
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143394761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Run-Time Management of Logic Resources on Reconfigurable Systems

Manuel G. Gericota, Gustavo R. Alves
Department of Electrical Engineering – ISEP

Rua Dr. António Bernardino de Almeida – 4200-072 Porto – PORTUGAL

Miguel L. Silva, José M. Ferreira
Department of Electrical and Computer Engineering – FEUP

Rua Dr. Roberto Frias – 4200-465 Porto – PORTUGAL

Abstract

Dynamically reconfigurable systems based on partial
and dynamically reconfigurable FPGAs may have their
functionality partially modified at run-time without
stopping the operation of the whole system.

The efficient management of the logic space available
is one of the biggest problems faced by these systems.
When the sequence of reconfigurations to be performed is
not predictable, resource allocation decisions have to be
made on-line. A rearrangement may be necessary to get
enough contiguous space to implement incoming
functions, avoiding the spreading of their components and
the resulting degradation of system performance.

A new software tool that helps to handle the problems
posed by the consecutive reconfiguration of the same logic
space is presented in this paper. This tool uses a novel on-
-line rearrangement procedure to solve fragmentation
problems and to rearrange the logic space in a way
completely transparent to the applications currently
running.

1. Introductioni

Reconfigurable computing experienced a considerable
expansion in the last few years, due in part to the fast run-
-time partial reconfiguration features offered by recent
Field Programmable Gate Arrays (FPGAs). The Virtex
and Spartan families from Xilinx, used to validate this
work, are the most recent examples. This kind of devices
enabled the implementation of the concept of virtual
hardware defined in [1] ten years ago: to use temporal

i This work is supported by an FCT program under contract

POCTI/33842/ESE/2000

partitioning to implement those applications whose area
requirements exceed the reconfigurable logic space
available (i.e. to assume the availability of unlimited
hardware resources). The static implementation of a
circuit is separated in two or more independent hardware
contexts, which may be swapped during runtime [2].
Extensive work was done to improve the multi-context
handling capability of these devices, by storing several
configurations and enabling quick context switching [3,
4]. The main goal was to improve the execution time by
minimising external memory transfers, assuming that
some amount of on-chip data storage was available in the
reconfigurable architecture. However, this solution was
only feasible if the functions implemented on hardware
were mutually exclusive on the temporal domain, e. g.
context-switching between coding/decoding schemes in
communication, video or audio systems; otherwise, the
length of the reconfiguration intervals would lead to
unacceptable delays in most applications.

These restrictions have been overtaken by higher levels
of integration, due to the employment of sub-micron
scales, and by the use of higher frequencies of operation.
The increasing amount of logic available in FPGAs and
the reduction on the reconfiguration time, partly owing to
the possibility of partial reconfiguration, extended the
concept of virtual hardware to the implementation of
multiple applications sharing the same logic resources in
the spatial and temporal domains.

An application comprises a set of functions that are
predominantly executed sequentially, or with a low degree
of parallelism, in which case their simultaneous
availability is not required. On the other hand, the
reconfiguration intervals offered by new FPGAs are
sufficiently small to enable functions to be swapped in real
time. If a proper floorplanning schedule is devised, it
becomes feasible to use a single device to run a set of
applications, which in total require far more than 100% of

1530-1591/03 $17.00 2003 IEEE

mgg
974

the FPGA available resources, by swapping functions in
and out of the FPGA as needed.

Partial reconfiguration times are in the order of a few
milliseconds, depending on the configuration interface and
on the complexity (and thus on the size) of the function
being implemented. However, the reconfiguration time
overhead may be virtually zero, if new functions are
swapped in advance with those already out of use, as
illustrated in figure 1. A number of applications share the
same available reconfigurable logic space in both the
temporal and spatial domains [5]. After the execution of a
given function, a new function may be set up in its place
during the interval rt, in order to be available when
required by the application flow (rt should therefore not be
mistaken by the reconfiguration time). Notice that an
increase in the degree of parallelism may retard the
reconfiguration of incoming functions, due to lack of
space in the FPGA. Consequently, delays will be
introduced in the application execution, systematically or
not, depending on the application flow.

TimeInitial
configuration rt - reconfiguration interval

- data transfer between different functions

Appl.C

Appl.B

Available
resource space

Function C1

Function B1

Function A1Appl.A

Function A2

Function B2

Function C3
Fun ction C2 Function C4

Applications
running in
the FPGA

rt

rt

rt

Fig. 1. Temporal scheduling of applications in the
temporal and spatial domains

The main goal behind the temporal and spatial
partitioning of the reconfigurable logic resources is to
achieve the maximum efficiency of the reconfigurable
systems, pushing up resource usage and taking the
maximum advantage of its flexibility. However, this
approach comprises several problems. An incoming
function may require the relocation of other functions
already implemented and running, in order to release
enough contiguous space for its configuration (see
function C2 in figure 1). Since each of the multiple
independent functions sharing the logic space occupies a
different amount of resources, many small pools of
resources are created as they are released. These
unallocated areas tend to become so small that they fail to
satisfy any request and for that reason remain unused,
leading to a fragmentation of the FPGA logic space [6].

Suitable arrangements can be designed if the
requirements of each function and their sequence are
known in advance, but an increase in the available
resources will in most cases be necessary to cope with the
allocation problem [7]. However, when placement
decisions have to be made on-line, or the need for extra

space is only temporary, an increase on the available
resources is a poor solution, since it decreases the
efficiency of the system.

The problem described may be solved through on-line
management of the available resources, whereby the
system tries to avoid that a lack of contiguous free
resources prevents the configuration of new functions
(provided that the total number of resources available is
sufficient). Note that spreading the components of an
incoming function, due to fragmentation of available
resources, would degrade its performance, delaying tasks
and reducing the utilisation of the FPGA. If a new
function cannot be allocated immediately due to lack of
contiguous free resources, a suitable rearrangement of a
subset of the functions currently running may solve the
problem. Three methods are proposed in [5] to find such
(partial) rearrangements, in order to increase the rate at
which waiting functions are allocated, while minimising
disruptions to running functions that are to be relocated.
However, no physical execution of these rearrangements
is proposed other than halting those functions, stopping
the normal system operation.

A mechanism to implement such rearrangements
without disturbing the system operation is presented in
this paper. To address this problem, a new concept is
introduced – dynamic relocation –, which enables the
relocation of each FPGA CLB (Configurable Logic
Block) and of its associated interconnections, even if the
CLB is part of a function that is actually being used by an
application [8, 9]. This concept enables the rearrangement
and defragmentation of the FPGA logic space on-line (i. e.
concurrently with all applications currently running),
without any time overheads.

We will start by describing the dynamic relocation of
each CLB, highlighting the constraints imposed by the
FPGA architecture, and then we will introduce the
relocation mechanism proposed. The relocation of routing
resources will then be considered, including the software
tool that was developed to automate the generation of the
required partial configuration files.

2. Dynamic CLB relocation

Conceptually, an FPGA could be described as an array
of uncommitted CLBs, surrounded by a periphery of
IOBs, which are interconnectable by configurable routing
resources, controlled by an underlying set of memory
cells.

Any on-line management strategy implies a dynamic
relocation mechanism, whereby a CLB currently being
used by a given function has its functionality transferred
into another CLB, without disturbing system operation.
This relocation mechanism does more than just copying
the functional specification of the CLB to be replicated:

mgg
975

the corresponding interconnections with the rest of the
circuit have to be re-established; additionally, according to
its current functionality, internal state information may
also have to be copied.

The transparent relocation of a CLB is not a trivial task
due to two major issues: i) configuration memory
organisation and ii) internal state information.

The configuration memory can be visualised as a
rectangular array of bits, which are grouped into one-bit
wide vertical frames extending from the top to the bottom
of the array. A frame is the smallest unit of configuration
that can be written to or read from the configuration
memory. Frames are grouped together into larger units
called columns. Each CLB column corresponds to a
configuration column with multiple frames, mixing
internal CLB configuration and state information, and
column routing and interconnect information. The
partitioning of the entire FPGA configuration memory into
frames enables on-line concurrent partial reconfiguration,
facilitating the implementation of on-line rearrangement
procedures. The configuration procedure is a sequential
mechanism that spans through some (or eventually all)
CLB configuration columns. When the functionality of a
given CLB is dynamically relocated, even into a CLB in
the same column, more than one column may be affected,
since its input and output signals (as well as those in its
replica) may cross several columns before reaching its
source or destination.

Any reconfiguration action must therefore ensure that
the signals from the original CLB are not broken before
being totally re-established from its replica, otherwise its
operation will be disturbed or even halted. It is also
important to ensure that the functionality of the CLB
replica is perfectly stable before its outputs are connected
to the system, to prevent output glitches. A set of
experiments performed with an XCV200 from Xilinx
demonstrated that the only possible solution is to divide
the relocation procedure in two phases, as illustrated in
figure 2 (for reasons of intelligibility, only the relevant
interconnections are represented).

In the first phase, the internal configuration of the CLB
is copied into the new location and the inputs of both
CLBs are placed in parallel. Due to the slowness of the
reconfiguration procedure when compared with the speed
of operation of current applications, the outputs of the
CLB replica are already perfectly stable when they are
connected to the circuit, in the second phase. To avoid
output glitches, both CLBs (the original and its replica)
must remain in parallel for at least one clock cycle. Notice
that rewriting the same configuration data does not
generate any transient signals, so this procedure does not
affect the remaining resources covered by the rewriting of
the configuration frames that are needed to carry out the
relocation procedure.

Successful completion of the procedure described
above cannot be achieved without correct transfer of state
information. If the current CLB function is purely
combinational, this two-phase relocation procedure will
suffice to accomplish successful relocation. However, in
the case of a sequential function, the internal state
information must be preserved and no update operations
could be lost during the copying phase. The solution to
this problem depends on the type of implementation. In
this paper we shall consider three implementation cases:
synchronous free-running clock circuits, synchronous
gated-clock circuits, and asynchronous circuits.

1st phase

2nd phase

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB

Fig. 2. Two-phase CLB relocation procedure

When dealing with synchronous free-running clock
circuits, the two-phase relocation procedure described
previously is a good solution. Between the first and the
second phase the CLB replica has the same inputs as the
original CLB, and all its flip-flops (FFs) acquire the same
state information. The experimental replication of CLBs
with FF driven by a free-running clock has confirmed the
effectiveness of this method. No loss of state information
or the presence of output glitches was observed.

When using synchronous gated-clock circuits, where
input acquisition by the FFs is controlled by the state of
the clock enable signal (CE), the previous method does
not ensure that the CLB replica captures the correct state
information, because CE may not be active during the
relocation procedure. Besides, it is not feasible to simply
set this signal as part of the relocation procedure, because
the value present at the input of the replica FFs may
change in the meantime, and a coherency problem would
then occur.

An auxiliary relocation circuit needs to be implemented
to solve this problem. This circuit manages the transfer of
the state information from the original FFs to the replica

mgg
976

FFs, while enabling their update by the circuit at any
instant, without delaying the relocation procedure. The
whole relocation scheme is represented in figure 3, where
only one logic cell is shown, for reasons of simplicity. In
the Virtex and Spartan families, each CLB comprises four
of these cells; however, and for the purpose of
implementing this procedure, each CLB cell can be
considered individually. The temporary transfer paths
established between the original cells and their replicas do
not affect their functionality, since only free routing
resources are used. No changes in the cell structure are
required to implement this procedure. The relocation
control and the clock enable control signals are driven
through the reconfiguration memory, so no extra external
pins are required. The OR gate and the 2:1 multiplexer
that are part of the auxiliary relocation circuit must be
implemented during the relocation process in a nearby
(free) CLB.

0

1
D Q

CE

Combinational
logic circuitry

Relocation
control

D Q

CE

Combinational
logic circuitry

1

0Clock enable
control

Auxiliary relocation circuit

Replica
combinational

output

Original
registered

output

Original CLB

Replica CLB

CLB inputs

Clock enable signal

Clock signal

CLB
output

Fig. 3. CLB relocation for synchronous gated-
-clock circuits

The inputs of the 2:1 multiplexer present in the
auxiliary relocation circuit receive one temporary transfer
path from the output of the original CLB FF and another
one from the output of the combinational logic circuitry of
the replica CLB, which, in normal operation, is applied to
the FF input. This multiplexer is controlled by the clock
enable signal of the original CLB FF. If this signal is not
active, the output of the original CLB FF is applied to the
input of the replica CLB FF. The clock enable control
signal is then activated, which forces the replica CLB FF
to capture the value coming from the original CLB FF.

If the clock enable signal is active, or is activated
during this process, the multiplexer selects the output of
the combinational block in the replica CLB and applies it
to its FF input. In this case, both the original and the
replica FFs are updated at the same time and with the
same values, guaranteeing state coherency.

After the state has been transferred, the input signals
involved in the execution of the relocation procedure are
placed in parallel, all the signals to and from the auxiliary
relocation circuit are disconnected, and the outputs of both

CLBs are also placed in parallel. After at least one
function clock cycle, the original CLB is disconnected
from the rest of the circuit (first the outputs and then the
inputs, in order to prevent any transient instability in the
output signals), and becomes part of the pool of free
resources.

Figure 4 represents the flow diagram of the proposed
relocation procedure. Several relocation experiments were
carried out in a group of circuits from the ITC’99
Benchmark Circuits from the Politécnico di Torino [10]
implemented in a Virtex XCV200, proving the
effectiveness of our approach. These circuits are purely
synchronous with only one single-phase clock signal
present. However, this approach is also applicable to
multiple clock/multiple phase applications, since only one
clock signal is involved in the relocation of each CLB
(CLBs relocation is performed individually, even if many
of these blocks were replicated simultaneously). No loss
of information or functional disturbance was observed
during the execution of these experiments.

Begin

Connect signals to the auxiliary relocation circuit;
place CLB input signals in parallel

Activate relocation and clock enable control

Deactivate clock enable control

Connect the clock enable inputs of both CLBs

Disconnect all the auxiliary relocation circuit signals

Place CLB outputs in parallel

Disconnect the original CLB outputs

End

> 2 CLK pulse
No

Yes

>1 CLK pulse
No

Yes

Deactivate relocation control

Disconnect the original CLB inputs

Fig. 4. Relocation procedure flow diagram

The average relocation time of each CLB implementing
synchronous gated-clock circuits is about 22,6 ms, when
the Boundary Scan [11] infrastructure is used to perform
the reconfiguration, at a test clock frequency of 20 MHz.

This method is also effective when dealing with
asynchronous circuits, where transparent data latches are
used instead of FFs. In this case, the control enable signal
is replaced in the latch by the input control signal, with the

mgg
977

value present in the input of the FF being stored when the
control signal changes from ‘1’ to ‘0’. The same auxiliary
relocation circuit is used and the same relocation sequence
is followed.

In the Virtex family of FPGAs, LUTs (Look-Up
Tables) can be configured as Distributed RAMs.
However, it is not feasible to extend this on-line relocation
concept to the relocation of those LUT/RAMs. The
content of the LUT/RAMs could be read and written
through the configuration memory, but the system would
have to be stopped to ensure data coherency, in the case of
a writing attempt during the relocation interval, as stated
in [12]. Furthermore, since frames span an entire column
of CLB slices, the same LUT bit in all of them is updated
with a single write command. It must be ensured that all
the remaining data in the slice is either constant, or it is
also modified externally through partial reconfiguration.
Even not being relocated, LUT/RAMs should not lie in
any column that could be affected by the relocation
procedure.

3. Rearranging routing resources

Due to the scarcity of routing resources, it might also
be necessary to perform a rearrangement of the existent
interconnections, to optimise the occupancy of such
resources, after the relocation of one or more CLBs, and to
increase the availability of routing paths to incoming
functions. The relocation of routing resources does not
pose any special problems, since the same two-phase
relocation procedure is effective on the relocation of local
and global interconnections. The interconnections
involved are first duplicated in order to establish an
alternative path, and then disconnected, becoming
available to be reused, as illustrated in figure 5.

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

- Original path
- Replica path

CLB2

CLB1

Fig. 5. Relocation of routing resources

A last remark must be made about the relocation of
routing resources. Since different paths are used while
paralleling the original and replica interconnections, each
of them will have a different propagation delay. This
means that if the signal level at the output of the CLB

source changes, the signal at the input of the CLB
destination will show an interval of fuzziness, as shown in
figure 6. However, the impedance of the routing switches
will limit the current flow in the interconnection, and
hence this behaviour does not damage the FPGA.
Nevertheless, and for transient analysis, the propagation
delay associated to the parallel interconnections, shall be
the longer of the two paths.

CLB1 output

time

CLB2 input

V

- Signal propagation
through the original path

- Signal propagation
through the replica path

Fig. 6. Propagation delay during the relocation of
routing resources

The dynamic relocation of CLBs and interconnections
should have a minimum influence (preferably none) in the
system operation, as well as reduced overhead in terms of
reconfiguration cost. This cost depends on the number of
reconfiguration frames needed to relocate each CLB, since
a great number of frames would imply a longer
rearrangement time. The impact of the relocation
procedure in those functions currently running is mainly
related to the delays imposed by rerouted paths, since the
relocation procedure might imply a longer path, therefore
decreasing the maximum frequency of operation.

The placement algorithms (in an attempt to reduce path
delays) gather in the same area the logic that is needed to
implement the components of a given function. It is
unwise to disperse it, since it would generate longer paths
(and hence, an increase in path delays). On the other hand,
it would also put too much stress upon the limited routing
resources. Therefore, the relocation of the CLBs should be
performed to nearby CLBs. If necessary, the relocation of
a complete function may take place in several stages, to
avoid an excessive increase in path delays during the
relocation interval.

4. The FPGA rearrangement and
programming tool

To support the implementation of this management
process, a software tool was developed, based on the JBits
software � a set of Java classes that provide an
Application Programming Interface (API) to access the
Xilinx FPGA bitstream [13]. This tool is responsible by
the creation of the partial configuration files and carries
out the partial and dynamic reconfiguration of the FPGA
through the Boundary Scan interface. Since the partial
configuration files that implement the rearrangements

mgg
978

defined by the relocation procedure are generated
automatically (without designer intervention), the usage of
this tool becomes very straightforward. The input
information may be provided in the form of a complete
configuration file (generated by the traditional
development tool with a new placement for the functions
currently running or those that are about to be
implemented) or by providing the co-ordinates - source
and destination - of the CLB to be relocated. The tool
implements a series of algorithms based on artificial
intelligence techniques that manage the routing of the
signals coming in and out of the CLBs that are relocated,
optimising the usage of the routing resources. The
program always keeps a complete copy of the current
configuration, enabling system recovery in case of failure.
The user interface is shown in figure 7.

Fig. 7. Interface of the FPGA Rearrangement and
Programming tool

5. Conclusion

A novel relocation procedure to perform the dynamic
relocation of CLBs, without halting their operation, was
presented in this paper. The proposed procedure enables
the implementation of a truly on-line management of the
FPGA logic space, supporting the rearrangement of
running functions, releasing enough contiguous space for
the configuration of new incoming functions, and
performing defragmentation. Therefore, on-line dynamic
scheduling of tasks in the spatial and temporal domains
becomes possible, enabling the implementation of the
virtual hardware concept [1]. Several applications may
share the same hardware platform, with their respective
functions running and being swapped in and out of the

FPGA, without generating any time overhead to the
running applications, or disturbing their operation. The
software application that was developed to support the
implementation of the relocation procedure enables the
complete automation of the whole process and an
optimised management of the available resources. Further
work is under way to increase the functionality and
flexibility of this tool.

References

[1] X. P. Long, H. Amano, “WASMII: a Data Driven Computer
on a Virtual Hardware”, Proc. 1st IEEE Workshop on
FPGAs for Custom Computing Machines, 1993, pp. 33-42.

[2] J. M. P. Cardoso, H. C. Neto, “An Enhanced Static-List
Scheduling Algorithm for Temporal Partitioning onto
RPUs”, Proc. 10th Intl. Conf. on VLSI, 1999, pp. 485-496.

[3] R. Maestre, F. J. Kurdahi, R. Hermida, N. Bagherzadeh, H.
Singh, “A Formal Approach to Context Scheduling for
Multicontext Reconfigurable Architectures”, IEEE Trans.
on VLSI Systems, Vol. 9, No. 1, Feb. 2001, pp. 173-185.

[4] M. Sanchez-Elez, M. Fernandez, R. Maestre, R. Hermida,
N. Bagherzadeh, F. J. Kurdahi, “A Complete Data
Scheduler for Multi-Context Reconfigurable Architectures”,
Proc. Design, Automation and Test in Europe, 2002,
pp. 547-552.

[5] O. Diessel, H. El Gindy, M. Middendorf, H. Schmeck, B.
Schmidt, “Dynamic scheduling of tasks on partially
reconfigurable FPGAs”, IEE Proc.-Computer Digital
Technology, Vol. 147, No. 3, May 2000, pp. 181-188.

[6] M. Vasilko, DYNASTY: A Temporal Floorplanning Based
CAD Framework for Dynamically Reconfigurable Logic
Systems, Proc. 9th Intl. Workshop on Field-Programmable
Logic and Applications, 1999, pp.124-133.

[7] M. Teich, S. Fekete, J. Schepers, “Compile-time
optimization of dynamic hardware reconfigurations”, Proc.
Intl. Conf. on Parallel and Distributed Processing
Techniques and Applications, 1999, pp. 1097-1103.

[8] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“Active Replication: Towards a Truly SRAM-based FPGA
On-Line Concurrent Testing”, Proc. 8th IEEE Intl. On-Line
Testing Workshop, 2002, pp. 165-169.

[9] M. G. Gericota, G. R. Alves, M. L. Silva, J. M. Ferreira,
“On-line Defragmentation for Run-Time Partially
Reconfigurable FPGAs”, Proc. 12th Intl. Conf. on Field
Programmable Logic and Applications, 2002, pp. 302-311.

[10] Politécnico di Torino ITC’99 benchmarks.
http://www.cad.polito.it/tools/itc99.html

[11] IEEE Std. Test Access Port and Boundary Scan Architecture
(IEEE Std 1149.1), IEEE Std. Board, May 1990.

[12] W. Huang, E. J. McCluskey, “A Memory Coherence
Technique for Online Transient Error Recovery of FPGA
Configurations”, Proc. 9th ACM Intl. Symposium on Field-
-Programmable Gate Arrays, 2001, pp. 183-192.

[13] S. A. Guccione, D. Levi, P. Sundararajan, “JBits Java based
interface for reconfigurable computing”, Proc. 2nd Military
and Aerospace Appl. of Prog. Devices and Technologies
Conf., 1999.

mgg
979

	10B_1.pdf
	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

