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Abstract

Cloud computing, often referred to as simply “the cloud,” is the delivery of on-demand computing
resources—everything from applications to data centers—over the Internet on a pay-for-use basis.
Cloud Computing provides a simple way to access servers, storage, databases and a broad set of
application services over the Internet. Cloud Computing providers such as Amazon Web Services
own and maintain the network-connected hardware required for these application services, while
you use what you need via a web application.

Nowdays, most scientific researchers use cloud computing infrastructure as a potential source
of low-cost computing resources that can be provisioned on-demand according to a pay-per-use
model. As a result, scientific applications are increasingly adopting cloud computing. To take
advantage of this computing platform and maximize the performance in the execution of these
applications, often described as workflows, a scheduling scheme to efficiently and effectively han-
dle the application execution is required. Since , each workflow application has its own Quality
Of Service requirements, task scheduling has become an essential, but highly demanding, tool.
The scheduling problem becomes even more challenging when several QoS parameters are deter-
mined by users as objectives. The scheduling problem is well known as NP-complete. Therefore,
most researchers in this field try to obtain a good solution by using meta-heuristic or search-based
approaches that allow the user to control the quality of the produced solutions. However, these
approaches usually impose significantly higher planning costs in terms of the time consumed to
produce good results, making them less useful in real platforms that need to obtain map decisions
quickly.

This thesis presents novel heuristic approaches for the task scheduling of scientific workflow
applications based on the user’s QoS parameters in cloud environments. The main advantages of
the proposed strategy is that it features low time complexity, making it more useful in real plat-
forms that need to obtain map decisions on the fly. The proposed strategy uses common pricing
models, i.e. hourly billing, offered by most cloud providers in business, tried to minimize the total
execution time of the workflow application and, at the same time, reduce the execution cost. We
proposed the novel selection policy for selecting the most appropriate VM instance for task assign-
ment. In terms of objectives of the scheduling problem, we consider two relevant and conflicting
QoS parameters, namely, time and cost. The proposed heuristic strategy is constrained by deadline
and budget values as predefined the user’s QoS parameters. The proposed algorithm is evaluated
with prominent real-world workflow applications, and compared with other state-of-the-art algo-
rithms.
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Chapter 1

Introduction

Cloud computing is one of the hottest technical topics today, with broad-ranging effects across IT,

Information Architecture, Business, Software Engineering, and Data Storage. The term "Cloud"

refers to both the applications delivered as services over the Internet and the hardware and system

software in the datacentres that provide services. In recent years, cloud computing environments

have been utilized by scientific communities to execute their scientific workflow applications. The

growth of scientific workflows has also spurred significant research in the areas of generating,

planning and executing such workflows in cloud platforms. Generally, cloud platforms use the

pay-as-you-go model, in which computational resources or services have different prices with dif-

ferent performance and Quality of Service (QoS) levels. In this computing model, users consume

services and resources when they need them and pay only for what they use. Cost and time have

become the two most important user concerns. Thus, the cost/time trade-off problem for schedul-

ing workflow applications has become challenging. Scheduling consists of defining an assignment

and mapping to the workflow tasks onto the available resources.

Scheduling, along with many other issues in cloud computing infrastructures, has been exten-

sively studied in the past several decades. Many complex applications in e-science and e-business

can be modeled as workflows. A fundamental issue is how the workflow application should be

executed on the available resources in the platform in order to satisfy its objective requirements.

Task Scheduling is defined as a strategy to decide which (task selection) and where (resource se-

lection) each application task should be executed, and it determines how the input/output data files

are exchanged among them.

Motivation for the research

Many algorithms for scheduling workflow applications on cloud platform have been proposed.

Most of these approaches consider only a single QoS parameters, such as minimizing total execu-

tion time, as their objective of scheduling problem. If we consider multiple QoS parameters, then

the problem becomes more challenging. Many algorithms have been proposed for multi-objective

scheduling, where meta-heuristic methods or search-based strategies have been used to achieve
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2 Introduction

good solutions. However, these methods based on meta-heuristics or search-based strategies usu-

ally impose significantly higher planning costs in terms of the time consumed to produce good

results, which makes them less useful in real platforms that need to obtain map decisions on the

fly.

The quality of the scheduling approach is calculated by two main metrics: (a) producing good

results and (b) having low time complexity when employed by the scheduler in a realistic scenario.

Thus, it is a challenge to develop an efficient scheduling approach to produce good results with low

time complexity. These metrics have motivated us to develop QoS-based scheduling approaches

to produce good solutions with low time complexity.

Contribution

The value of this research should be perceived as:

• Introducing a heuristic approach for scheduling workflow applications in the cloud comput-

ing infrastructure.

• Investigating the state-of-the-art research studies that focus on QoS scheduling algorithm in

cloud computing.

• Evaluating and presenting results of the proposed algorithm for real-world scientific work-

flow applications.

• Simulating based on real cloud platform parameters.

Thesis Organization

This thesis divided in two main parts :

• Chapters 2 and 3 present an overview of cloud computing and the workflow scheduling

problem. To be more precise, Chapter 2 . Then, Chapter 3 describes the application model,

system model and QoS workflow scheduling problem, followed by a taxonomy of previous

research in this area. We classified previous researches based on two QoS parameters, time

and cost, which are defined as the objective target of scheduling algorithm in this thesis.

• Chapter 4 presents the proposed heuristic scheduling algorithm, namely Deadline-Budget

Workflow Scheduling (DBWS). The DBWS algorithm tries to minimize total execution

time and consumed cost in each step of the task assignment phase to meet the predefined

constraint values for time and cost QoS parameters. Finally the conclusions and directions

for future work are presented in Chapter 5



Chapter 2

Cloud Computing - Background

Introduction to Cloud Computing

The term "cloud computing" consists of two words. The word "Cloud" has been used to refer

to the mesh of infrastructures, the combination of software and hardware, which offers a variety

of services for end users. In the simplest form, cloud computing means that instead of all the

computer hardware and software you’re using sitting on your desktop, or somewhere inside your

company’s network, it’s provided for you as a service by another company and accessed over

the Internet, usually in a completely seamless way. Exactly where the hardware and software is

located and how it all works doesn’t matter to you, the user - it’s just somewhere up in the nebulous

"cloud" that the Internet represents.

Cloud computing provides reliable services through data centers, which are developed on vir-

tualized compute and storage technologies. Users have the ability to access applications and data

on-demand from anywhere in the world at any time based on pay-per-use model. In pay-per-use

model, users are charged only for their usage. The ability of virtualisation is a major key of cloud

computing. Virtualization helps to host multiple operating systems on a single physical machine.

Every operating systems are isolated from each others and has their original configuration. For

vitualization, Xen [BDF+03, ADC05] is the most used technique. By using this method, the cloud

computing resources can be abstracted by creating the interface to the Virtual Machines (VMs).

Each VM has its own resources such as CPU, physical memory, network address and link connec-

tions. Also, each VM has its own application and operating system.

Several definition of cloud computing are provided. The National Institute of Standards and

Technology (NIST) defines cloud computing as :

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction[MG11]

In [BYV+09] cloud computing defined as : A Cloud is a type of parallel and distributed

system consisting of a collection of inter-connected and virtualized computers that are dynamically

3



4 Cloud Computing - Background

provisioned and presented as one or more unified computing resource(s) based on service-level

agreements established through negotiation between the service provider and consumers.

In general, cloud computing offers three main features, both to cloud providers and end users

: resource flexibility, high performance computing and cost efficiency. In the user perspective, the

resources can be increased or decreased by the users according to their applications and require-

ments. Adding resources comes with additional charges for users; However, hosting application

in cloud platforms is less costly than setting up and maintaining them in a local infrastructure,

even for large-scale services that require thousands of resources, such as Netflix1. From the cloud

providers perspective, they can achieve cost benefits by sharing their infrastructure across multiple

tenants.

The Figure2.1 shows the service models and deployment model that are present in the cloud.

In following paragraphs, each parts will be described in detail.
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Figure 2.1: The NIST visual model of cloud computing definition

Essential Characteristics

Here are the five main characteristics that cloud computing offers businesses today.

• On-demand self-service: computer services such as email, applications, network or server

service can be provided without requiring human interaction with each service provider. An

important point is that what you are using is service-based (I need 10 computing units). You

do not know, and in most cases you should not care where your computing resources really

being allocated. Cloud providers such as Amazon Web Services (AWS), Microsoft, Google

and IBM are providing on demand self services.

1https://aws.amazon.com/solutions/case-studies/netflix/
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• Broad network access: You can access these resources from anywhere you can access the

Internet, and you can access them from a browser, from a desktop with applications designed

to work with them, or from a mobile device.

• Resource pooling: The provider’s computing resources are pooled to serve multiple con-

sumers using a multi-tenant model, with different physical and virtual resources dynami-

cally assigned and reassigned according to consumer demand. There is a sense of location

independence in that the customer generally has no control or knowledge over the exact

location of the provided resources but may be able to specify location at a higher level

of abstraction (e.g., country, state, or datacenter). Examples of resources include storage,

processing, memory, network bandwidth, and virtual machines.

• Rapid elasticity: Cloud services can be rapidly and elastically provisioned, in some cases

automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer,

the capabilities available for provisioning often appear to be unlimited and can be purchased

in any quantity at any time.

• Measured Service: Cloud computing resource usage can be measured, controlled, and re-

ported providing transparency for both the provider and consumer of the utilised service.

Cloud computing services use a metering capability which enables to control and optimise

resource use. This implies that just like air time, electricity or municipality water, IT ser-

vices are charged per usage metrics – pay per use. The more you utilise the higher the

bill.

On-demand self-service1

Broad network access2Measured Service5

Rapid elasticity4 Resource pooling3

Cloud
Computing

Figure 2.2: The five main characteristics of cloud computing

Service Models

Cloud Computing provides a variety of services. The service models are usually shown as "XaaS"

or "Something" as a Service. Cloud services are shown in Figure 2.3. Cloud services are cate-

gorized into three different categories : Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). Each of these categories offers various services to end

users.
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Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) contains the basic building blocks for cloud IT and typically

provide access to networking features, computers (virtual or on dedicated hardware), and data

storage space. It provides access to hardware (server, storage and network), and associated soft-

ware (operating systems, virtualization technology, file system), as a service [BJJ10]. To deploy

your applications in IaaS, you have to install OS images and related application software on the

cloud infrastructure. In this model, it’s your responsibility to patch/update/maintain the OS and

any application software you install. The Cloud provider will typically bill you on computing

power by the hour and the amount of resources allocated and consumed (as per its service level

agreement (SLA). The resource delivery process in IaaS clouds is based on virtualisation tech-

nologies. Virtualization technologies enable multiple virtual Machines with separate operating

systems which are isolated from each other, on the same physical host. Virtualization helps users

to have their customized framework. Another benefit of Virtualization is that, IaaS providers can

supply virtually unlimited resource instances to the user and use hosting hardware in an efficient

way. There are several IaaS providers such as Amazon Elastic Compute Cloud (EC2), Microsoft

Azure, GoGrid and Rackspace.

Platform as a Service (PaaS)

Platforms as a service remove the need for organizations to manage the underlying infrastructure

(usually hardware and operating systems) and allow you to focus on the deployment and manage-

ment of your applications. This helps you be more efficient as you need not be concerned about

the running OS or updates (service packs) and hardware upgrades. The Provider regularly patches

your OS, updates platform features (such as the core .NET platform or SQL database engine) and

updates hardware on demand to meet your demand. In simple terms, PaaS helps users to deploy



2.3 Service Models 7

Infrastructure as a Service (IaaS)

Figure 2.4: example of IaaS cloud providers

their own application with provided programming languages, libraries, services and tools, without

knowing about underlying cloud infrastructure. The service providers have responsibility of host-

ing, managing, maintaining and updating the underlying hardware platform and the consumers

have responsibility of the implemented programs and configuration settings for cloud environ-

ment. In PaaS, simillar to IaaS, users only pay for their usage of services. PaaS allows multiple

users to work on the procedure for applications development simultaneously. The main benefit of

PaaS is the budget saving in implement and management of applications [GB12]. Google Apps,

Microsoft Azure platform and AWS Elastic Beanstalk are three best-known examples of PaaS

Clouds.

Platform as a Service (PaaS)

Figure 2.5: example of PaaS cloud providers

Software as a Service (SaaS)

Software as a Service (SaaS) provides you with a completed product that is run and managed

by the service provider. In most cases, people referring to Software as a Service are referring to

end-user applications. With a SaaS offering you do not have to think about how the service is

maintained or how the underlying infrastructure is managed; you only need to think about how

you will use that particular piece software. A common example of a SaaS application is web-

based email where you can send and receive email without having to manage feature additions

to the email product or maintaining the servers and operating systems that the email program is

running on. The application service providers have the responsibility of the application hosting
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and is limited by service level agreements (SLA), regard to performance, accessibility, uptime

and availability. SaaS allows companies to host applications in house which help to reduce their

own setup, infrastructure, licensing and maintenance costs. SaaS provides software to users with

cheaper price than buying software, licenses, buying the infrastructure and maintaining it.

One of the popular examples of the SaaS model is Salesforce.com’s Customer Relationship

Management (CRM) software, Microsoft Office 365.

Software as a Service (SaaS)

Figure 2.6: example of SaaS cloud providers

Deployment Model

A cloud deployment model represents a specific type of cloud environment, primarily distin-

guished by ownership, size, and access. It tells about the purpose and the nature of the cloud.

There are four common cloud deployment models [MG11]:

Public Clouds

The cloud infrastructure is provisioned for open use by the general public. It may be owned,

managed, and operated by a business, academic, or government organization, or some combination

of them. Services can be dynamically provisioned and are billed based on usage alone. This model

is a true representation of cloud hosting, and provides the highest degree of cost savings while

requiring the least amount of overhead. Public Cloud helps organizations to scale their shared

resources based on their requirements [XPF13]. Generally, public cloud service providers like

Amazon Web Services (AWS), Microsoft and Google own and operate the infrastructure at their

data center and access is generally via the Internet.

Private Clouds

The cloud infrastructure is provisioned for exclusive use by a single organization comprising mul-

tiple consumers (e.g., business units). It may be owned, managed, and operated by the organiza-

tion, a third party, or some combination of them, and it may exist on or off premises. This model

does not bring much in terms of cost efficiency: it is comparable to buying, building and managing

your own infrastructure.
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Community Clouds

A community cloud contains features of the public and private cloud models. Like a public cloud,

the community cloud may contain software, data storage, and computing resources that are utilized

by multiple organizations. The community members generally share similar privacy, performance

and security concerns. Where this model differs from the public model is that the infrastructure is

only utilized by a group of organizations that are known to each other. Similarly to a private cloud,

these organizations are responsible for the operation of their own infrastructure. The community

cloud model can provide greater cost savings than the private cloud while offering some of its

security features.

Hybrid Clouds

The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private,

community, or public) that remain unique entities, but are bound together by standardized or pro-

prietary technology that enables data and application portability (e.g., cloud bursting for load

balancing between clouds). It can then use a public cloud storage provider for backing up less

sensitive information. At the same time, it might share computing resources with other organiza-

tions that have similar needs. By combining the advantages of the other models , the hybrid model

offers organizations the most flexibility.

In Figure 2.7 a general overview of cloud deployment models is represented.

Single

Organization

General

Public

Organization

Shared interests

Private
Cloud

Public
Cloud

Community
Cloud

Hybrid
Cloud

Figure 2.7: review of cloud deployment models





Chapter 3

Scheduling Problem in the Cloud

Task Scheduling is defined as a assignment strategy between a set of resources and tasks or jobs

in order to meet certain performance objectives defined as the scheduling target. The efficiency of

the executing application on the target platform critically depends on the methods used to find the

schedule map between tasks and the set of available resources. The scheduling problem has been

extensively studied in many areas, such as computer science, manufacturing, operations research

and economics. Therefore, the scheduling problem has been extensively explored by researchers

in the past few decades.

Scheduling can be classified into several categories such as: job-shop scheduling, multipro-

cessor scheduling (workflow scheduling) and real-time scheduling. The job shop problem is to

determine the start and completion time of operations of a set of jobs on a set of machines, subject

to the constraint that each machine can handle at most one job at a time and and each job has

a specified processing order through the machines. Multiprocessor scheduling is a technique to

exploit the underlying hardware in a multiprocessor system so that existing parallelism in an ap-

plication program can be fully utilized and interprocessor communication time can be minimized.

The real-time scheduling algorithm determines the interleaving g of execution for jobs of any real-

time instance I. The goal of a real-time scheduling algorithm is to produce a schedule that ensures

that every job of I is executed on the processor during its scheduling window. In this thesis, we

focus on second category, i.e. workflow scheduling problem, in order to find best schedule map

between interdependent tasks and available resources to meed user defined requirements.

Scheduling Structures Overview

Generally, the scheduling algorithms contain three main phases:

• prioritizing phase: to give a priority to each task in workflow application.

• task selection phase: which selects a task for scheduling in each step of the algorithm.

• processor selection phase: for selecting a suitable resource in order to meet the schedule

objective functions.

11



12 Scheduling Problem in the Cloud

The last two phases are repeated until all tasks are scheduled to suitable processors. However,

depending on number of concurrent application to be scheduled, the definition may be redefined.

In terms of number of concurrent application considered in the scheduling problem, the scheduling

problem can classified into main categorises: single and multiple workflow scheduling. The only

difference between these two classes is that, in the multiple workflow scheduling, new phases,

namely filling the ready tasks pool phase, will be added. It is used for selecting ready tasks among

available applications and to made a ready task pool, which will be used in the task selection phase.

For this phase, two common methods are: selecting a single ready task from each application or

add all ready tasks from each application into the ready pool.

In this thesis, we consider single workflow application and defined new strategies for each

phase of scheduling process in our proposed algorithm.

Scheduling Objective

Generally, scheduling strategies generate the mapping between tasks and available resources based

on some particular objectives defined by user. In this case, scheduling algorithms need to takes

into account these requirement QoS parameters in their scheduling function to satisfy user require-

ments. The commonly used scheduling objectives in a cloud computing environment are related

to the tasks completion time (makespan) and resource utilization. However, there are other QoS

parameters that could be considered such as cost, energy, fault-tolerance and reliability.

Scheduling algorithms can have a single objective or multiple objectives. The scheduling

problem becomes more challenging when two or more QoS parameters are considered. In this

case, the scheduling algorithm tries to find a suitable schedule map between the workflow’s tasks

and the available resources in order to meet its objective function, which could be to optimize or

to constrain the problem to a single or multiple QoS parameters.

In this thesis and in the proposed algorithm, we consider two relevant and conflicting QoS

parameters, namely, time and cost as objective functions. The proposed algorithm focuses on

these two QoS parameters to find a feasible schedule map that satisfies the user-defined deadline

and budget constraint values.

Application Model

Generally, there are two major application models, namely, Bag-of-tasks (BoT) and the interdepen-

dent model, that used in many disciplines, including computer science, engineering, astronomy,

physics and chemistry. The most obvious distinction between these two models lies in whether

they have precedence constraints that task ti can not cannot start before successful completion of

its parents.
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Bag-of-tasks model

Bag-of-Tasks (BoT) are parallel applications with no inter-task communication in many scientific

and engineering applications. A variety of problems in several fields, such as computational biol-

ogy [PBC+03], image processing [SCB02] and massive searches [AGM+90] have been modelled

as BoT applications. Although these type of applications consist of independent tasks, the perfor-

mance of their execution is measured by all tasks and, only after executing all tasks, the analysis

can be done. Therefore, the optimization of the aggregate set of results is important, and not the

optimization of a particular task or group of tasks. Due to the independence between jobs in BoT

applications, they can be easily executed on multiple resources in parallel mode to reduce the total

turnaround time of application or meet the application deadline parameter. A scheduler can dis-

tribute tasks of a BoT application among several resources in order to speed up its total turnaround

time. The turnaround of the application is then calculated based on the finish time of all executed

tasks in BoT application.

Interdependent tasks model

In this model, the tasks of application workflow are inter-dependent. A typical workflow applica-

tion can be represented by a Directed Acyclic Graph (DAG), i.e., a directed graph with no cycles.

A DAG can be modeled by a three-tuple G =< T,E,Data >. Let n be the number of tasks in the

workflow. The set of nodes T = {t1, t2, · · · , tn} corresponds to the tasks of the workflow. The set

of edges E represent their data dependencies. A dependency ensures that a child node cannot be

executed before all its parent tasks finish successfully and transfer the required child input data.

Data is a n× n matrix of communication data, where datai, j is the amount of data that must be

transferred from task ti to task t j. The average communication time between the tasks ti and t j is

defined as:

C(ti→t j) = L+
datai, j

B
(3.1)

where B is the average bandwidth among all processor pairs and L is the average latency. This

simplification is commonly considered to label the edges of the graph to allow for the computation

of a priority rank before assigning tasks to processors [THW02].

Due to heterogeneity, each task may have a different execution time on each processor. Then,

ET (ti, p j) represents the Execution Time to complete task ti on processor p j in the available pro-

cessors set P. The average execution time of task ti is defined as:

ET (ti) =
∑p j∈P ET (ti, p j)

|P| (3.2)

where |P| denotes the number of resources in processors set P.

In a given DAG, a task with no predecessors is called an entry task and a task with no succes-

sors is called an exit task. We assume that the DAG has exactly one entry task tentry and one exit
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task texit . If a DAG has multiple entry or exit tasks, a dummy entry or exit task with zero weight

and zero communication edges is added to the graph.

In addition to these definitions, there are some common attributes used in task scheduling,

which will be used in the following sections.

• pred(ti) and succ(ti) denote the set of immediate predecessors and immediate successors of

task ti, respectively. FT (ti) is defined as the Finish Time of task ti on the processor assigned

by the scheduling algorithm.

• Schedule length or makespan denotes the finish time of the last task of the workflow and is

defined as makespan = FT (texit).

• EST (ti, p j) and EFT (ti, p j): denotes Earliest Start Time (EST) and the Earliest Finish Time

(EFT) of a task ti on processor p j, respectively, and are defined as:

EST (ti, p j) = max
{

TAvailable(p j),

max
tparent∈pred(ti)

{AFT (tparent)+C(tparent→ti)}
}

(3.3)

EFT (ti, p j) = EST (ti, p j)+ET (ti, p j) (3.4)

where TAvailable(p j) is the earliest time at which processor p j is ready. The inner max block

in the EST equation is the time at which all data needed by ti arrives at the processor p j.

The communication time C(tparent→ti) is zero if the predecessor node tparent is assigned to

processor p j. For the entry task, EST (tentry, p j) = 0. Then, to calculate EFT , the execution

time of task ti on processor p j (ET ) is added to its Earliest Start Time.

Cloud Providers

Workflow Scheduling

Workflow scheduling has been extensively investigated. Considering the number of workflow ap-

plications in the scheduling problem, the scheduling strategies can be classified into two main

classes: single and multiple workflow scheduling. In terms of time complexity, workflow schedul-

ing strategies have been proposed under two main categories: heuristic and search-based or meta-

heuristic approaches. The heuristic-based algorithms allow approximate solutions - often good

solutions, but not necessarily the best ones - with low time complexity. On the other hand, search-

based or meta-heuristic algorithms may achieve better solutions by performing more iterations,

which results in higher running time than heuristic methods. In this section, we present a brief

survey of task scheduling algorithms.
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Single Workflow Scheduling Algorithms

Single workflow scheduling algorithms are designed to schedule only a single workflow at a time.

If all information about tasks, such as execution and communication costs for each task and the

relationship with other tasks are known beforehand, the scheduling method is categorized as a

Static scheduling strategy; if such information is not available and decisions are made at runtime,

it is categorized as a Dynamic scheduling strategy. Dynamic scheduling is adequate for situations

where the system and task parameters are not known at compile time, which requires decisions to

be made at runtime but with additional overhead. A sample environment is a system where users

submit works, at any time, to a shared computing resource. In this situation, a dynamic algorithm

is required because the workload is only known at runtime, as is the status of each processor when

new tasks arrive and, consequently, cannot optimize any QoS parameters based on the entire work-

flow. By contrast, a static approach can optimize or be constrained to QoS parameters, which are

defined as schedule objectives or constraints, by considering all tasks independently of execution

order or time because the schedule is generated before execution begins. In this thesis, in the

case of single workflow scheduling, we consider that the information about the system and the

workflow are known at compile time. Generally, the scheduling algorithms for a single workflow

contain three main phases: the prioritizing phase, to give a priority to each task; the task selection

phase, which selects a task for scheduling; and the processor selection phase, for selecting a suit-

able processor in order to meet the schedule objective functions. The last two phases are repeated

until all tasks are scheduled to suitable processors.

The scheduling problem is further characterized as single or multi-objective, as one or several

QoS parameters are considered as the objectives of scheduling algorithm.

Cost-optimization, deadline-constraint

Abrishami et al. [ANE13] proposed two scheduling algorithms named IaaS Cloud Partial Critical

Paths (IC-PCP) and the IaaS Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2)

were proposed for cost minimization constrained to a deadline, extending their previous PCP

algorithm in [ANE12]. The PCP scheduling algorithm is proposed for utility grid computing en-

vironments. In order to consider some differences between commercial cloud environments and

utility grid models such as (i) the on-demand (dynamic) resource provisioning, (ii) the homoge-

neous bandwidth among resources and (iii) the pay-as-you-go pricing model, the authors adapted

the PCP scheduling algorithm and proposed two novel workflow scheduling algorithms, i.e., IC-

PCP and IC-PCPD2, for IaaS Cloud environments. The main differences between two proposed

algorithms and the original PCP algorithm are the deadline distribution and the planning phases

which are modified to adapt to the cloud platforms. In other hand, IC-PCP algorithm is a one-

phase algorithm, whereas IC-PCPD2 is a two-phase algorithm. The main idea of these algorithms

is to distribute the given deadline among tasks of the workflow. It starts by assigning the given

deadline as the latest finish time of the exit task. Then, it continues by determining the partial
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critical path (PCP) for the exit task, which is the longest path to the exit node. The IC-PCP al-

gorithm schedules each partial critical path on a single cloud resource type, while IC-PCPD2 is a

two-phase algorithm which, first, distributes the overall deadline on the workflow tasks and, then,

schedules each task based on its subdeadline. Later, in. [CB14], Rodrigo et al. have proposed

the Enhanced IC-PCP with Replication (EIPR) algorithm, an extension to IC-PCP able to use

idle instances and budget surplus to replicate tasks, which considers data transfer time and cloud

resources boot time during the provisioning and scheduling process. The EIPR algorithm uses

idle time of provisioned resources to the replication of tasks in order to increase the chance of

meeting the application deadlines. The experimental results show that the likelihood of meeting

deadlines is increased by using task replication. Authors in [CLCG13] proposed a bi-direction ad-

just heuristic (BDA) to assign tasks to suitable VM instances while maintaining the given deadline

for the workflow application. The BDA scheduling algorithm consists of two stages. In the first

stage, by ignoring the time interval pricing model in cloud environments, each task is assigned

to the appropriate VM type. In the initialize tasks assignment, the BDA scheduling algorithm

uses CPLEX to get an initial scheduling map. At the second stage, a bi-direction adjust process,

composed of the forward and backward scheduling procedures, is applied to allocate tasks to VM

instances according to the initial scheduling map. Sharif et al. in [STZN13] proposed the Multi-

terminal Cut for Privacy in Hybrid Clouds (MPHC) to minimize the cost of executing workflows,

while satisfying both task/data privacy and deadline constraints. In [CLG16], the authors pro-

posed a multiple complete critical-path based heuristic (CPIS) to schedule tasks in XaaS clouds.

The CPIS algorithm divides the workflow deadline into task deadlines, then a proposed list based

heuristic namely LHCM is used to schedule tasks on rented shareable service instances. Mao et

al. [MH11] proposed the Scaling-Consolidation-Scheduling (SCS) scheduling algorithm to ensure

that all tasks are finished before the given deadline at minimum financial cost. The SCS algorithm

tries to minimize the execution cost by using heuristic strategies such as task bundling (merging

tasks into a single one and execute them in the same instance to save data transfers by using the

temporary results stored locally), schedules task on the most cost-efficient instances and instance

consolidation strategy in order to achieved the full utilization of all instances. With the same ob-

jective function, in [BM11], a Hybrid Cloud Optimized Cost (HCOC) algorithm combines the

usage of private and public clouds. HCOC decides which resources should be leased from the

public cloud to increase the processing power of the private cloud to execute a workflow within its

deadline. In [KKYC14], heuristic based workflow scheduling scheme composed of two phases,

namely: VM packing and MRSR (Multi Requests to Single Resource) phases, is proposed. In VM

packing phase, the algorithm tries to combine tasks assigned to different VM generated by any ex-

isting algorithm into a single VM. Then, the packed tasks are merged in parallel with the deadline

assurance in the MRSR phase. Malawski et al. [MFB+15] present a cost optimization model for

scheduling scientific workflows on IaaS clouds under a deadline constraint. Authors in [WHLR16]

proposed a heuristic algorithm called minimal slack time and minimal distance (MSMD) to sched-

ule a workflow application within the deadline constraint value. The MSMD algorithm minimizes

the number of allocated instances and the total VM instances/hour while the deadline constraint
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value for the workflow application is guaranteed. In [CS13], a level based scheduling algorithm

to minimize the total execution cost while meeting the deadline on hybrid cloud environment was

proposed. By using hybrid cloud, the resources can be provided by the public or the private cloud

platform. The proposed algorithm assigns a sub-deadline to each task based on the total dead-

line of the workflow and tasks’ runtime and communication. Then, if the task can be executed

on the resource from the private cloud without its sub-deadline violation, it will execute on the

private cloud. Otherwise, it is allocated to an appropriate resource on the public cloud. Verma

et al. [VK14b] proposed a Deadline Constrained Heuristic based Genetic Algorithms (HGAs) to

schedule applications to cloud resources that minimise the execution cost while meeting the dead-

line. In [CZ12], a discrete version of the comprehensive learning PSO (CLPSO) algorithm based

on the set-based PSO (S-PSO) method for the cloud workflow scheduling problem is proposed.

Time-optimization, budget-constraint

Zeng et al. in [ZVL12] proposed ScaleStar, a budget-conscious scheduling algorithm to effectively

trade-off between the execution time and cost for the execution of many large scale many-task

workflows in clouds with budget constraints. They proposed a novel objective function namely

comparative advantage (CA) which effectively balances the execution time-and-monetary cost

goals. The ScaleStar assigns the selected task to the resource with higher comparative advantage

value. In first the phase, each task in the workflow application is assigned to the resource with

highest CA1 value to effectively deal with time-cost metric trade-off for the current task. Later,

to consider the budget constraint parameter, this initial assignment of the tasks will be changed

by recomputing the CA2 value which compares the total execution time and cost for each task

reassignment. Fard et al. [FFP13] proposed a cost-constraint time optimization scheduling algo-

rithm in public commercial clouds based on a set of rescheduling operations. First, a new Cost

Efficient Fast Makespan (CEFM) algorithm is proposed to optimize both the makespan and cost

of a workflow execution. The CEFM algorithm starts by assigning each task to a VM instance,

which executes the task with the lowest finishing time. Then, based on this initial mapping, CEFM

tries to reduce the total cost of the workflow execution without increasing the makespan. By us-

ing an output schedule map obtained by the CEFM approach, a Budget-Constrained Scheduling

in Clouds (BCSC) algorithm is proposed to schedule a given workflow application with a nearly

optimal makespan while meeting a specified budget constraint. The main idea behind BCSC is to

use a tradeoff between a decremental cost obtained by rescheduling tasks to cheaper VM instances

and the incremental workflow makespan. Mao et al. in [MH13b] proposed two auto-scaling so-

lutions, namely scheduling-first and scaling-first, to minimize job turnaround time within budget

constraints for cloud workflows. The scheduling-first algorithm distributes the total budget to each

individual task based on the task priority and then assigns them to the appropriate VM instance,

while the scaling-first algorithm determines the number of the cloud VM according to the given

budget and then schedules the tasks based on their priority. Xiangyu et al. [LW13] proposed

a heuristic Critical-Greedy (CG) algorithm to minimize the workflow end-to-end delay under a

user-specified financial cost constraint for scientific workflows in IaaS cloud environments. The
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proposed CG starts with the cheapest assignment as an initial least-cost schedules which schedule

all tasks to the resource with minimum cost consumption. Then, the CG algorithm repeats the

rescheduling process to reduce the total execution time until no rescheduling is feasible with the

left budget. Chase et al. [WC16] proposed Multi-Cloud Workflow Mapping (MCWM) scheduling

algorithm to minimize the total execution time under budget constraint values in IaaS multi-cloud

environments. Wu et at. [WLY+15] proposed the Critical-Greedy algorithm scheduling to min-

imize the workflow makespan under a user-specified financial constraint for a single datacenter

cloud. In the first step, the proposed Critical-Greedy algorithm generates an initial schedule where

the cloud meets a given budget for the workflow application. Then, in the next step, by itera-

tive searching, it tries to reschedule critical tasks in order to reduce the total execution time until

no more rescheduling is possible. Zeng et al. [ZVL15] introduced a Security-Aware and Budget-

Aware workflow scheduling strategy (SABA) to minimize the total workflow execution time while

meeting the data security requirement and budget constraint in cloud environments. Taking into

account data security requirements, they defined two type of datasets : moveable datasets and im-

moveable datasets to impose restrictions on data movement and duplication. For the scheduling

phases, they introduced an objective function referred to as Comparative Factor (CF) to make a

balance between execution time and consumption cost. The resource with best CF will be selected

for task assignment.

Time-optimization, cost-optimization

Zeng et al. [ZVZ15] proposed an Adaptive Data-Aware Scheduling (ADAS) to improve the to-

tal makespan in communication-intensive workflow applications by establishing coordination be-

tween task execution and data management. By building the clusters for the workflow tasks and

datasets and executing them on multiple data centres, their approach can effectively improve the

workflow completion time and utilization of resources. [CWG09] introduces an optimized algo-

rithm for task scheduling based on ABC (activity based costing) in cloud computing. The ABC

algorithm assigns priority levels for each task and uses cost drivers. It measures both the cost of

the objects and the performances of activities. An Improved ABC is presented in [SS10] for mak-

ing efficient mapping of tasks to available resources in cloud. Nguyen et al. [MH13a] proposed

a novel scheduling heuristics, Cost with Finish Time-based (CwFT), an extension of the popular

Heterogeneous Earliest Finish Time (HEFT) scheduling algorithm, to select the best processing

unit for each task of a workflow. The CwFT balances between performance of application sched-

ule and the mandatory cost. It shows significant cost savings of workflow execution along with

reasonable total execution time of workflow compared to HEFT. Jian et al. [LSC+11] designed a

cost-conscious scheduling algorithm (CCSH) to reduce the execution time and cost of workflow

application. The main idea of CCSH is using a cost-conscious factor which effectively balances

the trade-off between execution time and monetary cost. Based on this cost-conscious factor, they

presented a new Cost-EFT (CEFT) for selecting the best appropriate resources in the resource

selection phase. Su et al. [SLH+13] presented a cost-efficient task-scheduling algorithm using

two heuristic strategies, namely, Pareto Optimal Scheduling Heuristic (POSH) and Slack Time
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Scheduling Heuristic (STSH). The POSH strategy assigns tasks to the most cost-efficient VM

based on pareto dominance and, then, the STSH strategy tries to reduce monetary costs of non-

critical tasks while keeping the makespan. Lee et al. [LZ13] proposed the critical-path-first (CPF)

scheduling algorithm, which efficiently stretches out the schedule aiming to proactively preserve

critical path length - CPL. Then, they developed an algorithm to compact the output schedule and

minimize resource usage with no makespan increase. Bessai et al. [BYO+12] used the pareto

approach to solve a bi-criteria (execution time and cost) for scheduling workflows on distributed

cloud resources to minimize the overall cost execution and makespan of application. Their al-

gorithm consists of three pareto approach algorithms in accordance with three resource selection

polices : cost-based, time-based and cost-time-based. The first algorithm aims to minimize the the

execution cost of the workflow. The second algorithm attempts to reduce the overall completion

time. Finally, the third algorithm is called cost time-based approach, combines the objectives of

the two first algorithms by selecting only the non-dominated solutions. Later, the same authors

in [BYOG13] propose a set of algorithms for business process scheduling in Cloud computing en-

vironments. Here, simultaneously execution of the same process on several instances is taken into

account. Huu et al. [HKA+11] proposed several different resource allocation strategies to reduce

infrastructure costs while optimizing the application performance. The proposed strategies used

a cost/performance trade-off to find a resource map. Yassa et al. [YCKG13] proposed a new ap-

proach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm

to optimize the scheduling performance. The proposed method is based on the Dynamic Voltage

and Frequency Scaling (DVFS) technique to minimize energy consumption, called DVFS Multi-

Objective Discrete Particle Swarm Optimization (DVFS-MODPSO). It simultaneously optimizes

several conflicting objectives, namely, the makespan, cost and energy. DVFS-MODPSO presents

a set of non-dominated solutions which provides more flexibility for users to assess their prefer-

ences and select a schedule that meets their QoS requirements. A market-oriented hierarchical

scheduling strategy for multi-objective in cloud workflow systems was proposed in [WLN+13].

They analyzed meta-heuristic-based workflow scheduling algorithms, such as GA, ACO and PSO,

in cloud environments aiming to satisfy the QoS requirements.

Deadline-constraint, budget-constraint

Verma et al. in [VK14a] proposed Bi-Criteria Priority based Particle Swarm Optimization (BPSO)

to schedule workflow applications on cloud environments that minimize the execution cost while

meeting the deadline and budget constraints for delivering the result. They used the Particle Swarm

Optimization (PSO) as an evolutionary technique to find the best schedule map between tasks and

resources. Poola et al. [PGB+14] presented a robust and fault-tolerant scheduling algorithm in

cloud environments, considering deadline and budget constraints. They proposed several resource

allocation policies to solve the problem of uncertainties such as performance variations and failures

in the cloud environment by adding slack time based on deadline and budget constraints. It is

concluded that Robustness-Time-Cost (RTC) policy gives highest robustness and lower makespan

and the Robustness-Cost-Time (RCT) Policy gives a robust schedule, but has a marginally higher
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cost of execution. Rahman et al. [RLP11] presented an Adaptive Hybrid Heuristic (AHH) for

scheduling data analytics workflows on hybrid cloud environments. The proposed AHH optimises

cost of workflow execution and satisfies users requirements, such as budget or deadline. It also has

the capability of adapting to changes in the cloud environment. It is designed to first generate a

task-to-resource mapping with minimum execution cost using GA (Genetic Algorithm) within the

user’s budget and deadline. This initial schedule is then utilized to distribute the workflow-level

budget and deadline to task levels. Finally, the Dynamic Critical Path (DCP) heuristic is employed

to dynamically schedule the ready tasks level-by-level based on the initial schedule, budget and

deadline constraints as well as changed status of resources. Shi et al. [SLD+16] proposed an

elastic resource provisioning and task scheduling mechanism to perform scientific workflow jobs

in the cloud environment. Their method tries to complete as many high-priority workflows as

possible under budget and deadline constraints.

Multiple Workflow Scheduling Algorithms

In contrast to single workflow scheduling, concurrent or multiple workflow scheduling has not

received much attention. As with single workflow strategies, multiple workflow scheduling algo-

rithms can be divided into two main categories: static and dynamic strategies. In static strategies,

workflows are available before the execution starts, that is, at compile time. After a schedule is

produced and initiated, no other workflow is considered. This approach, although limited, is ap-

plicable in many real-world applications, for example, when a user has a set of nodes to run a

set of workflows. This methodology is applied by the most common resource management tools,

where a user requests a set of nodes to execute his/her jobs exclusively. On the other hand, dy-

namic strategies exhibit online behavior, where users can submit the workflows at any time. When

scheduling multiple independent workflows that represent user jobs and are, thus, submitted at

different moments in time, the completion time (or turnaround time) includes both the waiting

time and execution time of a given workflow, extending the makespan definition for a single work-

flow scheduling. However, in both cases, single or multiple QoS parameters can be defined as the

scheduling objectives.

In [ZHL16], authors proposed a workflow scheduling system, namely Dyna, in order to min-

imize the monetary cost of each submitted workflows in IaaS clouds while satisfying their prede-

fined deadline. In the proposed system, the cloud performance and price are captured dynamically

by Dyna. The main idea of Dyna is to find the best suitable instance for each task of a given

workflow so that the total execution cost is minimized while the predefined deadline is satisfied.

Li et al. [LZW+12] introduced trust into workflow’s QoS target and proposed a novel customiz-

able cloud workflow scheduling model. They proposed two stage workflow model: the macro

multi-workflow stage is based on trust and micro single workflow stage assigning tasks to the real

resources based on QoS demands. In the second stage, workflows are classified into main cat-

egories, namely time-sensitive and expenses-sensitive. For time-sensitive type, it tries to reduce

the total completion time of workflow, while for expenses-sensitive type, it tries to reduce con-

sumption cost. Li et al. [LQM+12] proposed two online dynamic resource allocation algorithms
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for the IaaS cloud system with preemptable tasks. Both algorithms can adjust the resource alloca-

tion dynamically based on the updated information of the actual task executions. Their approach

contains two online dynamic task scheduling algorithms: dynamic cloud list scheduling (DCLS)

and dynamic cloud min-min scheduling (DCMMS). Experimental results show that the dynamic

procedure with updated information provides significant improvement in the situation where re-

source contention is fierce. Sharif et al. [STZN14] presented two online algorithms to schedule

multiple workflows under deadline and privacy constraints, while considering the dynamic na-

ture of hybrid cloud environment. Xu et al. [XCWB09] proposed an algorithm was proposed for

scheduling multiple workflows with multiple QoS constraints on the cloud. The resulting multiple

QoS-constrained scheduling strategies of multiple workflows (MQMW) minimize the makespan

and the cost of the resources and increase the scheduling success rate. The algorithm considers

two objectives, time and cost, that can be adapted to the user requirements. In [ZH14], authors

proposed ToF, a general transformation-based optimization framework for workflows in the cloud

platform. Bochenina, in [Boc14], introduced a strategy for mapping the tasks of multiple work-

flows with different deadlines on the static set of resources. Jiang et al. in [JHC+11] proposed a

method to minimize the total execution time of a scheduling solution for concurrent workflows in

the HPC cloud. Their method tries to take advantage of any schedule gaps. First, a workflow is

partitioned into several tasks, grouped by using a clustering-based PCH approach [BM10, BM07].

Then, the proposed distributed gap search is applied to allocate these task groups to processors.

The difference between the original gap search algorithm and proposed distributed gap search

method is that by using the original gap search method, an entire task group is allocated to a single

gap on a specific resource, but the proposed distributed gap approach allows for allocating the

tasks of the same group to different gaps on different resources.





Chapter 4

Deadline-Budget Workflow Scheduling
(DBWS)

Recently cloud computing has gained popularity among e-Science environments as high perfor-

mance computing platform. From the viewpoint of the system, applications can be submitted by

users at any moment in time and have different QoS requirements. To achieve higher rates of

successful applications attending to their QoS demands, an effective resource allocation (schedul-

ing) strategy between workflow’s tasks and available resources is required. Several algorithms

have been proposed for QoS workflow scheduling, but most of them use search-based strategies

that generally have a high time complexity, making them less useful in realistic scenarios. In this

thesis, we present a heuristic scheduling algorithm with quadratic time complexity that considers

two important constraints for QoS-based workflow scheduling, time and cost, named Deadline-

Budget Workflow Scheduling (DBWS) for cloud environments. Performance evaluation on some

well-known scientific workflows shows that the DBWS algorithm accomplishes both constraints

with higher success rate in comparison to the current state-of-the-art heuristic-based approaches.

Introduction

Cloud computing infrastructures are the new platforms for tackling the execution needs of large-

scale applications. Cloud computing promises the important benefits such as providing nearly-

unlimited computing resources to execute application’s task, on-demand scaling and pay-per-use

metered service. Computing resources (i.e. virtual machines (VMs)) are dynamically allocated

to user tasks based on application requirements, and users just pay for what they used. Each

large-scale workflow application contains several tasks. Generally, workflow application can be

represented by a Directed Acyclic Graph (DAG) that includes independent tasks, which can be

executed simultaneously, or dependent task which needs to be executed in a given other. In order

to meet user’s application QoS parameters, we need to find an efficient schedule map to execute

the application tasks on multiple resources.

23
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The majority of studies about workflow scheduling focus on single workflow application

scheduling. However, these approaches are not adequate for cloud infrastructures due to two

major features: pay-as-you-go pricing model and on-demand resource provisioning. For example,

in [ANE13, SV15, WLY+15, ZVZ15, ZVL15, CB14, LW13] authors considered fixed number of

resources to the whole life time of the workflow application. But in our work, resources can be

acquired at any time and released when they are idle, which saves the total charged cost. Further,

another approaches such as in [ANE13, SV15, WLY+15, ZVZ15, ZVL15], did not consider the

hourly charging billing model in the cost model or the data transfer time in total time reservation

of the virtual machine, which affects the effectiveness of the algorithm. In cloud computing in-

frastructures, such as Amazon EC2 1, the charging policy is based on an hour billing model even

if the last reservation interval is not used. In this case, time fractions produced by previous tasks

can be used by later tasks to save total renting cost. On the other hand, the workflow scheduling

problem becomes more challenging when we consider multiple QoS parameters. Many algorithms

have been proposed for multi-objective scheduling, but in most of them meta-heuristic methods

or search-based strategies have been used to achieve good solutions. However, these methods

based on meta-heuristics or search-based strategies usually need significantly high planning costs

in terms of the time consumed to produce good results, which makes them less useful in real

platforms that need to obtain map decisions on the fly.

In this chapter, a low-time complexity heuristic, named Deadline-Budget Workflow Schedul-

ing (DBWS), is proposed to schedule workflow applications on cloud infrastructures constrained

to two QoS parameters. In our model, the QoS parameters are time and cost. The objective of

the proposed DBWS algorithm is to find a feasible schedule map that satisfies the user defined

deadline and budget constraint values. To fulfill this objective, the proposed approach implements

a mechanism to control the time and cost consumption of each task when producing a schedule so-

lution. To the best of our knowledge, the algorithm proposed here is the first low-time complexity

heuristic in cloud computing environment addressing two QoS parameters as constraints.

Workflow application model

Scientific workflow applications are commonly represented by a Directed Acyclic Graph (DAG),

a directed graph with no cycles. Formally, a workflow application is a DAG represented by a triple

G =< T,E,data >, where T = {t1, t2, . . . , tn} is a finite set of tasks and n denotes the number of

tasks in the workflow application. The set of edges E represent their data dependencies. A depen-

dency ensures that a child node cannot be executed before all its parent tasks finish successfully

and transfer the required input data. Let data be a n× n matrix of communication data, where

data(ti, t j) is the file size required to be transmitted before task t j execution from task ti. The

C(ti→t j) represents the average transfer time between the tasks ti and t j which is calculated based

on the average bandwidth and latency among all resources pair. In a given DAG, a task with no

predecessors is called an entry task and a task with no successors is called an exit task. We assume

1http://aws.amazon.com/ec2
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that the DAG has exactly one entry task tentry and one exit task texit . If a DAG has multiple entry

or exit tasks, a dummy entry or exit task with zero weight and zero communication edges is added

to the graph.

Cloud resource model

The target cloud computing platform is composed of a set of m heterogeneous resources R =

{∪m
j=1r j | r j ∈ V Mtype}, that provide services of different capabilities and costs. Each resource

includes computation service, e.g., Amazon Elastic Cloud Compute (EC2)2 and storage services,

e.g., Amazon Elastic Block Store (EBS)3, used as a local storage device for saving the input/output

files. In this study, all computation and storage resources are assumed to be in same data center or

region so that average bandwidth between computation resources is almost equal. Notice that the

transfer time between two tasks being executed on the same VM is 0. Also, resources are offered

in form of different type of virtual machines (V Mtype). Each VM type has its own configuration

for CPU capacity, memory size and an associated cost. Further, it is assumed that there is no

limitation of the number of resources (VM) used by a workflow application and leasing a VM

requires an initial boot time in order to be properly initialized and made available to the user; this

time is not negligible and needs to be considered in the scheduling plan [MH12]. Similarly, on

current commercial clouds, the pricing model is based on pay-as-go billing model for the number

of time interval usage of a VM and it is specified by the cloud provider. The user will be charged

for each complete time interval even if it does not completely use the time interval.

In this study, each resource r j can be of any type as provided by Amazon EC2 (e.g. m1.small,

m1.large, m1.xlarge and c1.medium). For a given resource r j of a certain instance type, the

average performance measured in GFLOPs and its price per hour of computation are known. The

average performance in billions of floating point operations per second (GFLOP) of four differ-

ent Amazon EC2 instance types thorough extensive benchmark experimentation are evaluated in

[IOY+11]. In our model, we assume that each task is executed in any of these resources can ben-

efit from a parallel execution using all the virtual cores exposed by the instance [DP14]. Also,

according to Amazon cloud provider, users are charged based on the time interval of one hour

(interval time = 3600s). Table.4.1 summarises the mean performance, the cost per hour of com-

putation (Costr j ), and the ratio GFLOPs per invested dollar of these resources. Since all resource

are located in the same data center or region, the internal data transfer cost is assumed to be zero.

Unlike most previous researches in this area, here, we present an array of release/acquire

(V Mr/a) timestamp for each used VM resources which will be updated during the scheduling pro-

cess. The array of timestamp V Mr/a = {(S1,F1),(S2,F2), . . .}where each pair (S,F) represents the

Start and Finish time of consecutively execution of the target VM. These timestamps are calculated

based on assigned tasks to the target VM.

2http://aws.amazon.com/EC2/
3http://aws.amazon.com/EBS/
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Table 4.1: Performance and price of various Amazon EC2 instances

Instance Mean performance
Price[$/h] GFLOPS/$

type [GFLOPS]
m1.small 2.0 0.1 19.6

m1.large 7.1 0.4 17.9

m1.xlarge 11.4 0.8 14.2

c1.medium 3.9 0.2 19.6

During the scheduling process and after making final decision of the appropriate resource (rsel)

for execution of the current task (tcurr), if the current task could not benefit from the last executed

task on rsel to reduce its execution cost, i.e., using the remaining last interval from the last previous

scheduled task on rsel , the V Mr/a of resource rsel is updated in the way that: a) add the release

time after execution of the last scheduled task ; b) add the start (acquire) time according to the start

time of tcurr. Otherwise, the release time of resource rsel will be updated according to the finish

time of the current task. Obviously, each resource can be rented for as many times and hours as

required for finishing all the tasks scheduled on it. Additionally, we keep the set of scheduled tasks

on each resource r j denoted as schedr j = {ti | AR(ti) = r j}, where AR(ti) represents the Assigned

Resource on which the task ti is scheduled to be executed. Each set schedr j is sorted based on the

finish time of its tasks.

Problem definition

The scheduling problem is defined as the finding a map between tasks and resources in order to

meet the QoS parameters defined for each job. The problem here consists in finding a schedule

map in such a way that the total execution time (makespan) and economical costs are constrained

to user’s defined values for time and cost. We describe next how the two measures are computed.

Makespan

For computing the total execution time (makespan) of a given workflow, it is necessary to defined

the Time Reservation (T R) of execution for task ti on resource r j as the sum of the execution time

of task ti on resource r j (ET (ti,r j)) and the time required for transferring the biggest input data

from any parent of task tp ∈ pred(ti). The information of task execution time (ET ) can be gathered

via benchmarking or via precise performance models based on existing estimation techniques (e.g.

historical data [JWT+04] and analytical modelling [NKP+00]).

T R(ti,r j) = max
tp∈pred(ti)

{
Ctp→ti

}
+ET (ti,r j) (4.1)

Considering the existence of data transfer time between tasks, for each task ti to be executed in

resource r j, the resource r j needs to be deployed before the task ti starts transferring data from its

parent and can be released after its execution is finished and data is transferred to its child. First,
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we define avail(r j) as the the earliest start time of task ti on resource r j without considering its

parents.

avail(r j) =





0 ,schedr j = /0

FT (tl,r j) ,schedr j 6= /0

(4.2)

where tl is the last task in sorted tasks scheduled list for resource r j (schedr j ). Based on

avail(r j), we defined the Release Time of resource r j (RT (r j)) as the last rental period of one hour

(interval time = 3600s) for the last scheduled task on it. After that, resource r j will be released if

no other task starts executing on the resource.

RT (r j) =

⌈
avail(r j)

interval time

⌉
× interval time (4.3)

Figure 4.1 shows a sample schedule generated for scheduled task t1, t2 and t3 and current task

t4 which is selected to be scheduled. The Release Time of three resources, calculated by Eq. 4.3,

are indicated as the last interval used by their last scheduled task. Note that, task t4 is not scheduled

and assigned to its target resource yet.

Next, the Start Time (ST ) and Finish time (FT ) of task ti on each resource r j are calculated as:

ST (ti,r j) = max
{

max
tp∈pred(ti)

{
FT (tp)

}
,avail(r j)

}
(4.4)

FT (ti,r j) = λ(ti,r j)+ST (ti,r j)+T R(ti,r j) (4.5)

where λ(ti,r j) is defined as required boot time for acquiring resource instance r j. If task ti
can be started at last interval time for resource r j, no boot time required to be considered for

task’s completion, otherwise, the target resource r j need to be lunched and its boot time should

be considered as a delay in task finish time. For example, in Figure 4.1, only if task t4 wants to

scheduled on resource V M3, a boot time is required to be consider on its finish time because it

starts after current release time of V M3. The λ(ti,r j) is calculated by:

λ(ti,r j) =





0 ,ST (ti,r j)< RT (r j) OR schedr j = /0

boot_timer j ,otherwise

(4.6)

where boot_timer j is the VM startup/boot time. In this study, we consider boot_timer j = 97s based

on the measurements reported in [MH12] for the Amazon EC2 cloud. Please note that, during the

resource selection phase for each task ti, the λ(ti,r j) value is calculated according to the current

situation of the target resources r j, i.e. previous scheduled task on it.

The makespan or Schedule length is finally defined as the finish time of the last task of the

workflow:

DAGmakespan = FT (texit) (4.7)
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Figure 4.1: Example of a schedule. Tasks t1, t2 and t3 are scheduled; and task t4 is evaluated for
scheduling

Financial cost

The financial cost of task ti on resource r j is calculated based on total usage time for complete task

execution, considering data transfer time, execution time and resource usage price. In this research,

we consider Amazon EC2 instance as the our platform which makes the hour price billing for each

instance. In this model, if a task assigned to resource could not fully used the last hour interval, it

will be charged for whole of it, i.e. partial hours are rounded up. As a consequence, if other tasks

can be executed during that paid interval, they will not be charged for it. We define total usage

time of task ti as the payable period to be charged.

paytime(ti,r j) =





FT (ti,r j)−ST (ti,r j) ,RT (r j)< ST (ti,r j)

0 ,FT (ti,r j)< RT (r j)

FT (ti,r j)−RT (r j) ,otherwise

(4.8)

The otherwise condition will be applied if the task ti starts before the current release time of

resource r j (RT (r j)) and finishes after it. So, in this case, the time slice before RT (r j) is paid by

previous tasks and should not be considered in the current usage time of task ti.

The paytime equal to zero means that the task can executed on previous paid interval (but

not fully used) without any additional charge. For example, in Figure 4.1, if current task t4 is

scheduled on resource V M2 the paytime(t4,V M2) = 0. By considering Eq. 4.8, the pay time for

resource V M1 is equal to paytime(t4,V M1) = FT (t4,V M1)−RT (V M1) and for resource V M3 we

have paytime(t4,V M3) = FT (t4,V M3)− ST (t4,V M3). Please not that, the boot_time of resource

V M3 is already considered in FT (t4,V M3) by Eq. 4.5.

The cost execution of task ti for paytime > 0 on resource r j is computed by:

Cost(ti,r j) =

⌈
paytime(ti,r j)

interval time

⌉
×Pr j (4.9)

where Pr j is the associated cost of resource r j for each usage interval (Table. 4.1). Thus, the overall
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cost for executing a workflow application is:

DAGcost = ∑
ti∈T

{
Cost(ti,r′) |ti ∈ schedr′

}
(4.10)

Proposed Deadline–Budget workflow Scheduling (DBWS) algorithm

In this section, we present the Deadline-Budget Workflow Scheduling (DBWS) for cloud envi-

ronments, which aims to find a feasible schedule within a budget and deadline constraints. The

DBWS algorithm is a heuristic strategy that in a single step obtains a schedule that always accom-

plishes the deadline constraint and that may accomplish or not the budget constraint. If the cost

constraint is met, we have a successful schedule, otherwise we have a failure and no schedule is

produced. The algorithm is evaluated based on the success rate.

Before the description of the DBWS algorithm, next we present the attributes used in the

algorithm.

• tcurr denotes the current task to be schedule, selected on the task selection phase among all

ready tasks;

• rsel denotes the target resource to execute tcurr on it;

• FTmin(tcurr) and FTmax(tcurr) denote the minimum and maximum finish time of current task

among all tested resources;

• `(ti) denotes the level of task ti; it is an integer value representing the maximum number of

edges of the paths from the entry node to ti. For the entry node, the level is `(tentry) = 1, and

for other tasks, it is given by:

`(ti) = 1+ max
tp∈pred(ti)

{
`(tp)

}
(4.11)

• Costmin(tcurr) and Costmax(tcurr) denote the minimum and maximum execution cost of the

current task among all tested resources;

• Costhigh(DAG) and Costlow(DAG) represent the total execution cost for scheduling the target

application workflow on the set of homogeneous VM with highest and lowest cost among all

possible VM types in our platform. Here, we use the HEFT[THW02] algorithm to schedule

a workflow application.

The DBWS algorithm consists of two phases, namely a task selection phase and a resource

selection phase as described next.

Task selection

Tasks are selected according to their priorities. To assign a priority to a task in the DAG, the

upward rank (rank_u) [THW02] is computed. This rank represents, for a task ti, the length of the
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longest path from task ti to the exit node(texit), including the computational time of ti, and it is

given by Eq. 4.12:

ranku(ti) = ET (ti)+ max
tchild∈succ(ti)

{
Cti→tchild + ranku(tchild)

}
(4.12)

where ET (ti) is the average execution time of task ti over all resources, Cti→tchild is the average

communication time between two tasks ti and tchild , and succ(ti) are the set of immediate successor

tasks of task ti. To prioritize tasks it is common to consider average values because they have to

be prioritize before knowing the location where they will run. For the exit node, ranku(texit) =

ET (texit).

Resource Selection

The target VM to be selected to execute the current task is guided by the following quantities re-

lated to cost and time. To select the best suitable resource, a trade-off between these two variables,

time and cost, is evaluated. We define a variable SDL as the time limit. SDL is defined as the sub-

deadline that is assigned to each task based on the total application deadline. First, all tasks are

divided in different levels based on their depth in the graph. We defined level execution (Levelexe)

as the maximum execution length of all tasks in corresponding level and is given by:

Level j
exe = max

ti∈T
`(ti)== j

{
ETmax(ti)+ max

tp∈pred(ti)
{Ctp→ti)}

}
(4.13)

where ETmax(ti) represents the maximum execution time for task ti among all V Mtype. In the next

step, we distribute the user deadline (Duser) among all levels. The sub-deadline value for level j

(Level j
DL) is computed recursively by traversing the task graph downwards, starting from the first

level, as shown bellow:

Level j
DL = Level j−1

DL +Duser×
Lvel j

exe

∑
1≤ j′≤`(texit)

Level j′
exe

(4.14)

For the first level (Level1
DL), the first part of Eq.(4.14) is considered zero. Finally, all tasks

belonging to the same level have the same sub-deadline.

SDL(tcurr) =
{

Level j
DL | `(ti) == j

}
(4.15)

Note that, the task’s sub-deadline is a soft limit as in most deadline distribution strategies; if the

scheduler cannot find a resource (VM) that satisfies the sub-deadline for the current task, the

resource that can finish the current task at the earliest time may is selected.

The resource selection phase is based on the combination of the two QoS factors, time and

cost, in order to obtain the best balance between time and cost minimum values. We define two

relative quantities, namely, Time Quality (TimeQ) and Cost Quality (CostQ), for current task tcurr
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on each resource r j ∈ R∪R′, where R represents the set of resources (VM instances) used in the

previous steps of scheduling, and R′ is defined as the set of one temporary resource from each

available V Mtype. At each step after selecting the suitable resource rsel for task tcurr, R is updated

by R = {R∪ rsel | rsel /∈ R}.
Both time and cost quantities are shown in (Eq. 4.16) and (Eq. 4.17), respectively. Both

quantities are normalized by their maximum values.

TimeQ(tcurr,r j) =
ξ ×SDL(tcurr)−FT (tcurr,r j)

FTmax(tcurr)−FTmin(tcurr)
(4.16)

CostQ(tcurr,r j) =
Costmax(tcurr)−Cost(tcurr,r j)

Costmax(tcurr)−Costmin(tcurr)
×ξ (4.17)

where

ξ =





1 if FT (tcurr,r j)< SDL(tcurr)

0 otherwise
(4.18)

TimeQ measures how much closer to the task sub-deadline (SDL) the finish time of current task

on resource r j is. The sub-deadline is defined as the maximum allowance of task completion time.

Consequently, resources with higher TimeQ values, i.e. larger distance between finish time and

sub-deadline, have higher possibility to be selected. If the current task has higher finish time on

resource r j than its sub-deadline, TimeQ assumes a negative value for r j, reducing the possibility

for this resource to be selected. Similarly, CostQ measures the difference between the actual cost

on resource r j and the maximum execution cost.

In the case that none of the resources can guarantee the current task sub-deadline (SDL(tcurr)),

CostQ is zero for all of them, and TimeQ for each resource r j is a negative value that represents the

relative finish time obtained with r j, i.e., the lower finish time causes to the lower negative value.

And, the resource with higher TimeQ , i.e., close to zero, would be selected.

Finally, to select the most suitable resource for current task, the Quality measure (Q) for each

resource r j is computed as shown in Eq(4.19):

Q(tcurr,r j) = TimeQ(tcurr,r j)× (1−CF) + CostQ(tcurr,r j)×CF (4.19)

where Cost-efficient Factor (CF ) is the tradeoff factor and defined as:

CF =
Costlow(DAG)

Buser
(4.20)

Both time quantity (TimeQ) and cost quantity (CostQ) parameters are weighted by the ratio

of the cheapest cost execution of the whole workflow application (Costlow(DAG)) over the user

defined available budget (Buser) so that the effectiveness of both time and cost factors can be

controlled. A lower value of CF means that the user prefers to pay more to execute the application
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faster, so that the time quality (TimeQ) is more predominant in the resource Quality measure (Q).

In the same way, a higher value of CF means that the user available budget is close to the cheapest

possible execution cost of the workflow so that the time quality (TimeQ) is inconspicuous while

the cost quality (CostQ) becomes more influential, allowing the selection of more cheap resources

that guarantee a lower execution cost for tcurr.

The DBWS algorithm is shown in Algorithm 1. After some initializations in lines 1-2, first, the

possibility of finding a schedule map under a user defined budget is checked in line 3. Then, the

sub-deadline value for each task is computed according Eq. 4.15 in line 8. The DBWS algorithm

starts to map all tasks of the application (while looping in lines 9–18). At each step, on line 10,

among all ready tasks, the task with highest priority (ranku) is selected as the current task (tcurr).

Then, in lines 11–13, the Quality measure for assigning tcurr to the resource r j (Q(tcurr,r j)) is

calculated. Note that, first, the finish time (FT ) and execution cost of the current task is calculated

and then the quality measure for all resources is calculated. Next, the resource (rsel) with the high-

est quality measure among all resources is selected (line 14). Finally, after assigning the current

task to the resource, the release/acquire timestamp for the resource rsel is updated as explained in

theresource model in section 4.3.

Algorithm 1 DBWS algorithm

Require: a DAG and user’s QoS Parameters values for Deadline (Duser) and Budget (Buser)
1: Compute and sort all tasks based on their upward rank (ranku) value
2: Calculate HEFT schedule cost on the resources with cheapest (Costlow) and most expensive

(Costhigh) cost from V Mtype

3: if Buser <Costlow(DAG) then
4: return no possible schedule map
5: else if Buser >Costhigh(DAG) then
6: return HEFT scheduled map on most expensive V Mtype

7: end if
8: Compute the Sub-DeadLine value (SDL) for each task
9: while there is an unscheduled task do

10: tcurr = the next ready task with highest ranku value
11: for all r j ∈ R∪R′ do
12: Calculate Quality measure Q(tcurr,r j) using Eq.4.19
13: end for
14: rsel = resource r j with highest Quality measure (Q)
15: Assign current task tcurr to resource rsel
16: Update R = {R∪ rsel | rsel /∈ R}
17: Update V Mr/a(rsel)
18: end while
19: return Schedule Map

In terms of time complexity, DBWS requires the computation of the upward rank (ranku)

and Sub-DeadLines (SDL) for each task that have complexity O(n.p), where p is the number of

available resources and n is the number of tasks in the workflow application. In the resource

selection phase, to find and assign a suitable resource for the current task, the complexity is O(n.p)
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for calculating ST and FT for the current task among all resources, plus O(p) for calculating the

Quality measure. The total time is O(n.p+ n(n.p+ p)), where the total algorithm complexity is

of the order O(n2.p).

Experimental results

This section presents performance comparisons of the DBWS algorithm with four most recently

published algorithms, Hybrid [SLH+13], MTCT (Min-min based time and cost tradeoff) [XYQA16],

CwFT (Cost with Finish Time-based) [MH13a] scheduling algorithms and SABA (Security-Aware

and Budget-Aware) [ZVL15]. We choose MTCT [XYQA16] for comparison because it outper-

forms LOSS algorithms [SZTD07] and IC-PCP [ANE13].

Budget and deadline parameters

To evaluate the DBWS algorithm, in our experiment, we need to define a value for time and cost

as Deadline and Budget constraint parameters. To specify these parameters, we need to defined

boundary values for each of them. By using HEFT scheduling algorithm, we calculate the total

execution time (makespan) of the workflow scheduled on the set of homogeneous VM instance

with highest and lowest associated cost as the minimum (minD) and the maximum (maxD) deadline

boundary value. In the same way, the corresponding execution costs are the maximum (maxB) and

minimum (minB) execution cost of the workflow application. With these highest and lowest bound

values, we define for the current application a unique Deadline and Budget constraint, as described

by Eq. 4.21 and Eq. 4.22:

Duser = minD +αD× (maxD−minD) (4.21)

Buser = minB +αB× (maxB−minB) (4.22)

where the deadline parameter αD and budget parameter αB can be selected in the range of

[0 . . .1]. In this thesis, to observe the ability of finding valid schedule maps, we selected a low set

of values, {0.1,0.3,0.5}, for time and cost parameters (αD and αB) to test the performance of each

algorithm on harder conditions. Undoubtedly, increasing values for αD and αB, we would be able

to achieve higher successful percentage rates.

Performance metric

To evaluate and compare our algorithm with other approaches, we consider the Planning Success-

ful Rate (PSR), as expressed by Eq. 4.23. This metric provides the percentage of valid schedules

obtained in a given experiment.

PSR = 100× Successful Planning
Total Number in experiment

(4.23)
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Figure 4.2: PSR value for CYBERSHAKE
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Figure 4.3: PSR value for EPIGENOMIC
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Figure 4.4: PSR value for LIGO
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Figure 4.5: PSR value for MONTAGE

In addition, to investigate the quality of results, we normalized the achieved scheduling makep-

san and execution cost by each algorithm, namely NM (Normalized makespan) and NB (Normal-

ized Budget) as described in Eq. 4.24 and Eq. 4.25:

NM =
Duser

DAGmakespan
(4.24)

NB =
Buser

DAGcost
(4.25)

Note that, both metrics NM and NB are calculated for each schedule map, even for not suc-

cessful ones, achieved by the algorithm. Basically, lower value than 1 for NM and NB metrics

means that the schedule map could not meet the constraint values for time and cost, respectively.

Results and discussion

To evaluate the algorithms on a standard and real set of workflow applications, a set of work-

flows were generated using the code developed in Pegasus toolkit4. Four well known structures

were chosen [JCD+13], namely: CYBERSHAKE, EPIGENOMIC, LIGO and MONTAGE. The work-

flows that we use are characterized as CPU-bound (EPIGENOMIC), I/O-bound (MONTAGE), data-

intensive (CYBERSHAKE), workflows with large memory requirements (CYBERSHAKE, LIGO),

and workflows with large resource requirements (CYBERSHAKE, LIGO). For each type of these

real world applications workflows, we generated 1000 DAGs with a number of tasks equal to 50,

300 and 1000 tasks.
4https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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The original implementation of the compared scheduling algorithms assumed a fixed number

of resources during the schedule map. In our implementation of those algorithms, we assigned an

initialized fixed number of resources equal to the maximum number of concurrent tasks among

all levels in the workflow application. Also, to apply the cost consumption during the scheduling

process, we consider the same approach to calculated the cost execution of each task (Eq.4.9) for

all algorithms. Also, for the Hybrid [SLH+13] scheduling algorithm, we consider two version,

namely Hybrid (α = 0.3) and Hybrid (α = 0.7), where the α parameter represents the user’s

preference for the execution time and the monetary cost, i.e lower α corresponds to less monetary

cost.

Figures 4.2-4.5 shows the average Planning Successful Rate (PSR) obtained for different real

workflow application considered here. The main result is that the algorithm DBWS obtains good

performance in comparison to other state-of-the-art heuristic-based algorithms, for the range of

budget and deadline values considered here. By increasing budget factor (αB), PSR values ob-

tained by DBWS are improved.

Figures 4.6 and 4.7 represent the normalized makespan and cost, obtained by each algorithm.

In other to have a better presentation, NM and NB values are divided into two main categories,

where safe is represented by the green color and unsafe is represented by the red color. A value

greater than 1 for the NM metric (Eq.4.24) means that the algorithm could obtain a schedule

makespan lower than the user defined deadline. But a lower value NM < 1 means that the al-

gorithm failed to find the schedule map with a makepsan lower than the user defined deadline.

The same explanation can be considered for NB metric (Eq.4.25). As it is shown in Figure 4.6,

the makespan of the schedule map obtained by proposed DBWS algorithm always meet the user

defined deadline constraint value for all range of budget factor αB. However, for the total cost

execution in Figure 4.7, by decreasing the time factor αD, the execution time of schedule map

obtained by DBWS becomes higher than the user defined budget. Note that the PSR values repre-

sented in Figures 4.2-4.5 are calculated based on meeting both time and cost constraint value by

the schedule map. For example, despite of the best reduction in execution cost by CwFT schedul-

ing algorithm in Figures 4.2-4.5, due to failing in meeting the deadline value, the CwFT approach

shows the worst performance in terms of PSR value (Figure 4.2-4.5). Also, for SABA scheduling

algorithm, it fails in most cases as shown by the PSR metric. The reason can be explained due to

the strategy used for VM assignment, namely Comparative Factor (CF). The CF approach used the

trade-off balance between time and cost factors and did not control the cost consumption during

the scheduling process. As seen from Figures 4.6 and 4.7, SABA shows the best performance in

total execution time reduction and worst one for total cost.
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Chapter 5

Summary and Conclusion

In this section, I summarized the main contributions achieved in this thesis.

Summary of Contribution

This thesis focus on a scheduling algorithm for workflow applications on cloud computing plat-

forms based on user’s QoS requirements. The two major QoS parameters considered in this thesis

are cost and time.

The contributions of this thesis are:

• a review of multiple QoS parameter workflow scheduling on cloud computing environment;

• a new heuristic algorithm with quadratic complexity for workflow application scheduling,

constrained to time and cost;

• extensive evaluation with results for real-world applications.

Conclusions

In this thesis, we presente the Deadline-Budget Workflow Scheduling (DBWS) for cloud environ-

ments, which maps a workflow application to cloud resources constrained to user-defined dead-

line and budget values. The algorithm was compared with other state-of-the-art heuristic-based

scheduling algorithms. In terms of time complexity, which is a critical factor for effective usage

on real platforms, our algorithm has quadratic time complexity similarly to the state-of-the-art

heuristics. In terms of the quality of results, DBWS achieves better rates of successful schedules

compared to other heuristic-based approaches for tested real work workflow applications. For the

range values of deadline and budget constraints considered in this work, DBWS shows a significant

improvement of the successful planning rate for the workflows and cloud platform considered.

In conclusion, we have presented the DBWS algorithm for budget and deadline constrained

scheduling, which has proved to achieve better performance than other heuristic-based approaches,

namely Hybrid [SLH+13] MTCT [XYQA16] and CwFT [MH13a].

37
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Directions for Future Research

In future work, we intend to compare the proposed approach with search-based or meta-heuristic

strategies which may improve the quality of results by performing a higher number of iterations on

the solution search space. Also, we intend to extend the algorithm to consider dynamic concurrent

workflow applications which can be submitted by any user at any time.
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