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Summary

With the recent launch of theKepler satellite, thousands of stars are being monitored to

provide high-quality seismic data. These seismic data combined with non-seismic surface

stellar observables can provide valuable information about the global properties of pulsating

stars, such as their mass, radius and age. Nevertheless, it is in their interiors, inaccessible to

our eyes, that most of the information regarding stellar structure and evolution is contained.

This information may be inferred from asteroseismic studies. In particular, the deepest

layers of a star, namely the stellar core, are of great importance in that context. For the reason

just mentioned, significant effort has been put into the development of seismic diagnostic

tools, i.e. combination of oscillation frequencies, in order to extract information about the

interior of pulsating stars.

The work presented in this dissertation deals with the analysis of the potential that the non-

seismic, but mostly the seismic data, obtained for pulsating stars can provide about their

interiors.

Chapter 1 introduces the two type of pulsators that will be focus of this thesis, namely the

rapidly oscillating A peculiar (roAp) stars and the solar-type pulsators. It gives an overview

on asteroseismology, how it can be applied to derive stellarproperties, and the present status

of the field. It also gives a general overview of the basic physics and properties of stellar

pulsators and the potential of asteroseismic inference.

In Chapter 2, I adress the problem of the computation of the bolometric flux of chemically

peculiar stars which is of relevance for the study of a particular class of pulsating stars,

namely the roAp stars. The resulting value for the bolometric flux can be used to accurately

determine two fundamental parameters of the stars, namely their effective temperature and

luminosity. I present the results obtained by applying thismethod to two particular roAp

stars.

In Chapter 3, I adress the problem of forward modelling of solar-like pulsators. I present

results on the modelling of three pulsators of this type based on non-seismic and seismic
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data. Due to our inability to model properly the surface layers of stars, the frequencies

of the model that best represents the internal structure of astar are shifted in relation to the

observed ones. The empirical formulation that has been suggested in the literature to correct

for this shift was considered and its successfulness is discussed.

Chapter 4 concerns the study of small convective cores that might be present at some stages

during the main-sequence evolution of stars slightly more massive than the Sun. Three

diagnostic tools suggested in the literature were computedfrom the oscillation frequencies

for a large set of stellar models to check what information they hold about stellar cores. The

dependence of these diagnostic tools on the mass, age and different physics considered in

the models is discussed.

Finally, in Chapter 5, I summarize the results obtained in the three previous chapters.
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Sumário

Com o recente lançamento do satéliteKepler, milhares de estrelas estão a ser monitorizadas

com o objetivo de se obterem dados sı́smicos de alta qualidade. Estes dados sı́smicos

combinados com os dados observacionais clássicos, podem fornecer informação valiosa

acerca das propriedades globais das estrelas variáveis, como a sua massa, raio e idade.

No entanto, é no seu interior, inacessı́vel aos nossos olhos, que se encontra a maior parte

da informação relativa à estrutura e evolução estelar. Esta informação pode ser inferida

através de estudos sı́smicos. Em particular, as camadas mais internas de uma estrela,

nomeadamente o núcleo, são de grande importância neste contexto. Por esta razão, tem sido

feito um enorme esforço no sentido de desenvolver ferramentas de diagnóstico sı́smico, i.

e. combinações de frequências de oscilações, de modo ase extrair informação acerca do

interior de estrelas variáveis.

O trabalho apresentado nesta dissertação lida com a análise dos dados obtidos de estrelas

variáveis, mas principalmente com o potencial dos dados s´ısmicos que, podem fornecer

informações únicas acerca do interior das estrelas.

O Capı́tulo 1 introduz os dois tipos de estrelas pulsantes que serão o foco nesta tese, nomeada-

mente as estrelas tipo A peculiares que oscilam muito rapidamente (roAp) e as estrelas

pulsantes tipo solar. Fornece uma visão global da asterosismologia, descrevendo como é

usada para derivar propriedades estelares e relatando o seuestado de arte atual. Também

fornece uma visão global da fı́sica básica e das propriedades das estrelas pulsantes e o

potencial das inferências asterosı́smicas.

No capı́tulo 2, é abordado o problema do cálculo do fluxo bolométrico de estrelas quimi-

camente peculiares, que é relevante para o estudo de uma classe particular de estrelas

pulsantes, nomeadamente as estrelas roAp. O valor calculado para o fluxo bolométrico pode

ser usado para determinar, de um modo exato, dois parâmetros fundamentais das estrelas,

nomeadamente a temperatura efetiva e luminosidade. Este m´etodo é aplicado a duas estrelas

roAp particulares e são apresentados os resultados.
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No capı́tulo 3, é abordado o problema da modelação de estrelas pulsantes tipo solar. São ap-

resentados os resultados obtidos na modelação de três estrelas pulsantes deste tipo baseado

nos dados não sı́smicos e sı́smicos. Devido à nossa incapacidade de modelar as camadas

mais externas das estrelas, existe um desvio entre as frequˆencias calculadas para o modelo

que melhor representa a estrutura interna de uma estrela e asfrequência observadas. Con-

sideramos a formulação empı́rica que foi sugerida na literatura para corrigir esse desvio

discutindo a sua aplicação e o seu sucesso.

O capı́tulo 4 lida com o estudo de pequenos núcleos convectivos que poderão existir nalguns

estados de evolução, ao longo da sequência principal, deestrelas ligeiramente mais massivas

que o Sol. Três ferramentas de diagnóstico sugeridas na literatura foram calculadas a partir

das frequências de oscilação, para um conjunto grande demodelos estelares, de modo a

verificar-se que informação detêm acerca dos núcleos estelares. Discutiu-se a dependência

destas ferramentas de diagnóstico na massa, idade e diferente fı́sica considerados nos mod-

elos.

Finalmente, no capı́tulo 5, é sumariado os resultados obtidos nos três capı́tulos anteriores.

9



Contents

Acknowledgements 4

Summary 6

Sumário 8

List of Tables 17

List of Figures 25

1 Introduction 26

2 Global stellar parameters of pulsating stars 42

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1.1 Brightness and magnitudes . . . . . . . . . . . . . . . . 43

2.1.1.2 Photometric systems . . . . . . . . . . . . . . . . . . . . 45

2.1.2 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.3 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Fundamental parameters of rapidly oscillating Ap stars. . . . . . . . . . . 51

2.2.1 Bolometric flux of rapidly oscillating Ap stars . . . . . .. . . . . . 52

2.2.2 β CrB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10



2.2.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.2.2 Bolometric flux and Effective temperature . . . . . . . . 56

2.2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2.3 γ Equulei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.3.2 Bolometric flux and Effective temperature . . . . . . . . 63

2.2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . .. 68

3 Stellar Modelling 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Model input physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Observational constraints . . . . . . . . . . . . . . . . . . . . . . . .. . . 76

3.4 Near-surface corrections . . . . . . . . . . . . . . . . . . . . . . . . .. . 76

3.5 Modelling methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

3.6 Application to individual stars . . . . . . . . . . . . . . . . . . . .. . . . 80

3.6.1 β Hyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.1.1 Non-seismic constraints . . . . . . . . . . . . . . . . . . 81

3.6.1.2 Seismic constraints . . . . . . . . . . . . . . . . . . . . 83

3.6.1.3 Modellingβ Hyi . . . . . . . . . . . . . . . . . . . . . . 84

3.6.1.4 Results, Discussion and Conclusions . . . . . . . . . . . 86

3.6.2 KIC 10273246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.2.1 Observational constraints . . . . . . . . . . . . . . . . . 95

3.6.2.2 Results from my modelling . . . . . . . . . . . . . . . . 98

3.6.2.3 Results from the other six teams . . . . . . . . . . . . . 99

3.6.2.4 Results, Discussion and Conclusions . . . . . . . . . . . 104

11



3.6.3 16 Cygni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6.3.1 Seismic and non-seismic constraints . . . . . . . . . . . 107

3.6.3.2 Modelling 16 Cyg A and 16 Cyg B . . . . . . . . . . . . 108

3.6.3.3 Conclusions and Discussion . . . . . . . . . . . . . . . . 110

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Convective cores 115

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Concluding remarks 147

List of Publications 163

List of Communications 170

12



List of Tables

2.1 Limb-darkened angular diameters,θLD, and NACOJ andK magnitudes for

β CrB from Bruntt et al. (2010). . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 UV spectra from IUE forβ CrB. LWR and SWP stands for Long Short

Redundant and Short Wavelength Prime, respectively. High@low stands

for high dispersion rebinned to low dispersion. . . . . . . . . . .. . . . . . 55

2.3 Calibrated photometricmV, and NACOJ andK fluxes forβ CrB. . . . . . . . . . 56

2.4 Bolometric flux,fbol (col. 2), effective temperature,Teff (col. 3) and lumi-

nosity,L (col. 3) in solar units, obtained forβ CrB A and forβ CrB B (see

text for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Final results forβ CrB A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 UV spectra from IUE forγ Equ. LWP stands for Long Wavelength Prime

and High@low stands for high dispersion rebinned to low dispersion. . . . 62

2.7 Calibrated photometricmHP, mBT andmVT fluxes forγ Equ B. . . . . . . . 63

2.8 Calibrated photometric infrared fluxes forγ Equ binary. . . . . . . . . . . . 63

2.9 Bolometric flux, fbol, and effective temperature,Teff, obtained forγ Equ,

using three different methods (see text for details). . . . . . . . . . . . . . . 65

2.10 Final results forγ Equ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.11 Effective temperature forβ CrB, γ Equ andα Cir obtained in our work

(2nd column), the range of effective temperatures found in the literature

for the three stars (3rd column), and their effective temperature given by

Kochukhov & Bagnulo (2006) (4th column). . . . . . . . . . . . . . . . .. 69

13



3.1 Stellar properties ofβHyi. The luminosity,L, and radius,R, are expressed in

solar units.θ stands for the angular diameter,Π for theHipparcosparallax,

Teff for the effective temperature, [Fe/H] is the metallicity, andZ/X is the

mass ratio of heavy elements to hydrogen. . . . . . . . . . . . . . . . .. . 82

3.2 Observed oscillation frequencies inβHyi (in µHz) resulting from the revised

analysis, listed in ascending radial order within each column. The rows are

in ascendingl, and each row includes frequencies within∆ν-sized-bits of

the frequency spectrum. “...” is used for the modes whose S/N was too low

for a clear extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Unidentified observed peaks with S/N ≥ 3.5. . . . . . . . . . . . . . . . . . 85

3.4 Parameters used to compute the evolutionary tracks forβ Hyi. M/M⊙ is the

mass in solar units,Z/X is the initial ratio of heavy elements to hydrogen

abundances, andY the helium abundance. . . . . . . . . . . . . . . . . . . 85

3.5 The parameters of the best models found for Grid I (no diffusion) and II (He

settling and diffusion), for each of the two methods. See text for details

on the methods. The mass,M, luminosity,L, and radius,R, are expressed

in solar units.Teff is the effective temperature,Y andZ are the initial he-

lium and heavy-element abundances, [Fe/H] is the metallicity at the surface,

andαML is the mixing-length parameter. Alsor anda are factors used to

compute the correction term,∆νn0b and∆νn0a are, respectively, the large

frequency separation before and after applying the surfacecorrection to the

model l = 0 modes. The values ofχ2 are those calculated after correcting

the frequencies for the near-surface effects. . . . . . . . . . . . . . . . . . 86

3.6 The oscillation frequencies of KIC 10273246 published by Campante et al.

(2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Estimates of the observed seismic parameters, the mean large frequency

separation,<∆ν>, the frequency of maximum amplitude,νmax, and the mean

small frequency separation,<δνn0> for KIC 10273246 given by Campante

et al. (2011) (1st row) and given by Creevey et al. (2012) (2ndrow). Also

shown is the range of frequencies where the mean was performed. . . . . . 92

3.8 The effective temperature,Teff, logarithm of the surface gravity, logg, metal-

licity, [Fe/H], microturbulence,ξt, and the projected rotational velocity,vsini,

derived for KIC 10273246 from the analysis by five different teams of NOT

spectra (Creevey et al. 2012). . . . . . . . . . . . . . . . . . . . . . . . . .93

14



3.9 The stellar properties for KIC 10273246 obtained with the SEEK pipeline

that best fitted the seismic data,<∆ν> and νmax (2nd row of Table 3.7),

and the non-seismic data,Teff, log g, and [Fe/H] from VWA (Creevey et al.

2012). ρ stands for the density,R for the radius,M for the mass,τ for the

age,L for the luminosity,i for the inclination angle,PROT for the rotational

period andd for the distance of the star. . . . . . . . . . . . . . . . . . . . 94

3.10 Estimates of the systematic errors for logg (CGS units),R andM in solar

units, andτ in Gyr for KIC 10273246. The % values are given in parenthesis

(Creevey et al. 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.11 Input parameters that I used to compute the evolutionary tracks of the two

grids for KIC 10273246.M/M⊙ is the mass in solar units,Z/X is the initial

ratio of heavy elements to hydrogen abundances, andY the helium abundance. 98

3.12 The parameters of the best model found for KIC 10273246 from my anal-

ysis. The mass,M, luminosity, L, and radius,R, are expressed in solar

units. Teff is the effective temperature,Y andZ are the initial helium and

heavy-element abundances, [Fe/H] is the metallicity at the surface, andαML

is the mixing-length parameter. Alsor anda are factors used to compute

the correction term,∆ν0b and∆ν0a are, respectively, the large frequency

separation before and after applying the surface correction to the model

l = 0 modes. The value ofχ2
seis are those calculated after correcting the

frequencies for the near-surface effects. . . . . . . . . . . . . . . . . . . . 99

3.13 Input parameters used by Team1 to compute the models of the two grids for

KIC 10273246.M/M⊙ is the mass in solar units,Z/X is the initial ratio of

heavy elements to hydrogen abundances, andY the helium abundance.αML

andαOV are the mixing length parameter and the overshooting, respectively. 100

3.14 Input parameters used by Team2 to compute the models.M/M⊙ is the

mass in solar units,Z/X is the initial ratio of heavy elements to hydrogen

abundances, andY the helium abundance.αML andαOV are the mixing

length parameter and the overshooting parameter, respectively. . . . . . . . 101

3.15 Parameter space used by AMP.M/M⊙ is the mass in solar units,Z/X is the

initial ratio of heavy elements to hydrogen abundances, andY the helium

abundance.αML andαOV are the mixing length parameter and the over-

shooting parameter, respectively. . . . . . . . . . . . . . . . . . . . .. . . 102

15



3.16 Input parameters used by Team4 to compute the models.M/M⊙ is the

mass in solar units,Z/X is the initial ratio of heavy elements to hydrogen

abundances, andY the helium abundance.αCGM and αOV are the CGM

parameter and the overshooting parameter, respectively. .. . . . . . . . . 103

3.17 Input parameters considered by Team5 to compute the models.M/M⊙ is the

mass in solar units,Z/X is the initial ratio of heavy elements to hydrogen

abundances, andY the helium abundance.αML andαOV are the mixing

length parameter and the overshooting parameter, respectively. . . . . . . . 104

3.18 The parameters of the best models found for KIC 10273246from the six

different teams. The mass,M, luminosity,L, and radius,R, are expressed

in solar units. Teff is the effective temperature,Yi and Zi are the initial

helium and heavy-element abundances,Z/Xi is the initial mass ratio of

heavy elements to hydrogen, andα corresponds toαCGM for Team4 and

to αML to the other teams. The metallicity, [Fe/H] was computed using the

solar value [Fe/H]⊙ = 0.0245 (Grevesse & Noels 1993). . . . . . . . . . . 106

3.19 Observed oscillation frequencies for 16 Cyg A & B. . . . . .. . . . . . . 109

3.20 Spectroscopic constraints used to model 16 Cyg A and 16 Cyg B. The effec-

tive temperature,Teff , logarithm of gravity, logg, and metallicity, [Fe/H] are

from Ramı́rez et al. (2009). The luminosity,L, in solar units, was deter-

mined from the combination of the bolometric magnitude and the distance. 110

3.21 The best parameters found for 16 Cyg A and for 16 Cyg B. Shown are the

results from AMP and my results. The mass,M and radius,R, are expressed

in solar units.τ is the age,Yi andZi are the initial helium and heavy-element

abundances, andαML is the mixing-length parameter.σstat is the statistical

uncertainty on each parameter derived by AMP. . . . . . . . . . . . .. . . 110

3.22 Parameters space used to compute the evolutionary models for 16 Cyg A (2nd

column) and for 16 Cyg A (3rd column).M/M⊙ is the mass in solar units,

Z/X is the initial ratio of heavy elements to hydrogen abundances, Y the

helium abundance,αML is the mixing-length parameter andαOV is the over-

shoot parameter. The models were computed without diffusion or settling.

In parenthesis are the steps. . . . . . . . . . . . . . . . . . . . . . . . . . .111

3.23 Table from Metcalfe et al. (2012) that shows the stellarmodel-fitting results

for 16 Cyg A & B. My results are shown in the line identified by ‘ASTEC1’. 114

16



4.1 Parameters used to compute the evolutionary tracks.M/M⊙ is the mass

in solar units,Z/X is the initial ratio of heavy elements to hydrogen abun-

dances, andY the helium abundance.αML is the mixing-length parameter

andαOV the core overshoot parameter. We considered (Z/X)⊙ = 0.0245

(Grevesse & Noels 1993). . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

17



List of Figures

1.1 Position of several classes of pulsating stars in a HR diagram.Teff andL are

the effective temperature and stellar luminosity, respectively.The dashed

line indicates the zero-age main sequence (ZAMS), the solidcurves repre-

sent selected evolutionary tracks (for 1, 2, 3, 4, 7, 12, and 20 M⊙), the triple-

dot-dashed line indicates the horizontal branch and the dotted curve follows

the white-dwarf cooling track. The parallel long-dashed lines enclose the

Cepheid instability strip. RoAp stars are located right in the instability strip

for classical pulsators, like Cepheids, RR Lyrae andδScuti, with effective

temperature ranging between 7000 and 8500 K and masses around 2 solar

masses. Main-sequence solar-like pulsators are less massive than roAp stars.

(image available at www.phys.au.dk/jcd/HELAS/puls HR/index.html). . . . 29

1.2 The oscillation frequency of the JD 2246738 - 2446753B multi site data

of the roAp star HR 1217 (upper Figure). The principal frequenciesν1 to

ν6 are labelled. The noise level is shown in the bottom panel of the same

figure (from Kurtz et al. 1989). For comparison, the oscillation spectra of

the Sun in two different filters is presented in the lower two panels. The

VIRGO instrument aboard the SOHO spacecraft observed the Sun as a star

through full-disk intensity measurements. A Fourier Transform of these data

over a 30 day time baseline reveals many individual oscillation modes (from

Frohlich et al. 1997; Bedding & Kjeldsen 2003). Note that 1 mMAG ∼

1000 ppm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Chapter 1

Introduction

Stars are the source of life. Most of the elements that we are made of are produced in the

central regions of the stars, well in their deep interiors, during the main-sequence and post-

main-sequence phase of the life of a star. It is in the stellarcore that nuclear reactions

occur, the lighter elements being fused into heavier ones thus sustaining the star’s life.

These elements are released into the star’s surroundings after its death. But, how can we

probe the inner regions of a star when all the light that we receive from it is emitted in

the superficial layers, thus having no memories of the star’sinterior? Asteroseismolgy, the

study of “stellarquakes” is the answer to this question, as it can provide us with invaluable

information about the stellar’s interior, that would otherwise be out of reach.

Asteroseismology is a technique used for the study of pulsating stars, i.e. stars that oscillate

due to waves propagating within their interiors. As seismicwaves generated by earthquakes

propagating through the Earth’s interior provide us with valuable information about the inner

structure of our planet (e.g., Montagner & Roult 2008; Rawlinson et al. 2010; Khan et al.

2011), the study of stellar pulsations provide us with an unique opportunity to probe the

interior of the stars (e.g., Aerts et al. 2010). In particular, information about the deepest

layers of pulsating stars is of great importance since this region is determinant for their

evolution. Through providing this information, asteroseismology provides us also with the

opportunity to improve our understanding of stellar structure and evolution.

The first detections of the oscillatory motion in the atmosphere of the Sun, as local modes,

were made in the early 1960s by Leighton et al. (1962). This has opened a new era in

our understanding of the Sun’s internal structure and dynamics, paving the way for the

development of a new research field, known as helioseismology. The first detections and

identification of solar oscillations, as global modes, is attributed to Claverie et al. (1979).
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Helioseismology has proved to be very successful in probingthe internal structure of our

Sun. The vast amount of data on solar oscillations collectedover the past two decades made

possible a considerably accurate determination of the Sun’s internal sound speed (c) and

density (ρ) profiles, the determination of the location of the solar helium second ionization

zone and the base of the convective envelope, the detailed testing of the equation of state

and the inference of the solar internal rotation (e.g., Christensen-Dalsgaard 2002; Basu &

Antia 2008; Chaplin & Basu 2008; Howe 2009, and references therein).

Many stars other than the Sun are known to pulsate since the early years of the 20th century.

The study of pulsations in these stars led to the developmentof asteroseismology. However,

by that time, only high amplitude (or classical) oscillations could be detected. These os-

cillations, unlike the case of solar oscillations, are intrinsically unstable, resulting from the

growing of small disturbances.

The detection of solar-like oscillations in stars other than the Sun had long been an illusory

goal due to their very small amplitudes. However, with the development of very precise

spectrometers such as HARPS at the ESO La Silla 3.6-m telescope and UVES at the 8.2-

m UT2 of the VLT at ESO Paranal in Chile1, CORALIE at the 1.2-m Euler telescope

on La Silla2 , SARG at the 3.6-m TNG in La Palma3 and UCLES at the 3.9-m AAT in

Australia4, clear detections of oscillations in solar-like stars werefinally possible in the

beginning of the 21st century, opening, just as solar oscillations did for the study of the

Sun, a new era in the research field of stellar structure and evolution. In fact, the search for

solar-like oscillations in stars other than the Sun began inthe early 1980s through ground-

based observations, but the first detection of such oscillations only occurred in 1995 for

the G0IV starηBoo (Kjeldsen et al. 1995). Since then, several other detections of solar-

like oscillations have been made from the ground (Bedding & Kjeldsen 2003; Bedding

et al. 2007). Nevertheless, the great development of asteroseismology occurred as a result

of observations of stellar oscillations from the space, with the advantage of having long

and almost uninterrupted seismic data of the same targets. Three space missions with

programmes dedicated to asteroseismology have been launched, namely the Canadian-led

MOST5 satellite launched in June 2003 (Walker et al. 2003), the french-led CoRoT6 satellite

launched in December 2006 (Baglin et al. 2006), and the NASAKepler7 mission launched

in March 2009, which is essentially aimed at detecting planetary transits, but includes also

1http://www.eso.org/public/.
2http://obswww.unige.ch/ naef/CORALIE/coralie.html.
3http://www.tng.iac.es/instruments/sarg/.
4http://www.aao.gov.au/astro/ucles.html.
5http://www.astro.ubc.ca/MOST/index.html.
6http://corot.oamp.fr/.
7http://www.kepler.arc.nasa.gov/.
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an asteroseismic programme (Borucki et al. 2010; Koch et al.2010). In particular, with the

recent launch of theKepler satellite, pulsations were discovered in thousand of starsand

hundreds are being continuously monitored with the aim of characterizing their oscillations

to a very high degree of precision. An overview of the most important results obtained so

far with Kepler is provided by Garcia (2011).

In addition to these space missions, studies on the ground are being carried out with the aim

of developing the Stellar Oscillations Network Group (SONG)8 - a network of telescopes

positioned on different longitudes in the globe which will acquire, continuously, high-

precision radial velocities of solar-like pulsators (Grundahl et al. 2009a,b).

The existence of such tremendous seismic data provides today an unique opportunity to

apply asteroseismic diagnostic tools in order to extract some of the information that the

oscillations may hold about the interior of the stars. Note that unlike the case of the Sun, for

which modes of very high degreel can be observed, only modes of low-degree (l ≤ 3) are

expected to be observed for all solar-like pulsators. This is a consequence of our inability

to resolve the stellar disk which results in a geometric cancellation, also known as partial

cancellation or spatial filtering, of the amplitudes of the modes of moderate and high degree

l. Fortunately, the modes of degreel ≤ 3 are the ones that penetrate in the inner regions of a

star, thus carrying information about these regions.

Since most of the stars are believed to pulsate at some stage of their evolution, aster-

oseismology can be applied to study different types of oscillations in different types of

stars. Figure 1.1 shows the position of the different classes of pulsating stars across the

Hertzsprung-Russel (HR) diagram, which shows the luminosity, L, versus the effective

temperature,Teff, of stars. In this work we will focus on the study of rapidly oscillating

A peculiar stars (roAp stars) and solar-like pulsators.

Origin and nature of stellar pulsations

A relevant timescale for the understanding of the properties of oscillations is the dynamical

timescale:

tdyn ≃

(

R3

GM

)1/2

≃ (Gρ̄)−1/2, (1.0.1)

whereRandM are the surface radius and mass of the star, respectively, G is the gravitational

constant, and ¯ρ is the mean stellar density. More specifically,tdyn expresses the time the star

needs to go back into hydrostatic equilibrium whenever somedynamical process breaks the

balance between pressure and gravitational force. The periods of the oscillations generally

scale astdyn. Is it noticeable that a measurement of a period of oscillation immediately

8astro.phys.au.dk/SONG.
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Figure 1.1: Position of several classes of pulsating stars in a HR diagram. Teff and L are the

effective temperature and stellar luminosity, respectively.The dashed line indicates the zero-age

main sequence (ZAMS), the solid curves represent selected evolutionary tracks (for 1, 2, 3, 4, 7, 12,

and 20 M⊙), the triple-dot-dashed line indicates the horizontal branch and the dotted curve follows

the white-dwarf cooling track. The parallel long-dashed lines enclose the Cepheid instability strip.

RoAp stars are located right in the instability strip for classical pulsators, like Cepheids, RR Lyrae

andδScuti, with effective temperature ranging between 7000 and 8500 K and masses around 2 solar

masses. Main-sequence solar-like pulsators are less massive than roAp stars. (image available at

www.phys.au.dk/jcd/HELAS/puls HR/index.html).
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provides us with an estimate of an overall property of a star,i.e. its mean density.

The physical nature of stellar pulsations is twofold: standing acoustic waves (p modes) or

internal gravity waves (g modes). These depend on the restoring force at play: for the former

being the pressure and for the latter buoyancy. There is a clear separation between these two

classes of modes in unevolved stars. This, however, may not be the case in evolved stars, as

it will be explained later. In the case of p modes most of the energy is contained in a region

close to the surface, whereas for the g modes the energy is confined to the inner regions

of the star. In addition, there is an intermediate fundamental mode, the f mode, which is

essentially a surface gravity mode.

The origin of stellar oscillations is determined by their driving mechanism. Oscillations

can be either intrinsically unstable, or intrinsically stable. In the former case, oscillations

result from the amplification of small disturbances by meansof a heat-engine mechanism

converting thermal into mechanical energy in a specific region of the star, usually a radial

layer. This region is heated up during the compressional phase of the pulsation cycle while

being cooled off during expansion. An amplitude-limiting mechanism then sets in at some

point, determining the final amplitude of the growing disturbance. The heat that is stored

in the radial layer during the compression phase drives the pulsations. Such a region inside

the star is typically associated with opacity (κ) rapid variations and the resulting driving

mechanism is thus known as theκ-mechanism. Rapid variations of the opacity usually occur

at ionization regions. For instance, the driving of pulsations in the classical Cepheids and

other stars in the Cepheid instability strip is associated to the regions of the second ionization

of helium, while for roAp stars it is associated with the region of hydrogen ionization (e.g.,

Cunha 2002). In order to cause overall excitation of the oscillations, the region associated

with the driving has to be placed at an appropriate depth inside the star, thus providing an

explanation for the specific location of the resulting instability belt in the HR diagram (see

Figure 1.1). This type of oscillations are generally known as classical oscillations.

Intrinsically stable oscillations, such as those of the Sun, are stochastically excited and

intrinsically damped by the vigorous near-surface convection (Houdek 2006). These os-

cillations, known as solar-like oscillations, are predicted for all stars cool enough (Teff .

6500 K) to harbor an outer convective envelope. Solar-like oscillations may be present

in main-sequence stars with masses up to∼1.6 M⊙9 (e.g., Christensen-Dalsgaard 1982;

Christensen-Dalsgaard & Frandsen 1983; Houdek et al. 1999), and also in stars at the end of

the main sequence up to the giant and asymptotic giant branches (Dziembowski et al. 2001).

They show extremely low amplitudes when compared to those ofclassical oscillations.

9Recently, it was observed what is believed to be solar-like oscillations in aδScuti star, which may have a

mass of∼1.9 M⊙, sligthly higher than 1.6 M⊙ (Antoci et al. 2011)
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Rapidly oscillating Ap stars vs Solar-like pulsators

Rapidly oscillating A peculiar stars (roAp stars) are main-sequence chemically peculiar stars

of spectral type A (and sometimes F). Their peculiarity results from the inhomogeneous

atmospheric abundance of the chemical elements, particularly of rare earth elements. They

show strong global magnetic fields with polar field strengthstypically of several kG, but up

to 24.5 kG (Hubrig et al. 2005; Kurtz et al. 2006). They are classical pulsators, which exhibit

oscillations with amplitudes of a few mmag (varying typically from 0.3 to 8 mmag, about

two orders of magnitude greater than the amplitudes of the oscillations found in the Sun)

and frequencies typically ranging from 1 to 3 mHz. Among about 40 roAp stars already

discovered, many are known to pulsate in only one single mode. There are, however, some

that show multiperiodic variations. In either case, the oscillations correspond to high order,

n, low degree,l, acoustic pressure, p modes.

The oscillation spectrum of these stars looks somewhat similar to that of the 5 minutes solar

oscillations (cf. Figure 1.2), except in that the oscillation amplitudes are much larger, and

many modes are missing. The multiperiodic roAp stars are of special interest in asteroseis-

mology since through the analysis of their oscillation spectrum it is, in principle, possible to

infer about their internal properties.

In solar-like pulsators the frequency spectrum shows a comb-like structure as that observed

in the Sun, with many modes excited modulated by an envelope typical of stochastically

excited oscillations (Figure 1.2). The frequency at which the envelope has a maximum value

is frequently denominated as the frequency of maximum power, νmax. This frequency is

supposed to scale with the acoustic cut-off frequency,νc (see below).

Stellar pulsations’ properties

There are different natural oscillation modes that stars can pulsate in. The frequencies of

these normal modes are the star’s natural frequencies and are also known as eigenfrequen-

cies. The simplest natural oscillation modes are the radialmodes. The star periodically ex-

pands and contracts, heats and cools, while preserving its spherical symmetry. On the other

hand, non-radial pulsations cause a deviation from the spherical symmetry of a star, thus

generating distortions of the stellar surface. Again, these distortions represent expanding

and receding areas in the stellar surface, and they can be described by spherical harmonics,

Ym
l (θ, φ), or a combination of them. Between the expanding and receding surface areas, no

motion takes place. These regions are known as nodes. The spherical harmonic functions

provide the nodes of the standing wave patterns.

Since stars are 3-dimensional (3-D) objects their natural oscillation modes have nodes in
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Figure 1.2: The oscillation frequency of the JD 2246738 - 2446753B multi site data of the roAp star

HR 1217 (upper Figure). The principal frequenciesν1 to ν6 are labelled. The noise level is shown in

the bottom panel of the same figure (from Kurtz et al. 1989). For comparison, the oscillation spectra

of the Sun in two different filters is presented in the lower two panels. The VIRGO instrument aboard

the SOHO spacecraft observed the Sun as a star through full-disk intensity measurements. A Fourier

Transform of these data over a 30 day time baseline reveals many individual oscillation modes (from

Frohlich et al. 1997; Bedding & Kjeldsen 2003). Note that 1 mMAG ∼ 1000 ppm.
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three orthogonal directions. Use is made of spherical polarcoordinates, (r, θ, φ), wherer is

the distance to the centre of the star,θ is the co-latitude (i.e. measured from the pulsation

pole, the axis of symmetry) andφ is the longitude. The nodes are concentric shells at

constantr, cones of constantθ and planes of constantφ. For a spherically symmetric star

the solutions to the equations of motion have displacementsin the (r, θ, φ) directions. As an

example, the radial component of the displacement may be expressed as

ξr(r, θ, φ) = R{a(r)Ym
l (θ, φ)e−i2πνt}, (1.0.2)

wherea(r) in an amplitude function, andν is the cyclic frequency of oscillation. In a

spherical symmetric star the frequency of oscillation depends only onn andl, i.e.,ν = νnl.

The spherical harmonic,Ym
l (θ, φ), is given by

Ym
l (θ, φ) = (−1)mclmPm

l (cosθ)eimφ, (1.0.3)

wherePm
l is an associated Legendre function andclm is a normalization constant. I refer the

reader to the book by Aerts et al. (2010) for a detailed description. The oscillation modes are,

thus, characterized by three quantum numbers: the angular degreel, the azimuthal degree

m and the radial ordern. Here,l represents the number of lines dividing the stellar surface

andl > 0, |m| is the number of those that are longitudinal lines withm lying in the interval

[−l, l], andn is related to the number of nodes from the centre to the surface of each mode,

and is called the overtone of the mode.

The propagation of the pulsation modes in the stellar interior depends on how their fre-

quencies compares to two characteristic (angular) frequencies varying throughout the star,

namely the acoustic (Lamb) frequency,Sl, and the buoyancy (Brunt-Väisälä) frequency,N.

These two quantities are defined as:

S2
l =

l(l + 1)c2

r2
(1.0.4)

and

N2 = g

(

1
Γ1

d lnp
dr
−

d lnρ
dr

)

, (1.0.5)

whereg is the local gravitational acceleration,c is the local sound speed,p is the pressure,

ρ the density,r is the distance from the stellar centre andΓ1 is the first adiabatic exponent

given by,

Γ1 =

(

∂lnp
∂lnρ

)

ad

. (1.0.6)

The adiabatic sound speed is given by,

c2 =
Γ1p
ρ
=
Γ1KBT
µmu

, (1.0.7)
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whereKB is the Boltzmann constant,T the temperature,µ the mean molecular weight and

mu is the atomic mass unit. The second equality inc2 is obtained under the approximation

of an ideal gas. Also, under this approximation and for a fully-ionized gas, Eq. (1.0.5) can

be written as,

N2 ≃
g2ρ

p
(∇ad − ∇ + ∇µ), (1.0.8)

where

∇ =
d lnT
d lnp

,∇ad =

(

d lnT
d lnp

)

ad

,∇µ =
d lnµ
d lnp

, (1.0.9)

are the temperature gradient, the adiabatic temperature gradient, and theµ gradient, respec-

tively.

The Lamb and Brunt-Väisälä frequencies have the following implications regarding the

mode propagation: for the motion to be oscillatory, its angular frequency,ω10, must satisfy

|ω| > |N|,Sl or |ω| < |N|,Sl. The former condition corresponds to p-mode oscillations

while the later corresponds to g-mode oscillations. On the other hand, for a vibration with

Sl < |ω| < |N| or |N| < |ω| < Sl, the energy of the wave decreases exponentially with

distance from the p- and g-mode propagation regions. These regions are called evanescent

regions. For a given mode of oscillation there may be severalregions where the solution

oscillates, with intermediate regions where it is exponential. But the dominant nature of the

mode is determined by the region where most of the energy is contained, which is referred to

as the trapping region. ForN2 > 0, N can be interpreted as the frequency of a gas element of

reduced horizontal extent which oscillates due to buoyancy. Conversely, regions for which

N2 < 0 satisfy the Ledoux criterion of convective instability, i.e.,

∇ > ∇ad+ ∇µ. (1.0.10)

Gravity waves cannot, therefore, propagate in convective regions.

In the superficial layers of a star, typicallyω ≫ Sl, sinceSl decreases monotonically

towards the surface (due to an increase inr and a decrease inc), and the behaviour of

the eigenfunction is thus controlled by the so-called acoustic cut-off frequency,ωc,

ω2
c =

c2

4H2
ρ

(

1− 2
dHρ

dr

)

, (1.0.11)

whereHρ = −(d lnρ/dr)−1 is the density scale height. In an isothermal atmosphere,Hρ is

constant, hence Eq. (1.0.11) becomes

ωc =
c

2Hρ

=
Γ1g
c
. (1.0.12)

10Note that the angular frequency,ω, is related to the cyclic frequency,ν, throughω = 2πν.
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A useful relation, describing the behaviour of the acousticcut-off frequency as a function of

stellar parameters, is given by

ωc

ωc,⊙
≃

M/M⊙
(

Teff/Teff,⊙
)3.5

L/L⊙
, (1.0.13)

whereωc,⊙ is the acoustic cut-off frequency of the Sun. Moreover, the frequency of max-

imum amplitude,νmax, is supposed to scale with the acoustic cut-off frequency (Brown

et al. 1991; Kjeldsen & Bedding 1995; Bedding & Kjeldsen 2003; Chaplin & Basu 2008;

Belkacem et al. 2011). Hence,
νmax

νmax,⊙
≃

νc

νc,⊙
, (1.0.14)

with νc = ωc/2π. It is observed for the Sun thatνc,⊙ ≃ 1.7νmax,⊙ (Balmforth & Gough

1990; Fossat et al. 1992). The role ofωc is important in the superficial layers, nonetheless,

minor in the remaining of the star, where the properties of the eigenfunction are effectively

controlled bySl andN. The energy of modes with frequency below the atmospheric value

of ωc, decay exponentially in the atmosphere, the wave is reflected back to oscillate in the

stellar envelope, hence being trapped inside the star.

In unevolved stars (e.g., like the Sun) the buoyancy frequency N remains with relatively

low values throughout the star, thus the behaviour of a high frequency mode is mostly

controlled bySl. The eigenfrequency of such a mode will be trapped between the near-

surface reflection determined byω = ωc and an inner turning point located whereSl(r t) = ω,

or
c2(r t)

r2
t

=
ω2

l(l + 1)
, (1.0.15)

with r t being determined byl andω. These are p modes. Low-frequency modes satisfy

ω ≪ Sl throughout most of the stellar radius. Under these circumstances the eigenfunction

of a mode oscillates in a region approximately determined byω < N, hence to great extent

independent ofl. These are g-modes, having a turning point very near the centre of the star

and a second one just below the base of the convection zone.

As the star evolves, theµ gradient,∇µ, increases due to an increase of the mean molec-

ular weight,µ, with increasing pressure,p. Moreover, with evolution, the core of a star

contracts when the hydrogen is exhausted in the core, leading to an increase ofg. These

two factors contribute to an increase inN. On the other hand, the p-mode frequencies

decrease with evolution mainly due to the increasing stellar radius. As a consequence,

the separation between the p-mode and g-mode cavities gets smaller, and the two modes

undergo an avoided crossing (or, mode bumping), i.e., closely approaching without actually

crossing (Osaki 1975; Aizenman et al. 1977). The modes that are affected by the avoided

croosings are referred to as mixed modes due to having both p-and g-mode character. The
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frequencies of these mixed modes are extremely sensitive tothe evolutionary state of the

star. Observational evidence for mixed modes, in the form offrequencies departing from

the asymptotic relation (as it will be explained below), hasbeen seen in evolved stars such

asβ Hyi and KIC 10273246, that will be described in Chapter 3.

The changing nature of the modes can be traced by means of the behaviour of their normal-

ized inertia,E,

E =
Mmode

M
≡

∫

V
ρ|δr |2dV

M|δr |2ph

, (1.0.16)

where the integration is over the volumeV of the star,Mmode is defined as the modal

mass, and|δr |2ph is the squared norm of the displacement vector at the photosphere. The

displacement,δr , in terms of radial and horizontal components is given asδr = ξrar + ξh,

whereξr is defined in Eq. (1.0.2),ar is the unit vector in the radial direction, andξh, the

horizontal displacement, given by:

ξh = R

{

b(r)

(

∂Ym
l

∂θ
aθ +

1
sinθ

∂Ym
l

∂φ
aφ

)

e−i2πνt

}

, (1.0.17)

whereb(r) is an amplitude function,aθ, aφ are the unit vectors in theθ andφ directions,

respectively. Based on the definition of mode inertia one expects modes trapped in the deep

stellar interior, as the g-modes, to have large values ofE. On the other hand, modes trapped

near the surface, such as the p modes, would have small normalized inertia. As for the mixed

modes, their normalized inertia is larger than that of the p modes due to the fact that they

have a g-mode character in the core of the star.

Asymptotic signatures

Both the solar-like oscillations and the oscillations observed in roAp stars are typically low

degree high-order acoustic modes. If interaction with a g-mode region can be neglected,

these satisfy an asymptotic relation for the frequencies (e.g., Vandakurov 1967; Tassoul

1980; Gough 1993) usually written in terms of the cyclic frequencyν = ω/2π,

νnl ≃

(

n+
l
2
+

1
4
+ α

)

∆ν0 − [Al(l + 1)− δ]
∆ν2

0

νnl
, (1.0.18)

where

∆ν0 =

(

2
∫ R

0

dr
c

)−1

(1.0.19)

is the inverse sound travel time across a stellar diameter, and

A =
1

4π2∆ν0

[

c(R)
R
−

∫ R

0

dc
dr

dr
r

]

; (1.0.20)
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also,α (which in general is a function of frequency) is determined by the reflection prop-

erties near the surface andδ is a small correction term predominantly related to the near-

surface region. To leading order, neglecting the last term,Eq. (1.0.18) predicts a uniform

spacing of modes of the same degree. This difference in frequency of modes of the same

degree and consecutive order∆νnl = νn+1l − νnl is known as thelarge frequency separation

and is, to leading order, approximately equal to∆ν0. Also, modes of the samen + l/2 are

degenerate to this approximation. The departure from this degeneracy, is reflected in the

small frequency separation

δνnl = νnl − νn−1l+2 ≃ −(4l + 6)
∆ν0

4π2νnl

∫ R

0

dc
dr

dr
r
, (1.0.21)

where the term in the surface sound speedc(R) in Eq. (1.0.20) has been neglected.

Owing to the factorr−1 in the integral in Eq. (1.0.21) the small separation is very sensitive

to the sound-speed structure of the stellar core. The dependence of the sound speed on the

chemical composition makes the small frequency separations sensitive to the age of the star.

Also, the average∆ν0 of the large frequency spacing is a measure of the mean density of the

star.

Moreover, it may be also convenient to consider small separations that take into account

modes with adjacent degree:

δ(1)νnl = νnl −
1
2

(νn−1l+1 + νnl+1) ≈ −(2l + 2)
∆ν0

4π2νnl

∫ R

0

dc
dr

dr
r
, (1.0.22)

i.e., the amount by which modes with degreel are offset from the midpoint between thel+1

modes on either side. As for the small frequency separation,δνnl, δ(1)νnl is very sensitive to

the stellar age. Thus,δνnl andδ(1)νnl can be seen as diagnostic tools of the evolutionary stage

of a main-sequence star.

A common way of visualizing the asymptotic properties of theacoustic spectrum is to build

an échellediagram. This diagram shows the frequency spectrum dividedinto segments

equally spaced by the large frequency separation, after these segments are stacked in the

vertical direction (Grec et al. 1983). That is, starting by expressing the frequencies as

νnl = ν0 + k〈∆ν〉 + ν̃nl, (1.0.23)

whereν0 is a reference frequency,〈∆ν〉 is a suitable average of the large frequency separation

∆νnl, andk is an integer such that the reduced frequency, ˜νnl, takes the value between 0 and

〈∆ν〉. The échelle diagram representsν0 + k〈∆ν〉 as a function of ˜νnl. An example of such

a diagram is illustrated in Figure 1.3 where the observed solar p-mode frequencies ofl ≤ 3
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Figure 1.3: Échelle diagram for the observed solar p-mode frequencies obtained with the BiSON

network (Broomhall et al. 2009), plotted withν0 = 830µHz and<∆ν> = 130µHz (cf. Eq. 1.0.23).

Different symbols indicate different mode degrees, namely,l = 0 (circles),l = 1 (triangles),l = 2

(squares) andl = 3 (diamonds).
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are plotted. If the frequencies of a star were to strictly obey the asymptotic relation in

Eq. (1.0.18), then they would appear very close to vertical ridges in the échelle diagram.

However, when looking at échelle diagrams constructed from the observed frequencies of

real stars departures from the regularity are clearly present. Variations in the large separation

with frequency are seen to introduce a curvature in the ridges, while variations in the small

separation with frequency appear as a convergence or divergence of the relevant ridges. The

situation is even more dramatic, when an échelle diagram isconstructed from frequencies

of evolved stars. Significant departures from the asymptotic relation are expected for these

stars due to the presence of frequencies with mixed character.

Asteroseismic inference

Stellar oscillations can provide valuable information about the properties of a pulsating

star. The most basic seismic diagnostic tools, i.e. combination of frequencies that provide

information of the interior of a star, are the above mentioned large and small frequency

separations. They provide an estimation of the stellar meandensity and age, respectively.

There are, however, several methods for asteroseismic inference, i.e. for obtaining infor-

mation about a star from its pulsations. I will mention threeof them, namely the forward

modelling, inference of regions of sharp structural variations, and inversion. For a detailed

review see, e.g., Cunha et al. (2007).

Forward modelling, or direct fitting, consists in computing a set of evolutionary models

using a stellar structure and evolution code. The code outputs at each step along the evo-

lution a set of models’ observables, which can be compared with the measured ones. The

code also gives detailed numerical information on the internal structure of the (model) star.

The model that has the model observable parameters closest to the observed ones, gives,

in principle, valuable information on the global, as well asthe internal properties of the

star to which it is being compared. Usually, the observed parameters used as constraints

are the ‘classical’, or often called the non-seismic constraints, such as the effective tem-

perature, luminosity, metallicity, and radius, and the seismic ones, such as the large and

small frequency separations. Brown et al. (1994) found thatthe inclusion of the individual

frequencies as constraints for the modelling can provide lower uncertainties in the derived

parameters. However, the individual frequencies are not always possible to detect, and the

model frequencies are often affected by the near-surface layers of the stars that we still fail

in correctly modelling, as we will mention in Chapter 3. So, the main problem associated

to this approach relates to the physics included in the model, which are often too simplistic

in relation to the physics that occurs in real stars. However, such comparison is potentially

very valuable in order to improve the physics included in themodels.
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Once having a stellar model and the proper frequencies of itsoscillation modes computed,

one can determine the set of model observables,ymod
i (a), i = 1,N, that correspond to the

observed values of the observations,yobs
i . Here, the vectora corresponds to the model pa-

rameters that one has computed, namely the mass, age, chemical composition, overshooting

parameter and the mixing length para meter. Thus, the directfitting approach consists in

firstly assess the agreement betweenyobs
i andymod

i (a), and secondly change the set of model

parameters,a, in order to improve the fit. The common procedure to approachthis problem

is to apply a least-squares minimization method, where one searches the model parameters,

a, that minimize theχ2 function, defined as

χ2 =

N
∑

i=1

[

yobs
i − ymod

i (a)

σi

]2

, (1.0.24)

with σi being the standard deviation of the measured observable,yobs
i .

As for the possible optimization methods to obtain a model that best reproduces the ob-

servables one has the ‘Grid of models’ and the ‘Levenberg-Marquardt’ methods. The most

commonly used is the grid modelling method and it consists inthe computation of a grid of

models with different input parameters and physics. For each set of model parameters the

χ2 function is evaluated. The set of parameters that minimize this function represents the

‘best model’. There is a major problem associated to this method. As the number of models

to be computed and/or the number of free parameters increase (for one to explorea refined

grid within a large parameter space), the calculation time of the grid of models becomes

too large for today’s computers. On the other hand, the computation of a grid of models

allows one to identify possible secondary minima. In the ‘Levenberg-Marquardt’ method

(e.g., Bevington & Robinson 2003), the problem associated to the time of computation of

the models becomes reduced. This method consists in an iterative procedure that rapidly

converges to aχ2 minimum by combining a gradient search when far from a minimum with

an expansion of theχ2 surface near the minimum. The main problem is to assess if the

minimum is, in fact, a global minimum. For that, several searches with different starting

values of the input parameters should be carried out as it is done by the genetic algorithms

(e.g., Metcalfe et al. 2009) or Markov Chain Monte Carlo (MCMC) techiques (e.g. Bazot

et al. 2012).

This forward approach with the ‘Grid of models’ optimization method will be applied in

Chapter 3.

Sharp structural variationswithin a star, such as those that occur at the base of convective

envelopes or at the edge of convective cores give rise to detectable oscillatory variations in

the frequencies which are superimposed on the asymptotic formulation given in Eq. (1.0.18).
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Several studies are focused in providing seismic tools aimed at inferring information from

those regions. For instance, a discontinuity or a sharp variation in the chemical profile of

a star generates a discontinuity or a sharp variation in the adiabatic sound speed, which,

in turn, introduces an oscillatory signal in the oscillation frequencies (Vorontsov 1988;

Gough 1990; Provost et al. 1993). Several authors have analysed this type of signal in

order to estimate the location of sharp variations such as the boundaries of convective

envelopes (Monteiro et al. 2000) or the regions of ionization (Monteiro & Thompson 1998;

Houdek & Gough 2007). In the same manner, studies of the signal produced by sharp

variations at the edge of stellar or planet cores have been carried out by several authors

(e.g., Provost et al. 1993; Roxburgh & Vorontsov 1999, 2001,2007; Cunha & Metcalfe

2007; Miglio et al. 2008). Of the latter, only the work of Roxburgh & Vorontsov (2007)

and of Cunha & Metcalfe (2007) were directed towards the study of main-sequence solar-

like pulsators. Based on a theoretical analysis of the signal produced by the edge of the

core in the oscillation frequencies, and on simulated data,Cunha & Metcalfe (2007) have

shown that such signal should be detected when the data for solar-like pulsators reaches the

level of precision expected from space-based dedicated instruments, such asKepler, and

that the detection of the expected signal in real data of solar-like pulsators may provide

unprecedented information about the cores of these stars. We will discuss this further when

presenting our study on the convective cores, in Chapter 4.

Finally, theinversemethodology aims at determining localized information about the stellar

structure or dynamics from the combination of different seismic data. Since this methodol-

ogy will not be the focus of any Chapter of this thesis, we refrain from discussing it here

and we point to the reader for the review by Cunha et al. (2007)to an overview of this

methodology.



Chapter 2

Global stellar parameters of pulsating

stars

2.1 Introduction

Stellar models are based on a set of fundamental parameters that describe the (model) star,

such as the massM, the luminosityL, the radiusR and the chemical composition. One

may also consider another three important stellar quantities, the effective temperatureT4
eff =

L/4πR2σ, whereσ is the Stefan-Boltzmann constant, the surface gravityg = GM/R2, where

G is the gravitational constant, and the mean density< ρ >= 3M/4πR3. These are, however,

dependent on the set{M, L, R}, and are sometimes used, when comparing data with models,

in substitution of one or more of the latter, in order to have aparameter set that may be

closer to the directly observed quantities. All of these parameters evolve with timet, and

together they describe stellar evolution.

High-precision and accurate measurements of fundamental parameters for stars in all evolu-

tionary stages across the HR diagram are needed in order to test the theory of stellar evolu-

tion, as well as the theory of stellar atmospheres and, consequently, improve our knowledge

about stellar physics. One problem often faced is that not all of the fundamental stellar

quantities can be obtained directly from observations. Instead, some must be inferred from

measurements of other observational quantities. In addition, for some of the parameters,

such as the radius and chemical composition, what is observed may not correspond to

the desired quantity. Concerning the radius, since stars are gaseous spheres, they do not

have a well-defined “edge”. So, in practice, what is observedis the center-to-limb intensity

variation across the stellar disk (and its circumstellar environment), which depends on the

42
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star’s atmospheric structure (see, e.g., Scholz 2003). Concerning the chemical composition

it may vary both across the surface of the star and with depth.

There are several techniques used to obtain the fundamentalproperties of a star. In this chap-

ter we will mainly focus on three of these techniques, namelyon photometry, spectroscopy

and interferometry.

2.1.1 Photometry

2.1.1.1 Brightness and magnitudes

Stellar photometry is a technique that consists in the studyof the light emitted by a star

or other astronomical object. In the particular case of stars, it deals with the accurate

measurement of their brightness and with the changes in their brightness over time.

Several ways to determine the brightness of a star have been used over time. The earliest

photometric studies were done by eye. The Greek astronomer Hipparchus of Nicaea, work-

ing in Rhodes (129 B.C), organized the first catalog of about∼1000 stars, with positions and

brightnesses, using only his naked eyes. He classified the stars from first to sixth magnitude,

the first magnitude being the brightest stars, while the sixth magnitude, the faintest ones. His

work was further studied by other astronomers, in particular by Ptolemy of Alexandria who

seems to have copied this magnitude system in his Almagest (170 A.C.). In 1856, Pogson

proposed a magnitude scale that was not very different from the traditional one, but could

be quantified more rigorously. This magnitude scale is basedon two criterias, namely, that

the ratio between the brightness of two stars differing by one magnitude is constant and that

a first magnitude star is 100 times as bright as a typical sixthmagnitude star. Based on these

criteria, one can write the following relation

m1 −m2 = −2.5 log10

(

b1

b2

)

, (2.1.1)

wherem1, m2 are the apparent magnitudes of two stars, andb1, b2 their respective bright-

nesses. An absolute scale can be defined as,

m= −2.5 log10 b+C1, (2.1.2)

whereC1 is a constant computed from standard stars, to which apparent magnitudes were

given by convention. This constant is known as the zero-point of the magnitude scale,

and once established one can determine the magnitude of other stars. Note that the star’s

apparent magnitude refers to the amount of energy that reaches the detector being used

during the star’s observations.
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This magnitude scale is still used today having been extended to objects fainter than sixth

magnitude and brighter than first magnitude. Only stars up tothe sixth magnitude can be

observed with the bare eye, while objects with a much smallerintensity, that is a bigger

magnitude, up to over 23, can be observed with a telescope. Accurate measurement of

magnitudes was only made possible in the 20th century through the advent of photoelectric

devices. Photoelectric devices, such as photomultiplier tubes, photodiodes and charge-

coupled devices (CCDs), have replaced the photographic plate.

The apparent magnitude is related to the amount of energy coming from a star and the

measure of that energy will depend on the system used to make the observations, i.e the

telescope, the photometer or spectrograph, and the detector. Moreover, one may have to

take into account the absorption of the light from a star due to the Earth’s atmosphere and/or

the interstellar medium. The brightness,b, of a star is then given by

b =

∞
∫

0

f (λ)R̃(λ)dλ (2.1.3)

where f (λ) is the star’s energy flux per unit of wavelength (measured, e.g., in Wm−2Å−1),

R̃(λ) is the total system response function as a function of wavelength, which includes the

instrument response and atmospheric extinction, the latter being applicable for ground-based

observations. We note that the constantC1 from Eq. (2.1.2) depends oñR(λ), which conse-

quently, depends on the particular instrument that is beingused to make the observations.

The apparent magnitude of a star depends on its intrinsic properties, such as its energy flux

and radius, on the interstellar extinction, on the equipment used to make the observations,

and on our distance to it. In order to compare the brightness between different stars,

it is important to set a magnitude scale, independent of their distancesd. The absolute

magnitude,M, is defined as the apparent magnitude that the star would haveif it was at a

distance of 10 parsec. From Eq. (2.1.1), one gets

M = m+ 5− 5log10d. (2.1.4)

with d expressed in parsec.

The flux radiated by the star,F, and the flux that would be measured at Earth, if no

absorption between the star and us existed, and all the energy reaching the detector were

measured,f , are related by,

fbol = F
(R
d

)2

. (2.1.5)
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In the above, the total apparent flux,fbol, also called the bolometric flux, is given by

fbol =

∞
∫

0

f (λ)dλ. (2.1.6)

Moreover, the absolute luminosity of a star, i.e. the total amount of energy radiated by it per

unit time, is given by,

L = 4πR2F. (2.1.7)

Assuming that stars radiate as black bodies, with temperatureTeff, Eq. (2.1.7) becomes

L = 4πR2σT4
eff . (2.1.8)

The apparent bolometric magnitude,mbol, is defined as

mbol = −2.5 log10 fbol +C2 (2.1.9)

whereC2 is determined taking into account a given value for the bolometric magnitude of

the Sun,mbol,⊙ (e.g., Torres 2010). The apparent bolometric magnitude is related to the

absolute bolometric magnitude,Mbol, through

Mbol = mbol + 5− 5log10d. (2.1.10)

The latter being determined by the total luminosityL of the star.

Due to the atmospheric and instrumental absorption, we are not able to measure the total

apparent flux of a star. The bolometric correction,BC, is a quantity to be added to the

apparent magnitude in a specific passband (in the absence of interstellar extinction) in order

to account for the flux outside that band:

mbol = mV + BCV, (2.1.11)

whereBCV andmV is the visual bolometric correction and the visual apparentmagnitude,

respectively. The visual band magnitude is often considered in this equation for historical

reasons, however, the definition of bolometric correction can be generalized to any pass-

band. The bolometric correction depends on the filter response functionR̃(λ) and on the

distribution of the star’s flux with wavelength, i.e. on the stellar spectral type.

2.1.1.2 Photometric systems

A photometric system is a set of system responses at specific passbands (filters), with a

definition of the zero-point for each passband. They can be categorized according to the
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widths of their passbands: broad-band systems with bands,∆λ at least 300 Å wide and up

to about 1000 Å wide, intermediate-band systems with bands 70 Å . ∆λ . 300 Å, and

narrow-band systems with bands no wider than a few tens of Å (∆λ . 70 Å).

Photometric colours, also known as colour indices, are defined as the differences between

magnitudes of a given star in two different passbands. Photometric systems that provide

multi-band photometry often give a single magnitude and several colour indices for a given

star. By observing a star through different-coloured filters one may have some indication of

its flux distribution, and hence, its spectral type.

The photometric systems can be classified according to the choice of the standard stars that

define the zero-points, as derived from Eq. (2.1.2). For instance, the Vega systems (also

known as “vegamag” systems) are the ones for which the zero-points are set by using the

magnitude and colours of the Northern A0V star Vega or of a setof A0 stars. In this system,

the colours of Vega are set to zero, and its V magnitude in the Johnson system is 0.03

(Johnson & Morgan 1953). Some systems, however, define the V magnitude of Vega to be

0 rather than 0.03 (e.g. Gray 2007).

In the Gunn griz systems, the metal poor main-sequence F-type subdwarfs are used as a

reference, instead of Vega. In particular, the star BD+17 4708, for which all colours are

defined to be zero is considered, with all magnitudes equal to9.50. The AB (Oke 1965)

and STMAG (Koornneef et al. 1986) systems define the colours of a source of constant

frequency flux density, or wavelength flux density, respectively, to be zero. Zero magnitude

in these systems correspond to the flux of Vega atλ ∼ 5500 Å (Johnson’s V band).

In what follows I will briefly mention some common photometric systems in the optical

and infrared (IR). A detailed description of the most commonphotometric systems and

their respective references can be obtained in the review onstandard photometric systems

of Bessell (2005). Some examples of these systems are the Johnson & Morgan UBV

(Johnson & Morgan 1953) system and its extensions to longer wavelengths, in the near-

infrared bands (R, I ,Z, J,H,K, L,M,N,Q). The Johnson system is a Vega system. Also the

Hipparcos/Tycho photometric system is a Vega system. It provides visible photometry in

three bands, namely inHP, BT andVT, that was obtained with the use of the Hipparcos

satellite. The Geneva system (Rufener & Nicolet 1988) is a seven colour-photometric

system (withU, B,V, B1, B2,V1,G bands) and is also a Vega system. The strömgrenuvby

(Strömgren 1966) is a widely used intermediate-band photometric system and is intended

for determining temperatures and gravities of B, A, F and early-G stars and metallicities of

F and G stars. It is a Vega system. The 2MASSJHKs system (Cohen et al. 2003) provides

data in theJ,H, andKs bands. These bands are similar to the Johnson’sJ,H,K bands, with
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the major difference being theKs band. The 2MASS magnitudes are normalized to a Vega

system, but with the magnitude of Vega being zero rather than0.03 (see, e.g., Cohen et al.

2003). In addition to these, there is the Sloan Digital Sky Survey u′g′r ′i′z′ system (Smith

et al. 2002) which is a Gunn system. The bands span a full rangeof wavelengths from 3000

to 10000 Å. The Kepler Spectral Classification Program team used a set of Sloan-like filters

to observe stars within the Kepler input catalogue and provide sloan magnitudes for them.

Around 1900 the photometers started to appear in association with the spectrographs, mak-

ing the spectrophotometers. The term spectrophotometry isused when not only the amount

of radiation but also its spectral distribution are measured.

2.1.2 Spectroscopy

Stellar spectroscopy is a technique that consists in the study of the spectrum of a star. A

stellar spectrum is obtained when the light of a star is dispersed according to its wavelength

in a spectrograph. While photometric measurements of the luminosity of a star are given

through coloured filters (and provide rough estimations of the energy distribution per wave-

length), a stellar spectrum provides a more detailed information about that distribution. One

can thus think of photometry as a form of a low resolution spectroscopy.

The spectral resolution,R, of a spectrograph defines the ability that it has to resolve features

in the electromagnetic spectrum and is given by,

R =
λ

∆λ
, (2.1.12)

where∆λ is the smallest difference in wavelengths that can be distinguished at a wavelength

of λ. The exact resolution ranges of a low, medium or high resolution spectrograph are not

well established. However, one may vaguely consider thatR < 20000, 20000< R < 50000,

andR > 50000 as being a low, medium, and high resolution spectrograph, respectively.

In 1666, Sir Isaac Newton observed the spectrum of the Sun. Hefound that when the white

light of the Sun passed through a glass prism, the light was split into a rainbow. In the 19th

century, several scientists studied the spectrum of light,namely the sunlight. In 1814, the

German optician Joseph Fraunhofer rediscovered the dark lines of the Sun’s spectrum. He

catalogued 576 thin black lines that he observed in the Sun’sspectrum and, in 1821, he was

able to associate one of the dark lines with an “earth element”. At this time it was already

verified that the same dark line appears when salt is sprinkled in a flame. He was then able to

measure the wavelengths of the two sodium lines, obtaining values very close to the modern

ones. However, he could not explain why the dark lines where there. In 1859, Gustav
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Kirchhoff and Robert Bunsen working with laboratory chemical spectrafound that each

chemical element has its own unique spectral signature - called spectral lines. Moreover, in

that year Kirchhoff summarized the observed relationships among the three types of spectra

(continuous, emission line, and absorption line), known asKirchhoff’s Laws.

With spectroscopy we are able not only to detect the presenceof chemical elements in stellar

atmospheres, but also to quantify their abundance. However, for the latter we depend on the

use of theoretical models of stellar atmospheres, as these are needed to compute synthetic

spectra to compare to the observed one. Through such comparison we are generally able to

derive important stellar parameters, such as the effective temperature, surface gravity and,

as discussed, the star’s chemical composition (see, e.g., Gray 2005).

Additional information that may be obtained through the analysis of the spectrum of a star

are stellar rotation, oscillations, activity, binarity, magnetic fields’ properties (in particular

if spectropolarimetry is considered), etc.

In the work described in this Chapter, the stellar spectra that we used was aimed at deter-

mining the total observed flux of a pulsating star. This was done in combination with other

sources of flux information, such as spectrophotometry, as well as atmospheric models for

the same star. We considered, for the stars under study, observed low resolution spectra

calibrated in flux available in the literature.

When the light of a star enters the telescope and passes through a spectrograph, a detector

captures the resulting spectrum on, for instance, a CCD. Then the 2-D raw spectrum, as

intensity vs wavelength, which might be in counts per second(or similar) must be calibrated

in flux so that the spectral energy distribution above the atmosphere (the physical flux) of

the observed star can be obtained. The standard procedure offlux calibration (e.g., Bessell

1999) consists in the determination of the instrumental response (i.e. the effect of the whole

telescope’s optics in combination with the CCD spectral sensitivity) and in the correction for

the atmospheric absorption (i.e. the absorption by a clear atmosphere plus the extinction due

to atmospheric haze) by comparing the observed stellar spectra to templates of stars with

known spectral energy distribution, denominated as standard stars. These standards must

be observed with the same setup and during the observations of the target stars. The flux

calibration procedure may be problematic due to several reasons: (1) there are few suitable

accurate spectrophotometric standards (they should be hotstars, with few absorption lines,

and for which one may approximate its spectral distributionby a black body), (2) there is

some difficulty of removing the telluric lines from the observed spectra (i.e. absorption lines

that originate in the Earth’s atmosphere and are prevalent in the visible and in the IR regions

of the spectrum), (3) standard stars should be observed by the telescope in use.
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For the work presented in this Chapter we found in the literature only few, and sometimes

old, low resolution spectra calibrated in flux for the stars under study. The precision of the

available spectra is no better than 1.5 - 2%.

2.1.3 Interferometry

Interferometry consists in using several techniques to analyse the result of interference of

waves. The interference patterns of waves are created by optical systems, the interferome-

ters.

Interferometers were idealized and constructed in the 19thcentury, having an important

role in the scientific and technological development duringthe end of the 19th century and

during the entire 20th century. A historical review of stellar interferometry is given by

Lawson (2000).

In this thesis, we will focus on the importance of stellar interferometry for the determination

of accurate stellar angular diameters. It was in 1920, that the first determination of an

angular diameter of a star other than the Sun was made using one of the first interferometers

built for astronomical proposes, on the Mount Wilson Observatory’s reflector telescope.

The star in question named Betelgeuse, also known as alpha Orionis, is a red giant star,

(Michelson & Pease 1921). At that time, the error induced by atmospheric fluctuations

on the measured angular diameter was estimated in the order of 10% to 20%. The first

angular diameter determination of a main-sequence star wasdone by Hanbury Brown &

Twiss (1956), onαCMa (Sirius), using the Narrabari Stellar Intensity Interferometer at the

Narrabari Observatory (Hanbury Brown et al. 1967). Furtheradvances in interferometry

would require the interferometric combination of light from separate telescopes spaced by

many tens of meters. This would provide more precise measurements of the angular size

than previously obtained. Measurements using separated telescopes were made by Johnson

et al. (1974) in the infrared and by Labeyrie (1975) in the optical. The major difficulty for the

optical interferometry from the ground is caused by the atmospheric turbulence. In the late

1970’s, thanks to the improvements in computer processing,the first fringe-tracking interfer-

ometer could operate fast enough to follow the blurring effects of astronomical seeing. The

Massachusets Institute of technology and the Naval Research Laboratory built and operated

a series of prototype interferometers named Mark I, Mark II,and Mark III. Shao & Staelin

(1980) reported the first successful active fringe-tracking results. In the last few years,

interferometry in the near infrared and in the visible is undergoing a fast evolution, thanks to

the development of precision opto-mechanical engineering, real-time control, and detectors.
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That can be seen from a new generation of fully operable interferometers, such as CHARA11

(at Mount Wilson), VLTI12 (at ESO-Paranal), and Keck13 (at Mauna Kea). Recent reviews of

the topics of interferometric techniques, including theirapplication to fundamental stellar

parameters are Quirrenbach (2001), Bergeron & Monnet (2002), Monnier (2003), Haniff

(2007a,b), Cunha et al. (2007).

The basic principle of stellar interferometry consists on observing a stellar source using

two or more separate telescopes, then a complex system of mirrors guides the beams from

the different telescopes to a delay line system, to compensate the path differences, and

subsequently to the beam combiner where light-waves are superimposed to produce bright

and dark fringes. The contrast or ‘visibility’ of these fringes is a measure of the coherence

of the light beams received from the different telescopes. If the separation between the

telescopes (baseline) is made very small then the coherencehas the value unity, i.e. the

light beams are identical and the visibility of the fringes is high. As the separation between

telescopes increase, the coherence and hence the visibility of fringes decrease until they

disappear. The exact relationship between fringe visibility and telescope separation depends

on the wavelength of the light received from the source, the size of the source, and the

distribution of light across the diameter of the source.

In practice, by measuring the visibility with a range of baselines of different lengths, one is

able to determine the angular diameter of a star, by fitting the measured visibilities to the

visibility curves of an uniform disk models of angular diameter θUD by χ2 minimization.

This comparison assumes a star to be an uniform disk and thus neglects the effect of limb-

darkening. A correction factor can be computed from a grid ofstellar atmospheres, and

applied toθUD to calculate the limb-darkened diameterθLD.

The angular resolution,R of an interferometer is equivalent to that of a telescope of diameter

equal to the largest separation between its individual elements, i. e.R = λ/B, with B being

the baseline.

With the interferometers available nowadays (see, e.g., Cunha et al. 2007, and references

therein), stellar angular diameter estimates (and hence stellar radius estimates, if the parallax

is known) with a relative precision better than a few per centcan be obtained. For instance,

Boyajian et al. (2012) recently measured the angular diameter of 44 main-sequence A, F,

and G type stars with an average precision of 1.5%.

This direct method of obtaining stellar radius with high precision is of great importance.

11http://www.chara.gsu.edu/CHARA/
12http://www.eso.org/sci/facilities/paranal/telescopes/vlti /
13http://keck.jpl.nasa.gov/keck index.cfm
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The radius is one of the fundamental parameters of a star. Once having a precise deter-

mination of the stellar radius, one can use it to restrict thespace of parameters in stellar

models and have a very good estimation for the stellar mass. Moreover, when combining

the interferometric stellar radius with asteroseismic data, one may be able to increase the

precision of the determination of stellar mass and age (Creevey et al. 2007). As an example,

in a study performed on the solar twin 18 Sco by Bazot et al. (2011), the author employed

asteroseismology (12 nights with HARPS) and long-baselineinterferometry (with the PAVO

beam-combiner at the CHARA array) in order to derive the star’s radius and mass. They

were able to obtain these two parameters with precisions of∼ 1% and∼ 3%, respectively.

Additionally, combining the interferometric derived stellar radius with an estimate for the

bolometric flux, one can obtain a direct measurement of a star’s effective temperature (e.g.,

Boyajian et al. 2012).

2.2 Fundamental parameters of rapidly oscillating Ap stars

In order to place a star in the HR diagram and hence find the model that best represents

it, the star’s luminosity and effective temperature need to be determined as accurately as

possible. The former can be computed if the distance,d, (d = 1/Π in parsec (pc) units,Π

the parallax in arcseconds (as)) and the apparent bolometric flux, fbol, are known; while the

latter can be derived if the angular diameterθ and fbol are known, i. e.,

L =
4π fbolC2

Π2
(2.2.1)

and

σT4
eff =

4 fbol

θ2
, (2.2.2)

whereC is the conversion factor from parsecs to metres. The bolometric magnitude (or flux)

can be determined from the visual magnitude (or flux) if the visual bolometric correction

is available (cf. Eq. (2.1.11)). Numerous tabulations can be found in the literature for the

empirical visual bolometric corrections. However, they are determined from the analysis of

normal stars and they should not be used for roAp stars. RoAp stars show abnormal flux

distributions, with strong flux deficiencies in the ultraviolet relative to normal stars with the

same Paschen slope (Leckrone 1973; Leckrone et al. 1974; Jamar 1978). This makes the

visual bolometric corrections available for normal stars rather unreliable for roAp stars. In

what follows, we will describe the method that we used to determine the bolometric flux

for this type of stars. We will also present our results, i.e the bolometric flux values that

we obtained using the described method applied to two roAp stars, namelyβCrB (Bruntt
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et al. 2010) andγEquulei (Perraut et al. 2011). The computed bolometric flux values were

combined with the stars’ distance and angular diameter obtained from interferometry, which

together made possible a relatively accurate determination of their effective temperature and

luminosity.

2.2.1 Bolometric flux of rapidly oscillating Ap stars

The bolometric flux is given by the area under the curve that represents the spectral energy

distribution (SED) of a star, in all wavelengths from zero toinfinity. As an example of

a synthetic SED of a star with effective temperature of 5770 K, logg = 4.4 and solar

metallicity, i.e. [Fe/H] = 0, is shown in Figure 2.1. The task of determining the bolometric

Figure 2.1: A synthetic spectral energy distribution (SED) of a star with effective temperature of

5770 K, logg = 4.4 and solar metallicity, from the Kurucz Atlas9 database. The flux is given in

FLAM surface flux units, i.e. erg cm−2 s−1 Å−1.

flux would be easy to perform if that energy distribution was available. However, the
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spectral energy distributions available in the literatureare given in bands of wavelengths

which, in most cases, all together do not cover the entire wavelength range. Hence, regions

of wavelength for which no SED is available have to be filled either through recourse to

synthetic spectrum or by interpolation and/or extrapolation from the wavelengths for which

the SED is available.

To compute the bolometric flux of roAp stars, we started by searching in the literature for

low resolution flux calibrated spectra of the targets under study. In addition, we looked for

photometric data to complement the spectral coverage. In the wavelength range for which

only photometric data or no data at all were available, we either used model atmospheres (in

our case Kurucz models) or performed linear interpolations. Regarding the Kurucz models,

they were obtained using the IDL routine Kurget1 (Atlas9 models) and the corresponding

database of models available in the IUE reduction and data analysis package IUEDAC14. We

looked for the Kurucz model (in terms ofTeff , log g and [Fe/H]) that best represented the

photometric data and/or the low resolution spectra available for the star. The whole energy

distribution of the star was finally obtained by combining the star’s low resolution spectra

in a certain wavelength range with the synthetic spectrum ofthe best fitted Kurucz model,

and/or linear interpolations performed in the wavelength rangefor which no observed spec-

tra was available.

2.2.2 β CrB

The northern bright starβ Coronae Borealis (β CrB, HD 137909, HR 5747, HIP 75695),

which belongs to the Corona Borealis constellation has beenextensively studied in the past.

It is a multiple system with two confirmed components (Tokovinin 1984). We refer to the

primary star,β CrB A and to the secondaryβ CrB B.

β CrB first Hipparcosparallax determination wasΠ = 28.6± 0.69 mas. The new reduction

by van Leeuwen (2007) givesΠ = 29.17±0.76 mas. However, the latter is not corrected for

binarity effects, so, here, we adopted the originalHipparcosparallax.

β CrB, in particularβ CrB A, is part of the coolest subgroup of the classical Ap stars, the

SrCrEu, having been classified as a type A9 SrEuCr by Renson & Manfroid (2009).βCrB A

was found to pulsate in a single oscillation frequency at 1.031 mHz (a period of 16.2 min)

(Kurtz et al. 2007), becoming a member of the roAp class of pulsators.

Several values for the effective temperature ofβ CrB can be found in the literature, of

14http://archive.stsci.edu/iue/iuedac.html
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Table 2.1: Limb-darkened angular diameters,θLD, and NACOJ andK magnitudes forβ CrB from

Bruntt et al. (2010).

Star θLD (mas) NACO magnitudes

J K

β CrB A 0.699± 0.017 3.54± 0.07 3.50± 0.08

β CrB B 0.415± 0.017 5.00± 0.07 4.86± 0.08

which we mention here a few. Kochukhov & Bagnulo (2006) used photometric indices

to determine the effective temperature and found 7430± 200 K. Netopil et al. (2008) have

determined the effective temperature ofβ CrB from three photometric systems (Strömgren,

Geneva and Johnson) and compared these with values in the literature. The mean value

derived from the photometric indices is 7710± 260 K and the mean of the literature values

is 8340± 360 K. This is a typical example of the large scatter found in effective temperature

determinations of chemically peculiar A stars.

Interferometric observations ofβ CrB in the near infrared were obtained by Bruntt et al.

(2010) using the CHARA array and the FLUOR15 instrument. Limb-darkened angular

diameters derived by the authors forβ CrB A andβ CrB B are shown in Table 2.1. Bruntt

et al. (2010) also observedβ CrB using the VLT/NACO16 adaptative optics instrument and

obtained images for the two components of the binary system in theJ andK bands, which

led them to the determination of the NACOJ andK magnitudes for each of the components

separately. These values are given in Table 2.1. Moreover, the authors found a maximum

angular separation of 0.3′′ between the two components.

In order to accurately determine the effective temperature ofβ CrB we made use of the

interferometric and the imaging data mentioned above. In what follows we will describe

our method to compute the bolometric flux which, together with the angular diameter, made

possible a weakly model dependent determination of the effective temperature ofβ CrB (cf.

Eq. (2.2.2)). The luminosity was also determined by combining the computed bolometric

flux and theHipparcosparallax extracted from the literature (cf. Eq. (2.2.1)).

2.2.2.1 Data

For the ultraviolet (UV) range we downloaded ten spectra ofβ CrB (Table 2.2) from the Sky

Survey Telescope (Jamar et al. 1976) obtained at theIUE “ Newly Extracted Spectra” data

15http://www.lesia.obspm.fr/astro/interfero/pages/fluor english.html
16http://www.eso.org/sci/facilities/paranal/instruments/naco/
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Table 2.2: UV spectra from IUE forβ CrB. LWR and SWP stands for Long Short Redundant

and Short Wavelength Prime, respectively. High@low standsfor high dispersion rebinned to low

dispersion.

Image Camera Dispersio Aperture Observation Exposure

Number Start Time (UT) Time (s)

02369 LWR High@low small 16/09/78 06:13:00 899.765

02382 LWR High@low small 17/09/78 04:36:13 419.714

03999 LWR High@low small 12/03/79 17:05:00 383.669

04000 LWR High@low small 12/03/79 18:51:00 359.503

07000 LWR High@low large 24/02/80 13:38:47 269.800

02661 SWP High@low large 16/09/78 06:47:00 2999.781

02667 SWP High@low small 17/09/78 04:47:24 1799.652

04606 SWP High@low small 12/03/79 16:27:00 1209.828

04607 SWP High@low small 12/03/79 17:33:00 4199.499

08038 SWP High@low large 24/02/80 13:08:31 1079.576

archive17. We used only rebbined high resolution (R = 18000 atλ = 1400 Å,R = 13000

at λ = 2600 Å) spectra (Solano 1998) from the long (1850 - 3350 Å) andshort wavelength

(1150 - 1980 Å) ranges obtained with small (3′′ circle) and large aperture (20′′×10′′). Based

on the quality flag listed in the IUE spectra (Garhart et al. 1997) we removed all the bad

pixels from the data, i.e. we considered only the points withquality= 0. The mean of the

spectra for each wavelength range (long vs short) was then computed to obtain one single

spectrum ofβ CrB between 1150 and 3350 Å.

For the visible part of the spectrum, we considered a low resolution spectrum calibrated in

flux in the interval 3200 Å< λ < 10800 Å obtained by Alekseeva et al. (1996). We also

considered the V band magnitudes for each component. They were computed from the total

magnitude of the system,mV(A + B) = 3.67 (Rufener & Nicolet 1988) and the magnitude

difference∆m= 1.99 measured by Horch et al. (2004) by speckle interferometryat 503 nm.

This combination givesmV = 3.83 andmV = 5.82, for the components A and B, respectively.

To convert these visual magnitudes into flux we used an equation equivalent to Eq. (2.1.2)

in terms of the stellar flux where the value for the constantC1 is shown in Table 2.3 given by

Rufener & Nicolet (1988). These values were then used to calibrate the Kurucz models, as

explained below. This calibration is needed since Kurucz models give the flux at the surface

of the star, not the value observed on Earth.

For the near IR we considered the NACOJ andK magnitudes mentioned in Section 2.2.2.

17http://sdc.laeff.inta.es/cgi-ines/IUEdbsMY
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Table 2.3: Calibrated photometricmV, and NACOJ andK fluxes forβ CrB.

Band λeff (Å) Flux (×10−12 erg cm−2 s−1 Å−1) C1

β CrB A β CrB B

V 5504 109.749 17.550 3.5690

J 12650 11.347 1.795 23.8228

K 21800 2.957 0.513 25.8647

Again, to convert these magnitudes into fluxes we used Eq. (2.1.2) in terms of the stellar

flux. The constantC1 was computed by integrating the flux of Vega through each of the

J andK filters of the NACO instrument and assuming that Vega has zeromagnitude in all

bands. These results are shown in Table 2.3.

2.2.2.2 Bolometric flux and Effective temperature

The bolometric flux ofβ CrB was determined by combining the data collected from the

ultraviolet (UV) to the near infrared (near IR), as described in Section 2.2.2.1, with the

synthetic spectrum based on the Kurucz models, in the wavelength ranges where the data is

not available or not sufficient to compute the bolometric flux.

Sinceβ CrB is a binary system with an angular separation of∼0.3”, the data from the INES

data archive and the data from the catalog of Alekseeva et al.(1996) contain the flux of

both components. Since our interest was primarilyβ CrB A, we had to subtract the spectral

contribution ofβ CrB B to the spectrum of the binary. As no observed spectrum ofβ CrB B

is available in the literature to compute the SED ofβCrB B, we used the Kurucz models that

best fitted the only photometric data available for this star, which are itsmV, and the NACO

J andK magnitudes. We constructed a grid of Kurucz models forβ CrB B based on its

effective temperature, derived from the combination of the interferometric measurement of

the angular diameter and a published bolometric correctionfor the star (Bessell et al. 1998).

Note thatβ CrB B is a ‘normal’ star, thus the bolometric correction usedshould be reliable.

The synthetic spectra for the Kurucz models were calibratedusing themV magnitude of

β CrB B. In order to take into account the errors in theJ andK magnitudes, we generated

100 randomJ andK magnitudes within the uncertainties and found the 100 Kurucz models

spectra that best fitted the generated set of magnitudes. We subtracted each of the 100

spectra of the component B from the UV and visible spectrum ofthe binary, thus obtaining

100 spectra in the UV and visible for the component A. We then performed a mean over

these 100 spectra to obtain one single spectrum ofβ CrB A in the UV and visible. To

determine the spectrum ofβ CrB A in the infrared we considered two cases. (1) We used
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the synthetic spectrum for the Kurucz model that best fitted the spectrum of the star in the

visible and the NACOJ andK photometry. To calibrate the models we considered the flux

of the spectrum ofβ CrB A at λ = 5504 Å to be the same as that of the Kurucz model

spectrum at this wavelength. (2) we used the synthetic spectrum for the Kurucz model that

best fitted themV, and the NACOJ and K photometry. In this case,mV of β CrB A at

λ = 5504 Å was used to calibrate the models. In both cases (1) and (2) we generated 100

J andK magnitudes ofβ CrB A within the uncertainties, and in case (2) we also generated

100mV values. We got 100 Kurucz models that best fitted each set of generated magnitudes.

We then performed a mean over the 100 best Kurucz models foundfor each case. Note that

when searching for the best Kurucz model we intentionally disregarded the data in the UV,

because Kurucz models are particularly unsuitable for modelling that region of the spectra

of roAp stars.

The final spectrum ofβ CrB A, shown in Figure 2.2, was obtained from an extrapolation to

the interval 912 Å< λ < 1150 Å assuming zero flux at 912 Å, the averaged IUE spectrum

in the wavelength interval 1150 Å< λ < 3350 Å, and the Alekseeva et al. (1996) spectrum

from 3200 to 10800 Å, both without the contribution ofβCrB B, and for wavelengths longer

than 10800 Å we considered the two averaged best Kurucz models found, as previously

described.

In short, the bolometric flux for component A,fbol,A, can be written as,

fbol,A =

∑N
k=1

[(

fIUE,bin. + fspectrumV,bin.

)

− f k
IUE+spectrumV,B

]

N
+



















∑N
k=1 f k

IR1,A

N
∑N

k=1 f k
IR2,A

N

, (2.2.3)

whereN = 100. fIUE,bin. is the combined flux of the binary in the UV obtained from the IUE

spectrum from 1150 Å to 3350 Å,fspectrumV,bin is the flux of the binary in the visible from

3200 Å to 10800 Å (Alekseeva et al. 1996),f k
IUE+spectrumV,B is the flux of the component B

from 1150 Å to 10800 Å for eachk Kurucz best model, andf k
IR1,A, f k

IR2,A are the fluxes of

eachk Kurucz best model found for the component A in the wavelengthregionλ > 10800 Å

in cases (1) and (2), respectively. The error on the bolometric flux for component A,∆ fbol,A,

can be written as,

∆ fbol,A =

√

√

√

√

(∆ fIUE,bin.)2 + (∆ fspectrumV,bin.)2 + (∆ fIUE+spectrumV,B)2 +



















(∆ fIR1,A)2

(∆ fIR2,A)2
, (2.2.4)

where∆(...) stands for the uncertainties on the fluxes. We considered relative flux uncertain-

ties of 10% for fIUE,bin. (González-Riestra et al. 2001), and 3% forfspectrumV,bin. (Alekseeva

et al. 1996). The uncertainties onfIUE+spectrumV,B, on fIR1,A, and on fIR2,A are taken to be
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Figure 2.2: The black line shows the combined IUE spectrum from 1150 Å to 3350 Å and the

dark blue line shows the low resolution spectrum calibratedin flux, in the visible, from 3200 Å to

10800 Å (Alekseeva et al. 1996), for theβ CrB binary. The yellow line shows the spectrum of

β CrB A from 1150 Å to 10800 Å obtained after removing the contribution ofβ CrB B (red line) to

the spectrum of the binary in that wavelength range. The green and light blue lines forλ > 10800 Å

correspond to the averaged Kurucz model spectra that best fits the spectrum ofβ CrB A from

3200 Å to 10800 Å and its NACOJ andK magnitudes (green line) and the averaged Kurucz model

spectra calibrated tomV that best fitsβ CrB NACO’s J andK magnitudes (light blue line). ThemV,

J, andK magnitudes are shown forβ CrB A andβ CrB B as circles and squares, respectively. Their

errors are of the size of the symbols (see text for details).
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the dispersion of the 100 best Kurucz models. Note that in case (1) no uncertainty was

associated with the visible spectrum, when the simulationswere made.

The bolometric flux ofβ CrB A, fbol,A, was then computed from the integral of the final

spectrum. Moreover, the luminosityL and the effective temperatureTeff were computed

through Eq. (2.2.1) and Eq. (2.2.2), respectively.

2.2.2.3 Results

Our results for the bolometric flux, effective temperature and luminosity forβ CrB A and for

βCrB B are shown in Table 2.4. The bolometric flux for componentB, fbol,B, was determined

Table 2.4: Bolometric flux, fbol (col. 2), effective temperature,Teff (col. 3) and luminosity,L (col.

3) in solar units, obtained forβ CrB A and forβ CrB B (see text for details).

fbol (erg cm−2 s−1) Teff (K) L/L⊙
β CrB A case (1) (6.4± 0.2)×10−7 7923± 114 24.4± 1.4

β CrB A case (2) (6.3± 0.2)×10−7 7890± 114 24.0± 1.4

β CrB B (1.23± 0.02)×10−7 6804± 142 4.7± 0.2

from the average of the bolometric flux values obtained from the 100 Kurucz models that

best fitted itsmV, J andK magnitudes. We foundfbol,B = 1.23× 10−7 erg cm−2 s−1. The

dispersion onfbol,B was found to be 0.02×10−7 erg cm−2 s−1, corresponding to an uncertainty

of 2%.

The bolometric flux for component A,fbol,A was found to be (6.4±0.2)×10−7 erg cm−2 s−1 for

case (1) and (6.3± 0.2)× 10−7 erg cm−2 s−1 for case (2). The errors onfbol,A were computed

using Eq. (2.2.4) from which we obtain,

∆ fbol,A =

√

√

√

√

(0.05× 10−7)2 + (0.18× 10−7)2 + (0.02× 10−7)2 +



















(0.01× 10−7)2

(0.06× 10−7)2

=



















0.2× 10−7

0.2× 10−7
.

(2.2.5)

As a final result for the flux, for the effective temperature and luminosity forβ CrB A, we

took the mean of each of the two values shown in Table 2.4 and considered the uncertainty

to be the largest of each of the two uncertainties. The equation of propagation of errors was

used to estimate the errors onTeff and L/L⊙. The values derived for these quantities are
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Table 2.5: Final results forβ CrB A.

fbol (erg cm−2 s−1) Teff (K) L/L⊙ R/R⊙
β CrB A (6.4± 0.2)× 10−7 7906± 114 24.2± 1.4 2.63± 0.09

given in Table 2.5. If, instead, we took forTeff andL an uncertainty such as to enclose the

two uncertainties, the result would beTeff,A = 7906± 130K andL/L⊙,A = 24.2± 1.6.

The radius,R, was derived from the relation,

R=
θ

2
× d, (2.2.6)

and its uncertainty,∆R, from the equation of propagation of errors. We foundRA = 2.63±

0.09 R⊙ for β CrB A, andRB = 1.56± 0.07 R⊙ for β CrB B.

Figure 2.3 shows the position ofβ CrB A in the HR diagram using the results shown in

Table 2.5.

2.2.3 γ Equulei

γ Equulei (γ Equ, HD 201601, HR 8097, HIP 104858) belongs to the Equuleus constellation

situated in the northern hemisphere. It has an apparent V band magnitude,mV, of 4.7 being

the third brightest star in its constellation and the secondbrightest roAp star known. Its

classification as an roAp star results from it being a magnetic pulsating A9p SrEuCr star (Abt

1985). Detailed analysis of its light variation from multi-site observations performed by

Martinez et al. (1996) shows that the star pulsates with fourp-mode pulsation frequencies,

corresponding to periods in the range from 11.68 to 12.45 min. Gruberbauer et al. (2008),

using MOST photometry, discovered three additional pulsation frequencies inγ Equ, and

confirmed the four previously known. Using a grid of magneticmodels the authors were

able to perform mode identifications for the seven observed frequencies. Their best model

givesM = 1.8 M⊙, Teff = 7617 K,L/L⊙ = 12.22 and a polar magnetic field strength of about

8.1 kG. Ryabchikova et al. (2002) using a synthetic spectra with parametersTeff = 7700 K,

log g = 4.2, and the metals to hydrogen abundance ratio, [M/H] = +0.5, found an evidence

for abundance stratification in the atmosphere ofγ Equ, typical of roAp stars.

γ Equ is a multiple system (Mason et al. 2001). The primary component, hereafter,γ Equ A,

is the peculiar one. Its closest component lies at 1.25′′±0.04′′ and has a Tycho V magnitude

difference, with respect to the primary star, of∆mVT = 4 (Fabricius et al. 2002). We will

refer to the secondary star in the system asγ Equ B. TheHipparcosparallax ofγ Equ is

27.55± 0.62 mas (van Leeuwen 2007).
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Figure 2.3: The position ofβ CrB A in the Hertzsprung-Russell diagram. The rectangle marks the

estimated 1-σ uncertainty onTeff andL/L⊙ (cf. Table 2.5) and the two diagonal lines correspond to

constant radii consistent with the 1-σ uncertainty on the interferometric measurements.

Perraut et al. (2011) using the visible spectro-interferometer VEGA18 installed on the optical

CHARA array determined a limb-darkened angular diameter,θLD, of 0.564± 0.017 mas for

γ Equ.

Due to its chemical inhomogeneities and flux redistributions, γ Equ shows a complex at-

mospheric structure. Consequently, the photometric and spectroscopic determinations of its

effective temperature based on models that do not take these inhomogeneities into account

are most likely biased. With this in mind, we made use of the measured angular diameter

to determine an almost model independent effective temperature and luminosity forγ Equ,

similarly to what we did forβ CrB. To that aim, we computed the bolometric flux ofγ Equ

following the procedure described below.

18https://www.oca.eu/vega/en/present/
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Table 2.6: UV spectra from IUE forγ Equ. LWP stands for Long Wavelength Prime and High@low

stands for high dispersion rebinned to low dispersion.

Image Camera Dispersion Aperture Observation Exposure

Number Start Time (UT) Time (s)

06874 LWP high@low large 8/10/1985 18:55:04 599.531

09159 LWP high@low large 23/09/1986 20:41:13 539.730

2.2.3.1 Data

For the UV range, we collected two rebinned high resolution spectra ofγ Equ from the

Sky Survey Telescope, obtained at the IUE Newly Extracted Spectra (INES) data archive,

covering the wavelength range [1850 Å; 3350 Å]. See Table 2.6for the details of the spectra.

There were no spectra available for the short wavelength range, between 1150 and 1980 Å.

Based on the quality flag listed in the IUE spectra (Garhart etal. 1997) we removed all

the bad pixels from the data, as well as all points with negative flux. The mean of the two

spectra was then computed to obtain one single spectrum ofγ Equ in the range 1850 Å<

λ < 3350 Å.

For the visible, we collected two spectra forγ Equ, one from Burnashev (1985), which

is a spectrum from Kharitonov et al. (1978) reduced to the uniform spectrophotometric

system of the “Chilean Catalogue”, and one from Kharitonov et al. (1988). We verified

that the latter was in better agreement with the Johnson (Morel & Magnenat 1978) and the

Geneva (Rufener & Nicolet 1988) photometry than the former.To convert from Johnson and

Geneva magnitudes to fluxes we used the calibrations given byJohnson (1966) and Rufener

& Nicolet (1988), respectively.

We also collected photometric data ofγ Equ B, in the visible. These data was used to

estimate the contribution ofγ Equ B to the total flux determined for the binary, as it will be

explained below. The data available in the literature forγ Equ B is very limited. There are

two Tycho magnitudes forγ Equ B from Fabricius et al. (2002), namelymBT = 9.85± 0.03

and mVT = 8.69 ± 0.03, and oneHipparcosmagnitude from Perryman & ESA (1997),

mHP = 9.054± 0127. To convert from Hipparcos/Tycho magnitudes into fluxes we used the

zero points from Bessel & Castelli (private communication). See Table 2.7.

For the infrared, we collected the photometric data available in the literature forγ Equ. The

calibrated observational photometric fluxes that we considered in this study are given in

Table 2.8.
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Table 2.7: Calibrated photometricmHP, mBT andmVT fluxes forγ Equ B.

Band λeff (Å) Flux (×10−12 erg cm−2 s−1 Å−1) C1

mHP 5170 0.925 21.031

mBT 4280 0.766 20.439

mVT 5272 1.32 21.012

Table 2.8: Calibrated photometric infrared fluxes forγ Equ binary.

Band λeff Flux Source Calibration

(Å) (×10−12 erg cm−2 s−1 Å−1)

I 9000 15.53 1 a

J 12500 5.949 2 b

H 16500 2.420 2 b

K 22000 0.912 2 b

L 36000 0.140 2 b

M 48000 0.0512 2 b

J 12350 6.090 3 c

H 16620 2.584 3 c

K 21590 1.067 3 c

Source references: (1) Morel & Magnenat (1978); (2) Groote &Kaufmann (1983); (3) Cutri et al.

(2003). Calibration references: (a) Johnson (1966); (b) Wamsteker (1981); (c) Cohen et al. (2003).

2.2.3.2 Bolometric flux and Effective temperature

To obtain de full SED forγ Equ and thus compute its bolometric flux we took the spectrum

of the star that was obtained by combining the averaged IUE spectrum between 1854 Å and

3220 Å, the Kharitonov et al. (1988)’s spectrum from 3225 Å to7375 Å, and, for wave-

lengthsλ < 1854 Å andλ > 7390 Å we considered two cases: (1) we used the synthetic

spectrum for the Kurucz model that best fitted simultaneously the star’s spectrum in the

visible and the star’s photometry in the infrared and, (2) weperformed a linear extrapolation

between 506 Å and 1854 Å, considering zero flux at 506 Å and a linear interpolation to

the infrared fluxes between 7390 Å and 1.6×106 Å considering zero flux at 1.6×106 Å.

In case (1), in order to find the Kurucz model that best fits the visible and the IR data of

the star, we ran a grid of Kurucz models with different effective temperatures, logg and

metallicities. We considered two methods to calibrate the models, namely: (i) the star’s flux

at 5504 Å, f5504, given by the Kharitonov et al. (1988)’s spectrum (ii) the relation (R/d)2.

For R/d = θ/2 we used the limb-darkened angular diameter,θLD, given by Perraut et al.
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Figure 2.4: The whole spectrum obtained forγ Equ. Black line corresponds to the average of the

IUE spectra and the dark blue line corresponds to the Kharitonov et al. (1988)’s spectrum. For

wavelengthsλ < 1854 Å andλ > 7390 Å, the figure shows the curve obtained using the interpolation

method (red line), the Kurucz model that best fits the spectroscopy in the visible and the photometry

in the infrared when models are calibrated with the star’s magnitudemV (light blue line) and when

models are calibrated with the relation (R/d)2 (green line). The Geneva and infrared photometry

(circles) and Johnson UBVRI photometry (triangles) are overplotted to the spectrum.

(2011). The bolometric flux,fbol, was then computed by integrating the spectrum of the star,

the effective temperature,Teff, was computed using Eq. (2.2.2), and the luminosity,L, was

determined using Eq. (2.2.1). Figure 2.4 shows the final spectra obtained forγ Equ with the

two different calibration methods and with the interpolation method.

The final spectra that we obtained forγ Equ contains the flux of bothγ Equ A andγ Equ B.

We then estimated the contribution ofγ Equ B to the bolometric flux and, hence, to the

effective temperature and luminosity that we determined for the binary. Knowing this

contribution, we were able to determine the effective temperature ofγ Equ A. To estimate

γ Equ B’s effective temperature we used its Tycho/Hipparcos magnitudes and color-Teff cali-

bration from Ramı́rez & Meléndez (2005). This was done assuming three different arbitrary
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Table 2.9: Bolometric flux, fbol, and effective temperature,Teff , obtained forγ Equ, using three

different methods (see text for details).

Calibration method fbol (erg cm−2 s−1) Teff (K) L/L⊙
mV (3.09± 0.20)×10−7 7348± 162 12.7±1.0

(R/d)2 (3.15± 0.21)× 10−7 7383± 166 12.9±1.0

Interpolation (3.11± 0.21)× 10−7 7360± 167 12.7±1.0

values and uncertainties for the metallicity,−0.4±0.5, 0±0.5 and 0.4±0.5 dex. The values

found for the effective temperature wereTeff = 4570, 4686 and 4833 K, respectively, with an

uncertainty of±40 K (Ramı́rez & Meléndez 2005). The metallicity, effective temperature,

andmV were used to estimate logg, using theoretical isochrones from Girardi et al. (2000)19.

For the three values of metallicities andTeff mentioned above, we found logg = 4.58,

4.53, and 4.51, respectively. With these parameters we computed three Kurucz models and

calibrated each of them in three different ways: (i) using themHP magnitude, (ii) using the

mBT magnitude, and (iii) using themVT magnitude.

2.2.3.3 Results

Our results for the bolometric flux,fbol, effective temperature,Teff , and luminosity,L, for

γ Equ are shown in Table 2.9. The uncertainties in the three values of the bolometric flux

given in Table 2.9 were estimated by considering an uncertainty of 10% on the total flux

from the combined IUE spectrum (González-Riestra et al. 2001), an uncertainty of 4% on

the total flux of the low resolution spectrum from Kharitonovet al. (1988), an uncertainty

of 20% on the total flux derived from the Kurucz model, and an uncertainty of 20% on the

total flux derived from the interpolation. The latter two aresomewhat arbitrary. Given the

abnormal flux distributions in roAp stars and the consequentdeficient of Kurucz models

in reproducing it, our attitude was one of being conservative enough to guarantee that the

uncertainty in the total flux was not underestimated due to the difficulty in establishing

these two values. The corresponding absolute errors were then combined to derive the

errors in the flux which are shown in Table 2.9. Combining these with the uncertainty

in the angular diameter and in the parallax, we derived the uncertainty in the individual

values of the effective temperature and luminosity. To compute these errorswe used the

equation of propagation of errors. As a final result we take the mean of the three values

and consider the uncertainty to be largest of the three uncertainties. Thus, the flux, the

effective temperature, and luminosity adopted forγ Equ are given in Table 2.10. If, instead,

19http://stev.oapd.inaf.it/cgi-bin/param
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Table 2.10:Final results forγ Equ.

fbol (erg cm−2 s−1) Teff (K) L/L⊙ R/R⊙
γ Equ (3.12± 0.21)× 10−7 7364± 167 12.8± 1.0 2.20± 0.08

we took for the effective temperature and luminosity an uncertainty such as toenclose the

three uncertainties, the result would beTeff = 7364± 182 K,L = 12.8± 1.1 L⊙. The radius,

R, was calculated using Eq. (2.2.6) and its uncertainty was calculated from the equation of

propagation of errors. We obtainedR= 2.20± 0.08 R⊙, for γ Equ.

The maximum flux found forγ Equ B through the procedure described in Section 2.2.3.2

was 0.19×10−7 erg cm−2 s−1, which corresponds to 6% of the total flux. This implies that the

effective temperature ofγ Equ A determined above may be in excess by up to 113 K due

to the contamination introduced by this companion star. Also, the luminosity ofγ Equ A is

increased by up to 0.8 L⊙ when the companion is considered.

We used the values of the effective temperature and luminosity determined above, together

with the radius to placeγ Equ in the HR diagram as shown in Fig 2.5.
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Figure 2.5: The position ofγ Equ in the Hertzsprung-Russell diagram. The constraints onthe

fundamental parameters are indicated by the 1-σ error box (logTeff , log (L/L⊙)) and the diagonal

lines (radius). The box in solid lines corresponds to the results derived when ignoring the presence

of the companion star, as shown in Table 2.10. The box in dashed lines corresponds to the results

derived after subtracting from the total bolometric flux themaximum contribution expected from the

companion (see text for details). The box in dotted lines corresponds to the fundamental parameters

derived by Kochukhov & Bagnulo (2006).
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2.3 Discussion and Conclusions

We have determined the bolometric flux and effective temperature of two roAp stars, namely

β CrB andγ Equ using an only weakly model-dependent technique. The bolometric flux

was computed from the combination of photometric and spectroscopic data available in the

literature for the star, and Kurucz models atmospheres. Theangular diameter of the stars

derived from interferometric data was used, together with the bolometric flux and parallax,

making it possible the determination of their effective temperatures and luminosities. Since

bothβ CrB andγ Equ are binaries, we also determined the contribution of thesecondary

star to the derived parameters.

We recall that roAp stars show abnormal flux distributions. The bolometric corrections

available in the literature are computed for normal stars, thus the bolometric flux (and hence

the effective temperature) estimations of roAp stars from bolometric corrections are rather

unreliable. When dealing with peculiar stars, like Ap stars, it is thus more adequate to

properly compute the bolometric flux as we did here. However,it is precisely the difficulty

in obtaining the full spectrum of the star that increases theuncertainty in the computed

bolometric flux and, hence, in the luminosity and effective temperature. Moreover, the fact

that the data available in the literature for the secondary star in these binary systems is almost

inexistent results in an increase of the uncertainty in the derived parameters for the primary

stars.

A wide range of values of the effective temperature is found in the literature for the roAp

stars studied in this work. Table 2.11 shows a comparison between the values derived here

and those found in the literature. Forβ CrB values from 7230 to 8700 K (considering 1-σ

uncertainties) can be found in the literature. Forγ Equ, the literature values range from

6811 K (Soubiran et al. 2010b,a) to 8982 K (Prugniel et al. 2011). Also, from a similar

analysis of flux and interferometric data for the roAp starα Cir, we had previously found

Teff = 7420± 170 K (Bruntt et al. 2008). For this star the literature values for the effective

temperature also span a large range, varying from 7470 K to 8730 K. These are typical

examples of the large scatter found in the effective temperatures for chemically peculiar

A stars. Kochukhov & Bagnulo (2006) found 7430± 200 K for β CrB, 7621± 195 K for

γ Equ, and 7670± 200 K forα Cir. Our results don’t agree with those from Kochukhov &

Bagnulo (2006) only forβCrB A. We must remember, however, that the photometric indices

of β CrB include both components of the binary, so their work willresult in a temperature

that is too low. Taking this into account we conclude that thephotometric derivation of the

effective temperature by Kochukhov & Bagnulo (2006) provides results forβ CrB that are

in agreement with ours within about 300 K.
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Table 2.11: Effective temperature forβ CrB, γ Equ andα Cir obtained in our work (2nd column),

the range of effective temperatures found in the literature for the three stars (3rd column), and their

effective temperature given by Kochukhov & Bagnulo (2006) (4thcolumn).

Star Teff (K) Teff (K) Teff (K)

(our work) (range in literature) (Kochukhov & Bagnulo 2006)

β CrB 7906± 114 7230− 8700 7430± 200

γ Equ 7251± 167 6811− 8982 7621± 195

α Cir 7420± 170a 7470− 8730 7670± 200
aTeff values derived in our previous work and presented in Bruntt et al. (2008)

Our results are expected to be less model dependent than those estimated from photometric

indices, such as the ones derived by Kochukhov & Bagnulo (2006). In our method, we

only use the models to estimate the bolometric flux in the regions where the flux is almost

negligible, and for the adopted limb darkening. For instance, our result onTeff for β CrB A,

7906± 114 K, is in excellent agreement with that obtained by Brunttet al. (2010) of 7980±

180 K, the only difference between their derivations being the fact we considered the Kurucz

models and they considered interpolations in the wavelength range where data was not

available for the star.

We hope that combining accurate determinations of the effective temperature and luminosity

with asteroseismic data may have an important impact on the modelling of these pulsating

roAp stars in future work.



Chapter 3

Stellar Modelling

In this Chapter I will present the work we performed on the forward modelling of particular

pulsating stars. By forward stellar modelling I mean the procedure leading to the compar-

ison between the observed non-seismic and seismic observables of a pulsating star and the

corresponding quantities computed for models (model observables), with the objective of

identifying the model that best reproduces the data, and hence determine stellar properties

such as the mass and age. This comparison between the model observables and the data is

also important in order to improve the physics incorporatedin the former.

As will be discussed below, in Section 3.4, the outer convective layers of stars are not

properly modelled. This results on computed frequencies that are shifted from the observed

ones. An empirical correction was proposed in the literature to correct the model frequencies

for this shift. In this Chapter we aim at applying and test this empirical correction to the

model frequencies computed for three stars. One is more evolved than the Sun (β Hyi),

the second one is hotter than the Sun (KIC 10273246), and the last is a binary whose

components are similar to the Sun (16 Cyg). This provides us means of testing the empirical

correction in a relatively wide range of stellar properties.

3.1 Introduction

Stellar models consist on a set of physical variables - such as the temperature, luminosity,

chemical composition, etc - usually expressed as a functionof the distancer from the stellar

centre. These describe the interior of a star at a given evolutionary state. Stellar evolutionary

codes are computational programs used to construct these static models and to evolve them

over time. This should be done by numerically solving the magnetohydrodynamic equations

70
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of the stellar structure and evolution. A detailed description of the stellar structure and

evolution equations can be found in a number of books, such as, Kippenhahn & Weigert

(1990), Hansen et al. (2004) and Maeder (2009). However, thehydrodynamical problem

is too complicated to be treated in a complete way. To make thecalculations possible,

simplifications are commonly applied, such as the assumption of spherical symmetry, which

implies, in particular, neglecting rotation. Also often neglected are the large scale magnetic

fields and mass-loss. Thus, in general, one assumes that the forces that act on the stellar

matter are the thermal pressure and the gravity, and, hence,that the star is in hydrostatic

equilibrium. In addition, there are physical mechanisms acting inside a star, such as convec-

tion, that are poorly understood and, consequently, treated in a very simplistic manner.

To solve the equations of stellar structure and evolution, within the simplifications men-

tioned above, it is also necessary to choose physical formalisms that depend on the micro-

scopic properties of the stellar matter, such as the equation of state, opacity, the transport of

radiation and the nuclear reactions (see, e.g., Kippenhahn& Weigert 1990).

To model the stars presented in this Chapter we used the ‘Aarhus STellar Evolution Code’

(ASTEC, Christensen-Dalsgaard 2008a). This code is described in detail in the reference

given above and, hence, we refrain from repeating such detailed descriptions here. However,

for the sake of clarity, in the next section we describe some of the input physics considered

in the modelling of the targets.

Finally, since the aim of the work was to model stellar pulsations we had, in addition, to

compute stellar pulsation frequencies. For that we used theAarhus adiabatic oscillation code

(ADIPLS, Christensen-Dalsgaard 2008b). When computing the frequencies, two alternative

boundary conditions can be applied in the outer boundary of the stellar atmosphere. The

first corresponds to a full reflection of the waves, while in the second only waves which

frequencies are below the acoustic cut-off frequency are considered, and these are matched

to an exponential decaying solution in an isothermal atmosphere. For the work presented in

this Chapter we use always the latter boundary condition. The former boundary condition,

expressed byδp = 0, whereδp is the Lagrangian perturbation to the pressure, will be used

in Chapter 4.

3.2 Model input physics

Equation of state

The equation of state (EOS) relates thermodynamical quantities, such as the density, pres-
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sure, temperature, and chemical composition (X), in the form of ρ(p,T,X), p(ρ,T,X),

or T(ρ, p,X). It is one of thephysical ingredientsrequired to obtain the solutions to the

equations of the stellar structure. An EOS must take into account a variety of effects, such

as radiation pressure, ionization, degeneracy, among others. These are described in detail in,

e.g., Kippenhahn & Weigert (1990) and Hansen & Kawaler (1994). Accurate equations of

state have been calculated by specialized groups that make them available on tables ready to

be interpolated, as needed. The two most used tables are known as OPAL (by the Livermore

group, Rogers et al. 1996) and MHD20 (Hummer & Mihalas 1988; Daeppen et al. 1988;

Mihalas et al. 1988, 1990; Gong et al. 2001) associated with the Opacity project.

In our work, in the ASTEC code, we considered the most up-to-date OPAL 2005 equation

of state tables21 (Rogers & Nayfonov 2002).

Opacity

Opacity, also know as the absorption coefficientκ = κ(ρ,T,X), is a quantity that determines

the transport of radiation through matter. It represents the ability of stellar material to

absorb heat, primarily by the interaction of photons with the particles of the gas as they pass

through. In general, the opacity depends on the energy of thephoton, i.e. on its frequency,

ν. Nevertheless, in stellar structure calculations, we needonly to know, in average, how the

radiation interacts with the gas and is absorbed. Thus, a frequency average of the opacity,

called the Rosseland mean opacity,κR, is considered.

Nowadays, numerical opacity tables are available for different chemical mixtures and giveκR

for a large range ofρ andT. Since the calculation of opacity requires accurate knowledge

about the detailed thermodynamical state of the gas, such asthe ionization degree of the

various species, it is not surprising that the groups involved in the calculation of the EOS

are the same as those involved in the calculation of opacities.

In our work, in the ASTEC code we used the OPAL95 opacities (Iglesias & Rogers 1996)

complemented by low-temperature opacities from Ferguson et al. (2005). The opacities

were calculated with the solar mixture of Grevesse & Noels (1993).

Convection

Energy transport by convection in a star occurs when radiation can no longer transport the

total flux of energy. This happens when opacity or the amount of energy to be transported

gets too high. The “standard” treatment of turbulent convection is the standard mixing-

length theory (MLT) from Böhm-Vitense (1958), where the characteristic length of tur-

20MHD tables are available at anonymous FTP atf tp: // f tp.usc.edu/pub/astro− physics/mhd tables/
21OPAL tables available athttp: //opalopacity.llnl .gov/EOS 2005/
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bulence, called the mixing-lengthlML , scales directly with the local pressure scale height,

Hp, as lML = αML Hp, with αML > 1. The precise value of the mixing-length parameter

αML is not in general fixed by fundamental physics but it is chosento fit the star being

modelled. An exception to this is the case of 3-D numerical simulations of convection, as

those proposed by Kim et al. (1996), Trampedach et al. (1999), Trampedach (2007), where

αML is calibrated, as a function of stellar parameters by matching 1-D models to the results

of the 3-D simulations. Alternatively, sometimes, the value ofαML found when modelling

the Sun imposing its present radius is used to model other stars.

The standard MLT is a local formulation of convection. Non-local extensions of MLT have

been developed by Unno (1967), who also considered the time-dependent case relevant for

the study of oscillations, and by Gough (1977a,b). Also, Dupret et al. (2006) constructed a

non-local MLT formulation based on the 3-D convection simulations.

Canuto & Mazzitelli (1991, CM) have presented an alternative to MLT. While MLT consid-

ers only one turbulent eddy, representing an “average” of the turbulent eddies, the models by

Canuto & Mazzitelli (1991) considered the full spectrum of turbulent eddies (FST). In their

paper, they proposed two expressions for the mixing-length: (1) the standardlML = αCMHp,

with αCM a free parameter depending on the microphysics, in generalαCM < 1, (2) a new

parameter-free expressionlML = z, with zbeing the distance of the convective layer to the top

of the convection zone determined by the Schwarzschild criterion. Canuto, Goldman, and

Mazzitelli (Canuto et al. 1996, CGM) mentioned thatlML should also allow for overshooting,

so they considered in expression (2) an extra termzOV parametrised byHp at the top of

the convective layer:lML = z + βHtop
p . When including this term they claim that they

obtain an improved fit to the solar model. Ventura et al. (1998) mentioned that close to the

convective boundaries the more physically correct choice is expression (2), but far from the

boundaries,lML should approach the hydrostatic scale lengthHp. They therefore adoptedzas

the harmonic mean between the distance of the convective layer to the top of the convective

zone and the distance to the bottom, i.e.lML = zupzlow/(zup + zlow), wherezup is the distance

from the top of convection increased byβHtop
p , and analogously forzlow.

Trampedach (2010) has provided a comparison between the three above mentioned 1-D

formalisms (MLT, non-local MLT and CGM) and the 3-D formalisms for convection. The

author found local MLT to be the most realistic of the three 1-D prescriptions, despite its

shortcomings. It must be noted that the treatment of convection is more important for the

outermost parts of the convective envelopes where the temperature gradient of the star is

substantially different from the adiabatic temperature gradient.

Convective overshoot
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Overshooting (OV) exists when the convective movements of the gas in the convectively

unstable regions cause extra mixing beyond the border of such regions. Different treatments

for the overshooting regions have been presented in the literature, however, these are largely

simplified and have inadequacies (Renzini 1987; Canuto 1997).

There are two main aspects to take into account when a given prescription in the treatment

of convective overshoot is considered, namely the temperature stratification and the mixing

within the overshoot layer.

In the ASTEC code, regarding the temperature stratification, we assumed that the tem-

perature gradient of the star in that region is not modified bythe overshooting, i.e. the

temperature gradient is assumed to be the radiative temperature gradient (∇OV = ∇rad).

Regarding the mixing of the stellar material within the overshooting layer we considered

it to be highly efficient, taking place on the same time scales as in the convectively unstable

region. Therefore, the overshooting region is fully mixed.

The value for the extent of overshooting,dOV, was determined by adopting the standard

prescription (e.g. Maeder 1975) in which it is parametrizedas a fraction of the pressure

scale height,dOV = αOVHp, with the scaling factorαOV as a free parameter.

In our work, we only considered convective core overshoot. Core overshoot has more

effect on the stellar evolution than the envelope overshooting. It increases and changes

the chemical composition of the convective core by bringingmore hydrogen into it, thus

prolonging the life of the star in the main-sequence phase (see Figure 3.1). In practice, since

the core can be very small, ASTEC assumesdOV = αOVmin(rcore,Hp), wherercore is the

radius of the convective core.

Nuclear reaction rates

Most stars live on thermonuclear fusion, where several lighter nuclei fuse to form a heavier

one. The rates of this nuclear reactions are determined by the relative velocity between the

various nuclei, as well as by the cross-sections of the reactions. The values for the nuclear

reaction rates are obtained experimentally, however with large uncertainties, since the en-

ergies associated to stellar interiors are always too low toovercome the Coulomb potential

barrier so that the nucleons can fuse. Therefore, theoretical models that extrapolate, in a

reliable way, the experimental data to the astrophysical relevant energies are still needed.

Nevertheless, there are tabulations of nuclear reaction rates and energy production, and the

most used today are those from Caughlan & Fowler (1988), and,more recently, those of

Adelberger et al. (1998) and theNACREcollaboration (Angulo et al. 1999).
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Figure 3.1: Two evolutionary tracks from ZAMS to post-main sequence (last models withXc =

10−10 and ages of 2.88 (no overshoot) and 3.15 Gyrs (with overshoot)) with M = 1.4 M⊙, Z/X =

0.0245,αML = 1.8, andαOV = 0.0 (filled line) andαOV = 0.2 (dashed line). The hook shape in

the evolutionary track is due to the fact that the star has grown a convective core during the main-

sequence phase.
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The nuclear parameters in ASTEC have been largely based on Parker (1986). In ASTEC it

is possible to use one of the nuclear reaction rates previously mentioned. In our work we

considered the ones by Angulo et al. (1999).

Diffusion and gravitational settling

Diffusion and settling are mostly important outside the convective regions. Gravitational

settling refers to the settling of the heavier elements towards the centre of the star and rising

of light elements, such as hydrogen, to the surface. Diffusion acts roughly in the opposite

direction resulting in smoother gradients in the chemical composition. The two mechanisms

are often neglected in standard modelling. When consideredin the ASTEC code, diffusion

and settling were treated in the approximations proposed byMichaud & Proffitt (1993). We

refer to Christensen-Dalsgaard (2008a) for a detailed description.

3.3 Observational constraints

The fundamental parameters of a pulsating star that are obtained directly from observa-

tions through techniques such as spectroscopy, photometry, astrometry and interferometry

are used as observational constraints to the models. These are often called non-seismic

constraints. As a starting point for stellar modelling, thenon-seismic data such as the

luminosity or the logarithm of gravity and the effective temperature are used to place the

star in the HR diagram. Unfortunately, these data alone provide very weak constraints

for the modelling. For instance, models with different input parameters and/or physics

can have the same position in the HR diagram. A classical example is the mass-helium

degeneracy (Fernandes & Monteiro 2003). This degeneracy can be partially lifted if we

also consider as observational constraints the seismic data. These can be either particular

combinations of frequencies, such as the the large and smallfrequency separations, or the

individual frequencies, for a more detailed modelling.

In the work presented in this Chapter, when modelling the individual stars we considered

both the non-seismic and seismic data.

3.4 Near-surface corrections

It is well known from helioseismology that there is a systematic offset between the ob-

served and the computed oscillation frequencies of the Sun.This offset, which is nearly
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independent of the angular degree,l, of the mode and affects the highest frequencies the

most (Christensen-Dalsgaard & Thompson 1997), arises fromthe improper modelling of

the surface layers. Therefore, the offset is also expected to be present when comparing the

observed and computed frequencies for other stars. This offset is a matter of worry specially

when using individual frequencies as constraints for the modelling of solar-like pulsators,

such as those described in this Chapter. Kjeldsen et al. (2008) used the solar data to derive an

empirical correction for the near-surface offset, which can, in principle, be applied to other

stars. Nevertheless, this approach is purely empirical andis based on strong assumptions

that need to be further tested. One main motivation for the work presented here is to verify

if such empirical correction works also for other stars.

For the Sun, the difference between the observed,νobs, and computed frequencies of the best

model,νbest, was shown by Kjeldsen et al. (2008) to be well approximated by a power law

fit given as

νobs(n) − νbest(n) = a

[

νobs(n)
ν0

]b

, (3.4.1)

wheren is the radial order, andν0 is a reference frequency. In our work this reference fre-

quency was chosen to be the frequency at maximum power. Sincethe offset is independent

of l, the authors considered only radial (l = 0) modes. Note that the ‘best model’ is the one

that best represents the solar interior but still fails to model its near-surface layers. They also

argued that the frequencies of a reference model,νref, which is close to the best one, can be

scaled fromνbestby a factorr, i.e.,

νbest(n) = rνref(n). (3.4.2)

Then Eq. (3.4.1) becomes

νobs(n) − rνref(n) = a

[

νobs(n)
ν0

]b

. (3.4.3)

Kjeldsen et al. (2008), using the GOLF data (Lazrek et al. 1997) and the solar model S of

Christensen-Dalsgaard et al. (1996), foundb = 4.90. They suggest that this value, although

varying slightly (between 4.40 and 5.25), depending on the range of radial orders included

in the calibration, may be used in the modelling of solar-like stars. This variation inb only

leads to a variation ina of less than 0.1µHz, in all cases. Using their value forb it is possible

to determiner anda from Eqs (6) and (10) of Kjeldsen et al. (2008). Assuming thata similar

offset occurs for other solar-like stars, they showed how to usethe solarb value to determine

r anda from the observed frequencies ofl = 0 modes, and, consequently, use Eq. (3.4.3)

to calculate the correction that must be applied to the frequencies computed for alll for a

given stellar model. They noted that the correction appliedto the mixed modes should be
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less than that for the pure p modes. We should also note that due to the nature of the power

law, the low frequencies are not significantly affected, which is expected since they are less

sensitive to the outer structure of the star.

3.5 Modelling methodology

The modelling of the individual stars presented in this Chapter was based on a grid forward

approach. In this approach we consider grids of models with different input parameters

and physics. For each grid, we take the models whose parameters are within the 3-σ

uncertainties derived from the non-seismic observations of the star under study, and compute

the corresponding oscillation frequencies. The theoretical frequencies are then compared

with the observed ones in order to find the best-matching model.

In our work, we started by considering two methods to find the model that, to the closest

extent possible, reproduces the observed non-seismic and seismic data of a star. In what

follows I will describe each method separately.

Method 1

In this case we followed closely the work of Kjeldsen et al. (2008) and considered the best

representative model to be the one having the value ofr closest to 1, which means, from

Eq. (3.4.2),

νref(n) ≈ νbest(n). (3.5.1)

Using the values ofr anda found for this model, we then computed the correction factorto

be applied to the model frequencies and compared the latter with those observed. Note, how-

ever, that in this methodr is calculated using only the observed radial modes togetherwith

the corresponding model radial modes. If we assume that the best model is the one which

hasr closest to 1 then we are assuming the model that has the radialfrequencies matching

most closely the observedl = 0 modes also has the non-radial frequencies matching best the

observedl = 1 and 2 modes. However, this may not be true.

Method 2

In this case we applied a least-square methodology, where wesearched for the model which

frequencies minimize theχ2 function defined by,

χ2 =
1
N

∑

n,l

(

νref,corr(n, l) − νobs(n, l)
σ(νobs(n, l))

)2

, (3.5.2)
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whereN is the total number of modes considered,νref,corr(n, l) are the frequencies of modes

with radial ordern and degreel of a reference model, corrected for the surface effects, and

σ represents the uncertainty in the observed frequencies. Note that then value, when given

associated with the observed frequencies, should not be used as a constraint since it is model

dependent. On the other hand, thel value can be objectively obtained from observations,

with some problematic exceptions such as in the case of Procyon (Bedding et al. 2010) and

HD 49933 (Appourchaux et al. 2008).

The correction term, as shown in the right-hand side of Eq. (3.4.1) can only be applied to

the frequencies of the best model. In order to compute the correction term, since we have

a set of reference models and we do not know which of these is the best model, we assume

that the corrected best,νbest,corr, and reference modelνref,corr frequencies also scale as

νbest,corr(n, 0) = rνref,corr(n, 0). (3.5.3)

We note that this is a good approximation because the surfacecorrections to the frequencies

are much smaller than the frequencies themselves. Moreover, sinceνbest,corr ≃ νobs

νref,corr(n, 0) = νref(n, 0)+
(a
r

)

[

νobs(n, 0)
ν0

]b

. (3.5.4)

Since the effect of the surface layers is essentially independent ofl, we thus have from

Eq. (3.5.2),

χ2 =
1
N

∑

n,l

(

νref(n, l) + C̃T(n, 0)− νobs(n, l)
σ(νobs(n, l))

)2

, (3.5.5)

whereC̃T(n, 0) is the correction term for thel = 0 modes,CT(n, 0) =
(

a
r

) [

νref(n,0)
ν0

]b
, inter-

polated to the frequencies of the modes of a given degreel. Note that, in practice, the term

(a/r)[νobs(n, 0)/ν0]b on the right-hand side of Eq. (3.5.4) was replaced by (a/r)[νref(n, 0)/ν0]b.

The reason is twofold: first because we do not know a priori then value of the observed

frequencies, in order to compare them to the model ones, and second to enable us to correct

all the reference model frequencies, instead of only the frequencies with the same radial

order as those observed. As the difference between these terms is small for the best-fitting

model, it is safe to perform this replacement.

The final equation for theχ2 should be set after considering also the mixed modes. They

should not be affected by the surface layers as much as the p modes (Kjeldsen etal. 2008),

so the correction term should be small for them. Specifically, at a given frequency we expect

the near-surface effects to scale inversely with the mode inertia, which is much higher for

the mixed modes than for the p modes. Thus we scaled the correction term by the inverse

of the ratioQnl between the inertia of the mode and the inertia of a radial mode of the same



CHAPTER 3. STELLAR MODELLING 80

frequency (Aerts et al. 2010). Taking that into account, Eq.(3.5.5) becomes

χ2 =
1
N

∑

n,l

















νref(n, l) +
(

1
Qnl

)

C̃T(n, 0)− νobs(n, l)

σ(νobs(n, l))

















2

. (3.5.6)

The best model is the one that minimises Eq. (3.5.6). Note that in this equation only the

seismic data is considered in the computation of theχ2. We opted not to include the non-

seismic data in the calculation of theχ2 since: (1) we have already constrained the models

from non-seismic data by computing the frequencies only forthose that lay inside 3-σ

uncertainties and (2) Metcalfe et al. (2010) showed that once we have models in a region

very close to the observed atmospheric parameters, the determination of the best model

depends much more on the individual frequencies. Nevertheless, we could compute aχ2

that would include both the seismic and non-seimic constraints or compute them separately

(Metcalfe et al. 2010).

Method 1was only applied in the modelling ofβ Hyi (see Subsection 3.6.1), for which we

also appliedMethod 2. The reason is that we concluded thatmethod 2is more adequate

to find the best model, since it takes into account all the individual frequencies, the mixed

modes, and also the uncertainties on the observed frequencies.

3.6 Application to individual stars

In this section I will present the results we obtained through forward modelling of three

solar-like pulsators, namelyβ Hyi, KIC 10273246, and 16 Cyg. Observations ofβ Hyi were

performed from the ground, while KIC 10273246 and 16 Cyg wereobserved by theKepler

satellite. In what concerns the twoKeplerstars, I was assigned to lead the work on the mod-

elling of KIC 10273246, while the modelling of 16 Cyg, was lead by Travis Metcalfe, with

contributions by several researchers/teams, including myself, who performed independent

modelling of the star.

3.6.1 β Hyi

β Hydri (β Hyi, HD 2151, HR 98, HIP 2021) is a single, bright subgiant star (mV = 2.80).

It is the closest subgiant star, with a spectral and luminosity type between G2 IV (Hoffleit &

Warren 1995; Evans et al. 1957) and G0 V (Gray et al. 2006), andit is one of the oldest stars

in the solar Galactic neighbourhood. It is frequently regarded as representing the future of

the Sun (Dravins et al. 1993a,b,c), making it a particularlyinteresting object of study.
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Improvements to the fundamental parameters ofβ Hyi have been presented in a number

of recent works. Recent interferometric measurements ofβ Hyi have yielded an accurate

(0.8%) angular diameter for this star (North et al. 2007). Also, theHipparcosparallax

of β Hyi has been improved from an uncertainty of 0.4% (Perryman &ESA 1997) to

0.08% (van Leeuwen 2007). The combination of these two values gives a direct measure

of β Hyi’s radius with high accuracy. Moreover, since the bolometric flux of this star is

known (Blackwell & Lynas-Gray 1998), its position in the HR diagram is, in principle,

well-constrained.

Bedding et al. (2007) observedβ Hyi during more than a week with the high-precision

spectrographs HARPS and UCLES. They were able to identify 28oscillation modes that

included some mixed modes of spherical degreel = 1. As mentioned before this modes

provide useful information about the stellar core and henceabout the age of the star.

Theoretical models ofβ Hyi based on its seismic and non-seismic data have been pub-

lished by Fernandes & Monteiro (2003), Di Mauro et al. (2003), and Doǧan et al. (2010).

Fernandes & Monteiro (2003) examined the position ofβ Hyi in the HR diagram by first

considering the non-seismic data of the star. In order to estimate the mass ofβ Hyi, they

used available seismic data, namely the large frequency separation, to remove partially

the helium-content vs mass degeneracy that exists when onlynon-seismic observational

constraints are used. They also emphasized the usefulness of individual frequencies to

constrain the age ofβ Hyi due to the presence of mixed modes in its observed oscillation

spectrum. Di Mauro et al. (2003) computed models ofβ Hyi, also based on its global

parameters. They used the oscillation frequencies ofβ Hyi to compare with the model

frequencies. Their theoretical models reproduced the observed oscillation spectrum of

β Hyi well, as well as the observed large and small frequency separations, after they applied

an ad-hoc shift to the computed frequencies.

In order to model this star we used up-to-date non-seismic and seismic constraints. This was

the first star for which we applied the modelling methodologydescribed in Section 3.5.

In what follows I will present the constraints that we considered to model the star, the

input parameters used to construct the grid of models, and the results with discussion and

conclusions.

3.6.1.1 Non-seismic constraints

The most recent determination of the radius ofβ Hyi is given by Kjeldsen et al. (2008).

The radius was obtained by combining the interferometric angular diameter of the star,
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Table 3.1: Stellar properties ofβ Hyi. The luminosity,L, and radius,R, are expressed in solar units.

θ stands for the angular diameter,Π for the Hipparcosparallax,Teff for the effective temperature,

[Fe/H] is the metallicity, andZ/X is the mass ratio of heavy elements to hydrogen.

Value Reference

θ (mas) 2.257± 0.019 North et al. (2007)

Π (mas) 134.07± 0.11 van Leeuwen (2007)

R/R⊙ 1.809± 0.015 Kjeldsen et al. (2008)

L/L⊙ 3.494± 0.087 Current work

Teff (K) 5872± 44 North et al. (2007)

[Fe/H] −0.10± 0.07 Bruntt et al. (2010)

Z/X 0.019± 0.003 Current work

θ = 2.257±0.019 mas (North et al. 2007), with the revisedHipparcosparallax,Π = 134.07±

0.11 mas (van Leeuwen 2007) (see Eq. (2.2.6)).

To compute the luminosity ofβ Hyi we used Eq. (2.2.1). We considered the value for the

bolometric flux from North et al. (2007),fbol = (2.019± 0.05) × 109 W m−2 (Blackwell

& Lynas-Gray 1998, the uncertainty onfbol is from di Benedetto 1998) and the revised

Hipparcosparallax (van Leeuwen 2007). Adopting L⊙ = 3.842×1026 W with an uncertainty

of 0.4% (Bahcall et al. 2001), we foundL = 3.494± 0.087 L⊙ for β Hyi. For theTeff we

adopted the value of North et al. (2007), which is derived from the direct measurement of

the angular diameter.

We adopted in our analysis the most recent value for the metallicity of βHyi, given by Bruntt

et al. (2010), namely [Fe/H] = −0.10± 0.07. We calculated the mass fraction of metals,Z,

from the metallicity, using the following approximation, valid for Population I stars which

do not present theα-elements enrichment seen in metal deficient stars (Wheeleret al. 1989):

[Fe/H]s ≡ log
(ZFe

Z

)

s
+ log
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X

)

s
− log

(ZFe

Z

)

⊙

− log
(Z
X

)

⊙

= log
(Z
X

)

s
− log

(Z
X

)

⊙

,

(3.6.1)

where [Fe/H]s is the star’s metallicity;ZFe andX are the iron and hydrogen mass fractions,

respectively; and (Z/X)⊙ is the ratio for the solar mixture. We used (Z/X)⊙ = 0.0245

(Grevesse & Noels 1993). This gives (Z/X) = 0.019± 0.003 forβ Hyi.

From spectral analysis, Dravins & Nordlund (1990) foundvsini = 2± 1 km s−1 for β Hyi.

More recently, Bruntt et al. (2010) foundvsini = 2.7 ± 0.6 km s−1, and Hekker & Aerts
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Figure 3.2: Left panel: The position ofβHyi in the HR diagram. The constraints on the fundamental

parameters (Teff , L/L⊙) are indicated by the 1-σ error box (solid) and on the radius by diagonal solid

lines. We also show the corresponding 3-σ uncertainties by dashed lines. Two evolutionary tracks for

the best models found usingmethod 2(cf. Table 3.5) are plotted with dash-dotted and solid curves,

representing the models with and without gravitational settling and diffusion, respectively. Right

panel: the same as in the left panel but zoomed in. The selected models are marked by filled squares.

(2010) from spectroscopic line-profile analysis, foundvsini = 4.3 km s−1. From their

analysis, Hekker & Aerts (2010) attempted to determine the inclination angle,i, of β Hyi,

suggesting a value of 55± 17◦ for this star. Thus, the effect of rotation on the modelling of

the structure of the star can be neglected. Similarly, sincethe resulting rotational splitting is

comparable with the error in the observed frequencies (see Section 3.6.1.2), in the present

analysis we neglect the effects of rotation on the frequencies.

The position ofβ Hyi in the HR diagram is shown in Figure 3.2 and the fundamental

parameters adopted in this work are given in Table 3.1.

3.6.1.2 Seismic constraints

Asteroseismic observations ofβ Hyi have been reported by Bedding et al. (2007). They

found an excess power centred around 1 mHz with a peak amplitude of∼50 cm s−1, and

oscillation frequencies showing a comb-like structure typical of solar-like oscillations with

a large frequency separation for thel = 0 modes,∆νn0, of 57.24± 0.16µHz. They also

identified 28 mode frequencies in the range 0.7 < ν < 1.4 mHz with angular degrees

l = 0, 1, and 2, three of which were identified asl = 1 mixed modes. In this work,

we used the updated list of 33 observed frequencies given in Table 3.2 (Bedding et al.,
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Table 3.2: Observed oscillation frequencies inβ Hyi (in µHz) resulting from the revised analysis,

listed in ascending radial order within each column. The rows are in ascendingl, and each row

includes frequencies within∆ν-sized-bits of the frequency spectrum. “...” is used for themodes

whose S/N was too low for a clear extraction.

l = 0 l = 1 l = 2 l = 3

660.74± 2.43 ... ... ...

716.68± 3.00 ... 711.24± 2.13 ...

774.79± 2.20 802.74± 1.69 769.97± 0.99 791.66± 1.35

831.86± 2.43 857.32± 0.86 825.86± 1.18 ...

889.15± 1.23 912.91± 0.86 883.35± 0.89 ...

946.11± 0.91 959.98± 0.89 939.97± 0.97 ...

... 987.08± 0.87 ... ...

1004.32± 0.86 1032.99± 0.86 999.40± 0.91 ...

1061.66± 0.95 1089.87± 0.88 1057.00± 0.86 ...

1118.67± 0.88 1147.35± 0.91 1115.20± 1.06 ...

1177.76± 0.97 1203.54± 1.01 1172.98± 0.86 1198.16± 1.23

1235.31± 1.09 ... ... ...

... 1320.42± 0.94 ... ...

... 1378.92± 1.39 ... ...

private communication). These were estimated through a newanalysis of the 2005 dual-

site observations (Bedding et al. 2007) using revised weights that were adjusted using a new

method that minimises the sidelobes (Kjeldsen, H. et al., inpreparation). This method is

described by Bedding et al. (2010), who applied it to multi-site observations of Procyon

(see also Arentoft et al. 2009). In the same way as done for Procyon, oscillation frequencies

from the time series ofβ Hyi were extracted using the standard procedure of iterative sine-

wave fitting. The finite mode lifetime causes many modes to be split into two or more

peaks which, coupled with the presence of mode bumping, meant that deciding on a final

list of mode frequencies with correctl identifications was somewhat subjective. The same

approach as described by Bedding et al. (2010) was followed,which involved using the

ridge centroids as a guide and averaging multiple peaks intoa single value. The remaining

unidentified peaks in the power spectrum are listed in Table 3.3.

3.6.1.3 Modellingβ Hyi

To compute the evolutionary models we used the ASTEC code. The following assumptions

were made: spherical symmetry, no rotation, no magnetic field and no mass loss. The input
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Table 3.3: Unidentified observed peaks with S/N ≥ 3.5.

ν (µHz)

753.12± 1.57 1013.42± 1.50 1130.36± 1.30

828.70± 1.83 1025.80± 1.68 1134.32± 1.63

845.02± 1.61 1037.90± 1.63 1167.62± 1.10

868.60± 1.13 1065.12± 1.59 1256.78± 1.60

911.88± 1.76 1070.00± 1.43 1383.20± 1.75

1010.20± 1.91 1084.20± 1.57 1462.62± 1.92

physics considered in the ASTEC code is described in Section3.2. For the atmospheric

structure, we assumed an atmospheric temperature versus optical depth relation which is

a fit to the quiet-sun relation of Vernazza et al. (1976). BothDi Mauro et al. (2003) and

Fernandes & Monteiro (2003) found that models at the position of β Hyi in the HR diagram

are not affected by convective overshooting, so we decided, for this work, not to consider it

in our models.

We calculated two grids of evolutionary tracks, Grids I and II, with the input parameters

shown in Table 3.4. In Grid II we included diffusion and gravitational settling of helium. For

each grid, we took those models whose parameters were withinthe 3-σ uncertainties derived

from the observations ofβ Hyi, and computed the corresponding oscillation frequencies

with ADIPLS. Having the frequencies, we calculated, for each model, ther anda values,

following Kjeldsen et al. (2008), usingb = 4.90 andν0 = 1000µHz.

We followed the two methods mentioned in Section 3.5 to choose the model that best fits

β Hyi. In the case ofmethod 2, to calculate theχ2, as defined in Eq. (3.5.6), we used all the

observed and computedl = 0, 1, and 2 frequencies.

Table 3.4: Parameters used to compute the evolutionary tracks forβ Hyi. M/M⊙ is the mass in solar

units,Z/X is the initial ratio of heavy elements to hydrogen abundances, andY the helium abundance.

Parameter Grid I Grid II

M/M⊙ 1.00 - 1.18 (with steps of 0.02) 1.00 - 1.18 (with steps of 0.02)

Z/X 0.010 - 0.030 (with steps of 0.004) 0.010 - 0.030 (with steps of 0.004)

Y 0.24 - 0.30 (with steps of 0.02) 0.24 - 0.30 (with steps of 0.02)

Mixing length

parameter (αML ) 1.4 - 2.0 (with steps of 0.2) 1.4 - 2.0 (with steps of 0.2)

Diffusion &

gravitational settling None He
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3.6.1.4 Results, Discussion and Conclusions

The parameters of the best models found for Grids I and II are shown in Table 3.5. Figures 3.3

Table 3.5: The parameters of the best models found for Grid I (no diffusion) and II (He settling

and diffusion), for each of the two methods. See text for details on the methods. The mass,M,

luminosity, L, and radius,R, are expressed in solar units.Teff is the effective temperature,Y andZ

are the initial helium and heavy-element abundances, [Fe/H] is the metallicity at the surface, andαML

is the mixing-length parameter. Alsor anda are factors used to compute the correction term,∆νn0b

and∆νn0a are, respectively, the large frequency separation before and after applying the surface

correction to the modell = 0 modes. The values ofχ2 are those calculated after correcting the

frequencies for the near-surface effects.

Grid I Grid II

Parameter Method 1 Method 2 Method 1 Method 2

M/M⊙ 1.16 1.04 1.04 1.04

R/R⊙ 1.832 1.785 1.790 1.786

L/L⊙ 3.433 3.485 3.432 3.338

Teff (K) 5810 5908 5877 5843

Age (Gyr) 4.705 6.114 7.390 7.297

Z 0.0204 0.0124 0.0075 0.0075

Y 0.30 0.30 0.24 0.24

[Fe/H] 0.088 -0.133 -0.416 -0.424

αML 1.4 1.8 2.0 1.8

r 1.0000 0.9995 1.0000 1.0009

a (µHz) -4.80 -3.14 -2.43 -3.11

∆νn0b (µHz) 58.977 58.488 58.243 58.400

∆νn0a(µHz) 57.678 57.652 57.600 57.577

χ2 19.086 1.183 26.226 2.642

and 3.4 show the échelle diagrams forβ Hyi. In these figures the observed frequencies of

β Hyi are compared with the theoretical frequencies of the best models from Grid I (upper

panel) and from Grid II (lower panel), both before (left plot) and after (right plot), applying

the near-surface corrections. The model frequencies are represented by open symbols and

the observed frequencies (cf. Table 3.2) by solid symbols, while the asterisks represent the

unidentified peaks (cf. Table 3.3), which may correspond to genuine modes, sidelobes, or

noise peaks. The relative sizes of the open symbols reflect the expected mode amplitudes

(Christensen-Dalsgaard et al. 1995). The so-called mixed modes reveal themselves in the

échelle diagrams, breaking the regularity of the ridges. The models predict mixed modes

with all nonradial degrees, however mostly with too small amplitudes to be observed. On
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Figure 3.3: Échelle diagrams forβHyi, with a frequency separation of〈∆ν〉 = 57.5µHz, before

(left plot) and after (right plot) application of the near-surface corrections to the model frequencies.

Shown are the frequencies of the selected models usingmethod 1, when including no diffusion (upper

panel) and diffusion (lower panel). Inmethod 1, the best model was selected using the radial (l = 0)

modes alone (see the text for details). The solid symbols show observed frequencies (Table 3.2),

asterisks the unidentified peaks (Table 3.3), and the open symbols the model frequencies. Circles are

used forl = 0 modes, triangles forl = 1, squares forl = 2 and diamonds forl = 3. Open symbols

are scaled to represent the relative amplitudes of the modesas predicted by the models.
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Figure 3.4: The same as Figure 3.3 but for the best models without (upper panel) and with (lower

panel) diffusion, selected usingmethod 2, which takes into account the observed and identified modes

with all degrees available.
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the other hand, some of the observed modes match well the mixed modes withl = 1

(see, e.g., the right panels of Figure 3.4). If we inspect Figs. 3.3 and 3.4, it is clear that

the agreement between the observed and model frequencies ismuch better whenmethod 2

is used (Figure 3.4). This is due to the fact that in this method all the available seismic

constraints were involved in selecting the best model.

It is seen from Table 3.5 that the model that has ther value closest to unity does not produce

the lowestχ2 value. The model with the lowestχ2 still has anr satisfactorily close to unity.

So, in addition to finding a model that represents the stellarinterior reasonably,method 2

makes sure that all the available seismic constraints are simultaneously reproduced and

so the fit, and hence the accuracy of the model, is improved substantially. This shows

the importance of using the individual modes when constraining the range of models to

represent the observed star. Mixed modes, in particular, put strong constraints to the model

properties, especially on the evolutionary stage. For instance, we can see from the right

panels of Figure 3.3 that the two models resulting frommethod 1have the two highestχ2

values due to failing to match particularly the observedl = 1 mixed modes. In the upper

right panel, the model is too massive and it matches the rest of the seismic constraints before

it is sufficiently evolved to have mixed modes, whereas the model in thelower right panel

does have mixed modes, although the predicted mixed modes donot match those observed.

In general, we found that the empirical surface correctionsproposed by Kjeldsen et al.

(2008) work very well forβ Hyi as seen from Figs. 3.3 and 3.4, although there is still

room for improvement, in particular for high-frequency modes of l = 1. The reason for

the suboptimal agreement for those modes is that the correction term is determined using

only the l = 0 observed modes, whose frequencies span a smaller range than those of the

l = 1 modes. Thus, radial modes with higher frequencies need to be detected in order to

improve the agreement for the higher frequencyl = 1 modes. Note that the change in the

large frequency separation of the models after applying thenear-surface correction is around

0.8 µHz, which is larger than the given uncertainty of the observed large separation. This

should be taken into account when modelling through a pipeline analysis that uses the large

separation as input. It is encouraging to see that we can observe l = 3 modes, and that

some of the unidentified modes are also close to the model frequencies, namely 753.1µHz

(l = 1?) and 1462.6µHz (l = 0?).

Even though the best model seems to be the one without diffusion, we do expect that within a

star diffusion occurs. The two selected models, the ones with and without diffusion, resulting

from themethod 2are in fact compatible and both could be further fine-tuned.

Our best models giveM=1.04 M⊙ and an age of 6.1 – 7.3 Gyr forβ Hyi, depending on the
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inclusion of gravitational settling and diffusion of helium. In both cases, the radius is found

to beR∼ 1.785 R⊙, which is in good agreement with the one determined by interferometry,

R = 1.809± 0.015 R⊙. However, there are other models fitting the data similarly well. We

used the parameters of those models (withχ2 < 10) to determine the internal error regarding

our analysis. We calculated the mean value, and the uncertainties were taken as the standard

deviation. We foundM = 1.08±0.03 M⊙, age= 6.40±0.56 Gyr, andR= 1.811±0.020 R⊙.

These results are also consistent with the results of Fernandes & Monteiro (2003), who

derived,M = 1.10+0.04
−0.07 M⊙ andM = 1.09± 0.22 M⊙, through the HR diagram analysis and

∆νn0, respectively, and a stellar age between 6.4 and 7.1 Gyr.

3.6.2 KIC 10273246

As a member of theKeplerAsteroseismic Science Consortium (KASC), I am involved in the

Working Group # 1 (WG1) - Solar-like p-mode Oscillations. There are several workpack-

ages within WG1 and each package is dedicated to a particulartopic. The members of WG1

can work in one or more workpackages. The workpackage structure ensures coordinated

collaboration between the members and, at the same time, speeds up the analysis. Each

workpackage has a lead, or leads that work in close collaboration with the liason(s). The

lead is responsible for the progress of the work assigned to each workpackage, while the

liason is responsible for the coordination between the workpackages if overlap between

them exists. Within WG1 besides my work on the convective cores that I will describe in

Chapter 4, I am currently co-leading a workpackage on the modelling of 5 Kepler targets,

namely KIC 11395018, KIC 10920273, KIC 11234888, KIC 10339342, and KIC 10273246.

These stars show clear solar-like oscillations and were chosen to be continuously monitored

by theKeplersatellite, in order to test and validate the time series photometry (Gilliland et al.

2010). They have been observed at short cadence for at least eight months (from Quarter 0

to 4) since the beginning ofKepler science operations on May 2, 2009. It is the first time

that we have more than eight months of continuous asteroseismic data for five solar-like

stars. I was assigned to lead a paper on the detailed modelling of one of these five stars,

namely KIC 10273246. A first paper on the group of stars studied in this workpackage was

already published by Creevey et al. (2012). The results published in this paper were used as

constraints to a more detailed modelling on the five stars, inparticular KIC 10273246 which

I will describe in what follows.

KIC 10273246, also known as Mulder within KASC, is a star of spectral type F9IV-V

(Creevey et al. 2012). It is relatively faint, with aKeplermagnitude (Kp) of 10.922. Note that

22http://archive.stsci.edu/kepler/keplerfov/search.php
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Table 3.6: The oscillation frequencies of KIC 10273246 published by Campante et al. (2011).

l Frequency Uncertainty

(µHz) (µHz)

0 737.90 0.30

0 785.40 0.20

0 833.90 0.20

0 883.50 0.20

0 932.70 0.50

0 981.10 0.30

0 1030.70 0.40

0 1079.30 0.20

1 622.80 0.20

1 661.90 0.503

1 695.75a 0.27

1 724.70 0.20

1 764.30 0.30

1 809.80 0.20

1 857.30 0.20

1 905.60 0.30

1 950.00 0.30

1 1008.60 0.40

1 1056.30 0.20

1 1103.30 0.40

2 688.50 0.70

2 734.80 0.60

2 779.50 0.40

2 830.30 0.40

2 880.60 0.50

2 927.50 0.40

2 977.60 0.40

2 1025.30 1.30

2 1073.70 0.20

2 1122.70 0.40
al = 1 mixed mode
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the apparent magnitude target range for the detection of solar-like oscillations withKepler

spansKp ≈ 6.5 to Kp ≈ 12.5 (e.g., Chaplin et al. 2011). Although KIC 10273246 was

chosen to be continuously monitored by theKepler satellite, it has not been observed in

Quarters 6 and 7. However, it has been put in the KASC target list again from Quarter 8.

The first seven month of short-cadence time series photometry were analysed by Campante

et al. (2011) who identified a total of 30 p-mode oscillationsof degreel = 0, 1, 2 for this

star, spanning at least eight radial orders (Table 3.6). Moreover, they also identified two

avoided crossings in thel = 1 ridge, indicating that this star is evolved. Estimations of the

large frequency separation,<∆ν>, frequency at maximum power,νmax, and small frequency

separation,<δνn0>, for KIC 10273246 are shown in Table 3.7 as given by Campante et al.

(2011). Using their published frequencies new estimationsfor <∆ν>, νmax, and<δνn0>were

Table 3.7: Estimates of the observed seismic parameters, the mean large frequency separation,

<∆ν>, the frequency of maximum amplitude,νmax, and the mean small frequency separation,<δνn0>

for KIC 10273246 given by Campante et al. (2011) (1st row) andgiven by Creevey et al. (2012) (2nd

row). Also shown is the range of frequencies where the mean was performed.

<∆ν> range νmax <δνn0>

(µHz) (µHz) (µHz) (µHz)

Campante et al. (2011) 48.2± 0.5 [537,1140] 839± 51 5.6± 1.2

Creevey et al. (2012) 48.89± 0.09 [737,1080] 838± 50 4.40± 0.44

made as described in detail in Creevey et al. (2012). The values derived in that paper are

also shown in Table 3.7 and are in agreement with those given in Campante et al. (2011).

TheKepler Input Catalog23 (KIC; e.g., Latham et al. 2005; Batalha et al. 2010; Brown et al.

2011; Pinsonneault et al. 2011) provides physical data for over 15 million stars (down to a

magnitude limit of 19) present within and around theKepler field of view. All the KASC

targets have been selected from this catalog. Although the catalog provides estimates for

theTeff, log g and [Fe/H], the stated precisions of these parameters are 200 K in Teff24, and

0.5 dex in logg and [Fe/H]. These precisions are too low for an asteroseismic modelling

(see, e.g., Molenda-Żakowicz et al. 2011), so tighter constraints are needed. Fortunately,

for four of the five stars within our workpackage, including KIC 10273246, atmospheric

parameters were derived from spectra acquired with the FIES25 instrument at the Nordic

Optical Telescope (NOT). These data were analysed by five groups independently and their

results are shown in Table 3.8 for KIC 10273246. The relatively large errors on the derived

23https://archive.stsci.edu/kepler/kic.html
24Note that Pinsonneault et al. (2011) revised the initial temperatures provided by KIC and new values and

uncertainties forTeff are given.
25http://www.not.iac.es/instruments/fies/
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Table 3.8: The effective temperature,Teff , logarithm of the surface gravity, logg, metallicity, [Fe/H],

microturbulence,ξt, and the projected rotational velocity,vsin i, derived for KIC 10273246 from the

analysis by five different teams of NOT spectra (Creevey et al. 2012).

Group Teff log g [Fe/H] ξt vsin i

ID (K) (dex) (dex) (km s−1) (km s−1)

SOU 6165± 77 4.01± 0.11 −0.04± 0.06 1.48± 0.05 -

ROTFIT 5933± 205 4.07± 0.10 −0.21± 0.08 - 3.2± 1.5

VWA 6050± 100 3.80± 0.11 −0.18± 0.04 1.50± 0.10 -

BIA 6200± 60 4.00± 0.20 −0.04± 0.07 1.50± 0.20 -

NIEM 6200± 100 3.90± 0.20 −0.18± 0.05 0.50± 0.40 -

parameters and the discrepancies between the five different groups on each parameter may

be due, in part, to the low S/N of the NOT spectra (S/N = 90 in the wavelength region

of 6069-6076 Å) with a medium resolution (R = 46 000). Combining the atmospheric

parameters provided by one of the five groups, namely VWA, with the observed seismic

quantities<∆ν> andνmax (2nd row of Table 3.7) a grid-based analysis was used to determine

the global stellar properties, such as mass (M), radius (R), and age (τ), of the stars under

study. Five different pipelines based on stellar evolution and structure models provided

values for these parameters. For the detailed modelling, weadopted the results from one

of the pipelines (see Table 3.9 for KIC 10273246) and the results from the other pipelines

were considered as a test for systematic errors resulting mostly from different modelling

prescriptions of particular aspects of the physics (see Table 3.10 for KIC 10273246).

In Creevey et al. (2012) the impact on the derived stellar parameters, in particular on the

derived age, of considering<δνn0> as an observable constraint together with<∆ν> andνmax

was also investigated. This was found not to be important forKIC 10273246, which can be

understood by the fact that this star is evolved (White et al.2011). However, the constraint

<δνn0> is of great importance for middle main-sequence stars, suchas the Sun.

The value of the luminosity of the best model found in Creeveyet al. (2012) for KIC 10273246,

together with the photometric magnitudes published in the literature, was used to estimate

the distance to the star. Moreover, an upper estimation of the rotational period,PROT, and

the inclination anglei for KIC 10273246 based on its observedvsini and the model radius

were also derived in the paper (Table 3.9).

Starting from the results described above, we then moved to the detailed modelling of the

star. One of the goals of this modelling is to test whether theempirical formulation for the

surface correction is satisfactory for this relatively hotstar.
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Table 3.9: The stellar properties for KIC 10273246 obtained with the SEEK pipeline that best fitted

the seismic data,<∆ν> andνmax (2nd row of Table 3.7), and the non-seismic data,Teff , log g, and

[Fe/H] from VWA (Creevey et al. 2012).ρ stands for the density,R for the radius,M for the mass,τ

for the age,L for the luminosity,i for the inclination angle,PROT for the rotational period andd for

the distance of the star.

Parameter KIC 10273246
a<ρ>ν (Kg m−3) 185± 1

b<ρ>MR (Kg m−3) 189± 2
a loggν (dex) 3.88± 0.03

b loggMR (dex) 3.88± 0.02

R(R⊙) 2.11± 0.05

M(M⊙) 1.26± 0.10

τ (Gyr) 3.7± 0.7
cτ<δν> (Gyr) 3.7± 0.6

L(L⊙) 5.3± 1.1

Teff,model (K) 6047

i(◦) 44+46
−23

PROTmax(days) 64
dPROTest(days) 23

d (pc) 366+36
−40

a,b Subscriptsν and MR indicate that the value was obtained directly from thedata and from the models,

respectively.cτ<δν> is when<δνn0> is included as an observational constraint. See text for details. d PROTest

as reported by Campante et al. (2011).

Table 3.10: Estimates of the systematic errors for logg (CGS units),R andM in solar units, andτ

in Gyr for KIC 10273246. The % values are given in parenthesis(Creevey et al. 2012).

KIC 10273246

σlogg,grid 0.05

σR,grid 0.22 (11)

σM,grid 0.43 (34)

στ,grid 1.7 (38)

σR,spec 0.08 (4)

σM,spec 0.16 (13)
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In order to proceed with this work, all members of the WG1 wereinvited to contribute to the

modelling of KIC 10273246. They were asked to find the best model for KIC 10273246 us-

ing its seismic (large separations, small separations, andthe individual frequencies, cor-

rected, or not, for the near-surface effects) and non-seismic data. The results from Creevey

et al. (2012) were used as a starting point for the modelling by the different members, i.e. a

starting point from which to refine their grids. Those involved were asked to search for the

best model within an as large as possible parameter space such as to explore the possible

solutions with different combinations of metallicity, mixing length and overshooting param-

eters. They were also invited to consider different physics such as diffusion and rotation.

Six different teams besides myself replied favourably. So a total ofseven teams performed

the detailed modelling of KIC 10273246. In what follows I will mention the observational

constraints used to perform the modelling and then I will describe in detail my part of the

modelling. Finally, I will summarize the results from the other teams and conclude.

3.6.2.1 Observational constraints

As seismic constraintswe considered the individual oscillation frequencies and the values

for <∆ν>, <δνn0> andνmax given by Campante et al. (2011) (see Table 3.6 and Table 3.7).In

Figure 3.5 the échelle diagram for KIC 10273246 is shown, based on the observed oscillation

frequencies.

In relation to thenon-seismic constraints, namely the effective temperature,Teff, logarithm

of the surface gravity, logg, and metallicity [Fe/H], we adopted the values from the group

‘NIEM’ (see Table 3.8). We chose this group because it is the one that gives the values for the

non-seismic parameters closest to the mean. The mean was computed for each parameter

Teff, log g, and [Fe/H], by considering the values from the five groups in Table 3.8. We

asked all modelling teams to consider an uncertainty three times larger than the uncertainty

given by ‘NIEM’, for each parameter, such as to reflect the dispersion of the values found

by the observational teams. The reason to adopt one set of atmospheric constraints rather

than taking the mean over the values given by all the five groups was because we wanted

to make sure that consistency existed between the different observables. Figure 3.6 shows

the positions of KIC 10273246 in the HR diagram with some evolutionary tracks computed

with ASTEC without considering diffusion, for particular values of the input parameters,

namelyZ = 0.01016,Y = 0.264,Z/X = 0.0140,αML = 2.0, andαOV = 0, and with different

masses, for illustration.
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Figure 3.5: The échelle diagram with the observed frequencies of KIC 10273246 obtained by the

Kepler satellite (Campante et al. 2011), plotted withν0 = 738µHz and<∆ν> = 48.5µHz. Circles,

triangles and squares are used for modes of degreel = 0, 1 and 2, respectively.
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Figure 3.6: The position of KIC 10273246 in the HR diagram. The solid linebox represents the

1-σ uncertainty, while the dashed box represents the 3-σ uncertainty on logg and log (Teff ), given

by the group ‘NIEM’ (see Table 3.8). Some evolutionary tracks computed without diffusion and for

particular values of the input parameters and with different masses are shown, with the masses at the

end of each evolutionary track, in units of solar mass.
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3.6.2.2 Results from my modelling

To find the model that best fits the observational constraintsof KIC 10273246 mentioned

above we used themethod 2described in Section 3.5. We computed two grids of evolu-

tionary models with the ASTEC code considering the same physics that was described in

Section 3.2. The atmospheric structure was the same as in themodelling ofβ Hyi. The

input parameters, and their range, used in the computation of the two grids are shown in

Table 3.11. The difference between them resides in the value ofY. In Grid I, Y is computed

Table 3.11: Input parameters that I used to compute the evolutionary tracks of the two grids for

KIC 10273246. M/M⊙ is the mass in solar units,Z/X is the initial ratio of heavy elements to

hydrogen abundances, andY the helium abundance.

Parameter Grid I Grid II

M/M⊙ 1.10 - 1.60 (with steps of 0.05) 1.10 - 1.60 (with steps of 0.05)

Z/X 0.010 - 0.022 (with steps of 0.004) 0.010 - 0.022 (with steps of 0.004)

Y - 0.24

Mixing length

parameter (αML ) 1.2 - 2.2 (with steps of 0.2) 1.2 - 2.2 (with steps of 0.2)

αOV 0 0

Diffusion &

gravitational settling None None

from the relation

Y = Yp + Z
dY
dZ

, (3.6.2)

whereYp is the abundance of helium produced during primordial nucleosynthesis anddY
dZ is

the helium to metal enrichment ratio. When using this relation we assume that massive stars

synthesize both helium and heavy elements and supply them tothe interstellar medium, and

also assume this equation to hold at all places and times. Considering dY/dZ = 2 (see, e.g.

Casagrande 2007) and using the the solar values of (Z/X)⊙ = 0.0245 (Grevesse & Noels

1993) andY⊙ = 0.278 (Serenelli & Basu 2010) we foundYp = 0.2435. Using dY/dZ = 2

andYp = 0.2435, and fixingZ, we deriveY.

In Grid II, we considered theY andZ values to change independently. Thus, Grid II was

basically constructed as a complement to Grid I.

For the models that lie inside the 3-σ error box of the star’s position in the HR diagram we

computed their oscillation frequencies with the ADIPLS code, corrected them for the near-

surface effects and then compared them to the observed frequencies. Theparameters of the

best model found, i.e. the model which parameters minimizedthe χ2
seis (cf. Eq. (3.5.6)),

are shown in Table 3.12. In this equation we consideredν0 = 839µHz andb = 4.90. The
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Table 3.12:The parameters of the best model found for KIC 10273246 from my analysis. The mass,

M, luminosity,L, and radius,R, are expressed in solar units.Teff is the effective temperature,Y and

Z are the initial helium and heavy-element abundances, [Fe/H] is the metallicity at the surface, and

αML is the mixing-length parameter. Alsor anda are factors used to compute the correction term,

∆ν0b and∆ν0a are, respectively, the large frequency separation before and after applying the surface

correction to the modell = 0 modes. The value ofχ2
seis are those calculated after correcting the

frequencies for the near-surface effects.

Parameter KIC 10273246

M/M⊙ 1.25

R/R⊙ 2.13

L/L⊙ 6.34

Teff (K) 6281

Age (Gyr) 3.6

Z 0.01016

Y 0.264

[Fe/H] -0.243

αML 2.0

r 1.0014

a (µHz) -1.36

∆ν0b (µHz) 49.47

∆ν0a(µHz) 48.90

χ2
seis 37

échelle diagram with the frequencies of the best model (open symbols) overplotted to the

observed frequencies (filled symbols) is shown in Figure 3.7, before (left panel) and after

(right panel) applying the near-surface corrections to themodel frequencies.

3.6.2.3 Results from the other six teams

In what follows I will briefly describe the methods used by theother six teams, as well as

their results.

Team1

Team1 used the ASTEC code to compute grids of models within the 3-σ uncertainty of the

non-seismic constraints and computed their oscillation frequencies with the ADIPLS code.

The search for the best model was performed by a 2-step process, refining the first grid in
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Figure 3.7: Échelle diagrams for KIC 10273246, with a frequency separation of ∆ν = 48.5µHz,

before (left plot) and after (right plot) application of thenear-surface corrections to the model

frequencies. Shown are the frequencies of the best model found in my analysis (open symbols)

and the observed frequencies (solid symbols) (c.f. Table 3.6). Circles are used forl = 0 modes,

triangles forl = 1 and squares forl = 2.

the second step guided by theχ2
seis values from the first grid, whithχ2

seis defined as

χ2 =
1
N

∑

n,l





















νref(n, l) +
(

1
Qnl

) (

a
r

) [

νref(n,l)
ν0

]b
− νobs(n, l)

σ(νobs(n, l))





















2

. (3.6.3)

The input physics used in the ASTEC code was the same as that used in the modelling of

KIC 11026764, that is described in Metcalfe et al. (2010), labeled as “Model A”. The input

parameters for the two grids are shown in Table 3.13. The properties of the best model

Table 3.13: Input parameters used by Team1 to compute the models of the two grids for

KIC 10273246. M/M⊙ is the mass in solar units,Z/X is the initial ratio of heavy elements to

hydrogen abundances, andY the helium abundance.αML andαOV are the mixing length parameter

and the overshooting, respectively.

Parameter Grid I Grid II

M/M⊙ 1.15 - 1.55 (with steps of 0.05) 1.28 - 1.32 (with steps of 0.02)

Z/X 0.01 - 0.03 (with steps of 0.01) 0.010 - 0.016 (with steps of 0.002)

Y - 0.24 - 0.032 (with steps of 0.02)

αML 1.8 1.8

αOV 0 0

Diffusion &

gravitational settling None None

found by Team1 are shown in Table 3.18.Team2 Team2 used the Geneva stellar evolution
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code (Eggenberger et al. 2008) to compute a grid of rotating models with an initial velocity

of 50 km/s on the ZAMS. The input physics used to compute the models aredescribed in

Metcalfe et al. (2010), in Section “Model B”. The input parameters given to the code are

shown in Table 3.14. The oscillation frequencies of the models of the grid were computed

Table 3.14: Input parameters used by Team2 to compute the models.M/M⊙ is the mass in solar units,

Z/X is the initial ratio of heavy elements to hydrogen abundances, andY the helium abundance.αML

andαOV are the mixing length parameter and the overshooting parameter, respectively.

Parameter Grid

M/M⊙ 1.16 - 1.34 (with steps of 0.03)

Z/X 0.010 - 0.022 (with steps of 0.006)

Y 0.25 - 0.29 (with steps of 0.02)

αML 0.79981

αOV 0.1

Diffusion &

gravitational settling He & heavy elements

1 Solar calibrated model

with the ADIPLS code. These frequencies were corrected for the near-surface effects in

the way described by Kjeldsen et al. (2008). The search of thebest model was done by

minimizing theχ2
seis (c.f. Eq. (3.6.3)), although they did not scale the surface contribution

for the mixed modes by the mode inertia. After finding the bestmodel, they refined their

grid around the solution using smaller time steps. The parameters of the best model found

from this team are shown in Table 3.18.

Team3

This team used AMP to model KIC 10273246. AMP is a web-based interface tied to a

TeraGrid computing resource (Woitaszek et al. 2009) that uses the ASTEC and the ADIPLS

codes together with a parallel genetic algorithm (GA; Metcalfe & Charbonneau 2003) to

optimize the fit between the model output and the observational seismic and non-seismic

constraints. GA optimizes four adjustable model parameters, namely the massM, the mass

fraction of metalsZ, the initial helium mass fractionY0, and the mixing-length parameter

αML , within a broad parameter space as shown in Table 3.15. The stellar age (t) is optimized

internally during each model evaluation by matching the observed value of∆νn0. A more

detailed description of the method, as well as the input physics used in the ASTEC code,

is given in Metcalfe et al. (2009). To evaluate the differences between each model and the

observations, twoχ2 calculations are performed. One related to the non-seismicconstraints
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Table 3.15:Parameter space used by AMP.M/M⊙ is the mass in solar units,Z/X is the initial ratio of

heavy elements to hydrogen abundances, andY the helium abundance.αML andαOV are the mixing

length parameter and the overshooting parameter, respectively.

Parameter Parameter space

M/M⊙ 0.75 - 1.75 (with steps of 0.01)

Z 0.002 - 0.05 (with steps of 0.0005)

Y 0.22 - 0.32 (with steps of 0.001)

αML 1 - 3 (with steps of 0.02)

αOV 0

Diffusion &

gravitational settling He settling

χ2
specand the other related to the seismic onesχ2

seis. The former is defined as

χ2
spec=

1
Ns

Ns
∑

i=1

(

Pref,i − Pobs,i

σobs,i

)2

, (3.6.4)

wherePobs,i are theNs observed non-seismic constraints, whilePref,i are the values of the

corresponding observables from the reference model. The definition of χ2
seis is the same as

given in Eq. (3.5.2). They consideredb = 4.82 rather than 4.90, which is the calibrated

value obtained using the BISON data for the Sun (Chaplin et al. 1999). Note that AMP

also applies the empirical correction suggested by Kjeldsen et al. (2008) to the model

frequencies before comparing them to the observed ones. AMPminimizes the mean of

these twoχ2 values. After finding the global minimum, AMP performs a local optimization

method, which employs a modified Levenberg-Marquardt (LM) algorithm with Singular

Value Decomposition (SVD) (see Metcalfe et al. 2009, for details).

The parameters of the best model found by AMP are shown in Table 3.18.

Team4

Team4 uses a slightly different method than the ones previously mentioned to find the

best model. The method is described in Deheuvels & Michel (2011) and consists in find-

ing the models that reproduce the first observed frequency ofthe avoided crossing. For

KIC 10273246 this frequency occurs at∼700µHz. After finding the models that reproduce

the first avoided crossing, aχ2 minimization is performed to determine the stellar mass and

age. The parameters used to compute theχ2 are the following: Teff , log g, [Fe/H] and

the l = 0, 1, 2 frequencies. The stellar evolution code Cesam2k (Morel 1997) was used by

Team4 to compute the evolutionary models. The parameter range used to compute the grid
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is shown in Table 3.16. The oscillation frequencies were computed with the oscillation code

Table 3.16: Input parameters used by Team4 to compute the models.M/M⊙ is the mass in solar

units,Z/X is the initial ratio of heavy elements to hydrogen abundances, andY the helium abundance.

αCGM andαOV are the CGM parameter and the overshooting parameter, respectively.

Parameter Grid

M/M⊙ n/a*

Z/X [0.011, 0.014, 0.016, 0.018, 0.023]

Y 0.24 - 0.28 (with steps of 0.01)

αCGM 0.56 - 0.68 (with steps of 0.04)

αOV 0.00 - 0.20 (with steps of 0.05)

Diffusion &

gravitational settling None

*Within the method proposed by Deheuvels & Michel (2011), for a given set ofZ/X, Y, αCGM, andαOV, they

are able to estimate the mass with good precision from the large frequency separation and the frequency of the

mixed modes.

LOSC (Scuflaire et al. 2008). The model frequencies were corrected for the near-surface

effects as given in Eq. (3.6.3). Theb value used by Team4 was 4.25. This was found by

searching for a solar model using the same conditions as the models for KIC 10273246, i.e.

using the Cesam2K code and the CGM formalism for convection,to determine the solar

value of the exponentb using the GOLF data (Gelly et al. 2002). Here, the CGM formalism

involves a free parameter assumed to be some fractionαCGM of the local pressure scale

heightHp.

The parameters of the best model found by Team4 are shown in Table 3.18.

Team5

Team5 tried to find a model for KIC 10273246 mainly based on itsoscillation properties

such as the large frequency separation and the individual frequencies. The main difference

between the method used by Team5 and the other teams was that this team computed model

nonadiabatic oscillation frequencies rather than the adiabatic ones. Consequently, they did

not need to apply the empirical surface correction to their computed frequencies, as for their

solar models’l = 0 to l = 2 modes the nonadiabatic frequencies agree quite well with those

observed. However, this agreement is not so good for very high frequencies of the Sun,

namely forν > 4000µHz and forl values of several hundred.

The evolutionary code used by Team5 to compute the models wasthe code from Iben (1963,

1965). All physics input has been updated since 1965. The opacities are OPAL tables

from Iglesias & Rogers (1996), with the Grevesse & Noels (1993) solar mixture. The low-
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temperature opacities are from Alexander and Ferguson (1995) (private communication)

also using the Grevesse & Noels (1993) solar mixture. The equation of state is the SIREFF

(discussed in Guzik & Swenson 1997). Diffusion is from the treatment of Burgers (1969)

and diffuses many of the elements individually, including He, C, N, O, Mg, and the electron,

as discussed in Cox et al. (1989). It was implemented in the Iben code by Iben & MacDonald

(1985) for modelling white dwarfs, but after thermal and chemical, as well as gravitational

diffusion, were added. Further discussion for the case of solar models is given by Guzik &

Mussack (2010).

The nonadiabatic oscillation frequencies of the models were computed with the oscillation

code of Pesnell (1990). The code also allows the computationof the adiabatic frequencies,

so that they can be compared to the nonadiabatic ones.

Table 3.17: Input parameters considered by Team5 to compute the models.M/M⊙ is the mass

in solar units, Z/X is the initial ratio of heavy elements to hydrogen abundances, andY the

helium abundance.αML andαOV are the mixing length parameter and the overshooting parameter,

respectively.

Parameter Combination 1 Combination 2 Combination 3

M/M⊙ [1.18,1.28,1.45] 1.28 1.28

Z/X 0.024 [0.018,0.023] 0.023

Y 0.28 [0.28,0.26] 0.28

αML 1.92 [1.92,3.5] 1.92

αOV 0 0 0

Diffusion &

gravitational settling None None Yes (see text)

Team5 did not use a grid approach to find the best model. They varied the input parameters

within few values. They also considered cases with diffusive settling of He and heavier

elements. Table 3.17 shows the values used by Team5 to compute the models. The model

parameters that give the lowestχ2
seisare shown in Table 3.18. The model has the largestχ2

seis

of all teams and aTeff = 5760 K which is not within the 3-σ error for the observed value.

This is probably due to the fact that the parameter space explored in this case was very

limited.

3.6.2.4 Results, Discussion and Conclusions

Figure 3.8 shows the HR diagram with the position of KIC 10273246 and with the position

of the best model found by each team (represented by a star), with the exception of Team5.
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Figure 3.8: The position of KIC 10273246 in the HR diagram shown by the 1-σ uncertainty (filled

line box) and by the 3-σ uncertainty (dashed-line box) on the observed parameters.Also shown

are the position of the best models found by the different teams (star symbol) along with their

evolutionary tracks. Different colours show the results from different teams. The numbers represent

the mass, in solar units.

All the models lie within the 3-σ error-box (dashed line) of KIC 10273246. The best fitted

values for KIC 10273246, as given by the different teams, are shown in Table 3.18. This

Table also shows theχ2
seis value as defined in Eq. (3.5.2), which represents the qualityof the

fit.

Inspection of the échelle diagram of Figure 3.7 shows that the near-surface corrections

seem to work relatively well for the higher frequencies, sayν > 1000µHz, but increase

the disagreement for the modes with the lower frequencies. This possible failure of the

empirical surface corrections for stars hotter than the Sunhas been noted also in other recent

works (Doğan et al. 2010; Reese et al. 2012); (Metcalfe 2012, private communication).

Nevertheless, Mathur et al. (2012) analysed 22 solar-type stars observed byKepler, some

of which with effective temperatures similar to that of KIC 10273246, and thenear surface
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Table 3.18: The parameters of the best models found for KIC 10273246 fromthe six different teams. The mass,M, luminosity,L, and radius,R, are

expressed in solar units.Teff is the effective temperature,Yi andZi are the initial helium and heavy-element abundances,Z/Xi is the initial mass ratio

of heavy elements to hydrogen, andα corresponds toαCGM for Team4 and toαML to the other teams. The metallicity, [Fe/H] was computed using

the solar value [Fe/H]⊙ = 0.0245 (Grevesse & Noels 1993).

Team M/M⊙ (Z/Xi) Yi α αOV τ (Gyr) L/L⊙ R/R⊙ Teff K logg [Fe/H] χ2
seis

My results 1.25 0.014 0.264 2.00 0.0 3.563 6.336 2.131 6281 3.878 -0.24 37

Team1 1.28 0.014 0.230 2.00 0.0 4.108 5.744 2.149 6101 3.881 -0.24 23

Team2 1.25 0.016 0.270 1.80 0.1 3.800 6.060 2.184 6141 3.856 -0.18 26

Team3 1.24 0.016 0.249 1.86 0.0 4.290 5.293 2.136 5996 3.872 -0.18 11

Team4 1.25 0.011 0.260 0.64 0.0 3.455 6.817 2.114 6420 3.882 -0.33 15

Team5 1.28 0.024 0.260 1.92 0.0 4.480 5.176 2.180 5760 3.868 -0.01 72

mean 1.258 0.0158 0.255 3.949 5.904 2.149 6116 3.873

st.dev. (0.017) (0.004) (0.014) (0.409) (0.628) (0.028) (228) (0.001)

Creevey et al. (2012) 1.26± 0.10 3.7± 0.7 5.3± 1.1 2.11± 0.05 3.88± 0.02
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correction seemed to work well. This has to be further investigated and reinforces the need

for a better modelling of the surface layers of stars.

In this work, the different teams made the analysis independently and they also used different

evolutionary codes with different input physics such as diffusion, core overshoot, and rota-

tion. The mean values of the mass, luminosity, radius, age and log g are well in agreement,

within 1-σ, with those found by the pipeline analysis on the average asteroseismic properties

given by Creevey et al. (2012) (see Table 3.18).

We will soon have new frequencies for KIC 10273246, since thestar has been put back in

the list ofKeplerWG1 targets. We expect that with the new frequencies we may beable to

make some inferences about the interior of the star. Also, wemay need to refine our grids

in order to find parameters that represent better the observed oscillation frequencies.

3.6.3 16 Cygni

The asteroseismic modelling of 16 Cygni was part of a projectwithin WG1, workpackage

PS4. I contributed to the modelling of this star, using the method described in Section 3.5.

16 Cygni is a triple system with two solar-analogs and a red dwarf companion that is 10

magnitudes fainter (Turner et al. 2001; Patience et al. 2002). The goal of the project was

to model the two solar-analogs of the system. The component A(16 Cyg A, HD 186408,

KIC 12069424) and the component B (16 Cyg B, HD 186427, KIC 12069449) are very bright

G-type dwarfs, with visual magnitudes of 5.96 (G1.5Vb) and 6.20 (G3V), respectively. The

system has a 1.5 Jupiter-mass exoplanet in an eccentric 800-day orbit around 16 Cyg B (Cochran

et al. 1997) and since its discovery a major interest on thesestars has appeared. Although

being a binary system, there are no constraints on their masses because the available data

suggest that component B is at a distance of 860 AU from component A with an orbital

period longer than 18,000 years (Hauser & Marcy 1999). Theirages were estimated near

6-8 Gyr (Wright et al. 2004; Valenti & Fischer 2005). 16 Cyg A &B were observed during

three months by theKeplersatellite which provided exquisite frequency-power spectra for

both stars. Both spectra show clear solar-like oscillations with more than fifteen radial

overtones including many octupole (l = 3) modes.

3.6.3.1 Seismic and non-seismic constraints

Ten teams within WG1 provided estimates of the frequencies of the observed modes, ap-

plying peak-bagging techniques developed for applicationto CoRoT (Appourchaux et al.
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2008) andKepler data (e.g. Campante et al. 2011; Mathur et al. 2011). One of teams was

chosen to provide the final set of frequencies for the two stars (see Metcalfe et al. (2012)

for details). These included a total of 46 and 41 individual frequencies for 16 Cyg A & B,

respectively. The frequencies are shown in Table 3.19.

To complement the seismic data we used the non-seismic constraints from Ramı́rez et al.

(2009) obtained from spectroscopic analysis. The authors give the effective temperature,

logarithm of gravity, and metallicity for both components (see Table 3.20). Their values of

the effective temperature were used to obtain bolometric corrections from Flower (1996) and

adoptingMbol,⊙ = 4.73± 0.03 from Torres (2010), the extinction estimates from Ammons

et al. (2006) with the updated Hipparcos parallaxes (van Leeuwen 2007) were combined to

obtain the luminosity constraints for both stars. These areshown in Table 3.20.

3.6.3.2 Modelling 16 Cyg A and 16 Cyg B

Although 16 Cyg A & B are members of a binary system and presumably formed simultane-

ously from the same material, the modelling was performed independently without forcing

both stars to have the same age and chemical composition. Thestars were firstly modelled

by AMP, which yielded one best model for each of them with aχ2
seis less than 10 and a

χ2
spect less than 1, so the models give a reasonable good match to bothconstraints. The

optimal parameters found by AMP for both stars are shown in Table 3.21 along with the

asteroseismicχ2. The statistical uncertainties on each parameter (σstat) were determined

using Singular Value Decomposition (SVD) (Metcalfe et al. 2009).

Based on the results from AMP, six teams, including myself, used different stellar evolution

codes and fitting methods to model both stars. The goal was to evaluate the possible sources

of systematic uncertainty from the ingredients and assumptions of AMP models.

To perform the modelling of both stars, I constructed two grids (Grid I) of evolutionary

models (one for 16 Cyg A and one other for 16 Cyg B) which input parameters are shown

in Table 3.22. Then, based on the results of Grid I, I refined ituntil getting the parameters

shown in Grid II. The input physics used to compute the modelsare described in Section 3.2.

Diffusion and settling were not considered, nor were rotation ormagnetic fields. The method

that I used to perform the modelling is described in Section 3.5. For the models that lie

inside the 1-σ constraints for the logg, [Fe/H], Teff, andL, oscillation frequencies were

computed. The best fit is given by the model whose frequenciesreproduce best the observed

frequencies, i.e., the model that has the lowestχ2
seis as defined by Eq. (3.5.6). To apply the

correction term we usedb = 4.90 andν0 = 2161µHz for 16 Cyg A andν0 = 2503µHz for
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Table 3.19:Observed oscillation frequencies for 16 Cyg A & B.

16 Cyg A 16 Cyg B

na ℓ = 0 (µHz) ℓ = 1 (µHz) ℓ = 2 (µHz) ℓ = 3 (µHz) ℓ = 0 (µHz) ℓ = 1 (µHz) ℓ = 2 (µHz) ℓ = 3 (µHz)

13 ... ... 1591.21± 0.86 ... ... ... ... ...

14 1598.51± 0.27 1644.24± 0.33 1693.73± 0.46 1736.03± 1.84 ... ... 1920.99± 0.24 ...

15 1700.43± 0.34 1746.93± 0.24 1795.87± 0.40 1839.07± 1.64 1928.81± 0.28 1982.66± 0.16 2036.59± 0.20 ...

16 1802.15± 0.17 1849.11± 0.13 1898.08± 0.27 1944.07± 1.57 2044.21± 0.15 2098.20± 0.17 2152.91± 0.19 2202.75± 0.65

17 1904.62± 0.15 1951.98± 0.16 2001.82± 0.17 2045.09± 0.80 2159.36± 0.16 2214.00± 0.18 2269.07± 0.21 2317.08± 0.44

18 2007.45± 0.13 2055.41± 0.16 2105.60± 0.15 2150.15± 0.19 2276.03± 0.12 2330.88± 0.16 2386.30± 0.17 2436.78± 0.33

19 2110.94± 0.11 2158.89± 0.12 2208.90± 0.19 2253.41± 0.35 2392.87± 0.14 2448.17± 0.11 2503.56± 0.13 2553.00± 0.23

20 2214.33± 0.17 2262.32± 0.16 2312.49± 0.29 2356.92± 0.46 2509.75± 0.13 2565.35± 0.10 2619.99± 0.23 2672.34± 0.28

21 2317.18± 0.17 2366.15± 0.16 2416.24± 0.33 2461.26± 1.04 2626.43± 0.11 2682.38± 0.14 2737.44± 0.31 2788.74± 1.40

22 2420.75± 0.30 2470.23± 0.25 2520.91± 0.81 ... 2743.15± 0.25 2799.67± 0.22 2854.52± 0.39 2906.96± 0.93

23 2524.94± 0.39 2575.97± 0.31 2624.05± 0.51 ... 2860.63± 0.26 2917.75± 0.22 2972.73± 0.70 ...

24 2629.36± 0.36 2678.47± 0.47 2730.06± 1.03 ... 2978.95± 0.40 ... 3089.46± 0.87 ...

25 2736.22± 1.45 2783.71± 1.22 ... ... 3096.00± 0.54 3152.45± 0.61 ... ...

26 2838.68± 0.38 2889.61± 0.38 ... ... 3215.94± 0.91 3274.63± 0.55 ... ...
a Radial ordern from the optimal AMP models.
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Table 3.20: Spectroscopic constraints used to model 16 Cyg A and 16 Cyg B.The effective

temperature,Teff , logarithm of gravity, logg, and metallicity, [Fe/H] are from Ramı́rez et al. (2009).

The luminosity,L, in solar units, was determined from the combination of the bolometric magnitude

and the distance.

Teff logg [Fe/H] L

(K) (dex) (dex) (L⊙)

16 Cyg A 5825± 50 4.33± 0.07 0.096± 0.026 1.56± 0.05

16 Cyg B 5750± 50 4.34± 0.07 0.052± 0.021 1.27± 0.04

Table 3.21: The best parameters found for 16 Cyg A and for 16 Cyg B. Shown are the results from

AMP and my results. The mass,M and radius,R, are expressed in solar units.τ is the age,Yi andZi

are the initial helium and heavy-element abundances, andαML is the mixing-length parameter.σstat

is the statistical uncertainty on each parameter derived byAMP.

M/M⊙ R/R⊙ τ (Gyr) Zi Yi αML χ2
seis

16 Cyg A

AMP 1.10 1.236 6.5 0.022 0.25 2.06 5.47

σstat 0.01 0.016 0.2 0.002 0.01 0.03

My results 1.10 1.237 7.5 0.023 0.25 2.00 5.70

16 Cyg B

AMP 1.06 1.123 5.8 0.020 0.25 2.05 9.80

σstat 0.01 0.020 0.1 0.001 0.01 0.03

My results 1.05 1.121 7.3 0.021 0.25 2.00 7.97

16 Cyg B.

The best fit parameters for each star are shown in Table 3.21, and the échelle diagrams are

shown in Figure 3.9.

3.6.3.3 Conclusions and Discussion

We derived the properties of each star, 16 Cyg A and 16 Cyg B independently by fitting stel-

lar models to the oscillation frequencies (see Table 3.19) and other observational constraints

(see Table 3.20) simultaneously. Figure 3.9 shows the échelle diagrams for 16 Cyg A (upper

panel) and for 16 Cyg B (lower panel) before (left panel) and after (right panel) applying

the near surface corrections to the model frequencies. We see that after the corrections are

applied, there is a clearly better match between the observed and the frequencies of the best

model. We find that the near surface corrections work well forboth 16 Cyg A and 16 Cyg B,
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Table 3.22: Parameters space used to compute the evolutionary models for 16 Cyg A (2nd column)

and for 16 Cyg A (3rd column).M/M⊙ is the mass in solar units,Z/X is the initial ratio of heavy

elements to hydrogen abundances,Y the helium abundance,αML is the mixing-length parameter

andαOV is the overshoot parameter. The models were computed without diffusion or settling. In

parenthesis are the steps.

16 Cyg A 16 Cyg B

Parameter Grid I Grid II Grid I Grid II

M/M⊙ 0.95 - 1.15 (0.05) [0.95,1.00,1.03,1.05,1.07,1.10,1.15]0.95 - 1.15 (0.05) [0.95,1.00,1.03,1.04,1.05]

[1.06,1.07,1.08,1.10,1.15]

Z/X 0.029 - 0.032 (0.001) [0.029,0.030,0.0305] 0.026 - 0.029 (0.001) 0.026 - 0.029 (0.001)

[0.031,0.0315,0.032]

Y 0.24 - 0.28 (0.02) [0.24, 0.245,0.25,0.26,0.27,0.28] 0.24 - 0.28 (0.02) [0.24, 0.245,0.25,0.26,0.27,0.28]

αML 1.2 - 2.2 (0.2) [1.2,1.4,1.6,1.8,2.0,2.1,2.2,2.3] 1.2 - 2.2 (0.2) 1.2 - 2.2 (0.2)

αOV 0 0 0 0

whose spectroscopic parameters are closer to those of the Sun.

Our results were analysed together with the results from fivemore different teams that also

provided their best matching parameters to the observablesof 16 Cyg A and 16 Cyg B. The

results are shown in Table 3.23.

The properties of both stars were firstly given by AMP (see first row of Table 3.23). Then

the systematic uncertainties on the derived parameters were evaluated from the results of the

six teams, that use a variety of stellar evolution codes and fitting methods. Moreover, the

physical ingredients adopted by each team differed slightly from those employed by AMP,

which allowed the exploitation of the degree of model-dependence on the AMP results. The

adopted parameters for 16 Cyg A and 16 Cyg B are shown at the bottom of Table 3.23, in the

bold row. They were obtained by performing a mean over the individual values weighted by

1/χ2. The systematic uncertainty (σsys) on each parameter reflects the variance of the results,

again weighted by 1/χ2. Although both stars were modelled independently by the different

teams, with the exception of the Geneva and YREC codes (whichforced the model for

component B to have the same age as the optimal model for the component A), the adopted

stellar properties of 16 Cyg A& B reinforce the conclusion that the two stars share a common

age (τ = 6.8 ± 0.4 Gyr) and initial composition (Zi = 0.024± 0.002,Yi = 0.25± 0.01), as

expected for a binary system.
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Figure 3.9: Échelle diagrams for 16 Cyg A (upper panel) and for 16 Cyg B (lower panel), before (left

panel) and after (right panel) applying the near surface corrections to the model frequencies. The

Échelle diagrams were plotted with a frequency separation of ∆ν = 103.4µHz and∆ν = 117.0µHz,

for 16 Cyg A & B, respectively. Shown are the frequencies of the best model (open symbols) obtained

from my analysis and the observed frequencies (solid symbols) (c.f. Table 3.19). Circles are used for

l = 0 modes, triangles forl = 1, squares forl = 2, and diamonds forl = 3.

3.7 Conclusions

In this Chapter we have presented our work on the asteroseismic modelling of three solar-

like pulsators, namelyβ Hyi, KIC 10273246, and 16 Cyg. We refer toasteroseismic mod-

elling to the method of finding a set of model parameters that best fit the seismic and non-

seismic data of a pulsating star. The best fit is found by performing aχ2 minimization

between the model parameters and the observables.

The three stars that we have modelled have different stellar parameters, namelyβ Hyi has a
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mass and effective temperature close to those of the Sun, but it is more evolved, KIC 10273246 is

hotter than the Sun, and 16 Cyg is slightly more massive and more evolved than the Sun.

The method that we used to model these three stars include theobserved individual frequen-

cies as constraints to the models. Moreover, we try to fit within 1-σ or 3-σ the fundamental

parameters such as the luminosity (or logg), Teff, and the metallicity, [Fe/H], if applicable.

When the individual frequencies are used as constraints to models of solar-like pulsators a

correction to the model frequencies is necessary. Such a correction has been suggested by

Kjeldsen et al. (2008) and it is needed due to our incapability to model properly the surface

layers of stars. We applied this empirical correction to thefrequencies of our computed

models before comparing them to the observed frequencies.

We found that for all of the three stars under study, theχ2
seis is greater than 1. This means that

either the observational uncertainties are underestimated or the models fail in reproducing

the data even when the empirical surface corrections are applied. The fact thatχ2
seis > 1 is

also seen in recent works such as the one concerning the asteroseismic modelling of the star

KIC 11026764 (Metcalfe et al. 2010) and in a more recent work by Mathur et al. (2012) that

modelled a sample of 22Keplerstars.

Of the three stars presented in this Chapter, we found that the bestχ2
seis is the one from

βHyi followed by 16 Cyg. In both cases, the observed frequencies seem to fit well the model

ones. The difference inχ2
seis for these stars is associated to the fact that the uncertainties

in the observed frequencies of 16 Cyg are, in general, much smaller than those ofβ Hyi.

Concerning, KIC 10273246, this star is slightly hotter than16 Cyg andβHyi. The correction

applied to the model frequencies of KIC 10273246 seem not to work as well as for the

other two stars. For instance, the fit at lower frequencies becomes worse after applying the

empirical correction.

The fact thatχ2
seis > 1 when using the individual frequencies to model solar-likepulsators

may suggest that our models or our procedure to model these stars start to fail, as the

seismic data becomes more precise. This reinforces the ideathat the physics of the existing

evolutionary codes needs to be improved, specially in what concerns convection, so that a

better characterization of the surface layers of stars can be achieved.
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Table 3.23:Table from Metcalfe et al. (2012) that shows the stellar model-fitting results for 16 Cyg A & B. My results are shown in the line identified

by ‘ASTEC1’.

16 Cyg A 16 Cyg B

R/R⊙ M/M⊙ t(Gyr) Zi Yi α χ2 R/R⊙ M/M⊙ t(Gyr) Zi Yi α χ2

AMP . . . . 1.236 1.10 6.5 0.022 0.25 2.06 5.47 1.123 1.06 5.8 0.020 0.25 2.05 9.80

σstat 0.016 0.01 0.2 0.002 0.01 0.03 ... 0.020 0.01 0.1 0.001 0.01 0.03 ...

ANKİ . . . 1.260 1.14 6.4 0.024 0.26 1.94 21.41 1.138 1.08 6.4 0.022 0.26 1.94 23.29

ASTEC1. 1.237 1.10 7.5 0.023 0.25 2.00 5.70 1.121 1.05 7.3 0.021 0.25 2.00 7.97

ASTEC2. 1.235 1.10 6.8 0.022 0.25 2.00 7.70 1.134 1.09 6.3 0.025 0.25 2.00 8.47

CESAM . 1.253 1.14 7.0 0.027 0.24a 0.72b 3.53 1.136 1.09 6.9 0.025 0.24a 0.73b 4.78

Geneva . . 1.236 1.10 6.7c 0.024c 0.26c 1.80c 10.82 1.122 1.06 6.7c 0.024c 0.26c 1.80c 10.98

YREC . . . 1.244 1.11 6.9 0.026 0.26 2.08 5.68 1.121 1.05 6.9d 0.022 0.26 1.84 3.17

adopted 1.243 1.11 6.9 0.024 0.25 2.00 ... 1.127 1.07 6.7 0.023 0.25 1.92 ...

σsys 0.008 0.02 0.3 0.002 0.01 0.08 ... 0.007 0.02 0.4 0.002 0.01 0.09 ...
a Values ofYi < 0.24 excluded from search.
b Value ofα from the Canuto et al. (1996) treatment of convection, excluded from average.
c Age, composition, and mixing-length constrained to be identical in both components.
d Age of 16 Cyg B constrained to be identical to the value found for 16 Cyg A.



Chapter 4

Convective cores

4.1 Introduction

According to stellar structure theory, stars slightly moremassive than the Sun (M > 1.0 M⊙)

may develop a convective core at some stages of their evolution on the main-sequence

phase. This occurs when radiation can no longer transport the amount of energy produced

by nuclear burning in the internal regions of a star, when that energy becomes too high.

For these stars hydrogen burning happens through the CNO cycle, which has a strong

dependence on the temperature. Convection is then the most effective process to transport

the energy, hence a convective core is present. Knowing someof the physical properties

of the core of a star is of great importance since it is this region that mostly determines the

evolution of a star. Since convection implies chemical mixing, the evolution of these stars

is severely influenced by the presence, and the extent, of theconvective core.

When we analyse models of an intermediate-mass star (1 M⊙ < M ≤ 2 M⊙) with a convec-

tive core, we see that the core’s size does not remain constant during the evolution of the

star. It increases during the initial stages of evolution before beginning to shrink, later on

(see Figure 4.1). Also, some physical ingredientes such as the convective core overshoot, if

present in the modelling, will influence the extent and evolution of the convective core (see

Figure 4.2).

A convective core is believed to be homogeneously mixed since the timescale for mixing of

elements is much shorter than the nuclear timescale. Thus, if diffusion is not taken into

account, the growing core causes a discontinuity in the composition at the edge of the

core (Mitalas 1972; Saio 1975) (Figure 4.1, upper panel). Since pressure and temperature

are continuous, this results in a density discontinuity. Ifdiffusion is present, instead of a

115
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Figure 4.1: The hydrogen profile (upper panel) and the sound speed profile(lower panel) in the inner

region of a 1.4 M⊙ star withαOV = 0.1 and with solar metallicity,Z/X = 0.0245. The different curves

correspond to different stages of evolution, with ages: 0.21 Gyr (top curve), 0.75 Gyr, 1.29 Gyr, 1.86

Gyr and 2.51 Gyr (bottom curve). The length of the constant line inX indicates the fractional mass of

the convectively mixed core, the latter being fully mixed due to convection. The mass fraction of this

region increases during the first part of evolution before decreasing in later stages. If we had included

diffusion in these models, we would have found a strong gradient in the hydrogen abundance rather

than a discontinuity, in the growing phase of the core. The discontinuity seen inc2 is caused by the

discontinuity inX.
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Figure 4.2: Evolution of the fractional mass of the convectively mixed core,mcore/M for models with

mass of 1.4 M⊙ and solar metallicty,Z/X = 0.0245. The black line represents the model without core

overshoot,αOV = 0.0, the dashed line withαOV = 0.1 and the dashed-dot lineαOV = 0.2.
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discontinuity, there will be a very sharp gradient in the chemical abundance and density at

the edge of the convective core. Moreover, a retreating coreleaves behind a non-uniform

chemical profile (Faulkner & Cannon 1973) causing also a sharp gradient in the chemical

abundance (Figure 4.1, upper pannel, bottom curve).

As mentioned in Chapter 1, the oscillation frequencies of a pulsating star depend on its

global properties, such as the mass and radius, but they are also affected by the presence and

by the location of sharp variations in the density or in the chemical composition inside the

star. Different combinations of low-degree p modes have been shown to probe the interior

of stars (e.g., Christensen-Dalsgaard 1984), the most commonly used being the large and

small frequency separations, already defined in Chapter 1. These two diagnostic tools are,

however, affected by the poorly modelled outer layers of stars. More recently, Roxburgh &

Vorontsov (2003) proposed smooth 5 points small frequency separations,d01 andd10, as a

diagnostic of stellar interiors. Moreover, the authors demonstrated that the effect of the outer

stellar regions in the oscillation frequencies is cancelled out when one considers the ratios

of these diagnostics (see also, Roxburgh & Vorontsov 2004; Roxburgh 2005; Otı́ Floranes

et al. 2005). The small separations are defined by,

d01(n) =
1
8

(νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0) (4.1.1)

d10(n) = −
1
8

(νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1) (4.1.2)

and the ratios by,

r01(n) =
d01(n)
∆1(n)

, r10 =
d10(n)
∆0(n+ 1)

, (4.1.3)

r02(n) =
d02(n)
∆1(n)

, (4.1.4)

where∆l(n) = νn,l − νn−1,l andd02 ≡ δνn0 has been defined in Chapter 1, Eq. (1.0.21). The

down side of these diagnostic tools, namely thed02, d01, d10 or their respective ratios is that

they do not isolate the signature of the edge of the core, although they are strongly affected

by it.

Cunha & Metcalfe (2007) carried out a theoretical analysis based on the properties of the

oscillations of stellar models slightly more massive than the Sun and derived the expected

signature of the border of a small convective core on the oscillation frequencies. The authors

assumed that this signature is caused by the discontinuity in the composition and hence

in the sound speed at the edge of the growing convective core.They have shown that

the following combination of oscillation frequencies is sensitive to the properties of the
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sound speed discontinuity, and is also capable of isolatingthe consequent perturbation on

the oscillation frequencies:

dr0213=
D02

∆νn−1,1
−

D13

∆νn,0
. (4.1.5)

This diagnostic tool corresponds to a difference of ratios between the scaled small sepa-

rations,Dl,l+2 ≡ (νn,l − νn−1,l+2)/(4l + 6), and the large separations∆νn,l ≡ νn+1,l − νn,l for

different combinations of mode degrees. More recently, Cunha & Brandão (2011) improved

the analysis presented in Cunha & Metcalfe (2007), by considering a different expression to

describe the sound speed variation at the edge of the growingconvective core, which is more

in line with the variation observed from the equilibrium models. Moreover, they showed that

the derivative of the diagnostic tooldr0213 can potentially be used to infer the amplitude of

the relative sound speed variation at the edge of the growingcore. This is because

dr0213≈
δνc

6∆νn−1,1
, (4.1.6)

with δνc = (2π)−1δω. Here,δω is the perturbation to the oscillation frequency induced bythe

discontinuity at the edge of the core, which can be computed from the relative perturbation

to the sound speed squared,δc2/c2 through the relation,

2I1ωδω ≈ −[δc2/c2]r=rd[hψ2]r=rd +
[δc2/c2]r=rd

∆2

∫ rd

rd−∆

d
dr

{

h(r − rd + ∆)2
}

ψ2dr. (4.1.7)

[δc2/c2]r=rd and∆ are, respectively, the size of the jump and the width of the perturbation.

rd is the radial position at which the jump in the sound speed occurs (see, Figure 4.3).I1 is

related to the mode inertia,h is a function ofr that depends on the equilibrium properties

of the star, as well as on the frequency of the oscillations. Finally, ψ2 =
∫

ψ2dx, whereψ is

related to the displacement eigenfunction, andx follows from a particular transformation of

the independent variabler (see Cunha & Metcalfe 2007, for details).

Cunha (2012) (private communication) showed that Eq. (4.1.7) can be written as

2I1ωδω ≈ −
[δc2/c2]r=rd

∆2

∫ rd

rd−∆

h[r − rd + ∆]2dψ2

dr
dr, (4.1.8)

or simply

2πδνc = δω = −[δc2/c2]r=rdT(tm, ω) f (tm, ω) (4.1.9)

whereT(tm, ω) is a term which is weakly dependent on the model’s age,tm, and the oscilla-

tion frequency,ω, and f (tm, ω) is also weakly model’s age dependent but strongly dependent

on the oscillation frequency. As shown in Figure 4.4, for each model, there is a region of

frequencies in which the frequency derivative ofdr0213 is approximately constant. Since

∆ωdr0213 ∝ δν
c, in that region we have∆ν ddr0213/dν ∝ [δc2/c2]r=rd, which means that the
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Figure 4.3: The relative perturbation to the sound speed squared,δc2/c2 in the inner regions of

two models withM = 1.3 M⊙ and ages of 2.25 Gyr (smaller amplitude) and 4.0 Gyr (larger

amplitude). The symbols represent the difference between the sound speed of the original model

and the otherwise similar one with no jump in the sound speed (the so called “smooth”m̃odel in

Cunha & Brandão (2011)). The continuous lines correspond to the parametrization ofδc2/c2 used

to compute the perturbation on the oscillation frequencies, δω (Eq. (1) of Cunha & Brandão (2011)).

Also shown are the quantities [δc2/c2]r=rd, ∆ andrd, which appear in, for the model of 4.0 Gyr of

age.

size of the jump at the edge of the growing core can be, in principle, obtained from the

derivative of the diagnostic tooldr0213.

The downside of this diagnostic tool is that it requires knowledge of the modes of degree

from 0 to 3. However, thel = 3 modes are significantly harder to detect than thel ≤ 2, from

space-based data. For this reason, Cunha & Brandão (2011) also analysed the effect that

the sound speed variation at the edge of the growing core has on the diagnostic tools built

from modes of degree up to 2 (c.f. Eqs. (1.0.21), (4.1.1) and (4.1.2)) and showed that their

derivatives are also significantly increased, when compared with otherwise similar models

with no discontinuity. This increase depends strongly on stellar age, similarly to what

Cunha & Metcalfe (2007) found for thedr0213. An example of this is shown in Figure 4.4
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Finally, although not deriving the signal that the edge of a convective core produces on the

oscillation frequencies, Mazumdar et al. (2006) analysed simulated data from stellar models

with varying parameters, and suggested a combination of small separations, averaged over

radial order, that can be used to estimate the masses of the convective cores and the stellar

ages. Moreover, they explained how the small separations can be combined to provide

sensitive tests for the presence of convective overshoot atthe edge of the core.

One of the main goals of inferring information of the deepestlayers of stars is to improve the

description of particular physical processes such as diffusion and convective overshoot, in

stellar evolution codes. That, in turn, will improve the mass and age determinations derived

from asteroseismic studies.

In this Chapter we will present our work on the study of the properties of the convective

cores in main-sequence models of solar-like pulsators. Thework is driven, in particular,

by the following questions: can we detect the signature of a small convective core on the

oscillation frequencies of solar-like pulsators for whichphotometric data with the quality,

such as that of theKepler satellite exists? What is the dependence of this signature on

the stellar mass and physical parameters? What is the precision required on the individual

frequencies in order to detect the signature of a convectivecore? Will the detection of such

a signature provide information about the stellar age?

In this study, we will focus on the analysis of the diagnostictools presented in the Eqs. (4.1.3),

(4.1.4) and (4.1.5), that involve modes of degreel ≤ 3. The main goal of this work is to

study, in a systematic manner, the behaviour of these diagnostic tools. For that, we derived

these tools for a set of stellar models considering a large parameter space and attempted to

identify in them some signature of the convective core, and hence of the evolutionary state

of the stars.

4.2 Method

We started by computing a set of evolutionary tracks with different values for the mass,M,

for the core overshoot parameter,αOV, and for the metallicity,Z/X, using the ASTEC code.

Figure 4.5 shows a set of evolutionary tracks with different masses computed for a fixed

value of the metallicity, namelyZ/X = 0.0245, and without convective core overshoot.

The effect of changing the metallicity and the convective core overshoot are shown, as

an example, in Figure 4.6 and in Figure 4.7, respectively. All of these evolutionary tracks

contain a fixed number of models, not equally spaced in time, from the ZAMS to the post-
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Figure 4.4: The diagnostic tooldr0213 as a function of frequency,ν, for a sequence of 1.4 M⊙
models with solar metallicity and without core overshoot. The different curves correspond to models

with different ages, the most evolved model being the one with the slope of maximum absolute

value. The dark stars represent the frequencies for which the derivative is minimum (maximum

absolute slope) for each model, and the straight black linesthat cross that minimum correspond to

the linear region where the slopes are computed, i. e., the region of approximately constant slope.

The triangles represent the frequency of maximum power,νmax, and squares represent the acoustic

cut-off frequency,νc, computed for each model. Note that for the oldest model, theregion of constant

slope is above the cut-off frequency for the physics considered in our models.
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Figure 4.5: The HR diagram for a set of models with solar metallicity,Z/X = 0.0245 and no

convective core overshoot. The models were evolved from theZAMS to the post-main sequence.

Each evolutionary track contains 300 models at different evolutionary stages. Since the number of

the computed models is fixed and the time step varies with massand also along the evolution, the

exact position of the last model of each evolutionary track depends on its mass. The numbers at the

end of each evolutionary track correspond to the mass, in solar units.

main sequence.

The parameter space that we considered in the modelling is shown in Table 4.1. We con-

structed two grids of evolutionary tracks, Grid I and Grid II. For the former we considered

solar metallicity, i.e. [Fe/H] = 0 where (Z/X)⊙ = 0.0245 (Grevesse & Noels 1993), and

variedαOV, while in Grid II we fixedαOV = 0.1 and considered two extreme values for the

metallicity, namely [Fe/H] = -0.5 and [Fe/H] = 0.5. To convert from [Fe/H] to Z/X we

used Eq. (3.6.1). The value of helium,Y , was obtained from the relation 3.6.2. We focused

our work on intermediate-mass models, i.e. 1.0 M⊙ ≤ M ≤ 1.6 M⊙, because it is in this

mass range that we expect main-sequence stars to show solar-like pulsations. We fixed the

mixing-length parameter to 1.8. We note that changing the mixing length parameter does
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Figure 4.6: The HR diagram for a model of a 1.3 M⊙ with a convective core overshoot of 0.1Hp.

The evolutionary track represented by a solid line corresponds to the model computed with solar

metallicity, Z/X = 0.0245. The evolutionary tracks represented by the dashed andthe dotted lines

correspond to models computed for a metallicity lower and higher than solar, respectively.
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Figure 4.7: The HR diagram of a 1.4 M⊙ model without convective core overshoot (solid line) and

with a convective core overshoot of 0.2 (dashed line).
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Table 4.1: Parameters used to compute the evolutionary tracks.M/M⊙ is the mass in solar units,Z/X

is the initial ratio of heavy elements to hydrogen abundances, andY the helium abundance.αML is

the mixing-length parameter andαOV the core overshoot parameter. We considered (Z/X)⊙ = 0.0245

(Grevesse & Noels 1993).

Parameter Grid I Grid II

M/M⊙ 1.00 - 1.6 (with steps of 0.1) 1.00 - 1.6 (with steps of 0.1)

Z/X 0.0245 [0.0079, 0.0787]

Y 0.278 [0.255, 0.340]

αML 1.8 1.8

αOV 0.0 - 0.2 (with steps of 0.1) 0.1

not affect the convective core. In this region, the temperature gradient is approximately its

adiabatic value and therefore independent of the details inthe theory of convection. The

values for the metallicity were chosen so that they comprisethose derived for the solar-like

stars observed by theKeplersatellite. The value of the convective overshoot for stars with

massesM < 1.7 M⊙ is quite unknown with literature values ofαOV ranging from 0.00 to 0.25

(Ribas et al. 2000). We considered values for the convectivecore overshoot between 0.0 and

0.2. The physics considered in the modelling is that described in Section 3.2. Diffusion and

settling were not taken into account. Since our goal in this part of the work was only to

study the dependence of the diagnostic tools on the input parameters, we did not construct

refined grids.

Each evolutionary track contains up to 200 models within themain-sequence phase, i.e.

models with hydrogen abundance in the core,Xc > 10−2. The true number of models

depends mainly on the mass associated with the track. Ratherthan analysing all the. 200

models, we considered 12 models along the main-sequence phase that are equally spaced in

log g, logTeff, and log(L/L⊙). The reason for not considering all the models along the main-

sequence phase was that it would be more computational and human time consuming, and

it would not give significant additional information, sinceour main goal was only to have

a global idea of the diagnostic tools’ dependencies. To select the 12 models, we started by

computing the total parameter ‘distance’ that a given modeltravels along the main-sequence

in a 3-D space with the following parameters: logg, log Teff, and log(L/ L⊙). The total

distance was equally divided in 12 segments, and the 12 models were chosen such as to have

their log g, logTeff , and log(L/ L⊙) the closest to the respective values for the 12 segments.

Figure 4.8 shows the HR diagram for a set of main-sequence models with mass varying

between 1.0 and 1.6 M⊙, with solar metallicity, and no convective core overshoot.The

twelve models are represented by the black star symbol. In this plot the models shown are
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Figure 4.8: The HR diagram for a set of main-sequence models with solar metallicity, and no

convective core overshoot. The numbers at the end of each evolutionary track correspond to the

mass, in solar units. The 12 selected models within each evolutionary track are shown by a star

symbol (see text for details).
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not equally spaced since, for clarity, the third dimension,namely logg is not represented.

The reason we chose this approach to select the models was that we wanted models that are

equally spaced for each track and that is dynamic with the mass, since the distance travelled

along the main-sequence phase varies with varying mass. Thus, we had to find a constant

step for each track.

For the 12 models within each track we computed oscillation frequencies using the ADIPLS

code. Note that the model frequencies were computed up to values above the cut-off fre-

quency (νc = (2π)−1ωc) (cf. Eq. (1.0.11)). Although frequencies that are above the cut-off

frequency are not expected to be observed, the reason for us to compute them was because

for some models in our grids it is in this range of frequenciesthat the slopes of the diagnostic

tools are approximately constant (see Figure 4.4). Since our first aim was to see how the

slopes of the diagnostic tools in this constant region depend on the relative variation of the

sound speed at the discontinuity and, thus, on age, we had to consider the high frequencies.

The model frequencies were then used to compute the diagnostic tools,d01, d10, d02 and their

respective ratiosr01, r10, r02, anddr0213.

In the case of stars with convective cores we expect the frequency slopes of the diagnostic

tools to be a measure of the jump in the sound speed at the edge of the growing convective

core (Cunha & Brandão 2011). We started by inspecting the behaviour of the diagnostic

tool,dr0213, as a function of frequency and determining the frequency atwhich the maximum

absolute value of the derivative ofdr0213 was placed,fmax associated to a radial order,nmax.

We then computed the slope aroundfmax by performing a linear least square fit to the 10

frequencies of modes of consecutive radial orders,n, centred onnmax. As for the quantities

d01, d10, d02, and their respective ratios, we computed their slopes in the same range of

frequency as considered fordr0213. The reason for adopting this procedure was the fact that

the behaviour ofdr0213 as a function of frequency is much smoother. Since our aim wasto

compute all quantities and slopes in an automated manner, wetook advantage of the fact

that it is easier to find a global absolute maximum for this quantity, than for the others. Note

that in relation to the quantitiesd01 andd10 they are both 5-point combinations of modes of

l = 0 and 1, the first centred on modes of degreel = 0 and the second on modes ofl = 1.

In practice, we consider these two quantities together, denoting the result byd010, and the

ratios byr010. For these two cases, the slopes are also determined in the same frequency

range as that considered fordr0213, but instead of using 10 frequencies we consider 20. In

Figure 4.9 we show as an example, the diagnostic toolsdr0213, r010 andr02 computed for a

1.4 M⊙ model without overshoot and with solar metallicity at an ageof 1.29 Gyr, and the

frequency region where the slopes are measured.

To have an estimation of the error associated with the slope computed for each diagnostic
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Figure 4.9: The three diagnostic tools, namelydr0213 (upper panel),r010 (middle panel) andr02

(lower panel) as a function of frequency, computed for a 1.4 M⊙ model without core overshoot and

with solar metallicity. This model has an age of 1.29 Gyr and corresponds to the 6th model of the

1.4 M⊙ evolutionary track of Figure 4.8.
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tool, we chose seven models with different values for the mass and input physics, and

with different values ofδc2/c2. For these models we randomly generated 10000 sets of

model frequencies within the error, assuming a relative error of 10−4 for each individual

frequency. For each generation, we computed the slopes in the same manner as described

above. We then computed the mean of the 10000 values obtainedfor the slopes and the

standard deviation was considered to be our error estimation for the slopes of the diagnostic

tools.

As mentioned above, models that have a convective core show adiscontinuity. A measure

of this discontinuity can be obtained by computing the size of the jump of the sound-speed

squared,δc2. We aim at finding a relation between the relative size of the jump of the

sound-speed squared,δc2/c2, and the slopes of the diagnostic tools. Thus, for the modelsfor

which we computed the diagnostic tools and that have a convective core, we also computed

δc2/c2. To compute the latter, we started by identifying the location (in terms ofr/R) of the

discontinuity inc2. To do so we analysed the values of the derivative of the sound-speed

squared in the inner regions of the models. As an example, in Figure 4.10 we show the

sound-speed profile (upper panel) and its corresponding frequency derivative (lower panel)

in the inner regions of a 1.4 M⊙ model at an age of 1.56 Gyr. As expected, the derivative

changes the sign, from negative to positive, at the locationof the discontinuity. This fact

was used to determine the precise location of the jump in an automated manner, for all

models. With that we were able to automatically compute the actual size of the sound-speed

jump by measuring the difference between the maximum and minimum values ofc2 at the

discontinuity. These two values are shown, as an example, bythe two black stars in the

upper panel of Figure 4.10.

4.3 Results

We verified that no convective core exist in our 1.0 M⊙ sequences of models. Moreover,

these models do not show strong sound-speed gradients in theinnermost layers, although

the sound-speed gradients are being built up as the star evolves. In Figure 4.11, upper panel,

we show an example of the sound-speed profile in the innermostregions of a 1.0 M⊙ model

with solar metallicity. As can be seen from this figure, thereis no discontinuity inc2. On

the other hand, the presence or absence of a convective core in models with 1.1 M⊙ depends

on the metallicity considered. All models in our lowest metallicity sequences of 1.1 M⊙,

namely withZ/X = 0.0079 have no convective core. The most evolved models with 1.1 M⊙
and with solarZ/X = 0.0245 metallicity show a convective core (Figure 4.11, middle panel)
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Figure 4.10: The upper panel shows the square of the sound speed in the innermost regions of a

1.4 M⊙ model with an age of 1.56 Gyr computed with solar metallicityand assuming an overshoot

from the convective core ofαOV = 0.1. The lower panel shows the derivative of the square of the

sound speed, dc2/d(r/R), in the same region. The dashed vertical lines in both panels correspond to

the location of the discontinuity where the derivative changes its sign from negative to positive. The

dashed horizontal line represents the zero in dc2/d(r/R). The two black star symbols in the upper

panel mark the position of the two extremes of the discontinuity, that are used to compute its size in

an automated manner.
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Figure 4.11: The sound-speed profile in the inner layers of aM = 1.0 M⊙ (upper panel),M = 1.1 M⊙
(middle panel) andM = 1.4 M⊙ (lower panel) with different ages. The numbers at the beginning of

the curves indicate the age of the models in Gyr. These modelswere computed with solar metallicity

and assuming overshoot from the convective core ofαOV = 0.1.
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and the 1.1 M⊙ models with high metallicity,Z/X = 0.0787 all have a convective core.

Models withM ≥ 1.2 M⊙ all have convective cores and show a discontinuity of the sound

speed (Figure 4.11, lower panel).

Figure 4.12, upper panel, shows the maximum absolute derivative of the quantity 6∆ν dr0213

computed in the frequency region of constant slope for all the models within our sequence

of evolutionary tracks as a function of the mass of the models. Models without a convective

core are shown in red. The lower panel of Figure 4.12 shows thesize of the jump of

the sound-speed squared,δc2/c2, as a function of the mass of the models. Note that no

stars ofM = 1.0 M⊙ are shown in this plot, because these stars do not have convective

cores, hence no discontinuity in the sound speed. From this figure, and for the physics

considered in the models, we can see that the maximum absolute derivative of the quan-

tity 6∆νdr0213 is no higher than∼0.008, independently of the mass of the models. This

maximum value of∼0.008 is, in turn, associated to a maximum value forδc2/c2 of ∼0.4,

the latter being determined by the change of the chemical composition (hence, in the mean

molecular weight) at the discontinuity. In the same figure, upper panel, we can also see

that models with| d (6∆ν dr0213)/dν | & 0.002 all have a convective core, while models with

| d (6∆ν dr0213)/dν | . 0.002 may or may not have a convective core, depending on the mass.

Therefore, for a given observation of a star, if we find that| d (6∆ν dr0213)/dν | & 0.002, we

can say with confidence that the star has a convective core.

Unfortunately, the frequency region where the maximum absolute slope is computed is

not always in the range of the observed frequencies. For instance, for the main-sequence

solar-like pulsators observed by theKeplersatellite, we note that approximately a dozen of

radial orders, centred onνmax, are observed. Moreover, no frequencies above the cutt-off

frequency,νc, are expected to be observed. To illustrate the impact of these observational

limitations, we show in Figure 4.13 again the plot present inthe upper panel of Figure 4.12

but considering only models for which the frequency region of maximum slope is between

νmax− 8∆ν andνmax+ 8∆ν (upper panel) or betweenνmax andνc (lower panel). The different

metallicities considered in the models are shown with different symbols. Models with

| d (6∆ν dr0213)/dν | & 0.003 and for which the frequency region of the maximum slope

is betweenνmax−8∆ν andνmax+8∆ν all have the highest metallicity, namelyZ/X = 0.0787.

If the l = 3 modes are not observed, the two diagnostic toolsd010 andd020, or their respective

ratios, which consider modes of degree up to 2 should be preferred. Note, however, that

these two quantities measure differently the structure of the core, hence they do not isolate

the sharp structural variation in the sound speed. As a consequence, when using these

two diagnostic tools one should have in mind that the effect of the whole core, and not
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Figure 4.12: Upper panel: The symbols represent the absolute derivativeof the quantity 6∆ν dr0213

computed at maximum slope for the models with different masses and input physics considered in

each evolutionary track, as a function of the mass of the model. Red stars correspond to models with

no convective core. The typical error bar for the slope of 6∆ν dr0213 is also shown in this plot. The

plot in the lower panel shows, for the same models as shown in the plot of the upper panel and with

convective cores, the size of the jump as a function of the mass of the model.
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Figure 4.13: The same plot as the upper panel of Figure 4.12, but considering only models for which

the frequency region of maximum slope is betweenνmax − 8∆ν andνmax + 8∆ν (upper panel) or

betweenνmax andνc (lower panel). The different symbols represent different metallicities, namely

crosses representZ/X = 0.0079, circles representZ/X = 0.0245 and squares representZ/X =

0.0787. In red are shown the models with no convective core.
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only the discontinuity, is present. Nevertheless, it is interesting to see that when analysing

the slopes of∆ν r02 and∆ν r010 we obtain similar results as the ones previously mentioned

for the diagnostic tooldr0213. We verified that models with| d (∆ν r010)/dν | & 0.003 or

| d (∆ν r02)/dν | & 0.003 all have convective cores. Moreover, within these models, those

for which the measured slope is in the expected observed frequency range, namely between

νmax− 8∆ν andνmax+ 8∆ν, are the most metallic ones.

So, in summary, for the diagnostic tools considered, we are confident that a detection of

a slope with absolute value larger than∼0.003 is a strong indication of the presence of

a convective core. Also, for relatively low masses, these are expected to be observed

preferentially in high metallicity stars.

For the models with a convective core and for which we computed the slopes of the diagnos-

tic tools and the size of the jump inc2, we checked if a relation between these two quantities

exists. In Figure 4.14, upper panel, we show the relation between the slopes computed for

the diagnostic tool 6∆νdr0213 and the relative size of the jump in the sound speed squared,

δc2/c2. This plot shows a strong dependence of the slopes on the sizeof the jump, as

expected from the work of Cunha & Brandão (2011) and expression 4.1.9.

In the same figure, in the middle and lower panels, we show the same relation, but for the

quantities∆ν r010 and∆ν r02, respectively. Although the two latter diagnostic tools donot

isolate the effect of the jump in the sound speed, the similarity with the plot for the first

diagnostic tool indicates that their slopes are strongly affected by this discontinuity.

By inspecting these plots, a relatively large spread is found at larger values ofδc2/c2,

thus, larger ages. For the younger stars, withδc2/c2
. 0.2, the relation was found not to

depend significantly on the mass, core overshooting, or metallicity, at least for the physics

that we considered in our set of models. However, at latter stages, that is no longer the

case. To illustrate this, we show, in Figure 4.15, the dependence of the relation between

d(6∆νdr0213)/dν andδc2/c2 on the metallicty. In Figure 4.16 we show the dependence of

the same relation on the overshooting and, finally, in Figure4.17 we show the dependence

on the mass. A dependence of the relation on metallicity and overshoot clearly emerges as

the stars approach the TAMS. On the other hand, no clear dependence on stellar mass is

seen even at the latest stages considered.

From these results we can say that, in principle, it is possible, for particular stars, to get

a measure of the size of the jump in the sound speed from the analysis of the observed

oscillation frequencies. Such measure, in turn, can in principle be related to the evolutionary

state of the star. To test this possibility, we inspected directly the relation between the

slopes of the different diagnostic tools and the fraction of evolution (t/tTAMS) along the main-
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Figure 4.14: The slopes of the diagnostic tool 6∆ν dr0213 (upper panel),∆ν r010 (middle panel) and

∆ν r02 (lower panel) as a function of the relative size of the sound-speed squared,δc2/c2. Each point

represented by a star symbol corresponds to one model of our grids for which we have computed

both the slopes and the size of the discontinuity ofc2. Green stars represent the models for which

the slope of the diagnostic tools was measured betweenνmax andνc. The error bars shown were

computed for some of the models of our grid.
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Figure 4.15: The slope of the diagnostic tool, 6∆ν dr0213 as a function of the relative size of the

jump in the sound-speed squared,δc2/c2. The black stars represent models with solar metallicity,

Z/X = 0.0245, the green stars represent models withZ/X = 0.0079, and the red stars represent

models withZ/X = 0.0787. The models haveαOV = 0.1. The typical error bar for d(dr02136∆ν)/dν

is shown in the upper right corner of the plot.
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Figure 4.16: The same as in Figure 4.15 but here the black stars represent models without

overshooting,αOV = 0.0, the green stars represent models withαOV = 0.1, and the red stars represent

models withαOV = 0.2. The models haveZ/X = 0.0245. The typical error bar for d(dr02136∆ν)/dν

is shown in the upper right corner of the plot.
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Figure 4.17: The same as in Figure 4.15 but here the different symbols correspond to different values

of the mass, namelyM = 1.1 M⊙ are represented by crosses,M = 1.2 M⊙ by stars,M = 1.3 M⊙ by

triangles,M = 1.4 M⊙ by squares,M = 1.5 M⊙ by diamonds andM = 1.6 M⊙ by X. The error bars

for d(dr02136∆ν)/dν are shown for some models.
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Figure 4.18: The slope of the diagnostic tool, 6∆ν dr0213 as a function of the fraction of stellar

evolution,t/tTAMS, for all models of our grid that have a convective core. Theseare all models with

1.2 ≤ M ≤ 1.6 M⊙ and models withM = 1.1 M⊙ with metallicitiesZ/X = 0.0245 (green symbols)

andZ/X = 0.0787 (light blue symbols). The different symbols in green represent different values for

the overshoot parameter, namelyαOV = 0.0 (crosses),αOV = 0.1 (diamonds) andαOV = 0.2 (squares).

sequence phase of a star. By fraction of evolution we mean theratio between the age of

a star at a given evolutionary stage,t, in the main-sequence and the age of a star within

the same evolutionary track but at the TAMS,tTAMS. We considered the stellar fraction of

evolution and not the stellar age alone since the latter is strongly dependent on the stellar

mass. Figure 4.18 shows, for all models with a convective core, the slopes of the diagnostic

tool 6∆νdr0213 as a function of the fraction of main-sequence stellar evolution, t/tTAMS. By

inspecting this figure, we see a large spread in the slopes at the higher evolution fractions,

namely att/tTAMS & 0.6. This is due to the fact that models withM = 1.1 M⊙, solar

metallicity andαOV = 0.0 have a very small central convective region and, therefore, only a

small discontinuity in the chemical composition at the edgeof that region. This is illustrated

in Figure 4.19 where we compare the cases of models withM = 1.1 M⊙ and solar metallicity
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and diferent values for the overshoot parameter. Moreover,we find that models withM =

1.2 M⊙ and no overshooting still have a relatively small convective core, hence a slope still

smaller than that of higher mass models at the later stages oftheir evolution. Figure 4.20,

upper panel, shows the same plot as in Figure 4.18 but for models with M ≥ 1.3M⊙ only.

The dispersion seen in this case is significantly smaller than in Figure 4.18. Figure 4.20,

middle and lower panels show, respectively, the slopes of the diagnostic tools∆ν r010 and

∆ν r02, as a function of the fraction of evolution, for the models with M ≥ 1.3 M⊙.

In summary, Figure 4.20 shows that for relatively massive solar-like pulsators (M ≥ 1.3 M⊙),

one may set constraints to the fraction of evolution along the main-sequence by inspecting

the slopes of the diagnostic tools considered here, in particular thedr0213 and ther010.

For relatively evolved stars such constraints are, however, limited to metallic stars, since

only for those one may observe the slope at its maximum.

An interesting question to ask is what do models with a similar relative size of the jump of

the sound-speed squared have in common. If we plot, e.g., themodels for whichδc2/c2 =

0.330±0.005, in the HR diagram, as shown in Figure 4.21, upper panel, we see that they are

all in the same evolutionary stage, namely at the TAMS. They all have 0.90< 1−Xc < 0.96.

This shows thatδc2/c2 can potentially be used to identify the TAMS. In the lower panel of

this figure we show again the slope of the diagnostic tool 6∆νdr0213 as a function ofδc2/c2,

where the black stars symbols correspond to the models considered in the upper panel. A

large spread in the slope is seen in this relation. Nevertheless, if we consider that among

these only the stars with high metallicities may have this large slope in 6∆ν dr0213 observed,

we can confidently say that the observation of a slope in this quantity of∼0.007 is indicative

that the star has reached the TAMS.

4.4 Conclusions

We used four seismic diagnostic tools, namelyr01, r10, r02, and the diagnostic tool,dr0213 to

study the cores of models of different masses, metallicities and convective core overshoots,

and different evolutionary states in the main sequence. Note that, in practice, we analysed

ther01 andr10 together, referring to it asr010.

We verified that there is a maximum absolute value for the computed frequency derivatives

of all diagnostic tools, which, in turn, is related to the maximum value achieved by the

relative size of the jump in the sound-speed squared. The maximum absolute values that

we obtained for the frequency slopes of 6∆νdr0213, ∆ν r010 and∆ν r02 were∼0.007,∼0.011



CHAPTER 4. CONVECTIVE CORES 143

Figure 4.19: The hydrogen profile of aM = 1.1 M⊙ model withZ/X = 0.0245 and withαOV = 0.0

(upper panel) and aM = 1.1 M⊙ model withZ/X = 0.0245 and withαOV = 0.2 (lower panel). The

different curves correspond to different stages of evolution. Only models with a convective core are

shown.
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Figure 4.20: Upper panel: The same as in Figure 4.18 but here only considering models withM ≥

1.3 M⊙. The same models are shown in the middle and lower panels for the slopes of the diagnostic

tools∆ν r010 and∆ν r02, respectively. Green symbols represent those models for which the derivative

of the diagnostic tools has its maximum betweenνmax andνc.
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Figure 4.21: Upper panel: the position in the HR diagram of models that have a commonδc2/c2 =

0.330± 0.005 are represented by the black star symbol. Also shown are the evolutionary tracks that

correspond to these models. The brackets in the beginning ofeach track show the value of its mass,

in solar units,Z/X andαOV, respectively. Lower panel: the values of the slopes of the 6∆ν dr0213 for

these models (black stars).
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and∼0.009, respectively. Moreover, we found that models with| d (6∆ν dr0213)/dν | & 0.002,

| d (∆ν r010)/dν | & 0.003 and| d (∆ν r02)/dν | & 0.003 all have convective cores. Within these

models, those for which the measured slope is in the expectedobserved frequency range,

namely betweenνmax− 8∆ν andνmax+ 8∆ν, are the most metallic ones, withZ/X = 0.0787.

Models with | d (6∆ν dr0213)/dν | . 0.002, | d (∆ν r010)/dν | . 0.003 and| d (∆ν r02)/dν | .

0.003, may or may not have a convective core, depending on the mass.

We also verified that there is a strong dependence of the frequency slopes of all diagnostic

tools on the relative size of the jump in the sound-speed squared, δc2/c2. It is, therefore,

in principle, possible to use the frequency of the modes of degreel ≤ 2 to infer about the

relative size of the sound speed,δc2/c2.

We verified that for models with a convective core there is a relation between the maximum

slopes of the diagnostic tools and the fraction of stellar main-sequence evolution,t/tTAMS.

This relation is stronger for models withM ≥ 1.3 M⊙. For these masses one may expect to

be able to use the slopes ofdr0213 or r010 to infer aboutt/tTAMS, at least for stars in which the

maximum slope is within the observable range.

Finally, we found that when the absolute slope of 6∆ν dr0213 is as big as∼0.007 then star is

at the TAMS.



Chapter 5

Concluding remarks

This dissertation concerned the study of two classes of pulsating stars, namely the rapidly

oscillating A peculiar (roAp) stars and the solar-like pulsators.

RoAp stars are a class of pulsators potentially very interesting for asteroseimic studies. They

are classical pulsators, with pulsation amplitudes largerthan those observed for the solar-like

pulsators, which makes them easier to detect. They pulsate in low-degree, high overtone,

non-radial acoustic (p-) modes. Moreover, their oscillations are affected by intense magnetic

fields. In principle, asteroseismology of roAp stars makes it possible to probe their internal

structure and magnetic fields. However, detailed asteroseimic studies of roAp stars have in

some cases been limited because the fundamental parametersare poorly known. An example

is the large uncertainty associated with the determinationof the effective temperature of

these stars, spanning 500 K or more. This large range, may be explained, in part, by the

chemical peculiarities and by the strong magnetic fields present in roAp stars.

The effective temperature of a star can be obtained from the combination of its bolometric

flux and angular diameter. In this work, we have presented a method to calculate the

bolometric flux of roAp stars. Rather than using the bolometric corrections available in the

literature, we computed the bolometric flux of these stars directly from their observed spec-

tra, calibrated in flux, together with the synthetic spectraof the Kurucz model atmospheres

that matches the photometric data and/or interpolations in the regions for which no observed

spectra were available. The need for such an analysis results from the fact that the available

bolometric corrections for normal stars are not suitable for roAp stars. We have applied this

method to two roAp stars, namelyβ CrB andγ Equ, for which interferometric observations

of their angular diameters were available. Both stars are binary, so we also estimated the

contribution of the secondary to the bolometric flux of the binary. We conclude that our
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method to determine the effective temperature of roAp stars is less model dependent than

those derived from photometric indices for which bolometric corrections are needed. The

main difficulties associated with the method that we used to compute the bolometric flux,

and that result in an increasing uncertainty on its determination, are the fact that the full

spectrum of the star is not always available and that the dataavailable in the literature for

the secondary star of these binary systems is lacking.

Regarding the modelling of solar-like pulsators, I presentasteroseimic studies performed on

three targets, namelyβHyi, KIC 10273246, and 16 Cyg. These are three examples for which

the observed individual oscillation frequencies can be used together with non-seismic data

to constrain a star’s global parameters, with high precision. We used the stellar evolutionary

code, ASTEC, to compute a grid of evolutionary models and forthose that lay inside 1−

or 3− σ uncertainty for the non-seismic data, their oscillation frequencies were computed

with the ADIPLS code. We then compared the individual model frequencies to the observed

ones in order to find the best matching model of the star, and hence, to infer about its global

properties.

Care should be taken when using the individual frequencies to model solar-like pulsators

since they are strongly affected by the stellar near-surface layers, which we still fail in

properly model. An empirical correction has been proposed by Kjeldsen et al. (2008) that

corrects the shift that exists between the frequencies of the model that best reproduces the

interior of the Sun and its observed frequencies. The authors argue that when modelling

stars other than the Sun, a shift between the model frequencies and the observed ones may

also exist, and that their proposed correction may be applied to such stars. In the present

work, we aimed at testing this empirical correction. We found that it seems to work rather

well for β Hyi and for 16 Cyg, but it did not work so well for KIC 10273246,which is a

star hotter than the former two. Nevertheless, for all the three stars under study we found

the minimum of theχ2
seis function, that evaluates the difference between the model and

observed frequencies, to be greater than one. This may suggest that either the observational

uncertainties associated to the observed frequencies are underestimated or that the models

fail in reproducing the data even when the empirical surfacecorrections are applied. As

the data is becoming more precise, thanks to space missions such asKepler, improvements

to the physics of the models are needed, such as the description of convection within the

surface layers of stars that show a convective envelope.

In addition, some specific features are seen in the oscillation spectra ofβHyi and KIC 10273246,

associated to the so-called mixed modes. We show that these modes are useful to constrain

the stellar age, but that they also affect the results regarding the other global parameters of

the star.
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Finally, in this thesis, we analysed the effect that the presence of a small convective core

in main-sequence solar-like pulsators has on their oscillation frequencies. We also analysed

the relations that may exist between this effect (or signature) and some of the properties of

the convective core, and hence the evolutionary state of thestars. Moreover, we studied the

dependence of these relations on the stellar mass and physical parameters.

We computed main-sequence evolutionary tracks with massesbetween 1.0 and 1.6 M⊙ using

the ASTEC code, and for some selected models within each track we computed their oscil-

lation frequencies with the ADIPLS code. Using these model frequencies we constructed

three diagnostic tools suggested in the literature, namely, dr0213, r01, r10 and r02, that use

mode degrees,l, up to 3. In practice, we consideredr01 andr10 together denoting it byr010.

The presence of a growing convective core in main-sequence solar-type pulsators causes a

discontinuity in the chemical composition, hence, a discontinuity in the sound-speed profile

at the edge of the core. Moreover, a retreating convective core also leaves a discontinuity in

the chemical composition and, consequently, a discontinuity in the sound-speed profile.

We verified that there is a relation between the frequency derivatives of all of the above

mentioned diagnostic tools and the relative size of the jumpin the sound-speed squared.

Although the only studied diagnostic tool that is capable ofisolating the signature of the

edge of the core isdr0213, we verified that the other two diagnostic tools, namelyr010 and

r02 are also affected by the presence of the convective core. This is an important result since

not always modes with degree up to 3 are available. We found that there is a maximum

absolute value for the frequency derivatives of all of the diagnostic tools under study, which,

in turn is related to a maximum value achieved by the relativesize of the jump in the sound-

speed squared. Moreover, we found that models for which the absolute derivatives of the

diagnostic tools are above a given threshold,∼0.003, all have a convective core.

In our work, the frequency derivatives of the diagnostic tools were measured in a frequency

region centred in the frequency for which the derivative absolute value is maximum. Unfor-

tunately, this region may not always be within the range of the observed frequencies of real

stars. With this in mind, we inspected the models for which the frequency derivatives were

computed within the observed frequency range, that we chose, based on the data from the

Kepler satellite, to be betweenνmax± 8∆ν, and verified that those that have the derivatives

of the diagnostic tool above∼0.003 are the most metallic ones of our grid.

Regarding the stellar evolutionary state of a star measuredin terms of the fraction of main-

sequence stellar evolution,t/tTAMS, we found it to be related to the maximum slope of the

diagnostic tools, this relation being stronger for stars with M ≥ 1.3 M⊙. Also, we found that

if the maximum absolute derivative of the diagnostic tool 6∆ν dr0213 is as big as∼0.007 then
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we can confidently say that the star is at the TAMS.

We must note that these conclusions were obtained based on models with a given physics.

It would be interesting to perform a similar analysis by including different physics to the

models, in particular diffusion. Moreover, with the unprecedented quality data that we are

obtaining from theKeplersatellite, we hope to apply our analysis to the observationsof real

stars.
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