a minimization of errors. A sample of this table is

presented in table 4.4.
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Figure 4.2: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for the COROT benchmark stars. The black line represents the
identity line.

Table 4.4: Parameters for the sample of COROT benchmark stars. This is only a small sample
of the parameters. The full table can be found at http://astro.up.pt/~gteixeira/new_
parameters/benchmark_jcal_table.dat.

Star Teff er_Teff log g er_log g Fe/H er_Fe/H V er_V Teff _tm er_Teff _tm Teff _diff

18Sco 5810 80 4.44 0.03 0.03 0.03 1.07 0.2 5784 17 26

61CygA 4374 22 4.63 0.04 -0.33 0.38 1.07 0.04 4687 62 -313

alfCenA 5792 16 4.3 0.01 0.26 0.08 1.2 0.07 5738 17 54

alfCenB-w 5231 20 4.53 0.03 0.22 0.1 0.99 0.31 5065 21 166

Arcturus 4286 35 1.64 0.06 -0.52 0.08 1.58 0.12 4711 27 -425

betGem 4858 60 2.9 0.06 0.13 0.16 1.28 0.21 4994 17 -136

betHyi-w 5873 45 3.98 0.02 -0.04 0.06 1.26 0.05 5884 16 -11

betVir 6083 41 4.1 0.02 0.24 0.07 1.33 0.09 5981 37 102

delEri-w 4954 26 3.75 0.02 0.06 0.05 1.1 0.22 5001 13 -47

epsEri-w 5076 30 4.6 0.03 -0.09 0.06 1.14 0.05 4976 22 100

... ... ... ... ... ... ... ... ... ... ... ...
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4.4 LIMITS OF THE NEW CALIBRATION

Figure 4.3, plots the TMCalc Teff against the values of ARES+MOOG for all samples determined

by our J-calibration. The colour code in this plot shows the value of log g, hotter colors for higher

log g. It is apparent that outlier stars have low values of temperature while also having low log g .

This translates into spectra which will have an abundance of blending effects and, therefore, makes

the measurements of EWs more problematic. Based on this we have empirically set limits to the

applicability of the J-calibration. These limts are shown in table 4.5.
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Figure 4.3: Comparison between the Teff obtained using TMCalc and the Teff obtained using
the ARES+MOOG method for all stars used during our study. The black line represents the
identity line. The colour code shows the value of log g of each star. It is clear that most outliers
are stars with very low log g values.

Table 4.5: Limits of applicability of the J-calibration.

Teff log g [Fe/H]

[4500, 6500] [2, 4.9] [−0.8, 0.5]
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Chapter 5.

Summary

A computer code, GeTCal, was built which is capable of, given a sample of stars with their EWs, and

their stellar parameters, create a calibration file based on line-ratios. This file is compatible with the

TMCalc code and can be used in tandem in order to quickly obtain stellar temperatures for stars of the

same spectral type as the ones used to produce the calibration file.

New stellar parameters for the 451 FGK-dwarf sample of Sousa et al. (2008) were obtained using

the Tsantaki line-list (Tsantaki et al. 2013) for the 141 stars with Teff < 5200 K.

We have used the new parameters of the 451 FGK-dwarfs to obtain a calibration file and tested

it using TMCalc on a sample of 256 giant stars provided by Lisa Benamati. Since the temperatures

obtained for the Alves-sample using this calibration had a mean difference of −168 K from the values

obtained with ARES+MOOG it was apparent that this calibration was not adequate for giant stars.

A second calibration file was obtained using the Alves-sample as calibration sample. Although this

calibration reduced the mean difference between the ARES+MOOG and the TMCalc values for the

Alves-sample to 8 K it couldn’t be used for the Sousa-sample. The mean difference between the

ARES+MOOG values and the TMCalc for the Sousa-sample using the B-calibration was 259 K.

A third calibration file, J-calibration, was obtained using for calibration a joint sample composed of

the Sousa- and Alves-samples. This mixed calibration file when applied to TMCalc returns a mean

difference of 17 K and −32 K for the Sousa- and Alves-samples respectively.

Using the J-calibration on TMCalc we were able to obtain new temperature values for an independent

sample of 56-giant stars and for the COROT benchmark stars. The analysis of these new values
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allowed us to empirically limit the applicability off the J-calibration to the following limits:

4500 K < Teff < 6500 K , 2 < log g < 4.9, −0.8 < [Fe/H] < 0.5.

The new CoRoT benchmark temperature values will be used as the de facto values for the GAIA-

ESO survey CoRoT collaboration. They will become increasingly important as the GAIA-ESO survey

progresses. One of the data products of the survey is improved astrophysical parameters so the

importance of well-determined parameters for the benchmark stars cannot be overstated.

The J-calibration has been successfully tested for FGK-dwarfs and giants within the previously men-

tioned limits. The Teff determined using TMCalc is also dependent on the quality of the S/N of the

spectra and the wavelenght windows used.

All parameter tables have been provided in http://astro.up.pt/~gteixeira/new_parameters/.

The calibration file itself will be released later.

The new calibration will also be part of one of the recipes in the ESPRESSO data analysis pipelines.

A limitation of the GeTCal code is that it does not, as of yet, produce another calibration file for

TMCalc that allows for an accurate determination of the metallicity values for the stars.

5.1 FUTURE WORK

Although GeTCal has been coded to produce a calibration file which will be used by TMCalc to

successfully determine the Teff value there is still an additional calibration that we wish to include in

the GeTCal code. As of now GeTCal does not calibrate TMCalc in order to obtain [Fe/H] values. Our

immediate goal is to add the metallicity calibration and be able to produce one additional calibration

file which will take metallicity into account. The new addition to the GeTCal will emulate the calibration

method described in Sousa et al. (2012).

After this additional calibration has been added to the GeTCal code we hope to distribute the GeTCal

to the community packaged with TMCalc. As soon as this final addition is ready we will present the

GeTCal code in an upcoming paper currently in preparation (Teixeira et al. 2014). We will once again

perform a calibration using this new version of GeTCal and will reobtain the parameters for all stars of

the sample.

One additional work that could be interesting to do is to use a larger sample of spectra for a greater
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number of spectral types at different evolutionary stages and produce calibration files. This calibration,

having a broad interval of parameters, could be used to accurately compute the temperature and

metallicity of stars with spectral types in a wide range. As an ultimate goal a larger calibration sample

would be able to produce a stable and encompassing calibration file for TMCalc.
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