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Towards an Agent-Based Artificial Transportation System as a Test-Bed for Policy 

Making and Incentive Design 

Abstract 

 

The major problem with the increase in transportation volume is that it generates traffic 

congestion. The consequences are well known: delays, air pollution, and user un-

satisfaction, which may lead to risk manoeuvres thus reducing safety for pedestrians as 

well as for other drivers. Therefore, public transportation policies and incentives must be 

generated in order to solve this problem.  

In transportation analysis and policy-making, the way individuals make choices and their 

behaviour plays a paramount role, as they will affect the general efficiency with which 

people can travel. Introduction of modifications in the environment affects the 

commuter’s perspective and these impacts on the performance of the network and on the 

society’s welfare. The emergence of system’s behaviour as result of decisions at 

individual level provides the traffic manager the opportunity to evaluate the modifications 

that have been done in the system.  

The main contribution of this dissertation is the proposal and discussion of a social-

oriented simulation framework for ATS, which accounts for the different social 

dimensions of the system in the evaluation and application of policies interventions. To 

illustrate the framework, we implemented an agent-based model of an artificial society of 

commuters on a bimodal transportation network and tested the possible effect of different 

policies on the network and commuter performance. We illustrate how a social agent-

based model can be a useful tool to test the appropriateness and efficiency of 

transportation policies. 
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Chapter 1 - Introduction 
 

This chapter begins by presenting the context of the proposed work; introduces the vision, 

the theme and the kind of problems that will be discussed in the following chapters. In 

addition, it summarizes the document's structure. 

1.1. Overview 

Our view of cities is changing. Until the last century, cities were seen and planned with a 

key concern in architecture. The objective of urban planning was to improve economic 

functioning and the quality of live. As the 20th century move on, this view weakened and 

the attention started to turn for the economic city structure and the efficiency of 

localization (Henderson, 1986).  

Efficient transportation systems are crucial to an industrialized society being its main 

communication infrastructure. One important characteristic to bear in mind is that the 

domain of mobility presents an inherent complexity. It involves diverse heterogeneous 

entities either in structure or in behaviour, e.g. vehicles, pedestrians, traffic system, 

among others, which can interact reflecting social behaviours that go from coordination 

and collaboration to competition (Batty, 2009). 

To address the rising issues of these new trends a new generation of mobility systems 

emerged. The advent of what has been coined Intelligent Transportation Systems (ITSs). 

ITS are advanced applications which aim to provide innovative services relating to 

different modes of transport and traffic management and enable various users to be better 

informed and make safer, more coordinated and ‘smarter’ use of transport networks 

(Official Journal of the European Union, 2010). This process forces architectures to 

become adaptable and accessible by different means. Therefore, it can meet different 

requirements and a wide range of purposes (Passos, Rossetti, & Kokkinogenis, 2011). 

The explosion of the computing technology in terms of applications experimented in the 

last couple of decades brought together expertise from different scientific and technical 

disciplines giving birth to new computing and communication paradigms.  This explosion 
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began with the concept of self-organization in the early years of cybernetics with its 

modern form related to several physics basic theories (Portugali, 1997). Self-organization 

is not a theory but rather an umbrella for several theories, which rely on the concept but 

differ on the approach. In the area of urbanism, some models were developed and 

explained in the past thirty years (Bretagnolle, 2003). 

A new concept has been developed to deal with this revolution, the so-called future urban 

transportation (FUT) systems (The Volvo Research and Educational Foundations, 2011). 

This concept, instead of focusing only on the simple processes of transporting goods and 

persons they become self-conscious in terms of environment, accessibility, equality, and 

sustainability of resources. People are placed as a central aspect, as well as are their 

preferences, of the urban systems, forcing architectures to become rather adaptable and 

accessible to their needs. Therefore, new technologies and methodologies are necessary 

to support these new models. 

1.2. Motivation 

The major problem with the increase in transportation volume is that it generates traffic 

congestion (Goodwin, 1996). The consequences are well known: delays, air pollution, 

and user dissatisfaction, which may lead to risk manoeuvres thus reducing safety for 

pedestrians as well as for other drivers. To solve the traffic congestion problems there are 

two feasible strategies. On one side, a traditional control strategy and on the other side is 

to influence user behaviours. 

A traditional control strategy can be seen as way to increase the supply (roads). However, 

this is not either economically or socially attainable or feasible. Thus, traffic engineering 

seeks to improve the existing infrastructure, without increasing the overall nominal 

capacity, by means of an optimal utilization of the available capacity (Bazzan & Klügl, 

Introduction to Intelligent Systems in Traffic and Transportation, 2014). 

To measure a control strategy, the traditional approach is to use the FSM (Four Step 

Model) (McNally, 2000). The FSM tries to analyse the transportation network as a whole. 

The idea is that the FSM is a framework model developed that functions like an iteration 

model with four steps. 
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However, the FSM by its own does not account for information about user preferences 

and tend to deal with “management and control” policies. Therefore, it does not take into 

account the effect of selfish behaviour from self-interested agents that have reasons to 

improve their individual utilities rather than the collective social welfare. The strategic 

interactions of such self-interested agents lead systems to a Nash equilibria (Rosenthal, 

1973), Wardrop equilibria (Wardrop, 1952) in the case of transportation network domain 

(Stier-Moses, 2011) that can be highly inefficient from a social point of view (Dubey, 

1986).  

An example of such situation is reported in the Braess paradox (Braess, 2005), where the 

addition of a new road leads the network in Nash equilibrium with an increase in the 

social cost. 

To solve this problem, traditional methods, as a control strategy, are not sufficient by 

themselves, so complementary approaches need to be searched and implemented to 

surrogate traditional traffic control. One possible suggestion proposed in the literature is 

by influencing user behaviour. 

A strategy to change user behaviour can be based on road pricing (Levinson, 2010).  This 

tends to optimize the traffic network and reduce traffic congestion. However, this 

approach penalizes the user and creates social inequalities as it imposes a tax to be paid 

and only who is insensitive to the price will benefit (Metz, 2008).  

An approach that has gain transportation community’s attention is based on the 

implementation and design of policies based on incentive schemes. Incentives are seen as 

those external measures that try to motivate a behaviour change toward the objective of 

the system. It appears to be a more “fair” vision, as it does not discriminate the user rather 

tries to bring the community into an equal level, see (Ettema, Knockaert, & Verhoef, 

2010) and (Holleis, et al., 2012).  

The main problem emerging in the traffic and transportation systems is that not always 

individual objectives of commuters align to system global objective. To study this kind 

of problems of coordinating actions, allocating resources, and making decisions in 

environments with multiple rational agents each seeking to maximize individual utility, 

Multi-Agent Systems community has used concepts such as self-organization, roles, and 
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norms to favour a fluid functioning of the system. In this sense, there is a strong evidence 

of cross-fertilization between transportation engineering and multi-agent community 

(Portugali, 1994). 

1.3. Aim and Proposed Solution  

This dissertation addresses the policy making process in ITS. As said before the policy 

making process can favour the emergence of social-aware behaviour in agents that have 

selfish tendencies for a global optimal evolution of a society, particularly speaking 

Intelligent Transportation Systems. 

To solve the problem statement, a simulation model of the FSM with the help of an agent 

artificial society using an Agent Based Model (ABM) is proposed. This approach can be 

seen as a way to combine the different transportation models used to analyse the 

transportation system. Although combined models integrating any or all of the four stages 

have been developed, they have rarely been applied in practice. Therefore, this model can 

be used as a tool for simulation and prediction interactions between infrastructure 

changes, public transportation investments, endogenous traffic effects in a daily basis, 

and a test-bed for policy making in urban transportation.  

The expected results driving the goals of this research and model are the following: 

1. More realistic behavioural models of commuters to analyse simulation of artificial 

societies in a transportation point-of-view, 

2. Specification and implementation of an incentive-based design approach suitable 

for the domain of intelligent transportation systems. Study the possibility to turn 

the effect of incentive mechanism being persistent. 

3. Study incentives as mechanism for social coordination in the transportation 

domain  

We want to extend the approaches proposed by the Multi-Agent Systems (MAS) 

community existing in the literature and apply them to the ITS domain. 

1.4. Methodological Approach  

The methodological approach to solve the problem is divided in two phases.  
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The first phase is to develop a methodological framework for ABMs regarding the FSM 

and the artificial society. This framework must be underlined with the Overview, Design 

concepts and Details protocol (ODD protocol) (Grimm V. , et al., 2010). The ODD 

protocol is a generic format and a standard structure by which all ABMs could be 

documented. This framework is used as a test-bed for a simple simulation. Moreover, this 

first step can be seen as adapting the first three steps of the FSM. 

In the second phase, we will introduce and present a more robust simulation based in the 

framework discussed in the first step. A robust and larger network demands a bigger setup 

in which several origins and several destinations must exist. Therefore, a proper traffic 

assignment model is necessary. In section 4.1. we will discuss which methodology should 

be used to perform. This last step is conducted in order to conclude the implementation 

of the FSM, the traffic assignment model. 

In Figure 1 is presented the roadmap that leads this work.  

 

 

 Figure 1 – Project Roadmap 

 

As one can see in Figure 1 the project lasted almost one year. Almost 2 months we 

dedicated to literature review, were knowledge about topics in transportation, 

programming in ABM environment and policy making were collected. From the project 

steps III until V, we can find the outcome at chapter 3. From steps VII until IX the results 

are found at chapter 4.  The implementation, programming and model fine-tuning were 
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long lasting and time wasting as we can observe at figure 1 (from January 2014 until end 

July 2014).  

1.5. Expected Implications 

This work can contribute for the advance in transports by presenting a different approach 

to simplify the transport measures and analysis. This model is going to be developed with 

two main ideas: the first is that this model must be used as a decision support tool with 

real application data and must be developed for other cities with a simple input/output for 

data analysis; the second is that the present investments in the Futures Cities and Smart 

Cities projects is huge, and this work can be seen as a contribution in these areas. 

1.6. Document Structure 

This work is organized as follows. In chapter 1, an introduction is given with the 

motivation, problem statement, aim and goals, methodological approach, and 

contributions. In Chapter 2, a literature review with the background in ABMs, Transport 

Networks Analysis, and Policy Making. Moreover, a definition of the ODD protocol is 

referred. In Chapter 3, methodological framework for the ABITSM is given and a first 

implementation. In Chapter 4, the implementation of a traffic assignment model in the 

STST framework is given. Moreover, we will present the first results and discuss them. 

In Chapter 5, we draw some conclusion and refer future work on those topics.  
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Chapter 2 - Reviewing concepts and related work 
 

2.1. Overview 

In the following paragraphs, some topics related to the proposed research will be 

presented. Firstly, we will overview some concepts related to Transportation Topics. 

Then we will discuss the topics about MAS systems, Incentives in Transports and related 

works about MAS, Transportation Systems, Incentives, and Evolutionary Games in 

Transportation Optimisation. 

2.2. Transportation Theory Topics 

New performance measures brought about by an extensive future urban transport agenda 

and the implementation of the concept of smart cities pose additional requirements, which 

the user is, the central piece. In that sense, Fei-Yue Wang introduced the concept of 

Artificial Transportation Systems (ATS) in a series of papers (Wang, 2003), (Tang & 

Wang, 2004). ATS goes beyond traditional simulation methodologies and integrates the 

transportation system with other socio-economical urban systems with real-time 

information resulting in a powerful tool for transportation analysis, evaluation, decision-

making and training. Rossetti et al. in (Rossetti, Oliveira, & Bazzan) discuss the 

specifications and design of an ATS framework. In (Ferreira, Esteves, Rossetti, & 

Oliveira, 2008) an agent-based simulation framework is discussed following the ATS 

concepts, where policy intervention are negotiated among various stakeholders in a 

cooperative manner. Rossetti et al. (Rossetti, Ferreira, Braga, & Oliveira, 2008), 

(Macedo, Soares, Timóteo, & Rossetti, 2012) discuss the implementation of an AI-based 

traffic control and management test-bed in ATS settings. 

Due to the high complexity and uncertainty of contemporary transportation systems, 

traditional traffic simulation fails to capture in detail all the dynamics that characterize 

them. However, traditional tools of Transport Analysis are still valid as a part of study of 

the traffic problem. In the next section, we will present the FSM and Steffi’s Traffic 

Network Representation. 

2.2.1. Urban Transportation Network 

The Four Step Model (FSM) is the primary tool for forecasting future demand and 

performance of a transportation system (McNally, 2000). Nonetheless, the FSM is a 
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particular application of a framework, Transportation Systems Analysis (TSA), 

developed in 80s (McNally, 2000). A brief presentation of this TSA framework 

introduces the FSM context. 

 

Figure 2 - The Manheim/Florian Transportation Systems Analysis Framework 

The basic structure of TSA provides a comprehensive paradigm in which to examine the 

FSM, which is represented in Figure 2. The transportation system T is defined as the 

transportation infrastructure and services elements, and the activity system A, defined as 

everything else (e.g. economic activity that occurs in the location) serve as inputs to 

performance procedures P and demand procedures D, respectively. It is here, that the 

basic FSM arises. While some form of location procedure L is required, it has typically 

been executed independent of the FSM and similarly formal supply procedures S are non-

existent. 

A key point of this framework is the correct understanding of the units of analysis for 

these procedures, defined spatially and temporally. Demand procedure D manages person 

trips, defined as the travel required from an origin location to access a destination and 

those trips reflects units of time and space, e.g. daily person trips per household. 

Performance procedure P reflects mode-specific trips (person or vehicle) defined as a link 

volume, e.g., freeway vehicle trips per hour. The equilibration process must deal demand 

and performance procedures defined at two separate spatial levels. Demand procedures 

defined at zone level and performance procedures defined at the link level are 

interconnected by what connects Origin-Destination pairs. 
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2.2.2. Four Step Model 

The FSM provides a mechanism to determine equilibrium flows, as seen in figure 2. The 

FSM was developed to deal with this complexity by formulating the process as a 

sequential four-step model. This section is based in the work of McNally (McNally, 2000) 

and Ortuzar (Ortuzar, 2001).   

 

Figure 3 - The Four-Step Model 

In Figure 3 a representation of the Four Step Model is given. First, in trip generation, a 

trip frequency is developed that provides the will to travel. Trips are presented as trip 

ends, productions and attractions, which are estimated differently. Next, in trip 

distribution, trip productions are distributed to match the trip attraction distribution and 

to reflect travel impedance, time and cost are the usually the most studied, building trip 

tables of person-trip demands. Next, in mode choice, trip tables are divided to reflect the 

proportions of trips by alternative modes. Finally, in route choice, modal trip tables are 

assigned to mode-specific networks (McNally, 2000).  

The FSM has several requests regarding data demand in addition to those that define the 

activity and transportation systems. The first use of the data is model calibration.  

Household travel surveys with travel-activity data provide it. This survey data is utilized 

to validate the representativeness of the sample, to develop and estimate trip generation, 

trip distribution, and mode choice models, and to conduct time-in-motion studies 

(McNally, 2000). 
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a. Trip Generation 

The first stage of the FSM is defined by one objective and it is the total daily travel in the 

model system, at the household, for various trip purposes. The first stage also deals with 

the transformation of activity-based to trip-based, and simultaneously divides each trip 

into a production and an attraction, to prevent network performance measures from 

influencing the frequency of travel. Thus, this defines total travel in the region and the 

following steps are just modelling the share models. 

The model that defines this separation is estimated for productions 𝑓𝑃
𝑝(𝐴) and attractions 

𝑓𝐴
𝑝

(𝐴) for each trip type (purpose) 𝑝: 

𝑃𝑖
𝑃(𝐴) = 𝑓𝑃

𝑝(𝑨 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠) (1) 

𝐴𝑗
𝑃(𝐴) = 𝑓𝐴

𝑝(𝑨 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠) (2)               

Where: 𝑃𝑖
𝑃 are the total number of trip production generated for trip type p for analysis 

unit i and 𝐴𝑗
𝑃 are the total trip attractions for trip type p for analysis unit j. 

Essentially, those models provide a measure of attractiveness for various trips because of 

socio-economic and demographic variables. However, the estimation of these models is 

problematic. First, because regional travel surveys are made at the household level and 

not for non- residential land uses and second because the explanatory power of attraction 

variables is usually not as good (Ortuzar, 2001). 

b. Trip Distribution 

The objective of the second stage of the process is to recombine trip ends from trip 

generation into trips, typically defined as production-attraction pairs (P-A pairs). The trip 

distribution model is essentially a destination choice model and generates a trip matrix, 

represented at typical represented as Table 1. The notation 𝑇𝑖𝑗 is used for each trip purpose 

utilized in the trip generation model as a function of activity system attributes, through 

the generated productions 𝑃𝑖 and attractions𝐴𝑗, and network attributes. The general form 

of the trip distribution model as the second step of the FSM is: 

𝑇𝑖𝑗 =  𝑓𝑇𝐷(𝑃𝑖 , 𝐴𝑗 , 𝑡𝑖𝑗)                                                            (1) 
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Where 𝑡𝑖𝑗 represents or the travel time or generalized cost between the two zones. For 

internal trips, perhaps the most common model is the gravity model: 

𝑇𝑖𝑗 =  𝑎𝑖, 𝑏𝑗𝑃𝑖 , 𝐴𝑗 , 𝑓(𝑡𝑖𝑗) (2) 

Where: 

𝑎𝑖 =  [∑ 𝑏𝑗𝑃𝑖 , 𝐴𝑗, 𝑓(𝑡𝑖𝑗)𝑗 ]
−1

 (3) 

𝑏𝑖 =  [∑ 𝑎𝑗𝑃𝑖 , 𝑓(𝑡𝑖𝑗)𝑗 ]
−1

  (4) 

The parameter 𝑓(𝑡𝑖𝑗) represents the function of the network level of service. 

The production-constrained gravity model sets all 𝑏𝑗 equal to one and defines 𝑊𝑗 in place 

of 𝐴𝑗  as a measure of relative attractiveness. The term 𝑓(𝑡𝑖𝑗)  essentially provides a 

structure for the model with the balancing terms scaling the resulting matrix to reflect the 

input productions and attractions. The estimation of gravity models involves the 

estimation of this function. 

 

Table 1 - Notation of an origin-destination trip matrix (McNally, 2000) 

 

The calibration process is driven by the trip length frequency distribution. The relative 

distribution of trip interchanges is not directly considered. On one hand, it is difficult to 

relate any policy to these factors, thus, it is difficult to assess their validity in the future. 

On the other hand, the resultant base trip matrix will more closely reflect observed 

behaviour. 

The trip matrices are at this stage defined as P-A flows. Depending on the treatment of 

mode choice, these matrices may be converted from P-A format to O-D (Origin-
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Destination) format, which is required in the route choice step. P-A to O-D conversion 

typically reflects the observed travel data. In (Cascetta & Nguyen, 1988), (Zhou & 

Mahmassani, 2006), (Filgueiras, et al., 2014), (Freitas, Coelho, & Rossetti, 2009) are 

discussed methodological and technological approaches to be used for the estimation of 

origin-destination trip matrices. 

c. Mode Choice 

Mode choice factors the trip tables from trip distribution to produce mode-specific trip 

tables. These methods are exclusively disaggregated models often estimated on separate 

choice-based samples and reflect the choice probabilities of individual trip makers. Due 

to space limitation, the mode choice model utilizes a simplified person trip tables to allow 

the development of vehicle trip tables. Thus, vehicle trips are used to produce the trip 

table while ignoring trips by other modes. 

Multimodal transportation design network problem (MMNDP) problem appeared 

because many types of vehicle modes must be combined in a network (e.g. Cars, bus, 

bicycles). The problem focuses on the distribution of transportation network and the 

coordination of different modes of multimodal network. Travellers need improved 

information of alternative transport modes and with this they can solve problems affecting 

their journeys. 

The multi-modality in urban transportation networks is captured in several forms in the 

literature, as follows. 

(i) No interactions between flows of different modes: In this case, the networks 

of different modes are not related to each other, and thus the flows of one 

mode do not have any effect on the flows of the other modes (Mesbah, Sarvi, 

& Currie, 2008); 

(ii) Interactions between flows of different modes: When buses share the same 

roads with automobiles, the flows of buses and automobiles affect each other 

(Gallo, 2011); 

(iii) Interrelations in flows and in decisions: Most multi-modal problems only 

consider flow interactions, while in problems with mode related topographic 

decisions, the effects of decisions of one mode on the other are addressed 

(Szeto, 2010). 
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MMNDPs usually consider multi-level networks (Farahani, 2013). In the high-level 

problem, the road network and different public transit networks are sub-networks of the 

urban transportation networks. In the lower, level the number of modes involved in 

travelling between two points. There are two cases in this dimension: first, travellers can 

only choose one mode; and second, travellers can choose a combination of modes to finish 

their trips and the number of modes involved is two or more. This mode is the so-called 

multimodal trips.  

Demand for each mode between each O-D is often a problem. When the demand for travel 

is dependent on various factors such as travel time of the mode considered or other system 

performance attributes, it is called elastic demand. Elastic demand can be found in two 

forms; or travellers decide to give up their travel when the travel costs are too high or the 

travellers only change their mode of travel (Farahani, 2013).  

At the high level simulation, there are only a few studies using heuristics to estimate the 

optimal solutions. The most important one is the work of Mesbach (Mesbah, Sarvi, & 

Currie, 2008). They use exact enumeration for the exclusive lane allocation problem. 

However, it is not a true multi-modal network because it only handles lane allocation and 

so it do not take into account interactions between flows of different modes. Another 

work in this area of abstraction includes the work of Miandoabchi et al. (Miandoabchi, 

Farahani, Dullaert, & Szeto, 2012), which uses heuristics to find new solutions for a multi 

modal network. 

Techniques to lower-level problems have been applied to solve the modal-split and trip 

assignment problem using various approaches. Here there are several differences. Some 

worked the lower-level problem as one problem, so they aggregate modal-split and trip 

assignment in one and used simulation packages like NETSIM (Seo, 2005) and VISSIM 

(Elshafei, 2006). Other authors went for dividing the analysis in steps. Some went used 

fixed travel times for the transit network to find the equilibrium traffic assignment 

(Cantarella, 2006), others used iterative steps until convergence met (Mesbah, Sarvi, & 

Currie, 2008), and finally a two-iterations solution was proposed (Eltran, 2009). The last 

proposal methods used a combined view of mode split and traffic assignment problem, 

and to resolve it a heuristic algorithm (Li, 2009) was proposed and a diagonalization 

algorithm (Miandoabchi E. F., 2012b) were presented. 
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d. Route Choice 

A distribution of cars in proportion to the capacities of the roads can be regarded as 

equilibrium, which is fair on all participating drivers.  This is a simple equilibration of 

demand and performance where the driver/agent choses the road to follow. 

Previous approaches involves Frank-Wolfe algorithm obtains the basic user-equilibrium 

solution (Ortuzar, 2001). This algorithm works in computing the minimum path and all-

or-nothing (AON) assignments to these paths. AON assignments are weighted to 

determine link volumes and then link travel times for the next iteration. The estimated 

trip tables are fixed, that is, they do not vary due to congestion. Hence, these approaches 

are not entirely realistic. Chen and Ben-Akiva attempted to reach the system-optimal 

distribution as well as the minimum total travel time for all drivers by applying their game 

theoretic formulation (Chen & Ben-Akiva, 1998). 

Several works using an equilibrium based on market-based methods have been presented. 

Vasirani and Ossowski introduce the concept reservation-based approach in a series of 

papers (Vasirani & Ossowski, 2009) and (Vasirani & Ossowski, 2011). Their aim is to 

introduce the equilibrium in an intersection. The market-based system works when the 

agents trade in a virtual marketplace, buying reservations to cross intersections and the 

infrastructure owners selling them. The market goes to equilibrium when the global profit 

and the social welfare intersect. This creates a situation where an increase in the 

infrastructures monetary benefits implies a decrease of the drivers average travel times.  

Schepperle and Böhm presented also a system for an optimal single intersection in 

(Schepperle, 2007) and (Schepperle, 2009). It is presented a four-step model. In the first 

step, the vehicle contacts the intersection; vehicle acquires an initial time slot to cross the 

intersection; if not satisfied, a vehicle can try to acquire a better time slot, this time from 

another vehicle; vehicles cross the intersection. In the second step, an auction is run 

among the vehicles that do not yet possess a time slot. The third step, vehicles arriving 

late can acquire time slots that have already been auctioned off. In the last step, the final 

one, the vehicle crosses the intersection. 

Another work based on intersections but in this case based on the traffic signals (Balan, 

2006). Here the work base is to allow communication between traffic signals and vehicles. 

Through this communication, a historical data series is kept and thus a scheme of credits 
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is developed. Each time the vehicle stops in a traffic signals receives points. Each time 

the vehicle stops, it gives points away. This creates equilibrium throughout the 

metropolitan area.  

However, those works rely on providing real-time information to the drivers. These 

systems have some drawbacks. If the drivers do not have perfect information, their travel 

time may increase compared to those having perfect information (Arnott, Palma, & 

Lindsay, 1991). The quality of the information provided to the drivers affects the choice 

of the drivers (Kitamura & Nakayama, 2007). Rossetti et al. (Rossetti & Liu, 2005) 

present an agent-based approach using deliberative agent architecture to assess the effect 

of information systems with pre-trip information on the route choice. 

This topic will be discussed in an implementation view in chapter 4. 

2.2.3. Mathematical Implementation for Network Representation 

This section is based on the work of Sheffi (Sheffi, 1985). Sheffi describes in detail how 

to implement a mathematical urban transport network in (Sheffi, 1985).  

a. Network Representation 

The mathematical definition of a network is a set of nodes, vertices or points and a set of 

links connecting those nodes (Sheffi, 1985). 

 
Figure 4 - Network with five nodes connected by 11 links 

Figure 4 shows a network including five nodes connected by 11 links. Each link in this 

network is associated with a direction of flow. For example, link 11 represents flow from 

node 3 to node 2, while link 10 represents the reverse flow, 2 to 3.  

The transportation planning process for urban areas uses a partition of an area into traffic 

zones. A node represents each traffic zone. After, the desired movements over an urban 

network expresses in terms of an Origin-Destination matrix.  
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Travel time on urban context is an increasing function of flow. Each network link is 

typically associated with some impedance. The delay of a travelling vehicle is null when 

the impedance is also null. As the flow increases, the travel time increases since the 

number of cars along the link increases (Sheffi, 1985). 

A stable condition reached only when no traveller can improve his travel time by 

unilaterally changing routes. This is the characterization of the user-equilibrium (UE) 

condition (Beckmann, 1956). 

The approach for solving large problems uses the equivalent minimization method. The 

solutions bases on the behavioural assumption that each motorist travels on the path that 

minimizes the travel time t from origin to destination.  

b. Network Functions 

Each O-D pair 𝑟 − 𝑠 is connected by a set of paths (routes) through the network 𝒦𝑟𝑠 

where 𝑟 ∈ ℛ and 𝑠 ∈  𝒫, so the O-D matrix is denoted by q with 𝑞𝑟𝑠.  

Let 𝑥, and 𝑡, represent the flow and travel time, respectively, on link a (where 𝑎 ∈  𝒜). 

Therefore, the link performance function is 𝑡𝑎(𝑥𝑎). Let 𝑓𝑘
𝑟𝑠 and 𝑐𝑘

𝑟𝑠 represent the flow 

and travel time, respectively, on path 𝑘 connecting origin 𝑟 and destination 𝑠 (𝑘 ∈ 𝒦𝑟𝑠).  

   𝑐𝑘
𝑟𝑠 =  ∑  𝑡𝑎 . 𝛿𝑎,𝑘

𝑟𝑠
𝑎                           ∀ 𝑘 ∈  𝒦𝑟𝑠 ,      ∀ 𝑟 ∈  ℛ,        ∀ 𝑠 ∈  𝒜    (5) 

Where 𝛿𝑎,𝑘
𝑟𝑠 = 1  if link 𝑎  is part of path 𝑘 , connecting the O-D pair r-s, and 𝛿𝑎,𝑘

𝑟𝑠 =

0 otherwise. Link flow expresses as follows. 

   𝑥𝑎 =  ∑ ∑ ∑   𝑓𝑘
𝑟𝑠. 𝛿𝑎,𝑘

𝑟𝑠
𝑘𝑠𝑟                             ∀ 𝑎 ∈  𝒜    (6) 

Equations 8 and 9 define the path-arc incidence relationships. 

The equilibrium assignment problem is to find the link flows 𝑥𝑎, that satisfy the user-

equilibrium criterion when all the Origin-Destination entries 𝑞𝑟𝑠, have been appropriately 

assigned. Solving the following mathematical program obtains link-flow pattern: 

min 𝑧(𝑥) =  ∑ ∫ 𝑡𝑎(𝜔)𝑑𝜔
𝑥𝑎

0𝑎  (7) 

Subject to 

∑   𝑓𝑘
𝑟𝑠 =  𝑞𝑟𝑠𝑘               ∀ 𝑟, 𝑠   (8) 

𝑓𝑘
𝑟𝑠  ≥ 0                          ∀𝑘, 𝑟, 𝑠                        (9) 
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The definitional constraints are also part of the program. 

𝑥𝑎 =  ∑ ∑ ∑   𝑓𝑘
𝑟𝑠. 𝛿𝑎,𝑘

𝑟𝑠           ∀ 𝑎 ∈  𝒜 𝑘𝑠𝑟  (10) 

Equation 10 represents a set of flow conservation constraints that the flow on all paths 

connecting each O-D pair has to equal the O-D trip rate and equation 11 is required to 

ensure that the solution of the program will be physically meaningful with no negativity 

path flow.  

The link relationship with the capacity and the volume expresses in a function called the 

BPR function (Bureau of Public Roads, 1964). This function works as follows 

S𝑎(v𝑎) =  𝑡𝑎
0 [1 + 𝛼(

𝑥𝑎

𝑐′𝑎
)

𝛽
]  (11) 

At equation 14, S𝑎(v𝑎) is the average travel time for a vehicicle on link 𝑎, 𝑡𝑎
0 is the free-

flow time, and 𝑐′𝑎 is the practical capacity of the link 𝑎. This practical capacity means 

that the links never reach their maximum capacity, but rather they have a maximum 

possible flow through. 

2.3. Urban Models and Agent Based Models 

The increasing interest in the agent paradigm results from the possibility of decomposing 

a complex system into multiple individual agents. The traffic domain is composed of 

various complex systems, where agent-based solutions can be used since the elements of 

each system can be naturally identified using the agent metaphor, e.g., air traffic control, 

transportation planning and scheduling or road traffic control. 

In this context, Parunak suggests an ideal setting for application of MAS having the 

following characteristics: modular, decentralized, dynamic, not completely structured and 

complex (Parunak, 1999). In particular, one may identify a number of main motivations 

for using agents and multi-agent system technologies in traffic and transportation: 

1. Natural and intuitive problem solving by active entities with a (potential) local 

perspective.  

2. Autonomous agents provide an appropriate basis for modelling heterogeneous 

systems. Every entity may possess its individual architecture, state representation, 

and behaviour. 
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3. Agents and their interaction can be described using high-level abstractions. Thus, 

they provide an intuitive level of interaction between human users or modellers 

and the agent-based system. 

4. Agents or multi-agent systems technologies allow coping with variable structure 

of the system in an efficient way. 

5. The agent metaphor used for modelling a traffic participant or decision-maker 

enables us to capture complex constraints connecting all problem-solving phases. 

An extensive review on agent-based technology in transportation domain can be found in 

(Cheng, 2010) and (Bazzan & Klügl, 2014), where the reviewed works are grouped into 

two categories: modelling and simulation, and control and management. 

2.3.1. Concepts in Models and Urban Theory 

Models are simplifications of reality, theoretical abstractions that represent systems in a 

way that essential features crucial to the theory and its application are identified and 

highlighted. Therefore, urban models are essentially computer simulations of cities 

functions, which translate theory into a form that is testable and applicable without 

experimentation on a real world (Batty, 2009). 

What connects the theory and models as a vehicle to test hypotheses has weakness with 

the traditional models because they have loosened their link to theory (Portugali, 1997). 

This trend appears because, theories of the city system in the 1970s and 1980s did not 

reflect the diversity and heterogeneity that was very evident in modern cities, nor did they 

reflect the comparative volatility of urban dynamics. Thus, the aggregate static approach 

to theory and modelling began to switch around to more bottom-up decentralized 

dynamics, somehow how ABMs now works. Urban models are more likely to be 

frameworks for structure information where they are essential tools of decision support 

tools. In Rossetti et al. (Rossetti R. J., Liu, Cybis, & Bampi, 2002) and (Rossetti & Liu, 

2005a) is presented a framework that considers demand models following the multi-agent 

system metaphor for generating simulation scenarios for “what-if” analysis.  

2.3.2. Concepts of Self-Organization and Cities as Self-organization 

Entities 

Cities models will be discussed in following paragraph because they ultimately lead to 

the use of ABM in self-organization, urban planning and transport theory. 
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The explosion of the computing technology in terms of applications experimented in the 

last couple of decades brought together expertise from different scientific and technical 

disciplines giving birth to new computing and communication paradigms. A new type of 

systems coined as socio-technical arose from such mutual conjunctions where people and 

technology live in mutual symbiosis 

The first models were mainly conceived as systems of nonlinear differential equations 

describing the evolution of state variables at a macro-level, the lower level interactions 

summarized in relations or in parameters (Bretagnolle, 2003). The most relevant and 

important work on the domain of cities and urbanism are models, such as, Dissipative 

cities (Prigogine, 1980), Synergetic theory (Haken H. , 1984) and (Haken H. , 1995), 

Chaotic Cities (Portugali, 1994), and Fractal geometry (Mandelbrot, 1983). 

CA (Cellular automata) (Batty, 1997) models can be described as models where 

contiguous or adjacent cells change their states, their attributes or characteristics. An 

iterative process generates the dynamics of the model. During iteration, the state of each 

cell is determined by some transformation rule. The origin of CA models goes back to 

Alan Turing and his ideas concerning self-reproducing machines and then to John 

Conway’s game of life, which is an explicit CA, game (Gardner, 1971). In this context, 

cities modulation, which are built under the CA approach, city-blocks can be seen as cells, 

and the local spatial units, like land value or inhabitants, are determined in relation to 

their immediate neighbours. This is one of the main proprieties of the cells in CA models 

(White & Engelen, 1993). Furthermore, the fact that CA models deal with self-

organization just increase the realism and sophistication to the simulation (Batty, 1997). 

Self-organization here is essentially a new way of seeing cities and their planning. One 

can realized that cities are essentially unstable, chaotic, far-from-equilibrium, and 

unpredictable, so therefore we have to find ways to live with their complexity (Portugali, 

1997). From this perspective follows a new type of city planning where the aim is not to 

control, but rather to participate and to learn with it. 

2.3.3. Agent-Based Models 

Agent-Based Models (ABM) are the evolution of CA models. One reason for the 

popularity of agents and Multi-Agent Systems (MAS) are the advances in computers, 

which are more distributed, open, large, and heterogeneous (Bazzan & Klügl, 2014). 
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Managing interactions among autonomous entities with increasing interdependencies has 

been one of the biggest motivations for distributed artificial intelligence and for MAS. 

These aim to develop and analyse models derived from social interactions in human 

societies. 

Agent-Based Simulation uses the metaphor of autonomous agents and Multi-Agent 

Systems as the basic model conceptualization. This means that a model consists of 

interacting agents situated in a simulated environment thus; agents may correspond to 

cities, blocks, platoons, households, individual travellers (drivers), pedestrian, vehicles, 

sensors, traffic signals, etc. In addition, elements of the environment may be conceived 

as agents (Rossetti & Liu, 2005b), (Soares, Kokkinogenis, Macedo, & Rossetti, 2014), 

(Passos, Kokkinogenis, Rossetti, & Gabriel, 2013). 

However, there is not a general definition on an agent. So it is important to describe some 

typical proprieties an agent can have (Wooldridge & Jennings, 1995) and (Jennings, 

2000): 

1. Location: Every agent has a place in an environment; there is an ongoing 

interaction between the agent and its surroundings.  

2. Autonomy: There is no global control that dictates what actions the agent must 

take; it dos whatever it is programmed to do based on its current internal state. 

3. Social ability: agents are able interact with other agents. 

4. Reactivity: agents sense their environment and they are able to react appropriately 

to stimuli coming from it. 

5. Pro-activeness: agents do not simply act in response to their environment; they 

are able to have goal(s) that they pursue on their own initiative. 

Additional characteristics that agents might have: 

1. Rationality: The notion of agent rationality means that an agent is working 

towards its personal goals. Moreover, an agent always selects the action with 

maximum expected outcome with respect to its goals. 

2. Flexibility: this for an agent means to mediate between reactive behaviour, being 

able to react to changes in its environment, and deliberativeness to pursue its 

goals.  
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3. An agent may be adaptive, by having rules or more abstract mechanisms that 

modify its behaviours. An agent may have the ability to learn and adapt its 

behaviours based on its accumulated experiences. Learning requires some form 

of memory. 

As said before, model consists of interacting agents situated in a simulated environment. 

In that sense, Axelrod is credited with founding ABM with his evolutionary simulations 

of cooperative behaviour (Axelrod R. , 1985) and he is still one of the area's main 

advocates. In a recent text about ABM (Axelrod & Tesfatsion, 2006) Axelrod rises four 

research questions/goals for the ABM. 

1. Empirical; "Why have large-scale regularities evolved and persisted, even when 

there is little top-down control?" 

2. Normative understanding: "How can agent-based models be used as laboratories 

for the discovery of good designs?" 

3. Heuristic: "How can greater insight be attained about the fundamental causal 

mechanisms in social systems?" 

4. Methodological advancement: "How can one best provide ABM researchers with 

the methods and tools they need to undertake the rigorous study of social systems 

and to examine the compatibility of experimentally generated theories with real-

world data?" 

Section 2.3.1, shown that, modelling is a process of simplification. This reflects the 

difficulties in abstraction where there is always a doubt between how much to leave in 

and how much to leave out of any theory and its model. Therefore, one should study the 

levels of abstraction a model should have. 

a) Environment 

The first issue involves simplifying the spatial system in a dynamic sequence of change, 

the issue of time. Cities can be seen as largely unchanging in terms of their land uses and 

transport structures with marginal change far less important to that, which exists in 

totality.  Statics versus dynamics is a central and an often issue (Lowry, 1965). 

This issue of time also relates to aggregation and scale. Generally speaking, the finer the 

spatial scale and shorter the period, the greater the dynamic in that the activities are 

aggregated from their elemental form. The degree to which the model should reflect 
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heterogeneous activity depends on what is being modelled at what scale with this trade-

off part of the process of simplification (Batty, 2009).  

Representation of the key elements of an urban structure, either they are individuals 

comprising various populations or aggregates need proper definitions and classification 

(Batty, 2009). When urban models were first developed in the 1960s, almost all were 

highly aggregated, as it was shown at section 2.3.2, in terms of their representation 

whereas now a new class of individual or agent-based models have appeared which seek 

to represent the urban system in much more open terms. All these issues involve trade-

offs involving scale, which in turn are determined by more pragmatic concerns such as 

available resources of data and computation. 

Given the increasing complexity of transportation and traffic systems, which arises from 

the modern way of life and new means and organization of transportation, not only new 

techniques must be deployed, but also the individual choices must be better understood if 

the whole system is to become more efficient (Rossetti, et al., 2002), (Rossetti, Almeida, 

Kokkinogenis, & Gonçalves, 2013) 

Traffic simulation represents a prominent application for modelling and simulation. It 

supports complex urban and transport planning, as well as management tasks on different 

levels of analysis in space and time (Rossetti & Bampi, 1999). 

b) The model building process 

Modelling and simulation are useful approaches to exploring urban modelling, but their 

utility depends on adequate calibration, verification, and validation. A model must be 

validated before it can be used for making prediction. 

Calibration provides values for unknown parameters. In fact, most models are first 

calibrated to simply ensure that they meet certain dimensional constraints in the problem 

domain (Batty, 2009). Sometimes these are also chosen to optimize some goodness of fit 

criterion such as how close predictions are to observed data and in this sense, calibration 

merges into validation. Even if calibration is considered a separate process, validation 

takes place immediately after, the difference being that parameter values are often chosen 

using criteria different from those used to validate the model. 
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Verification and validation means the correctness of model construction and the 

truthfulness of a model with respect to its problem domain, respectively. Parker et al, in 

an extensive review in multi-agent systems for simulation states that “verification means 

building the system right, and validation means building the right system” (Parker, et al., 

2003).  

In one hand, verification reduces the problematic nature of flexibility by closing the 

model structure and the rules employed. This means that, the models are balance between 

theory and data and for that the Multi Agent Simulation have the ability to map the 

concepts and structures of real world onto the model in a way that preserves natural 

objects and connections (Batty, 2001) and (Kerridge, Hine, & Wigan, 2001).  

The main part to verification is a sensitivity analysis of relationships between model 

parameters and the state or time path of endogenous variables to the urban model. Some 

techniques, that appear from closed analytical modelling, include the comparative static 

(Silberberg, 1990), comparative dynamic (Kaimowitz, 1998), use of error propagation 

and uncertainty (Robinson, 1994), errors of mathematical operations (Alonso, 1968), 

error classification (Riley, 1997) and, treatment of error and uncertainty in geographic 

information systems (Heuvelink, 2002). 

Moreover, verification essentially involves attempts to break the model by varying model 

configurations. This is known as debugging, a careful assessment of model objects and 

linkages and a growing tradition of publishing software code along with manuscripts, 

however, exist now within the agent-based modelling community (Parker, et al., 2003). 

Therefore, as more models adopt common standards, verification will become easier, as 

is shown in the next section. 

There are very few models that exist that can be tested on all their dimensions and the 

new class of agent-based models which are much richer in terms of the hypotheses they 

frame and the data required to calibrate and validate them. This suggests that the models 

are being developed more for their value to develop a robust process for knowledge and 

decision process facilitator rather than their ability to generate good theory (Batty, 2009). 

2.3.4. The ODD Protocol  

In the previous section, we focused in a ABMs model calibration, verification and 

validation, the building process. In the verification part, ABMs models are criticized 
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because they are so poorly documented that the models could not be evaluated (Lorek & 

Sonnenschein, 1999). These criticisms motivated the Overview, Design Concepts, Details 

(ODD) protocol (Grimm V. , et al., 2006), which attempted to create a generic format and 

a standard structure by which all ABMs could be documented. The primary purpose of 

ODD is to make writing and reading model descriptions easier and more efficient. 

In Table 2, the seven elements of the original and updated ODD protocol (Grimm V. , et 

al., 2010) are presented. The rest of this section is an overview of the seven elements of 

the ODD protocol. The aim here is to show why this protocol enables ABMs by defining 

and establish a protocol for the documentation of a purposed model. In the appendix A 

an ODD discussion is given.  

Table 2 - The Seven Elements of the original and updated odd protocol 

 

a. Overview 

The first phase, Purpose, defines that every model has to start from a clear question, 

problem, or hypothesis. Therefore, ODD starts with a concise summary of the overall 

single or multiple objectives for which the model was developed. 

The next one is the Entities, State Variables, and Scales.  An entity is a distinct or separate 

object or actor that behaves as a unit, and thus is defined as a set of attributes that can 

contain numerical or references to behavioural strategies (Huse, Giske, & Salvanes, 

2002). Most ABMs include entities such as agents, spatial units' environment and 

Elements of the original ODD protocol Elements of the updated ODD protocol

1.        Purpose 1.        Purpose

2.        State variables and scales
2.        Entities, state variables and 

scales

3.        Process overview and 

scheduling

3.        Process overview and 

scheduling

4.        Design Concepts 4.        Design concepts

a.        Emergence a.        Basic principles

b.        Adaptation b.        Emergence

c.        Fitness c.        Adaptation

d.        Prediction d.        Objectives

e.        Sensing e.        Learning

f.         Interaction f.         Prediction

g.        Stochasticity g.        Sensing

h.        Collectives h.        Interaction

i.         Observation i.         Stochasticity

j.         Collectives

k.        Observation

5.        Initialization 5.        Initialization

6.        Input 6.        Input data

7.        Submodels 7.        Submodels

Overview

Design 

Concepts

Details
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collectives. A state variable or attribute is a variable that distinguishes an entity from 

other entities of the same type or category, or traces how the entity changes over time. 

Scales can be described as spatial or temporal with mean the amount of space and time 

represented in the simulation.  

The last process of the overview part is called Process overview and Scheduling and 

defines the names of the model’s processes. Those names are then the titles of the sub-

models that are described in the last ODD element, sub-models. ABMs platforms like 

NetLogo include the concept of the ‘Observer’, which acts as a controlled object that 

performs such processes (Wilensky, 1999). The relevance of the order of those processes 

is highlighted in the way that different process order can have a very large effect on model 

outputs (Bigbee, Cioffi-Revilla, & Luke, 2006) and (Caron-Lormier, Humphry, Bohan, 

Hawes, & Thorbek, 2008). Most ABMs represent time simply by using time steps but 

time can be represented in different aspects). 

b. Design Concepts 

The Design Concepts tend to be seen as what defines an ABM. They may also be crucial 

to interpreting the output of a model, and they are not well understood via the traditional 

model description techniques such as equations and flow charts. Therefore, they are 

included in ODD to make sure that important model design decisions are made and that 

readers are aware of these decisions (Railsback, 2001).  

The Basic Principles are defined as the general concepts, theories, hypotheses, or 

modelling approaches that are under the model. The Emergence is what is expected to 

vary in complex of individuals or their environment change. The Adaptation rules what 

kind of decisions the agents must have in response to changes in their environment. 

Objectives are defined as success criteria previous to the model itself. Learning many 

agents change their trait over time as consequence of their experience, so the way but is 

explicit. The Prediction is how the agents can predict the future experience is they learn 

new things in the present. Sensing is what the state variables can feel and with the new 

information how they can communicate it to other agents. Interaction is what the agents 

encounter and affect other agents, and how they can deal with those encounters. 

Randomness, as the name implies, is that processes are calculated in a random way. If the 

individuals' agents can form aggregations or form Collectives they must be well explained 
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and represented. For last, the Observation is how the data was collected to perform the 

model. 

 

c. Details 

The first part is the initialization. The initial state of the model must be defined and be 

well understood and the initial parameters as well. As we saw before model results cannot 

be well replicated unless the initial conditions are known and replicable.  

The second part is the input data, which is different from initial data, or initial states. The 

source of the data must be highlighted as well if the data is dynamics, because in that case 

the dynamics part is or a time series or an environmental variable and so they are is treated 

in a different way as an external forcing. According to the ODD protocol even if this kind 

of that is not used one should refer the statement: "the model does not use input data to 

represent time-varying processes".  

The last part of the ODD description is the Sub-models. Here all the sub-models used in 

the simulation must be described in detail. Because agent-based modelling is new and 

lacks a firm foundation of theory and established methods, the ODD protocol reinforces 

that descriptions must "include appropriate levels of explanation and justification for the 

design decisions they illustrate, though this should not interfere with the primary aim of 

giving a concise and readable account of the model."  

2.4. Policies and Incentives in Transportation Systems 

Policy generally speaking, is defined as course-of-actions, plans or strategies by which 

governments; organizations translate their vision into programmes and activities. Policy 

is conceived as a set of principles that orient decisions and actions of the agents that 

operate in a given context, especially in what concerns the uses of resources available in 

that context (Easton, 1965).  

2.4.1. Policy-Making Process and Incentives 

Hill (Hill, 2009) explains public policy as concerning the uses of resources that are 

considered public in that society. As policy making process is intended the way to 

conceive the structure and form of operation of public policies, and explains how public 

policies are created and put to operation.  
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A typical way to describe the sequential cycle of steps involved in a public policy goes 

as follows (Hill, 2009): 

1. Identification and formulation of the issue to be solve through the issue and 

implementation of a public policy;  

2. Formulation and comparative analysis of various possible alternative policies able 

to solve the problem;  

3. Choice of one of the those policies for implementation;  

4. Implementation of the chosen public policy;  

5. Evaluation of the effects of the implementation of the public policy, and possible 

adjustment of the policy, to improve results and reduce negative effects (thus 

returning the process to step 1).  

Van Engers et al. characterize policy-making into a policy field theory and a policy effects 

theory; one theory dedicated to a problem and the other to a solution space (van Engers, 

van Haaftena, & Snellenb, 2011). A policy field theory will answers on questions like, 

which actors and factors do create problems and possibilities in a certain policy field, 

which require the attention of the policy makers.  

As such, a policy field theory has a causal component and a normative component. On 

the other side, policy effects theory describes the effects of possible actions that are 

assumed to provide a solution to the problem at hand. The connection between those 

actions and the problem is through factors that have a causal relationship to the problem. 

The policy-making process is aimed at finding and deliberating possible alternative 

solutions/ actions. 

Van Wee distinguishes six general criteria for policy intervention to be taken onto account 

during the decision-making process (Wee, 2009): 

1. Effectiveness: does the policy do what it supposed to do? 

2. Efficiency: are assessed the cost-effectiveness and the cost-to-benefit ratio 

indicators 

3. Equity: are there winners and losers because of the policy introduction? 

4. Ease of implementation. 

5. Flexibility in adapting the policy 
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6. Long-term robustness: policy is ‘no-regret’ under uncertain long-term 

developments that could have a major impact on society.  

2.4.2. Theory of Incentives 

Policy-makers have two broad types of instruments, borrowed from economics, available 

to achieve a desired outcome. They can use traditional regulatory approaches (sometimes 

referred to as command-and-control approaches) or they can use incentive-based (or 

market-based) policies that try to create a motivation to behaviour changes in individuals. 

In a society, individuals have information about their resources, desires and preferences. 

Therefore, they choose actions for producing, redistributing, and consuming those 

resources. In markets and other institutions, individuals’ actions may depend on others’ 

information as it has been communicated in the market or institution. The institutions are 

to be used as mechanisms for communicating people’s information and coordinating 

people’s actions. A good social institution is decided upon how it performs in this 

communication and coordination role. If we do not like the performance of our current 

institutions, then we may want to reform them, to get an institution that implements some 

desired social plan, where a social plan is a description of how everyone’s actions should 

depend on everyone’s information (Myerson, 2008). 

Classic Mechanism Design (MD) is the area of microeconomics and game theory 

concerned with how to design systems that involve multiple self-interested individuals 

each with private information about their preferences, using tools developed by game 

theory analysis, such that certain system-wide properties emerge from the interaction of 

the constituent components (Maskin, 2008).  

A mechanism design considers a set of outcome rules and actions, and a set of players. 

The mechanism is designed so that the players’ preferred strategies obtain an outcome 

that it corresponds to the desired outcome of the system manager. This is interpreted as 

efficient use of the system (i.e. existing transport infrastructure). In a mechanism design 

problem, one can imagine that each agent holds one of the inputs to a well-formulated but 

incompletely specified optimization, and that the system’s wide goal is to solve the 

specific instantiation of the optimization problem specified by the those inputs (Nisan, 

2007).  
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Incentives and incentive systems are fundamental to developing capacities and to 

translating developed capacities into better performance (Ratto, 2003). Incentives are 

external measures that are designed and established in order to influence motivation and 

behaviour of individuals, groups or organizations. Incentives can be classified according 

to the different ways in which they motivate agents to take a particular course of action. 

Janzik and Herstatt (Herstatt, 2008) classifies incentives divided into four categories (see 

Table 3): 

1. Material incentives: financial, monetary-value-based 

2. Immaterial incentives: Social, organizational related  

3. Self-directed incentives 

4. Indirect incentives 

 

Table 3 - Classification of Incentives (Herstatt, 2008) 

 

2.4.3. Policy & Incentives in Transportation Domain 

Policy-making is of particularly interesting in transportation domain, as it constitutes an 

important area in socio-economic and technical systems. Some transport policies aim at 

decreasing transport resistance factors (money, time, and effort); other policies try to 

influence the needs and location of activities or try to improve the environmental 

performance of vehicles, and so forth.  

Externalities in the transportation domain develop to generate inefficiencies and social-

welfare losses are generated. The most important dimensions of external costs are usually 
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found to be congestion, air pollution, accidents, and noise. Santos et al. (Santos, Behrendt, 

Maconi, Shirvani, & Teytelboym, 2010) and (Santos, Behrendt, & Teytelboym, 2010) 

extensively review the main road transport externalities and economic policies in 

transportation. Throughout their study authors has examined the most important negative 

externalities and a number of command-and-control and incentive-based policies.  

Among the policies that have been proposed to attenuate these negative externalities, road 

or congestion pricing is the major strategy considered. In this case road pricing aims to 

internalize the external costs of car traffic. This will increase the welfare of all road users, 

assuming that the charges will be return to car-users in terms of investments that will 

improve his/her comfort (Santos, Behrendt, Maconi, Shirvani, & Teytelboym, 2010) and 

(Verhoef, 2006). In that sense, road pricing has become a central point in the 

transportation economic literature (Levinson, 2010), (Blythe, 2005), (Elvik, 2010), 

(Rentziou, et al., 2010), and (Voβ, 2009). 

Those behavioural responses in the road pricing application lead to an increased 

efficiency of the transportation system (Bonsall, Shires, Maule, Matthews, & Beale, 

2007). Pricing, however, is a negative incentive and commuters’ public acceptability of 

such a measure is typically low. One of the first approaches to circumvent this 

unwillingness is proposed by Kveiborg (Kveiborg & Lohmann-Hansen, 2001) where it is 

discussed the possibility of using MD in transportation for implementing social optimal 

congestion levels in an urban region. Kveiborg proposes a theoretic compensation-based 

mechanism to substitute the fixed road pricing schemes (Pigou taxes). In this mechanism, 

drivers need to announce what how much transport he will demand, and how much he 

will pay for this to the other, and how much he should be paid to accept the other 

individuals’ choice of transport.  

Ettema et al. (Ettema, Knockaert, & Verhoef, 2010) suggest the use of positive incentives 

(monetary and credits) to stimulate changes in travel behaviour of commuters on a 

congested highway in the Netherlands. Among the finding of the experiment is that 

commuters adjust their behaviour when they have flexible work hours, have public 

transport alternatives and regularly use traffic information. Finally authors observed that 

when no reward was offered commuters avoiding traffic decreased significantly.  
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Merugu et al. (Merugu, Prabhakar, & Rama, 2009) describe the INSTANT an incentive 

based mechanism to encourage commuters to commute at less congested times. Authors 

sustain that for achieving an improvement in congestion management only a part of the 

overall population it is necessary to be induced to change its travel behaviour. Commuters 

who modify their behaviour unilaterally will benefit from reduced commute times and 

have a more comfortable commuting experience. 

Goodwin (Goodwin P. , 2008) extensively reviews available evidence on the nature and 

size of demand responses in passenger transport, which would be relevant to setting and 

achieving carbon reduction targets. The review reveals the variety of travel choices people 

make. The modal choice is between not only cars and public transport, including the 

volume and location of travel, but also walking and cycling, driving styles, levels of car 

ownership, where to live and work and shop, and the type of activities they participate. A 

common characteristic of those interventions (evidence based on experience is available) 

is that they often are cost-benefit solutions. 

Incentives it is not only related to pricing schemes and traffic congestion but embraces 

all the dimensions reported previously in Table 3 in order to deliver a sustainable mobility 

services. This is for example the objective of the SUNSET1 (Sustainable Social Network 

Services for Transport) project. The direction followed in SUNSET lies within four types 

of incentives: 

1. Real-time travel information (i.e. system provision and peer-to peer exchange);  

2. Feedback and self-monitoring;  

3. Rewards and points;  

4. Social networks. 

It is worthy to notice how transportation community started to embrace the influence and 

potentialities of the social networks to align individual and system objectives.  

In this directions are moved the works proposed in (Hoh, 2012) and (Holleis, et al., 2012) 

that leverage on the use of socials networks and social participation to motivate or to give 

pressure to people to behave in certain ways. An incentive-centred design based on self-

monitoring and feedback is proposed in (Agerholm, Waagepetersen, Tradisauskas, & 

                                                           
1 http://sunset-project.eu/ 
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Lahrmann, 2008) and (Agerholm N. , 2011) where it is proposed a mechanism for 

intelligent speed adaptation. Similar applications, focus on fuel consumption this time, is 

currently pursue by the automotive industry. Rossetti et al. in (Rossetti, Almeida, 

Kokkinogenis, & Gonçalves, 2013) and (Gonçalves, Rossetti, & Olaverri-Monreal, 2012) 

discuss gamification as an important instrument toward behaviour persuasion. Authors 

support the use of serious games in ITS as a way to implement incentive-based schemes 

to promote social awareness toward future smarter and sustainable transportation 

systems. 

2.5. MAS for Incentive-Based Mechanisms and Policy Evaluation 

Policy-making is an extremely complex problem. It implicates the interactions among 

many diverse autonomous entities such as individuals, households, businesses and 

government organizations, as well as the physical world  

Each of these entities comprises interdependent economic, environmental, political and 

social behaviours. Since autonomous entities produce the effects of regulatory policy, the 

multi-agent approach to explain expectations about the effects of alternative policies, 

makes obvious sense. Agent-based models provide a powerful and scalable approach to 

analysing vital aspects of policy design and forecasting that traditional econometric 

models cannot (Moss, 2002), (Moss, 2008), and (Boer, Engers, & Sileno, 2011). 

2.5.1. Agents in Policy-Making Process 

Policies are conceived in a way to drive individuals to change their behaviour. However, 

the way people adapt their behaviour might not be the one intended by the policy. People 

interpret the policies in the context of their own state and influenced by their social 

surrounding. Thus, agents can be used to model individual behaviour.  

Dos Santos and da Rocha (Costa, 2012) introduce the concepts of agent-based model of 

public policy process and of policy artefacts. The former emphasizes the need of direct 

modelling and simulation of the main policy actors in terms of cognitive agents and their 

interactions, while the latter abstracts public policies that are addressed to the agents 

representing the authorities and other member of the society. 

The benefit of agent-based motivation models in the policy-making and implementation 

processes is discussed in (Sterling & Pedell, 2012). They show that agent-oriented models 

are suitable for modelling the social domain because they represent the goals and 
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motivations of roles and individuals, and the notion of quality goals can be used to discuss 

high-level outcomes relevant for policy making.  

Wyner et al. (Wyner, Atkinson, & Bench-Capon, 2012) and (Wyner, Wardeh, Atkinson, 

& Bench-Capon, 2012) discuss the use of agent-based argumentation techniques taken 

from to provide intelligent support for intelligent support for opinion gathering and 

eliciting a structured critique of the policy-making process. Dignum et al. (Dignum, 

Dignum, & Jonker, 2009) argue about the necessity to combine micro and macro-level 

models to simulation-based support for policy-making. (Almeida, Kokkinogenis, & 

Rossetti, 2012) uses agent-based simulation to evaluate different policy setting in 

evacuation scenarios. 

The design and the optimization of pricing policy in the transportation domain is a 

complex task. For example in the context of road pricing schemes Fosgerau (Dender, 

2013) considers that congestion charging should not be account in isolation of the 

travellers. There are important implications spanning from traffic dynamics and the 

endogenous nature of trip timing, to the heterogeneity of travellers and the travel time 

variability. Yet, the design of pricing schemes needs cohesive assessment, considering 

the interactions between congestion and traffic network dynamics with heterogeneous 

behavioural as well as socio- and spatial-economic factors.  

Nagel et al. (Nagel, et al., 2008) present the first version of MATSim traffic simulator to 

show, how multi-agent simulations approach with full daily plan for each agent can be 

applied for economic policy evaluation on a large-scale scenario. Thereby, Kickhöfer et 

al. (Nagel, et al., 2008), (Grether, Kickhöfer, & Nagel, 2010), (Kickhöfer, Zilske, & 

Nagel, 2010), (Kickhöfer, Grether, & Nagel, Income-contingent user preferences in 

policy evaluation: application and discussion based on multi-agent transport simulations, 

2011) and (Nagel B. K., 2012) expand Nagel’s approach and present a number of papers 

where it is discussed the econometric evaluation of different transportation policies using 

the multi-agent paradigm. Authors describe the new MATSim1 framework for large-scale 

agent-based transport simulations. In MATSim, each traveller of the real system is 

modelled as an individual agent. For each, an Activity-based demand generation (ABDG) 

models generate daily activities in sequence and trips connecting these activities for every 

                                                           
1 http://www.matsim.org/ 
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“agent” in the network. Demand generation thus is embedded in a concept of daily activity 

demand from which the need for transport is derived. Random utility theory is used to 

generate plans of daily activities. 

MATSim model has been widely applied for transport and land-use studies; it is the only 

model so far that consider economic activities and their interaction with other behavioural 

processes. Indeed several authors that studies public policy in the transportation domain 

have adopted it (Zheng, Waraich, Axhausen, & Geroliminis, 2012) and (Erath, 2012). 

In (Macedo, Kokkinogenis, Soares, Perrotta, & Rossetti, 2013) is discussed an integrated 

traffic simulation framework to be used for policy evaluation of electric road mobility. 

Pereira introduces a simulation tool to evaluate policies in fully autonomous vehicle 

scenarios (Pereira & Rossetti). 

In Kokkinogenis et al. (Kokkinogenis, Monteiro, Rossetti, Bazzan, & Campos, 2014) is 

discussed a conceptual framework for evaluating transportation policies in multimodal 

scenarios from a social-simulation perspective. It is suggested the use of an agent-based 

platform for modelling & simulation of social systems in order to complement the study 

of social factors on the performance of transportation systems. 

2.6. Summary 

Along this section, we have review some fundamental concept interlaced in this 

dissertation. We have started by considering the transportation domain and in particular 

way the Intelligent Transportation system area. Then we proceed by considering the agent 

technology. These are the two areas this dissertation aspires to contribute. 

An agent-based approache can contribute around the design and control of intelligent 

transportation systems (ITS) and ultimately to make our cities smart. The Four Step 

Model (FSM) is the primary tool for forecasting future demand and performance of a 

transportation system but it as problem with the complexity of the mode choice. As 

discussed, the FSM lacks information in a social perspective, and rather deal on a 

transportation model.  

This is where our framework and methodology will focus on the following chapter. We 

will discuss on how to build a social-transportation simulation tool in an ATS context. 

Then use this framework and test policies. We believe incentive-based mechanism to 
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influence the behaviour both of users and of the providers can be helpful for the system 

to reach the so-called social fairness equilibrium.   
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Chapter 3 - Framework for STST and an 

illustrative scenario 
 

3.1. Overview 

In (Wang & Tang, A framework for artificial transportation systems: From computer 

simulations to computational experiments., 2005) the concept of artificial transportation 

system (ATS) is discussed as a framework to appropriately represent, test, and analyse 

transportation control policies and solutions. 

In this chapter, the intention is to go beyond traditional simulation methodologies by 

integrating the transportation system with other socioeconomic urban systems and real-

time information. In (Rossetti, Liu, & Tang, 2011), authors provide a brief overview of 

contributions in ATS development along three dimensions: modelling issues and 

metaphors for ATS models, architectures for ATSs, and practical applications of ATSs. 

Although the achievements made by the transportation community are promising, there 

has been a slow advance in appropriately representing users and their behaviour in the 

social dimensions of the intelligent transportation systems. 

 

3.2. Framework Description 

In this section, we present the conceptualisation and implementation of a methodological 

framework based in an ABM and deliver a platform to serve as social-transportation 

simulation tool (STST) in ATS (see Figure 5).  
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Figure 5 - A social-transportation simulation tool in ATS 

The bottom layer represents the environment and the various types of agents that reside 

on it. The middle layer considers the social dynamics and their implications that can 

emerge as result of interactions and learning among heterogeneous agents. The upper 

layer represents the context that we consider to our analysis. 

 

a) Purpose 

The purpose of the framework is to support traffic planners and managers in designing 

and evaluating ITS solutions. Modifications in the environment (i.e. multimodal 

transportation network), introduced either as direct or indirect actuation by the system 

authorities, can influence the travelling behaviour of the commuters in order to align their 

objectives and preferences with the ones of the system 

In the conceptual model of the social ATS framework, we consider the transportation 

system as integration of a macroscopic representation of a road transportation network 

and the microscopic representation of an artificial society of agents, as commuters, each 

one having its own decision-making process and perception of the environment. 
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b) The Structure 

The structure must follow the updated version of the ODD protocol. This acts as an 

underlying code structure being easier for new models to be built-in or to be expanded.  

 

c) The General Framework 

 

Figure 6 – The updated methodology 

The major framework must start in the work of Manheim/Florian Transportation System 

Analysis Framework. The combined STST (Socio-Transportation Simulation Tool) 

methodology can be found in Figure 6. To help resolving the problem this approach can 

be used to combine the different transportation models used to analyse the transportation 

metropolitan transportation system. Therefore, this model can be used as a tool for 

simulation and prediction interactions between infrastructure changes, public 

transportation investments, and endogenous traffic effects in a daily basis. 

The supply procedure will be based on a given artificial population. 
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d) Models 

Commuters in the real system are described as an artificial society of agents, each of them 

characterised by a set of attributes regarding its travel preferences in terms of costs and 

time, and a set of socio-economic features (e.g., income).  

The agents make daily travel decisions based on their personal expectations and their past 

travelling experiences. This acts as a memory where each commuter stores his travel 

experience. A generation module creates the demand to be assigned on the transportation 

network. Here, each agent creates an activity-based schedule, based on its own 

preferences and constraints, for a given period of the day. The schedule defines the set of 

origins and destinations with the respective desired departure and arrival times to and 

from each node. The agents’ decision is based on the evaluation of their travel experience 

by means of a utility-based approach. 

Kenneth A. Small (Small, 1979) introduced the concept of utilities based in scheduling 

of consumer activities. Small tries to find a solution for time-based utilities, and how 

those utilities weight in a decision-making process, based on the information they have. 

Latter in, Feil et al (Feil, Balmer, & Axhausen, 2009) developed a utility function in order 

to deal with all-day activity-travel schedules. This utility function is an evolution of the 

one introduced and goes as follows: 

   max 𝑈𝑡𝑜𝑡𝑎𝑙,𝑖 =  max[∑ 𝑈𝑝𝑒𝑟𝑓,𝑖𝑗
𝑛
𝑗=1 + ∑ 𝑈𝑙𝑎𝑡𝑒,𝑖𝑗

𝑛
𝑗=1 + ∑ 𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖𝑗

𝑛
𝑗=1 ]   (12) 

 

Where 𝑈𝑡𝑜𝑡𝑎𝑙,𝑖 is the total utility of the given schedule 𝑖; 𝑛 is the number of activities/trips; 

𝑈𝑝𝑒𝑟𝑓,𝑖𝑗 is the utility gained from performing activity 𝑗; 𝑈𝑙𝑎𝑡𝑒,𝑖𝑗 is the utility gained from 

arriving late at activity 𝑗; and 𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖𝑗 is the (negative) utility gained from travelling trip 

𝑗. 𝑈𝑝𝑒𝑟𝑓,𝑖𝑗 is a positive utility that we win in performing an activity, 𝑈𝑙𝑎𝑡𝑒,𝑖𝑗 is a negative 

utility of arriving late to that utility and 𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖𝑗  is a negative utility of traveling to 

perform that activity. This utility is used in the social transportation MATSim software 

(Feil, Balmer, & Axhausen, 2009). 

In this work we decided to add a social factor to the later utility function. In that sense, 

each agent evaluates the available choices (e.g. mode, route departure time) over a set of 

individual contributions (see Equation 15). 
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   𝑈𝑡𝑜𝑡𝑎𝑙 =  𝑈𝑡𝑖𝑚𝑒 +  𝑈𝑐𝑜𝑠𝑡 +  𝑈𝑠𝑜𝑐𝑖𝑎𝑙      (13) 

The two main components of the utility 𝑈𝑡𝑜𝑡𝑎𝑙, 𝑈𝑡𝑖𝑚𝑒and 𝑈𝑐𝑜𝑠𝑡 reflect the cost of travel that 

is incurred by the agents: time and monetary costs. 

1. Time costs 

The measurement of the travel time needs to quantify the agent’s perception of time in 

different components such as access, waiting, and in-vehicle travelling.  

1. Access time 𝑈𝑎𝑐𝑒𝑠𝑠  is a measure of accessibility, especially in public 

transportation, and accounts for the time necessary to access into a transportation 

system.  

2. Waiting time,  𝑈𝑤𝑡 indicates the service frequency in public transportation.  

3. In vehicle travel time (or travel time),𝑈𝑡𝑡 is the effective travel time, necessary to 

travel from one origin to a destination node.  

Therefore, the indirect utility function about the travel time costs, for agent  𝑗 is: 

   𝑈𝑡𝑖𝑚𝑒
𝑗

= ∑ [𝑎1𝑈𝑎𝑐𝑒𝑠𝑠,𝑖
𝑗

+  𝑎2𝑈𝑤𝑡,𝑖
𝑗

+  𝑎3𝑈𝑢,𝑖
𝑗

]𝑛
𝑖=1       (14) 

Where 𝑛 is the number of activities in the agent’s schedule, which equals the number of 

trips. The weights𝑎1,𝑎2,𝑎3 can be consider as marginal utilities or preferences for the 

different components of the 𝑈𝑡𝑖𝑚𝑒 with which commuters assess the value of time. 

2. Monetary costs 

The measurement of the costs is direct and additive as well as. The set of monetary costs 

can be defined as: fares, tolls, and other running costs (e.g. fuel costs). The (negative) 

utility earned for travelling during a trip can be seen as: 

   𝑈𝑐𝑜𝑠𝑡
𝑗

= ∑ [𝑏1𝑈𝑓𝑎𝑟𝑒𝑠,𝑖
𝑗

+  𝑏2𝑈𝑡𝑜𝑜𝑙𝑠,𝑖
𝑗

+  𝑎3𝑈𝑡𝑟𝑎𝑣𝑒𝑙,𝑖
𝑗

]𝑛
𝑖=1       (15) 

where, 𝑈𝑓𝑎𝑟𝑒𝑠, 𝑈𝑡𝑜𝑜𝑙𝑠, and 𝑈𝑡𝑟𝑎𝑣𝑒𝑙are the components of the utility regarding the paying of 

fares, tolls, and other travelling costs such as fuel consumption, and n is the number of 

activities in the agent’s schedule. The weights  𝑏1 ,𝑏2 ,𝑏3  can be consider as marginal 

utilities or preferences for the different components of the 𝑈𝑐𝑜𝑠𝑡with which commuters 

assess their monetary efforts of travelling. 
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3. Social and personal benefits/costs 

While the previous definition about time and monetary costs are typically used to describe 

the commuter’s perspective of gain/loss about his/her travel activity, the social factors lie 

into a not well-defined dimension. This means that there are several issues that can be 

defined social factors and that must be accounted for an utility function. Therefore, we 

can consider not only typical social aspects found in the transportation literature as equity, 

accessibility, safety, but also the social interaction and influence the commuter receives 

during a trip. Indeed, an activity-travel patterns can emerge from the individuals social 

networks (Arentze & Timmermans, 2008), and it might be necessary to understand how 

social interactions (to be meant differently than the interactions among drivers) can 

influence the attraction or repulsion for travelling with a given mode or to a given location 

for example. 

Typically, the modeller will account for the social interactions during a trip in a way that 

measures the strength of the links among an agent and his peers using a homophile 

principle of their common characteristics (McPherson, Smith-Lovin, & Cook, 2001). In 

this case, as it is suggested in (Natalini & Bravo, 2013), we could consider the commuter’s 

social satisfaction as the ratio of commuters in commuter𝑗’s neighbourhood that use the 

share the same mode 𝑚 as the commuter 𝑗: 

𝑈𝑠𝑜𝑐𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦,𝑚
𝑗

=  
𝑛𝑗𝑚

𝑛𝑗
      (16) 

Where 𝑈𝑠𝑜𝑐𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦,𝑚
𝑚  is the satisfaction of commuter 𝑗 choosing the mode 𝑚, 𝑛𝑗𝑚 is the 

number of commuters in 𝑗’s network that have chosen the same transportation mode, and 

𝑛𝑗 is the number of 𝑗’s peers in the network that use the same transportation mode. The 

peers may represent social relationships of many different kinds such as friends, relatives, 

colleagues, and neighbours.  

In a social context, the attractiveness of a transport mode can be also appraised in terms 

of perceived comfort or crowding levels. This aspect can be an important factor for the 

mode choice as it has been studied in (Cantwell, Caulfield, & OMahony, 2009), (Beirão 

& Cabral, 2007). We can consider comfort to be linked with equity and accessibility from 

the traveller perspective. 



 
 
43 

Thereby we can consider the social component to include in equation 15 as the one shown 

in equation 19, where 𝑈𝑐𝑟𝑜𝑤𝑑,𝑖
𝑗

 reflect the perceived comfort of agent 𝑗 during the trip 𝑖, 

and 𝑈𝑎𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠,𝑖
𝑗

 can be considered the commuter’s perception about the impact of his 

choices to the social welfare (e.g. pollution costs). The parameters 𝑐1, 𝑐2 and 𝑐3 weight 

the importance commuters attribute to each component of the utility function. 

𝑈𝑠𝑜𝑐𝑖𝑎𝑙
𝑗

=  ∑ [𝑐1𝑈𝑐𝑟𝑜𝑤𝑑,𝑖
𝑗

+ 𝑐2 𝑈𝑎𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠,𝑖
𝑗

+  𝑐3𝑈𝑠𝑜𝑐𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦,𝑚
𝑗

 ]𝑛
𝑖=1       (17) 

 

e) Model Flow 

Commuters in the real system are described as an artificial population of agents, each of 

them characterised by a set of attributes regarding its travel preferences in terms of costs 

and time, and a set of socio-economic features (e.g., income). The agents make daily 

travel decisions based on their personal expectations and their travelling experiences. A 

generation module creates the demand to be assigned on the transportation network. Here, 

each agent creates an activity-based schedule, based on its own preferences and 

constraints, for a given period of the day. The schedule defines the set of origins and 

destinations with the respective desired departure and arrival times to and from each node. 

The agents’ decision is based on the evaluation of their travel experience by means of a 

utility-based approach. In that sense, each agent evaluates the available choices (e.g. 

mode, route departure time) over a set of individual contributions 

f) Visualization 

The model must be presented in such a way a not specialist must comprehend what is 

shown. This kind of models can almost only make sense if they are understandable and 

user-friendly. Furthermore, the model must be practical and must be thought as something 

useful for the community. 

For example, macro visualization of city maps or graphs for analysing the output data 

model are good examples of visualization tools.  

g) Tools 

In Table 4 we can find a comparison between some Agent Based Platforms.  
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Table 4 - Agent Based Modelling Toolkit Comparison 

 

SUMO (Krajzewicz, 2002) is intended to perform microscopic simulation whereas this 

project intends to focus on a macroscopic analysis. In this sense we decided to build this 

model in the NetLogo (Wilensky, 1999) environment. NetLogo is a social simulation tool. 

Here we try to merge transportation traditional tools with social interaction phenomena 

and so NetLogo with its easy to use software and open source software can make a good 

tool for a rapid prototyping tool. 

3.3. First Implementation 

3.3.1. Model Description 

The goal of this section is to illustrate through a simple setup the plausibility of the 

conceptual framework as it was presented in section 3.1. We consider the evaluation of 

five changes in the network: three market-based and two incentive-based policies. In this 

setup we consider, time and monetary cost, whereas for as social costs are only considered 

the level of crowding and comfort, in the PT mode (Public Mode Transportation), and the 

level of emissions in the PR mode (Private Mode Transportation). We implemented the 

framework and simulation model using the NetLogo (Wilensky, 1999) agent-based 

simulation environment. One can find the source code at appendix B, part 1. 

 

a) Network  

The scenario consists (see Figure 7) of a bi-modal network with one origin O and one-

destination D nodes, and two routes. For question of simplicity, each route is composed 

Platform Primary Domain
Programming 

Language
User Support

Easy to 

Begginers

GIS 

Capabilities

3D 

Capabilities

MATSim

MATSim provides a framework to 

implement large-scale agent-based 

transport simulations.

Java
FAQ; mailing list; defect list; 

tutorials; API; documentation
No Yes Yes

NetLogo

Social and natural sciences; Help 

beginning users get started authoring 

models

NetLogo

Documentation; FAQ; selected 

references; tutorials; third party 

extensions; defect list; mailing lists

Yes Yes Yes

SUMO

SUMO is an open source, highly 

portable, microscopic and continuous 

road traffic simulation package 

designed to handle large road 

networks.

Python, C++
FAQ; mailing list; defect list; 

tutorials; API; documentation
No Yes Yes



 
 
45 

of one-way links of different capacities, and is dedicated to one mode; a PR and a PT road 

transport. Each link 𝑖 is characterised by a length 𝑙𝑖 km and a capacity 𝑐𝑖 vehicles/h. 

 

Figure 7 - Illustrative scenario of a bimodal network 

Based on the BPR function described in section 2.2.3, we compute the free flow travel 

time for each link and thus its free-flow speed. 

b) Entities and State Variables 

The model comprises only one type of agent, the commuters. Each agent is defined by a 

number of state variables which are: (i) desired departure and arrival times, (ii) 

experienced travel time, (iii) the uncertainty they experienced during the trip with a given 

transportation mode, (vi) a daily income variable. While the agent experience its travel 

activities, the costs associated with the different transportation mode, the perceived 

satisfaction of travelling as it expressed in terms of travel times and comfort, and the 

magnitude of the applied policies will have a certain impact on his mode/time choice. 

Some other characteristics of the agents are:  

1. Decision-making: The agents can choose to travel by PT or PR transportation 

mode. The decision making process of each agent is assumed to follow the 

principle of the expected utility maximisation. 

2. Adaptation: Agents in the policy assessment scenarios have to adapt their 

decisions according to the modifications in the environment they are situated in. 

Such modification is the result of policy intervention and can be expressed as a 

variation on the perceived costs or benefits. 
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3. Objectives: Agents try to maximise their personal goals and satisfaction, 

accounting for the uncertainty of the environment, therefore based on this 

deliberative outcome the make their decision about the mode and departure time 

choice.  

4. Sensing: Agents perceive the level of crowding in the public transportation and 

the levels of congestion in PR-mode. 

 

c) Initial Setup 

The scenario reflects a typical daily trip from a home to a work location. A typical three-

hour morning peak is modelled from 7h30m until 10h30m. In this interval of time, one 

observes a high demand on the PR-mode, where the utilisation of the route reaches the 

highest occupation.  

A synthetic population consisting of 2500 agents has been created, where each agent is 

characterised by a number of attributes denoting departure, arrival time and mode 

preferences, plus some other socio-economical features such as its monthly income. Each 

agent has an initial activity-travel schedule that considers expected departure and arrival 

travel times. The travel times are given by a normal distribution function, which give a 

rush hour peak between 8h30m and 9h30m in the morning.  

The income is setup to represent an average monthly income of 1125 units, daily. The 

agent has two variables related to the mode choice capacity: car-ownership and flexibility. 

Car-ownership is a Boolean variable and indicates if the agent is private and/or public 

transportation user (we do not consider other type of modes, e.g. walking).  

Flexibility reflects the willingness of a private mode user to change for the public 

transportation. Thus, all agents in the scenario start their trip at node O, between 07:30 

am and 10h30 am. The routes between nodes OD have both a length of 19 km. The free-

flow travel time from home (node O) to work (node D) is roughly 25 minutes by car in 

the PR-mode. For the public transportation, we consider a travel time from home to work 

is 33 minutes plus the waiting time at the bus stop. The bus frequency service is ten 

minutes before the rush hour and five minutes during the rush hours (for the test setup 

8:30-9:30). 
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d) Behavioural Parameters 

The behavioural parameters are set and can be interpreted as follows:  

1. Marginal utility time: 𝑈𝑡𝑖𝑚𝑒 = 0.25  

2. Marginal utility of travelling by car: 𝑈𝑐𝑎𝑟 = 0.25  

3. Marginal utility of travelling by bus: 𝑈𝑏𝑢𝑠 = 0.25  

4. Marginal utility of pollution: 𝑈𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 = 0.25  

5. Marginal utility of comfort in public transportation: 𝑈𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 0.25  

6. Marginal utility of capacity in public transportation: 𝑈𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 0.25 

The formal utility described early can be translated as follows. 

𝑈𝑝𝑟𝑖𝑣𝑎𝑡𝑒
𝑗

=  ∑ [𝑈𝑡𝑖𝑚𝑒 ∗ (𝐷𝐴 − (𝐷𝐷 + 𝐸𝑇𝑇)) + (𝑈𝑐𝑎𝑟 ∗ (
𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑐𝑜𝑠𝑡𝑠

𝑖𝑛𝑐𝑜𝑚𝑒
)) +𝑛

𝑖=1

(𝑈𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 ∗ (𝐸𝑇𝑇 ∗ 𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛))]      (18) 

Where: 

 𝐷𝐴 - Desired arrival time 

 𝐷𝐷 - Desired departure time 

 𝐸𝑇𝑇 - Expected travel time 

𝑈𝑝𝑢𝑏𝑙𝑖𝑐
𝑗

=  ∑ [𝑈𝑡𝑖𝑚𝑒 ∗ (𝐷𝐴 − (𝐷𝐷 + 𝐸𝑇𝑇)) + (𝑈𝑏𝑢𝑐 ∗ (
𝑝𝑢𝑏𝑙𝑖𝑐𝑐𝑜𝑠𝑡𝑠

𝑖𝑛𝑐𝑜𝑚𝑒
)) +𝑛

𝑖=1

(𝑈𝑐𝑜𝑛𝑓𝑜𝑟𝑡 ∗ (
𝐸𝑊

𝐷𝑊
)) + (𝑈𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ (

𝐸𝐶

𝑏𝑢𝑠𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
) ∗ 𝐸𝑇𝑇)]      (19) 

 𝐷𝐴 - Desired arrival time 

 𝐷𝐷 - Desired departure time 

 𝐸𝑇𝑇 - Expected travel time 

 𝐸𝑊 - Expected waiting time 

 𝐷𝑊 - Desired waiting time 

 𝐸𝐶 - Expected crowding 

 

e) Scheduling 

The demand is generated at the setup procedure. In the generation node, all the commuters 

are created and they are assigned a desired departure travel time. When desired departure 
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is reached they move to the mode choice procedure where, accordingly to their utilities, 

they choose a mode to travel, PR-mode or PT-mode. After that procedure, they are 

assigned to the network, to the origin node. At the end of the travel, each agent stores the 

experienced travel time, costs, and level of crowding (public mode users only). These 

variables will be used to calculate next day utility. After that, each agent evaluates its own 

experience, comparing the expected utility to the effective utility. The network is also 

evaluated with the average travel speed and the average travel time being stored for future 

comparisons. In Figure 8, we can find a diagram depicting the scheduling. 

 

 

Figure 8 - Scheduling: left) Within-day Dynamics, right) Day-to-day 

 

f) Market-Based and Incentive Based Policies 

We consider five simple policies: three market-based and two incentive-based. Market-

based policies actuate directly on the prices commuters need to support during their travel. 

Incentive-based policies aim to trigger shift in the traveller's behaviour regarding their 

travel choices. With the aforementioned utility functions, we try to analyse the different 

impacts of prices vs time choice incentives. The policies are defined as follows. 

Market-based policies:  

1. An increase in PR-mode transportation (Policy-1) - increase in private costs from 

6 units to 20 units;  

2. a decrease in PT-mode (Policy-2) - reduce of 20% fare, from 1 units to 0.8 units; 
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3. In addition, a policy mix (Policy-3) - a decrease of 0.2 units in PT-mode and an 

increase of 10 units in PR-mode costs.  

We also implemented two departure time incentive-based policies:  

4. A Departure Time Incentive for all the commuters (Policy-4) - Each commuters 

is rewarded with 2 euros before rush hour and 1 euro after rush hour; 

5. A Departure Time Incentive only for commuters who travel at rush hour (Policy-

5) - 2 euros before rush hour and 1 euro after rush hour. 

These incentives tries to change the departure times of each commuter and this way flat 

the demand peak and curve. 

g) Who is impacted by the policies 

In the following table (table 5) a population description regarding the Boolean variables 

“owns a car” and “mode flexibility”.  

 

Table 5 - Agent Based Modelling Toolkit Comparison 

 

From this table we can that from the 2500 agents artificial created 648 have a car and 

have flexibility. So this 648 agents are going to be the target of this policies.  

3.4. Simulation Runs Results 
 

We first consider a “baseline” scenario where no policy intervention is applied. We 

perform a preparatory run of the model for the corresponding of one-month simulation 

(30 iterations of the morning rush hours). This serves to establish the ratio of commuters 

distributed between the two modes along the departure time interval. We can consider 

that during this period the agents' ”adapt” to make the choice that maximizes their utility. 

During the execution of the scenario, we monitor the agents' utilities, travel times, the 

Owns a Car Mode Flexibility

No 1253

Yes 609

Yes 644

Yes 1247

No 599

Yes 648

Total 2500
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ratio of the expected travel time for the PR-mode and the observed travel time 

TTExp/TTObs, and the pollution/crowding level for the PR-mode and PT-mode 

respectively.  

After, a policy is introduced and the model is executed for another 30 iterations, starting 

from the final iteration of the baseline scenario. In the market-based Policy-1, we can see, 

compared with the baseline scenario, an increase of commuters in 7.5% in the PT-mode 

(see Table 6) and a decrease of commuters of 9.34% in PR-mode (see Table 7). The social 

effects of a change in prices is that in one hand, when a rise in PR-mode transportation 

costs the commuters who have changed from PR-mode to PT-mode are the commuters 

who do not have the capacity to pay the new price. We can see that the effect in the 

average expected utility in PR-mode where it increases by 2.8%. The agents who stay in 

the PR-mode are not influenced by the prices. On the other hand, because the PT-mode 

transportation supply does not change, there is a 5% lost in expected utility in PT-mode 

that it is explained by a rise of the average crowding by 5%. 

If we compare these results with Policy-2, we can see that the PT-mode expected utility 

drops by 1% and there is a rise in PT-mode ratio of 6.28%. Therefore, the PT-mode 

commuters are somehow rewarded with a ticket price reduction and their utility does not 

drop as much as in Policy-1. At the same time, there is a rise in PR-mode utility average 

because the networks become less crowded.  

The results from the incentive-based policies need a different analysis, because there is 

not an increase effect on prices but rather the inverse effect, a subsidisation. At the same 

time, the incentive looks to approximate the PR-mode costs to the PT-mode costs by a 

two units subsidy before rush hour and one unit after rush hour. More, the objective of 

those incentives in theory is not to achieve mode shift but rather to flat the demand. 

However, the results show us a different perspective. In a modal shift perspective there is 

a rise of 7% (Policy-4) and 6.7% (Policy-5) in mode shift. This modal shift is not 

explained only by the effect of the subsidisation per se. It also occurs because, all the 

agents that have travelled before the rush hours, some have changed their mode from PR-

mode to PT-mode as they can reach a higher utility. 

Another point that emerges from the results is that the shift in departure time, obtained 

applying of the incentive-based policies, obtains a similar effect of the Braess’s paradox 
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(Braess, 2005). Here we find the congestion effect not in a route choice but rather on a 

time choice basis (see Figure 9). 

Table 6 - Public Transportation Insights 

 

Table 7 - Private Transportation Insights 

 

Public Transportation Ratio

Average 

Travel Time 

[min]

Average 

Utility

Average 

Crowd 

Baseline 55,4% 36,67 11,11 0,81

Policy 1 7,50% -0,56% -4,97% 5,06%

Policy 2 6,28% -0,30% -0,81% 3,20%

Policy 3 6,49% -0,61% -1,45% 3,97%

Policy 4 6,93% -0,43% -3,90% 2,24%

Policy 5 6,64% -0,36% -3,82% 2,70%

Private Transportation Ratio

Average 

Travel Time 

[min]

Average 

Utility
TT Exp/TTObs

Average 

Pollution

Baseline 44,6% 25,24 17,60 1,05 5,05

Policy 1 -9,34% -0,30% 2,76% -18,89% -0,30%

Policy 2 -7,81% -0,26% 1,16% 0,39% -0,26%

Policy 3 -8,08% -0,29% 1,78% -19,74% -0,29%

Policy 4 -8,62% 0,38% 4,77% 0,22% 0,38%

Policy 5 -8,26% 0,90% 2,65% -6,38% 0,90%
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Figure 9 - Average commuters on car under different policies 

 

3.5. Summary 

In this chapter, we have discussed a conceptual framework for evaluating transportation 

policies in multimodal scenarios from a social simulation perspective. Hence, we suggest 

the use of an agent-based platform for modelling and simulation for social systems in 

order to complement the study of social factors on the performance of transportation 

systems.  

To illustrate the viability of our approach in representing human behaviour, we built a 

synthetic population of adaptive commuters, where each of them implements a memory 

to store his travel experience and thus we can conduct the within-day and day-to-day 

transportation and traffic analysis considering behavioural and social aspects of the 

commuter based on his/her preferences. What we can conclude from this illustrative 

example is that the transportation planners should anticipate both positive and negative 

effects of a market-based or an incentive based policy. Trying to achieve a behavioural 

shift in mode choice needs to be followed by proper investments (i.e. encouraging the 

usage of public transportation can succeed only if it is followed by an improvement at 

infrastructure and service levels). 
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Chapter 4 - Policies Effectiveness - 

Iteration Games 
 

4.1. Overview 

In this chapter, we will introduce and present a more robust simulation based in the 

framework discussed in the previous chapter. A robust and larger network demands a 

bigger setup in which several origins and several destinations must exist. Therefore, a 

proper traffic assignment model is necessary.  

A common assumption is that drivers choose the route between an OD pair according to 

the principle of minimum experience travel time (Chiu, et al., 2010). As there are other 

drivers on the routes, the travel time between an OD pair depends on the choices of these 

other drivers who also aim to minimise their travel time. When all drivers succeed in 

choosing the optimal route that minimises their travel times, this is referred to as 

Equilibrium or User Equilibrium or Wardrop’s Equilibrium (Wardrop, 1952).   

Bazzan and Klügl investigated the behaviour of agents under the effect of real-time 

information and thus how the agents change their route mid-way (Bazzan & Klügl, Re-

routing Agents in an Abstract Traffic Scenario, 2008). Precise information about the 

travel time on the routes may improve the network flow negligibly if the drivers 

repeatedly make route choices from the same origin to the same destination on the same 

road network around the same time of the day (Kitamura & Nakayama, 2007). Providing 

real-time information to the drivers has some drawbacks. If the drivers do not have perfect 

information, their travel time may increase compared to those having perfect information 

(Arnott, Palma, & Lindsay, 1991). Moreover, the drivers tend to ignore the information 

if they are informed regularly or they tend to concentrate on certain roads if they are 

informed about congestion on other roads (Ben-Akiva, De Palma, & Isam, 1991). 

Providing information to the drivers is not an easy task and ensuring the quality of the 

information so that it is of use to the drivers is complicated.  

The drivers on the road are independent entities who make decisions usually without 

communication with other drivers. Each driver’s decision has an effect on the traffic flow 

and thus on others’ decisions. Hence, the Traffic Assignment Problem (TAP) and route 
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choice can be seen as a game-theoretic problem (Chen & Ben-Akiva, 1998)  where 

individual choices affect other individuals. The drivers are independent; they share 

limited information and try to minimise their travel time and thus, inadvertently, to form 

the equilibrium.  

Challet and Zhang’s Minority Game (MG) model (Challet & Zhang, 1997)is one such 

approach where coordination among the agents occurs through self-organisation with 

minimal information and without communication among the agents. Challet and Zhang 

showed that their MG model could achieve equilibrium among agents by self-

organisation (Challet & Zhang, 1997). TAP and Route choice can be seen as a problem 

of self-organization, and though iteration game agents can reach equilibrium. Therefore, 

the MG might be well suited for solving this problem.   

MG was introduced to simplify Arthur’s (Arthur, 1991) El-Farol bar problem. However, 

the original MG formulation is not sufficient to solve the TAP. Therefore, in this work an 

extension of MG and a variation of El-Farol bar problem is integrated and proposed as an 

approach to solve the TAP and route choice. This hybrid approach ensures a reasonable 

travel time for the travellers and a near-optimal distribution of cars on the road network. 

In the next section an introduction of the El-Farol bar and Minority Game is given.  

 

4.2. The El-Farol Bar Model and Deducting the Minority Game into a 

TAP 

The EFBP starts with a problem. The problem consists in a set of agents, without the 

possibility of communication, which have to self-organise themselves while they are in a 

competition for a limited resource, and there is no solution deductible a priori. In this 

problem, every agent has to choose to go or not to go to the ‘El-Farol’ bar each week, 

using a predictor of the next attendance. It is given that the agents try to avoid crowd 

however, since there is no single predictor that can work for everybody at the same time, 

there is no deductively rational solution. The consequence is a belief described by Arthur: 

“if all believe few will go, all will go. But this would invalidate that belief. Similarly, if 

all believe most will go, nobody will go” (Arthur, 1991). 

Implementing the EFBP implies that each agent has predictors that map the history of 

past attendances. The agents rank their predictors by evaluating the predictions after each 
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decision. If a predictor predicts correctly for an agent, that predictor scores a point 

regardless. To make a decision, an agent uses the predictor with the highest score. 

To predict the exact number of attendants using the past m days’ history, the length of 

each predictor would have to be Nm, which is a rather large number even for a moderate 

N. In order to simplify the EFBP, Challet and Zhang defines the MG as an odd number, 

N, agents repeatedly take an action, either +1 for going to the bar or -1 for staying at 

home. The agents on the minority side win. 

The previous winning decisions form the history. If the agents taking decision +1 were in 

the minority last time, the history will be +1. Thus, the history can be denoted as a binary 

sequence. The agents are provided with the common history of last m winning sides. Each 

agent has a finite number of predictors which map the action +1 or -1 to the next time 

step based on the m-bit history.  

The left side of the table contains all possible combinations of the history for m = 3 and 

the right side is the proposed action for that particular combination of the history. The 

predictors are initialised randomly and the agents cannot change their predictors in the 

traditional minority game. The length of the predictor is 2m which is significantly smaller 

than Nm. 

4.2.1. Adaptation of MG in Traffic Assignment Problem 

This section is based in the work of Galib and Moser (Galib & Moser, 2011). We adapted 

the model the authors developed and integrated it in our framework. In their study, Galib 

and Moser proposed a novel approach using the concept of Challet and Zhang MG model. 

We will describe their approach in the following paragraphs.  

The authors assume that each driver has an OD pair and some previous experience of 

travelling to the destination. It is assumed that there are usually several routes to reach 

the destination and drivers decide at each intersection which outgoing link they will take 

from there. Each driver has predictors to anticipate the usage level of the links as a 

percentage of the link’s capacity. A predictor maps a history of previous usage levels to 

a prediction of the current usage level and the driver will choose the link with the 

minimum predicted usage. At the end of the trip, the driver will compare the experienced 

travel time with the expectation and score the predictors accordingly. By scoring the 
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predictors, drivers can select the best predictor with highest score to use for prediction of 

the link usage in the next iteration.  

The algorithm of proposed by Galib and Moser (Galib & Moser, 2011) approach is given 

below which they called Hybrid Traffic Assignment Approach and can be seen bellow. 

1) For each driver 
a) For each node i in the developing route 

i) For each link j in the driver’s list for node i 
(1) Select best predictor for link j 
(2) Predict the percentage usage by mapping current link history to the best predictor 

ii) End For 
iii) Select link l with minimum weighted prediction 
iv) Set the current node i to the end node of link l 
v) End For 

b)  End For 
2) Update the link histories for each driver for the links they travelled 
3) Update the score of the predictors used by each driver for each link 
4) Calculate experienced/actual travel time for each driver along their OD pair 

5) Calculate new weights for each link using the current experienced travel time. 
 

a) Number of Agents 

Challet and Zhang’s original MG (Challet & Zhang, 1997) could only be applied to an 

odd number of agents. This was necessary to determine the minority side. However, in 

our traffic scenario, we are applying the concept of the MG without the limitation of odd 

numbers agents, as the success of a choice is not determined by minority allocations but 

according to the actual travel times experienced. 

 

b) History 

At the MG, the history shows the winning alternative. In TAP, we have more than two 

alternatives to choose. Therefore, the history is a percentage of road usage with respect 

to the capacity of the road. Authors show that the range of historic usage values is limited 

to a range of 60 to 140 because the values smaller than 60% or larger than 140% usage 

are of no consequence in the decision-making. 

 

c) Predictors 

The predictors were modified in order the historic values expresses the percentage of 

usage. In the El-Farol bar problem, the predictors predict the number of attendants. Here 

in order to deal with the exponential information in traffic context, the predictor predicts 

a percentage of road occupancy. Table 8 shows two predictors for a history length of 
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three. According to these predictors, if the history is 60-60-60 or 60-60-61, predictor 1 

will predict 91% and predictor 2 will predict 120% road congestion.  

 

Table 8 - The mapping of a Predictor (Galib & Moser, 2011) 

 

d) Decision-Making 

In MG and El-Farol bar problem, the agents take the actions according to the prediction. 

Therefore, the drivers choose the link, which has the minimum weighted prediction. The 

weight is the ratio of the actual travel time for the route taken and the expected travel time 

and is calculated as. 

𝑊 =
𝐴𝑇𝑇𝑅

𝐸𝑇𝑇𝑅∗
  (20) 

Where 𝐴𝑇𝑇𝑅  is the actual or experienced travel time on route  𝑅 , and 𝐸𝑇𝑇𝑅∗  is the 

expected travel time of a driver between the OD pair on the optimal route 𝑅∗. The optimal 

path is the path that includes the minimum number of nodes. The drivers assume an 

approximate impression of the current road usage based on their current observations as 

well as previous experience. The 𝐴𝑇𝑇𝑅 and 𝐸𝑇𝑇𝑅∗ are calculated as 

 

𝐴𝑇𝑇𝑅 = ∑ 𝑡𝑡𝑎𝑎∈𝑅   (21) 

𝐸𝑇𝑇𝑅∗ = ∑ 𝑓𝑓𝑡𝑡𝑎 [1 + (
𝑒𝑋𝑎

𝐶𝑎
)

2
]𝑎∈𝑅∗   (22) 

Where 𝑡𝑡𝑎 is the travel time on link 𝑎 , which is calculated as: 

𝑡𝑡𝑎 = 𝑓𝑓𝑡𝑡𝑎 [1 +  𝛼 (
𝑋𝑎

𝐶𝑎
)

𝛽
]   (23) 
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Where 𝑓𝑓𝑡𝑡𝑎 is the free flow travel time, 𝐶𝑎is the road capacity, 𝑋𝑎 is number of cars on 

the link 𝑎 , 𝛼 and 𝛽 are two control parameters and, 𝑒𝑋𝑎 is the expected number of cars 

on the link 𝑎 of the optimal route 𝑅∗ (Sheffi, 1985). The equation 26 is the so-called BPR 

described in section 2.2.3. 

 

e) Updating the Predictors’ Scores 

The score of the predictor is calculated as follows, 

𝜃𝑎,𝑡+1 = (1 −  𝜇)𝜃𝑎,𝑡 + 𝜇 [(
𝐶𝑎

𝑋𝑎
) − 1] 𝐴𝑇𝑇𝑅   (24) 

Where, 𝜃𝑎,𝑡is the score of the predictor for link 𝑎 at time 𝑡 , and 𝜇 is a number in the range 

{0, 1}. Note that if the number of cars on the link exceeds the capacity, [(
𝐶𝑎

𝑋𝑎
) − 1] will 

become negative, which decreases the score, otherwise it increases the score. 

4.3. Implementation 

4.3.1. Model Description 

In this implementation, we will use the model description described at section 2.3.4, the 

ODD protocol. As we discussed the ODD protocol tries to achieve a common description 

and language to complex agent-based models, so they can be easily understood, replicable 

and scientific relevant (Grimm V. , et al., 2006).   

 

4.3.1.1. Purpose 

We will consider the evaluation of three different changes in the network: three market-

based. In this setup we consider, time and monetary cost, whereas for as social costs are 

only considered the level of comfort, in the PT mode, and the level of emissions in the 

PR mode. We implemented the framework and simulation model using the NetLogo 

agent-based simulation environment (Wilensky, 1999). One can find the source code at 

appendix B, part 2. 

 

4.3.1.2. Entities, state variables and scales 

The model comprises only one type of agent, the commuters. Each agent is defined by a 

number of state variables which are: (i) desired departure and arrival times, (ii) 

experienced travel time, (iii) the uncertainty they experienced during the trip with a given 
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transportation mode, (vi) a daily income variable. While the agent experience its travel 

activities, the costs associated with the different transportation mode, the perceived 

satisfaction of travelling as it expressed in terms of travel times and comfort, and the 

magnitude of the applied policies will have a certain impact on his mode/time choice.  

 

4.3.1.3. Process overview and scheduling 

The demand is generated at the setup procedure. In the generation node, all the commuters 

are created and they are assigned a desired departure travel time. When desired departure 

is reached they move to the mode choice procedure where, accordingly to their utilities, 

they choose a mode to travel, PR or PT. We run the model for 180 days, roughly 6 months.  

In the first implementation seen in chapter 3, time was represented, as said before, by 

each step of the simulation representing one minute. However, in this implementation 

each simulation step represents a period. Each day consists of 5 period of time that 

comprises the morning peak from 7h 30m until 11h30m.  

After that procedure, they are assigned to the network, to the designated origin node. At 

the end of the travel each agent stores the experienced travel time, costs, and level of 

crowding (public mode users only). Those variables will be used to calculate next day 

utility. After that, each agent evaluates its own experience, comparing the expected utility 

to the effective utility. The network is also evaluated with the average travel speed and 

the average travel time being stored for future comparisons.  

In figure 8 at section 3.3.1 we find a diagram depicting the scheduling. However, in this 

implementation, we will not only have the last day history, but a set containing the set of 

history days we want.  

 

4.3.1.4. Design concepts 

Based on the ODD protocol presented at section 2.3.4 some other characteristics of the 

agents are: 

1. Basic Principles: The agents can choose to travel by PT or PR transportation 

mode. The decision making process of each agent is assumed to follow the 

principle of the expected utility maximisation. 
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2. Adaptation: Agents in the policy assessment scenarios have to adapt their 

decisions according to the modifications in the environment they are situated in. 

Such modifications are the result of policy intervention and can be expressed as a 

variation on the perceived costs or benefits. 

3. Objectives: Agents try to maximise their personal goals and satisfaction, 

accounting for the uncertainty of the environment, therefore based on this 

deliberative outcome the make their decision about the mode and departure time 

choice.  

4. Learning – the agents learn how to travel in the network. This learning is based 

on the prediction they make to update the occupancy scores. Moreover, the agents 

store the information so they have a notion of what happened in the past. 

5. Prediction - They will update their history in order to update the link occupancy 

prediction, so they can evaluate which is the best route to follow.  

6. Sensing: Agents perceive the level of crowding in the public transportation and 

the levels of congestion on PR road transportation mode. 

7. Randomness – each agent is setup with some random variables. Their origin and 

destination, the income and the accessibility to a PT road is a given randomly.   

4.3.1.5. Initialization 

The road network used in these experiments consists of the nodes and links shown in 

figure 10. The drivers have their OD pairs and thus they have several alternative 

routes/paths, which consist of sets of links. In the decision-making, we only consider 

unidirectional links. We can reasonably assume that drivers who commute are aware 

which links are options for a route to the destination.  
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Figure 10 - Network representation 

The network has 10 nodes, which represent intersections, and 24 links that represents the 

roads. Each link has a randomly capacity in the range of {550, 850} vehicles. There are 

three origins (Nodes 1, 2 and 3) and three destinations (Nodes 8, 9 and 10), resulting in 

nine combinations of OD pairs. At table 8, we find the OD pairs information, the system 

optimal routes and the expected travel time each commuter have for each optimal route. 

Table 9 - OD Pairs, Optimal Routes and Expected TT 

 

4.3.1.6. Input data   

A synthetic population consisting of 4001 agents were created, where each agent is 

characterised by a number of attributes denoting departure, arrival time and mode 

preferences, plus some other socio-economical features such as its monthly income. Each 

agent has an initial activity-travel schedule that considers expected departure and arrival 

travel times. The travel times are given by a normal distribution function, which give a 

rush hour peak between 8h30m and 9h30m in the morning.  

Origin Destination Optimal Route
Expected Travel 

Time

1 8 { 1 -> 2 -> 5 -> 8 } 42,03

1 9 { 1 -> 4 -> 7 -> 9 } 40,42

1 10 { 1 -> 4 -> 10 } 42,68

2 8 { 2 -> 5 -> 8 } 28,73

2 9 { 2 -> 5 -> 6 -> 9 } 42,78

2 10 { 2 -> 5 -> 8 -> 10 } 43,45

3 8 { 3 -> 6 -> 8 } 26,94

3 9 { 3 -> 6 -> 9 } 28,17

3 10 { 3 -> 6 -> 9 -> 10 } 42,64
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4.3.1.7. Submodels 

In this implementation, we have several different sub models for the artificial society 

behaviour.  

In the system behaviour, we have the functions to update the scores, to update the 

predictors, to measure travel time and to predict the road to use. Those models were 

describe and discussed in the section 4.2.1 of the current chapter. They act as the travel 

decision-making process. 

However, this implementation, being a multi-modal transit network, has to deal the mode-

choice decision-making process. As in the framework presented at chapter 3 here each 

agent/commuter has a utility function. Then they choose the mode maximizing their own 

utility. These utility functions are based on presented before, however with small changes. 

Being this a implementation where time is not seen as in microscopic way as the first 

implementation (where each step of the model represent a minute, here each step 

represent a period of time) the utility function had to be updated.  

The PR-mode and PT-mode utility function goes as follows: 

𝑈𝑝𝑟𝑖𝑣𝑎𝑡𝑒
𝑗

=  ∑ [(𝛼𝑡𝑖𝑚𝑒 ∗ (𝐸𝑇𝑇 − 𝑃𝑇𝑇)) + (𝛼𝑐𝑜𝑠𝑡 ∗ (
𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑐𝑜𝑠𝑡𝑠

𝑖𝑛𝑐𝑜𝑚𝑒
)) +𝑛

𝑖=1

(𝛼𝑡𝑖𝑚𝑒𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛
∗ (𝐸𝑇𝑇 ∗ 𝑃𝐹))]      (25) 

𝑈𝑝𝑢𝑏𝑙𝑖𝑐
𝑗

=  ∑ [(𝛼𝑡𝑖𝑚𝑒 ∗ (𝐸𝑇𝑇 − 𝑃𝑇𝑇)) + (𝛼𝑐𝑜𝑠𝑡 ∗ (
𝑝𝑢𝑏𝑙𝑖𝑐𝑐𝑜𝑠𝑡𝑠

𝑖𝑛𝑐𝑜𝑚𝑒
)) + (𝛼𝑐𝑜𝑛𝑓𝑜𝑟𝑡 ∗𝑛

𝑖=1

(
𝐵𝐶

𝐸𝐵𝐶
))]      (26) 

Where, ETT is the expected travel time, PTT is the previous travel time, PF is the 

pollution factor, BC is the bus capacity and EBC is the expected bus capacity. With this 

utility function, we believe we define a set of utility based on travel time, costs and social 

interaction.  

We decided to create a utility function that will account for the total system utility. This 

utility, world-utility, will be used to measure and compare the population satisfaction with 

the policies. The world-utility works as basic sum of both private and public utility.  

𝑈𝑤𝑜𝑟𝑙𝑑 =  ∑ [𝑈𝑝𝑟𝑖𝑣𝑎𝑡𝑒
𝑗

+ 𝑈𝑝𝑢𝑏𝑙𝑖𝑐
𝑗

]
𝑗
𝑖=1       (27) 
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4.3.2. Initial Setup 

In this section, we will go thought the setup we chose. Therefore, we decided to create an 

artificial society, we performed a sensitivity analysis in the network behavioural 

parameters (learning-factor, number of predictors and history-size) and the population 

behavioural parameters (utilities). Moreover, we explain in detail the policies we decided 

to implement in this setup. 

4.3.2.1. Population  

In Table 10 we can find more social and location information about the population.  

Table 10 - Population by Origin-Destination 

 

As it can be noticed, the population is equality distributed by all origins and destinations 

nodes. The income, accessibility (when exists) is also distributed equality. We had a 

procedure in the model to ensure this homogeneity, so when we run the policies when do 

not have the problem of zoning in our analysis. It will have another complexity and 

“noise” to the results. 

The time O-D matrix was also developed within the procedure, which distribute equally 

the commuters by desired time but has to be analysed in a different way. By assigning the 

commuters at time 2, 3 and 4, we simulate a peak demand. Because when agents that 

leave the origin node at time 2 will be influenced by the commuters that leave at time 1, 

8 9 10 Avg. Origin Time 8 9 10 Total

1 46,32 45,17 44,74 45,37 1 69 106 104 279

2 45,22 44,45 44,74 44,79 2 80 95 85 260

3 44,94 45,68 44,03 44,86 3 77 84 90 251

Avg. 45,48 45,09 44,50 45,01 4 67 80 103 250

5 111 95 81 287

Total 404 460 463 1327

8 9 10 Total 1 96 112 83 291

1 404 0 463 867 2 71 86 93 250

2 415 0 0 415 3 81 99 85 265

3 431 0 0 431 4 83 100 82 265

Total 1250 0 463 1713 5 84 73 107 264

Total 415 470 450 1335

1 92 96 108 296

8 9 10 Total 2 93 80 79 252

1 404 460 463 1327 3 77 73 98 248

2 415 470 450 1335 4 87 95 99 281

3 431 435 473 1339 5 82 91 89 262

Total 1250 1365 1386 4001 Total 431 435 473 1339

1250 1365 1386 4001

OD Matrix - Income  Distribution OD Matrix  - Desired Travel Time

OD Matrix - PT accessibility 

OD Matrix - Trips

3

2

1
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and so on. However, when commuters leave at time 5 commuters that leave at time 1, 2 

and 3 had already arrived at the destination node.  

4.3.2.2. Behavioural Parameters 

The control parameters 𝛼 and 𝛽 are set to 1 and 2, respectively. This is the standard 

parameters of the BPR function (Bureau of Public Roads, 1964).  

We decided to make a sensitivity analysis in order to detect, if they exist, changes in travel 

time and mode choice. This is can be seen as a part of verification and validation discuss 

at section 2.3.3 part b. 

In Table 11, the results for the system behavioural parameters are shown. The basic 

assumption is num-predictors = 2, history-size = 3 and learning-factor = 0.1, and then for 

each parameter we perform some variation. 

Table 11 – System parameters analysis 

 
 

This analysis shows different travel times for each variable. However, these changes are 

not relevant due to the decrease of computational performance. This is a relevant topic. 

The difference between running the model with history-size = 2 and history-size = 8 is 

enormous, because as shown before those parameters are computed in the 𝑁𝑚 way, so 

for num-predictors = 10 and history-size = 3 the size of information will be 1000 (103) 

parameters instead of 8 (23) , when num-predictors = 2. We have the same conclusions 

as Galib and Moser in their implementation. Therefore, with these results we will use the 

Variables
Average Utility 

PR

Average Utility 

PT

Average Travel 

Time

History-Size 2 1,89 2,72 34,15

History-Size 5 2,14 2,95 33,72

History-Size 8 1,98 2,82 35,53

Learning 0.1 1,95 2,76 35,17

Learning 0.5 2,00 2,82 33,24

Learning 0.9 1,94 2,79 32,49

Num-Predictors 2 1,94 2,72 27,49

Num-Predictors 6 1,94 2,75 27,49

Num-Predictors 10 1,94 2,75 27,49

Average 1,97 2,78 31,86
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set of parameters consisting of: history-size = 3, learning-factor = 0.1 and num-predictors 

= 2.  

We decided to run the same test but this time in order to test the utilities parameters. Here 

the results are different and the observation but be deconstructed. Table 12 shows the 

utilities sets to be analysed and Table 13 shows the results for that analysis. 

Table 12 – Set of Utilities to Run the Parameters Analysis 

 

Table 13 - Utilities Parameters Analysis 

 

We decided to create those sets of utilities to show that different margin utilities values 

can influence the model performance.  

In the set 1 and 2, we select this combination in order to represent a homogenous society. 

In this range of values we define them as the standard, making the values to compare in 

future. We can see the average utilities are higher in set 2, PT 4.37 vs. 2.76 and PR 3.07 

Set α_time α_cost α_pollution α_time α_cost α_confort

1 0,3 -0,3 -0,3 0,3 -0,3 -0,3

2 0,5 -0,5 -0,5 0,5 -0,5 -0,5

3 0,6 -0,4 -0,2 0,6 -0,4 -0,2

4 0,2 -0,4 -0,6 0,2 -0,4 -0,6

5 random random random random random random

PR utility PT utility

Number of 

Commuters

Average 

Utility PT

Average 

Utility PR

Average 

Travel Time

PR 2288 2,54 33,86

PT 1713 1,87 36,91

Total 4001 2,76 1,95 35,17

PR 2213 3,62 32,20

PT 1788 3,56 35,05

Total 4001 4,37 3,07 33,47

PR 2213 5,86 32,25

PT 1788 4,77 34,99

Total 4001 5,69 5,16 33,47

PR 2213 -0,13 32,25

PT 1788 0,98 34,99

Total 4001 1,28 -0,26 33,47

PR 2815 3,91 32,77

PT 1186 5,27 33,81

Total 4001 4,60 3,15 33,08

Set 1

Set 2

Set 3

Set 4

Set 5
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vs. 1.95 (see Table 13). We believe the difference is due to the parameters 𝛼𝑡𝑖𝑚𝑒 and his 

weight in the utility function (𝛼𝑡𝑖𝑚𝑒= 0.5 vs 𝛼𝑡𝑖𝑚𝑒= 0.3) 

Set 3 and set 4 we created in order to simulate a utility function that reflects opposite 

preferences in the society. In set 3 a society of individuals with high preference time factor 

is confronted with a set 4 society with a lower preference time factor. We can see that this 

function works because the average utility PR is negative in set 4, which reflects the high 

weight of pollution factor.  

In an opposite dimension to sets 1, 2, 3 and 4, in set 5 we created a heterogeneous society.  

Here, commuters have their own individual preference and so, this way makes it a more 

realist society as define in the theory. The results are in line with the best results, where 

the travel time is almost identical in PR vs PT mode. 

To the first results, we decided to divide our approach in two different societies. One with 

a homogenous preferences population (section 4.4.1) is defined and another one with 

heterogeneous preferences population (section 4.4.2).   

 

4.3.2.3. Market-Based and Incentive Based Policies 

Three market-based policies where consider. An increase in the prices changes the prices 

of private transportation and public transportation and the third one being a mix of the 

previous. In this implementation, we not considered a time incentive policy because the 

results were not satisfying in the previous approach. 

Market-based policies: 

1. An increase in PR transportation (Policy-1) - increase in private costs in 4 units 

(e.g. tolls, fuel, etc.); 

2. A decrease in public transportation (Policy-2) – reduce in fares in 1 unit; 

3. Mixed policy (Policy-3) - a decrease in fares and an increase in PR costs at same 

time (Policy-1 and Policy-2).  

With these policies, we will test the effects in the individual utility, travel times, mode 

choice, and impacts in the world utility.  

Impacts:  
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From the section in chapter 3, 3.3.1, we can recall that a split of 50% in the variable “owns 

a car” and another at “mode flexibility” is done. So in this implementation we decided to 

follow the same logic. So, in this results, the policies target will be roughly around 1000 

agents.  

4.4. Results 

We first consider a “baseline” scenario where no policy intervention is applied. We 

perform a preparatory run of the model for the corresponding of six-month simulation 

(180 iterations of the morning rush hours).  

This serves to establish the ratio of commuters distributed between the two modes along 

the departure time interval. We can consider that during this period the agents' ”adapt” to 

make the choice that maximizes their utility. During the execution of the scenario, we 

monitor the agents' utilities, travel times, and the pollution/crowding level for the PR and 

PT mode respectively. 

4.4.1. First Run Results  

In figures 11, 12, 13, 14, and 15 we can find the travel time distribution, the utility 

evolution, the travel time evolution and the world utility evolution, respectively. 

 

 

Figure 11 - Travel Time Distribution within OD pairs  
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Figure 12 - Monthly utility Evolution    

 

Figure 13 - Monthly Travel Time Evolution 

 

 

 Figure 14 - Monthly Utility Evolution 
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Figure 15 - Mode Choice 

In the first chart (Figure 11), the OD – Travel Time Distribution we conclude observe that 

in pairs 1, 3, 4 and 7, the population travel by bus therefore not having oscillation on their 

travel times because they travel on a fixed route. On the other hand, the commuters who 

travels on the others OD pairs are affected by the others commuters. Therefore, their 

travel times are variable. In the OD pair (3, 9), there is at least one commuter who takes 

almost 44 minutes to travel versus the minimum travel time registered, around 22 

minutes. 

In the utility graph (Figure 12), we noticed that during the first month the agents iterate 

until they reach a steady estate, where the utility is around 2.51 for the private 

transportation, and 1.84 for the utility transportation. The travel time (Figure 13) assume 

a slight descend curve until they stabilize at 32 minutes for PR mode and 36 minutes for 

PT mode. For the world utility, we observed an increase from an average of 5767 to an 

average of 8897. The world utility for PR mode and PT mode after first month are stable 

around an average of 5740 and 3166, respectively.  

In Figure 14 and Figure 15, we have a table and a pie chart reporting the mode split 

between the commuters. What we can conclude is that, and comparing to the initial 

population reported at section 4.3.2.1, all the commuters who have access to a public 

transportation line opted to enter this mode. This seems to point out that if all the agents 

have access to a public transportation line, all the agents will go. However, not all the 

commuters have access to a PT line.  
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Figure 16 - Evolution of travel time – Series Example  

In Figure 16, we can observe the rush hour forming at 8h30 until 9h30m. This is a simple 

example of a morning rush hour that emerges from the model. We opted to not show the 

all series to lack of space and it is not important to the future comparative examples.  

After this, a policy is introduced and the model is executed for another 180 iterations, 

starting from the final iteration of the baseline scenario.  

Table 14 - Policy Results  

 

The consequence of the introduction of Policy-1 vs Baseline is two-fold. On one side, the 

mode-split is the same. On the other hand, there is a change in travel times. We can see, 

at Table 14 that a price increase in PR-Mode makes a reduction of 1% of the utility. 

However, we should notice that this decrease is slight inferior, as we should expect 

because there is the side effect of a reduction of 3.61% in travel time. This reduction of 

travel time can be seen as an effect of the social-utility. The commuters having their 

utilities reduced, by the increase of prices, started to look for better roads in order to 

maximize again their utilities. In this process, the average travel time is reduced. On this 

Policies Number Commuters

PR mode 2288 34,44 100% 2,38 100% 5441,14 100%

PT mode 1713 35,06 100% 2,05 100% 3515,40 100%

Baseline 4001 34,70 100% 2,24 100% 8956,54 100%

PR mode 2288 33,19 -3,61% 2,36 -0,93% 5390,69 -0,93%

PT mode 1713 36,67 4,61% 1,86 -9,54% 3180,10 -9,54%

Policy 1 4001 34,68 -0,06% 2,14 -4,31% 8570,79 -4,31%

PR mode 2288 33,19 -3,61% 2,37 -0,29% 5425,42 -0,29%

PT mode 1713 36,67 4,61% 1,86 -9,36% 3186,47 -9,36%

Policy 2 4001 34,68 -0,06% 2,15 -3,85% 8611,88 -3,85%

PR mode 2288 33,04 -4,05% 2,51 5,61% 5746,58 5,61%

PT mode 1713 36,43 3,91% 2,64 28,71% 4524,64 28,71%

Policy 3 4001 34,49 -0,61% 2,57 14,68% 10271,22 14,68%

Average UtilityAverage Travel Time World Utility
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process they start to travel in roads were they negatively affect the PT-mode travel times 

(increase of 4.61%). 

The consequence of the introduction of Policy-2 vs Baseline follows the same behaviour 

as Policy-1. Nevertheless, as we can see at table 13 the impact is smaller vs Policy-1. In 

this case there is also a decrease in travel times, the roughly the same amount vs Baseline 

(-3.61%) but the utilities in PR-mode is the same, and in PT-mode is almost the same (-

9.36% vs. -9.54% in Policy-1). 

In the market-based Policy-3, we can see, compared with the baseline scenario, that there 

is a decrease in travel times in PR-mode, -4.05% and an increase in PT-mode, 3.91%. 

However, the utilities increase when compared to baseline, 5.61% PR-mode and 28.71% 

PT-mode. This can be explained be the changes in prices combined with the less travel 

time, in PR-mode, and by the decrease in prices that  

In Policy-1 and Policy-2, the results are equally bad, in terms of policy effectiveness. 

There is not a mode sift from PR-mode to PT-mode, as expected due to results in the 

previous implementation, presented at chapter 3, the utilities values stay almost the same 

and the utilities as well. Nevertheless, those results point out the need to analyse the 

routes/path the agents in PR-mode followed during the different policies. 

In Table 15, we can see road usage under different policies scenarios. The roads usage 6, 

9, 12, 15 and 20, can explain why under different scenarios, but same mode split and same 

utilities, the travel time changes. Under Policy-1 and Policy-2 the road, usage is the same 

vs. Baseline. However, under Policy-3 we notice some agents travelling at higher density 

nodes changing to less density nodes. Those changes explain the values of table 13. 

Where at Policy-3 the utility values are so different vs Baseline.  
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Table 15 - Resume of road usage in different policies scenario 

 

Avg. 

Commuters
vs. Capacity vs.Baseline

Avg. 

Commuters
vs. Capacity vs.Baseline

1 659 376,11 57,1% - 375,16 56,9% -0,3%

2 608 144,93 23,8% - 145,52 23,9% 0,4%

3 723 565,00 78,1% - 565,09 78,2% 0,0%

4 581 254,46 43,8% - 253,37 43,6% -0,4%

5 551 405,63 73,6% - 405,87 73,7% 0,1%

6 638 770,56 120,8% - 770,25 120,7% 0,0%

7 588 309,16 52,6% - 309,67 52,7% 0,2%

8 588 382,96 65,1% - 384,43 65,4% 0,4%

9 722 763,23 105,7% - 760,46 105,3% -0,4%

10 634 262,46 41,4% - 262,37 41,4% 0,0%

11 753 399,36 53,0% - 400,30 53,2% 0,2%

12 615 587,60 95,5% - 587,80 95,6% 0,0%

13 792 263,70 33,3% - 262,86 33,2% -0,3%

14 769 311,66 40,5% - 312,63 40,7% 0,3%

15 702 775,80 110,5% - 776,53 110,6% 0,1%

16 786 221,66 28,2% - 221,38 28,2% -0,1%

17 675 559,74 82,9% - 558,65 82,8% -0,2%

18 699 540,00 77,3% - 538,93 77,1% -0,2%

19 559 270,19 48,3% - 269,35 48,2% -0,3%

20 559 581,73 104,1% - 581,90 104,1% 0,0%

21 562 229,49 40,8% - 231,10 41,1% 0,7%

22 775 324,63 41,9% - 322,93 41,7% -0,5%

23 617 266,39 43,2% - 266,99 43,3% 0,2%

24 551 450,87 81,8% - 448,97 81,5% -0,4%

Avg. 

Commuters
vs. Capacity vs.Baseline

Avg. 

Commuters
vs. Capacity vs.Baseline

vs. Policy 1 

and 2

1 659 375,16 56,9% -0,3% 375,18 56,9% -0,2% 0,01%

2 608 145,52 23,9% 0,4% 145,42 23,9% 0,3% -0,07%

3 723 565,09 78,2% 0,0% 565,17 78,2% 0,0% 0,01%

4 581 253,37 43,6% -0,4% 254,18 43,7% -0,1% 0,32%

5 551 405,87 73,7% 0,1% 406,47 73,8% 0,2% 0,15%

6 638 770,25 120,7% 0,0% 768,85 120,5% -0,2% -0,18%

7 588 309,67 52,7% 0,2% 310,03 52,7% 0,3% 0,12%

8 588 384,43 65,4% 0,4% 384,18 65,3% 0,3% -0,07%

9 722 760,46 105,3% -0,4% 760,97 105,4% -0,3% 0,07%

10 634 262,37 41,4% 0,0% 262,84 41,5% 0,1% 0,18%

11 753 400,30 53,2% 0,2% 400,65 53,2% 0,3% 0,09%

12 615 587,80 95,6% 0,0% 587,91 95,6% 0,1% 0,02%

13 792 262,86 33,2% -0,3% 262,88 33,2% -0,3% 0,01%

14 769 312,63 40,7% 0,3% 312,91 40,7% 0,4% 0,09%

15 702 776,53 110,6% 0,1% 775,16 110,4% -0,1% -0,18%

16 786 221,38 28,2% -0,1% 221,75 28,2% 0,0% 0,17%

17 675 558,65 82,8% -0,2% 558,86 82,8% -0,2% 0,04%

18 699 538,93 77,1% -0,2% 539,06 77,1% -0,2% 0,03%

19 559 269,35 48,2% -0,3% 270,28 48,4% 0,0% 0,34%

20 559 581,90 104,1% 0,0% 581,73 104,1% 0,0% -0,03%

21 562 231,10 41,1% 0,7% 230,99 41,1% 0,7% -0,05%

22 775 322,93 41,7% -0,5% 322,91 41,7% -0,5% -0,01%

23 617 266,99 43,3% 0,2% 267,10 43,3% 0,3% 0,04%

24 551 448,97 81,5% -0,4% 448,99 81,5% -0,4% 0,00%

Capacity

Road

Policy 2 Policy 3

Road

Policy 1Baseline

Capacity
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4.4.2. Experiments with a Heterogeneous Population 

Since the results on the previous section were not good, we decided to run the model 

using the set of utilities random. This intends to create a heterogeneous population. 

Performing this analysis and then applying two simple policies we intend to understand 

the way a more realistic artificial population perceives and evaluate a public policy. We 

decided to simplify the policies to run in order to simply the output. 

The basic population is the same described in section 4.3.2.1, however with the set of 

utilities set to random. The policies used are following:  

1. Policy-1 – increase in private transportation costs 

2. Policy-2 – decrease in private transportation costs. 

We intended to simply the policies in order to understand it they an impact and which is 

the amount impact. We intended to create two public policies in a opposite way to see if 

that kind of policy reflects in the commuters mode-choice, travel times and utility 

evaluation.  

Table 16 – Mode-Choice Results  

 

In Table 16 we can find the output regarding the mode-choice. Those results are in line 

with the ones results found at chapter 3. An increase in private transportation costs lead 

to a reduction of -0.07% (2 commuters) in PR-mode. Those results are not significant in 

terms of quality but show that a heterogeneous population respond to a public policy. The 

evolution of the commuters’ mode-choice can be seen at Figure 17. 

Total vs. Baseline Total vs. Baseline

Baseline 2815 100% 1186 100% 4001

Policy 1 2813 -0,07% 1188 0,17% 4001

Policy 2 2840 0,89% 1161 -2,11% 4001

Policies
PR-mode PT-mode

Total
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Figure 17 - Evolution Commuters in PR-mode 

 

Table 17 - OD – Pairs travel times under different public policies 

 

In the Table 17, we find the results of average travel time. Here the results are unclear, 

and we should analyse instead an evolution chart found at Figure 18. There we can see 

clearly that an increase in costs, lead to a mode-shift from PR-mode to PT-mode and that 

way there is a decrease in travel time for PR commuters. During Policy-2, a decrease of 

cost in PR-mode, we can see an increase in travel time, due to the high road usage.  

Policies 1 2 3 4 5 6 7 8 9

Baseline 35,87 34,89 41,25 30,73 34,88 34,61 24,44 28,47 32,06

Policy 1 35,17 34,84 41,16 30,01 34,74 34,41 24,82 27,52 32,30

Policy 2 36,12 34,93 41,22 30,69 35,06 34,69 24,22 29,41 31,97

Average 35,72 34,89 41,21 30,48 34,89 34,57 24,49 28,47 32,11

OD - Pair
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Figure 18 - Evolution of Travel Time in PR-mode 

In Figure 19 we can find the evaluation of the utility in PR-mode. Those results are in line 

with the previous results. Under Policy-1, the results increase from 3.9 to 4.05 but 

comparing to Policy-2, the results are less 0.05 (4.1). These results are explained in one 

hand to the high road usage, which leads to a decrease of travel times and the increase in 

costs, which reflects negatively in the utility evaluation. 

 

 

Figure 19 - Evolution Utility in PR-Mode 
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4.5. Summary 

In this chapter, we discuss the implementation of a multimodal and multi-paths 

transportation network, based in the framework presented at Chapter 3.  

In order to represent this network we had to implement a robust traffic assignment model. 

We decided to opt a traffic assignment model using an iterative game. This model was 

able to deal with traffic problems and to assign the traffic properly. However, the agents’ 

we not able to distribute evenly in the network as seen in Table 15. Those phenomena 

emerge because the model may need more iterations and a better exploration tool so the 

agents explore all the possible paths. 

In these policies, we conclude that market-based policies are not effective, in this 

illustration, in a homogenous population in terms of modal-sifts, so they just had 

inefficiency in a social perspective way, by reducing the utility. On the other way, because 

agents look at the traffic assignment modal in a self-organization way, they react to the 

price changes by changing their /routs. Doing that, they often find better ways to reach a 

new equilibria and so lower travel times. 

What we can conclude from this illustrative example is that the transportation planners 

should anticipate both positive and negative effects of a market-based or an incentive 

based policy. Trying to achieve a behavioural shift in mode choice needs to be followed 

by proper investments, and policies that not only deal with monetary incentives but rather 

incentives that lead to a change in population behaviour (incentives that during the 

iteration process changes the values of the margin utilities).  
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Chapter 5 – Conclusions and Future Work 
 

5.1. Final Discussion 

Transportation systems should be considered in an integrated manner, due to their 

properties related to complex systems. ATS seems a promising effort towards this 

direction. However, much more work needs to be done to advance the research on ATS. 

The key issues in the development of ATS include modelling, experimenting, decision-

making, and computing. This dissertation is only a beginning step in the direction of 

solving those issues.  

The first step, modelling using the agent metaphor, provides a reasonable and promising 

approach to transportation analysis in many different aspects of transportation systems, 

as the results of this research illustrate. Specifically, we use a method of bottom-up 

modelling in which individual behaviour emerges in the system-level behaviour. The 

system-level behaviour may also be easily observable, but the links between the 

individual and system-level behaviour are not. This point is the most important aspect of 

the contribution of ABM in transportation area.  

The second step, experimenting, in ABM transportation is a relevant topic. Although 

domain experts are an important part of the modelling process, whether it is possible to 

obtain real data or not, experimenting with different parameter selection is necessary. In 

this dissertation, we do not use any real data, just an artificial society, so experimenting 

was a big issue. In the first implementation, in chapter 3, we select some random values 

for the parameters but we did not perform a sensitivity analysis. We decided based on the 

size of the model we had, since using two routes is a small network. Nevertheless, in 

chapter 4, we perform a sensitivity analysis in order to detect and understand changes in 

the output. In own analysis we detect that using a homogenous or a heterogeneous 

population regarding parameters selection makes a real difference in the output, as seen 

in results in section 4.4.. Using the ODD protocol to describe and detail the model also 

helped in performing different experiments in the same model, because it makes easy to 

reproduce and implemented the same simulation in different environments and 

computers.  
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The third step, decision-making in transportation area, is a tricky topic. In order to achieve 

a good decision making process, we use utility function we each individual commuters 

tries to maximize their own utility. We developed utility function regarding time, costs 

and social aspects in order to achieve an individual decision-making that is heterogonous. 

However, transportation choice-mode is often a result of other social dimensions, like 

education, social-networks, physical wellbeing, and so on. Nevertheless, to integrate this 

kind of social dimensions in a transportation decision-making process we need a more 

comprehensive collection of data regarding social and demographic. Among the possible 

sources to collect mobility related data are the GPS logs (Freitas, Coelho, & Rossetti) and 

tweeter messages (Carvalho S. F., 2010), (Carvalho, Sarmento, & Rossetti, 2010) 

In this dissertation, we use a simpler and straightforward utility function. We can 

conclude that transportation choices are influenced by income, costs, time-to-destination, 

comfort, pollution and waiting-time. Moreover, our conclusion suggests that in organized 

societies, the implementation of measures with effects on the welfare distribution tends 

to be complicated due to low public acceptance. This low public acceptance, can be seen 

in chapter 4, were the agents do not “accept” the rise in transportation cost, and so they 

do not make mode shift, and in consequence try to achieve a new equilibrium searching 

for a new route or a new time sift. In a more human level, the social effects of a policy-

making can be seen as a problem of trading off between equity and efficiency. An equity 

problem can be understood (see chapter 3 and 4), when we run policies and the utility 

increase in one side, commuters who travel in PT-mode, but decreases in commuters in 

PR-mode on the other side. So a policy that in fact makes the system more efficient (faster 

travel times) can be, on the other hand, inequity (reduce the utility for some groups). This 

goes in line with the work of Van Wee (Wee, 2009), explained in detail in Chapter 2 

section 2.4.1, where he states that there are six aspects of policy intervention into the 

decision-making process. If the policy is effective, efficiency, equity, flexible, ease of 

implementation, and as a long-term robustness. 

Another point to emphasise is the findings at the human-level behaviour. In policy 

making, the agent who makes and plans the decision should take into account that just 

implementing a one-shot policy in a price, or time incentive, may have diverse effects, 

causing it to be not accepted or perceived in a bad way. So, the policies should be made 

in order to change behaviour in long-term introduction nothing new. Policy that changes 
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the utilities parameters are seen as more effective, because the agents tend to learn a new 

behaviour rather than deal with a different reality.   

In the last point, computation is a key issue. The computation phenomenon arises in the 

80s and during that time ABM arises too as tolls to combine theoretical models and 

practical models. In the transportation area, there are different software and programming 

languages used to compute traffic and network models. However, this traditional software 

lack in collecting individual social data and information about the individuals that travel 

in that network, they rather focus on travel behaviour. 

Other social sciences simulation tools can be seen as software to collect and understand 

social phenomena. In this context, NetLogo was created. NetLogo let the user program, 

define individual parameters, and observe what emerges from a social interrelation. New 

software tools like MATSim and others are built in order to capture these social aspects 

while recording the transportation properties from the traditional model. In our approach, 

we used NetLogo, because NetLogo design only in a social and collective perspective but 

we implemented the traditional FSM on top.   

For a final remark we should say that this framework for social-transportation simulation 

tool in ATS will be continue to be developed with a timeline defined in the next section, 

future works.  

5.2. Future Work 

For future work, we will consider a more realistic large-scale network and demand to 

better study the performance of the transportation system under various traffic policies. 

The agent-based ecosystem is the environment where artificial societies grow and breed. 

Consequently, we will see if a more complex social interaction where some complex 

phenomena emerge. Such artificial society can be used to design solutions based on 

individual or social intelligence and participation (social-awareness), or as a test-bed for 

policy and incentive mechanisms evaluation. 

A more realistic large-scale network should use and handle real data. We already have 

the census data from the Greater Metropolitan Area of Porto (English for: Grande Area 

Metropolitana do Porto – GAMP) and we will use them as an input that from as artificial 
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society (see appendix C, table 17). The data is open-source and we can find the data in 

Instituto Nacional de Estatística (INE) website1. 

A more complex society can require a different decision making process. A new decision-

making process means that one should develop a new utility function. This function must 

capture social aspects and variables in a realistic way. In this process, the model will need 

to be more robust in order to support a longer simulation run.  

Moreover, the network will need to adapt to new links or new bus lines during the 

iteration. A methodology in order to create a cost/benefit analysis needs to be 

implemented. With this cost/benefit analysis one can test several policies where the 

objective is to realize which of them offers the best trade-off between efficacy and equity 

in the ATS.    

This dissertation used the bottom-up modelling and simulation strategy. This is the 

method used throughout the literature in order capture the social phenomena. However, 

different approaches can be used in order to capture the policy-making advisor strategy, 

i.e., using an up-bottom down modelling.  This way, the policies can be modified on the 

fly in order to satisfy the user-satisfaction.   

                                                           
1 http://censos.ine.pt/  
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Appendix 

Appendix A 

 

1. The ODD discussion 

The ODD protocol is not immune to complaints but on the other hand as emergent 

benefits, that can be important in the future of Multi-Agent Systems. In this part it is 

described the main complaints and the benefits (Grimm V. , et al., 2010). 

a. Complaints about ODD  

1. ODD can be redundant 

Three elements of ODD were noted as being sources of redundancy. The first is the 

Purpose because usually it is described in the papers introduction. The next, Design 

Concepts is included in the submodels descriptions. The last one is the Submodels 

because they are described in the Process Overview and Scheduling. The main problem 

and the main excuse for this redundancy is the use of a strong hierarchal structure of the 

ODD which is very important for the high methodological level of the ODD protocol.  

2. ODD is overdone for simple models 

ODD is overdone for simple models in a way that some ABM models are so simple that 

describing them in an ODD protocol is impracticable. A way to overpass this problem is 

to have a shorten version of the ODD and just use some parts of the ODD. 

3. ODD separates units of object-oriented implementations 

The object-oriented programming (OOP) is currently the natural platform for 

implementing ABMs. Unfortunately, the ODD protocol requires the proprieties and 

methods to be presented separately. The main excuse for this criticism is that ODD was 

developed as a language independent protocol and what it means it that any language can 

be incorporated in an ODD protocol, it just a question how it is made. Nevertheless, the 

ODD recommends to use a Unified Modelling Language (UML) to describe the model 

but still the ODD was designed to be language free. 
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b. Emergent benefits of ODD 

1. ODD promotes rigorous model formulation 

The ODD protocol represents a natural and logical way to describe a model. A detailed 

formulation for every Submodels must be given as well as formulation of the model’s 

purpose, entities and state variables high level description. Combined that with the natural 

and logical way to describe models we find that ODD must be on the future the standard 

in describing ABMs. 

2. ODD facilitates reviews and comparisons of ABMs 

The models that are described in the ODD format have a review of their purpose, scales, 

structure, and process formulation are very simplified. This just facilitates reviews and 

comparisons because one can pick up the corresponding parts together in a table and scans 

for similarities and differences. 

3. ODD may promote more holistic approaches to modeling and theory 

In social sciences a big problem is that sometimes the theory is disperse and not clearly 

put together in models. The ODD protocol is one way to allow the theoretical aspects of 

these models to be articulated more clearly, and also for the important theory gaps to be 

visible. Wide use of the updated ODD protocol would thus facilitate approaches and 

theory which are holistic in the sense that they link levels of organization, different case 

studies, and possibly even different disciplines. 

Appendix B 
1. NetLogo Code for Chapter 3 Model and a Screen Shot 
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Figure 20 - Screenshot - Model Chapter 3 

 

globals [ 

  crowdness 

  ratio_tt_public_sum 

  ratio_tt_private_sum 

   

  effective_utility_public_avg 

  effective_utility_private_avg 

  effective_utility_public_sum 

  effective_utility_private_sum 

  expected_utility_public_avg 

  expected_utility_private_avg 

  expected_utility_public_sum 

  expected_utility_private_sum 

  plot_speed 

  plot_commuters_public 

  plot_commuters_private 

  day 

  average_tt_public 

  average_tt_private 

  inter-arrival-time 

  flag ;; flag that setup if the agents are created of not.                                                                                ;;state  

  travel_time_cars ;;procedure "calculate_time_travel_commuters" -> setups the total travel time done by cars                                

;;state 

  time ;; setups a simple timer by tick needed to count the time of entrance of each vehicule. Ticks counter is a list not good.           

;;random  

  cont-ticks-poisson ;; tempo de entrada for each commuters                                                                                  ;; 

  ticks-poisson ;; tempo de entrada for each commuters 

   

   

  total_commuters ;; a simpler counter to count how many commuters are created in the origin node 

  total-commuters-private ;; a simpler counter to count how many red  commuters are created in the origin node 

  total-commuters-public ;; a simpler counter to count how many public commuters are created in the origin node 

   

  total_inicial ;; a simpler counter to count how many commuters are created in the origin nod 

  total-inicial-private ;;a simpler counter to count how many private  commuters are created in the origin node 

  total-inicial-public ;;a simpler counter to count how many private  commuters are created in the origin node 

   

  $list ;; creates a list for all agents that were created 
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  $list-private;; creates a list for all private agents that were created 

  $list-public ;; creates a list for all public agents that were created 

  

  ;;;;;;;;;;;;; 

  travel_time_initial_general ;; set a counter to know what is the time of entrance 

  travel_time_final_general ;; set a count to know what is the time of exit  

   

  travel_time_initial_public ;; set a counter to know what is the time of entrance 

  travel_time_final_public ;; set a count to know what is the time of exit  

   

  travel_time_initial_private ;; set a counter to know what is the time of entrance 

  travel_time_final_private ;; set a count to know what is the time of exit  

  ;;;;;;;;;;;;;;;;; 

   

  travel_time_final_2 

   

   

  count_initial_general ;; creates a list of the total_inicial time travel 

  count_final_general ;; creates a list of the total_final time travel 

   

  count_initial_public ;; creates a list of the total_inicial time travel 

  count_final_public ;; creates a list of the total_final time travel 

   

  count_initial_private ;; creates a list of the total_inicial time travel 

  count_final_private ;; creates a list of the total_final time travel 

   

  temp_1_public ;;creates list to count travel time  

  temp_2_public ;;creates list to count travel time  

  temp_3_public ;;creates list to count travel time  

 

  temp_1_private ;;creates list to count travel time  

  temp_2_private ;;creates list to count travel time  

  temp_3_private ;;creates list to count travel time  

   

  temp_1_general ;;creates list to count travel time  

  temp_2_general ;;creates list to count travel time  

  temp_3_general ;;creates list to count travel time  

   

  contagem_public ;;creates list to remove duplicates in temp_2_public 

  contagem_private ;;creates list to remove duplicates in temp_2_private 

   

  total_inicial_2 ;; creates the sum of the $count_inicial 

  total_final_2 ;; creates the sum of the $count_final 

   

  avg_travel_time ;;the variable that return the average travel time for all the agents 

  avg_velocity_public ;; the variable that returns the average velocity of all agents currently in the network 

  avg_velocity_private 

   

  count-node-1 ;; counts agents in origin node 

  count-node-2 ;; counts private agents in origin node 

  count-node-3 ;; counts public agents in origin node 

   

  list_velocity_public ;;creates list to count velocity public 

  list_velocity_private ;;creates list to count velocity private 

   

  road_1  ;; counts agents at road  1 

  road_2  ;; counts agents at road  2 

  road_3  ;; counts agents at road  3 

  road_4  ;; counts agents at road  4 

  road_5  ;; counts agents at road  5 

  road_6  ;; counts agents at road  6 
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  road_capacity_1  ;;set ups the max capacity for road  1 

  road_capacity_2  ;;set ups the max capacity for road  2 

  road_capacity_3  ;;set ups the max capacity for road  3 

  road_capacity_4  ;;set ups the max capacity for road  4 

  road_capacity_5  ;;set ups the max capacity for road  5 

  road_capacity_6  ;;set ups the max capacity for road  6 

   

] 

 

breed [nodes node] 

breed [commuters commuter] 

directed-link-breed [roads road] 

 

roads-own [ ;;;trabalhar 

  capacity  

  free flow  

  ] 

 

commuters-own [ 

  commuter-id 

  to-node  ;; set up the next node for each agent 

  from-node ;; set up the previous node for each agent 

  current-node  ;; show the current node for each agent. if agent is on road returns 0 

  v  ;; current velocity for each agent 

  expected_tt_private   

  expected_tt_public   

  inicial 

  inicial_iteration 

  desired_departure ;;tempo de partida desejado 

  desired_departure_iteration 

  desired_arrival ;;tempo de chegada desejado (ainda sem uso)  

  tempo_inicial ;;conta o tempo de partida efectivo 

  tempo_final ;; conta o tempo de chegada efectivo 

  tempo_de_viagem ;; dif entre tempo_inicial e tempo_final 

  income 

  mode ;;escolha do modo de  

  own_car 

  mode_flexibility 

  new_mode 

  bus_capacity 

  expected_capacity 

  crowd_public 

  expected_waiting_public 

  effective_waiting_public 

  ratio_tt_public 

  ratio_tt_private 

  moving_time 

  commuters_bus_stop 

  can_go 

  go_now 

  velocidade_acumulada ;;velocidade acumulada (para calculo de vel média por agente) (ainda sem uso) 

  hour_stamp 

  ;;utilities   

  expected_utility_private 

  expected_utility_public 

  effective_utility_private 

  effective_utility_public 

  ] 

 

nodes-own[ 

  node_id 

  flag_roads          ;; flag to distinguish public roads from private roads 

  ] 
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to setup 

  clear-all reset-ticks 

  set velocity-delta 0.1         ;; set ups a random increase of velocity for each agent so the agents have a random velocity 

  ask patches [set pcolor black]   

   

  if export_baseline? [ export-world "baseline-no-training-5-days.csv"] 

   

   

  ;import-network                ;;imports a network (not working) 

  create-network                 ;;creates  network 

  create_road_capacity           ;;creates roads capacity 

  ifelse import_baseline? [ import-world "baseline-training-5-days.csv"] [create-demmand  set day 1] 

  set-default-shape commuters "person"  

 

  

  set flag true  

   

  set $list []  

  set $list-private []  

  set $list-public []  

   

  set count_initial_general [] 

  set count_final_general [] 

   

  set count_initial_public [] 

  set count_final_public [] 

 

  set count_initial_private [] 

  set count_final_private [] 

   

  set temp_1_public [] 

  set temp_2_public [] 

  set temp_3_public [] 

 

  set temp_1_private [] 

  set temp_2_private [] 

  set temp_3_private [] 

   

  set list_velocity_public  [] 

  set list_velocity_private [] 

 

   

end 

 

to create_road_capacity 

  ;;PRIVATE roadS;; 

  set road_capacity_1  150 

  set road_capacity_2  150 

  set road_capacity_3  150 

   

  ;;PUBLIC roadS;; 

  set road_capacity_4  150 

  set road_capacity_5  150 

  set road_capacity_6  150 

 

end 

 

to create_road_volumes 

   

  ;;creates the speed for each driver on each road according to the current conditions in the road. 

  ;; Creates the BPR function  
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  ;;;;;;PRIVATE roadS;;;;;; 

   

  ask (commuters with [current-node = node 6]) ;;Private roads 

      [if (to-node = node 3) 

        [if (road_capacity_1 - road_1 < 0) [set v 0.5 + random-float velocity-delta] 

 

         if (road_capacity_1 - road_1 > 20 and road_capacity_1 - road_1 <  50 )  [set v 0.7 + random-float velocity-delta]  

         if (road_capacity_1 - road_1 > 50 and road_capacity_1 - road_1 < 150 )  [set v 0.8 + random-float velocity-delta] 

            

          ]] 

  

   ask (commuters with [current-node = node 3]) ;;Private roads 

      [if (to-node = node 2) 

        [if (road_capacity_2 - road_2 < 0) [set v 0.5 + random-float velocity-delta] 

 

         if (road_capacity_2 - road_2 > 20 and road_capacity_2 - road_2 <  50 )  [set v 0.7 + random-float velocity-delta]  

         if (road_capacity_2 - road_2 > 50 and road_capacity_2 - road_2 < 150 )  [set v 0.8 + random-float velocity-delta]   

          ]] 

  

       

  ask (commuters with [current-node = node 2]) ;;Private roads 

      [if (to-node = node 1) 

        [if (road_capacity_3 - road_3 < 0) [set v 0.5 + random-float velocity-delta] 

 

         if (road_capacity_3 - road_3 > 20 and road_capacity_3 - road_3 <  50 )  [set v 0.7 + random-float velocity-delta]  

         if (road_capacity_3 - road_3 > 50 and road_capacity_3 - road_3 < 150 )  [set v 0.8 + random-float velocity-delta]   

          ]] 

       

  ;;;;;;PUBLIC roadS;;;;;;       

       

       

   ask (commuters with [current-node = node 6]) ;;CCL 

      [if (to-node = node 5) 

        [set v 0.6]   

          ]    

  ask (commuters with [current-node = node 5]) ;CCL 

      [if (to-node = node 4) 

        [set v 0.6]   

          ]         

 

  ask (commuters with [current-node = node 4]) ;CCL 

      [if (to-node = node 1) 

        [set v 0.6] 

          ]    

end 

 

to import-network 

  set-default-shape nodes "circle" 

   

  file-open "nodes.txt" 

  while [not file-at-end?] 

  [ 

    let items read-from-string (word "[" file-read-line "]") 

    create-nodes 1 [ 

      set node_id     item 0 items 

      set size        item 1 items 

      set color       item 2 items 

      set xcor        item 3 items 

      set ycor        item 4 items 

      set label       item 5 items 

      set flag_roads  item 6 items 

       

    ] 
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  ] 

  file-close 

   

    

  file-open "links.txt" 

  while [not file-at-end?] 

  [let items read-from-string (word "[" file-read-line "]") 

    ask get_node (item 0 items) 

    [create-road-to get_node (item 1 items) ] 

  ] 

  file-close 

end 

 

to create-network 

   set-default-shape nodes "circle" 

   ;;create node 0 node 0 

   ask patch 0 0 [sprout-nodes 1 ] 

   ask node 0 [hide-turtle] 

   ;;create Destination Node node 1 

   ask patch 20 5 [sprout-nodes 1 

   [ if count nodes > 1 [ 

    set label "Destination" 

    set color red 

    set size 1]]] 

;;;;; Private Network roads ;;;;;;        

 ;;create node 2 

   ask patch 15 10 

   [sprout-nodes 1 

    [if count nodes > 1 [ 

     create-road-to node 1 

      set label "node 2"  

      set color grey 

      set size 1 

      set flag_roads 1]]] 

  ;;create node 3 

   ask patch 10 10 

   [sprout-nodes 1 

    [if count nodes > 1 [ 

     create-road-to node 2 

      set label "node 1"  

      set color grey 

      set size 1 

      set flag_roads 1]]] 

 

;;;;;; Public Network roads ;;;;;;    

 ;;create node 4 

   ask patch 15 0 [sprout-nodes 1 

   [ if count nodes > 1 [ 

    create-road-to node 1 

    set size 1 

    set label "node 4"  

    set color grey 

    set flag_roads  2] ] ] 

 ;;create node 5 

   ask patch 10 0 [sprout-nodes 1 

   [ if count nodes > 1 [ 

    create-road-to node 4 

    set size 1 

    set label "node 3"  

    set color grey 

    set flag_roads  2] ] ]   

  ;;create Origin node 6 

   ask patch 5 5 [sprout-nodes 1 
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  [ if count nodes > 1[ 

      create-road-to node 5 ;;road with city center 

      set size 1 

      create-road-to node 3 ;;road with highway 

      set size 1 

     set label "Origin" 

     set color green ] ] ] 

    

   ;;create creation node 7 

      ask patch -1 5 [sprout-nodes 1 

  [ if count nodes > 1[ 

     set color green ] ]]  

   

    ;;create mode_choice 8 

      ask patch 1.5 5 [sprout-nodes 1 

  [ if count nodes > 1[ 

     set color green 

      ] ] ] 

       

      ask patch 0 6 [set plabel "creation node"] 

      ask patch 2.5 4 [set plabel "mode choice"] 

   ;;create waiting nodes 9  

      ask patch 20 10 [sprout-nodes 1 

  [ if count nodes > 1[     

     set label "Public waiting" 

     set color grey ] ] ]      

      ask patch 20 0 [sprout-nodes 1 

  [ if count nodes > 1[    

     set label "Private waiting" 

     set color grey ] ] ]    

      ask patch 2 8 [sprout-nodes 1 

  [ if count nodes > 1[ 

       

     set label "iteration node" 

     set color red ] ] ]         

end 

 

to count-commuters-on-roads  

   

  set road_1  count commuters with [to-node = node 3 and from-node = node 6] 

  set road_2  count commuters with [to-node = node 2 and from-node = node 3]  

  set road_3  count commuters with [to-node = node 1 and from-node = node 2] 

  set road_4  count commuters with [to-node = node 5 and from-node = node 6] 

  set road_5  count commuters with [to-node = node 4 and from-node = node 5] 

  set road_6  count commuters with [to-node = node 1 and from-node = node 4] 

end 

 

to create_assignment 

 if (desired_departure < time) [set desired_departure time + random 3] 

 if (desired_departure = time) [ask commuters with [current-node = node 8 and desired_departure = time]    

       [ move-to node 6 set current-node node 6 set to-node node 6 ]] 

end 

 

to mode_choice  

          move-to node 8 

          set current-node node 8      

          set expected_tt_private  25 

          set expected_tt_public  30 

          set expected_capacity 25 

          set expected_waiting_public 5 

           

          if ( Utility_Function = "Social_Utility" )  

                [set expected_utility_private ( (alpha_late_pr * (desired_arrival - (desired_departure + expected_tt_private) ))  +   
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                    ( ( -  beta_private ) *  ( cost_private / income)) + ( ( - alpha_pollution ) * ( expected_tt_private  * pollution_private ))) 

                   

                 set expected_utility_public  ( (alpha_late_pt * (desired_arrival - (desired_departure + expected_tt_public ) ))   +  ( ( -  

beta_public ) *  ( cost_public  / income))  

                    + ( - alpha_confort ) *( (expected_waiting_public / expected_waiting_public) + ( - alpha_capacity ) * 

((expected_capacity / bus_capacity) * expected_tt_public))) ] 

           

           

          ;;;;;;;;;;;;;decision making process;;;;;;;;; 

           

          if  own_car = 0     [ set color yellow set label "public" set mode 1 ] 

          if (own_car = 1 and mode_flexibility = 0 )[ set color red set label "private" set mode 2 if (hour_stamp = 3 and incentives?) [set 

income income + 10 ]   ] 

 

          if (mode = 0 and Utility_Function = "Social_Utility") [ 

          ifelse (expected_utility_private > expected_utility_public )  

               [set color red set label "private" set mode 2]  

               [set color yellow set label "public" set mode 1] ]  

           

end 

     

to iterate 

    move-to node 8 

    set expected_tt_private  tempo_de_viagem 

    set expected_tt_public  tempo_de_viagem 

    set tempo_de_viagem 0 

    set current-node node 8               

      ;; update costs functions 

       ;; update costs functions 

    set expected_capacity commuters_bus_stop 

    set expected_waiting_public effective_waiting_public + 1 

                                           

    if ( Utility_Function = "Social_Utility" )  

                [set expected_utility_private ( (alpha_late_pr * (desired_arrival - (desired_departure + expected_tt_private) ))  +   

                    ( ( -  beta_private ) *  ( cost_private / income)) + ( ( - alpha_pollution ) * ( expected_tt_private  * pollution_private ))) 

                   

                 set expected_utility_public  ( (alpha_late_pt * (desired_arrival - (desired_departure + expected_tt_public ) ))   +  ( ( -  

beta_public ) *  ( cost_public  / income))  

                    + ( - alpha_confort ) *( (expected_waiting_public / expected_waiting_public) + ( - alpha_capacity ) * 

((expected_capacity / bus_capacity) * expected_tt_public))) ] 

                 

 

     ;;;;;;;;;;;;;decision making process;;;;;;;;;        

      

     if  own_car = 0                           [ set color yellow set label "public"   set mode 1 set new_mode 0 ] 

     if (own_car = 1 and mode_flexibility = 0 )[ set color red    set label "private"  set mode 2 set new_mode 0] 

     if (own_car = 1 and mode_flexibility = 1) [ set color grey   set label "commuter" set new_mode 1 ] 

 

     if (new_mode = 1 and Utility_Function = "Social_Utility") [ 

          ifelse (expected_utility_private > expected_utility_public )  

               [set color red set label "private" set mode 2]  

               [set color yellow set label "public" set mode 1] ]  

           

end 

to calculate_effective_utility 

   

  set effective_waiting_public tempo_inicial - inicial  

  ask commuters with [current-node = node 9 or current-node = node 10] [ 

   

                   

                 set effective_utility_private ( (alpha_late_pr * (tempo_final - (tempo_inicial + tempo_de_viagem) ))   -   

                    ( beta_private *  ( cost_private / income)) + ( theta_private * tempo_de_viagem ) + alpha_pollution * 

pollution_private) 
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                 set effective_utility_public  ( (alpha_late_pt * (tempo_final - (tempo_inicial + tempo_de_viagem ) ))   -  ( beta_public  *  ( 

cost_public  / income))  

                    + alpha_confort *( (effective_waiting_public / tempo_de_viagem) + alpha_capacity * (commuters_bus_stop / 

bus_capacity ))) ] 

end 

 

to create-demmand   

   

  ifelse (import_demand? ) 

   

   [file-open "pop_2.txt" 

     while [not file-at-end?] 

     [ let items read-from-string (word "[ " file-read-line " ]" )  

       create-commuters 1 

         [set commuter-id       item 0 items 

          set inicial           item 1 items 

          set desired_departure item 2 items 

          set desired_arrival   item 3 items 

          set own_car           item 4 items 

          set mode_flexibility  item 5 items 

          set mode              item 6 items 

          set income            item 7 items 

          set alpha_late_pr     item 8 items 

          set alpha_late_pt     item 9 items 

          set beta_private      item 10 items 

          set beta_public       item 11 items        

          setxy -1 5  

          set color grey  

          set label "commuter" 

          set shape "person"   

          set size 1 

          set current-node node 7           

         ] ]   

     file-close ] 

    

      [ create-commuters num-commuters 

       [set commuter-id     ( who - count nodes + 1 ) 

       set inicial          time + 1 + random num-minuts 

       set inicial_iteration  inicial 

       if (inicial >= 0   ) and (inicial < 120 ) [set hour_stamp 1 ] 

       if (inicial >= 120 ) and (inicial < 200 ) [set hour_stamp 2 ] 

       if (inicial >= 200 ) and (inicial < 300 ) [set hour_stamp 3 ] 

   

       if ( hour_stamp = 1 ) [set desired_departure  time +   1 + random num-minuts ] 

       if ( hour_stamp = 2 ) [set desired_departure  time + 60 + random 40 ] 

       if ( hour_stamp = 3 ) [set desired_departure  time + 120 + random 50 ]           

       set desired_departure_iteration desired_departure 

        

       set desired_arrival    desired_departure + random 50  

       set mode             0 

       set bus_capacity     70 

       set income           20 + random-float 50 

       set own_car          random 2 

       set mode_flexibility random 2        

       setxy     -1 5  

       set color grey  

       set label "commuter" 

       set shape "person"  

       set size  1 

       set current-node node 7 ]] 

end 
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to move 

   

   if (to-node = nobody and color = red   )       [move-to node 9  set current-node node 9 set v 0 set moving_time 0] 

   if (to-node = nobody and color = green   )    [move-to node 10 set current-node node 10 set v 0 set moving_time 0] 

  ifelse (current-node = node 9 or current-node = node 10) [stop] [face to-node] 

     

    ifelse (to-node = from-node and to-node = current-node) 

         [set current-node from-node] 

         [set current-node 0] 

    fd min list v distance to-node 

    if distance to-node < 0.001 

    [ set from-node to-node 

      ifelse (mode = 2) 

            [set to-node min-one-of [out-road-neighbors] of to-node [flag_roads]] ;;private 

            [set to-node max-one-of [out-road-neighbors] of to-node [flag_roads]] ;;public 

      set current-node from-node 

      if (current-node = node 6) [set tempo_inicial time set moving_time time ] 

      if (current-node = node 1) [set tempo_final time set moving_time time  ] 

      if (tempo_final > 0) [set tempo_de_viagem tempo_final - tempo_inicial  

                            set ratio_tt_public  expected_tt_public  / tempo_de_viagem  

                            set ratio_tt_private expected_tt_private / tempo_de_viagem  

                            ] 

       

      set velocidade_acumulada v 

       

       

      if to-node = nobody [(set current-node node 1) (stop) ]  

      face to-node] 

   

end 

 

to capacity_bus_stop 

    set commuters_bus_stop count commuters with [current-node = node 6 and mode = 1] - 1 

    set can_go 1  

    set color green 

    set to-node node 5 

    set from-node node 6 

    set current-node node 6 

    set v 0.6 

    set tempo_inicial time 

end 

 

to go 

    set-counter 

    tick 

    set time time + 1 

    ask commuters with [current-node = node 7 and inicial = time ] [ mode_choice ]   ;;mode_choice 

    ask commuters with [current-node =  node 8 ] [ create_assignment ] ;;assign 

    ask commuters with [current-node != node 6 and current-node !=  node 7 and current-node !=  node 8 and current-node !=  

node 9 and current-node !=  node 10 and current-node != node 11  ] [ move ] ;;route_choice  

    ask commuters with [current-node =  node 6 and color = red] [ move_red ] 

    ask commuters with [current-node =  node 6 and color = red] [move] 

    ask commuters with [current-node =  node 6 and color = yellow] [ capacity_bus_stop ] 

    create-bus-demand 

    if all? commuters [current-node = node 9 or current-node = node 10] [ask commuters [if  (ticks mod 100 = 0) and (ticks > 100) 

[calculate_effective_utility go-to-iteration-procedure ]]] 

    if (ticks mod 100 = 0 ) and ( any? commuters with [current-node = node 11] ) and (all? commuters [v = 0] ) [reportes]                   

    ask commuters with [current-node = node 11 and inicial = time] [iterate]                 

     

    if ( stop? = 6 ) [ if (day = 6) [ export-world "baseline-training-5-days.csv" stop ]] 

    if ( stop? = 11 ) [ if (day = 11) [ stop ]] 
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    count-commuters-on-roads  ;; procedimento para a cada iteração contar os agentes nos respectivos roads 

    create_road_volumes ;; procedimento para a cada iteração calcular os agentes nos respectivos roads 

    calculate_total_commuters 

    reportes2 

    ;calculate_average_travel_time 

    ;calculate_average_velocity 

end 

to move_red 

    set color red 

    set to-node node 3 

    set from-node node 6 

    set current-node node 6 

    set v 0.7 

    set tempo_inicial time  

   

end 

 

to go-to-iteration-procedure 

   move-to node 11  

   set current-node node 11  

   set color grey   

   ifelse (incentives?) 

     [ if (hour_stamp = 1 ) [set inicial time + 1 + random num-minuts ] 

       if (hour_stamp = 1 ) [set inicial time + 1 + random 30         ] 

       if (hour_stamp = 1 ) [set inicial time + 1 + random 60         ]]    

     [set inicial inicial_iteration + time + random 10] 

   set desired_departure  desired_departure_iteration + time + random 10 

   set desired_arrival    desired_departure + random num-minuts  

end 

 

to create-bus-demand 

    if ( time >   0)   and  (time <=   60 )  

    [ask commuters with [current-node = node 6 and color = green ] [ if ( ticks mod 10 = 0 ) [ move reportes3 ]]] 

    if ( time >  60)   and  (time <=   120 )  

    [ask commuters with [current-node = node 6 and color = green ] [ if ( ticks mod 5 = 0 ) [ move reportes3 ]] ] 

    if ( time >  120)  and  (time <=  180 )   

    [ask commuters with [current-node = node 6 and color = green ] [ if ( ticks mod 5 = 0 ) [ move reportes3 ]] ] 

    if ( time >  180)                         

    [ask commuters with [current-node = node 6 and color = green ] [ if ( ticks mod 10 = 0 ) [ move reportes3 ]] ] 

end 

 

 

to set-counter 

  ask patch  1.5 6 [ set plabel count [commuters-at 0 0] of patch  2 5 ] 

  ask patch -1.5 4 [ set plabel count [commuters-at 0 0] of patch -1 5 ] 

  ask patch    5 7 [ set plabel count commuters with [current-node = node 6 and mode = 1 ] ] 

end 

 

 

to calculate_average_travel_time 

  set avg_travel_time 0 

  if (travel_time_cars > 0 and total_commuters > 0) 

  [set avg_travel_time travel_time_cars / total_commuters] 

   

end 

 

to calculate_average_velocity 

  set avg_velocity_public 0 

  ifelse ( total-commuters-public > 0 and v > 0  ) 

  [ask commuters with [color = green]  [set avg_velocity_public (sum [v] of commuters with [color = green] ) / count commuters 

with [color = green and v > 0 ] ]] 

  [set avg_velocity_public 0] 
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  set list_velocity_public lput precision avg_velocity_public 3 list_velocity_public  

 

  set avg_velocity_private 0 

  ifelse ( total-commuters-private > 0 and v > 0 ) 

  [ask commuters with [color = red]  [set avg_velocity_private ( sum [v] of commuters with [color = red ] ) / count commuters with 

[color = red and v > 0 ] ]] 

  [set avg_velocity_private 0] 

  set list_velocity_private lput precision avg_velocity_private 3 list_velocity_private 

end 

 

to calculate_total_commuters 

   

  set count-node-2 count commuters with [current-node = node 2  and color = red ] 

  set total-inicial-private count-node-2  

  set $list-private lput total-inicial-private $list-private 

   

  let $sum-private 0  

  foreach $list-private  

   [ set $sum-private $sum-private + ? ]  

   

  set total-commuters-private $sum-private 

   

  set count-node-3 count commuters with [current-node = node 4 and color = green ] 

  set total-inicial-public count-node-3 

  set $list-public lput total-inicial-public $list-public 

  let $sum-public 0  

  foreach $list-public  

   [ set $sum-public $sum-public + ? ]  

  set total-commuters-public $sum-public 

   

  set total_commuters ( total-commuters-public + total-commuters-private ) 

 

end 

 

to-report get_node [id] 

  report one-of turtles with [node_id = id] 

end 

 

to reportes3 

  set crowdness mean [commuters_bus_stop] of commuters with [color = green] / bus_capacity 

end 

 

to reportes2 

    ifelse total-commuters-public  > 0 [set average_tt_public  sum [tempo_de_viagem] of commuters with [color = green]  / total-

commuters-public]  [set average_tt_public 0] 

    ifelse total-commuters-private > 0 [set average_tt_private sum [tempo_de_viagem] of commuters with [color = red]    / total-

commuters-private] [set average_tt_private 0] 

   

    set expected_utility_public_sum  sum [expected_utility_public]  of commuters with [color = green ] 

    set expected_utility_private_sum sum [expected_utility_private] of commuters with [color = red ] 

   

    ifelse total-commuters-public  > 0 [set expected_utility_public_avg  sum [expected_utility_public]  of commuters with [color = 

green ] / total-commuters-public ] [set expected_utility_public_avg 0] 

    ifelse total-commuters-private > 0 [set expected_utility_private_avg sum [expected_utility_private] of commuters with [color = 

red ]   / total-commuters-private] [set expected_utility_private_avg 0] 

   

    set effective_utility_public_sum  sum [effective_utility_public]  of commuters with [color = green ] 

    set effective_utility_private_sum sum [effective_utility_private] of commuters with [color = red   ] 

   

    ifelse total-commuters-public  > 0 [set effective_utility_public_avg  (sum [effective_utility_public]  of commuters with [color = 

green ] ) / total-commuters-public ]  [set effective_utility_public_avg 0] 

    ifelse total-commuters-private > 0 [set effective_utility_private_avg (sum [effective_utility_private] of commuters with [color = 

red ] )   / total-commuters-private ] [set effective_utility_private_avg 0] 
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    set plot_commuters_public  total-commuters-public  - (count commuters with [current-node = node 9 and color = green] + 

count commuters with [current-node = node 10 and color = green]) 

    set plot_commuters_private total-commuters-private - (count commuters with [current-node = node 9 and color = red] +   count 

commuters with [current-node = node 10 and color = red]) 

   

    ifelse total-commuters-public  > 0 [set ratio_tt_public_sum   sum [ratio_tt_public]  of commuters with [color = green] / total-

commuters-public]  [set ratio_tt_public_sum 0] 

    ifelse total-commuters-private > 0 [set ratio_tt_private_sum  sum [ratio_tt_private] of commuters with [color = red]   / total-

commuters-private] [set ratio_tt_private_sum 0] 

end 

to reportes  

    export-all-plots  (word "results_day" day  ".csv") 

    file-open (word "results_day" day  ".csv") 

    file-write "total-commuters-public"         file-write total-commuters-public  

    file-write "total-commuters-private"        file-write total-commuters-private  

    file-write "average_tt_public"              file-write average_tt_public  

    file-write "average_tt_private"             file-write average_tt_private  

    file-write "expected_utility_public_sum"    file-write expected_utility_public_sum  

    file-write "expected_utility_private_sum"   file-write expected_utility_private_sum  

    file-write "expected_utility_public_avg"    file-write expected_utility_public_avg  

    file-write "expected_utility_private_avg"   file-write expected_utility_private_avg 

    file-write "effective_utility_public_sum"   file-write effective_utility_public_sum 

    file-write "effective_utility_private_sum"  file-write effective_utility_private_sum 

    file-write "effective_utility_public_avg"   file-write effective_utility_public_avg 

    file-write "effective_utility_private_avg"  file-write effective_utility_private_avg 

    file-write "public_ratio_tt"                file-write ratio_tt_public_sum 

    file-write "private_ratio_tt"               file-write ratio_tt_private_sum 

    file-write "crowdness"                      file-write crowdness 

    file-close 

    set day day + 1  

    set $list-private []  

    set $list-public [] 

    clear-all-plots 

end 

;;;;;;   Nuno Monteiro /// FEP 120414020 /// FEUP /// 2014    ;;;;;;; 
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2. NetLogo Code for Chapter 4 Model 

 

Figure 21 - Screenshot - Model Chapter 4 

Source Code: 

globals [ 
  day 
  num-intersections  
  num-roads  
  ideal-segment-length  
  list-uti-world-PR 
  list-uti-world-PT 
  list-uti-PR 
  list-uti-PT 
  list-tt-PR 
  list-tt-PT 
  list-uti-world 
  list-count-PR 
  list-count-PT 
] 
 
breed [ intersections intersection ] 
breed [ commuters driver ] 
 
directed-link-breed [ roads road ] 
 
intersections-own [  
   x y 
   id 
] 
roads-own [ 
  road-id  ;identificador da via 
  capacity ;capacidade [130:250] 
  num-drv  ;numero de motoristas 
  opt-num-drv ;numero proporcional de motoristas  
  avg-num-drv ;ocupacao real media 
  avg-opt-drv ;ocupacao proporcional media 
  fftt  ;free-flow travel time 
  travel-time ;tempo de viagem 
  previous-time ;tempo da viagem anterior 
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  history ;historico de ocupacao 
] 
commuters-own [ 
  current-route ;lista de road-id descrevendo a rota atual 
  route-weight  ;peso da rota a ser calculado na chegada 
  actual-tt     ;tempo de viagem real do motorista 
  previous-tt   ;tempo de viagem real do motorista passada  
  par-OD        ;variavel para assinalar qual o par od dos viajantes 
  optimal-route ;rota otima (menor #nos ate o destino) 
  expected-tt   ;tempo de viagem esperado (considera os motoristas no mesmo par OD 
  roads-weight  ;lista com o peso das rotas TODO: sera' necessario? 
  origin        ;ID do no' de origem 
  destination   ;ID do no' de destino 
  current-node  ;ID do no' atual 
  ;;;nuno 
  end-node      ;ID do no' final antes da iterata 
  beg-node      ;nó onde a demmand é construída 
  iter-node     ;ID do no' onde o agente vai iterar para começo de um novo dia 
  mode-node     ;ID do no' onde o agente vai fazer a escolha do modo -> calculo das utilidades -> relevancia social  
  time          ; tempo de saida 
  timeplus      ;assegura que o tempo em cada dia é o mesmo. mantem integridade do sistema. 
  travelling    ;se o agente está a viajar 
  mode          ;modo escolhido pelos agentes 
  accessibility 
  exp-uti-PR 
  exp-uti-PT 
  income 
  current-road  ;via atual (a via mesmo, nao o ID) 
  predictors       ;lista com 'num-roads' conjuntos de 'num-predictors' preditores 
  predictors-score ;lista com 'num-roads' conjuntos de 'num-predictors' pontos p. preditores 
  best-predictors  ;lista com o indice do melhor preditor por via (?) 
to setup  
  __clear-all-and-reset-ticks 
    build-network 
    ifelse (import_base?) [ import-world "baseline_no_training.csv" ] [setup-commuters set day 1 ] 
    ask intersections [ set label id ] 
    set-lists 
    if (export_base?) [ export-world "baseline_no_training.csv" ] 
end 
to set-lists 
  ;;listas para retirar os resultados de forma continua- das utilidades e dos tt 
  set list-uti-PR [] 
  set list-uti-PT [] 
  set list-tt-PR [] 
  set list-tt-PT [] 
  set list-uti-world-PR [] 
  set list-uti-world-PT [] 
  set list-uti-world [] 
  set list-count-PR [] 
  set list-count-PT [] 
end 
 
to go 
  if all? commuters [current-node = end-node] [ ;;reset the commuters to the begging 
    export-results 
    reset-road-network ] 
  if day = 180 [ write-file export-world "baseline_training_180.csv" stop] 
  mode-choice ;;faz com que os agentes escolham um modo para viajar 
  create-assignment ;;coloca os agentes a andar na rede 
  step ;; onde os agentes "aprendem" a circular na rede 
  experience-travel-times 
  update-predictors-score 
  update-history 
  update-roads-visual 
  tick 
end 
 
to step  
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  distribute-commuters-proportionally   
  choose-next-road-PR 
  choose-next-road-PT   
  advance 
end 
 
to mode-choice 
  ask commuters with [((beg-node = current-node) or (iter-node = current-node))] 
   [set current-node 14      
     let myorig origin 
     let mydest destination 
     let modenode mode-node 
     ;ifelse [auto_fact_uti?] 
     ;;set the utility factors 
     ;let alpha_late_PR 0.4 
     ;let alpha_cost_PR 0.4 
     ;let alpha_pollution_PR 0.2 
     ;let cost_PR 5 
     ;let pollution-factor 0.2 
    ; let alpha_late_PT 0.4 
     ;let alpha_cost_PT 0.4  
     ;let alpha_confort_PT 0.2 
     ;let cost_PT 1 ] 
     let bus_cap 50 
     let exp_bus_cap 50 
     set exp-uti-PR ( 
         ( alpha_late_PR * ( expected-tt - previous-tt ))  
       + ( alpha_cost_PR * ( cost_PR / income  ))  
       + ( alpha_pollution_PR * ( expected-tt * pollution-factor ))  
       )   
     set exp-uti-PT (  
         ( alpha_late_PT * ( expected-tt - previous-tt ))  
       + ( alpha_cost_PT * (  cost_PT / income))  
       + ( alpha_confort_PT * ( ( bus_cap / exp_bus_cap ) ))  
       ) 
   ;;;;;;;;;;;;;decision making process;;;;;;;;; 
   if (myorig = 1 and mydest = 8)  [set accessibility 1]         
   if (myorig = 1 and mydest = 10) [set accessibility 1]              
   if (myorig = 2 and mydest = 8)  [set accessibility 1] 
   if (myorig = 3 and mydest = 8)  [set accessibility 1] 
   if ( accessibility = 0 )  [set mode 1] ;;; se não tem acesso a transporte vai de carro 
   if ( accessibility = 1 )  [ 
      ifelse  ( exp-uti-PR > exp-uti-PT ) [set mode 1] [set mode 2] 
      ] 
   if mode = 1 [set color white] 
   if mode = 2 [set color red] 
  move-to one-of intersections with [id = modenode] 
   ] 
end 
 
to create-assignment 
  ask commuters with [ (mode-node = current-node) and  (timeplus = ticks)  ]  
  [let myorig origin 
   let mydest destination    
      move-to one-of intersections with [id = myorig] 
      face one-of intersections with [id = mydest] 
      set current-node origin 
      set travelling true 
  ] 
end 
 
to setup-commuters 
  create-commuters num-commuters [ 
      set origin 1 + random 3  ;origem em nos 1, 2 ou 3 
      set destination 8 + random 3 ;destino em 8, 9 ou 10       
      if (origin = 1) and (destination = 8 ) [ set par-OD 1] 
      if (origin = 1) and (destination = 9 ) [ set par-OD 2] 
      if (origin = 1) and (destination = 10) [ set par-OD 3]       
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      if (origin = 2) and (destination = 8 ) [ set par-OD 4] 
      if (origin = 2) and (destination = 9 ) [ set par-OD 5] 
      if (origin = 2) and (destination = 10) [ set par-OD 6]       
      if (origin = 3) and (destination = 8 ) [ set par-OD 7] 
      if (origin = 3) and (destination = 9 ) [ set par-OD 8] 
      if (origin = 3) and (destination = 10) [ set par-OD 9]      
      set current-node 11 
      set current-route [] 
      set optimal-route calculate-opt-route origin destination 
      set beg-node 11 
      set end-node 12 
      set iter-node 13 
      set mode-node 14  
      set travelling false 
      set mode 0 
      set income 20 + random-float 50       
      set time 0 + random 5 
      set timeplus time 
      set predictors n-values num-roads [random-predictors] 
      set predictors-score n-values num-roads [initial-scores] 
      set best-predictors n-values num-roads [random num-predictors] 
      set roads-weight n-values num-roads [1] 
      let myorig beg-node 
      let mydest origin 
      move-to one-of intersections with [id = myorig] 
      face one-of intersections with [id = mydest] 
    ] 
   calculate-ett 
end 
 
to distribute-commuters-proportionally 
  ask intersections [ 
    let drv-at-intersection count commuters-here with [current-node != destination];desconta os motoristas que ja chegaram 
    let total-capacity sum [capacity] of my-out-links 
    ask my-out-links [ 
      let proportion capacity / total-capacity 
      set opt-num-drv opt-num-drv + (proportion * drv-at-intersection)]] 
end 
;    atualiza o historico de ocupacao das vias, inserindo a ocupacao da rodada atual 
to update-history  
  ask roads [ 
    ;show history 
    let occupation (num-drv / capacity) * 100 
    if occupation < 60 [set occupation 60] 
    if occupation > 140 [set occupation 140] 
    set history remove-item (length history - 1) history 
    set history fput occupation history 
    if length history = 1 [show (word "error " history)]] 
end 
 
;calcula o tempo de viagem esperado para cada motorista 
to calculate-ett 
  ask commuters [ 
    let drv-same-od 0 
    let exp-drv 0 
    let ett 0 
    let myorig origin 
    let mydest destination 
    set drv-same-od count commuters with [origin = myorig and destination = mydest] 
    set exp-drv drv-same-od ; - 50  + random 101 ;adiciona ruido +-50 
    foreach optimal-route [ 
      ask ? [set ett ett + fftt * (1 + exp-drv / capacity) ^ 2]] 
    set expected-tt ett] 
end 
; reinicia a rede de trafego: coloca os motoristas na origem, reseta as rotas 
; reseta os tempos de viagem das vias e a ocupacao  
to reset-road-network  
  ;export-plots 
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  reset-commuters 
  reset-roads 
end 
;reinicia o estado dos motoristas, posicionando-os na origem e resetando as rotas 
to reset-commuters 
    ask commuters [     
     let iternod iter-node 
      let myorig origin 
      set current-node iternod 
      set current-route [] 
      set mode 0 
      ;TODO atualizar os pesos das rotas 
      ;set roads-weight n-values num-roads [1] 
      move-to one-of intersections with [id = iternod] 
      face-nowrap one-of intersections with [id = myorig] 
      set timeplus time + ticks] 
end 
;reinicia o estado das vias (num-motoristas; num-proporcional; tempo-de-viagem) 
to reset-roads 
  ask roads [  
    set num-drv  0 
    set opt-num-drv 0 
    set previous-time travel-time 
    set travel-time 0] 
end 
 
;faz cada motorista escolher a proxima via a ser usada 
to choose-next-road-PR     
  ask commuters with [travelling = true and mode = 1][ 
    if current-node = destination [ 
      let endnode end-node 
      move-to one-of intersections with [id = endnode] 
      set travelling false 
       set current-node end-node 
       set previous-tt actual-tt 
      stop] ;nao faz escolhas se ja tiver chegado 
    ;configura variaveis para serem usadas dentro dos asks 
    let node-id current-node 
    let the-predictors predictors 
    let the-scores predictors-score 
    let the-roads-weight roads-weight 
    let myorig origin 
    let mydest destination 
    ;inicializa melhor via e menor ocupacao encontrada 
    let best-road-id -1 
    let lowest-prediction 100000 ;inicializa menor ocupacao com valor grande 
    ;a partir da intersecao atual... 
    ask intersections with [id = node-id] [ 
      let will-reach-dest false 
      ;...analisa todos os links de saida para achar o melhor 
      ask my-out-links [ 
          ;se ja encontrou aresta que leva ao destino, nao procura mais 
          if will-reach-dest [stop]  
          if (not in-route myorig mydest) [stop] 
          let scores sublist the-scores (road-id - 1) road-id 
          let hiscore max (item 0 scores) 
          let best-pred-index position hiscore (item 0 scores) 
          let curr-predictors sublist the-predictors (road-id - 1) road-id  ;OK - obtem os preditores desta via 
          ;set best-pred-index 0 
          let best-predictor (item best-pred-index (item 0 curr-predictors))  
          let predicted-occ predict-occupation best-predictor history 
          let weighted-prev predicted-occ * item (road-id - 1) the-roads-weight 
           
          ;COMPARAR COM MELHOR PREDICAO E AJUSTAR MELHOR VIA 
          if weighted-prev < lowest-prediction [ 
            set lowest-prediction predicted-occ 
            set best-road-id road-id 
          ] 
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        ;];ifelse 
      ] ;ask my-out-links 
    ] ;ask intersections 
     
     
    set current-road one-of roads with [road-id = best-road-id] ;;; distinguir aqui de commuters !!! 
    ;face-nowrap [end1] of current-road 
    ;fd 1 
     
    ask current-road [set num-drv num-drv + 1] 
  ] 
end 
 
to choose-next-road-PT 
     
  ask commuters with [travelling = true and mode = 2 ][ 
     
    if current-node = destination [ 
      let endnode end-node 
      move-to one-of intersections with [id = endnode] 
      set travelling false 
       set current-node end-node 
       set previous-tt actual-tt 
      stop] ;nao faz escolhas se ja tiver chegado 
     
     
    ;configura variaveis para serem usadas dentro dos asks 
    let node-id current-node 
    let the-predictors predictors 
    let the-scores predictors-score 
    let the-roads-weight roads-weight 
    let myorig origin 
    let mydest destination 
     
    ;inicializa melhor via e menor ocupacao encontrada 
    let best-road-id -1 
    let lowest-prediction 100000 ;inicializa menor ocupacao com valor grande 
     
    ;a partir da intersecao atual... 
    ask intersections with [id = node-id] [ 
       
      let will-reach-dest false 
       
      ;...analisa todos os links de saida para achar o melhor 
      ask my-out-links [ 
          ;se ja encontrou aresta que leva ao destino, nao procura mais 
          if will-reach-dest [stop]  
          if (not bus-route myorig mydest) [stop]         
          let scores sublist the-scores (road-id - 1) road-id         
          let hiscore max (item 0 scores) 
          let best-pred-index position hiscore (item 0 scores)         
          let curr-predictors sublist the-predictors (road-id - 1) road-id  ;OK - obtem os preditores desta via 
          ;set best-pred-index 0          
          let best-predictor (item best-pred-index (item 0 curr-predictors))          
          let predicted-occ predict-occupation best-predictor history 
          let weighted-prev predicted-occ * item (road-id - 1) the-roads-weight        
          ;COMPARAR COM MELHOR PREDICAO E AJUSTAR MELHOR VIA 
          if weighted-prev < lowest-prediction [ 
            set lowest-prediction predicted-occ 
            set best-road-id road-id 
          ] 
        ;];ifelse 
      ] ;ask my-out-links 
    ] ;ask intersections    
    set current-road one-of roads with [road-id = best-road-id] ;;; distinguir aqui de commuters !!! 
    ;face-nowrap [end1] of current-road 
    ;fd 1    
   ask current-road [set num-drv num-drv + 1] 
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  ] 
end 
 
to-report bus-route [orig dest]   
  let forbidden []   
  if orig = 1 and dest = 8  [ set forbidden  [   2 3 4 5   7 8 9 10 11 12 13 14    16 17 18 19 20 21 22 23 24 ] ] ;;tem linha de 
autocarro 
  if orig = 1 and dest = 9  [ set forbidden  [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ] ] 
  if orig = 1 and dest = 10 [ set forbidden  [ 1 2   4 5 6 7 8 9 10 11    13 14 15 16 17 18 19    21 22 23    ] ] ;;tem linha de 
autocarro  
  if orig = 2 and dest = 8  [ set forbidden  [ 1 2 3 4 5   7 8 9 10 11 12 13 14    16 17 18 19 20 21 22 23 24 ] ] ;;tem linha de 
autocarro 
  if orig = 2 and dest = 9  [ set forbidden  [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ] ] 
  if orig = 2 and dest = 10 [ set forbidden  [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ] ] 
  if orig = 3 and dest = 8  [ set forbidden  [ 1 2 3 4 5 6 7 8   10 11 12 13 14 15 16    18 19 20 21 22 23 24 ] ] ;;tem linha de 
autocarro 
  if orig = 3 and dest = 9  [ set forbidden  [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ] ] 
  if orig = 3 and dest = 10 [ set forbidden  [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ] ]    
  report not member? road-id forbidden 
end 
to-report in-route [orig dest]  
  let forbidden []  
  if dest = 8  [ set forbidden [18 20 21 22 23 24] ] 
  if dest = 9  [ set forbidden [21 23 24] ] 
  report not member? road-id forbidden 
end 
 
;faz o motorista chegar ao destino da via escolhida e experimentar o tempo de viagem 
to advance 
  ask commuters with [travelling = true] [ 
    if current-node = destination [ 
      let endnode end-node 
      move-to one-of intersections with [id = endnode] 
      set travelling false 
      set current-node end-node 
      set previous-tt actual-tt 
      stop]   
    ;adiciona a via atual 'a rota 
    set current-route lput current-road current-route    
    ;avanca para a proxima intersecao 
    set current-node [id] of [end2] of current-road 
    let nid current-node 
    move-to one-of intersections with [id = nid]    ]  
end 
 
;calcula o tempo de viagem gasto pelos motoristas 
to experience-travel-times 
  ask roads [ 
  set travel-time fftt * (1 + alpha * (num-drv / capacity) ^ beta) 
  if num-drv > 0 [ 
      set avg-num-drv ((num-drv - avg-num-drv) / (ticks + 1)) + avg-num-drv 
      set avg-opt-drv ((opt-num-drv - avg-opt-drv) / (ticks + 1)) + avg-opt-drv]] 
  ask commuters [ 
    let attR 0 ;inicializa o tempo de viagem do motorista     
    ;calcula o custo da rota 
    foreach current-route [ 
      ask ? [set attR attR + travel-time] 
    ] 
     
    set actual-tt attR 
     
    set route-weight actual-tt / expected-tt 
     
    ;atualiza o vetor de pesos de rota por aresta 
    foreach current-route [ 
      let rw roads-weight 
      let att actual-tt 
      let w route-weight 
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      ask ? [ 
        let rid road-id 
        set rw replace-item (rid - 1) rw w 
      ;replace-item 0 [1 3 3] 3 
      ] 
      set roads-weight rw 
    ] 
  ] 
end 
 
;atualiza a pontuacao dos preditores de cada motorista 
;somente sao atualizados os preditores que foram usados na ultima viagem 
;SC = (1-u)SC + u[(Ca / Xa) -1]*ATTR 
to update-predictors-score  
  ;para cada via... 
  ask roads [ 
    if num-drv = 0 [stop]     
    let rid road-id 
    let rhist history 
    let rocc capacity / num-drv     
    ;para cada motorista 
    ask commuters [ 
      let curr-predictors sublist predictors (rid - 1) rid  ;OK - obtem os preditores desta via 
      let scores sublist predictors-score (rid - 1) rid       
      let bpindex item (rid - 1) best-predictors ;obtem o indice do melhor preditor desta via          
      ;obtem o score e o recalcula 
      let score item bpindex (item 0 scores) 
      set score (1 - learning-factor) * score + learning-factor * (rocc - 1) * actual-tt 
      ;coloca o novo score na sub-lista das pontuacoes dos preditores daquela via 
      let new-scores replace-item bpindex (item 0 scores) score      
      ;atualiza em qual indice esta o melhor preditor 
      let bpidx position (max new-scores) new-scores ;OK 
      set best-predictors replace-item (rid - 1) best-predictors bpidx     
      ;coloca a sub-lista na lista de pontuacoes geral 
       set predictors-score replace-item (rid - 1) predictors-score new-scores  
      ;show predictors-score]] 
  end   
;retorna a rota otima entre nos origem-destino 
to-report calculate-opt-route [org dest]  
  let rid-list []  
  if org = 1 and dest = 8  [ set rid-list [ 1 6 15  ] ] 
  if org = 1 and dest = 9  [ set rid-list [ 3 12 20 ] ] 
  if org = 1 and dest = 10 [ set rid-list [ 3 12 21 ] ]                                                    
  if org = 2 and dest = 8  [ set rid-list [ 6 15    ] ] 
  if org = 2 and dest = 9  [ set rid-list [ 6 13 18 ] ] 
  if org = 2 and dest = 10 [ set rid-list [ 6 15 23 ] ]                                                     
  if org = 3 and dest = 8  [ set rid-list [ 9 17    ] ] 
  if org = 3 and dest = 9  [ set rid-list [ 9 18    ] ] 
  if org = 3 and dest = 10 [ set rid-list [ 9 18 24 ] ] 
  let opt-route []   
  foreach rid-list [ 
    set opt-route lput one-of roads with [road-id = ?] opt-route 
  ]  
  report opt-route 
end 
 
to-report predict-occupation [predictor occ-history] 
  let prediction sum (map [?1 * ?2] predictor occ-history) 
  if prediction < 60 [set prediction  60] 
  if prediction > 140 [set prediction  140] 
  report prediction 
end 
   
;diz se todos os motoristas ja chegaram nos seus destinos 
to-report commuters-not-arrived 
  let all-arrived true 
  ask commuters [ 
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    if current-node != destination [ set all-arrived false ]] 
  report not all-arrived 
end 
 
;gera uma lista de zeros como score inicial dos preditores 
to-report initial-scores 
  report n-values num-predictors [0] ;score inicial dos preditores e' zero 
end 
 
;gera uma lista com 'num-predictors' preditores aleatorios 
to-report random-predictors 
  report n-values num-predictors [random-predictor] 
end 
 
;gera um vetor de pesos entre [-1:1] do tamanho do historico 
to-report random-predictor 
  report n-values (history-size) [1.0 - random-float 2.0] 
end 
 
to build-network 
  clear-turtles     
  file-open "mgta2" ;user-file 
  set num-intersections file-read 
  set num-roads file-read 
  set ideal-segment-length file-read 
  repeat num-intersections  [  
    create-intersections 1 [ 
      set id file-read ;id-counter 
      set xcor file-read / 1.1 
      set ycor file-read / 1.1     
      update-node-visual  ] ] 
  repeat num-roads  [ 
    let r-id file-read 
    let id1 file-read 
    let id2 file-read 
    let primary? file-read 
    ask intersections with [ id = id1 ]  [ 
      create-roads-to intersections with [id = id2] [ 
        set road-id r-id 
        set num-drv 0 
        set opt-num-drv 0 
        set avg-num-drv 0 
        set avg-opt-drv 0         
        set fftt 5 
        set capacity 550 + random 250 
        ;set capacity num-commuters / 7.5 ;TODO REMOVER ISSO APOS TESTAR 
        set label road-id 
        set label-color red        
        set history n-values history-size [60 + random 81] ;historico de valores entre 60 e 140]]] 
  file-close    
   ask roads [ 
      set shape "default" 
      set thickness .2 
    ] 
end 
 
to update-node-visual 
    set shape "circle 2" 
    set size ideal-segment-length / 3 
    set color 5 
end 
 
to do-plots 
  plot-travel-times 
  plot-roads-occupation 
  plot-tt-per-od 
end 
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to plot-travel-times 
  let total-att 0 
  let total-ett 0  
  ask commuters [ 
    set total-att total-att + actual-tt 
    set total-ett total-ett + expected-tt 
  ]   
  let avg-att total-att / num-commuters 
  let avg-ett total-ett / num-commuters   
  set-current-plot "avg-travel-time"  
  set-current-plot-pen "actual" 
  plot avg-att   
  set-current-plot-pen "expected" 
  plot avg-ett 
end 
 
to plot-tt-per-od  
  let counter 1 
  let origins [1 2 3] 
  let dests [8 9 10] 
  set-current-plot "travel-time-per-od"  
  clear-plot 
  foreach origins [ 
    let orig ? 
    foreach dests [ 
      let dest ?      
      set-current-plot-pen "actual" 
      plotxy counter (att-per-od orig dest)      
      set-current-plot-pen "expected" 
      plotxy (counter) (ett-per-od orig dest)      
      set counter counter + 1   ]] 
end 
 
to-report att-per-od [orig dest] 
  let total-tt 0 
  ask commuters with [origin = orig and destination = dest] [ 
    set total-tt total-tt + actual-tt] 
  if total-tt = 0 [report 0] 
  report total-tt / count commuters with [origin = orig and destination = dest ] 
end 
 
to-report ett-per-od [orig dest] 
  let total-tt 0  
  ask commuters with [origin = orig and destination = dest and travelling = true ] [ 
    set total-tt total-tt + expected-tt  ] 
  if total-tt = 0 [report 0] 
  report total-tt / count commuters with [origin = orig and destination = dest ] 
end 
 
to plot-roads-occupation 
  set-current-plot "commuters-per-road" 
  clear-plot 
  set-current-plot-pen "actual"   
  ask roads [ 
    plotxy road-id avg-num-drv ]   
  set-current-plot-pen "proportional" 
    ask roads [ 
    plotxy road-id avg-opt-drv 
 ;   if road-id = 24 [show (word "error " road-id " " avg-opt-drv)] 
  ] 
  if plot-capacity? [   
    set-current-plot-pen "capacity" 
    ask roads [ 
      plotxy (road-id + .5) capacity]]  
  set-current-plot "inst-drv-per-road" 
  clear-plot 
  set-current-plot-pen "actual" 
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  ask roads [ 
    plotxy road-id num-drv]  
  set-current-plot-pen "proportional" 
  ask roads [ 
    plotxy road-id opt-num-drv 
  ] 
end 
 
to export-results 
  export-plots 
  export-agents 
  export-lists 
  set day day + 1   
end 
 
to export-plots 
end 
 
to export-agents  
end 
 
to export-lists  
  ;;counting drivers 
  let count-PR 0 ;1  
  let count-PT 0 ;2 
  set count-PR count commuters with [ mode = 1 ] 
  set count-PT count commuters with [ mode = 2 ] 
  print count-PR 
  print count-PT  
  set list-count-PR lput count-PR list-count-PR 
  set list-count-PT lput count-PT list-count-PT  
  ;;utilities 
  let avg-uti-PR 0 
  let avg-uti-PT 0    
  set avg-uti-PR precision ( sum [ exp-uti-PR ] of commuters with [ mode = 1 ] / count-PR ) 2 
  ifelse (count-PT = 0 ) [set avg-uti-PT 0 ][ set avg-uti-PT precision ( sum [ exp-uti-PT ] of commuters with [ mode = 2 ] / count-
PT ) 2] 
  set list-uti-PR lput avg-uti-PR list-uti-PR ;3 
  set list-uti-PT lput avg-uti-PT list-uti-PT ;4   
  ;;travel-times 
  let avg-tt-PR 0 
  let avg-tt-PT 0 
  set avg-tt-PR precision ( sum [ actual-tt ] of commuters with [ mode = 1 ] / count-PR ) 2 
  ifelse (count-PT = 0 ) [set avg-tt-PT 0] [ set avg-tt-PT precision ( sum [ actual-tt ] of commuters with [ mode = 2 ] / count-PT ) 
2 ] 
  set list-tt-PR lput avg-tt-PR list-tt-PR ;5 
  set list-tt-PT lput avg-tt-PT list-tt-PT ;6  
  ;;utilities world 
  let tot-uti-PR 0 
  let tot-uti-PT 0 
  let tot-uti 0    
  set tot-uti-PR precision ( sum [ exp-uti-PR ] of commuters with [ mode = 1 ] ) 2 
  set tot-uti-PT precision ( sum [ exp-uti-PT ] of commuters with [ mode = 2 ] ) 2 
  set tot-uti precision ( (sum [ exp-uti-PR ] of commuters with [ mode = 1 ] ) + (sum [ exp-uti-PT ] of commuters with [ mode = 
2 ]) ) 2 
  set list-uti-world-PR lput tot-uti-PR list-uti-world-PR ;7 
  set list-uti-world-PT lput tot-uti-PT list-uti-world-PT ;8 
  set list-uti-world    lput tot-uti    list-uti-world    ;9 
  
end  
 
to write-file   
  export-world ( word "results_day" day ".csv" )  
  file-open    ( word "results_day" day ".csv" ) 
  file-write "list-count-PR"      file-write ";" file-write list-count-PR     file-write ";"  ;1 
  file-write "list-count-PT"      file-write ";" file-write list-count-PT     file-write ";"  ;2 
  file-write "list-uti-PR"        file-write ";" file-write list-uti-PR       file-write ";"  ;3 
  file-write "list-uti-PT"        file-write ";" file-write list-uti-PT       file-write ";"  ;4 
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  file-write "list-tt-PR"         file-write ";" file-write list-tt-PR        file-write ";"  ;5 
  file-write "list-tt-PT"         file-write ";" file-write list-tt-PT        file-write ";"  ;6 
  file-write "list-uti-world-PR"  file-write ";" file-write list-uti-world-PR file-write ";"  ;7 
  file-write "list-uti-world-PT"  file-write ";" file-write list-uti-world-PT file-write ";"  ;8 
  file-write "list-uti-world"     file-write ";" file-write list-uti-world    file-write ";"  ;9 
  file-close 
end 
 
to update-roads-visual 
  ask roads [ 
    let occ avg-num-drv / capacity  
    if inst-road-view? 
    [set occ num-drv / capacity] 
     
    set color green 
    if occ > 0.80 [set color yellow] 
    if occ > 1.00 [set color orange] 
    if occ > 1.20 [set color red] 
     
   ; show occ 
  ] 
End 
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Appendix C 
Table 18 – GAMP OD-Pairs data – INE Census Data 
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