
Carlos Fernando Rebelo Monteiro

HandSpy: managing experiments
on writing studies

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Setembro de 2012

Carlos Fernando Rebelo Monteiro

HandSpy: managing experiments
on writing studies

Tese submetida à Faculdade de Ciências da

Universidade do Porto como parte dos requisitos para a obtenção do grau de

Mestre em Engenharia de Redes em Sistemas Informáticos

Orientador: Prof. Dr. José Paulo Leal

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Setembro de 2012

Acknowledgments

To my supervisor, professor José Paulo Leal for his support and decisive guidance

during this work.

To my parents and my brother, I want to thank for neverending years of support.

To Rui Alves, Teresa Limpo, Ilda de Jesus and Marcos Dias I want to thank for the

feedback and patience during HandSpy development.

Finally, I want to thank my girlfriend, for all the incitement and patience during this

work.

ii

Abstract

Experiments on cognitive processes require a detailed analysis of the contribution of

many participants. In the case of cognitive processes in writing, these experiments

require special software tools to collect gestures performed with a pen or a stylus,

and recorded with special hardware. These tools produce different kinds of data files

in binary and proprietary formats that need to be managed on a workstation file

system for further processing with generic tools, such as spreadsheets and statistical

analysis software. The lack of common formats and open repositories hinders the

possibility of distributing the work load among researchers within the research group,

of re-processing the collected data with software developed by other research groups,

and of sharing results with the rest of the cognitive processes research community.

This thesis describes the development of HandSpy, a collaborative environment for

managing experiments in the cognitive processes in writing. This environment was

designed to cover all the stages of the experiment, from the definition of tasks to be

performed by participants, to the synthesis of results. Collaboration in HandSpy is

enabled by a rich web interface. To decouple the environment from existing hardware

devices for collecting written production, namely digitizing tablets and smart pens,

HandSpy is based on the InkML standard, an XML data format for representing digital

ink. This design choice shaped many of the features in HandSpy, such as the use of an

XML database for managing application data and the use of XML transformations.

XML transformations convert between persistent data representations used for storage

and transient data representations required by the widgets on the user interface.

Despite being a system independent from a specifical collecting device, for the system

validation, a framework for data collection was created. This framework has also been

highlighted in the thesis due to the important role it took in a data collection process,

of a scientific project to study the cognitive processes involved in writing.

iii

Resumo

As experiências cient́ıficas no estudo de processos cognitivos requerem uma análise de-

talhada de dados provenientes de vários participantes. No caso do estudo de processos

cognitivos na escrita, é necessário usar ferramentas que permitam a recolha detalhada

dos dados que representam os traços da escrita. Diferentes ferramentas produzem

diferentes tipos de ficheiros de dados, em formatos binários ou proprietários. Estes

dados são posteriormente processados por ferramentas de análise estat́ıstica. A falta

de formatos padrões e repositórios de livre acesso impede a possibilidade de partilha

dos dados pelos vários investigadores da área.

Este trabalho descreve o desenvolvimento do HandSpy, um sistema que implementa

um ambiente colaborativo para gerir experiências no estudo dos processos cogni-

tivos envolvidos na escrita. Este ambiente foi concebido para cobrir todas as fases

do processo de experimentação, desde a definição das tarefas a ser realizadas pelos

participantes, até à geração de resultados. O trabalho colaborativo no HandSpy é

suportado por uma interface gráfica baseada na web, em ligação com uma base de

dados online. Para evitar o uso de equipamentos espećıficos para a recolha dos dados,

o HandSpy baseia-se no formato InkML, um formato de dados XML para representar

tinta digital. Este design orientou muitas das escolhas de implementação do HandSpy,

como é o caso do uso de uma base de dados XML para a gestão dos dados do sistema

e o uso de transformações XML. As transformações XML são usadas para converter

representações de dados persistentes guardados na base de dados para os formatos

suportados pelos elementos gráficos da interface de utilizador. Apesar de ser um

sistema independente da ferramenta de recolha, de forma a validar o sistema foi criada

uma plataforma de recolha de dados. Esta plataforma tem um lugar de destaque neste

trabalho devido ao importante papel que desempenhou no processo de recolha de dados

de um projecto cientifico para estudar os processos cognitivos envolvidos na escrita.

iv

Acronyms

AFD Anoto Functionality Document

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CLOB Character Large Object

DAAR Develop Automate and Auto Regulating

DBMS Database Managment Systems

DOM Documents Object Model

EMS Experiment Management System

HWR Handwriting Recognition

IDE Integrated Development Environment

JAXB Java Architecture for XML Binding

PS PostScript

SDK Software Development Kit

URL Uniform Resource Locator

XQJ XQuery Java API

XSLT Extensible Stylesheet Language Transformations

v

Contents

Abstract iii

Resumo iv

Acronyms v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Cognitive Processes in Writing . 2

1.2 Approach . 3

1.3 Organization of the Thesis . 3

2 Related Work 5

2.1 Collecting and Analysing Tools . 5

2.1.1 Eye And Pen . 6

2.1.2 Ductus . 6

2.2 Experiment Management Systems . 8

3 Technology 10

vi

3.1 InkML . 10

3.2 XML Databases . 13

3.2.1 XML Enabled Databases . 13

3.2.2 Native XML Databases . 13

3.3 Javascript Frameworks . 14

3.4 Digital Sketching Devices . 16

3.4.1 Livescribe Smartpen . 16

3.4.2 Wacom Inkling . 18

4 HandSpy 19

4.1 Design . 21

4.1.1 Application Interface . 22

4.1.2 Logic . 23

4.1.3 Data Repository . 23

4.1.3.1 Schema Definitions . 25

4.2 Implementation . 25

4.2.1 Presentation Layer . 26

4.2.2 Logic Layer . 27

4.2.3 Data Layer . 29

5 Collecting Framework 30

5.1 Penlet . 31

5.2 Paper Application . 31

5.3 Data File Generator . 32

5.4 Hardware Issues . 33

6 HandSpy Usability Evaluation 35

vii

6.1 Heuristic Evaluation . 36

6.2 Evaluation . 37

7 Conclusion 39

7.1 Future Work . 39

References 41

A HandSpy Usability Questionnaire 43

viii

List of Tables

3.1 Native XML Database Comparison . 14

3.2 Javascript Frameworks Comparison . 16

ix

List of Figures

2.1 Experiment Life Cycle . 9

3.1 InkML Hello Example . 11

3.2 Livescribe Smartpen and the dotted position system 16

3.3 Wacom Inkling . 18

4.1 HandSpy application architecture . 20

4.2 HandSpy interface . 21

4.3 Image Request Diagram . 23

4.4 Database structure diagram . 24

4.5 Data schema . 26

5.1 Paper Application - active regions in red 32

6.1 Heuristic Evaluation . 38

x

Chapter 1

Introduction

Scientific experiments generate data for validation of scientific studies. These exper-

iments may involve the management of large amounts of data from the collection to

the analysis process. From the moment computers started to be used to, process and

analyse data in experiments of scientific researches, scientists with few computer skills

struggled to organize the data in digital databases. To aid scientist on this matter,

some attempts were made to create systems that could manage not only the generated

data but also any information regarding the experiment itself. These systems, known

as Experiment Management Systems (EMS) [12], aim to create a level of abstraction

of experimental procedures, offering a consistent data management replicated in the

different experiment entities.

New digital devices eased the data collection process and have exponentially increased

its amount enabling new fields of study. Notwithstanding, data is being underutilized

by the use of different data formats in different experiments contexts and by the lack

of a cross platform data format. One scientific field that requires a large number of

participants to generate data is the research on the cognitive processes in writing.

The tools used for researching cognitive processes in writing are usually composed of

two components: a hardware component capable of recording writing gestures and a

piece of software to analyze the data. These tools use proprietary data formats that

hinder the possibility of sharing collected data to be analyzed in other systems or

for other purposes. Moreover, the data collected with this type of hardware typically

generates several files for each participant, on each task. Due to the large quantity of

participants the amount of generated data files is considerable, hence managing data

files is a major problem in this type of experiments. There is the need to recreate

the environment of a regular classroom for participants to act the most natural way

1

CHAPTER 1. INTRODUCTION 2

as possible. The exclusion of factors that may influence the behavior of participants

guarantee the ecology of the collection. These systems make use of digitizing tablets to

record the writing productions. The acquisition of digitizing tablets implies relatively

high costs.

1.1 Cognitive Processes in Writing

Writing is a basic tool for a successful personal and academic growth. Given the

importance of this subject social scientists are actively researching the cognitive pro-

cesses involved in writing. Writing studies can focus on different writing forms, such

as keyboard logging and handwriting. The writting action can be complemented with

others indicators, such as eye movements and speech made during the production.

The collected data focus on the complementary concepts of burst and pause[15]. A

burst is a time span in which text was produced without interruptions. A pause is

a non-writing time span between two writing bursts. These two moments are linked

to distinct cognitive processes. The duration of a pause is related to the writing task

being performed. During the pause period the working memory used in the writing

process is freed. Therefore the time spent pausing is used for planning and revising

the written production.

The development of HandSpy is embedded in the research project DAAR, being held

at the Psychology Faculty of Porto University. The object of study in this research is

the relation between the cognitive processes involved in writing and the quality of the

writing productions. As the goal of this research is in general to determine the factors

that influence the development of writing skills, the participants are school children.

The object of these research studies are writing productions on different tasks such

as narratives, copies, dictations and alphabet transcriptions. Different tasks influence

the way the idea of the text is processed. The study results may be used to detect

learning problems related to the ability of producing good quality writing productions.

This can then be used to define new strategies and interventions on writing teaching.

CHAPTER 1. INTRODUCTION 3

1.2 Approach

The development of HandSpy was inspired on the existing, state of the art, software

for collecting and analysing written productions. With the desire to innovate and

improve the way the writing studies are processed, HandSpy was designed to be a web

based system offering typical features of writing research tools. The system covers the

entire experimental process filling the existing gap on the experiment management.

By using a common repository, researchers can set up an experiment for storing all the

entities involved, such as tasks definitions, trait information on participants involved

in the experiment and the generated data. Using a web server for data storing, the

system follows a collaborative paradigm where various researchers can work on the

same experiment simultaneously. HandSpy uses a standard XML[18] format for data

files which enables users to collect data from various hardware devices. XML files

enables the data persistence over time. Being based on a web system avoids the

complexity of installation processes, as one installation can be shared by several users.

The collected data files need to be uploaded just once, and thereafter are accessible

to all researches, even to those not involved in the collection process.

The existing writing research tools analyze one participant at a time. The results of

the analysis must be aggregated on a external statistical analysis suite. To simplify

the analysis process, a selection engine was designed to limit the analysis scope to a

group of predetermined files.

A collecting framework was developed to collect data for system validation. This

framework uses a fairly inexpensive hardware device in a shape of a normal pen.

Enabling a less intrusive collecting method in the writing process.

1.3 Organization of the Thesis

The present thesis is organized as follows:

• Chapter 2 describes the state of the art with regard to the platforms used to con-

duct scientific experiments on writing productions and describes the principles

of experiment management systems in which HandSpy was based.

• Chapter 3 describes the main technologies used to develop HandSpy and de-

scribes existing devices to record handwriting productions.

CHAPTER 1. INTRODUCTION 4

• Chapter 4 is the main description of the design and implementation methods.

• Chapter 5 is the description of a collecting framework created to validate Hand-

Spy usage.

• Chapter 6 is an evaluation of the usability of HandSpy to prepare future modi-

fications.

• Chapter 7 concludes this dissertation and identifies opportunities for future work

on HandSpy.

Chapter 2

Related Work

This chapter covers background topics related to the development of a collaborative

environment for managing experiments on cognitive processes in writing.

Studying cognitive processes in writing involves the detailed analysis of written pro-

ductions, therefore the analysis component is the essential feature on a software for

that purpose. HandSpy analysis engine owes credit to two mature systems used in

the study of cognitive processes in writing. These systems are described in the first

section of this chapter.

The proposed environment complies with the requisites for an Experiment Manage-

ment System (EMS) [12] thus the second section is devoted to introduce this kind of

system.

2.1 Collecting and Analysing Tools

Studies on cognitive processes in writing are mainly conducted by social scientists. In

the last decade this subject was supported by the availability of new devices to digitally

record the writing productions and complemented with new software to analyze those

productions. The two most proeminent tools currently available to conduct studies on

cognitive processes in handwriting are Eye And Pen[9] and Ductus[10]. The following

subsections are a description of these systems.

5

CHAPTER 2. RELATED WORK 6

2.1.1 Eye And Pen

The Eye and Pen system was originally design to study reading while performing a

writing production. The system is composed by three parts. A collecting system

composed by a digitizing tablet and a eye tracker, a software for data analysis and

experiment control system. The digitizing tablet recordings and the eye tracker signals

are synced in the begining of the experiment. The digitizing tablet records the position

of the pen and the pressure made in every point throughout collection. This data is

used by the Eye and Pen analysis software to reconstruct the written text and display

the point of regard on the tablet surface related to the pen position on that specific

moment. The text reconstruction can be played and controlled with a media player

style control set. The pause information is displayed on the text reconstruction image.

The pauses are displayed on the reconstructed text image. The pauses are represented

by a circle centered on the place where the pen stopped. The diameter of the circle is

defined by the pause duration time.

The experiment control system consists on a scripting language used to define the

tasks to be performed. The tasks are displayed on the computer connected to the

tablet. Particular regions on the tablet can be assigned to a function. When these

regions are reached they act as control buttons of the experiment and sets the end of

a task.

Before Eye and Pen, the eye tracking devices were mostly used to study reading

processes. The first known use of eye trackers for study writing was made on com-

puter typing. Studies on computer typed tasks are limited by the expertise of the

participants using a computer keyboard. The tasks that can be performed with a

computer keyboard are also limited to the typing action.

Any study that makes use of technological equipment to collect the data is subject

to errors and mishandling of the devices. For instance the eye tracker depends on

specifications of the manufacture and some eye trackers require the participant to

hold the head still in order to work properly. Using an eye tracker while writing

may distract and alter the normal text production. These factors may invalidate the

ecology of the text production.

2.1.2 Ductus

Ductus is a software to study the processes involved on handwritten productions.

The system is composed by two modules. A Stimulus Presentation Module and a

CHAPTER 2. RELATED WORK 7

Data Analysis Module. The Stimulus Presentation Module encompasses two parts,

the stimulus presentation and a data acquisition module. The stimulus is displayed

on a computer screen in front of the participant and consists on a series of images,

words or texts for transcription. The stimulus module supports plain text (.txt) and

bitmap (.bmp) file formats. The visual stimulus are preceded by a sound to signal the

begining of a stimulus.

The data acquisition module works with any model of digitizer from Wacom, a rec-

ognized tablets manufacturer. The sample rate is limited by the digitizer model. The

elements recorded by the acquisition module are:

• pen postion - the position of the pen on the digitizer

• pressure - the pressure made on the digitizer, some digitizers enables the record-

ing of hovering movements on the tablet

• latency - the time between the apearence of the stimulus and the pen touching

the digitizer

• event landmark - is an event defined by the experimenter to signal some oc-

curence during the recording

The recorded data is stored in a plain text file and is used by the Data Analysis

Module to produce the calculations on kinematic and geometrical parameters of the

handwriting. The Data Analysis Module interface displays information on several

windows. There are two windows that display information on the writing and are the

most used during the data analysis.

The first window is divided in four parts. A list with data on the points that constitute

the text, such as time, position, absolute velocity, absolute acceleration and pressure.

An image with the reconstruction of the text, hovering movements are displayed in a

gray light tone.

A graph with the variations on the trajectory made with the pen and finally a graph

with the pressure made on the tablet. The image of the text and the graphs have a

vertical line that syncs the position in the text with the positions in the trajectory

and pressure graphs.

The second window is used to segment the text for a thorough analysis. The text

can be segmented in a hierarchical way, the text can be divided into paragraphs and

each paragraph into words and the words into letters. These segments are made to

CHAPTER 2. RELATED WORK 8

limit the calculations to a precise area. The calculations values are, for instance the

duration and average speed of each segment. The results are presented in a table and

can be exported through the clipboard or can be saved in a plain text file.

2.2 Experiment Management Systems

The growth of data collected during scientific experiments, leveraged by the use of

digital devices, created the need for systems to manage this data. Multiple fields of

scientific research require the analysis of large amounts of data. Usually, researchers

in these areas do not have the necessary knowledge to manage this information in an

automated basis by using a digital database system.

An Experiment Management System is composed by two parts, user interface and data

storage system. These systems aim to abstract experimentation procedures, offering

a consistent data management system replicated by different experiment stages and

entities. An entity is a flexible abstract format to represent information regarding

some aspect of the experiment, for instance the list of participants, tasks involved in

the experiment and actual collected data [12].

In the Figure 2.1 is depicted the life cycle of an experiment with data abstraction

on entities and its relation with data transfers. The stages of an experiment process

depicted on the Figure 2.1 are described on the following.

Experiment Design is the first stage of the experimentation process. In this stage,

data files containing information about the experiment are defined. These definitions

can be updated in the course of the experiment. These definitions are stored in the

database alongside with the collected data.

Data Collection stage can be repeated several times during the experiment, if there is

a need to collect more data. The need to collect or recollect data, may arise due to

the invalidity of the data or the failure to produce conclusive results.

Data Access stage is set to retrieve the data, for analysis, validation or sharing.

Analysis is the main stage of every experiment. The data analysis is done by re-

CHAPTER 2. RELATED WORK 9

Figure 2.1: Experiment Life Cycle

searchers that assess its validity and generate the results of their studies. In this step

design modifications and the need to collect more data may arise.

Results is the final stage of the experiment cycle where the results are generated. The

experiment success is validated by the results. At this point the experiment can be

terminated, redesigned or more data may be collected.

Chapter 3

Technology

3.1 InkML

The recent trend of sketching and writing on digital devices capable of recording hand

gestures created the need for a standard to describe this kind of data. InkML is a W3C

recommendation for storing and exchanging what is commonly called digital ink. It is

an XML data format to describe a set of strokes digitally representing handwriting and

other ink input gestures. It was design to describe ink based formats but it is flexible

enough to store digital interactions such as keyboard logs and mouse movements.

The ink in InkML is defined by characteristics associated with the act of creating a

trace such as the width and color of the trace, the pen orientation while writing, the

pen distance to the surface(whether the trace was made with the pen down or hovering

the writing surface), among others.

The root element of InkML is ink and has the identifier attribute documentID with

the type Uniform Resource Identifier (URI) that uniquely defines each file. The trace

element is set to describe a continuous trace, i.e. the act of sketching a trace with

the pen down on the surface. Each trace is a collection of points and their features,

seperated by commas. These characteristics are defined in the channel element. If no

channel is defined to cast traces, the default trace is simply the X and Y coordinates

of each point. A set of traces can be grouped in a context, defining optional features

such as starting time, writing surface dimensions and characteristics of the trace.

The Listing 3.1 is an example of the ”Hello” word described in a basic InkML file.

10

CHAPTER 3. TECHNOLOGY 11

The word has five letters represented with five trace elements, its contents are defined

on the traceFormat with a set of channel elements whose attributes define the name

and the type. The values on the trace element separated by commas represent the

coordinates (X,Y) and a timestamp defined on the traceFormat channel elements.

This data represents each point depicted on the Figure 3.1 and the time the point was

recorded.

Figure 3.1: InkML Hello Example

CHAPTER 3. TECHNOLOGY 12

Listing 3.1: InkML ”hello” example

<ink xmlns=” ht tp : //www.w3 . org /2003/InkML”>

<context xml : id=” s t a r t ”>

<inkSource>

<traceFormat>

<channel name=”X” type=”decimal ”/>

<channel name=”Y” type=”decimal ”/>

<channel name=”T” type=”decimal ”/>

</ traceFormat>

</ inkSource>

<timestamp xml : id=” startTime ” time=”10000”/>

</ context>

<t r a c e>

10 0 11000 , 9 14 11200 , 8 28 11400 , 7 42 11500 , 6 56 11600 ,

10 70 11700 , 8 84 11900 , 8 98 12100 , 8 112 12200 , 9 126 12300 ,

10 140 12400 , 13 154 12500 , 14 168 12600 , 17 182 12800 , 18 188 12900 ,

23 174 13000 , 30 160 13100 , 38 147 13200 , 49 135 13400 , 58 124 13600 ,

72 121 13700 , 77 135 13800 , 80 149 13900 , 82 163 14000 , 84 177 14200 ,

87 191 14300 , 93 205 14400

</ t r a c e>

<t r a c e>

130 155 14500 , 144 159 14600 , 158 160 14800 , 170 154 15000 , 179 143 15100 ,

179 129 15200 , 166 125 15300 , 152 128 15400 , 140 136 15600 , 131 149 15700 ,

126 163 15800 , 124 177 15900 , 128 190 16000 , 137 200 16200 , 150 208 16300 ,

163 210 16400 , 178 208 16600 , 192 201 16700 , 205 192 16900 , 214 180 17000

</ t r a c e>

<t r a c e>

227 50 17100 , 226 64 17200 , 225 78 17400 , 227 192 17500 , 228 106 17600 ,

228 120 17800 , 229 134 17900 , 230 148 18100 , 234 162 18200 , 235 176 18300

</ t r a c e>

<t r a c e>

282 145 18600 , 281 159 18700 , 284 173 18900 , 285 187 19000 , 287 101 19100 ,

288 115 19200 , 290 129 19400 , 291 143 19700 , 294 157 19900 , 294 171 20000 ,

294 185 20200 , 296 199 20300

</ t r a c e>

<t r a c e>

366 130 20400 , 359 143 20600 , 354 157 20700 , 349 171 20800 , 352 185 21000 ,

359 197 21100 , 371 204 21300 , 385 205 21500 , 398 202 21600 , 408 191 21800 ,

413 177 21900 , 413 163 22000 , 405 150 22100 , 392 143 22200

</ t r a c e>

</ ink>

CHAPTER 3. TECHNOLOGY 13

3.2 XML Databases

The increasing use of XML as a transactional data format, fueled the development of

XML databases. There is no advantage in having data stored in other formats if the

application uses XML [3]. This section covers two types of XML databases, the XML

enabled and the native XML databases.

3.2.1 XML Enabled Databases

The advantage of widely available relational Databases Manage Systems (DBMS) and

the reluctance to adopt Native XML databases, led to the appearance of XML enabled

databases. These databases are built on the top of well established DBMS and follow

the relational database structure. The XML files can be stored following three diferent

aproaches:

• The structure of the XML file is used to create a set of tables based on the XML

schema[2].

• The XML files are stored in a Character Large Object (CLOB) type. CLOB is

a large collection of character data, supported by most database systems used

to store plain text[5].

• Systems like Oracle object-relational DBMS, Microsoft SQL Server, IBM DB2

and PostgreSQL can store XML files in a XMLType which is a specific type to

store XML and offer built-in functions that allow the management of the content

in the files.

3.2.2 Native XML Databases

Native XML databases can store the actual XML files independently of any schema.

The XML structured files enable the database to perform indexing which is the key for

efficient queries in these systems. Most native XML databases have a set of built-in

functionalities that enable XML files management and database access[11].

The following paragraph has a description of some technologies embedded in most

native XML databases. XQuery[17] is a language used to query XML databases,

CHAPTER 3. TECHNOLOGY 14

the advantage of using XQuery is the possibility of creating result sets based on the

contents of the XML file.

XPath[8] is other query language based on the concept of path. The advantage of

using XQuery and XPath with the native XML databases in comparison to its use

with XML enabled databases, is that the queries do not need to be transformed into

SQL queries.

The XQuery Java API (XQJ) enables the creation and submission of XQuery expres-

sions to the database and the manipulation of results set as Java objects. The XML

Database[1] (XML:DB) API allow the management of XML databases disregarding

the database system, this permits the creation of a system capable of working and

managing several databases engines.

There are several native XML database systems distributed under commercial and

free software license. Table 3.1 presents a comparison on these systems.

Name License XQuery XSLT XML:DB API XQJ API

MarkLogic Server Commercial Yes Yes No Yes

eXist LGPL Yes Yes Yes Yes

BaseX LGPL Yes Yes Yes Yes

Oracle

Berkeley GPL Yes Yes Yes Yes

DB XML

Sedna Apache Yes Yes Yes Yes

Table 3.1: Native XML Database Comparison

3.3 Javascript Frameworks

The shift of desktop applications to web environments increased the need of richer web

interfaces. JavaScript is a scripting language supported by all recent web browsers.

JavaScript frameworks are libraries that simplify the creation of cross-browser rich

web interfaces. Developing web pages using JavaScript frameworks became a common

practice due to the functionalities built-in their costumizable widgets. A widget is a

graphical object that can be used to control, display and input data. The interaction

with the widgets is enhanced by the ability to drag and drop and resize them.

The most commom widgets offered by these frameworks are elements that implement

the following functions:

CHAPTER 3. TECHNOLOGY 15

Menus and Tool Stripes implement a type of menu. A Menu for overall control

of the current work with options such as saving and opening files. Tool Stripes

group the most used tools on the system.

Tabset, as its name implies, implements a series of tabs useful to divide the workspace

without losing working space.

Dialogs are used to prompt status information on the system operation or as control

questions on critical operations.

Buttons are available in HTML but their framework’s counterpart are fully costu-

mizable.

Tables on these frameworks offer some useful functions such as sorting, hiding

columns, searching and inline editing. These tables are tied to a data source,

enabling editing operations to be automatically sent to the server.

Trees organize the information hierarchically. The information is organized by

categories creating an easy way to browse it.

JavaScript Frameworks elements encapsulate complex functions and provide an id

element that can be used to easily reference the object, avoiding the traversing of the

Document Object Model (DOM) structure.

The support for Asynchronous JavaScript and XML (AJAX) is also an important

feature. AJAX enables the creation of dynamic pages. With this the client side

scripts send requests to the server and response is handled on the background, the

page remains fully operational while it waits for the response.

There are several JavaScript frameworks, that apart from design differences, offer

almost the same basic functionalities. To new developers, choosing between these

similar frameworks is a challenge. Table 3.2 compares the most popular frameworks,

focusing on the main aspects of the development of an open source system.

CHAPTER 3. TECHNOLOGY 16

Name License DOM wrapped Canvas AJAX Support

Smartclient LGPL&Commercial Yes Yes Yes

Dojo BSD&AFL Yes Yes Yes

Google

Web Apache Yes Yes Yes

Toolkit

jQuery MIT&GPL Yes Yes Yes

Prototype MIT No Yes Yes

MooTools MIT No Yes Yes

Table 3.2: Javascript Frameworks Comparison

3.4 Digital Sketching Devices

In recent years the digital recording of handwritten data, had significant developments.

With smaller process units new writting tools appeared in the shape of normal pens.

This section is an overview on devices that resemble a normal pen and have the

capability to digitally record handwritten text.

3.4.1 Livescribe Smartpen

Figure 3.2: Livescribe Smartpen and the dotted position system

The Livescribe Smartpen[6] depicted on Figure 3.2 is a device with the shape of a

CHAPTER 3. TECHNOLOGY 17

normal pen featuring a LCD display and a infrared camera. The LCD display is just for

status information on the smartpen menu navigation and usage, the infrared camera

is the key feature for recording sketched shapes and more specifically handwriting.

The smartpen has an internal memory capacity of up to 4GB and a built in battery.

The pen has a physical ink cartridge on the tip for sketch on the paper.

The smartpen works on a particular micro dotted paper which gives information about

its position on paper. The dots on the micro dotted paper, depicted on Figure 3.2,

are spaced about 0.3mm apart and form an apparently messy square grid. The dots

appear on one of four possible positions of an imaginary square grid. The infrared

camera captures a area of 6x6 dots on the paper and transform this information into

a X and Y coordinate pair. The camera has a frequency of 72 captures per second

which gives a sufficient sample rate to record handwritting. The smartpen capture its

position when pressure is made on the tip of the pen and it is not correlated to the

actual ink left on the paper. Each page on every notebook is unique for that notebook,

hence the smartpen can identify the number of the current page.

The smartpen runs a system based on Java Micro Edition and can run external

applications known as Penlets. Livescribe has a SDK for Penlets development but

its support has been discontinued, restricting the use of custom made Penlets. The

Penlets can raise events entering on active zones on the dotted paper, for instance to

scroll through the main menu. The smartpen has a built in handwriting recognition

(HWR) system. The dotted paper can be acquired in the form of notebooks or can

be produced and printed on a standard 600 dpi laser printer. Every notebook has

a Anoto Functionality Document (AFD) to describe it. This document needs to be

installed on the smartpen so the printed paper sheets can be used, all the recording

done on a page on a notebook is stored on the AFD structure.

For retrieving the recorded data, updating the software and recharging the battery

there is a dock station. It has a desktop application, Livescribe Desktop, that can run

both on Windows and Mac OS environments. This application downloads the data

files from the smartpen and organizes by notebook. Livescribe has also a Desktop

Application SDK for developing applications to extract and process the recorded data

on the pen.

The comercial bundle has an average price of 100e and comes with a smartpen, a

CHAPTER 3. TECHNOLOGY 18

dotted notebook and the dock station to connected to the computer.

3.4.2 Wacom Inkling

Figure 3.3: Wacom Inkling

The Wacom Inkling is a sketching recording system composed by a pen and a receiver

that can be clipped to the top of a paper sheet or notebook, this arrangement is

depicted in Figure 3.3. The pen can be used to draw on the paper as it has a physical

ink cartidge. The system has a memory capacity of 2GB and a built in battery.

The operation of this tool mimics the functioning of a sonar system. The pen emits

an inaudible sound, that is processed by the receiver. The receiver uses this pulse of

sound to calculate the pen position and record it. The pen is pressure sensitive, this

enhances the digital line weights. The system allows the definition of a new layer on

the same sheet, by pressing a button on the receiver.

To transfer the data from the receiver to the computer, the receiver must be connect

to the charging case. The Inkling Sketch Manager is the desktop application for

downloading data from the receiver. Sketches can be saved as a single image by

merging different layers or can be exported as layered files and be used on common

image editors. The data can also be exported as an XML format similar to InkML.

The comercial bundle has an average price of 200e and its composed by the pen, the

receiver and a charging case.

Chapter 4

HandSpy

HandSpy is a web based application to manage distributed and collaborative exper-

iments on cognitive processes in writing. The system has the following distinctive

features:

• an experiment management philosophy encompassing all the steps of the research

in cognitive processes in writing;

• a multiuser web interface fostering collaboration among researchers and enabling

remote work on the experiments;

• a cloud-based data management system providing central storage for all data

collected in the experiments;

• an analysis process of the collected data, inspired in the state-of-art systems

described in Section 2;

• the ability to select and synthesize collections of data based on different criteria;

• the use of standard XML based data formats to promote interoperability and

cooperation among researchers in this community.

HandSpy system is based on a client-server model. The client makes requests to

the server and the server processes the request making use of other applications to

generate the response. The system follows a 3-tier architectural model as depicted in

Figure 4.1 where the presentation tier (a web interface) is represented by the left box,

the logic tier (a web server) is represented by the central box and the data tier (an

19

CHAPTER 4. HANDSPY 20

Protocols

Ink Data

Entities
Data

Source

Entity
Manager

Protocol
Manager

XML XML

3

XSL
Transformations

XML

2

XML

XML

Data
Source

1

.PNG

InkML

XML

Database
Manager

Presentation Logic data

XML

XML

Figure 4.1: HandSpy application architecture

XML database) is represented by the right box. This diagram represents also in three

rows the data flows between these tiers.

In the top row marked with number one is represented the process of uploading data

files in InkML format to the database through the web interface. On the server side the

database manager module is responsible for organizing the uploaded files in collections

based on the current user context.

The middle row represents the interaction with ink data. The two main components

of HandSpy user interface are depicted in this row, an image viewer to display the

written production of the protocol ink and a list grid to display calculations based

on the protocol data. The server gets the ink of the selected protocol and generates

an image file to feed the image viewer. The list grid is populated with calculations

results based on the pause concept. To optimize the system, the main definitions on

the HandSpy are classified and treated as entities. This generalization of data permits

to manage it in the same way. All data showing objects are based on list grids which

use XML data sources.

In the third row of the model in Figure 4.1 is shown the Entity Manager that identifies

the entity and uses the respective XSL transformer to transform the data stored in the

database into the client specific data source when the fetch operation is made. Adding,

CHAPTER 4. HANDSPY 21

Figure 4.2: HandSpy interface

updating and deleting entities uses XSL transformations to perform the operations and

save the changes to the database.

4.1 Design

In order to surpass the limitations of the existing writing research tools, HandSpy was

designed to comply with the proposed objectives in Section 1.2. This section divides

the description of the system design in three parts, the Application Interface, Logic

and Data Repository.

CHAPTER 4. HANDSPY 22

4.1.1 Application Interface

The graphical user interface of HandSpy relies on a web application. The workspace is

divided in six tabs covering the usual work flow of an experiment on cognitive processes

in writing.

Tasks Identification of tasks to be performed by the participants during the experi-

ment. For instance, an experiment may include a task where participants must

write as much letters of the alphabet as they can in a fixed amount of time.

Upload Upload of the InkML files collected with specialized hardware (smart pens or

digitizing tablets) to the system. The interface displays a collection of thumbnail

images of the uploaded files. Thumbnails can be selected to display a real size

image for better identification. At this stage the InkML data is associated with

a task and a participant.

Participants Manage the participants in the current experiment. Display the fea-

tures and the tasks completed by each participant. Custom features describing

the participants, such as handedness or mother language, can be added to

the participants. The participants features are useful for selecting them in a

particular study. The list of participants can be imported and exported as a

CSV (Comma Separated Values) file.

Selection Selection of protocols based on tasks and on features of the participants

such as age, handedness and gender. The selection is a collection of conditions on

protocols to be analyzed and synthesized. Selections set by different researchers

are independent from each other, enabling researchers to analyze different col-

lections of protocols simultaneously.

Analysis Figure 4.2 is a screenshot of HandSpy interface with the Analysis tab

selected. The area identified as 1 is a slider to browse the current protocol

selection (set in the Selection tab). Area 2 has a form to define the parameters

to calculate the pauses which are listed in the table below. The main parameter

is the threshold, the time elapsed to be a pause. Each row has a pause duration,

a burst duration, a burst size is a number of words present on the burst, burst

distance and the burst average speed. The footer of the table presents statistics

on some of its columns, such as the average and standard deviation of durations,

and the count of words. Area 3 displays the written production with red Ps

(for Pause) marking the place where the pauses selected in area 2 start. Pause

CHAPTER 4. HANDSPY 23

selection allows worthless parts (for instance, a part where the participant erased

a word) to be removed from the analysis. These selection of pauses can be saved

by the value of the threshold on the database.

Synthesis Displays global statistics on the data processed on the Analysis tab and is

delimited by the selection criteria defined for the analysis process. The statistics

presented in Analysis tab table footer for each protocol are computed on this tab

aggregating all the selected protocols. These results can be exported to other

systems, such as spreadsheets or statistical analysis packages.

4.1.2 Logic

The server side of the system was designed to receive requests, process them and send

the response to the client. In Figure 4.3 is depicted a image request flux on the server.

The client, on the left, sends a request for an image to the server. The Process receives

the request and authenticates the session based on the UserContext. If it is a valid

command for that session the command GetProcotol is called. The Protocol accesses

the Database and requests for the respective InkML file. The resulting image is sent

back to the client through the response stream.

This flow describes the behavior of HandSpy upon a request. HandSpy deals with

many requests for information in the XML format. The main difference responding

to these request is in the creation of the response. Requests for XML files are created

using a XSL transformations engine.

Process (Servlet)Web browser

DatabaseUserContext

GetProtocol Protocol
1

3

4 5

62
10 9 8 7

Figure 4.3: Image Request Diagram

4.1.3 Data Repository

HandSpy processes data uploaded in XML files and stores it in a native XML database.

The database structure model is represented in the Figure 4.4. This structure keeps

CHAPTER 4. HANDSPY 24

HandSpy - Data

Users
<<resource>>

HandSpy
<<collection>>

Projects
<<collection>>

Project
<<collection>>

User
<<element>>

+ name
+ password
+ projects

Tasks
<<collect ion>>

Tasks
<<resource>>

Task
<<element>>

+ name
+ layo ut
+ sheets

InkType
<<resource>>

Ink
<<collect ion>>

Data
<<collect ion>>

Data
<<resource>>

+ particip ant
+ inkML

Part icipants
<<resource>>

Participant
<<element>>

+ code
+ name
+ ag e

Selection
<<resource>>

Configs
<<resource>>

KeyValueData
<<element>>

+ name
+ value Pauses

<<element>>

+ thresho ld

Figure 4.4: Database structure diagram

all the resources used by the application. Every project has a set of entities that store

data on Tasks, Participants, Selection and Configurations. The data files containing

the text productions of one experiment are stored in the collection Ink in the InkML

format. They remain unchanged and are treated as read-only files. This enables future

usage of the collected data for other purposes, projects or even different analysing

systems. For every task added to the project a task collection is created with the

name of the task, to store data files containing the calculations and other informations

obtained by analysing the respective InkML file.

The file name is the key to identify and relate the InkML files with the respective

calculated data. The InkML file name is a sequential number, given when the file is

uploaded. The data files stored in each task collection have the same name of the

respective InkML file. For every task a diferent Data file is created and associated

CHAPTER 4. HANDSPY 25

with the InkML by name. Differente studies can be conducted at the same time as

every task has an independent Data file.

4.1.3.1 Schema Definitions

The entities and the data file associated to the InkML files were specifically defined to

work with the proposed architecture. An abstract data format – KeyValueData– which

represent a mapping of a value to its key was designed and is used in several entities

on the system. The following list covers the definitions of the resources presented on

Figure 4.4.

• The Users resource is composed by the login name of the user, its password and

a list of projects to which it has access.

• The Configs and Selection resources are composed by KeyValueData elements.

• The Tasks resource has the attributes to define the name, the layout and the

sheets. The sheets value is the page interval on the notebook associated to this

task.

• The Participants resource have the basic attribute code, to identify the partici-

pant and a set of KeyValueData elements to complete the participant details.

• The Data file has two attributes to identify the file. The participant which has

the code of the participant and the inkML that have the name of the inkML

file. Has pauseBurstBlock element which is a Pauses. The Pauses element

defines a set of Pause. Each Pause has an attribute threshold and a set of

Pause elements which is a PauseBurst format, with calculations for the defined

threshold. The PauseBurst element has several attributes and a set of facets in

the KeyValueData format. Figure 4.5 is the Data file schema with focus on the

attributes of the PauseBurst element. This file stores the pauses selected on the

interface tab Analysis described in the Section 4.1.

4.2 Implementation

As depicted in Figure 4.1, HandSpy is composed by presentation, logic and data layers.

The presentation layer was implemented on SmartClient JavaScript framework. The

CHAPTER 4. HANDSPY 26

Figure 4.5: Data schema

logic layer was deployed on the Tomcat servlet container and the data layer on the eXist

XML database. The remainder of this section presents the implementation of each

layer, describing the implementation methods using these components as platform.

4.2.1 Presentation Layer

The Isomorphic SmartClient LGPL platform was the selected web toolkit for the user

interface. SmartClient provides sophisticated table editing widgets connected to data

sources in XML formats that are appropriated to the data handled in HandSpy. These

widgets have many built-in functions, such as sorting and grouping on every column,

search fields and column customization. Data operations, such as fetching or querying,

are built-in functions of the data source object. As the information can be displayed

in a table fashion, the most used widget is the ListGrid.

HandSpy analysis gear is the most important feature of the system as it drives the

research work. The analysis of the production is made with the visualtization of the

CHAPTER 4. HANDSPY 27

text. SmartClient offers the possibility to create a HTML pane. This pane enables the

use of a HTML 5 canvas. Images of the written text are generated on the server and

displayed as background of HTML 5 canvas object. The use of Javascript functions

enables placement of image objects representing the pauses starting points on the

canvas, overlaying the background image. This also provides flexibility for future

costumizations without being tied to widget/function limitations.

4.2.2 Logic Layer

The server was deployed on a Tomcat[4] - a Java Servlet container instance. This

server, based on a Java Servlet, is responsible of data transactions between the Data

Layer and Presentation Layer objects. The whole data processing is done on this

layer as well. The data processing consists on XML transformations, generation of

images, calculation of pauses and database management. Using eXtensible Stylesheet

Language Transformations (XSLT)[7] the information on the database is transformed

into the respective data sources on the interface. To generate the images and calculate

the pauses information is used the InkML files. Creating and deleting files on the XML

database is made by the server. Maintaining the whole processing on the server side

reduces the need of processing power on client machines.

All the data is stored as XML files on the database. Using Java Architecture for XML

Binding (JAXB)[16] is possible to, marshal Java objects into XML files and doing the

inverse, unmarshal XML files to Java objects. This architecture uses the XSD’s of

the XML files to construct Java objects, with getters and setters for the XML files

elements and attributes. This provides a faster and efficient generation of Java objects,

that are in line with the definition of the XML structure on the XSD. These objects

can be used to extract values from XML files and bind to Java primitive data types.

This architecture is useful on the image generation and calculation process. The

InkML files are bind into Java objects. By using the InkML object we can get get the

values of the (X,Y) pair for every point of every stroke in that production and draw

the corresponding image. The same object is used to fetch the timestamp of every

point and calculate the pauses and the rest of the information.

HandSpy server side is composed by a Servlet that is the dispatcher for client requests

and a set of other functions to create responses. The next list describes some of the

main functions that compose the server.

CHAPTER 4. HANDSPY 28

• Process - implements a Java Servlet instance. Acts as the single entrance

point on the system, managing all client requests. The HttpSession and the

UserContext are requested or created when required. The information is sent

as an HTTP POST request and is parsed to retrieve the invoked command.

The command is tested by an authentication method to attest its validity, if

the command is valid for the authenticated user the doRequest method is called.

Every command performed is stored on the UserContext for an efficient reusage

of the same command.

• Command - is an abstract class to be used by the CommandFactory. The method

doRequest of class Command is implemented by each command. Every command

on the system needs an authenticated session to be perfomed. The Command

have the HttpServletRequest, HttpServletResponse and the UserContext as argu-

ments.

• Protocol - is the class for managing the InkType and Data objects that are

the unmarshalled representations of the InkML and Data XSD. The Protocol

class implements several methods including the getImage, that uses the Ink-

Type object to generate a png image and write it to the OutputStream of the

HttpServletResponse.

• Selector - is the class for implementing the selection engine of the system.

Makes use of the Selection resource described in Section 4.1.3.1. The parameters

of the Selection resource are used to make a XPath query and generate a

scrollable LinkedHashMap with the Protocol selection. The slider on the client

interface is delimited to this selection and can be used to navigate in the selected

elements.

• UserContext - as the name suggests, this class stores the information on the user

session. For instance, the current working project and the selection array are

accessed through the UserContext, therefore all commands using these variables

must have a valid instance of UserContext.

• DBconnection - is a Singleton class that implements the connection to the

database. This class connects to the database using the XML:DB API, the

unique point for database management. When a fresh installation of the system

is made the method createDataBaseStructureIfNeeded is invoked to create the

basic structure of the database.

CHAPTER 4. HANDSPY 29

• EntityManager - is the class that implements the Add,Remove,List andUpdate

operations on the system resources. Every resource type has a XSL Transfor-

mation for each operation. Using a DBconnection instance the resource files on

the database are requested and used to perfom these operations. The result of

the operation is written to the OutputStream.

4.2.3 Data Layer

The Data Layer was implemented using eXist[19] database management system. As

the system uses XML files to represent all the information on the system, choosing a

native XML database was the most suitable option. The system is an Open Source

solution that falls within the scope of scientific projects.

The database system is installed on the same machine as the Tomcat server and

is remotely accessed through a socket. The database is exclusively managed by the

HandSpy server. The HandSpy database structure described in Section 4.1.3 is created

when the HandSpy starts for the first time.

Chapter 5

Collecting Framework

The HandSpy system was developed under a scientific project held on Faculty of

Psychology. This project consists on the study of the cognitive processes involved

in writing. As this is a study focuses on writing production, was developed a tool

for collecting data. The device used to collect the data for this experiment was the

Livescribe Smartpen, already described in Chapter 3.

There are several advantages in using a smartpen instead of digitizing tablets tradi-

tionally used for this kind of experiment. Setting up an experiment in a classroom,

a familiar place to the participants. Being a writing device similar to the pens

normally used by school children. These features make the smartpen less intrusive

than digitizing tablets. The cost of running the experiment with smart pens is also

relevant. The price of single digitizing tablet is equivalent to several pens. They are

easy to carry, a single researcher can set up and supervise several participants at once.

The pens can record several experiment tasks without the need to be connected to

download the data to the computer. A single computer can be used to download all

the data in every pen.

To generate the data for HandSpy with the Livescribe Smartpen was developed a

framework consisting of three parts. A Penlet to record the necessary data to calculate

the pause and burst time. A Paper Application with specific active regions to control

the experiment. Finally the Data File Generator to extract the collected data and

create files in the InkML format. The following sections on this chapter cover the

development of the three components of the framework and describes a series of

recurring problems of using this kind of smartpen.

30

CHAPTER 5. COLLECTING FRAMEWORK 31

5.1 Penlet

The smartpen records data written on the paper on the AFD file of the paper appli-

cation. This data is used by the Livescribe Desktop to organize the downloaded data

and render the respective drawing. For the purpose of the experiment the default data

recorded on the AFD was not sufficient to calculate the pause and burst time. By

default the only information on the strokes that can be retrieved with the AFD file

was the starting time.

The penlet was developed with the Livescribe Pen API. Using the interface – Pen-

letStorage – storing a plain text file in the internal storage pool. For every stroke,

the timestamp of every point in the stroke was written on the file. With this extra

information calculates pauses occuring within a stroke.

To record the moments when each experiment started and ended, active regions were

defined in the paper application. The active regions raise events on the penlet when

the specified regions are entered or exited. These regions set a timestamp for the

beginning and the end of the experiment. The timestamp is over overriden if the

active zone is repeatedly entered. These timestamps are also written on the same file

as extra information on the experiment and are used to calculate the time taken to

actually start the task.

A visual feedback on the status of the penlet is given through the display on the

smartpen. When the penlet starts its version is shown on the display as well as the

interaction with the active regions.

The penlet is associated with the specific paper application created for the experiment,

the penlet starts running when the tip of the pen touches the sheet of paper. On every

change of paper sheet the penlet writes a control line on the text file to identify a new

collection of strokes.

5.2 Paper Application

A paper application is an AFD file with the digital description of each sheet of a

notebook. Different paper applications were design to perfom the different tasks for

the experiment. The paper application was developed in the Integrated Development

Environment (IDE), Eclipse. Livescribe provides an Eclipse plugin to create an

AFD file and interactively draw the active regions. A background image, on the

PostScript(PS) format, defines the page layout, with the page header and a place for

CHAPTER 5. COLLECTING FRAMEWORK 32

the action buttons.

All tasks, follow the same layout. The basic layout of the paper sheet consists of three

active regions. A top region to place the header, the start and the end button region.

The active regions can be drawn aided by the background image, to ensure their exact

position.

Figure 5.1: Paper Application - active regions in red

Figure 5.1 shows an example of a paper application with highlighted active regions.

In this case the header region acted as a passive region. Even if the participant didn’t

”touch” the start button, the start timestamp setter was activated by an event raised

by any stroke made outside the header or start delimited region.

5.3 Data File Generator

The Livescribe Desktop SDK is a C# API to extract data from the smartpen used

for generating the InkML files.

The AFD files and the internal storage pool, where text file with the extra information

on the strokes is stored, are accessed. For every control line with the identification of

a new collection of strokes found in the file, a new InkML file is created. The next

lines have the timestamp of the beginning of each stroke preceded by increments of

milliseconds of every point within the stroke. The time increments have as reference

the beginning of the stroke timestamp. These increments represent the time of each

point within the stroke. The timestamps are used to access the AFD file and retrieve

CHAPTER 5. COLLECTING FRAMEWORK 33

Listing 5.1: InkML trace element example

. . .

<t r a c e>

2534 685 37297520816 , 2537 684 37297520829 , 2539 681 37297520843 ,

2544 678 37297520856 , 2546 677 37297520883 , 2546 678 37297520896 ,

2548 680 37297520909 , 2549 682 37297520923 , 2554 695 37297520949 ,

2559 707 37297520963 , 2565 720 37297520976 , 2572 732 37297520989 ,

2580 749 37297521016 , 2582 753 37297521029 , 2584 754 37297521043 ,

2584 754 37297521056 , 2584 754 37297521083 , 2584 754 37297521096 ,

2584 754 37297521109 , 2584 754 37297521123 , 2584 753 37297521149 ,

2585 751 37297521163 , 2586 748 37297521176 , 2592 738 37297521189 ,

2603 710 37297521216 , 2611 694 37297521229 , 2615 684 37297521243 ,

2620 673 37297521256 , 2620 670 37297521283 , 2621 670 37297521296

</ t r a c e>

. . .

the X and Y coordinates of every point given the timestamp. The InkML file is written

with the X,Y coordinates and the respective timestamp. The Listing 5.1 is an example

of trace element generated with information of every point, following the schema [X

Y Timestamp] separated by commas. This data was generated from a real collection

made with the smartpen.

5.4 Hardware Issues

The collecting framework was used on a real experiment cenario while it was being

developed. This experience led us to avoid some features of the smartpen and to

reimplement som functions of the penlet. Finally we managed to make a good practical

use of the device for an efficient data collection.

Our first intention was to use smartpen to react to active regions. On the first version

of the paper application the header had active regions to define each field. The

information written on the fields was processed by the HWR engine to automatically

transform the letters and numbers into its character codes. To improve the HWR

success different contexts were associated with each field. For the code identification

of the participant, as it was a numeric field, the context was set to recognize only

numeric symbols and for the name field, only characters. This entailed a change

of context for almost every field and consequently an unexpected overload on the

smartpen processing capacity. This overload caused a significant increase in stroke

CHAPTER 5. COLLECTING FRAMEWORK 34

losses, which invalidate an entire collection. The ratio of a successful recognition was

not enough to be useful. The use of the HWR was discontinued.

The experiment participants are intended to be school aged children. The use of

audible signals to prompt entering active regions is also discouraged, as it distracts the

children and could led to an active region touching spree, invalidating the experiment

timestamps. Children tend to hold a pen close to its tip. As the smartpen makes use

of the infrared camera to work and it is located on the tip of the pen, it is necessary

to pick the pen in a way so the camera is not blocked by any finger.

The Livescribe Desktop SDK is limited to Windows environment. On the first month

of the development of the collecting framework, a surprising business move from

Livescribe occurred, they discontinued the development program, ceasing the support

and updates on the Livescribe SDK. This led to run system updates more thoroughly

so that the firmware on the pen does not invalidate the use of methods implemented

by discontinued libraries.

Chapter 6

HandSpy Usability Evaluation

The HandSpy system was developed under a scientific project held on Faculty of

Psychology. The project, Develop Automate and Auto Regulating cognitive processes

in writing composition (DAAR), focus on the development of cognitive processes in

written production. It aims to relate the automation of writing processes and self-

regulation of others with the development of this competence.

The plan of the study is divided in two phases. On the first phase, which was the

first year of HandSpy development, the participants were children from the second

grade to the seventh. The studies characterize the text production and the involved

cognitive processes. The second phase will be divided in two interventions. The

participants of the first intervention will be children from first to fourth grade and will

focus on transcription skills. The second, with children in the fourth grade, will focus

on strategies of self-regulation in writing.

In the first year of the development of HandSpy, is being used to store the collected data

of the first phase of the study. More than two thousand productions were collected

on several tasks performed with five hundred and sixty children. The collections

were made with the collecting device described in Chapter 5. In groups of fifteen

children made five different writting tasks in several days. After collecting the data

was uploaded to the HandSpy system and automatically stored on the XML database.

HandSpy is currently being used to analyze the data of the first phase of the project.

The social scientists on this project were the users who had more contact with HandSpy

therefore they were the main assessors of the system usability. Besides the evaluation

that was made throughout the development which identified some problems, an eval-

uation based on the completion of a questionnaire was also made. The evaluation

35

CHAPTER 6. HANDSPY USABILITY EVALUATION 36

method is described in the following sections.

6.1 Heuristic Evaluation

Heuristic evaluation is on the most popular methods to identify problems in the user

interface design. An heuristic is a set of rules and methods to solve problems. Rolf

Molich and Jakob Nielsen[14] describe the heuristic evaluation as ”an informal method

of usability analysis where a number of evaluators are presented with an interface

design and asked to comment on it”.

After evaluating different heuristics, Nielsen created a list with the best heuristics to

identify interface usability problems[13].

• Visibility of system status - The system should always give operation status.

• Compatibility - The system should use familiar language to the user. Infor-

mation should appear in a natural order.

• User control and freedom - Support undo and redo operations to recover

from choosing functions by mistake.

• Consistency and standards - The interface should use consistent colors,

operations names and layout.

• Error prevention - Try to prevent errors from ocurring displaying confirmation

on critical operations.

• Recognition rather than recall - Minimize the users memory load by making

objects, actions, and options always visible.

• Flexibility and efficiency of use - Permission for the user to personalize

frequent actions.

• Aesthetic and minimalist design - The information displayed must be rele-

vant.

• Help users recognize, diagnose, and recover from errors - Error messages

should be clear, precisely indicate the problem and suggest a solution.

• Help and documentation - Help and documentation should always be avail-

able.

CHAPTER 6. HANDSPY USABILITY EVALUATION 37

6.2 Evaluation

The evalution made on HandSpy usability was based on the results of a questionnaire

reproduced on Appendix A. The questionnaire was based on the heuristic set listed in

Section 6.1. The questionnaire was answered by three evaluators. The questionnaire

consisted on a multiple choice answer system. In the Figure 6.1 is the graph with

percentage of each heuristic. The results were processed as follows:

• For each group of questions the possible answers were - Does not apply –

Never – Almost Never – Regular – Almost Always – Always

• The total number of effective answers is calculated by subtracting the Does not

apply answers to the total answers.

• The percentage of the answers ”Never/Almost Never”, ”Regular”, ”Always/Al-

most Always” is calculated based on effective answers.

With the analysis of graph is clear that the critical issues on the interface are the

lack of help, documentation and poor flexibility. These problems are reinforced by the

evaluators in the comments ”Insufficient help menus and still arise many errors that

are not comprehended”, ”Integrate the help in tutorial format, improve ergonomics

and clarity of controls and functions”. We can verify that the heuristics better

accomplish are ”Compatibility” and ”Recognition rather than recall”. Despite a better

classification, some comments made on these heuristics suggest some improvements on

some specific components ”Improve the way to confirm the selection of data”, ”Improve

interactivity with the data from participants” and ”Transparency for the user’s project

idea and its management”. The comments clearly show that project management is

the feature that deserves more improvements on usability. Despite having quite a few

negative points the interface meets satisfactorily the usability heuristics.

The answer to, an overall evaluation of the system, ”Considering all the parameters

that you analyzed how would you rank HandSpy?” was unanimous, all evaluaters

answer that the system is ”Merely Adequate”. Despite some severe faults on the

interface this evaluation showed that HandSpy has potential to be a reference in this

field, improving some aspects on the user experience.

CHAPTER 6. HANDSPY USABILITY EVALUATION 38

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flexibility and efficiency of use

Help and documentation

Help users recognize

User control and freedom

Performance

Ease

Reliability

Error prevention

Consistency and standards

Visibility of system

Recognition rather than recall

Compatibility

Almost Never/Never

Regular

Almost Always/Always

Figure 6.1: Heuristic Evaluation

Chapter 7

Conclusion

With the use of new devices capable of recording hand gestures, the use of digital

handwriting as a transferable data is becoming more common. These new possibilities

provide new ways of studying the cognitive processes involved in the handwriting

process. This dissertation describes the design, implementation and evalution of a

new tool, HandSpy, to support the study on cognitive processes in writing.

HandSpy aims to manage and support handwriting research studies with large amounts

of data and enable collaborative work to speed up the analysis process. Embedded in a

web platform, HandSpy is a powerful tool to be used as a cross platform environment.

With the use of the web browser as the main working tool, it obviates the need for

installing various programs, on various machines.

The collecting framework described in the Chapter 5 is a new tool for recording

writing productions. The use of a commercial product such as the Livescribe smartpen

to collect written productions results on a affordable, easy to use and less intrusive

compared to other tools for this purpose. This tool has already raised interest among

the social sciences research community.

7.1 Future Work

As future work the evolution of HandSpy will consist in user interface upgrades and

expanding the collection to new data elements. The evaluation of HandSpy defined the

next steps in the user interface upgrades. Based on the outcome of the questionnaire

along with a series of suggestions made by the evaluators, we present here some of the

39

CHAPTER 7. CONCLUSION 40

main future implementations to improve user interaction.

• Incorporate user guides and tutorials on the interface, offering information on

the current screens.

• Improve error handling giving specific feedback of the error.

• Optimize interaction in the analysis screen giving a more accurate selection and

identification of the pauses.

• Create a real time animation playback of the written text.

The smartpen has a built-in microphone which enables collection extension with audio

data. This can be used to record information on what participants are thinking, if

they are asked to ”think out loud”, while writing. In this case synchronizing the

audio with the writing is eased as they are collected with the same device. Collecting

physiologic data such as heart rate or electric conductivity of the skin can be useful to

relate with the writing pauses. Video recording the production is also an added value

for the research but only if we manage to retrieve the point of regard on the paper

during the writing production. Nevertheless synchronizing video and physiologic data

with the writing raises new challenges.

References

[1] The XML:DB Project. XML:DB Database API Working Draft, 2001.

http://xmldb-org.sourceforge.net/xapi/.

[2] Creating XMLType Tables and Columns Based on XML Schema, 2005.

http://goo.gl/bSsuj.

[3] XML and Databases, 2005. http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[4] Apache Tomcat, 2012. http://tomcat.apache.org/.

[5] BLOBs and CLOBs, 2012. http://goo.gl/i0ddz.

[6] Livescribe Smartpen, 2012. http://www.livescribe.com/smartpen/.

[7] J. Clark. XSL Transformations (XSLT), 1999. http://www.w3.org/TR/xslt.

[8] J. Clark and S. DeRose. XML Path Language (XPath), 1999.

http://www.w3.org/TR/xpath/.

[9] C. Dansac D. Alamargot, D. Chesnet and C. Ros. Eye and pen: A new device

for studying reading during writing. Behavior Research Methods, 2006.

[10] E.Guinet and S. Kandel. Ductus: A software package for the study of handwriting

production. Behavior Research Methods, 2010.

[11] J. Gerritsen. Native XML Databases. 5th Twente Student Conference on IT,

2006.

[12] Yannis E. Ioannidis and Miron Livny. Conceptual schemas: Multi-faceted tools for

desktop scientific experiment management. Journal of Intelligent and Cooperative

Information Systems, 1:451–474, 1992.

41

REFERENCES 42

[13] J. Nielsen. Enhancing the explanatory power of usability heuristics. In Proceedings

of the SIGCHI conference on Human factors in computing systems: celebrating

interdependence, CHI ’94, pages 152–158, New York, NY, USA, 1994. ACM.

[14] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In Proceedings

of the SIGCHI conference on Human factors in computing systems: Empowering

people, CHI ’90, pages 249–256, New York, NY, USA, 1990. ACM.

[15] T. Olive, R. A. Alves, and S. L. Castro. Cognitive processes in writing

during pause and execution periods. European Journal of Cognitive Psychology,

21(5):758–785, 2009.

[16] E. Ort and B. Mehta. Java Architecture for XML Binding (JAXB), 2003.

http://www.oracle.com/technetwork/articles/javase/index-140168.html.

[17] M. F. Fernandez D. Florescu J. Robie S. Boag, D. Chamberlin and J. Simeon.

XQuery 1.0: An XML Query Language, 2010. http://www.w3.org/TR/xquery/.

[18] C. M. Sperberg-McQueen E. Maler T. Bray, J. Paoli and F. Yergeau. Extensible

markup language(XML), 2008. http://www.w3.org/TR/xml/.

[19] Meier W. e[x]ist: An open source native xml database. Web, Web-Services, and

Database Systems, 2003.

Appendix A

HandSpy Usability Questionnaire

For the next questions give one of the following answers

Never Almost never

Regular Almost always

Always Does not apply

Visibility

1. When I ask the system for help the answer is clear

2. When I perform a task the system informs me about what is happening

3. The buttons I use to perform the most important tasks are clearly identified

4. The buttons status (selected/unselected) is clearly shown

Compatibility

1. When I try to perform a task I quickly find the intended button

2. The buttons order is in a familiar sequence

3. When I select a button the result is what I expected

4. The functions of a list opened by a button belong all to the same category of

that button

43

APPENDIX A. HANDSPY USABILITY QUESTIONNAIRE 44

User control and freedom

1. When I make a mistake the system allows me to undo it

2. I can interrupt an action and resume it whenever I wish

3. I can cancel an ongoing operation

4. I can eliminate any change I’m performing and return to the previous state

Consistency and Standards

1. The buttons and windows location is maintained when I swap screens

2. The buttons maintain the same meaning when I change screens

3. The color code meaning is consistent

4. The scroll function can be used in all windows

Error

1. The system warns me when data entry problems occur before I execute the

validation

2. When the validation occurs the system produces an error message if the data

format is not the expected one

3. The system warns me if I am about to make a serious mistake

4. There is a clear separation between the buttons that enables the possibility of

serious mistakes to happen and all the others buttons

Recognition

1. The colors used in the texts are accordingly with the accepted conventions for

their meanings

2. The text inside each button transmits the idea of what is expected to happen

when I use them

3. The information is on the part of the screen I expect in to be

APPENDIX A. HANDSPY USABILITY QUESTIONNAIRE 45

4. The features are grouped by kinds in individualized logical zones

Flexibility

1. I am allowed to configure the screen setup

2. There are shortcut keys to execute the most used functions

3. The system allows me to temporarily deactivate some of the functions

Aesthetics

1. The information on the screen is the strictly necessary for me

2. The information on screen detaches itself from the background

3. Aesthetically the system is pleasant in the factors color, brightness, etc

Users Aid

1. The error/help messages are clear and adequate

2. The errors messages state the problem with precision

3. The messages are short and objective

Help and Documentation

1. I can easily perform information searches

2. The help function is easily visible

3. The information is precise complete and perceptible

Ease of Learning

1. The system is intuitive (I understand it easily)

2. It is easy for me to learn how to work with system

3. I don’t need help to work with the system

APPENDIX A. HANDSPY USABILITY QUESTIONNAIRE 46

System performance

1. The response time for the executed operations is fast enough

2. The response time when changing working tab is fast enough

Reliability

1. register on the system

2. choose the working project

3. manage tasks

4. upload data (InkML files) to the system

5. know the state of a protocol (linked to a participant or not)

6. manage participants list

7. create a selection

8. get calculations on a protocol

9. generate new calculations

10. export selected calculations

Rating Considering all the parameters that you analyzed how would you rank Hand-

Spy?

Very Good

Good

Merely Adequate

Inadequate

Bad

APPENDIX A. HANDSPY USABILITY QUESTIONNAIRE 47

	Abstract
	Resumo
	Acronyms
	List of Tables
	List of Figures
	Introduction
	Cognitive Processes in Writing
	Approach
	Organization of the Thesis

	Related Work
	Collecting and Analysing Tools
	Eye And Pen
	Ductus

	Experiment Management Systems

	Technology
	InkML
	XML Databases
	XML Enabled Databases
	Native XML Databases

	Javascript Frameworks
	Digital Sketching Devices
	Livescribe Smartpen
	Wacom Inkling

	HandSpy
	Design
	Application Interface
	Logic
	Data Repository
	Schema Definitions

	Implementation
	Presentation Layer
	Logic Layer
	Data Layer

	Collecting Framework
	Penlet
	Paper Application
	Data File Generator
	Hardware Issues

	HandSpy Usability Evaluation
	Heuristic Evaluation
	Evaluation

	Conclusion
	Future Work

	References
	HandSpy Usability Questionnaire

