
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development of a Dynamically
Extensible SpiNNaker Chip Computing

Module

Rui Emanuel Gonçalves Calado Araújo

Master in Electrical and Computers Engineering

Supervisor: Jörg Conradt

Co-Supervisor: Diamantino Freitas

January 27, 2014

Resumo

O projeto SpiNNaker desenvolveu uma arquitetura que é capaz de criar um sistema com mais de
um milhão de núcleos, com o objetivo de simular mais de um bilhão de neurónios em tempo real
biológico. O núcleo deste sistema é o "chip" SpiNNaker, um multiprocessador System-on-Chip
com um elevado nível de interligação entre as suas unidades de processamento. Apesar de ser uma
plataforma de computação com muito potencial, até para aplicações genéricas, atualmente é ape-
nas disponibilizada em configurações fixas e requer uma estação de trabalho, como uma máquina
tipo "desktop" ou "laptop" conectada através de uma conexão Ethernet, para a sua inicialização e
receber o programa e os dados a processar.

No sentido de tirar proveito das capacidades do "chip" SpiNNaker noutras áreas, como por
exemplo, na área da robótica, nomeadamente no caso de robots voadores ou de tamanho pequeno,
uma nova solução de hardware com software configurável tem de ser projetada de forma a poder
selecionar granularmente a quantidade do poder de processamento. Estas novas capacidades per-
mitem que a arquitetura SpiNNaker possa ser utilizada em mais aplicações para além daquelas
para que foi originalmente projetada.

Esta dissertação apresenta um módulo de computação dinamicamente extensível baseado em
"chips" SpiNNaker com a finalidade de ultrapassar as limitações supracitadas das máquinas SpiN-
Naker atualmente disponíveis. Esta solução consiste numa única placa com um microcontrolador,
que emula um "chip" SpiNNaker com uma ligação Ethernet, acessível através de uma porta série
e com um "chip" SpiNNaker. Além disso, um programa de computador multi-plataforma baseado
em Java disfarça esta solução personalizada permitindo que este novo sistema seja retrocompatível
com todas as ferramentas existentes para as máquinas convencionais.

Para desenvolver esta nova solução foi necessário um estudo profundo e detalhado da ar-
quitetura e do funcionamento interno do "chip" SpiNNaker. Com o conhecimento adquirido a
partir desta análise aprofundada, foi possível construir uma placa com um microcontrolador e um
"chip" SpiNNaker conectados através dum protocolo interno da arquitetura SpiNNaker. Após a
criação da placa, desenvolveu-se o software para controlar o microcontrolador e uma aplicação
para manter a retrocompatibilidade com sistemas padrão. Para demonstrar as novas capacidades
desta plataforma noutras aplicações para além de redes neuronais, desenvolveu-se uma simulação
do movimento dum bando de pássaros.

A solução apresentada permite a utilização de dezenas de núcleos ARM eficientes num pacote
de reduzida dimensão, sendo desta forma adequada para ser utilizada em pequenos robots e assim
implementar algoritmos avançados que exijam poder computacional paralelo.

i

ii

Abstract

The SpiNNaker project has created an architecture that is capable of scaling up to a system with
more than a million embedded cores in order to simulate more than one billion spiking neurons in
biological real time. The heart of this system is the SpiNNaker chip, a Multi-Processor System-
on-Chip with a high level of interconnectivity between its processing units. Although it is a very
powerful computing platform, even for non-neural application, it is currently only available in
fixed configurations and it requires a workstation, usually a desktop or a laptop connected through
an Ethernet connection, to be initialised and to receive the data to be processed.

Therefore if one wishes to take advantage of the capabilities of the SpiNNaker chip in other
fields, as for example the robotics field specially in the case of small or flying robots, a new
hardware solution with custom software must be built where the amount of processing power can
be granularly selected. This new capability allows the SpiNNaker architecture to be used in more
applications than it was originally designed for.

This thesis presents a Dynamically Extensible SpiNNaker Chip Computing Module to improve
on the limitations of the currently available SpiNNaker machines. This approach is a single board
with a microcontroller which emulates an Ethernet connected SpiNNaker chip accessible through
a serial port and a single SpiNNaker chip placed together. Additionally it features a cross-platform
Java based computer program that disguises this custom solution allowing this new system to be
backwards compatible with all the existing tools for the standard machines.

In order to develop this new solution, a very deep and detailed study of the inner workings of
the SpiNNaker chip was required. With the acquired knowledge from this thorough analysis, it
was then possible to build a custom board with a microcontroller and the SpiNNaker connected
through a internal protocol from the SpiNNaker architecture and develop the software to drive
the microcontroller and an application to emulate a standard system for the SpiNNaker tools. A
non-neural application, the simulation of the movement of a flock of birds, was developed to
demonstrate the general purpose capabilities that this new platform has.

The presented solution allows the deployment of dozens of power efficient ARM cores avail-
able in a very small package suitable to be used in small robots which makes it possible to imple-
ment advanced algorithms that require truly parallel computational power.

iii

iv

Acknowledgments

I wish to thank, first and foremost, to Professor Jörg Conradt who continuously supported and
encouraged me, besides the technical advice essential for the development of this work. I am
also thankful to my co-supervisor Professor Diamantino Freitas for his availability, support and
criticism. Besides my supervisors, I would like to thank Nicolai Waniek and Christian Denk for
their precious suggestions and feedback.

This thesis would not have been possible without the precious help from Steve Temple, Luis
Plana and Francesco Gallupi from the University of Manchester who provided essential guidance
while studying the SpiNNaker system.

I thank my fellow student, Tobias Brennich, whose help in the assembly of the multiple testing
and final boards proved to be invaluable.

I owe my deepest gratitude to my family, especially my parents, Rui and Manuela, and my
siblings, Mónica, Beatriz and Francisco, for their unconditional love and support.

I reserve a special thank you, to my soul mate, Ângela Igreja for all your love, affection,encouragement,
motivation, support and availability, along this path. I would also like to thank all of my friends,
especially to Ricardo Castro, for all their encouragement and support .

Rui Araújo

v

vi

“If you are thinking of the brain as a computer,
the neuron is the transistor.”

Carl Schoonover

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 2
1.4 Methodology . 3
1.5 Main Results . 4
1.6 Related Works . 4
1.7 Document Structure . 6

2 The SpiNNaker System 7
2.1 Architecture . 7

2.1.1 Inter-chip communication . 15
2.1.2 SDP packets . 16
2.1.3 SpiNNaker machines . 22

2.2 Application Loading . 22
2.2.1 Boot sequence . 23
2.2.2 Application Load and Execute (APLX) File Format 33
2.2.3 SpiNNaker Control & Monitor Program (SC&MP) 36
2.2.4 SpiNNaker Application Runtime Kernel (SARK) 36
2.2.5 Toolchain . 37

2.3 Summary . 39

3 SpiNNaker Chip Computing Module 41
3.1 General Architecture . 41
3.2 Hardware . 42

3.2.1 Components Selection . 45
3.2.2 Power Dissipation . 46
3.2.3 Layout Concerns . 47
3.2.4 PCB Test Board . 47
3.2.5 PCB Final Board . 48
3.2.6 SpiNNaker Extension Board . 48

3.3 Microcontroller Firmware . 48
3.3.1 M0 Core . 50
3.3.2 M4 Core . 54

3.4 Workstation Application . 57
3.4.1 User Interface . 60
3.4.2 Wrapper Protocol . 60

3.5 Evaluation . 62

ix

x CONTENTS

3.6 Summary . 63

4 Case Study 65
4.1 Boids Model . 65
4.2 General architecture . 66

4.2.1 SpiNNaker implementation . 66
4.2.2 Computer Visualiser . 68

4.3 Evaluation . 69
4.4 Summary . 69

5 Conclusions and Future Work 71
5.1 Summary . 71
5.2 Difficulties . 72
5.3 Future Work . 72

5.3.1 PCB Layout . 72
5.3.2 Full Workstation Independence . 72

A Developed Hardware 73
A.1 Test Board . 73
A.2 Final Board . 73
A.3 SpiNNaker Extension Board . 73

B SDP over P2P Packets 89
B.1 Payload of the different packets used . 89

C Source code 93
C.1 Microcontroller Firmware . 93
C.2 Workstation application . 93
C.3 Boids Simulation . 93

D SARK Source code and API 95
D.1 SARK API . 95

References 99

List of Figures

1.1 Work Methodology: phases and respective research methods 4

2.1 Block diagram of the SpiNNaker chip. 8
2.2 Block diagram of the ARM928 core. 10
2.3 Emergency routing. 11
2.4 The 4 different SpiNNaker Packets. 13
2.5 SpiNNaker Communications model. 17
2.6 SDP packet header. 18
2.7 SDP packet embedded within a UDP packet. 19
2.8 SDP over P2P protocol. 20
2.9 SCP packet. 21
2.10 102 Machine. 23
2.11 103 Machine. 24
2.12 SpiNNaker Machines. 25
2.13 Node-Boot process until the selection of the Monitor processor. 27
2.12 Node-Boot process after the selection of the Monitor processor. 28
2.13 State machine for the reception of the System-Boot image. 30
2.14 Packet scheme used by the Host System to push the second stage image to a SpiN-

Naker chip. 31
2.15 Packet scheme used by the SpiNNaker chip to push the second stage image to a

neighbour chip. 32
2.16 Word array for a Flood-Fill Block. 33
2.17 Typical APLX file structure. 34
2.18 SpiNNaker programming framework. 38
2.19 SpiNNaker neural networks simulation development route. 40

3.1 General Architecture of the developed solution. 42
3.2 Possible connection between the microcontroller and the SpiNNaker chip. 43
3.3 AutoBGA user interface for the parameter configuration. 44
3.4 PCB Test Board. 48
3.5 The SpiNNaker Computing Module. 49
3.6 Microcontroller Firmware Architecture. 50
3.7 Packet Input Reading Algorithm. 52
3.6 Packet Input Reading Algorithm. 53
3.7 Host communication task state machine. 55
3.8 SDP Packet Transmission State Machine. 57
3.9 SDP Packet Reception State Machine. 58
3.10 SpiNNaker Wrapper Application Architecture. 59

xi

xii LIST OF FIGURES

3.11 User Interface of the Workstation Application. 61

4.1 Architecture for the Boids simulation. 67
4.2 A frame of the Boids Visualiser with 2176 birds. 70

A.1 Schematic of the initial testing board. 75
A.2 Developed PCB layout for the initial testing board. 77
A.3 SpiNNaker 102 machine with the test board. 79
A.4 Schematic of the final design. 81
A.5 Final PCB layout with the SpiNNaker chip and power supplies. 83
A.6 Schematic of the SpiNNaker extension board. 85
A.7 SpiNNaker chip extension board. 87

B.1 The different payload packets. 92

List of Tables

2.1 Multicast Output Vector Assignment. 14
2.2 P2P Table Entry behavior. 14
2.3 2-of-7 Symbol coding. 16
2.4 IPTag timeout values. 18
2.5 Timeout values for SDP over P2P. 19
2.6 Retries count for SDP over P2P. 21
2.7 5 SCP commands that both SC&MP and SARK implement. 21
2.8 Ordered list of power-on self-tests performed during Node-Boot. 25
2.9 APLX header and APLX Command structure 35
2.10 Event Callbacks Arguments. 37

3.1 Power dissipation for the various regulators. 47
3.2 Commands send by the Application to the Microcontroller 61
3.3 Commands send by the Microcontroller to the Application 62
3.4 Performance Measurements for the transmission and reception of SpiNNaker pack-

ets. 63

4.1 Frames per second for the simulation with and without the SpiNNaker Computing
Module. 69

xiii

xiv LIST OF TABLES

Abbreviations and Acronyms

API Application Programmable Interface
APLX Application Load and Execute
APT Advanced Processor Technologies
ASCII American Standard Code for Information Interchange
BGA Ball Grid Array
BSD Berkeley Software Distribution
CCR Cyclic redundancy check
CPU Central Processing Unit
DDR Double Data Rate
DMA Direct Memory Access
DMIPS Dhrystone Millions Instructions per Second
DTCM Data Tightly-Coupled Memory
EAGLE Easily Applicable Graphical Layout Editor
EDA Electronic Design Automation
ELF Executable and Linkable Format
EEPROM Electrically Erasable Programmable Read-Only Memory
FIQ Fast Interrupt Request
FLOPS Floating-point Operations Per Second
FPGA Field Programmable Gate Array
FPS Frames Per Second
FR Fixed Route
GALS Globally Asynchronous Locally Synchronous
GPIO General Purpose Input Output
GPL General Public License
IRQ Interrupt Request
JAR Java Archive
LED Light-emitting diode
IPC Interprocessor Communication
ITCM Instruction Tightly-Coupled Memory
MAC Media Access Control
MC Multicast
MIPS Millions Instructions per Second
MPSoC Multi-Processor System-on-Chip
NN Nearest-neighbour
NoC Network on Chip
NRZ Non-Return-To-Zero
OSI Open Systems Interconnection
P2P Point to Point

xv

xvi Abbreviations and Acronyms

PCB Printed Circuit Board
RAM Random Access Memory
ROM Read Only Memory
RTZ Return To Zero
SARK SpiNNaker Application Runtime Kernel
SATA Serial Advanced Technology Attachment
SCP SpiNNaker Command Protocol
SC&MP SpiNNaker Control & Monitor Program
SDP SpiNNaker Datagram Protocol
SDRAM Synchronous dynamic random access memory
SoC System on Chip
SpiNNaker SPIKING Neural Network Architecture
SRAM Static Random Access Memory
TCAM Ternary Content-addressable Memory
UDP User Datagram Protocol
VIC Vector Interrupt Controller
VLSI Very-large-scale integration

Chapter 1

Introduction

The inner workings of the biological brain is still one of the great challenges for computational

neuroscience despite an increasing amount of experimental data and deeper scientific understand-

ing of individual components such as neurons.

There is a general consensus that the human brain has roughly about 85 to 100 billion neurons

total [Ngu10] where each neuron can have up to 15000 connections to other neurons via synapses

[Bro09]. Using techniques such as magnetic resonance imaging it is possible to observe large-

scale brain activity. However, this knowledge is insufficient to truly understand how thoughts

are constructed and how information is generally processed. It is believed that these functions

probably lie in the intermediate levels of the brain [FB09]. In order to understand these middle

layers, it is necessary to construct very large systems of spiking neurons with structures inspired

by the latest findings from the neuroscience field.

General purpose digital architectures are not well suited to simulate these kinds of networks

since these networks are characterized by massive processing parallelism and a high level of in-

terconnectivity between the processing units. A possible approach is the usage of neuromorphic

systems such as the BrainScales [PGJ+12] or the Neuro-grid [CSF+12] which emulate the neural

network with a physical implementation of the individuals neurons. Another possible approach

is a massively-parallel computer architecture with a high bandwidth inter-process communication

like the SpiNNaker system [FB09].

1.1 Context

The SpiNNaker system is a massively-parallel computer architecture based on a Multi-Processor

System-on-Chip (MPSoC) technology that can scale up to a million cores and is capable of simu-

lating up to a billion spiking neurons in biological real time with realistic levels of interconnectivity

between the neurons.

The SpiNNaker system was designed under the latest paradigm for high-performance com-

puting, highly-parallel systems. However, it is motivated by the attempt to understand and study

biological computing structures which achieve high level of parallelism with frugal amounts of

1

2 Introduction

energy as opposed to traditional electronics designs which up until the last few years were mostly

driven by the serial throughput. The biological approach to the design of this many-cores ar-

chitecture also brings new concerns in terms of fault-tolerance computation and efficiency. The

SpiNNaker chip, the basic building block of a SPiNNaker machine, relies on smaller processors

than other machines but in greater number, it has 18 highly efficient embedded ARM processors

that allows the SpiNNaker system to be competitive according to two metrics, MIPS/mm2 and

MIPS/W.

1.2 Motivation

The currently available machines with SpiNNaker chips are relatively large, the minimum size at

this moment is 105× 95mm, which limits their deployment on systems with limited size as for

example, small mobile robots, specially flying ones due to very strict weight and space constraints.

Additionally the SpiNNaker systems currently require a workstation, usually a desktop or a laptop,

connected through an Ethernet connection to bootstrap the system every time it powers on and to

feed the processing data into the system. This requirement seriously limits the independence and

deployment capabilities of systems with embedded SpiNNaker chips. At present, it is necessary to

add an wireless router in order to have a mobile system with a SpiNNaker machine [DLBG+13].

The drawbacks from this approach are fairly obvious, such as increased power consumption and

space requirements since the typical wireless router consumes around 4 to 5 Watt and even though

there are fairly small models available at the market it would still take up some space.

Furthermore the amount of extensibility provided by standard SpiNNaker machines is very

limited since it only allows increases of computing power in fixed amounts. The current single

board SpiNNaker machines are available in two versions, one with four chips and another with

forty eight. These are wildly different amounts of processing capability which make it difficult to

create intermediate solutions. It would be interesting to have the capability of selecting how many

SpiNNaker chips one needs to deploy without having to design new hardware.

The current requirements of the SpiNNaker architecture are not suitable for a lot of applica-

tions where its processing power and capabilities would be helpful. It is then necessary to design

a new solution that can overcome the limitations of the present options.

1.3 Goals

This thesis focused on the detailed study of the SpiNNaker architecture, with special care given to

the analysis of the inner workings of the SpiNNaker chips during its bootstrapping procedures and

its communications protocols with other chips in the system. The main objective from this study

is the identification of the most relevant limitations and possible paths to overcome these.

The primary goal of this research is to bring this advanced and efficient computing platform

to new ventures with increased flexibility. Having identified the main flaws and possible solutions

to overcome them, the most significant requirements can be determined. These are as follows:

1.4 Methodology 3

• Small size – in order for this system to be available for deployment in as many fields as

possible, it must have reduced dimensions or allow for significant reductions in size with

future iterations. This requirement makes it feasible to include this new computing platform

in many more applications;

• Extensible – the basic solution should have only one SpiNNaker chip but it must allow the

system to be extended in order to be a compelling option for applications that require greater

amounts of computing power;

• Low cost – it should strive to use low cost components and only the ones required for the

solution;

• Backwards Compatibility – the new solution must be compatible with tools and frame-

works that are currently available for the SpiNNaker machines. The requirement increases

the value of the new solution by allowing previous developments based on standard SpiN-

Naker machines to be used on the new system with minimal or no work required.

1.4 Methodology

The methodology devised for this research to reach the defined goals includes the following

phases, as depicted in Figure 1.1.

1. Information Gathering: The initial phase of the research was dedicated to gather and

synthesize information on the SpiNNaker system and specially on the detailed behaviour of

the SpiNNaker chip and on its communication with other chips. The results of this research

are presented in chapter 2.

2. Development Approach:

The solution development was done in stages. The initial step was the design of a basic

hardware version in order to allow the start the development of the software while still

iterating on the final hardware design. The second stage was the continued improvement of

the software up until the point it could boot SpiNNaker system by itself. The final step was

the competition of the software to be feature complete in terms of the various capabilities

that the communication subsystem of the SpiNNaker system has. This style of development

led to successive improvements on the previous layers when new features or changes of

functionality were required.

3. Evaluation Approach:

In order to do a validation of the developed solution, besides the standard test-bench mea-

surements, a case study of a computation-intensive process with special random characteris-

tics was built. The simulation of the movement of a flock of birds [Rey87] was implemented

on a desktop computer and on the new system to prove the gains that a SpiNNaker system

4 Introduction

may bring. This example was tested on the developed solution as well as on a standard

SpiNNaker machine to validate the backwards compatibility requirement.

Figure 1.1: Work Methodology: phases and respective research methods

1.5 Main Results

The main contribution of the research is a new high performance computing module based on the

SpiNNaker chip which is small and cost efficient to be used on mobile platforms such as small

robots. The main features of the developed module are:

• Small size – Removing the Ethernet jack among other non-essential components allowed

significant reductions in total size of the new board even though the current proof of concept

is a only one sided. It features also a single SpiNNaker chip and a microcontroller that

emulates an Ehternet connected SpiNNaker chip.

• Extensible – The developed board has a 34 pin connector that allows the system to be

augmented with other SpiNNaker machines or a custom single SpiNNaker board.

• Backwards Compatibility – A computer application written in Java was developed that

allowed the system to masquerade as a standard SpiNNaker machine, capturing the UDP

datagram used by the standard tools.

Another contribution from the developed work during this thesis, is the detailed study pre-

sented in chapter 2 on the innards of the SpiNNaker architecture. It is a collection of the knowl-

edge present in the several articles and documents available from the researchers who created this

biological inspired computing platform.

1.6 Related Works

The SpiNNaker system, although biological inspired and designed to help the study of the be-

haviour of large neural network of spiking neurons, is still a fairly general purpose architecture

1.6 Related Works 5

since it makes use of small ARM embedded cores which are general purposes processors. There

is an alternative named neuromorphic system which are a class of devices that implements par-

ticular features of biological neural networks in their physical circuit layout [CSBR10]. One of

these type of systems has been designed by the BrainScaleS project, a universal neuromorphic

computing substrate [PGJ+12], whose central component is the neuromorphic microchip Spikey.

This microchip contains analog very-large-scale integration (VLSI) circuits that model the electric

behaviour of neurons and synapses. In this type of modelling, measurable quantities in the circuit

have biological equivalents as for instance, the membrane potential Vm of a neuron is modelled

by the voltage over a capacitor Cm. On Spikey, the standard leaky integrate-and-fire (LIF) neuron

model with conductance-based synapses, depicted in equation 1.1, is implemented.

Cm
dVM

dt
=−g1(Vm −E1)−∑

i
gi(Vm −Ei) (1.1)

This neuromorphic system includes a Field Programmable Gate Array (FPGA) to interface

the system with a Host computer that is responsible for generating configuration data as well as

input stimuli to the network. It was not possible to find the power consumption of this system

but depending on the selected FPGA it should be lower than the comparable SpiNNaker system

since the power consumption of neuromorphic chips is much lower than equivalent digital designs

[ID00].

Another neuromorphic system, although this one is a multi-chip solution, is the Neurogird

[CSF+12] which is capable of simulating a million neurons connected by billions of synapses

in real-time. It has sixteen 12× 14mm Neurocores where the layers of the neural networks are

mapped and SRAMs and a FPGA to relay the packets with the spikes. The power consumption

for the entire system is 3.1W which is a very low number for the number of neurons emulated. For

comparison purposes, a comparable SpiNNaker system would consume 90W.

The biggest advantage from the neuromorphic systems is the low power consumption specially

when compared to regular digital circuits. On the other hand, these systems are very tailored

to the original models they were designed for and although they have some reconfigurability, it

is still very limited when compared with a more general purpose approach like the SpiNNaker

architecture.

There are other general purposes solutions which have designed as massively parallel high-

performance computing, as for instance, the IBM BlueGene/Q Compute Chip [HOF+12] which is

the basic unit of computing for the Blue Gene Project [GBC+05] which is an IBM project aimed at

designing supercomputers that can reach operating speeds in the petaFLOPS (for FLoating-point

Operations Per Second) range, with low power consumption. This is the third design generation

after BlueGene/L and BlueGene/P. The compute chip design shares some designs decision with

the SpiNNaker chip. It features 18 processing units, with one used as spare and another in charge

of management tasks, although the cores used are a variant from the PowerPC A2 [IBM12] down-

clocked to 1.6 GHzfrom the original 2.3 GHz design speed as opposed to the embedded ARM

cores used in the SpiNNaker architecture. Nevertheless, the main objective of this chip is to have

6 Introduction

maximum throughput, as opposed to the SpiNNaker design where the design guidelines lead to

some performance sacrifice for increased efficiency. The rated power consumption for the Blue-

Gene/Q Compute Chip is 55 W while delivering a peak performance of 204.8 gigaFLOPS. It was

not possible to find a Dhrystone performance measurement for this chip in order to compare it

with the SpiNNaker architecture which achieves 1.1 DMIPS/MHz.

1.7 Document Structure

This dissertation is organized in four more chapters, besides the current one.

Chapter 2 describes the SpiNNaker chip in detail, starting by the hardware perspective and

later analysing the several layers of software that are needed on a standard SpiNNaker machine.

Chapter 3 presents the developed solution, the SpiNNaker Chip Computing Module while the

chapter 4 describes the evaluation.

Lastly, chapter 5 reviews the dissertation as a whole, explains results and points questions for

future research, that might improve the proposed solution. Appendix A displays the developed

hardware, with the schematics and the PCB layouts for all the developed boards, and appendix

B has a detailed diagram with the format of the packets used in a SpiNNaker specific protocol.

Appendix C has some details on the code organization and on its availability and appendix D has

the available API from the kernel that runs on the Application processors.

Chapter 2

The SpiNNaker System

The SpiNNaker chip is the basic building block of the SpiNNaker system. This system was

designed with the aim of simulating up to a billion spiking neurons in (biological) real-time

[NLMA+09]. This system is intended to serve as the brain of mobile robots to provide real-

time stimulus-response behaviour [ES03] and to help improve the understanding of the brain ar-

chitecture. The system was biologically inspired which allowed it to take advantage of several

characteristics such as the lack of memory coherence and the slow pace of biological neurons

when compared to artificial ones together with regular neuron losses. In fact, the average human

adult loses about a neuron per second without any visible consequences [FB09] meaning that the

SpiNNaker machine must be resilient to failures, since the sheer scale of the project will lead to

frequent problems from which the system must recover and work around without the need for

manual intervention.

This chapter presents the SpiNNaker in detail since it is a state-of-art biologically inspired

system that it is not available for sale to the general public.

2.1 Architecture

The SpiNNaker machine has massively parallel architecture which can hold up to 65536 nodes,

where each node is a SpiNNaker chip, a System on Chip (SoC) device with 18 low power ARM968

processors and a common 128 M byte SDRAM. One of the most important guidelines while the

SoC was designed was low energy consumption since it was assumed that the cost of processors

can be considered negligible when compared to the cost of the energy for the duration of the system

lifetime. These guidelines explain the use of efficient embedded ARM9 cores and Mobile DDR

(Double Data Rate) SDRAM where some performance was sacrificed in exchange of for lower

power consumption. For inter-chip communications, self-timed channels were used which require

much less power than synchronous links of the same capacity although they are more costly in

wiring.

7

8 The SpiNNaker System

(Input) (Output)Comms NoCComms NoC

Proc3...

2of7
Enc

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Enc

2of7
Enc

2of7
Enc

2of7
Enc

2of7
Enc

EvenClk EvenClk OddClk EvenClk OddClk

Proc0 Proc1 Proc2 Proc16Proc15

System NoC

MemClk

JTAG
Debug

10MHz

Router
control

Decode
Packet Routing Output

Engine Select

OddClk

PL340 SDRAM I/F
Ctlr

SystemWatch−
dogRAM

System
ROM
System Ethernet

Ether MII

1Gbit DDR SDRAM

I/O Port
Reset Test

Proc17

POR

APB Slave

AHB Master

EvenClk

AHB Slave

OddClk

RtrClk
SysClk

AHB Slave

AXI MasterAXI Master

Packet Router

AHB Slave

Clock
PLL

AHB SlaveAHB Slave
System AHB

AXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlrCommCtlr

Input

Links

Output

Links

RtrClk

MemClk
AXI Slave

AHB Slave

Figure 2.1: Block diagram of the SpiNNaker chip [Gro11b].

The chip itself is a Globally Asynchronous Locally Synchronous (GALS) system with the

mentioned 18 low power ARM968 processors nodes connected through an energy-efficient packet-

switched asynchronous communications infrastructure. Initial SoC designs used an interconnect

paradigm based on a shared bus design [FB05]. However this paradigm is not conveniently up-

scalable when the complexity of the system increases. In order to solve this problem, SoC design-

ers use a complex hierarchy of buses which allows concurrent communication with the different

components partitioned in separate buses. These buses are connected through complex protocols

and multiple bridges between them. This increased complexity makes it harder to meet the timing

requirements. A solution to this problem is the use of packet-switched networks [DT01] which of-

fer greater flexibility in the topology of the SoC, reduced latency and increased bandwidth through

the use of additional area. Networks on Chip (NoC) decouple the timing domains of each block

which simplifies the timing closure process. The SpiNNaker chip uses CHAIN, a solution devel-

oped at the University of Manchester, which uses self-timed circuits with delay insensitive data

2.1 Architecture 9

encoding combined with a return-to-zero signalling protocol to implement the packet switching

network [BF02]. Self-timed circuits (asynchronous) are an alternative circuit design which uses

acknowledgement to explicitly indicate and validate the data as opposed to synchronous circuits

where there is a global clock to indicate the moments of data stability. There are a number of dif-

ferent designs in how to signal data validity, CHAIN uses a delay-insensitive style [Ver88] where

the data validity is transmitted implicitly in the data encoding which removes the need for much

of the timing analysis since this design operates correctly regardless of the delays involved in the

interconnected wires.

Figure 2.1 illustrates the main functional components. The shaded areas indicate the asyn-

chronous interconnect areas. It is clear that each chip has two NoC. The Communications NoC

is responsible for transmitting packets between on-chip and off-chip processors while the System

NoC replaces the traditional system bus by providing access to an off-chip DDR SDRAM, which

is usually available in the same package mounted on top of the SpiNNaker die and stitch-bonded

to it, and to other system control peripherals like the Router’s configuration registers, the System

Controller and the Watchdog Timer.

One of the most important components is the ARM928 core which is the main processing

resource of the SpiNNaker system and whose block diagram can be seen in Figure 2.2. The

ARM698E-S is the smallest, lowest power consuming ARM9 family processor [ARM13]. Each

core in the SpiNNaker chip was configured to have 32 Kbyte of instruction tightly-coupled mem-

ory (ITCM) and 64 Kbyte of data tightly-coupled memory (DTCM) available. It also has a timer

which is used by the kernel to provide time sensitive services, a DMA controller to be used for

transfers with the attached SDRAM and to communicate with the system bus, and a Communica-

tions Controller. The Communications Controller is the peripheral that allow each core to access

the packet switching network present in the SpiNNaker system.

All 18 processors nodes are identical which is the cause of problems during the start-up pro-

cedures. One of the processors is chosen as the Monitor Processor through a process which will

be described later and it will be responsible for booting the chip, the communication with the Host

PC and performing the necessary system management tasks. The other processors are named Ap-

plication Processors and they will be responsible for modelling a group of neurons with associated

inputs and outputs, named neuron fascicle, in neural application since the processor are general

purpose in essence. Some Application processors may not be used to serve as spares for fault-

tolerance purposes. The Monitor processor runs a different kernel, named SpiNNaker Control &

Monitor Program (SC&MP), from the Application cores which run the SpiNNaker Application

Runtime Kernel (SARK). The Monitor processor is also given access to SystemRAM which is an

extra block of 32 Kbyte of on-chip RAM accessible through the System NoC. This memory is not

exclusive to the Monitor processor although the latter is its main user to improve its data resources

as it will be responsible for the management of the chip and run complex algorithms.

The Router is the hearth of the Communications NoC, taking up 10% of the chip’s area

[NLMA+09], as it is responsible for the routing of packets between on-chip processors and with

other SpiNNaker chips. The system supports four basic type of packets which are distinguished

10 The SpiNNaker System

32KB

ITCM

DTCM

64KB

CpuClk

(~200MHz)
Clock

Buf/Gen
AXIClk

DMAClk

AHBClk

ARMClk

CCClk

Timer / Counter

Controller
Interrupt

Communications

Controller

ARM968E−S

AHB−Lite M

Controller

System NoC

Comms NoC

CHAIN Gateway

DMA

AHB M AHB S

AHB S

AHB2

AHB S

IRQ

TClk

ARM IRQ/FIQ

ARMClk

AHBClk

AXIClk

DMAClk

CCClk

AXI Master

JTAG

AHB1AHBClk

AHBClk

AHBClk

Figure 2.2: Block diagram of the ARM928 core [Gro11b].

through the two most significant bits in the header, the different packet formats are showed in the

diagram 2.4. All packets have a 32 bit optional payload whose presence is indicated through bit 1

in the header control byte. The least significant bit indicates if the entire packet has odd parity. For

almost all packet types, there is a two bit time stamp present in the control byte. This time stamp is

set to the current time phase of the system. There is a global time phase that cycles through 00 ->

01 -> 10 -> 11 -> 00, synchronization should be accurate to within one time phase, which is pro-

grammable and dynamically variable. If the Router finds a packet to be two time phases old, easily

checked through an XOR operation, then it will drop it to the Monitor Processor. The Router is

the one responsible for inserting this time stamp on local packets during normal operation though

this behaviour can be overridden through configuration on the Communications Controller.

Emergency Routing

Each chip has six bidirectional links to communicate with other chips. These are numbered from

0 to 5. The recommended connection configuration is a triangular mesh where each chip is con-

nected to six different neighbours. This allows for easy emergency routing in the event of a failing

or congested link, the traffic that would be using the congested link is redirected using two adja-

cent link that form a triangle with the failing link, shown in figure 2.3. Since there are circular

2.1 Architecture 11

Figure 2.3: Emergency routing.

dependencies between links there are potential deadlock scenarios for which there is a policy in

place to prevent them which is "no Router can ever be prevented from issuing its output". In or-

der to enforce this policy, the Router has several mechanisms available, the output has sufficient

buffering and capacity detection so that the Router can know whether or not the output can accept

another packet. If an output is blocked for any reason then emergency routing is used if possible

to avoid overloading the blocked output. In cases where the emergency routing fails the packet is

"dropped" to a Router error register and the Monitor Processor notified of this failure. The Monitor

Process will then track the problem using a diagnostic counter:

• if the problem was temporary, it will only note it but do nothing further;

• if emergency routing keeps being used for the same route, it will negotiate a new one and

divert some traffic to the new link;

• if the problem is permanent, it will establish new routes for all the traffic using this link.

The time taken by the Router to try emergency routing is controllable through its control register,

there are two wait values, wait1 is the number of clock cycles that Router waits before trying

emergency routing and wait2 which is the number of cycles that the Router tries to do route the

packet through another link before dropping it to the error register and continuing to the next one.

There are 2 bits in the control byte which are used by Multicast and Fixed-route packets to

control the emergency routing process. The meaning of each value is as follows:

12 The SpiNNaker System

• 00 - normal packet;

• 01 - the packet has been redirected by the previous Router through an emergency route

along with a normal copy of the packet, the receiving Router should treat this as a combined

normal plus emergency packet, meaning it will be routed in two different ways;

• 10 - the packet has been redirected by the previous Router through an emergency route

which would not be used for a normal packet;

• 11 - this emergency packet is reverting to its normal route.

Multicast Packets (MC)

Multicast packets carry neural event information to be used during model simulations. Each packet

contains an identifier which is used as a routing key as well as a neuron identifier in neural ap-

plications [PBF+08]. The multicast router behaves like a look-up table with two components, a

parallel ternary content-addressable memory (TCAM) and a conventional RAM look-up table. A

content-addressable memory is a special kind of memory whose input in a read operation is the

data and the output is the address where the data is located as opposed to a read from RAM where

the input is a memory location and the output the data stored at that address, the ternary variation

include support for a do not care bit [PS06]. The router’s TCAM has 1024 entries, which must

be initialized after reset, each with its own mask and match value. The routing process uses the

routing key present in the packet as input for the TCAM, then the TCAM result is used to retrieve

from the look-up table the output vector whose value determines where this packet should be sent.

In case of multiple matches from the TCAM look-up, the one with the lowest value will be used.

The table 2.1 shows how each bit of the output vector, when set to 1, affects the propagation of

the multicast packet. When the routing key has no matches then the default routing is employed.

The default routing simply outputs the packet on the opposite link of the input link through where

it was received. For local packets this routing is not available meaning that if the packet fails to

match an entry it will be dropped.

When an output link is blocked, the Router will try to do emergency routing through a link

with the next lower number. If the original port becomes unblocked before sending the packet

through the emergency port, then the router will retry through the original one. If the Router

receives a packet with the emergency packet bits set as diverted, then it will attempt to output it as

a reverting packet to the output link with the next lower number than the input link number, where

it was received. If it is also a normal packet then it will also perform the conventional routing. A

received reverting packet is routed normally if it is recognised by the router, otherwise it is default

routed to the link numbered two greater than the input link.

Point to Point Packets (P2P)

Point-to-point packets carry system management and control information. They are also used

to implement a higher level packet transmission which it will be described later. These packets

2.1 Architecture 13

control routing key

8 bits 32 bits 32 bits

Multicast Packet

0

optional payload

0 emergency routing time stamp payload parity

67

5 4 3 2 1 0

Control Byte

control

8 bits 16 bits 32 bits

Point to Point Packet

0

optional payload

1 sequence code time stamp payload parity

67

5 4 3 2 1 0

Control Byte

source ID destination ID

16 bits

control address/operation

8 bits 32 bits 32 bits

Nearest-Neighbour Packet

1

optional payload

0 debug route payload parity

67

5 4 3 2 1 0

Control Byte

control payload

8 bits 32 bits 32 bits

Fixed-Route Packet

1

optional payload

1 emergency routing time stamp payload parity

67

5 4 3 2 1 0

Control Byte

Figure 2.4: The 4 different SpiNNaker Packets [Gro11b].

14 The SpiNNaker System

Multicast Output Vector Entry Output port Direction
bit[0] Tx0 East
bit[1] Tx1 North-East
bit[2] Tx2 North
bit[3] Tx3 West
bit[4] Tx4 South-West
bit[5] Tx5 South
bit[6] Processor 0 Local
bit[7] Processor 1 Local
bit[8] Processor 2 Local
...
bit[23] Processor 17 Local
Table 2.1: Multicast Output Vector Assignment [Gro11b].

include a source and destination ID, each one with 16 bits. The destination ID is used to determine

which output should the packet be routed to. For each ID, there is a three bit entry which is decoded

to determine whether the packet should be delivered to the Monitor Processor, sent through one

of the output links or dropped. The table 2.2 show the routing behaviour for each possible entry

value. These values are packet in a 8K x 24 bit SRAM lookup table sequentially. The use of

a Static Random Access Memory helps reducing the access time and power consumption while

using the lookup table [YIK87]. The sequence code field present in the control byte is under

software control and can be used for any purpose.

Nearest-neighbour Packets (NN)

Nearest-neighbour packets are used during boot-time to do flood-fill of the boot image (to be

described later), broadcast of P2P addresses and for chip debugging. The routing process delivers

normal NN packets to the Monitor processor when receiving through one of the six input links

and it send through the appropriate output link the internally generated packets. This routing is

essential to support the flood-fill load process.

When the debug bit in the header control byte is set, the NN packet is interpreted as a peek/poke

P2P Table Entry Output Port Direction
000 Tx0 East
001 Tx1 North-East
010 Tx2 North
011 Tx3 West
100 Tx4 South-West
101 Tx5 South
110 none (drop packet) none
111 Monitor Processor Local

Table 2.2: P2P Table Entry behavior [Gro11b].

2.1 Architecture 15

packet which can be used by neighbouring chips to access System NoC resources without proces-

sor intervention which means it can be used to investigate a non-functional chip, to re-assign the

Monitor Processor or to generally debug and test easily a SpiNNaker chip. The nature of the oper-

ation depends on the presence of a payload, meaning that a write operation will include a payload

while the read operation will not. The address/operation field contains the address, within the Sys-

tem NoC address space, where the operation will be performed, either the payload will be written

to this location or the current contents will be read into the response packet. There is always a

response which is a normal NN packet with the same address field for identification purposes with

the least significant bit set to indicate a response. In case of bus error while accessing then bit 1

will also be set. The response will also include a payload when replying to a peek packet.

Fixed-route Packets (FR)

Fixed-route packets usually convey application debug data back to the host computer which facili-

tates monitoring and debugging. Its routing procedure is identical to the multicast packet although

since they do not include routing key, the value of a specific Router’s register, in this case regis-

ter 33, is used as its routing key. As a consequence, all fixed route packets are routed using the

same output vector. When an output is blocked, the router will use the same emergency routing

procedures that it uses for the multicast packet emergency routing.

2.1.1 Inter-chip communication

The on-chip interconnect employs a 3-of-6 return-to-zero (RTZ) self-timed codes and the switch-

ing fabric based on CHAIN [FB09]. Each inter-chip link is based on the 2-of-7 non-return-to-zero

(NRZ) self-timed coding, where each unidirectional link consists of 7 data wires and an acknowl-

edge signal. The data symbols are sent using transition signalling from the Sender to the Receiver

where a transition on 2 of the data wires translate to a 4 bit symbol. The sender waits for a tran-

sition on the acknowledge signal to proceed to the next symbol. The logic levels 0 and 1 are

represented by voltages of 0 and 1.8V respectively. After the chip reset, the output data wires are

brought to logic 0 while the acknowledge goes to logic 1.

There were mainly two motivations to have two different protocols involved in the communi-

cations:

• Performance;

• Power consumption.

A RTZ protocol will always have two transitions on each line during a symbol transmission as

opposed to a NRZ protocol which only needs one, this translate on easily doubling the through-

put. As far as power consumption is concerned, minimizing transitions is essential to maximize

efficiency. In this particular case, the 3-of-6 RTZ employs 8 transitions to send 4 bits of data, the

2-of-7 NRZ uses only 3 transitions to send the same data. in the off-chip domain these improve-

ments are essential as chip-to-chip delays dominate performance and wire transitions dominate

16 The SpiNNaker System

Value L[6] L[5] L[4] L[3] L[2] L[1] L[0]
0 0 0 1 0 0 0 1
1 0 0 1 0 0 1 0
2 0 0 1 0 1 0 0
3 0 0 1 1 0 0 0
4 0 1 0 0 0 0 1
5 0 1 0 0 0 1 0
6 0 1 0 0 1 0 0
7 0 1 0 1 0 0 0
8 1 0 0 0 0 0 1
9 1 0 0 0 1 1 0
10 1 0 0 1 0 0 0
11 1 0 1 0 0 0 0
12 0 0 0 0 0 1 1
13 0 0 0 0 1 1 0
14 0 0 0 1 1 0 0
15 0 0 0 1 0 0 1
EOP 1 1 0 0 0 0 0

Table 2.3: 2-of-7 Symbol coding [Tem12].

power consumption, The 2-of-7 protocol offers the double of performance with less than half en-

ergy consumption. These advantages do not apply in the on-chip domain as the simpler logic

required to implement the 3-of-6 protocol dominates the decision on both power and performance.

One common issue that self-timed codes suffer from is the lack of resistance to transient or

permanent faults. The SpiNNaker inter-chip links have been designed to improve on this weak-

ness by reducing the risk of deadlock as much as possible since preventing data corruption is not

possible. Additionally, the SpiNNaker chip has the ability to reset sub-circuits in order to simplify

recoveries from deadlocked situations.

2-of-7 Symbol coding

There are 17 different symbols where one is EoP which means End of Packet and the others are

values between 0 and 15. The table 2.3 shows the encoded symbol for each set of transitions, on

this table the value 1 on the data wire should be read as transitions while 0 as no transition.

2.1.2 SDP packets

The figure 2.5 illustrates the different layers of the SpiNNaker communications model, the Open

Systems Interconnection (OSI) model was added to show the relative function of each layer as it

is a common abstraction. At this point, the bottom two layer have already been discussed. This

section will analyse the third layer which builds upon the lower layers.

The basis of all communication from the host system with the SpiNNaker system is done using

SpiNNaker Datagram Protocol (SDP) packets. The protocol is similar to User Datagram Protocol

(UDP) since it is sent in datagrams and it has very few capabilities embedded in the protocol itself

2.1 Architecture 17

Presentation Layer

Session Layer

Transport Layer

Application Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

On-chip: 3-of-6 RTZ protocol
Off-chip: 2-of-7 NRZ Protocol

SpiNNaker Packets

SpiNNaker Datagram Protocol

OSI Model SpiNNaker Comms Model

Figure 2.5: SpiNNaker Communications model.

besides the transmission of a limited amount of data. The SDP datagram may contain up to 64

kilobytes though the current implementation in the SpiNNaker kernel limits this value to 272 bytes

in order to minimize the size of the buffers required.

A SDP packet contains a header with information needed for its routing and a payload field

with the data that is being sent. Since SDP provides point to point communication, an addressing

scheme is needed to identify the endpoints. As it can be seen in Figure 2.6, for each endpoint there

are 3 fields with each taking 1 byte. Two fields, "Addr X" and "Addr Y" , are used to identify

the chip’s position inside a SpiNNaker system shaped into a 2D grid. The third byte is divided in

two fields where the lower 5 bits are the Virtual CPU number which is unique within a SpiNNaker

chip and the 3 high bits are a port number which attaches the packet to a particular process on that

CPU. The convention which is in place states that port 0 is reserved for communication with the

kernel running on the core and the rest of the ports are available for applications. There are two

more fields in the header that must be mentioned, the Flags field which should be set to 0x87 or

0x07 if a reply is expected or not, and Tag field which holds the IPTag.

An IPTag is a small number that is used by the SpiNNaker node connected to the Ethernet

port to know where to send each output SDP packet bound to the Ethernet port. This SpiNNaker

node maintains a mapping between the IPTag and the IP address/port pair. Each IPTag can be

permanent or transient, permanent tags are set through commands which will later be described,

transient tags are created when a new SDP packet arrives for which a reply is expected. The newly

created tag is then written to the packet header before delivering it to its destination. As soon as

18 The SpiNNaker System

CPU
Dest Addr

Y
Srce Addr

Y
Srce Addr

XX
Dest Addr

CPU
SrceDestTagFlags Srce

Port
Dest
Port

8 3 5 3 85 8 8 88 bits

Figure 2.6: SDP packet header [Tem11c].

reply reaches the Ethernet-attached node, the tag is used to retrieve the IP address needed for its

routing and the IPTag table entry is deleted at this point. A transient tag can have a associated

timeout that in case the reply fails to arrive the table entry can be reclaimed. The current IPTag

table implementation in the SpiNNaker kernel has 16 entries where the first 4 are reserved for

permanent tags.

Regarding the Virtual CPU number, each core on a SpiNNaker chip has a physical CPU num-

ber which is hardwired from 0 to 17. During the boot up process, a processor is selected as Monitor

processor and is assigned the Virtual CPU number 0 and the rest of Application processors from

the number 1 upwards from which non-working CPUs are excluded.

SDP packets can be conveyed in a number of manners, for example, when sent from the host

system to a SpiNNaker system they are embedded within a UDP packet as seen in Figure 2.7. The

2 byte pad present at the beginning of the UDP data aligns the data to a 4 byte boundary which

makes the processing in a SpiNNaker rather easier. The first of the these two bytes is an argument

which is used as the IPTag timeout. The valid values for this timeout go from 0 to 16 whose

meaning can be checked in table 2.4.

SDP over P2P

While the SDP packets are usually introduced into a SpiNNaker system through the Ethernet port,

they are transmitted between SpiNNaker chips using P2P packets. This protocol is undocumented

and it was reverse engineered from the kernel source-code. The Figure 2.8 shows a typical protocol

run with no errors or retries. The initial step is a request from the sender to open a channel for

reception. The receptor will reply with an open acknowledgement packet with the channel id

or with an error code in case either the SDP packet is too large (over 280 bytes) or there are

no free channels. Having received a normal acknowledgement packet, the sender will send sets

of 16 data packets, each with 24 bits of data. At end of this set, the receptor will send a data

Value Meaning
0 No timeout (infinite)
1 10 ms
2 20 ms
... ...
N 10∗2N−1 ms
... ...
16 327680 ms

Table 2.4: IPTag timeout values.

2.1 Architecture 19

MAC
Hdr

IP UDP PAD SDP
SDP DATA FCS

488 220 (typ)

Hdr Hdr Hdr

SDP Packet

UDP Data

14 bytes

Figure 2.7: SDP packet embedded within a UDP packet [Tem11c].

acknowledgement packet which allows the sender to send the next set of data packets. This cycle

continues until the receptor has all the data packets it needs. At this point, the receptor will send a

close request packet to the sender to which it should reply with a close acknowledgement packet.

Then both ends close the connection. The detailed packet format for each step and their content is

presented in the appendix B.

Since this connection can be made between any two SpiNNaker chips in the system, there is

fairly big timeout for each step of the protocol. Additionally, in case of errors or timeout there

are also retries mechanisms for most steps of the protocol. The specific values being used in the

current implementation are presented in the table 2.5 and 2.6.

SpiNNaker Command Protocol (SCP)

One of the uses for SDP packets is to convey commands and responses around a SpiNNaker

system. In this case, the SDP data field is structured into 6 fields which are shown in the Figure

2.9. The cmd_rc field indicates either the command that is being specified or the return code of

a command execution when the packet is a response. The seq field may be used to create a retry

mechanism on top of SDP. The fields arg1, arg2 and arg3 may contain 32-bit arguments or return

values while the data data field may contain any kind of data up to 256 bytes.

SDP packets with SCP commands should be sent to port 0 so that the kernel running at the

core can process them. There are five commands which are currently implemented by both kernels.

Their names and actions can be seen in Table 2.7, the reader interested in higher levels of detail

should refer to [Tem11d].

Protocol Step Timeout value (ms)
Waiting for Open ACK packet 250
Waiting for Data ACK packet 3000
Waiting for a Data packet 500
Waiting for a Close ACK packet 250

Table 2.5: Timeout values for SDP over P2P.

20 The SpiNNaker System

Sender

Requests a stream to be open for the data

Acknowledges the Open Request

Sends 24 bits

Sends 24 bits

Sends 24 bits

Acknowledges the data received

16 times unless the SDP
packet length is smaller

than 48 bytes

Sends 24 bits

Sends 24 bits

Sends 24 bits

Sends a Close request

This cycle
repeats as long
as there is data

to send

Acknowledges the Close request

Receptor

Initial connection
procedures

When all the data has
been received, the

Receptor ask the Sender
to close the connection

Note: In case all data is
sent during the first 48
bytes, the Receptor will
send a Close request

immediately.

Figure 2.8: SDP over P2P protocol.

2.1 Architecture 21

Protocol Step Retries Count
Retries for Open requests 16
Retries for starting data transmission 4
Retries for resuming data transmission 4
Retries for Close requests 4

Table 2.6: Retries count for SDP over P2P.

SDP
Hdr

16

2 2 4 4 4

cmd
_rc arg2 arg3arg1seq

8 bytes

data

SDP Packet

SDP Data

<= 256

Figure 2.9: SCP packet [Tem11d].

Command Name Action
CMD_VER Retrieves the version of the kernel
CMD_READ Allows the reading of memory from the core’s address space up to

256 bytes. The read operation can be requested in byte, halfwords
and words.

CMD_WRITE The equivalent of CMD_READ for writing operations
CMD_RUN Low level command which instructs the core to start executing at

a specific address, it is not usually used.
CMD_APLX The usual way of starting an application. This instructs the kernel

to process an APLX file, which must have been loaded to memory
(using CMD_WRITE) beforehand.

Table 2.7: 5 SCP commands that both SC&MP and SARK implement.

22 The SpiNNaker System

2.1.3 SpiNNaker machines

The Advanced Processor Technologies Research Group (APT), that has developed the SpiNNaker

system, has also developed several SpiNNaker machines, each with different number of SpiN-

Naker chips. Their names are formatted as 10N where N is an integer number which tells the

user that the machine has approximately 10N cores. The 102 and 103 machines are single printed

circuit board (PCB), larger machines are cabinets and/or racks of the 103 machine [Gro13].

102 machine

The 102 machines is a 4 node board with 72 ARM cores, with 64 usually deployed as Application

cores, 4 Monitor processor and 4 spares cores. It is the smallest SpiNNaker machine currently

available measuring 105× 95mm and weighting around 50 grams. It has two connectors that

expose the SpiNNaker’s inter-chip link interface and a 100Mbps Ethernet standard plug, RJ-45.

This machines requires a 5V 1A supply and it is depicted in Figure 2.10.

103 machine

The 103 machine has 48 nodes, which leads to 864 ARM processors. From this total, 48 are used as

Monitors processors and 48 as spares processors which leaves 768 cores to be used as application

cores. There are six 3.1Gbps high-speed serial interfaces, which use SATA cables though not

necessarily a SATA protocol. These interfaces are used to build the larger machines, but they

can also be used as general purpose high-speed input/output communications by configuring the

on-board FPGAs. These machines require a 12V 6A supply and it is depicted in Figure 2.11.

104, 105 and 106 machine

The larger machines are increasingly bigger sets of 103 machine linked together through the SATA

links available on those boards. Figure 2.12 depicts the amount of cores available with each

machine, their relative sizes and their power consumption.

2.2 Application Loading

Besides the Node-Boot described below, a SpiNNaker system has no non-volatile storage from

where it can load the software that will be running, so a host machine, usually a desktop or laptop,

is needed. The connection between the host and the SpiNNaker is usually done with an Ethernet

cable since every SpiNNaker chip has an Ethernet controller hardware on-board, though a direct

connection is only possible when this is connected to an external transceiver responsible for con-

necting the link layer to the physical layer of the OSI model,hereafter many times addressed as

PHYceiver, and a SerialROM chip with a valid IP and MAC address.

2.2 Application Loading 23

Figure 2.10: 102 Machine [Gro13].

2.2.1 Boot sequence

There are 3 stages on the SpiNNaker booting sequence:

• The Node-Boot phase which executes the code from a read-only on-chip memory, BootROM.

This code was designed to be as simple as possible to minimize the probability of bugs since

it is not possible to correct them after production. It is also responsible for the initial chip

testing and initialisation, the election of a Monitor Processor and having the node ready to

receive the second stage image.

• The System-Boot phase where a boot image is received on the Ethernet connected SpiN-

Naker node and is propagated to its neighbours until every Monitor Processor in the system

is running the second stage image. This propagation of the boot image through the system

24 The SpiNNaker System

Figure 2.11: 103 Machine [Fur13].

is known as flood-fill. Following this, every working core in each chip is assigned a Virtual

CPU number as described above.

• The final stage is the Application-Load where the application software is loaded from the

host machine to the chosen cores, the application data uploaded to the shared SDRAM and

the route tables populated.

Node-Boot

This is the first phase of the boot and the one where the initial checks are performed to check on

the status of the memories and the peripherals, any failures at this stage will lead to the shutdown

of the core as may be seen in Table 2.8. The very first step of the boot sequence is to check using

the external General Purpose Input/Output (GPIO) pin 7 whether a manufacturing test should be

run or if the default BootROM should be executed. Assuming the latter, the cause of the boot is

probed at the Register 12 of the System Controller.

If the reset was caused by the Watchdog then it is detected if an ITCM Validation Block (IVB)

has been set up to detect whether the instruction memory is intact and has not been corrupted by

2.2 Application Loading 25

103 machine: 864 cores, 1 PCB, 75W 104 machine:10,368 cores, 1 rack, 900W
(NB 12 PCBs for operation without aircon)105 machine: 103,680 cores, 1 cabinet, 9kW

106 machine: 1M cores, 10 cabinets, 90kW

Figure 2.12: SpiNNaker Machines [Fur13].

Peripheral Method Executing Core Failure response
At Power-on

ITCM RAM test All Shutdown Core
DTCM RAM test All Shutdown Core

After Scatter loading
Comms controller Register test All Shutdown Core
DMA controller Register test All Shutdown Core
Timer Register test All Shutdown Core
VIC Register test All Shutdown Core

After Monitor election
Previous Monitor Check Register All Shutdown Core
SystemRAM RAM test Monitor Shutdown MP Core
Router Register test Monitor Shutdown MP Core
Watchdog Register test Monitor Shutdown MP Core
PL340 Register test Monitor Record, continue
SDRAM RAM test Monitor Record, continue

Exceptions
Exception Hi Vectors All Shutdown Core
Exception Low Vectors All Shutdown Core

Table 2.8: Ordered list of power-on self-tests performed during Node-Boot [Gro11a].

26 The SpiNNaker System

any software malfunction, and to resume execution immediately. This capability is useful in cases

when the simulation is already running in the system. In this case the rest of the chips would not

have code to restore the reset node and the routing paths would be interrupted. The fault may

have been only a glitch or a transient fault which could mean that all the operating environment

may yet be in memory. The IVB is a series of checksums that allows the node to be sure that its

instruction memory was intact to start executing right away, otherwise it would proceed through

with the normal boot.

If it was a non-watchdog reset, as for example a power on reset, then one processor is chosen

as Boot processor through external GPIO pins. This core checks for the presence of an external

SerialROM chip which usually provides the MAC and IP addressing information though it may

be optionally be used to exit the Node-Boot sequence early by loading and executing an image

hosted in this chip. After this point, all core clocks are boosted to 160 MHz to accelerate the boot

sequence since up until this point all the clocks were running at 10 MHz.

In order to initialize other peripherals, a Monitor processor must be elected first. The election is

performed by a hardware mutex in the System Controller implemented as a read sensitive register.

The first processor that reads back the register is selected as a Monitor. The cause of the reset is

again important, if it was a soft-reset, caused by the watchdog or an intervention triggered due to

an unexpected failure, it could have been caused by an error within the Monitor processor so if this

core was a Monitor before it will shut itself down so that other cores may be elected, otherwise the

history of Monitor Processors is cleared so that every core has a chance to be elected. The newly

selected processor marks itself in the bit-wise "Monitor History" System RAM location which will

be used in the soft-reset scenarios. Other processors will then become Application processors and

will wait for the Monitor to finish the remaining initialization procedures.

At this stage the remaining peripherals to be initialized are the Router, the Watchdog, the

Ethernet and the GPIO pins. The router tables are populated with blank entries meaning that the

P2P packets will be dropped and it will only transmit multicast packets with the default routing.

The Watchdog is set to expire every 1.25 seconds and the chip will reset after the second timeout

of the watchdog timer. This should not happen during normal operation as it should be refreshed

every 5 ms. For the Ethernet to work, an external PHYceiver must be provided and a SerialROM

with the IP and MAC addresses information, it will only be initialized if both are present and

functional. The last step before signalling to the Application Processors that they may continue

the booting process is the initialization of some GPIO pins where there are usually some LEDs

connected. These are useful to denote the stage of the boot process since the frequency of its

flashes is different on every stage. One important thing to notice, is that the failure to initialize

correctly the router or the watchdog will lead to the shut down of the Monitor processor and to the

restart of the SpiNNaker chip, where a different Monitor will be chosen.

The final step before waiting for the reception of the System Boot image is the initializations

of the processors’ timers and their Vector Interrupt Controller (VIC). The timer 1 is set to tick

every millisecond in all cores but the VIC configuration depends on whether or not the processor

is the Monitor processor. The Application processors only take action when the System Controller

2.2 Application Loading 27

N

Boot or
Manufacturing

test?

Watchdog
Reset?

Is IVB setup?

GPIO Pin #7
Manufacturing Test?

GPIO Pin #6
Check Serial ROM

Get Info from
SerialROM

instructions /
blocks of

memory from
SerialROM

GPIO Pins #3:5
Select Boot Proc ID

Am I boot
Processor?

BootProc
complete?

IVB Recovery
Success?

Test ITCM
Test DTCM

Record Fault
Code. Shutdown

Core

GPIO Pin #1
POST Enabled?

POST
Required?

Test Comms Ctrl
Test DMA Ctrl
Test Timer
Test VIC

Fail

Record Fault
Code. Shutdown

CoreFail

Reset by
Power-on?

Success

Y

N

N

N

Y

Y

Manufacturing
Tests

Boot

Mnfrg

N

Y Y

Run software
validated in ITCM

Y

Success

Mutex:
Reset previous
MonProc list

Have I been
MonProc?

Record Fault
Code. Shutdown

CoreY

Y

N

Mutex:
Elect Monitor
Processor

N

Am I the
Monitor?

I am an
Application
Processor

N

I am the Monitor
Processor for the

Node

Y

If Returns, mark
BootProc Done

Start: BootROM
0xFFFF0000

Waiting

N

Figure 2.13: Node-Boot process until the choosing of the Monitor processor[Gro11a].

28 The SpiNNaker System

N

Test PHY

GPIO Pin #6
Check Serial ROM

Am I the
Monitor

Processor?

Enter Main Loop

Missing/Faulty

Present & OK

Y

I am an
Application
Processor

I am the Monitor
Processor for the

Node

GPIO Pin #1
POST Enabled?

POST
Required?

System RAM Test
Router Test

Watchdog Test

Record Fault
Code. Red LEDs.
Trigger restart of

Appl Procs.
Shtdwn Monitor

Fail

Y

Success

PL340 Test
SDRAM Test

Record any Fault
Code & detected
SDRAM size

Initialise Router

N

IP/MAC from
SerROM?

Initialise PHY and
Ethernet

Serial ROM
attached?

Initialise GPIO for
LEDs & Watchdog

Trigger continue to
Application Procs

Initialise Timer
& VIC – for system
controller intrrpts

Waiting

Initialise VIC – for
timer, packet and
Ethernet interrupts

Switch to Low
Vectors, enable
interrupts, set

CPU OK

Trigger Condition set

N

Y

Y

N

Figure 2.12: Node-Boot process after the choosing of the Monitor processor[Gro11a].

2.2 Application Loading 29

informs them of a message to be processed in the mailbox while the Monitor core takes care of the

Timer interrupts, communications interrupt from the inter-chip links and the Ethernet interrupts if

it is enabled in the current chip.

After all the tests and initialization procedures, every processor enters a main loop where it is

in a low-power state waiting for interrupts. As soon as the interrupt is served, the processor goes

back to this low-power state. The Monitor Processor is responsible for refreshing the Watchdog

timer every 5 ms and it is now in a "listening" mode waiting for the System-Boot image to arrive

for the boot process to continue. This process is shown in Figure 2.12.

System-Boot

The code which is responsible for the Node-Boot is loaded from a Read Only Memory (ROM)

where it was decided to keep it as simple as possible to reduce the probabilities of serious bugs in

the code base. As a consequence of this design decision, a second stage in the booting sequence

is needed where the kernel is pushed to the system by the Host System using either the Ethernet

port if the chip had an external Phyceiver and a SerialROM with valid addressing information or

through the inter-chip links.

Every chip in the system has a Monitor processor which is waiting for this image. This image

can perform further checks and verifications and it can prepare the system to receive the application

code which will be run by the Application cores.

Since the Host System is usually connected to the SpiNNaker system through an Ethernet

connection, the second stage image is pushed to the system UDP packets. This process is named

Host Boot. As soon as the image is assembled, the node starts transmitting the image through all

interchip links using NN packets. This second kind of booting is named Inter-chip Boot. This

process of transmitting the second stage image is named fill flood and it is the mechanism that

allows through a single source boot the entire system. The reception of this image is implemented

through a fairly simple state machine which is represented in Figure 2.13.

Host Boot
The Host system uses a very simple 3 packet scheme to push the image to the SpiNNaker

system. There are:

• Flood-Fill Start,

• Flood-Fill Block,

• Flood-Fill Control.

The Flood-Fill Start packet signals to the SpiNNaker chip that it should get itself ready to receive

an image of up to 32 KBytes split up into the number of blocks indicated in the third operator of

the packet. The image is assembled in the top half of the Monitor Processor’s DTCM, and there is

a reception array, which is initialised with zeros, with an entry for each Block ID expected.

The Flood-Fill Block packets contain the split image and are sent block by block in sequential

order. The Block IDs start from zero and the block size is indicated in words. Every block should

30 The SpiNNaker System

Listening

Listening for
Ethernet frames

Listening to Inter-
Chip packets

Ethernet
FF_Start

Inter-Chip
FF_Start

Ethernet
FF_Block

(N)

Block Placed
into Image

Check for
Complete Image

Ethernet
FF_Cntrl

Incomplete

Place System
Boot Image and

Execute

Listening for
Block N packets

Inter-Chip
FF_Block
Start (N)

Inter-Chip
FF_Block
_N_Data

Data Placed in
Assembly Block

Inter-Chip
FF_Block_

N_End
Incomplete

Check for Block
N Complete

Validate Integrity
of Block N

Complete

NOKOK
Block Placed

into Image
Block

Cleared

Check for
Complete Image

Inco
mplete

CompleteComplete

Inter-Chip
FF_Cntrl

Figure 2.13: State machine for the reception of the System-Boot image [Gro11a].

be equal in size since the block size is used as an offset in the assembly of the image, if the last

block is smaller than the previous then it should be padded by the host system until it has the

selected size. Looking at the Block size and Block ID fields which are both 1 byte long, it is clear

that the maximum value (256 x 256 x 4 = 262144) can be much larger than the allowed 32 KB

which nevertheless should always be respected. In order to reduce overhead, the block size should

be divisible by the maximum image size and as large as possible. For production use, up to 32

block of 256 words is recommended as it has the lowest overhead possible. Every block that is

successfully received is copied to the appropriate position in the image and the reception array

updated with an indication that this block has been received. The detail format of the packets can

be seen in Figure 2.14.

After all data blocks have been sent, the host transmits a Flood-Fill End packet. The SpiN-

Naker chip will then check if all blocks are in place, if they are not it keeps waiting for the missing

Flood-Fill Block packets. However, this is uncommon so the assembled image is copied to the

beginning of ITCM (address 0x0) and starts executing from the start address specified in the

packet. This is usually 0x0.

There are a number of considerations that the host system should take while transmitting the

image. The byte order to be used at this stage is network order also known as big endian order, the

SpiNNaker chip will take care of switching the byte order when it receives the packet. Additionally

in order to prevent missing packets while transmitting the image, there should a be a inter-packet

delay, it is suggested a rate of 1 ms per block which has been tested successfully with the chip.

These boot packets are sent in UDP datagrams that allow the SpiNNaker system to be booted

remotely but it also means that there is not a read receipt nor any guarantee of packet reception.

Since the SpiNNaker chip is a passive receptor, they are unable to request the missing blocks

2.2 Application Loading 31

Top 32KB of DTCM used for
assembly of flood fill image.

DTCM

Remainder of DTCM available for
Node Boot

2 Bytes 1B 1B

Prot Ver
= 1

0x1
FF_Start

0x0
Unused, always 0x0

Flood
Fill Start

0x0
Unused, always 0x0

0x0-0xFF
of Blocks 1-256

OpCode Operand 1 Operand 2 Operand 3

Prot Ver
= 1

0x3
FF_Data

Flood
Fill Block

0x0
Unused, always 0x0

0x0
Unused, always 0x0

0x0
Unused,

Blk
Siz

Blk
ID

(0-255)
=1-256
words

(0-255)
= block
1-256

Block Payload
1-256 Words (per Blk Siz)

Prot Ver
= 1

0x5
FF_Control

0x1
Copy then Execute

Flood
Fill Control

0x0
Unused, always 0x0

Execute Addr
Typically 0x0 (ITCM)

Block M

Block ...

Block ID of M

Block ...

Block 0 of M

Block Size

0x400000

0x408000

0x410000

Block
Rcvd
Array

Figure 2.14: Packet scheme used by the Host System to push the second stage image to a SpiN-
Naker chip [Gro11a].

to be re-transmitted. Therefore the host system does not know which packets may have gone

missing so it must always retransmit the full image. It is suggested that the SpiNNaker chip

sends a message signalling that it has started executing the image so that the host may stop the

transmission. Another possibility is a limit on the number of retransmissions.

Inter-chip Boot
The Inter-chip boot is the transmission of the System-Boot image through SpiNNaker packets,

in this particular case nearest-neighbour packets. This transmission is started very early in the

System-Boot execution and is done on all six inter-chip connections. The figure 2.15 shows the

packet model used. Since the SpiNNaker packets only allow 32 bits payloads, the model had to be

extended from the Host Boot version to five different packets. There are:

• Flood-Fill Start,

• Flood-Fill Block Start,

• Flood-Fill Block Data,

• Flood-Fill Block End,

• Flood-Fill Control.

The Flood-Fill Start packet triggers a very similar behaviour to the analogous packet in the

Host Boot process. It informs the receiving SpiNNaker chip that it is going to receive an image of

up to 32 KB divided in the number of blocks specified in the packet payload. As it happens with

the Host Boot process, the image will be assembled in the top half of the DTCM and a reception

array is initialized with an entry per expected Block ID.

The Flood-Fill Block Start packet has the Block ID that is about to be transmitted and its size.

The block size should be stable during the transmission, including the final one, as it is the case

with the Host Boot. The recommendation in this case is to send always the largest block possible,

32 The SpiNNaker System

SpiNNaker InterChip
packet format

Key
(32 bits)

Optional Payload
(32 bits)

Control
(8 bits)

Packet Type
= NN

Flood
Fill Start

0x3 0x0
Chksm
1s cmplmnt

0x1
FF_Start

Checksum OpCode Compatibility

0x0-FF
of Blocks 1-256

0x00x00x0

4b 4b 8b 8b 8b 8b 8b 16b

Flood
Fill

Block
Start

0x3
Chksm
1s cmplmnt

0x2
FF_BSt

1-256 1-256 words

Blk Siz
0x0-FF

Blk ID
0x0-FF

4b 4b 8b 8b 8b

Flood
Fill

Block
Data

0x3 Data Word
Chksm
1s cmplmnt

0x3
FF_BDat

Word ID
0x0-FF

Blk ID
0x0-FF

4b 4b 8b 8b 8b 32b

1-256 1-256

Flood
Fill

Block
End

0x3
Chksm
1s cmplmnt

0x4
FF_BEnd

0x0
Blk ID

0x0-FF

4b 4b 8b 8b 8b 32b

1-256

Flood
Fill

Control
0x3

Chksm
1s cmplmnt

0x5
FF_Cntrl

0x1
Copy+Execute

0x0

4b 4b 8b 8b 8b 32b

Block CRC-32

Execute Address
Typically 0x0 (ITCM)

Figure 2.15: Packet scheme used by the SpiNNaker chip to push the second stage image to a
neighbour chip [Gro11a].

256 words, and add padding if the last one requires it. This allows the reduction of overhead

related with the transmission of packets marking the start and end of blocks. A word reception

status array will also be initialized for this Block with an empty entry for each Word ID. The block

is assembled in a 257 word block of data present in SystemRAM. The extra word makes room for

the CRC that is sent at the end of each block.

The Flood-Fill Block Data packets are the ones responsible for actually carrying the image data

32 bits at a time. They also carry the Word ID and Block ID, if the block ID does not match the

block that is currently being received then the packet is dropped since only one block is populated

at a time. The word ID is used to place the word in its correct place in the SystemRAM’s block of

data and to mark on the word reception status array that it has been received.

The Flood-Fill Block End packet marks the end of a block transmission. It triggers a check

on the word reception status array, if a word is missing then the process stops here waiting for

the missing words to be received. However, this is not a typical situation and the validation step

can start. Only after validating a received block, it will be copied to the its place in the top half

2.2 Application Loading 33

0x400000

0x408000

0x410000

Top 32KB of DTCM used for
assembly of flood fill image.

DTCM

Remainder of DTCM available for
Node Boot

Block ...

Block ...

Block ID of M

Block ...

Block 0 of M

Block Size

0x408000

0xF5007B78

Word …

Word N

CRC Received

n/a

n/a

Word 1

Word 2

Word ...

Word ID of N

Word ...

0
x
4
0
8
0
0
0

Block M

SysRAM
Assembly

Block

0xF5007F7B

Block
Size

Data Rcvd?

Word
Rcvd
Array

When all Rcvd,
DMA Transfer

with CRC

Image Assembly
in DTCM on

Monitor Processor

If CRC
Calculated =
CRC Rcvd:

Blk OK.

Block
Rcvd
Array

Figure 2.16: Word array for a Flood-Fill Block [Gro11a].

of the DTCM, shown in Figure 2.16. This explicit validation is needed as opposed to the Host

Boot scenario where the implicit validation is provided by the CRC value present at the end of the

Ethernet frame. In this case, the calculated CRC-32 value is the payload which is placed at the end

of the block as shown in Figure 2.16. The CRC check occurs while performing a DMA from the

block assembled in SystemRAM into the appropriate position in the DTCM image. If it fails, the

block is discarded since it is not possible to calculate which word was received with errors. There

is a 4-bit 1s complement packet checksum on every NN packet but it is not particular resilient

which means it can still let bad packets go through. After this packet, there should be either

a Flood-Fill Block Start packet to restart the process for another block or a Flood-Fill Control

packet for the final step.

The Flood-Fill Control packet is very similar to the one present in the Host Boot just like the

Flood-Fill Start packet was. After receiving it, the SpiNNaker chip checks if all the blocks have

been received, in case there is a block missing, it will stop and wait for missing blocks. It will

usually have every block already so the system will copy the image from DTCM to the address

0x0 of ITCM and start executing from the address indicated in payload of the packet.

2.2.2 Application Load and Execute (APLX) File Format

After the second stage boot, the SpiNNaker system is capable of understanding and replying to

SCP commands which eases the task of loading application code to the SpiNNaker chips. Cur-

34 The SpiNNaker System

APLX Header

Data Block 1

Data Block 2

...

Data Block N

Figure 2.17: Typical APLX file structure.

rently the toolchain resorts to using the CMD_WRITE to upload the binary code to a known

location and then instructs the Monitor processor using another SCP command to inform the se-

lected cores that they can start executing. The current implementation of this Monitor processor

command simply sends a CMD_APLX to the selected Application cores. The latter command

causes the kernel to process an APLX file that has been loaded to memory beforehand, in this

case, through the use of the CMD_WRITE.

The APLX format is a simple way of loading applications on to a SpiNNaker chip. Its role is

similar to the Executable and Linkable Format (ELF) that is used for executables, object code and

shared libraries on Unix systems. The APLX file format allows the loading and execution of C

programs that need to be scatter loaded, i.e., place parts of the executable in different addresses.

There are 3 parts of memory that must be initialised for a typical C program. The first one is the

program binary code which must be placed in a executable address, in the SpiNNaker’s case this

means in the ITCM, usually at the address 0x0. The second part is static or global variable which

were initialised with a value different from zero. These are usually placed at the DTCM. The third

part is the rest of the global variable which must be initialised to zero as stated in the C standard

[ISO99]. These are also usually placed at the DTCM.

The APLX file has an header block that determines how the data is to be loaded into the

SpiNNaker’s memory. A typical file has a structure like the one presented in Figure 2.17, an

APLX header block followed by one or more data blocks [Tem11b].

The structure of the header block is very simple as it is a set of commands, each command is 4

words long. A command has 4 fields, each one word long, the first is command identifier and the

following 3 are possible arguments that even if not used are still present, in the Figure 2.9.

Currently, there are 4 commands defined and a marker for the end of the header block. These

are :

• APLX_ACOPY

• APLX_RCOPY

• APLX_FILL

• APLX_EXEC

2.2 Application Loading 35

APLX Command 1

APLX Command 2

...

APLX Command N

Command identifier

Argument 1

Argument 2

Argument 3
Table 2.9: APLX header and APLX Command structure

• APLX_END

The APLX_ACOPY command is responsible for copying data from an absolute address to another.

The arguments are the source and destination addresses and the length of the data block to be

copied. The length is specified in bytes but the operation is done word by word so the length is

rounded to a multiple of 4 bytes, currently the implementation rounds it up to a multiple of 32

bytes.

The APLX_RCOPY command is very similar to the APLX_ACOPY command except the

source address argument is a relative to the start of this APLX command block. The destination

address is still an absolute value and the copy behaviour is still the same.

The APLX_FILL command sets a memory section to specified value in a argument. Just like

the previous commands there is a length in bytes that is rounded up to a multiple of 32 bytes.

The APLX_EXEC command is used to start execution at an address specified in the first

argument. This address is copied to an ARM register and the BLX instruction is used to branch.

If the code being run preserves the link register on entry, then it is possible to return to the APLX

loader and continue to other blocks.

The APLX_END is a marker that is used to limit the APLX header which means that after

this marker, the loading process is complete. If there is a non returning APLX_EXEC command

before, this marker can be omitted since the loader will not continue execution. All the arguments

are ignored and unspecified for this command. For more details on all these commands, the reader

should refer to the application note [Tem11b].

Taking in consideration the requirements of a C program initialization, it is clear that these

commands are sufficient since they allow for data to be copied and initialised as it is necessary.

Therefore an APLX file with a C program will usually have the header block and two data blocks,

one for the program code and the other for global variables that have been explicitly initialised.

The header will typically contain 4 commands, two APLX_RCOPY for each of the data blocks; a

APLX_FILL for the rest of the global variable which are usually placed together in memory and

finally a APLX_EXEC to start execution.

As a final note, it is possible to create self-extracting APLX files. Usually the SpiNNaker

kernel takes cares of the loading process but it is possible to prepend unpacking code to the file

and process the file by branching to the start of the prepended file.

36 The SpiNNaker System

2.2.3 SpiNNaker Control & Monitor Program (SC&MP)

SC&MP is the kernel that runs on the Monitor Processor and it is responsible for all management

tasks. During the booting process, it initializes several structures it uses for the management tasks.

It also sets up the timer to run every millisecond and test the interchip link to probe how many

active neighbours has using peek packets which do not require processor intervention.

After all the initialisations procedures, it is mainly responsible for routing of the SDP packets

which include their transmission to other spinnaker chips using the SDP over P2P protocol or to

the application cores. It also implements a larger amount of SCP commands when compared to

SARK as for instance the IPTag command which allows the creation and removal of permanent

IPTags or commands that allow the manipulation of the interchip link interfaces. It also processes

SpiNNaker packets that it receives, specially P2P packets if they carry SDP data or NN packets

which are used during the bootstrapping procedures to propagate and set the P2P addresses of all

nodes in the grid as well as the P2P routing tables.

2.2.4 SpiNNaker Application Runtime Kernel (SARK)

SARK is a very low-level kernel that runs on the Application Cores. Its source code is provided to

the Application developers since it is linked together with the application code written in C during

the compilation process. It is mainly responsible for two functions:

• Initialization of the ARM core, setting up the stacks, and some peripherals like for example

the timer.

• Providing low level routines for CPU control and hardware management, such as enabling

and disabling interrupts, memory manipulation and management, random number genera-

tion, SDP messaging which is also used to communicate with the Monitor Processor, packet

transmission and event management. The low levels routines that SARK provides aim to

substitute parts of the C standard library which are usually provided by operating systems

like memory allocation and random number generation. The rest of the routines are specific

to the SpiNNaker operation like the communication or environment routines.

The SpiNNaker programming model is event driven, the processor is in a low power state

waiting for interrupts that signal events. There are currently 5 available events to the applications:

• MC packet received which is triggered by the successful reception of a multicast packet;

• DMA transfer completed which is triggered by the successful completion of DMA transfer;

• Timer tick which is triggered by the passage of a previously specified period of time;

• SDP packet received which is triggered by the reception of a SDP packet;

• User event which is triggered by a software interrupt.

2.2 Application Loading 37

Event First Argument Second Argument
MC packet received Key Payload
DMA transfer done Transfer ID Tag
Timer Tick Simulation time None
SDP packet received Pointer to mailbox Destination Port
User event Argument 0 Argument 1

Table 2.10: Event Callbacks Arguments [Gro11a].

Figure 2.18 shows the dispatch model for the event callback which the application registers

for each event with a certain priority. There are two main types of callbacks, non-queueable and

queueable. When the relevant event occurs, the scheduler executes the callback immediately in

case of a non-queueable callback or places it in a queue according to its priority in case of a queue-

able callback. After the scheduler finished, control returns to the dispatcher which will execute

all the queueable callback in the queue according to their priority. A non-queueable callback may

pre-empt a queueable callback at any time since when the corresponding event occurs control will

be returned to the scheduler which will execute the non-queueable callback immediately. When

there are no more pending callbacks in the queues, the dispatcher will enter a low power state

mode until there is an event. There is also a preeminent callback which is selected by the appli-

cation developers to have the highest priority and it is capable of pre-empting both non-queueable

and queueable callbacks. The current implementation associates this preeminent callback with a

fast interrupt request (FIQ) while the non-queueable callbacks are associated with normal interrupt

requests (IRQ). The callbacks are functions with two unsigned integer arguments and no return

value, the meaning of the arguments for each of the available callback is presented in Table 2.10.

The non-queueable callbacks are available to the application programmer as a method of pre-

empting long running tasks with high priority tasks. They should be used sparingly since they

are only pre-empted by the preeminent callback and may starve the queueable callbacks. Critical

sections are also available to prevent pre-emption during access to shared resources, there are

routines to disable IRQs or to disable both FIQs and IRQs. Disabling both interrupts requests may

lead to priority inversion. Further details about the location of the source code and the API are

presented in appendix D.

2.2.5 Toolchain

The toolchain used for SpiNNaker machines depends on the chosen programming language since

C, ARM Assembly or Python can be used [Gro11a]. Either way, some tools like ybug are common

for both approaches since they are used to upload code and data to the SpiNNaker systems.

Ybug and Tubotron

In order to deploy applications to a SpiNNaker system a custom program must be used, named

ybug. ybug is a computer program that runs on the host system and provides an interactive text-

38 The SpiNNaker System

!

qu
eu

ea
bl

e
ca

llb
ac

ks

di
sp

at
ch

er

sc
he

du
le

r

no
n-

qu
eu

ea
bl

e
ca

llb
ac

ks

control flow

data flow

C
B

 q
ue

ue
s

Dispatcher
thread

Scheduler
thread

pr
ee

m
in

en
t

ca
llb

ac
kFiq

thread

!

!

Figure 2.18: SpiNNaker programming framework [Gro11a].

based interface to a SpiNNaker system. It uses UDP datagrams to communicate with the SpiN-

Naker system so it can be used to control remote systems. Since the bootstrapping process is also

based on the UDP protocol, ybug is also responsible for initializing the system.

ybug is written in Perl and it is usually run under Linux, it started as a simple program meant

to communicate with early SpiNNaker systems but it has not been superseded so far. It supports

a large amount of commands that allow the SpiNNaker system to be bootstrapped, loaded with

data and binary code, and to be debugged. The debugging capabilities are based on low-level

features that have the ability to inspect and change memory in any SpiNNaker chip that has been

bootstrapped.

TuboTron is a tool that display debug information outputted by a SpiNNaker chip. SARK

has some routines that allows printing to a debug buffer that are sent to a specific UDP port that

Tubotron is listening on. It displays a separate window for each core.

These two tools are essential for the use of a SpiNNaker system.

2.3 Summary 39

Low level Programming

For most low level programming, C will probably be the language of choice with small sections

of assembly code for critical performance areas [Tem11a]. The recommended and tested compil-

ers are the RVDS 4.0 release of the ARM RealView Development System and GCC 4.5.2 from

Code Sourcery, available at http://www.codesourcery.com/sgpp/lite/arm/portal/

release1802.

The SARK source code comes with an example folder where there is a GNU Make Makefile

for both of these compilers. This compilation process will take the source code provided and

SARK and produce an APLX file suitable to be uploaded to a SpiNNaker system.

High level Programming

Besides C programming, other high level technologies are also available. Figure 2.19 shows the

development route for a neural networks simulation. The model can de described using standard

simulation languages/frameworks, such as PyNN [DBE+09] or Lens [Roh98]. The Partitioning

And Configuration MANager (PACMAN) is then responsible for transforming the high-level rep-

resentation into a physical on-chip implementation, the details on this process through which this

conversion happens are described in [Gro11a].

2.3 Summary

In this section, the hardware and basic software architectures of the SpiNNaker system were in-

troduced, with the purpose of laying the foundations for the subsequent chapters. In conclusion, it

may be inferred that the SpiNNaker system is a fully equipped with specific means to operate and

host applications developed in C.

However the SpiNNaker system is a fairly complex system which is still in constant evolution,

specially the APIs that SARK provides which are still the target of research in order to improve

and facilitate the deployment of application.

http://www.codesourcery.com/sgpp/lite/arm/portal/release1802
http://www.codesourcery.com/sgpp/lite/arm/portal/release1802

40 The SpiNNaker System

Figure 2.19: SpiNNaker neural networks simulation development route [Gro11a].

Chapter 3

SpiNNaker Chip Computing Module

The low power consumption and small size of a SpiNNaker chip makes it an interesting candidate

to have on-board of a small robot as a powerful computing resource. The projected solution should

be as small as possible, it should also allow to be connected to sensors and actuators through a

serial connection. In order to solve the stated problem, a solution based on custom hardware and

software was devised.

A detailed description of the SpiNNaker Chip Computing Module will be presented in this

chapter, starting by the developed hardware and continuing through the software layers present on

the developed board and on the associated workstation. The order of description follows roughly

the time line of the development work.

3.1 General Architecture

Traditional SpiNNaker systems rely on the host system to provide the input data which limits

the possibilities of interfacing the SpiNNaker chip with the external environment. In order to

overcome this, a microcontroller was added to be responsible for communicating with the outside

world. Figure 3.1 presents the general architecture for the developed solution which involves the

design of a PCB with a single SpiNNaker chip and a microcontroller, the software to drive the

microcontroller and an application that runs on the host system to communicate with the board.

Since one of the main goals of this solution is its portability, there was an effort to keep the

hardware as simple as possible having only the necessary components to achieve the project’s

goals.

There were several requirements that determined the usage of this architecture. Backwards

compatibility with the normal tools used for the bigger SpiNNaker machines, ybug and tubotron,

was an important aspect that lead to the creation of the Host system application. Having this

compatibility allows the reuse of know-how related to these tools and increases the value of the

developed system for future users.

The addition of the microcontroller allowed for the replacement of the Ethernet connection

with a simpler albeit slower communication protocol, RS-232, at a baud rate of 12 MBps which

41

42 SpiNNaker Chip Computing Module

Figure 3.1: General Architecture of the developed solution.

translates into 1.2 Megabytes/s each way. This microcontroller is also essential for booting the

SpiNNaker chip without a host system, as it can store the image that was previously transmit-

ted. The microcontroller and the application in the workstation work together to pretend they are

another SpiNNaker chip which is connected to the Ethernet, having their own P2P address and

position in the grid.

3.2 Hardware

The first stage of development involved the preparation and design of the board with the single

SpiNNaker chip and the chosen microcontroller. Figure 3.2 shows a possible diagram connection

3.2 Hardware 43

between the two chips using the Ethernet capabilities of the SpiNNaker and by selecting a micro-

controller with similar Ethernet capabilities. The SerialROM chip and the external PHYceiver are

necessary in order for the SpiNNaker to activate its Ethernet connection, which would mean that

another PHYceiver would be needed since there are few microcontrollers with integrated PHY-

ceivers. A direct connection was also considered between the two Media Access Control (MAC)

interfaces according to [SMS07] but this approach raises other design considerations that would

have been troublesome to test since the turnout time for the production of a board was around

three weeks, disregarding the fact that during the first stage of booting the SpiNNaker chip ac-

tively checks for the presence of the PHYceiver. This could be overcomed through the use of

the code loading capabilities with the SerialROM chip but the gains from this effort would be

null. Taking this approach would decrease the amount of work needed from the software’s point

of view, since it would only be required to copy the UDP datagrams through the serial port and

then transmit them using the microncontroller’s Ethernet connection, but it would greatly increase

the effort from the hardware perspective. This solution would also come with increased power

consumption since typical low power PHYceivers consume around 400 mW meaning that having

two of these chips would translate to a consumption similar to the SpiNNaker chip itself. This

consequence alone would cause failure in one of the core principals guidelines of the project, low

power consumption, so this solution was not appropriated and it was abandoned.

Figure 3.2: Possible connection between the microcontroller and the SpiNNaker chip.

Having discarded this previous approach, the selected one was to connect one of the six inter-

chip connections present in the SpiNNaker chip to GPIO pins on the microcontroller and imple-

ment the protocol on software. By selecting this way, the hardware design was simplified with a

significant increase in the complexity of the software design which is preferable since the testing

loop is much faster when compared to hardware testing. Additionally, this also demands that the

selected microcontroller has a good performance since it will be necessary to implement a com-

munication protocol which is implemented in hardware from the SpiNNaker side, and it would be

necessary to reduce as much as possible stalls that the microcontroller might introduce.

For the design of the schematics and the layout of the board, an Electronic Design Automation

(EDA) software utility was used. There are multiple offerings in the market from a variety of

companies such as Synopsys, Cadence or Mentor Graphics whose products are fairly complete

although complex. The selected tool was the Easily Applicable Graphical Layout Editor also

44 SpiNNaker Chip Computing Module

known as EAGLE. EAGLE is a simpler tool when compared to proposals from larger companies

but it is fairly user friendly and widely used in the hobbyist community thanks to its friendly

freeware licensing for non-profit applications. It is also available for other operating systems other

than Windows such as Mac OS X or Linux which is uncommon among the proprietary EDA

applications.

In order to use a PCB layout application, the footprint data for any used component must be

present. For simple missing components with few pads, the design of this footprint is viable and it

is not too time consuming. On the other hand, the SpiNNaker chip has a 300 pin Ball Grid Array

(BGA) package which besides being troublesome to assemble and solder, makes the manual

construction of its footprint dangerous because any errors at this stage would be difficult to correct

at a later stage without a significant time expenditure. To overcome this problem, a computer

program named AutoBGA [CV11] was used. This application allows the generation of footprint

data through the use of a image captured from the package drawing present in the data sheet. The

parameters needed for this generation, depicted in Figure 3.3, are all fairly simple to measure and

although the automatic recognition of the pads’ locations is not very reliable, the user interface

allows the user to place the missing pads in a grid.

Figure 3.3: AutoBGA user interface for the parameter configuration.

For other components like for instance, capacitors and inductors, the footprint data was drawn

using the tool that Eagles provides for the creation of new components. During the development

of the hardware, a library with several new components was created to be used on the schematics

and on the PCB layout.

3.2 Hardware 45

3.2.1 Components Selection

Having decided that the connection between the microcontroller and the SpiNNaker chip would

be fairly simple as it would be a direct connection between GPIO pins and one of the interchip

I/O links, the rest of the board capabilities can be defined in order to choose the components to be

used.

A critical component to be chosen was the microcontroller. Up until now, a few generic

requirements had been determined: low power consumption, fast performance, enough GPIO pins

to drive a 2-of-7 connection and a serial port. The ability to quickly interface with the SpiNNaker

chip was essential so another requirement was added, a dual core chip so that output and specially

input could be handled in parallel for maximum throughput. A lot of attention was paid to this

requirement due to the fact the router on the SpiNNaker chip may drop packets if the receiving

chip seems blocked or slow even though the communication protocol relies on an asynchronous

self-timed circuit.

The NXP LPC4337 [NXP13a] is a dual core microcontroller that complies with all the re-

quirements, it has a 32 bit ARM Cortex M4 core running up to 204 MHz and a 32 bit ARM Cortex

M0 core that can run up to 204 Mhz. The chosen configuration also uses two separate banks of

flash, each with 512 Kilobytes, and RAM memory, one with 64 and another with 40 Kilobytes.

The SpiNNaker chip requires two different voltage supplies, one at 1.2V capable of 1A and

another at 1.8V capable of 250mA. The complete board was to be fed a 3.7V Lithium cell battery

which means that at least two step-down converters would be needed. The initial choice to be

made was between a linear regulator and a buck converter for feeding the supply needs of the

SpiNNaker chip. A linear regulator is generally a good choice when the difference between the

output voltage and the input voltage is small since it dissipates the excess energy as heat.

Dissipated power at 1.2V = (3.7V−1.2V)×1A = 2.5W

Dissipated power at 1.8V = (3.7V−1.8V)×0.25A = 0.475W (3.1)

Efficiency at 1.2V =
1.2V×1A
3.7V×1A

≈ 32%

Efficiency at 1.8V =
1.8V×0.25A
3.7V×0.25A

≈ 49% (3.2)

As it can be seen in the calculation above, linear regulators are extremely inefficient for this

use case in absolute terms and also relatively to the buck converter since it can easily obtain

efficiencies in the order of 80-90%. There are some trade-offs which include the added cost and

space but these are worth it when compared to the efficiency gains. Additionally the increased

analog noise that these converters might introduce is not relevant since the rest of the circuit

is based on digital signals and this noise can be minimized with careful layout and a correct

selection of the output filter. Considering all these requirements, two buck converters from Texas

46 SpiNNaker Chip Computing Module

Instruments were chosen the TPS62202 [Ins06] for the 1.8V rail and the LM2852 [Ins13] for the

1.2V rail. For both, the values of the output inductor and the output capacitor were well defined in

their data sheets and their recommendations were followed.

The final major component left to be chosen is the power regulator for the microcontroller, the

LPC4337 requires a 3.3V supply capable of 200mA.

Dissipated power at 3.3V = (3.7V−3.3V)×0.2A = 0.08W

Efficiency at 3.3V =
3.3V×0.20A
3.7V×0.20A

≈ 89% (3.3)

In this specific case the efficiency of a linear regulator is on the same level of a buck converter

although this alternative is smaller and cheaper. The chosen component was the TPS73033 [Ins11]

that can output 3.3V at 200mA.

3.2.2 Power Dissipation

A typical concern when designing a PCB with several power supplies and regulators is the power

dissipation present in the various regulators that are in place and which may require a heat sink

in order to perform within its operational ratings. The maximum power dissipation limit is deter-

mined using the equation 3.4:

PD(max) =
TJ(max)−TA

RΘJA
(3.4)

Where:

• TJ(max) is the maximum allowable junction temperature which is usually considered to be

125◦ C;

• TA is the ambient temperature which will be considered to be at 85◦ which is a very conser-

vative estimate;

• RΘJA is the thermal resistance junction-to-ambient for the package which depends on the

chip.

While the power dissipation is determined using the equation 3.5:

PD =VO × IO × 1−η

η
(3.5)

Where:

• VO is the output voltage;

• IO is the output current;

• η is the efficiency of the regulator at previous output values.

3.2 Hardware 47

Regulator Dissipated Power (W) Maximum Power Dissipation (85◦ C)
TPS73033 0.080 0.225
TPS62202 0.061 0.160
LM2852 0.514 1.053

Table 3.1: Power dissipation for the various regulators.

The results from these calculations are compiled in a Table 3.1, the values used were retrieved

from the regulators’ data sheets. As it can be seen from the table, there is plenty of headroom for

each regulator in terms of power dissipation meaning that a heat sink is not necessary even though

these regulators were used in a compact design since the estimate for the ambient temperature was

very conservative for its future usage scenario.

3.2.3 Layout Concerns

Even though, the entire circuit relies on the digital signals there were still several guidelines that

were followed during the layout process in order to improve the signal quality and to increase

errors margins [Zum08].

Ground Plane

A ground plane is the use of one layer of a multilayer PCB, or in this case one side since it was a

double-sided one, as a continuous sheet of copper which is then used as ground. The large amount

of metal will have a resistance as low as possible and also an inductance as low as possible because

its large flattened conductor pattern. With these features, it can offer the best possible conduction

which minimizes voltage differences across reference points.

Decoupling

The SpiNNaker chip has highly variable current demands specially during the self-test phase that

occurs right after power-on. In order to account for behavior several decoupling capacitors have

been in the neighbourhood of the multiple supply pins to which were connected through wide

traces to minimize the line inductance and resistance [Inc09]. The values for these decoupling ca-

pacitors were obtained from the collaboration with researchers from the University of Manchester.

3.2.4 PCB Test Board

Before committing to the final design, a simpler version without the SpiNNaker chip was devel-

oped in order to start developing the software without having to debug hardware problems. This

test version featured a 34 pin connector that was used to drive the 102 SpiNNaker machine as seen

in Figure 2.10. This connector has sixteen pins that connect to one of the inter-chip links of a

SpiNNaker chip while the rest of the pins are connected to ground. This test board allowed the

software to be fairly mature before building the larger version.

48 SpiNNaker Chip Computing Module

Figure 3.4: PCB Test Board.

3.2.5 PCB Final Board

The final design added the missing SpiNNaker chip and the power supplies circuits that the SpiN-

Naker requires. Figure 3.5 shows a picture of the final board with all the components, except for

the 34 pin connector, soldered.

3.2.6 SpiNNaker Extension Board

The use of the 34 pin connector allows the SpiNNaker Computing Module to be extended with the

SpiNNaker 102 machine but using this larger board defeats the purpose of having a small board.

In order to overcome this limitation, an extension board with a single SpiNNaker chip with two 34

pin connectors which makes it possible to build a chain with up to 256 chips. Appendix A has the

schematic and the layout for this board, and the other two previously mentioned.

3.3 Microcontroller Firmware

This layer of the developed solution is the one responsible for communicating with the SpiNNaker

chip, which includes the responsibility of implementing the 2-of-7 protocol and the SDP over P2P

protocol, and communicating with the Host system. The Figure 3.6 shows a high level view for

the architecture used in the microcontroller software. There are two core, one ARM Cortex M0

which is a low power simple 32 bit core and one ARM Cortex M4 which is a much more powerful

core with its own Floating Point Unit (FPU). The M0 core was used exclusive to process the

input from the SpiNNaker while the M4 core was in charge for processing the packets received,

communicating with the host system and outputting packets to the SpiNNaker. This cooperation

is possible thanks to the access that both cores have to most of the peripherals and memory banks

3.3 Microcontroller Firmware 49

Figure 3.5: The SpiNNaker Computing Module.

through the use of a matrix connection layer present in the LPC4337. Additionally, each core

runs its own binary code with no shared code, the compilation process for each core was separate

and there are placed in different flash banks for increased performance. The main reason to avoid

sharing binary code between the two cores comes from the fact that the M4 core has a larger

instruction set that the M0 does not support which means that any shared binary code would not

take advantage of the extended features that the Cortex M4 has.

50 SpiNNaker Chip Computing Module

Figure 3.6: Microcontroller Firmware Architecture.

3.3.1 M0 Core

The 2-of-7 protocol relies on two unidirectional links, each with seven data wires and one ac-

knowledgement wire. A four bit symbol is transmitted by toggling two of the data wires, the

symbol coding is presented in the Table 2.3. The receptor should then acknowledge that it has

decoded the symbol by toggling the acknowledgement wire. The SpiNNaker chip sends packets

with either 72 bits or 40 bits (18 or 10 symbols) if the packet has a payload or not, followed by a

End-of-Packet symbol. The M0 core function is simply to received symbols, assemble them into

a packet and push that packet into a shared buffer with the M4 core for processing.

3.3 Microcontroller Firmware 51

Processing Algorithm

Since the communications protocol is based on transitions and it relies on 7 parallel signals, it is not

possible to map it in any way to the more standard serial protocols, neither rely on some custom

peripherals that the LCP4337 contains that were meant to help encode custom serial protocols

which means that all processing must be done in software. The current algorithm is based on a

look-up table to decode the symbol and relies on the XOR operation to retrieve the transitions.

The use of a look-up table is possible due to the fact the 7 wire transitions led to 128 different

combinations.

During the initial stage, the M0 Core initializes the look-up table with the valid symbols for

the correct positions and the rest with a known invalid value. It also reads the GPIO input state

for all the seven input wires, saving its state in a local variable, and sets the acknowledgement

to signal to high as it is specified [Tem12]. Having completed all the initialization configurations

it enters the main processing loop where the first step is to check if there is room in the packet

queue. This verification is blocking meaning that the microprocessor will be locked in a tight loop

until this condition is verified. It then proceeds to read the current state of the GPIOs pins and

check if there were any changes, if there were not it will repeat this step until there are. If there

were changes it retrieves the XOR between the current and previous status, and using this result it

fetches the symbol from the look-up table. If the symbol is valid it is stored in the correct position

in the packet, if it is invalid it is dropped and the system stays on the same step. Finally it toggles

the acknowledgement wire and it updates a local variable with the current state of the GPIO input

lines. This process repeats until a full packet is received from which the system jumps to the initial

verification of space in the packet queue. In order to prevent needlessly copies the received packet

is written directly to the queue since the M4 core will not read the current writing position until it

has progressed to the next packet.

The coding style adopted to implement this algorithm can be described as assembly like C

programming since it features heavy usage of labels and goto which are usually looked down

upon in standard coding practices. This style of coding came from the need to help the compiler

improve its code generation. Most of the improvements to the code were made by analysing the

compiler’s output and reworking areas that could be improved.

Packet Queue and Memory Layout

An important element of this processing algorithm is the packet queue which must be shared

with the two cores. NXP provides a number of libraries and Application Programmable Interfaces

(APIs) for interprocessor communication (IPC)[NXP12] after a careful analysis of its implementa-

tion, there were discarded since they had too much overhead for the simple communication model

that it was required. As a result special care was given to the memory layout of the system. The

LPC4337 has two RAM banks with different sizes, one with 64 Kilobytes and another with 40

Kilobytes. Traditionally the first would be exclusive to the M4 core and the second for the M0

core and indeed this was the solution employed for this case.

52 SpiNNaker Chip Computing Module

Figure 3.7: Packet Input Reading Algorithm.

3.3 Microcontroller Firmware 53

Figure 3.6: Packet Input Reading Algorithm.

In order to maximize the queue’s length, the majority of the 40K bank was reserved for its

use. Each packet takes at most nine bytes, one for the control header, four for the routing key

and four optional more for the payload. The queue is simply an array with the largest amount of

packets possible with the constraint that the number of elements must be a power of two in order

to do the wrap-around operation using a simple AND operation. The fact each position takes full

9 bytes when four are optional may seem unreasonable but in practice the large majority of packet

require a payload. For the 40K bank this lead to 4096 elements which take up 36864 bytes of

space. The queue also required two more integers with the current write and read position. These

three elements position in memory, the two integers and the array, was hard coded and added to

both cores linker file [NXP13c]. With this technique, it was possible to share a structure between

the two cores with independent code bases without any overhead at all. The rest of the memory in

the 40K bank was used for the binary of the M0 core, for its stack and global variables, while the

64K bank was reserved for the M4 core binary.

54 SpiNNaker Chip Computing Module

3.3.2 M4 Core

The M4 Core is responsible for the rest of the system management which includes various tasks

such as processing the packets read by the M0 core, communicating with the host system and

transmitting packets to the SpiNNaker. The main processing loop executes a variety of tasks se-

quentially, meaning that each task never blocks at any point. In order to follow this very important

guideline , a variety of state machines were employed in several subsystems. They are four main

tasks:

• Host communication task which is responsible for receiving commands and data from the

host system and processing it accordingly;

• Packet processing task which is in charge of reading the packets received from the SpiN-

Naker system and taking actions as required such as moving it to the serial port output buffer

or replying with another packet in case of poke packets for example;

• SDP packet handling task that continues the transmission of a SDP packet and checks for

any timeouts that may have occurred while receiving or transmitting SDP data;

• Serial output task which simply empties the serial output buffer through the serial port as

fast as it is possible.

The following subsections will discuss the implementation of the above tasks.

Host communication task

This tasks only runs if there is a new byte to be processed from the serial port otherwise it will

exit immediately. This task is basically a state machine, depicted in Figure 3.7, that has a certain

amount of commands and their processing. Currently the commands available are the reception

of a boot image, the transmission of a SDP packet, the transmission of a SpiNNaker packet for

which each type of packet and whether or not it has a payload is a different command, and a P2P

address redefinition command. As soon as the data needed for acting the command is received it

will be executed. This means the transmission of the boot image or a SpiNNaker packet will be

done at the final step of the state machine processing branch. As for the SDP transmission the

initial packet is sent but the rest of the process is left for another tasks since it requires replies from

the SpiNNaker chip according the SDP over P2P protocol.

Packet processing task

This task is responsible for looking at the packets received from the SpiNNaker system and act

accordingly, it processes a packet at a time to avoid starvation of the other tasks. The rule of thumb

while processing these packets is if the firmware does not know how to proceed it will simply copy

it to the system output buffer which will then be transmitted to the Host system. In case this output

buffer is full, then the packet is not release, i.e., the read position integer is not incremented. This

3.3 Microcontroller Firmware 55

Figure 3.7: Host communication task state machine.

means that if the output buffer is full caused by a burst of unknown packets, processable packets

may be in the queue for an unreasonable amount of time depending on the baud rate being used.

The solution found to this problem was the usage of a shadow pointer which basically is an extra

local integer that tracked the position of processed packets and an array that indicated whether or

not a packet should be copied to the output buffer. Basically a packet is processed by checking

its type and if can trigger any other action such as a reply in case of a poke packet or set a flag

for the SDP packet handling tasks. In this case, the packet is not to be transmitted back to the

Host system so it can be released immediately. If no recognizable action is identified, then it is

marked to be transmitted which depending on the free space available on the output buffer may

either occur immediately or in following executions of this task. Nevertheless, packet processing

continues one packet at a time if there are any left to be processed although the queue read pointer

will only move after a packet has been successfully copied to the output buffer. This technique

allows the system to reduce latency without discarding packets during a burst reception and it

proved essential to keep the system active during the flood-fill phase which is a specially critical

phase with a large amount of packets being received in a short period of time.

56 SpiNNaker Chip Computing Module

SDP packet handling task

This tasks implements the SDP over P2P protocol present in Figure 2.8. The reception implemen-

tation is basically the checking and handling of timeouts since the packet processing task handles

the packets received atomically, and copying the final SDP packet to the output buffer. It uses the

state machine presented in Figure 3.9 to control this behaviour. On the other hand, the bulk of

the transmission is handled inside this task leaving only the acknowledgement packets handling to

the packet processing task. It features the state machine featured in Figure 3.8 that resembles the

several steps of the protocol. The initial step, i.e. the open channel request, the request packet is

sent inside of the Host communication task. This task will also check for timeouts and the need

for retries until the packet processing task sets a flag allowing the process to continue with the

data transmission. This means that each transition in this state machine is regulated by packet pro-

cessing task with the reception of acknowledgement packets since timeouts or retries will either

maintain the same state or completely reset the process and drop the SDP packet.

Serial output task

This tasks is simple responsible for moving bytes from the output buffer to the serial port peripheral

as fast as possible.

Packet Transmission routines

The packet transmission routines are the functions responsible for sending a SpiNNaker packet to

the SpiNNaker chip. They received as arguments the control header byte, the four bytes routing

key and the optional four bytes payload and calculate the parity bit and fill it in the control byte

before transmission. The implementation of the nibble transmission was the target of several opti-

mizations and tunings since this is a basic building block of the system. The final implementation

relied on capability of the C programming language to have a function array, each different nibble

was implemented in a separate function, and the sixteen possibilities were packed in a function

array. While transmitting a byte, it was simply a matter of using each nibble as a position for the

function array table. The advantage of this approach is that every nibble takes the same time to be

transmitted as opposed to the initial implementation while a 0 would be faster than a 15 depending

on the order of the compare operations. Additionally the GPIO peripheral present in the LPC4337

proved to be essential in improving the performance since it had the capabilities to toggle an out-

put using a single instruction meaning it was not needed to keep track of the current status of the

output and act accordingly.

Another optimization that may seem a bit dubious at first look is checking the acknowledge-

ment signal only after the EOP symbol. Since an even number of symbols is transmitted while

sending a packet up until the EOP packet symbol, the state of the acknowledgement signal should

be the same as it was before transmitting the packet assuming it toggled correctly for every sym-

bol. This allows the check only to be done at the end which should be sufficient to detected errors

with the transmission. This improvement proved to be essential in improving the throughput of

3.4 Workstation Application 57

Figure 3.8: SDP Packet Transmission State Machine.

symbol and packet transmission leading to more than 60 % of reduction in the total transmission

time.

3.4 Workstation Application

The upper layer of the developed solution is an application that runs on the host system. This

application is responsible for trapping UDP packets meant for a standard SpiNNaker system sent

by ybug and relay them to the PCB using a serial port. This program was written using the

Java programming language [DD11] and the RXTX Serial Port Library [Jar06]. The Figure 3.10

presents a high-level architecture of the program.

The application opens an UDP socket on the same ports that the SpiNNaker usually uses,

though the user must first select the serial port and baud rate since a connection is only opened if

58 SpiNNaker Chip Computing Module

Figure 3.9: SDP Packet Reception State Machine.

the program can relay the data it receives. When a connection is opened, several new threads are

launched. These are:

• Boot Image Transcoder which is responsible for capturing UDP datagrams with pieces of

the boot image and reassembling it with little endianess before transmitting it to the mi-

crocontroller, after finishing the transmission of the boot image it also configures the P2P

address of the microcontroller and sets up the P2P grid using NN packets. Additionally it

also configures the Router to increase the number of the wait cycles to ensure the micro-

controller does not misses packets during the burst that may come from the SDP over P2P

protocol.

• SDP Packet Transmitter which takes the SDP packets and places them in a queue to be

analysed. Another thread is responsible for removing these packets from the queue and

sending them to the microcontroller at a controlled rate in order to prevent rejected packets

since there is limited buffering on the microcontroller size as opposed to the workstation

3.4 Workstation Application 59

Figure 3.10: SpiNNaker Wrapper Application Architecture.

whose buffering capabilities are much larger. This thread also checks if the SDP packet

contains a command which may be directed to the SpiNNaker that the application pretends

to be like an IPTag command.

• SDP Packets Receiver which its main objective is to take SDP packets received through the

serial port and send them through the UDP socket using the IPTag field present in the SDP

packet header. It is also responsible for receiving email packets and printing those in the log

in order for the user to analyse their content.

IPTag Commands

The application and the microcontroller are responsible for implementing the communications

capabilities of a SpiNNaker chip with an Ethernet connection. In order to achieve this, they have

their own P2P address which can be targeted using P2P packets or SDP packets which means

that it may also receive SCP commands. Most commands are ignored so that the user using ybug

60 SpiNNaker Chip Computing Module

remotely may realise it is communicating with a real SpiNNaker. However, IPTag commands are

accepted and replied to because they are essential in the functioning of Tubotron, the debug output

tool, and the general routing of SDP packets. The implementation in the application mimics the

SpiNNaker’s kernel implementation but with increased size capabilities since it uses the full length

of the field, eight bits, as opposed to the kernel implementation which only uses four bits.

3.4.1 User Interface

The user interface is divided in three main areas, the connection manager, the packet manager, and

the log area, as shown in Figure 3.11. The connection manager features the necessary tools for

the user to select the serial port and the baud rate for the connection. At any point, the user may

disconnect and choose different settings. This interface brings flexibility and portability since the

name of the chosen serial port is not hard coded which allows the program to execute flawlessly

in other operating systems like Windows or Mac OS X.

The Packet Manager is an utility that was added during development of the microcontroller’s

firmware and it allowed to test various situations. It allows the user to manually transmit a SpiN-

Naker packet, by selecting the type and filling in the fields. During development, it was extremely

useful to tune some configurations packets that must be sent and to check their real effect by

examining the SpiNNaker memory by using peek packets.

The Log area shows a restricted amount of log messages that the application generates while

running. The text it shows is selectable which the user can then copy, and scrollable meaning that

any message shown since the start of the program can be seen until termination.

3.4.2 Wrapper Protocol

A very simple protocol was designed to communicate between the microcontroller and the appli-

cation. The main motivation for simplicity was efficiency, any overhead must be avoided specially

since the communication medium, RS-232, is not particularly fast. The protocol is based on two

types of commands, one with fixed length and another with variable length. Every command is

identified by the first byte, then if it is fixed length command the sender will output the needed

missing bytes, if it has variable length it will send a number in ASCII followed by a newline

character, this number is the length of the rest of the command that will then be transmitted. The

receiver must wait for all these bytes before executing the command. The commands sent by the

application to the microcontroller are shown in the Table 3.2, while Table 3.3 has the commands

sent by microcontroller to the application. The differences between the SpiNNaker packets com-

mands are noticeable, the reason for this approach is the reduction of overhead on one side of the

communication since the microcontroller is capable of generating a suitable control header byte

while when sending packets back to the host system from the SpiNNaker chip it is interesting to

show the complete packet including the control byte.

3.4 Workstation Application 61

Figure 3.11: User Interface of the Workstation Application.

Command Command Format Length Type
Send Boot image b<length of the boot image>’\n’<image> Variable
Send SDP packet s<length of the packet>’\n’<packet> Variable
Set P2P Address a<2 byte with address> Fixed
Send Peek packet e<4 bytes with address> Fixed
Send Poke packet E<8 bytes with address and payload> Fixed
Send P2P packet p<4 bytes with address> Fixed
Send P2P packet with payload P<8 bytes with address and payload> Fixed
Send FR packet f<4 bytes with payload> Fixed
Send FR packet with payload F<8 bytes with payload and another payload> Fixed
Send NN packet n<4 bytes with routing key> Fixed
Send NN packet with payload N<8 bytes with routing key and payload> Fixed
Send MC packet m<4 bytes with address> Fixed
Send MC packet with payload M<8 bytes with address and payload> Fixed

Table 3.2: Commands send by the Application to the Microcontroller

62 SpiNNaker Chip Computing Module

Command Command Format Length Type
Send SDP packet s<length of the packet><packet> Variable
Send SpiNNaker packet p<5 bytes with control byte and address> Fixed
Send SpiNNaker packet with
payload

P<9 bytes with control byte,address and payload> Fixed

Show SpiNNaker packet sent
from the microcontroller
with payload (only used
during debug)

S<9 bytes with control byte,address and payload> Fixed

Table 3.3: Commands send by the Microcontroller to the Application

3.5 Evaluation

In order to characterize the developed computing module, some measurements were made. Both

cores ran at 180 MHz during all tests. The main objective was to determine the input and output

capacity in terms of SpiNNaker packets since higher levels protocols rely on these. The method-

ology used for these procedures was as follows:

• change the source code to set and clear a GPIO pin for the relevant section to be measured;

• use the switch present in the board to trigger the transmission of a peek or poke packet

depending if the objective was to measure packets with or without payload.

• using an oscilloscope, measure the time taken between the changes in state of the previously

selected GPIO pin.

The results are compiled in Table 3.4. The first two lines represent the time taken to transmit a

packet, including the calculation of the parity bit and consequental addition to the header, while

the following two lines represent the time taken only during the symbol transmission. There is no

such difference for the input side since it is only reading symbols and placing them at the queue

in the correct position. With these results, it is now possible to calculate the symbol transmission

capacity. Each symbol takes around 90 ns to be transmitted which translates into a 11 MSymbol

transmission rate. As for the input capacity, is around 43 % of the transmission rate at 4.78 MSym-

bol. These number are fairly small when comparing with capacity on the SpiNNaker side which is

around 62.5 MSymbols in both direction. This large difference is easily explained by the fact the

microcontroller implementation is entirely software based as opposed to the SpiNNaker which is

implemented in dedicated hardware. Additionally, the difference between the transmission and the

reception rate can be explained for the increased complexity when receiving and identifying the

symbols as opposed to output process where there is no identification step, besides the differences

of performance between the two cores. Another analysis which can be done is the fact that the

transmission and reception capacity is much bigger than RS-232 at 12 Mbps, meaning that this

communication channel is currently the bottleneck.

In terms of packet transmission rate, for packet with a payload, the system can achieve around

455K packets per second while for those without payload, the rate is about 770K packets per

3.6 Summary 63

Action Time taken (µs)
Packet Transmission with payload 2.2
Packet Transmission without payload 1.3
Symbol transmission for packet with payload 1.8
Symbol transmission for packet without payload 1
Tasks Loop without running any action 0.55
Packet reception with payload 4.2
Packet reception without payload 2.3

Table 3.4: Performance Measurements for the transmission and reception of SpiNNaker packets.

second. As for the packet reception rate, 435K packets per second can be received if these do not

include a payload, while for the packets with a payload, it is around 238K packets per second.

The final interesting number is the time taken per execution of the main loop which currently

is 550ns. This number represents the time taken for every task to check if there is something to be

done without actually performing some function.

3.6 Summary

The SpiNNaker Computing Module allows the use of a single SpiNNaker chip in a very small

package without requiring an Ethernet connection. Through the addition of a microcontroller,

which emulates an Ethernet connected SpiNNaker chip taking its own position in the 2D grid and

with its own P2P address, the initial steps for a complete autonomous solution have been laid.

The system is already capable of bootstrapping and communicating with the SpiNNaker chip at

the various layers of its communications model which means it has comparable functionality to a

standard SpiNNaker machine.

The SpiNNaker Extension board allows the system to be extended up to 256 SpiNNaker chip,

although future iterations with more interchip connectors may extend this capability up to the full

extent of the architecture, i.e., 65536 SpiNNaker chips.

The developed workstation application adds backwards compatibility with the currently avail-

able tools, such as ybug and tubotron, in order to allow the porting of previous development based

on standard SpiNNaker machines to be ported to this new system without any effort besides some

changes in the loading scripts to prevent trying to upload code and data to the fake SpiNNaker

chip that the microcontroller represents.

Chapter 4

Case Study

This chapter presents the developed case study for the SpiNNaker Chip Computing Module which

was presented in the previous sections. The selected example is based on the simulation of the

aggregate motion of a flock of birds while using distributed rules for each bird. The implemented

model for this simulation is traditionally named the Boids model.

This example was chosen because it requires intercommunication between the processing units

in order to achieve the correct results and it is a non neural application which showcases the

general purpose computing possibilities that this new solution allows. Additionally it provides an

interesting visualisation that shows the increased computing power by comparing the frames per

second between a pure computer implementation and one that uses a single SpiNNaker chip.

4.1 Boids Model

The Boids model is a distributed behavioural model [Rey87] for flocks of birds flying or fish

schooling. It is similar to a particle system, a large set of individual particles, each with its own

behaviour, but it has several crucial differences. Traditional particle system are used to model fire,

smoke or water. Each particle is created, age, and die off. Unlike the objects the boids model

describes, which have a geometrical shape and as a consequence an orientation, they are usually

dot-like. Additionally, typical particles do not interact between themselves as opposed to bird

which must do so in order to flock appropriately.

This model is often referred to as a prime example of Artificial Life [Bed03] as it illustrates

a variety of its principles, such as emergence where complex behaviour comes from the local

interaction of simple rules, and unpredictability since it is not possible to predict the direction of

a bird’s movement after two minutes, although they do not behave chaotically as one can easily

predict their direction for the next second since it will approximately be the same.

The natural flock has certain behaviours that allows it to exist, e.g. the need for birds to stay

close to the flock and the need to avoid collisions with other birds. The motivation for the latter can

be easily understandable as opposed to the first behaviour where the motivations are not so clear,

65

66 Case Study

though factors like protection from predators and advantages for social and matings activities may

be responsible.

Therefore the simulated flocks will have some rules or behaviours that will generate the motion

similar to the one produced by real ones. The basic behaviours are:

• Collision Avoidance: avoid collisions with nearby flockmates

• Velocity Matching: attempt to match velocity with nearby flockmates

• Flock Centring: attempt to stay close to nearby flockmates

Each behaviour produces an acceleration which is a contribution for a tunable weighted aver-

age. The relative strength of each rule will dictate the general behaviour of the flock, for example,

if the flock centring behaviour has a very low impact then the flock will be very sparse while still

following a common direction.

Since the model attempts to simulate the movement of birds, it must be based on a semi-

realistic model of flight. It does not need to take in consideration all physical forces like aerody-

namic drag or even gravity but it must limit the velocity and instantaneous accelerations to realistic

values. These restrictions help modelling creatures with finite amounts of energy.

4.2 General architecture

The architecture for this implementation is presented in Figure 4.1. The SpiNNaker chip will

compute the simulation and update at a rate of 30 frames per second the birds’ position. The

update will be sent to an application running on the Host system using SDP packets. A bird

position is given by three coordinates since the simulation is on a three dimensional space. Each

coordinate position takes two bytes since the simulated world space is limited to values well below

the 32768 limit given by signed two byte value. This means that each bird takes up six bytes for

the position and two more for an identifier which means that currently the maximum number of

birds is 65536 which is a very large flock. The current maximum length for a SDP packet is 272

bytes which divided by 8 equals 34. This means that each SDP packet can carry up to 34 birds’

positions.

4.2.1 SpiNNaker implementation

The SpiNNaker implementation was written in C and it uses the low level routines provided by

SARK to achieve an efficient implementation. It is based on open sourced version, licensed under

the GNU General Public License (GPL), by Conrad Parker named xboids [Par02] which was

designed to run under X11 on Unix systems. A large numbers of modifications were required

since the code used several dynamic memory allocations and floating point. The initial step was

to port the code base to a fixed point math library, the one selected was the Fixed Point Math

Library for C [Vor12], which is a header-only integer based fixed point library licensed under the

Berkeley Software Distribution (BSD) license. After verifying that the behaviour of the flock was

4.2 General architecture 67

Figure 4.1: Architecture for the Boids simulation.

not different from the floating point version, the second step was to eliminate the dynamic memory

allocation and replaced them with statically allocated structures and arrays. This two steps were

performed on the computer version since it was easier to test and easy to compare the flock’s

simulation before and after the changes.

Having achieved this objective, the missing step was to create a SpiNNaker version. The first

iteration focused only on having a single flock per core without any communication. This version

starts by initializing a fixed number of boids and setting up a timer callback every 33 milliseconds,

which is corresponds to 30 frames per second. This timer callback is responsible for updating the

simulation and the visualiser by sending the SDP packets with the newly updated positions.

The timer callback starts by calculating the centre position and the average velocity of the

flock. It then iterates through the boids array and updates each boid, which after being updated

68 Case Study

the new positions are immediately copied to the outgoing SDP packet. After an packet is full, it is

sent and it starts filling a new one until every boid’s position has been transmitted.

The boids update process is an simple implementation of the model presented in the previous

section. The boid has access to the complete array and the flock’s center and average velocity.

Using its current position and velocity, it computes two accelerations by comparing the flock’s

averages to its own status. Then it produces an aggregate acceleration from the collision avoidance

algorithm, where it tries to avoid every boid that is closer than a certain constant value. With all

these behaviours it produces an weight average where the collision avoidance is the most important

followed by velocity matching and finally the flock centring. Additionally the velocity is limited

to realistic values. The last step checks if the boid is confined to the defined world by verifying

each coordinate separately, when they are not, a new fixed correcting acceleration is added on

each simulation step until they are back to the allowed area. The current algorithm has O(N2)

complexity since it will iterate though each boid to update it and during the collision avoidance

verification it will iterate through the full set again, the original paper about this model proposes

some possible improvements but since it not the main goal of this implementation, these were not

pursued.

The second iteration added the propagation of the boids positions to the other cores in order

to from one big flock. In practical terms, this meant adding a new callback for the reception of

SDP packets which immediately calculates new collision avoidance acceleration if needed and the

creation of a higher level average velocity and center for the larger flock while also propagating the

boids’ positions and the stats of the local flock to the other cores. There was a third iteration that

tuned the weighted average so that each core remained close together while forming the bigger

flock.

4.2.2 Computer Visualiser

The other component is the computer program which was named the Boids Visualiser. It was

written in Java and it used a game development framework named libGDX[Zec13], which is open

source, licensed under the Apache 2 License, cross platform and it has very simple APIs for

drawing. The motivation to use a game development framework comes from the fact that the

visualiser needs to represent a three dimensional world filled with birds. Additionally, it allowed

to run the visualiser in other non-standard platform like Android and iOS.

The initial step was to port of the xboids to Java and libGDX. The limitations that required

some handling while porting the software to the SpiNNaker did not apply to this version since it

would be running on a workstation. The 2D API form libGDX proved to be simple enough to

simulate the drawing code used on the original version for X11, the standard windowing system

on Linux systems.

The next step was to remove the simulation code from the Java version and add an UDP socket

listener that would take the received UDP datagrams, parse the information and update accordingly

the boids present in that packet. This listener was placed on another thread running asynchronously

to prevent frame drops although a mutex was placed in order to avoid race conditions.

4.3 Evaluation 69

A screen shot of the this visualiser is depicted in Figure 4.2. A runnable Java Archive (JAR)

with the computer version is available for download from the project’s Bitbucket page at https:

//bitbucket.org/rui_araujo/boidsvisualizer/downloads/boids.jar.

4.3 Evaluation

There were two versions developed for this simulation, one relying on the SpiNNaker Computing

Module and another simpler only using the computer capabilities, which allows a direct compar-

ison between the performance of both solutions with the increase of the flock’s population. The

methodology used for this evaluation was the following:

• select a number of birds for the simulation;

• run the simulation on the SpiNNaker Computing Module, and record the frames per second

(FPS) in the visualisation:

• run the simulation on the computer and record again the frames per second.

The results of this benchmark are compiled in Table 4.1. The central processing unit (CPU) of the

computer used for running this simulation was an AMD Phenom II X4 945 running at 3 GHz.

The O(N2) complexity of the algorithm is clearly shown in the results. The increase of the

number of birds leads to an ever increasing reduction of the frame rate. The version that uses

the SpiNNaker Computing Module also suffers from a reduction in the frame rate from the shear

number of objects it has to represent. The graphics code was not optimized to handle a large

number of birds but since it is the same code for both versions, this effect can be despised.

Number of birds in
the simulation

FPS with the SpiNNaker Com-
puting Module

FPS without the SpiNNaker
Computing Module

2176 60 60
4352 59 30
6528 43 15
8704 32 10

Table 4.1: Frames per second for the simulation with and without the SpiNNaker Computing
Module.

4.4 Summary

The implementation of this model was a prime example of the general purposes capabilities of the

SpiNNaker chip. Although this is not a typical neural application, it was a parallelizable algorithm

that benefited from the fast interconnect capabilities and high speed core communication. It also

allowed to showcase the true computing capabilities since the computer Java version with the

included simulation could not run in real time, with noticeable frames drops, when the flock grew

larger than 3000 birds.

https://bitbucket.org/rui_araujo/boidsvisualizer/downloads/boids.jar
https://bitbucket.org/rui_araujo/boidsvisualizer/downloads/boids.jar

70 Case Study

Figure 4.2: A frame of the Boids Visualiser with 2176 birds.

Chapter 5

Conclusions and Future Work

This dissertation is finalized by drawing a conclusion, summarizing the contributions and difficul-

ties, and discussing directions for future work.

5.1 Summary

A deep analysis of the SpiNNaker system and specially of the SpiNNaker chip was given in Chap-

ter 2. This chip is equipped with a complete tool chain and advanced parallel capabilities that can

foster interesting new applications in the fields of small robotics and others, where this style of

computational power is welcome.

In Chapter 3, it was present the developed system which included a custom PCB board with

a microcontroller and a single SpiNNaker chip together with an inter-chip connector to allow

communication with extra SpiNNaker chips without any changes, firmware for the microcontroller

that emulated the networking capabilities of a SpiNNaker chip with an Ethernet connection and a

computer application that was necessary to trap the UDP datagrams that are normally used with

standard SpiNNaker machines. Additionally, an extension board with a single SpiNNaker chip

was proposed in order to allow granular increases in computing power.

An example study case was developed which implemented the simulation of the movement

of a flock of birds. The implemented model and the architecture used were presented in Chapter

4. This example allowed to demonstrate the computing capabilities that a single SpiNNaker chip

may bring and its general purpose applicability.

Observing the results it may be concluded that the Spinnaker platform in the form of a module

like the one that was developed during this work is an interesting candidate for the implementation

of a controller brain in a wide range of applications of highly parallelizable processes with very

low energy consumption.

71

72 Conclusions and Future Work

5.2 Difficulties

The main difficulties came from the implementation of the SDP over P2P protocol where it was

necessary to set up several configuration after the second stage boot. In order to understand which

packets were needed, a thorough analysis of the SC&MP source code was required, specially the

sections where the kernel processed the received SpiNNaker packets. While debugging, a large

amount of the process was spent analysing the source code of the this kernel in order to understand

what was happening inside of the SpiNNaker chip and how it was reacting to the transmitted

packets.

5.3 Future Work

Although the presented solution fully complies with the proposed objectives, there a few improve-

ments that could be added with future work.

5.3.1 PCB Layout

The developed layout was a proof of concept and a development board for the software that was

required to build for a working solution. It can be improved by using the two sides of the PCB

for mounting of components and selecting smaller packages for the microcontroller and other

components. Additionally more connectors can be added to the SpiNNaker chip to extend the

inter-chip connectivity possibilities.

As for the SpiNNaker Extension Board, an extra chip could be place in the other side of

the board meaning that each extension board would add two extra SpiNNaker chips without any

increases in size. Another possibility would be the move of the power circuits to the other side of

the PCB and allow significant reductions in the size of the board.

5.3.2 Full Workstation Independence

The current software is capable of booting the SpiNNaker chip without using a workstation by

saving the boot image to a local EEPROM memory. This is not enough to have a complete fully

independent mobile system as it is missing the binaries for the application processors.

Since the SpiNNaker chip is capable of running different binaries on each of its cores and

the SpiNNaker system is extremely flexible and extensible, the solution is non trivial. A possible

solution is a new hardware and software design that can handle the recording of a previous commu-

nication session with the Host system and replicate it automatically on later power-ons. Basically

the SDP packets used by ybug would be recorded in a non-volatile memory which would be re-

transmitted on following initialisations. In order to prevent using new components, the internal

flash banks could be used to store these recording though the life time of these bank can severely

reduced if there is constant deployment of new code. Otherwise, a new storage component could

be selected with higher levels of durability in terms of write cycles.

Appendix A

Developed Hardware

The developed boards are available in a Git repository at https://bitbucket.org/rui_

araujo/extensiblespinnakerpcb.

A.1 Test Board

Figure A.2 depicts the PCB layout for the test board while Figure A.1 depicts the schematic.

Figure A.3 displays how the test board was used together with the SpiNNaker machine 102 to

develop the software.

A.2 Final Board

The final board layout is displayed in Figure A.5 while Figure A.4 depicts the schematic.

A.3 SpiNNaker Extension Board

The SpiNNaker Extension board schematic is depicted in Figure A.6 and the layout in Figure A.7.

73

https://bitbucket.org/rui_araujo/extensiblespinnakerpcb
https://bitbucket.org/rui_araujo/extensiblespinnakerpcb

A.3 SpiNNaker Extension Board 75

GND

V
D

D

MICROMATCH-8MICROMATCH8SMD12k

MICROSWITCH-5X5

10
0n

F

12
k

V
D

D

GND

100nF 100nF 100nF 100nF

A
G

N
D

V
C

C

V
C

C
A

G
N

D

V
D

D

GND

0R

0R

100nF

22
0

22
0

V
D

D

10k V
D

D

MICROMATCH-6MICROMATCH6SMD

GND

+5
V

TPS73033DBVT

+5
V

GND

V
D

D

100nF 2uF2

12k

+5
V

GND

3-PIN-SWITCH

GND

V
D

D

GND

GND

P
0[

0]
32

P
1[

0]
38

P
1[

1]
42

P
1[

4]
47

P
1[

8]
51

P
1[

9]
52

P
1[

10
]

53

P
1[

14
]

61
P

1[
15

]
62

P
1[

16
]

64
P

1[
17

]
66

P
1[

18
]

67
P

1[
19

]
68

P
1[

20
]

70

P
1[

2]
43

P
1[

3]
44

P
1[

5]
48

P
1[

6]
49

P
1[

7]
50

P
1[

11
]

55
P

1[
12

]
56

P
1[

13
]

60

P2[0] 75

P2[1] 81

P2[2] 84

P2[3] 87

P2[4] 88

P2[5] 91

P2[6] 95

P2[7] 96

P2[8] 98

P2[9] 102

P2[10] 104

P2[11] 105

P2[12] 106

P2[13] 108

P3[0] 112

P3[1] 114

P3[2] 116

P3[3] 118

P3[4] 119

P3[5] 121

P3[6] 122

P3[7] 123

P3[8] 124

P4[0] 1

P4[1] 3

P4[2] 8

P4[3] 7

P4[4] 9

P4[5] 10

P4[6] 11

P4[7] 14

P4[8] 15

P4[9] 33

P4[10] 35

P
5[

0]
37

P
5[

1]
39

P
5[

2]
46

P
5[

3]
54

P
5[

4]
57

JTAG_TDO/SWO31

JTAG_TDI26

JTAG_TMS/SWDIO30

JTAG_TRST29

RESET128

RTCX1125

RTCX2126

VBAT127

VDDREG94

VDDA137

VSSA135

XTAL112

XTAL213

JTAG_TCK/SWDCLK27

P
0[

1]
34

P
5[

5]
58

P
5[

6]
63

P
5[

7]
65

P
6[

0]
73

P
6[

1]
74

P
6[

2]
78

P
6[

3]
79

P
6[

4]
80

P
6[

5]
82

P
6[

6]
83

P
6[

7]
85

P
6[

8]
86

P
6[

9]
97

P
6[

10
]

10
0

P
6[

11
]

10
1

P
6[

12
]

10
3

P
7[

0]
11

0
P

7[
1]

11
3

P
7[

2]
11

5
P

7[
3]

11
7

P
7[

4]
13

2
P

7[
5]

13
3

P
7[

6]
13

4
P

7[
7]

14
0

P
9[

6]
72

P
9[

5]
69

P
F[

4]
12

0

U
S

B
0_

D
P

18
U

S
B

0_
D

M
20

U
S

B
0_

R
R

E
F

24

U
S

B
0_

V
B

U
S

21
U

S
B

0_
JD

22

U
S

B
1_

D
P

89
U

S
B

1_
D

M
90

I2
C

0_
S

C
L

92
I2

C
0_

S
D

A
93

WAKEUP0130

ADC0_0/ADC1_0/DAC 6

ADC0_1/ADC1_1 2

ADC0_4/ADC1_4 138

ADC0_2/ADC1_2 143

ADC0_3/ADC1_3 139

ADC0_5/ADC1_5 144

ADC0_6/ADC1_6 142

ADC0_7/ADC1_7 136

U
S

B
0_

V
D

D
A

3V
3_

D
R

IV
E

R
16

U
S

B
0_

V
D

D
A

3V
3

17
U

S
B

0_
V

S
S

A
_T

E
R

M
19

U
S

B
0_

V
S

S
A

_R
E

F
23

CLK045

CLK299

DBGEN28

VDDIO5

VDDIO36

VDDIO41

VDDIO71

VDDIO77

VDDIO107

VDDIO111

VDDIO141

VSSIO4

VSSIO40

VSSIO76

VSSIO109

RTC_ALARM129

VDDREG131

VDDREG59

VDDREG25

JTAG-1
JTAG-2
JTAG-3
JTAG-4
JTAG-5
JTAG-6
JTAG-7
JTAG-8

R1

RESET

P$1 P$3
P$4P$2

C
1

R
2

C2 C3 C4 C5

R3

R4 C6

R
5

R
6

LE
D

1

LE
D

2

R7

UART0/BOOT-1
UART0/BOOT-2
UART0/BOOT-3
UART0/BOOT-4
UART0/BOOT-5
UART0/BOOT-6

IN1

GND2

EN3

OUT 5

NR 4

U$3

C11 C12

R13

JP1

1
2

U$2

P
S

O

GND_1P$2 LIN_6 P$37

GND_2P$3 LIN_5 P$36

GND_3P$23 LIN_4 P$35

GND_4P$24 LIN_3 P$34

GND_5P$25 LIN_2 P$33

GND_6P$26 LIN_1 P$32

GND_7P$27 LIN_0 P$31

GND_8P$28 LIN_ACK P$30

GND_9P$29

GND_10P$11

LOUT_ACKP$10

GND_11 P$20

LOUT_0P$9

GND_12P$21

LOUT_1P$8

GND_13 P$22

LOUT_2P$7

LOUT_3P$6

LOUT_4P$5

LOUT_5P$4

LOUT_6P$1 GND_14 P$38

GND_15 P$39

U0_TXD

U0_TXD

U0_RXD

U0_RXD

U0_RTS

U0_RTS

U0_CTS

U0_CTS

C
LK

10
M

H
Z

SPIN_POR

S
P

IN
_R

E
S

E
T

LOUT_ACK

LO
U

T_
A

C
K

LOUT_0

LO
U

T_
0

LOUT_1

LO
U

T_
1

LO
U

T_
6

LOUT_6

LOUT_2

LO
U

T_
2

LOUT_3

LO
U

T_
3

LOUT_4

LO
U

T_
4

LOUT_5

LO
U

T_
5

LIN_ACK

LI
N

_A
C

K

LIN_0

LI
N

_0

LIN_1

LI
N

_1

LIN_2

LI
N

_2

LIN_3

LI
N

_3

LIN_4

LI
N

_4

LIN_5

LI
N

_5

LIN_6

LI
N

_6

Figure A.1: Schematic of the initial testing board.

A.3 SpiNNaker Extension Board 77

Figure A.2: Developed PCB layout for the initial testing board.

A.3 SpiNNaker Extension Board 79

Figure A.3: SpiNNaker 102 machine with the test board.

A.3 SpiNNaker Extension Board 81

GND

V
D
D

MICROMATCH-8MICROMATCH8SMD12k

MICROSWITCH-5X5

10
0n
F

12
k

V
D
D

GND

100nF 100nF 100nF 100nF

A
G
N
D

V
C
C

V
C
C

A
G
N
D

V
D
D

GND

0R

0R

100nF

22
0

22
0

V
D
D

10k V
D
D

MICROMATCH-6MICROMATCH6SMD

GND

+5
V

TPS73033DBVT

+5
V

GND

V
D
D

100nF 2uF2

12k

+5
V

GND

SPINNAKER
GND

47uF

GND
+5
V

2nF7

GND

LM2852_PWP_14

GND

GND

GND

GND

1uH

+5
V

4uF7

GND

TPS62202_DBV_5
10uH

10uF

GND

10uF

1k

VDD

1k

VDD

GND

GND
51K

GND

470n 470n 470n 470n

470n 470n 470n 470n

4u7 4u7

4u7 4u7 47u

100u

GND

3-PIN-SWITCH

GND

V
D
D

G
N
D

G
N
D

P
0[
0]

32

P
1[
0]

38
P
1[
1]

42

P
1[
4]

47

P
1[
8]

51
P
1[
9]

52
P
1[
10
]

53

P
1[
14
]

61
P
1[
15
]

62
P
1[
16
]

64
P
1[
17
]

66
P
1[
18
]

67
P
1[
19
]

68
P
1[
20
]

70

P
1[
2]

43
P
1[
3]

44

P
1[
5]

48
P
1[
6]

49
P
1[
7]

50

P
1[
11
]

55
P
1[
12
]

56
P
1[
13
]

60

P2[0] 75

P2[1] 81

P2[2] 84

P2[3] 87

P2[4] 88

P2[5] 91

P2[6] 95

P2[7] 96

P2[8] 98

P2[9] 102

P2[10] 104

P2[11] 105

P2[12] 106

P2[13] 108

P3[0] 112

P3[1] 114

P3[2] 116

P3[3] 118

P3[4] 119

P3[5] 121

P3[6] 122

P3[7] 123

P3[8] 124

P4[0] 1

P4[1] 3

P4[2] 8

P4[3] 7

P4[4] 9

P4[5] 10

P4[6] 11

P4[7] 14

P4[8] 15

P4[9] 33

P4[10] 35

P
5[
0]

37
P
5[
1]

39
P
5[
2]

46
P
5[
3]

54
P
5[
4]

57

JTAG_TDO/SWO31

JTAG_TDI26

JTAG_TMS/SWDIO30

JTAG_TRST29

RESET128

RTCX1125

RTCX2126

VBAT127

VDDREG94

VDDA137

VSSA135

XTAL112

XTAL213

JTAG_TCK/SWDCLK27

P
0[
1]

34

P
5[
5]

58
P
5[
6]

63
P
5[
7]

65

P
6[
0]

73
P
6[
1]

74
P
6[
2]

78
P
6[
3]

79
P
6[
4]

80
P
6[
5]

82
P
6[
6]

83
P
6[
7]

85
P
6[
8]

86
P
6[
9]

97
P
6[
10
]

10
0

P
6[
11
]

10
1

P
6[
12
]

10
3

P
7[
0]

11
0

P
7[
1]

11
3

P
7[
2]

11
5

P
7[
3]

11
7

P
7[
4]

13
2

P
7[
5]

13
3

P
7[
6]

13
4

P
7[
7]

14
0

P
9[
6]

72

P
9[
5]

69

P
F[
4]

12
0

U
S
B
0_
D
P

18
U
S
B
0_
D
M

20

U
S
B
0_
R
R
E
F

24

U
S
B
0_
V
B
U
S

21
U
S
B
0_
JD

22

U
S
B
1_
D
P

89
U
S
B
1_
D
M

90

I2
C
0_
S
C
L

92
I2
C
0_
S
D
A

93

WAKEUP0130

ADC0_0/ADC1_0/DAC 6

ADC0_1/ADC1_1 2

ADC0_4/ADC1_4 138

ADC0_2/ADC1_2 143

ADC0_3/ADC1_3 139

ADC0_5/ADC1_5 144

ADC0_6/ADC1_6 142

ADC0_7/ADC1_7 136

U
S
B
0_
V
D
D
A
3V
3_
D
R
IV
E
R

16
U
S
B
0_
V
D
D
A
3V
3

17
U
S
B
0_
V
S
S
A
_T
E
R
M

19
U
S
B
0_
V
S
S
A
_R
E
F

23

CLK045

CLK299

DBGEN28

VDDIO5

VDDIO36

VDDIO41

VDDIO71

VDDIO77

VDDIO107

VDDIO111

VDDIO141

VSSIO4

VSSIO40

VSSIO76

VSSIO109

RTC_ALARM129

VDDREG131

VDDREG59

VDDREG25

JTAG-1
JTAG-2
JTAG-3
JTAG-4
JTAG-5
JTAG-6
JTAG-7
JTAG-8

R1

RESET

P$1 P$3
P$4P$2

C
1

R
2

C2 C3 C4 C5

R3

R4 C6

R
5

R
6

LE
D
1

LE
D
2

R7

UART0/BOOT-1
UART0/BOOT-2
UART0/BOOT-3
UART0/BOOT-4
UART0/BOOT-5
UART0/BOOT-6

IN1

GND2

EN3

OUT 5

NR 4

U$3

C11 C12

R13

L0
IN
_0

L0
IN
_0

L0
IN
_1

L0
IN
_1

L0
IN
_2

L0
IN
_2

L0
IN
_3

L0
IN
_3

L0
IN
_4

L0
IN
_4

L0
IN
_5

L0
IN
_5

L0
IN
_6

L0
IN
_6

L0
IN
_A

L0
IN
_A

L0
O
U
T_
0

L0
O
U
T_
0

L0
O
U
T_
1

L0
O
U
T_
1

L0
O
U
T_
2

L0
O
U
T_
2

L0
O
U
T_
3

L0
O
U
T_
3

L0
O
U
T_
4

L0
O
U
T_
4

L0
O
U
T_
5

L0
O
U
T_
5

L0
O
U
T_
6

L0
O
U
T_
6

L0
O
U
T_
A

L0
O
U
T_
A

L1
IN
_0

L1
IN
_0

L1
IN
_1

L1
IN
_1

L1
IN
_2

L1
IN
_2

L1
IN
_3

L1
IN
_3

L1
IN
_4

L1
IN
_4

L1
IN
_5

L1
IN
_5

L1
IN
_6

L1
IN
_6

L1
IN
_A

L1
IN
_A

L1
O
U
T_
0

L1
O
U
T_
0

L1
O
U
T_
1

L1
O
U
T_
1

L1
O
U
T_
2

L1
O
U
T_
2

L1
O
U
T_
3

L1
O
U
T_
3

L1
O
U
T_
4

L1
O
U
T_
4

L1
O
U
T_
5

L1
O
U
T_
5

L1
O
U
T_
6

L1
O
U
T_
6

L1
O
U
T_
A

L1
O
U
T_
A

L2
IN
_0

L2
IN
_0

L2
IN
_1

L2
IN
_1

L2
IN
_2

L2
IN
_2

L2
IN
_3

L2
IN
_3

L2
IN
_4

L2
IN
_4

L2
IN
_5

L2
IN
_5

L2
IN
_6

L2
IN
_6

L2
IN
_A

L2
IN
_A

L2
O
U
T_
0

L2
O
U
T_
0

L2
O
U
T_
1

L2
O
U
T_
1

L2
O
U
T_
2

L2
O
U
T_
2

L2
O
U
T_
3

L2
O
U
T_
3

L2
O
U
T_
4

L2
O
U
T_
4

L2
O
U
T_
5

L2
O
U
T_
5

L2
O
U
T_
6

L2
O
U
T_
6

L2
O
U
T_
A

L2
O
U
T_
A

L3
IN
_0

L3
IN
_0

L3
IN
_1

L3
IN
_1

L3
IN
_2

L3
IN
_2

L3
IN
_3

L3
IN
_3

L3
IN
_4

L3
IN
_4

L3
IN
_5

L3
IN
_5

L3
IN
_6

L3
IN
_6

L3
IN
_A

L3
IN
_A

L3
O
U
T_
0

L3
O
U
T_
0

L3
O
U
T_
1

L3
O
U
T_
1

L3
O
U
T_
2

L3
O
U
T_
2

L3
O
U
T_
3

L3
O
U
T_
3

L3
O
U
T_
4

L3
O
U
T_
4

L3
O
U
T_
5

L3
O
U
T_
5

L3
O
U
T_
6

L3
O
U
T_
6

L3
O
U
T_
A

L3
O
U
T_
A

L4IN_0 L4IN_0

L4IN_1 L4IN_1

L4IN_2 L4IN_2

L4IN_3 L4IN_3

L4IN_4 L4IN_4

L4IN_5 L4IN_5

L4IN_6 L4IN_6

L4IN_A L4IN_A

L4OUT_0 L4OUT_0

L4OUT_1 L4OUT_1

L4OUT_2 L4OUT_2

L4OUT_3 L4OUT_3

L4OUT_4 L4OUT_4

L4OUT_5 L4OUT_5

L4OUT_6 L4OUT_6

L4OUT_A L4OUT_A

L5IN_0 L5IN_0

L5IN_1 L5IN_1

L5IN_2 L5IN_2

L5IN_3 L5IN_3

L5IN_4 L5IN_4

L5IN_5 L5IN_5

L5IN_6 L5IN_6

L5IN_A L5IN_A

L5OUT_0 L5OUT_0

L5OUT_1 L5OUT_1

L5OUT_2 L5OUT_2

L5OUT_3 L5OUT_3

L5OUT_4 L5OUT_4

L5OUT_5 L5OUT_5

L5OUT_6 L5OUT_6

L5OUT_A L5OUT_A

INT_0 INT_0

INT_1 INT_1

VDD_PLL_0VDD_PLL_0

VDD_PLL_1VDD_PLL_1

VDD_PLL_2VDD_PLL_2

VDD_PLL_3VDD_PLL_3

VSS_PLL_0VSS_PLL_0

VSS_PLL_1VSS_PLL_1

VSS_PLL_2VSS_PLL_2

VSS_PLL_3VSS_PLL_3

GPIO_0 GPIO_0

GPIO_1 GPIO_1

GPIO_2 GPIO_2

GPIO_3 GPIO_3

GPIO_4 GPIO_4

GPIO_5 GPIO_5

GPIO_6 GPIO_6

GPIO_7 GPIO_7

GPIO_8 GPIO_8

GPIO_9 GPIO_9

GPIO_10 GPIO_10

GPIO_11 GPIO_11

GPIO_12 GPIO_12

GPIO_13 GPIO_13

GPIO_14 GPIO_14

GPIO_15 GPIO_15

RTCK RTCK

TDO TDO

TDI TDI

TMS TMS

TCK TCK

TRST TRST

CLK32KIN CLK32KIN

CLK10MOUT CLK10MOUT

CLK10MIN CLK10MIN

TEST TEST

POR POR

RESET RESET

TRES TRES

VDD12_0VDD12_0

VDD12_1VDD12_1

VDD12_2VDD12_2

VDD12_3VDD12_3

VDD12_4VDD12_4

VDD12_5VDD12_5

VDD12_6VDD12_6

VDD12_7VDD12_7

VDD12_8VDD12_8

VDD12_9VDD12_9

VDD18_0VDD18_0

VDD18_1VDD18_1

VDD18_2VDD18_2

VDD18_3VDD18_3

VDD18_4VDD18_4

VDD18_5VDD18_5

VDD18_6VDD18_6

VDD18_7VDD18_7

VDD18_8VDD18_8

VDD18_9VDD18_9

VDD18_10VDD18_10

VDD18_11VDD18_11

VDD18_12VDD18_12

VDD18_13VDD18_13

VDD18_14VDD18_14

VDD18_15VDD18_15

VDD18_16VDD18_16

VDD18_17VDD18_17

VDD18_18VDD18_18

VDD18_19VDD18_19

VDD18_20VDD18_20

VDD18_21VDD18_21

VDD18_22VDD18_22

VDD18_23VDD18_23

VDD18_24VDD18_24

VDD18_25VDD18_25

VDD18_26VDD18_26

VDD18_27VDD18_27

VSS_0VSS_0

VSS_1VSS_1

VSS_2VSS_2

VSS_3VSS_3

VSS_4VSS_4

VSS_5VSS_5

VSS_6VSS_6

VSS_7VSS_7

VSS_8VSS_8

VSS_9VSS_9

VSS_10VSS_10

VSS_11VSS_11

VSS_12VSS_12

VSS_13VSS_13

VSS_14VSS_14

VSS_15VSS_15

VSS_16VSS_16

VSS_17VSS_17

VSS_18VSS_18

VSS_19VSS_19

VSS_20VSS_20

VSS_21VSS_21

VSS_22VSS_22

VSS_23VSS_23

VSS_24VSS_24

VSS_25VSS_25

VSS_26VSS_26

VSS_27VSS_27

VSS_28VSS_28

VSS_29VSS_29

VSS_30VSS_30

VSS_31VSS_31

VSS_32VSS_32

VSS_33VSS_33

VSS_34VSS_34

VSS_35VSS_35

MDIO MDIO

RX_D_0 RX_D_0

RX_D_1 RX_D_1

RX_D_2 RX_D_2

RX_D_3 RX_D_3

RX_CLK RX_CLK

TX_CLK TX_CLK

TX_D_0 TX_D_0

TX_D_1 TX_D_1

TX_D_2 TX_D_2

TX_D_3 TX_D_3

TX_EN TX_EN

PHY_RST PHY_RST

PHY_IRQ PHY_IRQ

TX_ERR TX_ERR

RX_ERR RX_ERR

MDC MDC

ETHERMUX ETHERMUX

RX_DV RX_DV

D
Q
17

D
Q
17

D
Q
16

D
Q
16

D
Q
15

D
Q
15

D
Q
14

D
Q
14

D
Q
13

D
Q
13

D
Q
12

D
Q
12

D
Q
11

D
Q
11

D
Q
10

D
Q
10

D
Q
9

D
Q
9

D
Q
8

D
Q
8

D
Q
7

D
Q
7

D
Q
5

D
Q
5

D
Q
6

D
Q
6

D
Q
4

D
Q
4

D
Q
3

D
Q
3

D
Q
2

D
Q
2

D
Q
1

D
Q
1

D
Q
0

D
Q
0

D
Q
18

D
Q
18

D
Q
19

D
Q
19

D
Q
20

D
Q
20

D
Q
21

D
Q
21

D
Q
22

D
Q
22

D
Q
23

D
Q
23

D
Q
24

D
Q
24

D
Q
25

D
Q
25

D
Q
26

D
Q
26

D
Q
27

D
Q
27

D
Q
28

D
Q
28

D
Q
29

D
Q
29

D
Q
30

D
Q
30

D
Q
31

D
Q
31

D
Q
S
0

D
Q
S
0

D
Q
S
1

D
Q
S
1

D
Q
S
2

D
Q
S
2

D
Q
S
3

D
Q
S
3

D
M
0

D
M
0

D
M
1

D
M
1

D
M
2

D
M
2

D
M
3

D
M
3

A
0

A
0

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
8

A
8

A
7

A
7

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

B
A
0

B
A
0

B
A
1

B
A
1

C
K
#

C
K
#

C
K

C
K

C
S
#

C
S
#

C
S
1#

C
S
1#

R
A
S
#

R
A
S
#

C
A
S
#

C
A
S
#

W
E
#

W
E
#

C
K
E

C
K
E

VSS_36VSS_36

VSS_37VSS_37

U$5

NC_0NC_0

NC_1NC_1

NC_2NC_2

NC_3NC_3

NC_4NC_4

NC_5NC_5

C8

C9

AVIN1

EN2

SGND3

SS4

NC_25

PVIN_26

PVIN7 SW_2 8

SW 9

PGND_2 10

PGND 11

NC_3 12

NC 13

SNS 14

G
N
D
_P
A
D

G
N
D

U2

U$6

C13

VI1

GND2

EN3 FB 4

SW 5

U1

U$7

C14

C15

LED5

R10

LED3

R8

JP1

1
2

R9

C7 C10 C16 C17

C18 C19 C20 C21

C22 C23

C24 C25 C26

C27

U$2

P
S

O

G
N
D
_1

P
$2

LI
N
_6

P
$3
7

G
N
D
_2

P
$3

LI
N
_5

P
$3
6

G
N
D
_3

P
$2
3

LI
N
_4

P
$3
5

G
N
D
_4

P
$2
4

LI
N
_3

P
$3
4

G
N
D
_5

P
$2
5

LI
N
_2

P
$3
3

G
N
D
_6

P
$2
6

LI
N
_1

P
$3
2

G
N
D
_7

P
$2
7

LI
N
_0

P
$3
1

G
N
D
_8

P
$2
8

LI
N
_A
C
K

P
$3
0

G
N
D
_9

P
$2
9

G
N
D
_1
0

P
$1
1

LO
U
T_
A
C
K

P
$1
0

G
N
D
_1
1

P
$2
0

LO
U
T_
0

P
$9

G
N
D
_1
2

P
$2
1

LO
U
T_
1

P
$8

G
N
D
_1
3

P
$2
2

LO
U
T_
2

P
$7

LO
U
T_
3

P
$6

LO
U
T_
4

P
$5

LO
U
T_
5

P
$4

LO
U
T_
6

P
$1

G
N
D
_1
4

P
$3
8

G
N
D
_1
5

P
$3
9

U0_TXD

U0_TXD

U0_RXD

U0_RXD

U0_RTS

U0_RTS

U0_CTS

U0_CTS

L0
IN
_0

L0
IN
_0

L0
IN
_A

L0
IN
_A

L0
IN
_6

L0
IN
_6

L0
IN
_4

L0
IN
_4

L0
IN
_3

L0
IN
_3

L0
IN
_2

L0
IN
_2

L0
IN
_1

L0
IN
_1

L0
O
U
T_
A

L0
O
U
T_
A

L0
O
U
T_
6

L0
O
U
T_
6

L0
O
U
T_
5

L0
O
U
T_
5

L0
O
U
T_
4

L0
O
U
T_
4

L0
O
U
T_
3

L0
O
U
T_
3

L0
O
U
T_
2

L0
O
U
T_
2

L0
O
U
T_
1

L0
O
U
T_
1

L0
O
U
T_
0

L0
O
U
T_
0

VDD18

VDD12

C
LK
10
M
H
Z

CLK10MHZ

SPIN_POR

SPIN_POR

SPIN_RESET

S
P
IN
_R
E
S
E
T

L0
IN
_5

L0
IN
_5

L3
IN
_0

L3
IN
_1

L3
IN
_2

L3
IN
_3

L3
IN
_4

L3
IN
_5

L3
IN
_6

L3
IN
_A

Figure A.4: Schematic of the final design.

A.3 SpiNNaker Extension Board 83

**

Figure A.5: Final PCB layout with the SpiNNaker chip and power supplies.

A.3 SpiNNaker Extension Board 85

+5
V

GND

SPINNAKER
GND

47uF

GND

+5
V

2nF7

GND

LM2852_PWP_14

GND

GND

GND

GND

1uH

+5
V

4uF7

GND

TPS62202_DBV_5
10uH

10uF

GND

10uF

1k

VDD

1k

VDD

GND

GND
51K

GND

470n 470n 470n 470n

470n 470n 470n 470n

4u7 4u7

4u7 4u7 47u

100u

GND

G
N
D

G
N
D

G
N
D G
N
D

L0
IN
_0

L0
IN
_0

L0
IN
_1

L0
IN
_1

L0
IN
_2

L0
IN
_2

L0
IN
_3

L0
IN
_3

L0
IN
_4

L0
IN
_4

L0
IN
_5

L0
IN
_5

L0
IN
_6

L0
IN
_6

L0
IN
_A

L0
IN
_A

L0
O
U
T_

0
L0

O
U
T_

0

L0
O
U
T_

1
L0

O
U
T_

1

L0
O
U
T_

2
L0

O
U
T_

2

L0
O
U
T_

3
L0

O
U
T_

3

L0
O
U
T_

4
L0

O
U
T_

4

L0
O
U
T_

5
L0

O
U
T_

5

L0
O
U
T_

6
L0

O
U
T_

6

L0
O
U
T_

A
L0

O
U
T_

A

L1
IN
_0

L1
IN
_0

L1
IN
_1

L1
IN
_1

L1
IN
_2

L1
IN
_2

L1
IN
_3

L1
IN
_3

L1
IN
_4

L1
IN
_4

L1
IN
_5

L1
IN
_5

L1
IN
_6

L1
IN
_6

L1
IN
_A

L1
IN
_A

L1
O
U
T_

0
L1

O
U
T_

0

L1
O
U
T_

1
L1

O
U
T_

1

L1
O
U
T_

2
L1

O
U
T_

2

L1
O
U
T_

3
L1

O
U
T_

3

L1
O
U
T_

4
L1

O
U
T_

4

L1
O
U
T_

5
L1

O
U
T_

5

L1
O
U
T_

6
L1

O
U
T_

6

L1
O
U
T_

A
L1

O
U
T_

A

L2
IN
_0

L2
IN
_0

L2
IN
_1

L2
IN
_1

L2
IN
_2

L2
IN
_2

L2
IN
_3

L2
IN
_3

L2
IN
_4

L2
IN
_4

L2
IN
_5

L2
IN
_5

L2
IN
_6

L2
IN
_6

L2
IN
_A

L2
IN
_A

L2
O
U
T_

0
L2

O
U
T_

0

L2
O
U
T_

1
L2

O
U
T_

1

L2
O
U
T_

2
L2

O
U
T_

2

L2
O
U
T_

3
L2

O
U
T_

3

L2
O
U
T_

4
L2

O
U
T_

4

L2
O
U
T_

5
L2

O
U
T_

5

L2
O
U
T_

6
L2

O
U
T_

6

L2
O
U
T_

A
L2

O
U
T_

A

L3
IN
_0

L3
IN
_0

L3
IN
_1

L3
IN
_1

L3
IN
_2

L3
IN
_2

L3
IN
_3

L3
IN
_3

L3
IN
_4

L3
IN
_4

L3
IN
_5

L3
IN
_5

L3
IN
_6

L3
IN
_6

L3
IN
_A

L3
IN
_A

L3
O
U
T_

0
L3

O
U
T_

0

L3
O
U
T_

1
L3

O
U
T_

1

L3
O
U
T_

2
L3

O
U
T_

2

L3
O
U
T_

3
L3

O
U
T_

3

L3
O
U
T_

4
L3

O
U
T_

4

L3
O
U
T_

5
L3

O
U
T_

5

L3
O
U
T_

6
L3

O
U
T_

6

L3
O
U
T_

A
L3

O
U
T_

A

L4IN_0 L4IN_0

L4IN_1 L4IN_1

L4IN_2 L4IN_2

L4IN_3 L4IN_3

L4IN_4 L4IN_4

L4IN_5 L4IN_5

L4IN_6 L4IN_6

L4IN_A L4IN_A

L4OUT_0 L4OUT_0

L4OUT_1 L4OUT_1

L4OUT_2 L4OUT_2

L4OUT_3 L4OUT_3

L4OUT_4 L4OUT_4

L4OUT_5 L4OUT_5

L4OUT_6 L4OUT_6

L4OUT_A L4OUT_A

L5IN_0 L5IN_0

L5IN_1 L5IN_1

L5IN_2 L5IN_2

L5IN_3 L5IN_3

L5IN_4 L5IN_4

L5IN_5 L5IN_5

L5IN_6 L5IN_6

L5IN_A L5IN_A

L5OUT_0 L5OUT_0

L5OUT_1 L5OUT_1

L5OUT_2 L5OUT_2

L5OUT_3 L5OUT_3

L5OUT_4 L5OUT_4

L5OUT_5 L5OUT_5

L5OUT_6 L5OUT_6

L5OUT_A L5OUT_A

INT_0 INT_0

INT_1 INT_1

VDD_PLL_0VDD_PLL_0

VDD_PLL_1VDD_PLL_1

VDD_PLL_2VDD_PLL_2

VDD_PLL_3VDD_PLL_3

VSS_PLL_0VSS_PLL_0

VSS_PLL_1VSS_PLL_1

VSS_PLL_2VSS_PLL_2

VSS_PLL_3VSS_PLL_3

GPIO_0 GPIO_0

GPIO_1 GPIO_1

GPIO_2 GPIO_2

GPIO_3 GPIO_3

GPIO_4 GPIO_4

GPIO_5 GPIO_5

GPIO_6 GPIO_6

GPIO_7 GPIO_7

GPIO_8 GPIO_8

GPIO_9 GPIO_9

GPIO_10 GPIO_10

GPIO_11 GPIO_11

GPIO_12 GPIO_12

GPIO_13 GPIO_13

GPIO_14 GPIO_14

GPIO_15 GPIO_15

RTCK RTCK

TDO TDO

TDI TDI

TMS TMS

TCK TCK

TRST TRST

CLK32KIN CLK32KIN

CLK10MOUT CLK10MOUT

CLK10MIN CLK10MIN

TEST TEST

POR POR

RESET RESET

TRES TRES

VDD12_0VDD12_0

VDD12_1VDD12_1

VDD12_2VDD12_2

VDD12_3VDD12_3

VDD12_4VDD12_4

VDD12_5VDD12_5

VDD12_6VDD12_6

VDD12_7VDD12_7

VDD12_8VDD12_8

VDD12_9VDD12_9

VDD18_0VDD18_0

VDD18_1VDD18_1

VDD18_2VDD18_2

VDD18_3VDD18_3

VDD18_4VDD18_4

VDD18_5VDD18_5

VDD18_6VDD18_6

VDD18_7VDD18_7

VDD18_8VDD18_8

VDD18_9VDD18_9

VDD18_10VDD18_10

VDD18_11VDD18_11

VDD18_12VDD18_12

VDD18_13VDD18_13

VDD18_14VDD18_14

VDD18_15VDD18_15

VDD18_16VDD18_16

VDD18_17VDD18_17

VDD18_18VDD18_18

VDD18_19VDD18_19

VDD18_20VDD18_20

VDD18_21VDD18_21

VDD18_22VDD18_22

VDD18_23VDD18_23

VDD18_24VDD18_24

VDD18_25VDD18_25

VDD18_26VDD18_26

VDD18_27VDD18_27

VSS_0VSS_0

VSS_1VSS_1

VSS_2VSS_2

VSS_3VSS_3

VSS_4VSS_4

VSS_5VSS_5

VSS_6VSS_6

VSS_7VSS_7

VSS_8VSS_8

VSS_9VSS_9

VSS_10VSS_10

VSS_11VSS_11

VSS_12VSS_12

VSS_13VSS_13

VSS_14VSS_14

VSS_15VSS_15

VSS_16VSS_16

VSS_17VSS_17

VSS_18VSS_18

VSS_19VSS_19

VSS_20VSS_20

VSS_21VSS_21

VSS_22VSS_22

VSS_23VSS_23

VSS_24VSS_24

VSS_25VSS_25

VSS_26VSS_26

VSS_27VSS_27

VSS_28VSS_28

VSS_29VSS_29

VSS_30VSS_30

VSS_31VSS_31

VSS_32VSS_32

VSS_33VSS_33

VSS_34VSS_34

VSS_35VSS_35

MDIO MDIO

RX_D_0 RX_D_0

RX_D_1 RX_D_1

RX_D_2 RX_D_2

RX_D_3 RX_D_3

RX_CLK RX_CLK

TX_CLK TX_CLK

TX_D_0 TX_D_0

TX_D_1 TX_D_1

TX_D_2 TX_D_2

TX_D_3 TX_D_3

TX_EN TX_EN

PHY_RST PHY_RST

PHY_IRQ PHY_IRQ

TX_ERR TX_ERR

RX_ERR RX_ERR

MDC MDC

ETHERMUX ETHERMUX

RX_DV RX_DV

D
Q
17

D
Q
17

D
Q
16

D
Q
16

D
Q
15

D
Q
15

D
Q
14

D
Q
14

D
Q
13

D
Q
13

D
Q
12

D
Q
12

D
Q
11

D
Q
11

D
Q
10

D
Q
10

D
Q
9

D
Q
9

D
Q
8

D
Q
8

D
Q
7

D
Q
7

D
Q
5

D
Q
5

D
Q
6

D
Q
6

D
Q
4

D
Q
4

D
Q
3

D
Q
3

D
Q
2

D
Q
2

D
Q
1

D
Q
1

D
Q
0

D
Q
0

D
Q
18

D
Q
18

D
Q
19

D
Q
19

D
Q
20

D
Q
20

D
Q
21

D
Q
21

D
Q
22

D
Q
22

D
Q
23

D
Q
23

D
Q
24

D
Q
24

D
Q
25

D
Q
25

D
Q
26

D
Q
26

D
Q
27

D
Q
27

D
Q
28

D
Q
28

D
Q
29

D
Q
29

D
Q
30

D
Q
30

D
Q
31

D
Q
31

D
Q
S
0

D
Q
S
0

D
Q
S
1

D
Q
S
1

D
Q
S
2

D
Q
S
2

D
Q
S
3

D
Q
S
3

D
M
0

D
M
0

D
M
1

D
M
1

D
M
2

D
M
2

D
M
3

D
M
3

A
0

A
0

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
8

A
8

A
7

A
7

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

B
A
0

B
A
0

B
A
1

B
A
1

C
K
#

C
K
#

C
K

C
K

C
S
#

C
S
#

C
S
1#

C
S
1#

R
A
S
#

R
A
S
#

C
A
S
#

C
A
S
#

W
E
#

W
E
#

C
K
E

C
K
E

VSS_36VSS_36

VSS_37VSS_37

U$5

NC_0NC_0

NC_1NC_1

NC_2NC_2

NC_3NC_3

NC_4NC_4

NC_5NC_5

C8

C9

AVIN1

EN2

SGND3

SS4

NC_25

PVIN_26

PVIN7 SW_2 8

SW 9

PGND_2 10

PGND 11

NC_3 12

NC 13

SNS 14

G
N
D
_P

A
D

G
N
D

U2

U$6

C13

VI1

GND2

EN3 FB 4

SW 5

U1

U$7

C14

C15

LED5

R10

LED3

R8

JP1

1
2

R9

C7 C10 C16 C17

C18 C19 C20 C21

C22 C23

C24 C25 C26

C27

G
N
D
_1

P
$2

LI
N
_6

P
$3

7

G
N
D
_2

P
$3

LI
N
_5

P
$3

6

G
N
D
_3

P
$2

3
LI
N
_4

P
$3

5

G
N
D
_4

P
$2

4
LI
N
_3

P
$3

4

G
N
D
_5

P
$2

5
LI
N
_2

P
$3

3

G
N
D
_6

P
$2

6
LI
N
_1

P
$3

2

G
N
D
_7

P
$2

7
LI
N
_0

P
$3

1

G
N
D
_8

P
$2

8
LI
N
_A

C
K

P
$3

0

G
N
D
_9

P
$2

9

G
N
D
_1

0
P
$1

1

LO
U
T_

A
C
K

P
$1

0

G
N
D
_1

1
P
$2

0

LO
U
T_

0
P
$9

G
N
D
_1

2
P
$2

1

LO
U
T_

1
P
$8

G
N
D
_1

3
P
$2

2

LO
U
T_

2
P
$7

LO
U
T_

3
P
$6

LO
U
T_

4
P
$5

LO
U
T_

5
P
$4

LO
U
T_

6
P
$1

G
N
D
_1

4
P
$3

8

G
N
D
_1

5
P
$3

9

G
N
D
_1

P
$2

LI
N
_6

P
$3

7

G
N
D
_2

P
$3

LI
N
_5

P
$3

6

G
N
D
_3

P
$2

3
LI
N
_4

P
$3

5

G
N
D
_4

P
$2

4
LI
N
_3

P
$3

4

G
N
D
_5

P
$2

5
LI
N
_2

P
$3

3

G
N
D
_6

P
$2

6
LI
N
_1

P
$3

2

G
N
D
_7

P
$2

7
LI
N
_0

P
$3

1

G
N
D
_8

P
$2

8
LI
N
_A

C
K

P
$3

0

G
N
D
_9

P
$2

9

G
N
D
_1

0
P
$1

1

LO
U
T_

A
C
K

P
$1

0

G
N
D
_1

1
P
$2

0

LO
U
T_

0
P
$9

G
N
D
_1

2
P
$2

1

LO
U
T_

1
P
$8

G
N
D
_1

3
P
$2

2

LO
U
T_

2
P
$7

LO
U
T_

3
P
$6

LO
U
T_

4
P
$5

LO
U
T_

5
P
$4

LO
U
T_

6
P
$1

G
N
D
_1

4
P
$3

8

G
N
D
_1

5
P
$3

9

VDD18

VDD12

CLK10MHZ

SPIN_POR

SPIN_RESET

L3
IN
_0

L3
IN
_1

L3
IN
_2

L3
IN
_3

L3
IN
_4

L3
IN
_5

L3
IN
_6

L3
IN
_A

L0
IN
_A

L0
IN
_6

L0
IN
_5

L0
IN
_4

L0
IN
_3

L0
IN
_2

L0
IN
_1

L0
IN
_0

Figure A.6: Schematic of the SpiNNaker extension board.

A.3 SpiNNaker Extension Board 87

**

Figure A.7: SpiNNaker chip extension board.

Appendix B

SDP over P2P Packets

B.1 Payload of the different packets used

The Figure B.1 depicts the payloads of the P2P packets used in the several steps of the protocol.

The meaning of the abbreviations used in the figure is explained here.

• Sum – a 4 bit checksum used in every non-data packet.

• Length – the length of the SDP packet.

• SQL – the number of P2P data packets sent in each burst, currently fixed at 16.

• TID – an identifier on the sender side of the transmission.

• RID – an identifier on the receptor side of the transmission.

• RC – a response code used by the receptor to report state and possibly errors.

• Seq Num – a number that identifies the data packet inside of the sixteen packet sequence.

• Data – 24 bits of actual SDP packet data.

• ACK Mask – a 16 bit number that the receptor send to the sender to inform it of the missing

data packets with each bit set to 1 being a missing packet of the sequence.

Every non-data packet has a constant number in the bits 24:28 which is an identifier of the packet

type. If it does not have this identifier then it is considered a data packet, the test is done through

the bit 25 which is always zero in the data packets while in the others is always one.

89

92 SDP over P2P Packets

Figure B.1: The different payload packets.

Appendix C

Source code

The developed source code is available in multiple Git repositories [Tor05]. The final total amount

of code in terms of lines count is around 7000 lines of code.

C.1 Microcontroller Firmware

The microcontroller firmware is located at https://bitbucket.org/rui_araujo/

extensiblespinnakerfirmware. It is divided in four LPCXpresso projects [NXP13b], two

for each core where one is a peripheral driver project supplied by NXP which was optimized in cer-

tain hot spots, like the GPIO routines, to avoid unnecessary overhead when running in non-debug

mode and the other is the main firmware project. The line count for the two firmware projects is

4200 lines.

C.2 Workstation application

The workstation application is simpler when compared with the microcontroller’s firmware. It

is available as a single Eclipse Java project at https://bitbucket.org/rui_araujo/

extensiblespinnakerwrapperapp. The line count for this project is 1377 lines.

C.3 Boids Simulation

The case study was divided in two repositories, one with the SpiNNaker implementation avail-

able at https://bitbucket.org/rui_araujo/spinnboids and another with the com-

puter components and initial proof-of-concept, accessible at https://bitbucket.org/rui_

araujo/boidsvisualizer. The computer components include the basic C version that used

as a base for the SpiNNaker implementation. The line count for these projects is 1476 lines.

93

https://bitbucket.org/rui_araujo/extensiblespinnakerfirmware
https://bitbucket.org/rui_araujo/extensiblespinnakerfirmware
https://bitbucket.org/rui_araujo/extensiblespinnakerwrapperapp
https://bitbucket.org/rui_araujo/extensiblespinnakerwrapperapp
https://bitbucket.org/rui_araujo/spinnboids
https://bitbucket.org/rui_araujo/boidsvisualizer
https://bitbucket.org/rui_araujo/boidsvisualizer

Appendix D

SARK Source code and API

The SARK source code is available at https://solem.cs.man.ac.uk/trac/browser/

SpiNNaker_svn/spin1_api/tags/spin1_api-20121110. The following section dis-

plays the header file with all the relevant API functions whose behaviour was explained in section

2.2.4.

D.1 SARK API

/****a* spinn_api.h/spinn_api_header

*

* SUMMARY

* SpiNNaker API main header file

*

* AUTHOR

* Luis Plana - lap@cs.man.ac.uk

*

* DETAILS

* Created on : 03 May 2011

* Version : $Revision$

* Last modified on : $Date$

* Last modified by : $Author$

* Id

* $HeadURL$

*

* COPYRIGHT

* Copyright (c) The University of Manchester, 2011. All rights reserved.

* SpiNNaker Project

* Advanced Processor Technologies Group

* School of Computer Science

*

*******/

#ifndef __SPINN_API_H__

95

https://solem.cs.man.ac.uk/trac/browser/SpiNNaker_svn/spin1_api/tags/spin1_api-20121110
https://solem.cs.man.ac.uk/trac/browser/SpiNNaker_svn/spin1_api/tags/spin1_api-20121110

96 SARK Source code and API

#define __SPINN_API_H__

#include "spinnaker.h"

#include "spinn_sdp.h"

// ---

// Useful SpiNNaker parameters

// ---

/* shared memory */

/* system RAM address and size */

#define SPINN_SYSRAM_BASE SYSRAM_BASE

#define SPINN_SYSRAM_SIZE SYSRAM_SIZE

/* SDRAM address and size */

#define SPINN_SDRAM_BASE SDRAM_BASE

#define SPINN_SDRAM_SIZE SDRAM_SIZE

// ---

// general parameters and definitions

// ---

/* boolean constants */

#define TRUE (0 == 0)

#define FALSE (0 != 0)

/* function results */

#define SUCCESS (uint) 1

#define FAILURE (uint) 0

/* Null pointer value */

#define NULL 0

// ---

// event definitions

// ---

// event-related parameters

#define NUM_EVENTS 5

#define MC_PACKET_RECEIVED 0

#define DMA_TRANSFER_DONE 1

#define TIMER_TICK 2

#define SDP_PACKET_RX 3 // !! ST

#define USER_EVENT 4

// ---

// ---

// DMA transfer parameters

// ---

// DMA transfer direction (from core point of view)

#define DMA_READ 0

D.1 SARK API 97

#define DMA_WRITE 1

// ---

// packet parameters

// ---

// payload presence

#define NO_PAYLOAD 0

#define WITH_PAYLOAD 1

// ---

// type definitions

// ---

// !! ST typedef unsigned char uchar;

// !! ST typedef unsigned int uint;

// !! ST typedef unsigned short ushort;

typedef void (*callback_t) (uint, uint); // callbacks

// ---

// ---

// simulation control functions

// ---

uint spin1_start(void);

void spin1_stop(void);

void spin1_kill(uint error);

void spin1_set_timer_tick(uint time);

void spin1_set_core_map(uint chips, uint * core_map);

uint spin1_get_simulation_time(void);

void spin1_delay_us (uint n);

// ---

// ---

// callback and task functions

// ---

void spin1_callback_on(uint event_id, callback_t cback, int priority);

void spin1_callback_off(uint event_id);

uint spin1_schedule_callback(callback_t cback, uint arg0, uint arg1, uint

priority);

uint spin1_trigger_user_event(uint arg0, uint arg1);

// ---

// ---

// data transfer functions

// ---

98 SARK Source code and API

uint spin1_dma_transfer(uint tag, void *system_address, void

*tcm_address, uint direction, uint length);

void spin1_memcpy(void *dst, void const *src, uint len);

// ---

// ---

// communications functions

// ---

uint spin1_send_mc_packet(uint key, uint data, uint load);

void spin1_flush_rx_packet_queue(void);

void spin1_flush_tx_packet_queue(void);

// ---

// ---

// SDP related functions

// ---

void spin1_msg_free (sdp_msg_t *msg);

sdp_msg_t* spin1_msg_get (void);

uint spin1_send_sdp_msg (sdp_msg_t *msg, uint timeout);

// ---

// ---

// interrupt control functions

// ---

uint spin1_irq_disable(void);

uint spin1_fiq_disable(void);

uint spin1_int_disable(void);

void spin1_mode_restore(uint sr);

// ---

// ---

// system resources access funtions

// ---

uint spin1_get_id(void);

uint spin1_get_core_id(void);

uint spin1_get_chip_id(void);

void spin1_led_control (uint p);

uint spin1_set_mc_table_entry(uint entry, uint key, uint mask, uint

route);

void* spin1_malloc(uint bytes);

// ---

#endif /* __SPINN_API_H__ */

References

[ARM13] ARM. ARM968 Processor, 2013. URL: http://www.arm.com/products/
processors/classic/arm9/arm968.php [last accessed 2013-12-18].

[Bed03] Mark A. Bedau. Artificial life: organization, adaptation and complexity from the
bottom up. Trends in Cognitive Sciences, 7(11):505 – 512, 2003.

[BF02] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip area interconnect.
Micro, IEEE, 22(5):16–23, 2002.

[Bro09] Sean Brotherson. Understanding Brain Development in Young Children, April
2009. URL: http://www.ag.ndsu.edu/pubs/yf/famsci/fs609.pdf
[last accessed 2013-08-31].

[CSBR10] Hsin Chen, S. Saïghi, L. Buhry, and S. Renaud. Real-time simulation of biologi-
cally realistic stochastic neurons in vlsi. Neural Networks, IEEE Transactions on,
21(9):1511–1517, Sept 2010.

[CSF+12] Swadesh Choudhary, Steven Sloan, Sam Fok, Alexander Neckar, Eric Trautmann,
Peiran Gao, Terry Stewart, Chris Eliasmith, and Kwabena Boahen. Silicon neurons
that compute. In AlessandroE.P. Villa, Włodzisław Duch, Péter Érdi, Francesco Ma-
sulli, and Günther Palm, editors, Artificial Neural Networks and Machine Learning
– ICANN 2012, volume 7552 of Lecture Notes in Computer Science, pages 121–
128. Springer Berlin Heidelberg, 2012.

[CV11] Tennessee Carmel-Veilleux. AutoBGA, February 2011. 1.2 Release. URL: https:
//code.google.com/p/autobga/ [last accessed 2013-09-20].

[DBE+09] Andrew P Davison, Daniel Brüderle, Jochen M Eppler, Jens Kremkow, Eilif Muller,
Dejan Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: a common interface for
neuronal network simulators. Frontiers in Neuroinformatics, 2(11), 2009.

[DD11] P. Deitel and H. Deitel. Java How to Program (early objects). Pearson Education,
2011.

[DLBG+13] Christian Denk, Francisco Llobet-Blandino, Francesco Galluppi, LuisA. Plana,
Steve Furber, and Jörg Conradt. Real-time interface board for closed-loop robotic
tasks on the spinnaker neural computing system. In Valeri Mladenov, Petia
Koprinkova-Hristova, Günther Palm, Alessandro E.P. Villa, Bruno Appollini, and
Nikola Kasabov, editors, Artificial Neural Networks and Machine Learning –
ICANN 2013, volume 8131 of Lecture Notes in Computer Science, pages 467–474.
Springer Berlin Heidelberg, 2013.

99

http://www.arm.com/products/processors/classic/arm9/arm968.php
http://www.arm.com/products/processors/classic/arm9/arm968.php
http://www.ag.ndsu.edu/pubs/yf/famsci/fs609.pdf
https://code.google.com/p/autobga/
https://code.google.com/p/autobga/

100 REFERENCES

[DT01] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection net-
works. In Design Automation Conference, 2001. Proceedings, pages 684–689,
2001.

[ES03] Terry Elliott and Nigel R Shadbolt. Developmental robotics: manifesto and ap-
plication. Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 361(1811):2187–2206, 2003.

[FB05] S. Furber and J. Bainbridge. Future trends in soc interconnect. In System-on-Chip,
2005. Proceedings. 2005 International Symposium on, pages 183–186, 2005.

[FB09] S. Furber and A. Brown. Biologically-inspired massively-parallel architectures -
computing beyond a million processors. In Application of Concurrency to System
Design, 2009. ACSD ’09. Ninth International Conference on, pages 3–12, 2009.

[Fur13] Steve Furber. SpiNNaker - a Spiking Neural Network Architecture, April
2013. URL: https://www.informatics.manchester.ac.uk/
SiteCollectionDocuments/Human%20Behaviour%20Network/
StephenFurberSpiNNaker.pdf [last accessed 2013-10-10].

[GBC+05] A. Gara, M.A. Blumrich, D. Chen, G.L.-T. Chiu, P. Coteus, M.E. Giampapa, R.A.
Haring, P. Heidelberger, D. Hoenicke, G.V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of the blue gene/l
system architecture. IBM Journal of Research and Development, 49(2.3):195–212,
March 2005.

[Gro11a] Advanced Processor Technologies Research Group. Software Specification
and Design, December 2011. URL: https://solem.cs.man.ac.uk/
trac/browser/SpiNNaker_svn/spinnSoft_design_doc/tags/v0.0/
SpiNNsoft_designV00.pdf [last accessed 2013-12-15].

[Gro11b] Advanced Processor Technologies Research Group. SpiNNaker datasheet, Jan-
uary 2011. URL: https://wiki.lsr.ei.tum.de/lib/exe/fetch.php?
media=nst/programming/spinn2datashtv202.pdf [last accessed 2013-
12-20].

[Gro13] Advanced Processor Technologies Research Group. SpiNNaker Project -
Boards and Machines, 2013. URL: http://apt.cs.man.ac.uk/projects/
SpiNNaker/hardware/ [last accessed 2013-12-15].

[HOF+12] R.A. Haring, M. Ohmacht, T.W. Fox, M.K. Gschwind, D.L. Satterfield, K. Suga-
vanam, P.W. Coteus, P. Heidelberger, M.A. Blumrich, R.W. Wisniewski, A. Gara,
G.L.-T. Chiu, P.A. Boyle, N.H. Chist, and Changhoan Kim. The ibm blue gene/q
compute chip. Micro, IEEE, 32(2):48–60, March 2012.

[IBM12] IBM. A2 Processor User’s Manual. 2012. URL: https://wiki.alcf.anl.
gov/parts/images/c/cf/A2.pdf [last accessed 2013-09-30].

[ID00] Giacomo Indiveri and Rodney Douglas. Neuromorphic vision sensors. Science,
288(5469):1189–1190, 2000.

[Inc09] Analog Devices Inc. Decoupling Techniques, 2009. URL: http://www.
analog.com/static/imported-files/tutorials/MT-101.pdf [last
accessed 2013-10-03].

https://www.informatics.manchester.ac.uk/SiteCollectionDocuments/Human%20Behaviour%20Network/StephenFurberSpiNNaker.pdf
https://www.informatics.manchester.ac.uk/SiteCollectionDocuments/Human%20Behaviour%20Network/StephenFurberSpiNNaker.pdf
https://www.informatics.manchester.ac.uk/SiteCollectionDocuments/Human%20Behaviour%20Network/StephenFurberSpiNNaker.pdf
https://solem.cs.man.ac.uk/trac/browser/SpiNNaker_svn/spinnSoft_design_doc/tags/v0.0/SpiNNsoft_designV00.pdf
https://solem.cs.man.ac.uk/trac/browser/SpiNNaker_svn/spinnSoft_design_doc/tags/v0.0/SpiNNsoft_designV00.pdf
https://solem.cs.man.ac.uk/trac/browser/SpiNNaker_svn/spinnSoft_design_doc/tags/v0.0/SpiNNsoft_designV00.pdf
https://wiki.lsr.ei.tum.de/lib/exe/fetch.php?media=nst/programming/spinn2datashtv202.pdf
https://wiki.lsr.ei.tum.de/lib/exe/fetch.php?media=nst/programming/spinn2datashtv202.pdf
http://apt.cs.man.ac.uk/projects/SpiNNaker/hardware/
http://apt.cs.man.ac.uk/projects/SpiNNaker/hardware/
https://wiki.alcf.anl.gov/parts/images/c/cf/A2.pdf
https://wiki.alcf.anl.gov/parts/images/c/cf/A2.pdf
http://www.analog.com/static/imported-files/tutorials/MT-101.pdf
http://www.analog.com/static/imported-files/tutorials/MT-101.pdf

REFERENCES 101

[Ins06] Texas Instruments. TPS62202, May 2006. URL: http://www.ti.com/
product/tps62202 [last accessed 2013-11-11].

[Ins11] Texas Instruments. TPS73033, Feb 2011. URL: http://www.ti.com/
product/tps73033 [last accessed 2013-11-12].

[Ins13] Texas Instruments. LM2852, Apr 2013. URL: http://www.ti.com/product/
lm2852 [last accessed 2013-11-10].

[ISO99] ISO. ISO C Standard 1999. Technical report, International Organization for Stan-
dardization, 1999. ISO/IEC 9899:1999 draft. URL: http://www.open-std.
org/jtc1/sc22/wg14/www/docs/n1124.pdf [last accessed 2013-11-18].

[Jar06] Trent Jarvi. RXTX, Feb 2006. Release 2.1-7. URL: http://rxtx.qbang.org
[last accessed 2013-11-23].

[Ngu10] Thai Nguyen. Total number of synapses in the adult human neocortex. Journal of
Mathematical Modeling: One + Two, 3(1), 2010.

[NLMA+09] Javier Navaridas, Mikel Luján, Jose Miguel-Alonso, Luis A. Plana, and Steve
Furber. Understanding the interconnection network of spinnaker. In Proceedings
of the 23rd International Conference on Supercomputing, ICS ’09, pages 286–295,
New York, NY, USA, 2009. ACM.

[NXP12] NXP. LPC43XX Dual Core Examples, Sep 2012. URL: http://www.
lpcware.com/content/project/lpc43xx-dual-core-examples [last
accessed 2013-10-16].

[NXP13a] NXP. LPC4300, 2013. URL: http://www.nxp.com/products/
microcontrollers/cortex_m4/series/LPC4300.html [last accessed
2013-10-16].

[NXP13b] NXP. LPCXpresso 6, Oct 2013. URL: http://www.lpcware.com/
lpcxpresso/home [last accessed 2013-10-23].

[NXP13c] NXP. Placing data at an address, Sep 2013. URL: http://www.lpcware.com/
content/faq/lpcxpresso/placing-data-address [last accessed 2013-
12-07].

[Par02] Conrad Parker. XBoids, Feb 2002. GPL Version 2 Licensed. URL: http://www.
vergenet.net/~conrad/boids/download [last accessed 2014-01-02].

[PBF+08] L.A. Plana, J. Bainbridge, S. Furber, S. Salisbury, Yebin Shi, and Jian Wu. An on-
chip and inter-chip communications network for the spinnaker massively-parallel
neural net simulator. In Networks-on-Chip, 2008. NoCS 2008. Second ACM/IEEE
International Symposium on, pages 215–216, 2008.

[PGJ+12] T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petrovici, M. Schmuker,
D. Brüderle, J. Schemmel, and K. Meier. Six networks on a universal neuromorphic
computing substrate. ArXiv e-prints, Oct 2012.

[PS06] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam) circuits
and architectures: a tutorial and survey. Solid-State Circuits, IEEE Journal of,
41(3):712–727, 2006.

http://www.ti.com/product/tps62202
http://www.ti.com/product/tps62202
http://www.ti.com/product/tps73033
http://www.ti.com/product/tps73033
http://www.ti.com/product/lm2852
http://www.ti.com/product/lm2852
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://rxtx.qbang.org
http://www.lpcware.com/content/project/lpc43xx-dual-core-examples
http://www.lpcware.com/content/project/lpc43xx-dual-core-examples
http://www.nxp.com/products/microcontrollers/cortex_m4/series/LPC4300.html
http://www.nxp.com/products/microcontrollers/cortex_m4/series/LPC4300.html
http://www.lpcware.com/lpcxpresso/home
http://www.lpcware.com/lpcxpresso/home
http://www.lpcware.com/content/faq/lpcxpresso/placing-data-address
http://www.lpcware.com/content/faq/lpcxpresso/placing-data-address
http://www.vergenet.net/~conrad/boids/download
http://www.vergenet.net/~conrad/boids/download

102 REFERENCES

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., 21(4):25–34, August 1987.

[Roh98] Douglas Rohde. Lens, June 1998. URL: http://tedlab.mit.edu/~dr/
Lens/ [last accessed 2013-10-05].

[SMS07] SMSC. MAC-to-MAC MII Interface Connections, March
2007. URL: https://www2.smsc.com/mkt/web_
lancheck.nsf/2f473f9215f487db852571b50046a891/
6647cebf43d94b72852572b300443d47/$FILE/Schematic%20Design%
20Guideline,%20MAC-to-MAC%20MII%20Interface.pdf [last accessed
2013-09-10].

[Tem11a] Steve Temple. AppNote 2 - Programming SpiNNaker with ARM and GNU tools,
November 2011. URL: http://solem.cs.man.ac.uk/documentation/
spinn-app-2.pdf [last accessed 2013-11-02].

[Tem11b] Steve Temple. AppNote 3 - The APLX File Format, November 2011. URL: http:
//solem.cs.man.ac.uk/documentation/spinn-app-4.pdf [last ac-
cessed 2013-11-02].

[Tem11c] Steve Temple. AppNote 4 - SpiNNaker Datagram Protocol (SDP) Specification,
November 2011. URL: http://solem.cs.man.ac.uk/documentation/
spinn-app-4.pdf [last accessed 2013-11-05].

[Tem11d] Steve Temple. AppNote 5 - Spinnaker Command Protocol (SCP) Specification,
November 2011. URL: http://solem.cs.man.ac.uk/documentation/
spinn-app-5.pdf [last accessed 2013-11-12].

[Tem12] Steve Temple. AppNote 7 - SpiNNaker Links, April 2012. URL: http://
solem.cs.man.ac.uk/documentation/spinn-app-7.pdf [last accessed
2013-11-13].

[Tor05] Linus Torvalds. git Source Code Management, April 2005. URL: http://
git-scm.com/ [last accessed 2013-11-20].

[Ver88] Tom Verhoeff. Delay-insensitive codes — an overview. Distributed Computing,
3(1):1–8, 1988.

[Vor12] Ivan Voras. Fixed Point Math Library for C, Oct 2012. URL: http://
sourceforge.net/projects/fixedptc/ [last accessed 2013-12-20].

[YIK87] Seiji Yamaguchi, Eisuke Ichinohe, and Johji Katsura. Static random access memory,
December 8 1987. US Patent 4,712,194.

[Zec13] Mario Zechner. libGDX, Nov 2013. Release 0.9.9. URL: http://libgdx.
badlogicgames.com/index.html [last accessed 2014-01-06].

[Zum08] Hank Zumbahlen, editor. Linear Circuit Design Handbook. Newnes, 2008.
URL: http://www.analog.com/library/analogdialogue/archives/
43-09/linear_circuit_design_handbook.html.

http://tedlab.mit.edu/~dr/Lens/
http://tedlab.mit.edu/~dr/Lens/
https://www2.smsc.com/mkt/web_lancheck.nsf/2f473f9215f487db852571b50046a891/6647cebf43d94b72852572b300443d47/$FILE/Schematic%20Design%20Guideline,%20MAC-to-MAC%20MII%20Interface.pdf
https://www2.smsc.com/mkt/web_lancheck.nsf/2f473f9215f487db852571b50046a891/6647cebf43d94b72852572b300443d47/$FILE/Schematic%20Design%20Guideline,%20MAC-to-MAC%20MII%20Interface.pdf
https://www2.smsc.com/mkt/web_lancheck.nsf/2f473f9215f487db852571b50046a891/6647cebf43d94b72852572b300443d47/$FILE/Schematic%20Design%20Guideline,%20MAC-to-MAC%20MII%20Interface.pdf
https://www2.smsc.com/mkt/web_lancheck.nsf/2f473f9215f487db852571b50046a891/6647cebf43d94b72852572b300443d47/$FILE/Schematic%20Design%20Guideline,%20MAC-to-MAC%20MII%20Interface.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-2.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-2.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-4.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-4.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-4.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-4.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-5.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-5.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-7.pdf
http://solem.cs.man.ac.uk/documentation/spinn-app-7.pdf
http://git-scm.com/
http://git-scm.com/
http://sourceforge.net/projects/fixedptc/
http://sourceforge.net/projects/fixedptc/
http://libgdx.badlogicgames.com/index.html
http://libgdx.badlogicgames.com/index.html
http://www.analog.com/library/analogdialogue/archives/43-09/linear_circuit_design_handbook.html
http://www.analog.com/library/analogdialogue/archives/43-09/linear_circuit_design_handbook.html

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Goals
	1.4 Methodology
	1.5 Main Results
	1.6 Related Works
	1.7 Document Structure

	2 The SpiNNaker System
	2.1 Architecture
	2.1.1 Inter-chip communication
	2.1.2 SDP packets
	2.1.3 SpiNNaker machines

	2.2 Application Loading
	2.2.1 Boot sequence
	2.2.2 Application Load and Execute (APLX) File Format
	2.2.3 SpiNNaker Control & Monitor Program (SC&MP)
	2.2.4 SpiNNaker Application Runtime Kernel (SARK)
	2.2.5 Toolchain

	2.3 Summary

	3 SpiNNaker Chip Computing Module
	3.1 General Architecture
	3.2 Hardware
	3.2.1 Components Selection
	3.2.2 Power Dissipation
	3.2.3 Layout Concerns
	3.2.4 PCB Test Board
	3.2.5 PCB Final Board
	3.2.6 SpiNNaker Extension Board

	3.3 Microcontroller Firmware
	3.3.1 M0 Core
	3.3.2 M4 Core

	3.4 Workstation Application
	3.4.1 User Interface
	3.4.2 Wrapper Protocol

	3.5 Evaluation
	3.6 Summary

	4 Case Study
	4.1 Boids Model
	4.2 General architecture
	4.2.1 SpiNNaker implementation
	4.2.2 Computer Visualiser

	4.3 Evaluation
	4.4 Summary

	5 Conclusions and Future Work
	5.1 Summary
	5.2 Difficulties
	5.3 Future Work
	5.3.1 PCB Layout
	5.3.2 Full Workstation Independence

	A Developed Hardware
	A.1 Test Board
	A.2 Final Board
	A.3 SpiNNaker Extension Board

	B SDP over P2P Packets
	B.1 Payload of the different packets used

	C Source code
	C.1 Microcontroller Firmware
	C.2 Workstation application
	C.3 Boids Simulation

	D SARK Source code and API
	D.1 SARK API

	References

