
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Sketch-based Facial Modeling and
Animation: an approach based on

mobile devices

Ana Luísa de Vila Fernandes Orvalho

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Augusto Sousa (FEUP)

Co-supervisor: Prof. Verónica Orvalho (FCUP)

October 4, 2013

c© Ana Orvalho, 2013

Resumo

Transmitir emoções credíveis à audiência através da animação facial de personagens virtuais re-
quer um nível elevado de realismo. No entanto, este grau de qualidade é muito difícil de atingir
dado que o software tradicional para modelação e animação, apesar de muito poderoso, é também
extremamente complexo, já que oferece ao utilizador uma grande variedade de elementos de in-
terface geralmente referidos como WIMP (Window, Icon, Menu, Pointer). Dada a sua longa curva
de aprendizagem, o uso deste tipo de software está apenas ao alcance de artistas experientes. Mas,
com a evolução das interfaces de utilizador, novas abordagens ao modelo de interação humano-
máquina provaram ser alternativas válidas ao paradigma WIMP. Estas alternativas, conhecidas
como interfaces naturais de utilizador, procuram possibilitar que os utilizadores interajam com os
computadores da mesma forma que interagem com o mundo que os rodeia, tirando partido de ca-
pacidades como o toque, a fala, a escrita manual e o movimento ocular. Esta dissertação propõe o
uso de uma abordagem com recurso a desenhos para manipular a estrutura de controlo de modelos
3D, conhecida como rig, através de um tablet com capacidade multitoque, que não requer qualquer
dispositivo de entrada de dados para além dos dedos do utilizador. Esta abordagem, baseada num
algoritmo já existente que recorre a simples desenhos, pretende explorar as novas possibilidades
oferecidas pelos dispositivos móveis que permitam simplificar significativamente o processo de
animação, tornando-o acessível a utilizadores sem experiência nesta área. A solução proposta foi
especialmente orientada para o iPad, da Apple, e desenvolvida usando o motor de jogo Unity3D
para que se integrasse de forma simples no protótipo do projeto LIFEisGAME que inspirou este
trabalho - um jogo sério que pretende ajudar crianças com Desordens do Espetro Autista (DEA) a
reconhecer e expressar emoções através de expressões faciais, de forma interativa e creativa.

i

ii

Abstract

Realistic facial animation is essential so that virtual characters can convey believable emotions
to the audience. However, it is very hard to achieve since traditional modeling and animation
software, although very powerful, is also extremely complex, providing to the user a series of
interface elements commonly referred as WIMP (Window, Icon, Menu, Pointer). As they require
significant learning time, these types of software are only accessible to experienced artists. But
with the evolution of user interfaces, new approaches to the human-machine interaction model
have proven to be valid alternatives to the WIMP paradigm. These alternatives, know as natural
user interfaces, aim to enable users to interact with computers in the same way as they interact
with the world, taking advantage of abilities such as touch, speech, handwriting and eye-gazing.
This dissertation proposes the use of an hybrid sketching and dragging approach to manipulate
a model’s control structure, know as rig, through the use of a multi-touch capable tablet that
requires no intermediate input device other that the users’ fingers. This approach, based on a
pre-existing sketching algorithm aims to take advantage and explore new possibilities offered by
mobile devices to significantly ease the animation process, making it accessible to non-expert
users. The proposed solution was specially oriented for Apple’s iPad and developed using Unity3D
engine so it seamlessly fits in the LIFEisGAME project prototype, that inspired this work - a
serious game that intends to help children with Autism Spectrum Disorder (ASD) to recognize
and express emotions through facial expressions in an interactive and creative way.

iii

iv

Agradecimentos

Começo esta lista de agradecimentos, como não poderia deixar de ser, por dirigir uma palavra
de apreço ao meu orientador, Professor Doutor Augusto Sousa, pela sua disponibilidade e todo o
acompanhamento prestado ao longo do trabalho mas, especialmente pelo incentivo que me deu no
momento certo, e à minha co-orientadora, Professora Verónica Orvalho, por toda a ajuda e, em
particular, por me motivar e conseguir ver sempre um lado positivo nas situações. Por todo o apoio
que recebi, o meu muito obrigada!

De seguida, gostaria de agradecer à equipa do PIC (Porto Interactive Center), que me recebeu
tão bem, e a todas as pessoas que participaram nos testes de validação da aplicação desenvolvida,
pelo tempo que disponibilizaram e por todos os comentários que deixaram nos questionários e
que, mais que uma ajuda, foram um incentivo para continuar.

Já num campo mais pessoal, gostaria de agradecer aos meus colegas de curso, mas em especial
àqueles que se tornaram grandes amigos, por ouvirem os meus lamentos e por estarem sempre ao
meu lado, com uma palavra de incentivo ou, pelo menos, com uma pequena distração que me
fizesse depois voltar com mais ânimo ao trabalho.

Claramente que os agradecimentos mais fortes vão para a minha família. Agradeço aos meus
tios e primas Toni, Irene, Sofia e Raquel, por serem os meus segundos pais e irmãs mas obvia-
mente, agradeço em especial aos meus pais, que me abriram o caminho que agora termino e que
estiveram sempre ao meu lado para me ajudar a enfrentar todos os obstáculos. Obrigada por todo
o amor e carinho que sempre me deram mas, sobretudo, obrigada por estarem sempre aqui nos
piores momentos (e houve bastantes!). Agradeço também ao meu irmão, Bé, por sempre ter sido
o meu maior exemplo.

No mesmo patamar da família não poderia deixar de agracer ao meu namorado, Tiago, por ser
o meu companheiro em todas as situações e por ter aguentado firmemente mesmo quando lhe "fiz
a vida negra". Obrigada pelo teu amor e pela tua infinita paciência.

Ana Orvalho

v

vi

“Animation can explain whatever the mind of man can conceive.
This facility makes it the most versatile and explicit means of communication yet devised for

quick mass appreciation. ”

Walt Disney

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 The LIFEisGAME Project . 2
1.2 SketchFACE Overview . 3
1.3 Objectives . 4
1.4 Document Outline . 5

2 State of the Art 7
2.1 Character Facial Animation . 7

2.1.1 Facial Animation . 7
2.1.1.1 Facial Animation Pipeline . 8
2.1.1.2 Facial Rigging . 9
2.1.1.3 Animation Techniques . 14
2.1.1.4 Facial Standardization . 16

2.2 Sketching Interaction . 18
2.2.1 Interactive Devices . 18

2.2.1.1 Natural User Interfaces . 19
2.2.1.2 Multi-touch interfaces . 20
2.2.1.3 Spatial Interaction . 23

2.2.2 Sketch-based Interfaces Pipeline . 24
2.2.2.1 Sketch Acquisition . 24
2.2.2.2 Sketch Filtering . 25
2.2.2.3 Sketch Interpretation . 26

3 SketchFACE: Overview of the Proposed Solution 29
3.1 Problem Statement . 29
3.2 SketchFACE Approach . 30
3.3 Challenges . 30

3.3.1 Disadvantages of multi-touch interfaces 31
3.3.2 Interface design concerns . 32

3.4 System Design . 33
3.4.1 System Scenarios . 33
3.4.2 System Use Cases . 35
3.4.3 Interface Prototype . 36

4 SketchFACE: Implementation 39
4.1 System Implementation . 39

4.1.1 Development Tool: Unity3D . 40

ix

x CONTENTS

4.1.2 Module 1: Sketching Control Method 42
4.1.3 Module 2: Collaborative Environment 46

4.1.3.1 Networking Concept . 46
4.1.3.2 Networking Approaches . 46
4.1.3.3 Master Server . 48
4.1.3.4 SketchFACE Networking Approach 48

4.1.4 Module 3: Content Visualization . 49

5 Results and Validation 51
5.1 Experiment Design . 51

5.1.1 Participants . 52
5.1.2 Interface Experiment . 52
5.1.3 Collaborative Environment Experiment 53

5.2 Experiment Results . 53
5.3 Discussion of the Results . 57

6 Conclusion and Future Work 59
6.1 Conclusion . 59
6.2 Future Work . 60

A Validation Experiments Documents 63
A.1 Usability Questionnaire . 63

References 67

List of Figures

1.1 LIFEisGAME attempts to show how it is possible to apply a serious game ap-
proach to teach people with Autism Spectrum Disorder (ASD) to recognize facial
emotions. 2

1.2 SketchFACE Pipeline. 4

2.1 The Uncanny Valley (Translated by Karl F. MacDorman and Takashi Minato.
Original graph by Dr. Masahiro Mori, 1982). The original hypothesis stated that as
the appearance of an entity becomes more human-like, a human observer’s emo-
tional response becomes increasingly positive and empathic, until a certain point
beyond which it becomes repulsing. 8

2.2 Different stages of a traditional animation pipeline 9
2.3 Blendshapes of four basic expressions: happy, sad, surprise and angry (Copyright

2004 New Riders Publishing). 11
2.4 A bone-driven rig based on a highly articulated facial skeleton structure (Copyright

2001-2007 Epic Games). 11
2.5 Free-Form Deformation applied to a spheric surface: controlling box and embed-

ded object; left: neutral position; right: object deformation [1]. 12
2.6 Two window-based UI. Left: slider-based UI based on FACS [2]; Right: interface

with multiple columns of attributes [3]. 13
2.7 Three examples of viewport-based UI. a) 2D controls by Alexander et al. [4]; b)

3D controls by Komorowski et al. [5]; c) 3D controls by Grubb [6] 14
2.8 Two different poses and the resulting interpolation. Left: Neutral pose, Right: ”A”

mouth shape, Middle: Interpolated shape. [1] 14
2.9 FACS. Upper row: Sample single facial AUs; Lower row: Sets of AUs for basic

expressions [1] . 17
2.10 MPEG-4 Facial Animation. Left: Some Feature Points (FP); Right: A face model

in its neutral state and the FPs used to define FAPUs. Fractions of distances be-
tween the marked FPs are used to define FAPU [7]. 18

2.11 The evolution of interfaces. 19
2.12 The SBIM pipeline. 24
2.13 The input stroke (left) is acquired as a sequence of point samples spaced irregularly

according to drawing speed (right). 25
2.14 Gesture-based recognizers typically focus on how a sketch was drawn rather than

on what the final sketch actually looks like so stroke order is relevant. 27
2.15 Geometric-based recognizers identify low-level primitive that form more complex

shapes. 28

3.1 Different usage scenarios for the application . 34

xi

xii LIST OF FIGURES

3.2 SketchFACE interface prototype. 37

4.1 SketchFACE interface. 39
4.2 The three major modules of SketchFACE. 41
4.3 Elements of a 2D interface canvas: the control points, the reference curve and the

stroke drawn by the user. 42
4.4 Mapping the default model pose into the 2D interface. Left: transformation of

joints world coordinates to screen points. Right: repositioning of screen points to
fit the appropriate canvas area. 44

5.1 Facial expression that the participants were asked to reproduce using the Sketch-
FACE application, both on the computer and on the iPad. 53

5.2 Facial expressions that the participants were asked to reproduce using the Sketch-
FACE application, in the collaborative environment mode. 54

5.3 Distribution of the answers to the question about what interface device was more
intuitive. 54

5.4 Average number of user actions during the interface experiment by category. . . . 55
5.5 Average time necessary to create a given facial pose with SketchFACE on both

interface devices. 56
5.6 Average time necessary to create a given facial pose with SketchFACE on both

interface devices. 56
5.7 Average number of user actions during the collaborative environment experiment,

by category, for the three tested expressions. 57

List of Tables

5.1 Information about the experiments participants. 52
5.2 Results of the Mann-Whitney test performed. 55

xiii

xiv LIST OF TABLES

Symbols and Abbreviations

2D 2 Dimensions
3D 3 Dimensions
API Application Programming Interface
ASD Autism Spectrum Disorder
AU Action Unit
AVO Audiovisual Object
CAD Computer-Aided Design
CG Computer Graphics
CLI Command-Line Interface
CoLab International Collaboratory for Emerging Technologies
DEA Desordens do Espetro Autista
FACS Facial Action Coding System
FAP Facial Animation Parameters
FAPU Facial Animation Parameter Unit
FCT Fundação para a Ciência e a Tecnologia
FFD Free-Form Deformer
FP Feature Point
GlovePIE Glove Programmable Input Emulator
GUI Graphical User Interface
HCI Human-Computer Interaction
HD High-Definition
IEC International Electrotechnical Commission
ISO International Organization for Standardization
LED Light-Emitting Diode
LCD Liquid Crystal Display
LIFEisGAME LearnIng of Facial Emotions usIng Serious GAMEs
LTE Long Term Evolution
MERL Mitsubishi Electric Research Laboratories
MPEG Moving Picture Experts Group
MoCap Motion Capture
NUI Natural User Interface
NURBS Non Uniform Rational B-Spline
OEM Original Equipment Manufacturer
PC Personal Computer
ppi Pixels per inch
RFFD Rational Free-Form Deformer
RGB Red–Green–Blue
RPC Remote Procedure Call

xv

xvi SYMBOLS AND ABBREVIATIONS

SBIM Sketch Based Interfaces for Modeling
SDK Software Development Kit
SketchFACE Sketch-based Facial Animation Collaborative Environment
TV Television
UbiComp Ubiquitous Computing
UI User Interface
USB Universal Serial Bus
UT University of Texas
WIMP Window, Icon, Menu, Pointer
XML Extensible Markup Language

Chapter 1

Introduction

Freehand sketching has always been a crucial part of everyday human interaction. It has been used

throughout time to communicate ideas to others and to help the thinking process, clarifying one’s

thoughts. As it is a natural and intuitive means of communication, sketching is a promising tool

to ease the human-computer interaction paradigm. This is particularly interesting for the field of

facial animation, once it can help non-expert users to easily model and animate characters. Simple

free-hand strokes can replace traditional buttons, sliders and keyboard shortcuts as an alternative

of input to control modeling and animation applications.

This document presents an approach for facial deformation and animation based on a hybrid

sketching and dragging control system that takes advantage of the intuitive interface provided by

mobile devices. The system was developed for the iPad and implemented using Unity3D engine.

By simply drawing strokes on a control canvas on the iPad, a non-expert user can create facial

expressions on a 3D model on-the-fly and then animate the created pose sequence. The results can

be visualized both on a small section of the iPad screen or, if desired, in a much larger external

display connected to the mobile device. The possibility of integrating other visualization displays

helps the interaction between multiple users that is also supported by the system, creating a simple

and intuitive collaborative environment for modeling and animation.

This chapter provides relevant background information on this dissertation. It presents the

main challenges addressed, the motivation for the developed work and the objectives and contri-

butions to achieve and briefly describes the proposed solution.

1.1 Motivation

Interactive devices with pen-based interfaces have become popular in recent years and tablets

and touch screens are now common input technologies for many applications [8]. Sketching, as

an intuitive means of communication, provides a natural alternative to the multi-tool selection

paradigm of traditional interfaces, being now used in a variety of domains such as front ends for

Computer-Aided Design (CAD) systems, automatic correction or understanding of diagrams for

1

2 Introduction

immediate feedback in educational settings, alternative inputs for small keyboard-less devices, or

gestural interfaces. In the context of facial animation, a sketch-based interface can significantly

ease the manipulation of the virtual characters, opening new opportunities for non-expert users that

usually take a lot of time to master the powerful but complex interfaces of traditional modeling

and animation applications.

This dissertation is inspired by the LIFEisGAME project that intends to help children with

Autism Spectrum Disorder (ASD) to recognize facial emotions in an interactive and creative way.

ASDs are a group of development disabilities whose symptoms include problems with social in-

teraction, communication (verbal and/or non-verbal), restricted activities and interests, both in

children and adults. The severity of the symptoms, their combinations and patterns of behaviour

significantly varies from patient to patient.

1.1.1 The LIFEisGAME Project

LIFEisGAME (LearnIng of Facial Emotions usIng Serious GAMEs) [9] is a project funded by

Fundação para a Ciência e a Tecnologia (FCT) [10] under the program UT Austin|Portugal, also

known as the International Collaboratory for Emerging Technologies (CoLab) [11], in partnership

with Faculdade de Psicologia e Ciências da Educação da Universidade do Porto, University of

Texas in Austin, Instituto de Telecomunicações [12] and Microsoft. It explores a new and inno-

vative approach that uses a serious game to teach children with ASDs to recognize and express

facial emotions. The main objective of the LIFEisGAME project is to deploy a low cost real time

facial animation system embedded in an experimental game that enables further study of the facial

emotion recognition challenges of these children and also allows to analyse if the use of virtual

characters in interactive training programs can help the rehabilitation of ASDs patients.

Figure 1.1: LIFEisGAME attempts to show how it is possible to apply a serious game approach to
teach people with Autism Spectrum Disorder (ASD) to recognize facial emotions.

1.2 SketchFACE Overview 3

The official presentation of the project took place on June 11th, 2013 where a prototype appli-

cation was shown and explained, including four game modes that correspond to different learning

cycles: Recognize Mee, encourages children to watch a sequence of random facial expressions

and recognize the emotion; Sketch Mee, where the user constructs a facial expression on a 3D

character to match a defined emotion; Mimic Mee, where first an avatar mimics the players facial

expressions and then the user must follow the avatar’s expressions and Play Mee, where the player

is required to perform expressions that correspond to a situation depicted in a story.

The work of this dissertation focused on a specific module of the LIFEisGAME project that

uses sketch-recognition techniques to allow the player to draw facial expressions on an avatar,

modifying its appearance. The core of this module consists on a facial sketching control sys-

tem developed by Miranda et al. [13] that allows complex 3D deformations with just a freehand

drawing on a 3D mesh or on a virtual canvas.

Based on this, a new application was created - SkethFACE (Sketch-based Facial Animation

Collaborative Environment) - to allow collaborative work on the modeling and animation pro-

cesses. SketchFACE explores networking concepts to allow multiple users to simultaneously de-

form a model in a joint effort to produce an animated sequence of poses and supports multiples

devices for better content manipulation and display, increasing the immersiveness of the animation

environment.

SketchFACE aims to extend the scope of the LIFEisGAME project to individual without ASDs

by providing a simple and intuitive collaborative facial animation system appropriate to non-expert

artists and people with no modeling background that can range from young children to multidisci-

plinary teams where those in charge need a simple tool to transmit their ideas to the ones who will

execute them.

1.2 SketchFACE Overview

SketchFACE (Sketch-based Facial Animation Collaborative Environment) is an easy application

for modeling and animation of 3D characters controlled with simple strokes on 2D canvases that

represent each region of a model face. It provides a collaborative environment where multiple

users can, simultaneously, deform a character, in a joint effort to create facial expressions that can

be saved to a timeline and animated. It was designed to run on mobile devices with a prototype

deployed for Apple’s iPad.

The tablet works as the control interface to manipulate model’s geometry but the results of the

deformations can be seen in a much larger HD TV, if one is available and connected to the iPad

via Apple TV.

This way, SketchFACE supports multiple users and multiple visualization displays, resulting

a simple but immersive tool to help facial modeling and animation.

4 Introduction

Figure 1.2: SketchFACE Pipeline.

Main Features

The application allows the user to:

• Create different expressions on a 3D character simply by dragging control points or drawing

strokes on 2D canvases like sketching on a paper;

• Generate an animated clip with the expressions created and saved;

• Connect an external display to the iPad so that it becomes the control for the content shown

in a much wider screen (like a TV or a computer screen). Share with other simultaneous

users or with an audience the poses created or the resulting animation;

• Use it alone or team up with some friends to make the animation process more fun and

interactive.

1.3 Objectives

This work aimed for the accomplishment of the following objectives:

O1. To carry out research on facial animation techniques with special focus on sketch-based

animation interfaces that leads to a timeline-based facial animation application based on the facial

1.4 Document Outline 5

sketching control method developed by Miranda et al. [13];

O2. To carry out research on interactive devices technology and the new trends in user inter-

faces so that the final application suits the chosen implementation platform: the iPad;

O3. To explore different models to define the most adequate user interface to allow an easy

and intuitive manipulation and animation of 3D characters.

O4. To deploy a functional prototype application of the system, for the iPad, that includes a

standalone version, for single users, and a collaborative environment, allowing simultaneous alter-

ation of a single model.

O5. To validate the created application with a set of usability experiments.

1.4 Document Outline

The remaining chapters of this dissertation are organized as follows:

Chapter 2: State of the Art - Presents some background content divided into two major

sections: Character Facial Animation and Sketching Interaction. The first one discusses the com-

plexity of facial animation, briefly describes the stages of a traditional animation pipeline and the

major techniques used in each one. The second one presents an evolution of user interfaces and a

study of emergent technologies related to interactive devices. It also details a new approach in the

human-computer interaction model - sketch-based interfaces - and how it can be used to ease the

modeling and animation processes.

Chapter 3: SketchFACE: Overview of the Proposed Solution - Defines the proposed solu-

tion and details all the preliminary work that led to the development of SketchFACE with special

focus on the problem statement and the main system design decisions.

Chapter 4: SketchFACE: Implementation - Describes the implementation of the proposed

modeling and animation system based on an hybrid method of dragging and free-hand sketching

that allows collaborative work to produce facial expressions.

Chapter 4: Results and Validation - Describes the experiments conducted with users to val-

idate the application and to reach some conclusions about the value of the mobile device based

approach and of the collaborative environment.

6 Introduction

Chapter 5: Conclusion and Future Work - Summarizes the work developed in this disser-

tation and presents suggestions for future work related to this topic.

Chapter 2

State of the Art

This chapter, that provides some relevant background content, is divided into two major sections.

The first one, Character Facial Animation, begins by exposing the challenges raised by realistic

facial animation. Then, it describes the traditional animation pipeline and the major techniques

used in some stages and the section ends with a brief overview of the major standards used to cat-

egorize facial expressions. The Sketching Interaction section presents the three phases of interface

evolution, focusing on natural user interfaces and addressing some emergent technologies related

to interactive devices. The section ends with the description of the main stages of the sketch-based

interfaces pipeline, showing how this new human-computer interaction model can be used to ease

the modeling and animation processes.

2.1 Character Facial Animation

Facial expressions are essential to convey emotions to a character. But creating realistic facial

movements is complex due to the intricacy of the human facial anatomy, with all its subtle tex-

tures and small wrinkles, and to people’s inherent sensitivity to facial appearance. Convincing

animations demand quality models, manipulated by experienced artists through appropriate con-

trol interfaces and extensive and time-consuming manual tuning.

2.1.1 Facial Animation

Facial animation began in the 1970s with the pioneer ideas of Frederick Parke that produced

the first computer generated animated sequence of a human face changing expressions [14]. It

remains one of the most fundamental problems in computer graphics, often separated from regular

character animation due to its higher complexity. The difficulty to achieve believable animations

arises mainly due to the morphology and behaviour expected from a facial model. According to

Richie et al. [15], facial style can be defined as hyper-realistic, if it looks realistic and fantastic

at the same time, photorealistic, designated by the authors as no-style, and higly-stylized, if it can

range in size and shape regardless of the constraints of the physical world. The performance of

each virtual character must be in tune with its appearance since it is key to achieve believability:

7

8 State of the Art

human characters’ motion must obey the laws of physics but this may not be valid for super-

heroes or imaginary creatures. The human face places a particularly challenging problem since it

is an extremely complex geometric form, exhibiting numerous tiny wrinkles and subtle variations

in color and texture that are essential to convey emotions. But as people are very sensitive and

familiar to facial appearance and expressions, any inconsistency in the shape or movement of a

virtual character, when compared to what is expected from a real human face, is easily identified.

This is known as the Uncanny Valley (figure 2.1), introduced by Masahiro Mori [16, 17].

Figure 2.1: The Uncanny Valley (Translated by Karl F. MacDorman and Takashi Minato. Original
graph by Dr. Masahiro Mori, 1982). The original hypothesis stated that as the appearance of an
entity becomes more human-like, a human observer’s emotional response becomes increasingly
positive and empathic, until a certain point beyond which it becomes repulsing.

Thus, facial animation uses most methods applied to body animation but with a greater refine-

ment in order to compensate for the higher degree of detail of the face.

Within the entertainment industry, applications can be divided into off-line systems and real-

time systems. Off-line systems require high realism and accuracy to reinforce the audience at-

tention and are mainly used in films, visual effects or TV broadcasting. Real-time systems, also

known as interactive systems, such as dialog-based interfaces, virtual reality and videogames,

require real-time animations, consequently, a compromise between realism and fast computation.

2.1.1.1 Facial Animation Pipeline

A traditional production environment is divided into the following stages: pre-production, model-

ing, rigging and animation (figure 2.2) [18].

In the pre-production stage, the concept and requirements of the character are defined in terms

of shape, visual style and movement.

2.1 Character Facial Animation 9

Figure 2.2: Different stages of a traditional animation pipeline

During the modeling stage the geometry of the model is created based on the requirements

defined in the previous stage. The techniques to produce quality facial models can be divided

into two categories: generic model individualization, that generates a facial model for a specific

individual through the deformation of a generic model, and example-based face modeling, that

consists on creating a face model with desired facial features through the linear combinations of

an existing face model collection [19].

The next step of the pipeline consists on creating a control structure that allows the manipu-

lation of the model like a virtual puppet [18], - the rig - after which the character is ready to be

animated.

The responsible for rigging a character, usually known as rigger, needs to understand the

behaviours expected for the character and interact with modelers and animators in order to provide

an efficient and intuitive interface to control it. Riggers and modelers must reach a balance between

putting enough detail into the model, to get the desired control, and not adding too much geometry

that leads to cumbersome and slow definition of facial deformers [18].

It is also common that animators ask for new controls after the rig is created, to achieve better

deformations or alter its behaviour when does not perform as desired, which usually resets the

rigging process and, consequently, delays the production process. Rigging a character becomes an

iterative process and a serious bottleneck in a CG production pipeline [20].

Therefore, modeling, rigging and animation stages run in parallel.

The following sections will focus on the rigging and animation stages of the production

pipeline, presenting the most relevant techniques used in each one.

2.1.1.2 Facial Rigging

Rigging is a technique for creating a control structure that enables the artist to produce motion

on a 3D character by manipulating a 3D model like a puppet [20]. According to McLaughlin and

10 State of the Art

Sumida, character rigging can be defined as the system engineering process that allows surface

deformation, mimicking the effect of bones and muscles moving skin on a biological creature [21].

Every rig must provide easy animation controls that work as expected and should allow small

modifications to correct undesired behaviours. In order to avoid strange or impossible moves that

do not follow the requirements predefined for a specific character, the rig should include a set of

constraints [22].

The rig control points can be attached to selected areas of the model and affect the corre-

spondent area accordingly to the geometric operation (translation, rotation and scaling) applied

to them. The rig determines the quality and the number of potential animations. More control

points allow smoother animations but also lead to a system that is more complex to animate and

maintain. As face animation must preserve the subtleties of facial expressions, a high number of

joints is required to achieve realistic results.

The most common approaches to create a facial rig are based on blend shapes, bone-driven

techniques or a combination of both. To complement these approaches, an additional layer of de-

formation can be added to a model in areas where neither bones nor shapes successfully reproduce

facial features such as wrinkles. These deformers can be divided in two groups: geometrically-

based and physically-based methods.

Blend Shapes
Blend shapes, or shape interpolation, is the most intuitive and commonly used technique in facial

animation: a set of key facial poses, called shapes, are interpolated to generate the character’s ani-

mation. A blend shape model is the linear weighted sum of a number of topologically conforming

shape primitives [1]. Varying the weights of this linear combination allows the representation of a

full range of expressions with little computation. However, to express a significant range of highly

detailed expressions usually implies the creation of large libraries of blend shapes which can be

very time-consuming. For example, in the film The Lord of the Rings: The Two Towers, the rig of

the character Gollum required 675 blend shapes [23]. Furthermore, if the topology of the model

needs to be changed, all the shapes must be redone. Shapes can be created by deforming a base

mesh into the desired canonical expressions or can be directly scanned from a real actor or a clay

model [24].

Bones
In bone-driven animation, a character is represented in two parts: a 3D surface that represents the

visual features of the model, called skin or mesh, and a highly articulated set of bones (called the

skeleton or rig) used to deform and animate the mesh. The binding process of the skeleton to the

mesh, called skinning, takes into account how each bone influences each part of the surface during

deformation. Each vertex is only animated by the bones around it according to a defined weight

value so, careful planning is required in the rigging process of each model [25]. A full weight value

makes the surface point move exactly like its associated bone. A low weight value only causes

a partial influence on the surface point when the associated bone moves. This approach requires

2.1 Character Facial Animation 11

Figure 2.3: Blendshapes of four basic expressions: happy, sad, surprise and angry (Copyright 2004
New Riders Publishing).

more preparation in order to obtain the desired results, specially regarding the correct weight

definition, but enables smoother movements comparing to blend shapes and needs no further work

when the topology of the character is modified. In videogame productions, bone-driven techniques

are often combined with motion capture based on performance of actors with motion sensors

placed on the face, each one representing a bone of the rig.

Figure 2.4: A bone-driven rig based on a highly articulated facial skeleton structure (Copyright
2001-2007 Epic Games).

Combined techniques
Exploring hybrid techniques is a common approach in the entertainment industry to achieve better

results and minimize time and computational effort. Interpolation between key images used in

blend shapes techniques provides a direct and intuitive method for specifying the actions of the

character. However, it also leads to incomplete control of motion dynamics translated in smooth-

ness or continuity problems as the weighting factor that controls the amount of change from one

frame to the next is a single-valued function of time that is applied to an entire key shape, pro-

viding no "spatial weighting" [26]. On the other side, skeletons are simple structures composed

of a few points, which provides a high level of interaction and have the advantage of being very

compatible with blend shapes techniques. Combining blend shapes with a skeletal approach pro-

vides the rig with flexibility and smoothness of a bone-driven system and the expressiveness of

12 State of the Art

blend shapes [27]. Moreover, skeleton control can be applied selectively to parts of the model that

require enhancement.

Geometrically-based
Geometric deformation consists on using an easier and simpler control interface to manipulate

a deformable model. Basically, uses a simpler object to modify a more complex one. One of

the most commonly used geometric deformation methods is the Free-Form Deformer (FFD), first

introduced by Sederberg and Parry [28]. A FFD uses a flexible control box containing a 3D grid of

points (figure 2.5) that encompasses the model to be deformed. The manipulation of these points

deforms the control box and, at the same time, the embedded object.

Figure 2.5: Free-Form Deformation applied to a spheric surface: controlling box and embedded
object; left: neutral position; right: object deformation [1].

Several approaches to this method were presented, varying the shape of the control lattice [29]

or the degree of control over the embedded model. For example, Kalra et al. [30] extended the

concept of FFDs to Rational Free-Form Deformers (RFFD), in which different weights can be

assigned to each point of the control structure allowing better control over the geometry defor-

mation. The authors also proposed a division of the face in regions of interest, allowing a more

accurate and independent control of each one and simulating the muscle action on the skin surface

of the human face.

Singh and Fiume proposed an alternative approach not directly related to FFDs but that can

be used to emulate them, replacing the lattice for a Non Uniform Rational B-Spline (NURBS)

curve [31]. A NURBS is a mathematical representation of 3D geometry that can accurately de-

scribe any shape from a simple 2D line or curve to the most complex 3D free-form surface. These

parametric NURBS curves can be used as wires to control each part of a model, as a rig. By

manipulating the parameters, different poses can be created.

Physically-based
Physically-based methods simulate the elastic properties of facial skin and muscles to create ex-

pressions and animations, as well as to build facial models. But replicating the behaviour of human

tissues is very intricate. The search for realistic results led to two dominant approaches used in

physically-based models: mass-springs and finite elements. Depending on the intended simula-

tion, these two techniques can be combined. Mass-spring methods model the skin, and sometimes

muscle and bones, as a number of point masses connected by springs in a lattice structure, like a

2.1 Character Facial Animation 13

cloth. Finite elements methods break the continuous system into a regular discrete representation

with a finite number of elements using, for example, tetrahedrons. This last technique is more

sophisticated, physically accurate and stable than the first, making it more suitable for modelling

continuous materials like soft tissue, but is also computationally far more expensive [32].

Platt and Bladler presented the first physically-based facial animation model that used a mass-

spring system to simulate muscle fibres [33]. Their work used the Facial Action Coding System

(FACS) to determine which muscles to activate in the underlying model (see section 2.1.1.4).

Rig Control Interface
The manipulation of the rig deforms the geometry of a 3D character’s model, producing move-

ment. To allow this manipulation, an optional layer of control can be defined - the rig’s user

interface (UI). There are many approaches to handle the UI for rigging but two major categories

can be identified: window-based and viewport-based, which can also be combined.

Window-based UIs provide direct input of values through traditional sliders, buttons or boxes

located in separate windows. Villagrasa and Susin [2] built a slider-based UI based on FACS (see

section 2.1.1.4). Bredow et al. [3] configured Maya’s channel box to display multiple categorized

columns of attributes to animate the characters of Surf’s Up (Sony Pictures Animation, 2007).

Figure 2.6: Two window-based UI. Left: slider-based UI based on FACS [2]; Right: interface with
multiple columns of attributes [3].

Viewport-based UIs use a set of 2D or 3D controls to manipulate the rig that are included in the

3D space where the model is located. An illustrative example of this approach is the one proposed

by Jason Osipa, that provided a high level viewport to edit the model and the animations, which

only allowed to manipulate four attributes of the rig elements by a bi-dimensional set of controls

constrained to a square [34].

The following section discusses the most relevant methods related to facial animation.

14 State of the Art

Figure 2.7: Three examples of viewport-based UI. a) 2D controls by Alexander et al. [4]; b) 3D
controls by Komorowski et al. [5]; c) 3D controls by Grubb [6]

2.1.1.3 Animation Techniques

Once a model’s geometry is defined and the control structure that allows its deformation is created,

the character can be animated. Many different techniques have been developed for this process

but, in general three major approaches can be identified: keyframe interpolation, motion capture

and procedural animation. Since they are rarely used individually, these approaches can be com-

plemented by physically-based and geometrically-based techniques.

Keyframe Animation
Keyframe animation is the easiest and oldest completely geometric technique that offers an intu-

itive approach to facial animation: several complete face models with the same topology, called

keyframes, are created for a given set of points in time and the in-between frames are obtained

by interpolation of these keyframes. Realistic animation requires a good number of keyframes.

If not enough are used, the in-betweens will be too unpredictable, the path of action will usu-

ally be incorrect and objects may intersect one another, demanding for exhaustive reworking of

intermediate poses [35].

The simplest case of keyframe animation to be mentioned corresponds to an interpolation

between two keyframes at different positions in time (figure 2.8).

Figure 2.8: Two different poses and the resulting interpolation. Left: Neutral pose, Right: ”A”
mouth shape, Middle: Interpolated shape. [1]

2.1 Character Facial Animation 15

Due to its simplicity, linear interpolation is commonly used [36], obeying the following for-

mula:

poseinterpolated(t) = (1− t)× pose1 + t× pose2 0≤ t ≤ 1 (2.1)

If t is 0, the current frame will be the same as the first keyframe. If t is 1, then the current

frame will match the second keyframe. Different values lead to a weighted combination of both

keyframes. Other types of interpolations can also be used: a cosine interpolation function can

provide acceleration and deceleration effects at the beginning and end of an animation [37] and

bilinear interpolation generates a greater variety of facial expressions when four keyframes are

used, instead of two [38].

Although quick and easy, interpolation falls short to achieve smooth and realistic results so it

is usually paired with other techniques, such as performance-driven methods [39].

Motion Capture Animation
Motion capture (MoCap) animation, also known as performance-driven animation, emerged from

the difficulty of achieving life-like characters in facial animation. It is a data-driven technique since

the data obtained from external sources is mapped onto a model to create animated sequences:

the majority of these methods trace facial markers placed on a performer and extract the 2D or

3D positions of these markers to animate a 3D face mesh. Accurate tracking of these points is

important to maintain a consistent and realistic quality of animation [1].

Performance-driven animation has been used on movies such as The Polar Express (2004)

where it allowed an actor such as Tom Hanks to drive the facial expressions of several different

characters. During the shoots, 80 markers were used for the body and 152 markers were used for

the face [40].

Advantages of MoCap systems include the increased speed over manually crafted animations

and the potential of producing more realistic facial motion. But most marker-based motion MoCap

systems use between 30-160 marker on the face which work reasonably well for capturing the

motion of rigid objects but is not very effective at capturing subtle movements of the face [22].

Consequently, the animator needs to spend a significant amount of time tweaking the animation to

fit the desired results. This weakness encouraged the development of new markless systems [41]

and facial feature tracking from video using complex models.

Procedural Animation
Procedural animation is used to automatically generate animation in real-time to allow more di-

verse series of actions that could otherwise be created using predefined animations. With this

approach, objects are animated based on physical rules, often of the real world, expressed by

mathematical equations. The animator specifies these rules and the initial conditions and runs

the simulation to see the results. Procedural animation requires significantly more planning time

than non-procedural approaches but has the advantage of easing the build and tuning stages: by

changing the input parameters it is fast and easy to create new results or to modify previous work.

16 State of the Art

Several procedural animation systems have been developed to provide a range of useful char-

acter behaviours [42, 43]. Most of them aiming to maximize physical realism in highly dynamic

tasks such as tumbling. However, in terms of behavioural movements, procedural animation for

the face is not a very explored area.

2.1.1.4 Facial Standardization

Broadly speaking, within the field of computer facial animation, two kinds of people can be identi-

fied: the researchers and the artists. Researchers are mostly interested in the more technical aspects

of the problems, trying to track facial features in real time in unconstrained video without markers

or studying intricate methods to realistic animate anatomically correct models according to physic

laws. On the other side, artists are concerned with more immediate and practical tasks of produc-

ing high quality facial animations, especially for the entertainment industry, so they use the best

methods possible provided that they are compatible with the software they already master. Thus,

most of the facial animation methods described in scientific articles never reach the pipelines of

major movies or TV productions. But even within the research community, different groups often

face problems of system interoperability because they do not use the same parameters to detect,

control or animate facial movements [44]. In order to bridge these gaps, significant effort has been

put on describing the face with a small set of control parameters instead of defining its complete

geometry. This parameterization eases the processes of controlling facial movements, acquiring

information from video analysis, reconstructing a head or transferring animations between differ-

ent models.

Research has shown that an ideal parameterization does not exist because it is difficult to

satisfy all user demands for a broad range of facial applications. Parke developed the first facial

parametric model that allowed direct creation of facial deformation by defining ad hoc parameters

or by deriving parameters from the structure and anatomy of the face [38]. Since then, other

approaches for facial standardization have been studied.

The following sections present two standards that have been used to categorize facial expres-

sions.

FACS - Facial Action Coding System

The Facial Action Coding System (FACS) is the most widely and versatile method for measur-

ing and describing facial behaviours, having become a standard to categorize the physical expres-

sions of emotions. It was originally published by Paul Eckman and Wallace Friesen in 1978 [45]

and updated in 2002, with large contributions from Joseph Hager [46]. They determined how the

contraction of each facial muscle, singly and in combination with other muscles, changes the ap-

pearance of the face by examining videotapes, studying anatomy and palpating their faces. FACS

parameterizes facial expressions in terms of Action Units (AU) that are the fundamental actions of

individual muscles or groups of muscles like raising left eyebrow. There are 46 AUs that represent

2.1 Character Facial Animation 17

contractions or relaxation of one or more muscles. The scores for a facial expression consist of

the list of AUs that produced it.

Figure 2.9: FACS. Upper row: Sample single facial AUs; Lower row: Sets of AUs for basic
expressions [1]

Despite its popularity and simplicity, FACS has two major weaknesses [47]: first, the AUs are

purely local spatial patterns but real facial motion is rarely completely localized and second, FACS

does not offer temporal components to describe the motion. Other limitations of this system in-

clude inability to describe fine eye and lip motions, and the inability to describe the co-articulation

effects found most commonly in speech.

MPEG-4 Facial Animation

MPEG-4 is an object-based multimedia compression standard that allows encoding of different

audiovisual objects (AVO) in the scene independently, developed by the ISO/IEC Moving Picture

Experts Group (MPEG). Its initial objective was to achieve low bit-rate video communications

but its scope was later expanded to a much broader multimedia context including images, text,

graphics, 3D scenes, animation and synthetic audio.

The MPEG-4 Facial Animation standard [44] specifies a face model in its neutral state and a

number of Feature Points (FP) that provide spatial reference to specific positions on a human face

such as major muscles and bones. It also defines a set of Facial Animation Parameters (FAP), each

corresponding to a particular facial action deforming the neutral face. Facial animation sequences

are generated by deforming the neutral face model according to some specific FAP values at each

time instant.

The standard defines 84 FPs, 66 low-level FAPs and 2 high-level FAPs, visemes and expres-

sions. Viseme is the visual counterpart of phonemes in speech while facial expressions consist of

a set of 6 basic emotions: anger, joy, sadness, surprise, disgust and fear. The low-level FAPs are

based on the study of minimal facial actions and are closely related to muscle actions, precisely

specifying how much a given FPs should move. All low-level FAPs are expressed in terms of the

Face Animation Parameter Units (FAPUs) which are fractions of key facial features, such as the

18 State of the Art

distance between the eyes. FAPUs scale FAPs for fitting any face model, allowing their interpreta-

tion in a consistent way. By coding a face model using FPs and FAPUs, developers can exchange

face models without concerns about calibrations [7].

Figure 2.10: MPEG-4 Facial Animation. Left: Some Feature Points (FP); Right: A face model in
its neutral state and the FPs used to define FAPUs. Fractions of distances between the marked FPs
are used to define FAPU [7].

2.2 Sketching Interaction

The way humans interact with computers has evolved at the same pace as the machines them-

selves. Today, the barriers between users and devices are fading away with the development of

new types of interfaces. As touch-screen devices become more common, this technology can pro-

vide an accessible and natural interface for sketches - rapidly executed freehand drawings - to be

used in the modeling and animation processes as well as in collaborative systems.

2.2.1 Interactive Devices

Human-Computer Interaction (HCI), originally known as man-machine interaction, is a term

known since the early 1980s [48]. It examines the importance of usability and user-oriented

interface design meaning that if focus on improving interaction between users and computing

devices according to the needs and capabilities of both. Since the first digital computers were

programmed, using mechanical switches and plug boards, the ways in which people interact with

computers have evolved significantly and as more and more uses for technology came into play,

more and more types of interfaces were created to help bridge the barrier between man and com-

puter. A common perspective is that interfaces have passed through three loosely defined phases:

command-line interfaces (CLI); graphical user interfaces (GUI) and, more recently, natural user

interfaces (NUI).

2.2 Sketching Interaction 19

Figure 2.11: The evolution of interfaces.

Command-line interface was the first means of human-computer interaction and the more ef-

fective way to control computing devices around the 1960s. It consisted in a kind of interactive

dialogue in the form of successive lines of text (command lines) that were understood by both

users and computers. The interface was usually implemented with a command line shell, which

is a program that accepts commands as text input and converts them to appropriate system func-

tions. Today, CLIs are less used by casual users but often preferred by advanced ones, since they

generally provide a more concise and powerful means to control a program or operating system.

With the development of ultra large scale integrated circuits, high-resolution displays and the

appearance of the mouse, interfaces turned to a graphical approach. GUIs are based on metaphors,

like the desktop metaphor (so called because windows are allowed to overlap, like papers on top of

a desk) and rely on a known set of user interface elements, commonly referred as WIMP (Window,

Icon, Menu, Pointer) [49].

2.2.1.1 Natural User Interfaces

Today, a new trend is gaining strength: NUI is an emerging paradigm shift that is reducing even

more the barriers between users and machines. The term is used to refer a user interface that is

invisible or becomes invisible to its users with successive learned interactions. The word "nat-

ural" is used because NUIs aim to enable users to interact with computers in the same way as

they interact with the world. They rely on the ability of a user to perform relatively natural move-

ments or gestures that they quickly discover to control the computer applications or manipulate

the on-screen content. Thus, novice users quickly progress to experts. NUIs take advantage of the

power of a much wider range of communication modalities, focusing on human abilities such as

touch, speech, handwriting, eye-gazing, motion and higher cognitive functions such as expression,

creativity, exploration, as well as combinations of them, forming multimodal interfaces.

20 State of the Art

But the design and development of the technology that support new NUIs is both conceptu-

ally and practically very challenging and may require both novel software and hardware to al-

low input from multiple and varied sources [50]. Traditional development environments, such

as Microsoft Visual Studio/.NET, Adobe Flash or Java, fall short of supporting uncommon input

devices as well as handling multi-user applications, for multi-touch interaction and collaborative

work. To overcome these issues, over the last few years a broad variety of heterogeneous and very

specialized toolkits and frameworks have appeared like Microsoft Surface SDK [51], NUIGroup

Touchlib [52], a library for creating multi-touch interaction surfaces or GlovePIE [53], that orig-

inally started as a system for emulating joystick and keyboard input using a virtual reality glove

peripheral, but now supports many input devices. Few development environments that address the

new requirements are available, supporting novel input devices such as physical turntables, mixing

desks, multi-touch surfaces and simple vision tracking. Two examples are MAX/MSP [54] and

vvvv [55], which are graphical development environments for music and video synthesis that are

widely used by artist to create interactive multimedia installations.

The following sections present examples of devices commonly referred as having NUIs.

2.2.1.2 Multi-touch interfaces

Multi-touch devices consist of a sensing surface, like a trackpad or a touch-screen, as well as soft-

ware that recognizes two or more points of contact with the surface. This plural-point awareness

is often used to implement functionalities such as pinch to zoom or activating predefined pro-

grams. Multi-touch technologies have a long history. The first documented multi-touch system

was developed in 1982 by the University of Toronto’s Input Research Group [56]. It consisted of a

frosted-glass panel with particular optical properties so that finger pressure produced variable size

black spots on an otherwise white background. Using a camera, simple image processing allowed

multi-touch input.

In recent years the market witnessed a proliferation of multiple finger tracking products [57],

including many tablets, smartphones and digital tables. Bill Buxton presented a good overview of

the evolution of the multi-touch technology [58] since its early beginnings. The following sections

present some of the most relevant new trends and devices.

Multi-touch Tables
Multi-touch digital tables are tabletop displays that present the characteristics of multi-touch tech-

nology: a touch-screen and software to analyse the contact points. It is an innovative user-friendly

technology offered in nearly any shape or size to suit any requirement. Depending on its spec-

ifications, digital tables may allow users to interact with multimedia content the same way they

have interacted with physical objects using their hands, normal gestures or by putting real-world

objects on the table.

2.2 Sketching Interaction 21

DiamondTouch

DiamondTouch [59] is a multi-user touch technology for tabletop front-projected displays

that supports small group collaboration, originally developed at Mitsubishi Electric Re-

search Laboratories (MERL) in 2001 [60] and later licensed to Circle Twelve Inc., in 2008.

It enables several different people to use the same touch-surface simultaneously without in-

terfering with each other, or being affected by foreign objects left on the surface but its most

innovative feature is the ability to identify which person is touching where. By distinguish-

ing between different users, the system can track a person’s input and behave appropriately,

controlling their access to certain functions.

SMART Table

The SMART Table is the first multi-touch, multi-user interactive learning center designed

to stimulate collaboration among primary students. It works with both Mac and Windows

operating systems and is easy-to-clean, scratch-resistant and highly durable in order to suit

the needs of its young users. The SMART Table can be used together with other SMART

hardware and comes with an initial set of eight learning applications but many others are

available for download. The well-known 230i [61] model, with a blue top child appealing

look, presented a 27 inches multi-touch display supporting up to 6 users at one time. The

new SMART Table 442i [62] features a 42 inches (106.68 cm) surface with high-definition

1080p LCD display, supporting up to 40 simultaneous touches which enable up to eight

students to interact simultaneously and actively collaborate to achieve shared learning goals.

Microsoft PixelSense

Microsoft PixelSense [63], formerly called Microsoft Surface, is an interactive surface com-

puting platform that recognizes fingers, hands and objects placed on the screen to create a

natural user interface. It allows one or more people to use touch and real world objects and

share digital content at the same time.

Microsoft Surface 1.0, the first version of PixelSense, was announced on May, 2007 and

could recognize 52 simultaneous multi-touch points of contact in a 30 inches (76 cm) 4:3

rear projection display (1024x768). Sales of Microsoft Surface 1.0 were discontinued in

2011 in anticipation of the release of the Samsung SUR40 for Microsoft Surface and the

Microsoft Surface 2.0 software platform. The current version of PixelSense, the Samsung

SUR40 for Microsoft Surface was announced in 2011, and presents a 40 inches (102 cm)

16:9 LED backlit LCD display (1920x1080) with integrated PC and PixelSense technology.

Tablets
A tablet computer, or simply tablet, is a one-piece mobile computer, mainly controlled by touch-

screen via finger gestures or a virtual keyboard, removing the need for physical input hardware

components. The first commercial tablets appeared at the end of the 20th century and today many

models with different sizes and features are available on the market. Tablets are lightweight and

22 State of the Art

easier to carry than laptops while offer many of the same Web browsing capabilities. They are

usually used for consuming multimedia content, like movies, music and books, rather than for

creating content.

Apple iPad

The iPad is a line of tablet computers designed and marketed by Apple first released on

April, 2010. The wide range of capabilities and increased usability, battery life, simplicity

and overall quality of the first model, in comparison with competitor devices, earned the iPad

positive reviews which defined a new standard, revolutionizing the tablet industry. However,

some aspects, such as the lack of support for the Adobe Flash format were criticized. All

devices run on Apple’s iOS operating system, have built-in Wi-Fi and, some models present

cellular connectivity up to LTE. The most recent models, the new iPad and the iPad Mini

were released on November, 2012. The new iPad [64] has a 9.7 inch LED-backlit multi-

touch retina display with 2048x1536 resolution at 264 pixels per inch (ppi).

Microsoft Surface

Microsoft Surface was the first name of the interactive surface computing platform now

known as Microsoft PixelSense. Today, this name is associated to a series of tablets designed

and marketed by Microsoft [65]. The Surface debuted in two models, marketed as Surface

and Surface Pro: the first one with Windows RT (a special Microsoft Windows operating

system designed to run on mobile devices utilizing the ARM architecture) and the other

with Windows 8. Both tablets have high-definition 10.6 inches (27 cm) screens with an anti-

fingerprint coating and 16:9 aspect ratio but have different resolutions: 1366x768 pixels for

the Windows RT model and 1920x1080 pixels for the Pro model. One of the most useful

features of Micrsoft Surface is the built in kickstand on the back of the unit that enables the

device to maintain an upright position and become hands-free.

Google Nexus

Google Nexus is a line of mobile devices using the Android operative system produced by

Google along with an original equipment manufacturer (OEM) partner that, today, includes

smartphones and tablets (it also included a media-streaming entertainment device, Nexus

Q, that was unofficial dropped due to bad reviews). The first tablet of the series, the Nexus

7 [66], developed in conjunction with Asus was unveiled in June, 2012 and shipping started

the following month, being the first device to run Android version 4.1, nicknamed "Jelly

Bean". Even though this is one of the smaller tablets on the market, it includes an HD

touch-screen 7 inch (18 cm) display with 1280x800 pixel resolution. The second tablet of

the series, the Nexus 10 [67], was manufactured by Samsung and first released in November,

2012. It runs Android 4.2 ("Jelly Bean") operative system and features a 10.1 inch display

with 16:10 aspect ratio and 2560x1600 pixel resolution (300ppi), which in 2012, made it

the world’s highest resolution tablet display.

2.2 Sketching Interaction 23

2.2.1.3 Spatial Interaction

Multi-touch technology can enable natural user interfaces. However, most UI toolkits used to con-

struct interfaces with such technology are traditional GUIs that fail to achieve the "transparency"

desired for NUIs: our attention is projected to the multi-touch screen that remains distinguishable

from the background. This idea of integrating computers seamlessly into the world is not new.

In 1991, Mark Weiser, of Xerox PARC, published an article that outlined a vision of the next

generation of computation where he described a model of Ubiquitous Computing, or UbiComp,

where technologies "weave themselves into the fabric of everyday life until they are indistinguish-

able from it" [68]. At the time, there where no appropriate display systems that could work with

the full diversity of input and output forms required for this UbiComp approach. Today, we are

closer than ever to achieve it, with an emerging type of user interfaces that allow users to interact

with computing devices in entirely new ways, such as through the motion of objects and bodies,

demoting multi-touch technology to an old draft of natural user interfaces.

Kinect

Kinect [69] is a motion sensing input device by Microsoft for the Xbox 360 video game

console and Windows PCs. It was first announced in June, 2010 under the code name

"Project Natal" and released in North America on November of the same year. Kinect

competed with the Wii Remote Plus and PlayStation Move motion sensor controllers but

had a major advantage: this webcam-style add-on peripheral enabled users to control and

interact with the Xbox 360 without the need to actually touch a game controller, using

gestures and spoken commands. The device features an RGB camera, depth sensor and

multi-array microphone that allow full-body 3D motion capture, facial recognition and voice

recognition capabilities, changing the way people play games, watch TV and listen to music.

On June, 2011 Microsoft released the Kinect SDK, allowing developers to write Kinect-

based applications in C++, C# or Visual Basic .NET.

Leap Motion

Leap Motion [70] is a breakthrough technology focused on bringing motion control to the

desktop through a small USB peripheral. The inspiration for this new technology came to its

creators from the frustration surrounding 3D modeling using a mouse and keyboard versus

the simplicity of molding clay in the real world. The Leap Motion controller is designed

to rest on a desk in front of a monitor, creating an invisible 3D roughly 1.2 metre-square

interaction space inside which the device is advertised to track hands and fingers as well as

tools such as pens, pencils, and chopsticks with very high accuracy. Like Microsoft’s Kinect,

the peripheral tracks human body gestures, and translates this movement into corresponding

motions on a video display. According to David Holz and Michael Buckwald, co-founders

of the startup Leap Motion, its input device is accurate to within 1/100 of a millimetre

and 200 times more sensitive than existing motion-sensing technologies such as Microsoft’s

24 State of the Art

Kinect. The release of the Leap Motion controller was postponed several times but devices

are now in the process of shipping to consumers.

2.2.2 Sketch-based Interfaces Pipeline

User interfaces of modeling systems, such as Maya or Blender, have traditionally followed the

WIMP (Window, Icon, Menu, Pointer) paradigm [71]. But using these powerful applications can

be very difficult for a non-expert user that may need to explore a considerable amount of menus

and controls before executing a specific task. Significant learning time and effort is required in

order to create complex models and to memorize keyboard shortcuts. In order to simplify this

interaction model, recent research in modeling interfaces led to a new trend known as sketch-

based interfaces for modeling (SBIM). The idea is to automate the processes of sketch recognition

in order for sketching to be an effective means of input in computer modeling, replacing the

traditional buttons and menus. Sketching on paper has often been used in the early prototyping

stages of the design before its conversion into a 3D model. Automating or assisting this translation

could significantly reduce the time and effort needed to create complex models that usually turn

out to be a bottleneck in production pipelines. As sketching is natural and intuitive for humans that

can imbue so much meaning into a 2D drawing, SBIM can make 3D modeling systems accessible

to novice users. The human visual system interprets sketches with little effort, even when they are

not faithful representations of real-world objects. But getting a computer to mimic this ability is

a very difficult task. The main challenge of SBIM is to interpret the meaning of the input stroke,

understanding the user’s intention, in order to display the correct result. Based on Olsen et al. [71],

the pipeline of a sketch-based system is summarized in figure 2.12. The first step is to obtain a

sketch from the user (Sketch Acquisition), followed by a filtering stage to clean and transform the

sketch (Sketch Filtering). The process ends with the extraction of meaning from the sketch (Sketch

Interpretation).

Figure 2.12: The SBIM pipeline.

2.2.2.1 Sketch Acquisition

The process of sketch recognition starts with the acquisition of a sketch from the user. This

is done through a sketch-based input device that ideally mimics, as close as possible, the feel

2.2 Sketching Interaction 25

of freehand drawing on paper in order to exploit the user’s ability to draw. Although the most

common input device is the standard mouse, devices in which the display and the input device

are coupled (such as tablet displays) enable a more natural interaction. Despite the degree of

immersion provided by the chosen sketch input device, it must, at the bare minimum provide

positional information in some 2D coordinate system, usually window coordinates. The sampling

rate varies among the devices but in all, the sampled positions represent a linear approximation

of continuous movements, varying the space between them according to the drawing speed. The

space between samples tends to be smaller in parts drawn more carefully such as corners so this

fact can be exploited to identify important parts. [72, 73, 74].

Figure 2.13: The input stroke (left) is acquired as a sequence of point samples spaced irregularly
according to drawing speed (right).

A sketch is a set of one or more strokes which correspond to time-ordered sequences of points

S = {p1, p2, ..., pn} whose beginning and end is defined by a mouse or pen down and up events,

respectively. Each point pi, contains a 2D coordinate and a timestamp: pi = [xi,yi, ti]. Depending

on the target application and the available hardware, this basic information can be extended by

additional data such as pressure or pen orientation.

2.2.2.2 Sketch Filtering

The filtering stage is important to remove noisy or erroneous samples from the input before at-

tempting to interpret the sketch. Sezgin and Davis [75] identify two main sources of noise: user

and device error. User errors result from poor drawing skills, slight jitter in a user’s hand or dif-

ficulties in handling the input device. Device errors consist of "digitalization noise" caused by

spatial and temporal quantization of the input by the mechanical hardware used and vary from de-

vice to device. As a result from this interferences, the input to a sketch-based system is generally

considered to be an imperfect representation of user intention, being filtered before interpretation.

Different sample rates of the input devices and variations in drawing speed contribute to unevenly

spaced samples in the raw input data. Resampling allows the reduction of the noise in an input

stroke by regularly spacing the samples. This can be done on-the-fly, by discarding or interpo-

lating samples within a threshold distance, or after the stroke is finished. Polyline (or polygon)

approximation is an extreme case of resampling that reduces the complexity of a stroke to just a

few samples. After resampling, a sketch still contains a large number of sample points with little

meaning so it is common to fit the sketch to an equivalent representation. Fitting simplifies the

input data and the future comparison operations. Curve fitting is a simplification approach that

requires significant computation but produces fewer errors than polyline approximation. Another

26 State of the Art

option is least-squares polynomial fitting but the most common approach is to use parametric

curves like Bézier and B-spline curves. Fitting is more suitable for applications where precision is

desirable or assumed, such as engineering drawings. But this approach may inadvertently destroy

some important features of the sketch making it unsuitable for applications that support free-form

sketching and make few assumptions about the user’s intention. Oversketching allows the users

to sketch what they want and correct any made mistakes by sketching over the error. This system

then updates the sketch by cutting the region affected by the secondary stroke and smoothing the

transition between the old and the new segments.

2.2.2.3 Sketch Interpretation

The final step of the pipeline is the interpretation of the sketch, in which its meaning is translated to

a 3D modeling operation. In tradition systems (WIMP) every button or menu performs a specific

and pre-defined task but in sketch-based systems the freehand input is inherently ambiguous and

open to multiple interpretations. Olsen et al. propose a categorization of SBIM systems based on

the types of modeling operations performed by each one: creation systems automatically generate

3D models from 2D input sketches; augmentation systems use input strokes to add new details to

existing models and deformation systems use them to alter existing models with editing operation

such as cutting, bending or twisting.

The problem of sketch recognition and interpretation has been solved by two standard ap-

proaches: gesture/feature-based classification and geometric-based classification.

Gesture-based Recognition

The first, and earliest, approach to sketch interpretation typically focus on how a sketch was

drawn rather than on what the final sketch actually looks like. Gesture-based systems require each

shape to be drawn in a particular style, making it a gesture, rather than a shape. Users have to learn

how to draw each symbol since stroke order, stroke direction and the number of strokes are deter-

mining factors for recognition. The goal of these systems is to match the input stroke (a sampling

of 3D points in the form of x, y, and time) to one of a pre-defined set of gestures. Recognition is

performed based on a number of drawing-style features, such as the speed of the stroke, the start

and end direction of the stroke, and the total rotation of the stroke. This approach has the benefit

of using mathematically sound classifiers which produce fast and accurate classifications if users

draw shapes as defined. However, gesture-based systems are very sensitive to changes in scale and

rotation and require user training in order to achieve good results.

The idea of interacting with computers via pen-based input began in the 1960s with Ivan

Sutherland’s Sketchpad [76]. It proved to be beyond its time as pen-based interfaces would not

catch until the 1990s. In 1991, Dean Rubine proposed a gesture recognition toolkit, GRANDMA,

which allowed single-stroke gestures to be learned and later recognized through the use of a linear

2.2 Sketching Interaction 27

Figure 2.14: Gesture-based recognizers typically focus on how a sketch was drawn rather than on
what the final sketch actually looks like so stroke order is relevant.

classifier [77]. Rubine proposed thirteen features which could be used to classify simple gestures

with an accuracy of 98% on a fifteen-class gesture set when trained with at least fifteen examples.

He also provided two techniques to reject ambiguous or non-gestures. Rubine’s work was later ex-

tended in 2000 by Long et al. [78], who performed multi-dimensional scaling to identify correlated

features and ultimately found an optimal subset that consisted of eleven of Rubine’s features along

with six of their own. Both of these works proved to perform well in recognizing two-dimensional

gestures but their accuracy is not ideal when applied to natural sketch recognition problems be-

cause they put constraints on how users draw. A recent popular approach to gesture recognition

is known as the $1 recognizer [79]. This easy and cheap recognizer facilitates the incorporation

of gestures into user interface prototypes with about 100 lines of code. First, it resamples the

input stroke to remove drawing speed variation and aligns it based on an "indicative angle" (that

corresponds to the angle formed by the centroid and the gesture’s first point), to provide rotation

invariance. Then the gesture is scaled, non-uniformly, to a reference square and translated to a

reference point. Finally, the gesture results in a set of candidate point that must be matched to a

set of previously recorded templates that suffer the same transformations. This method provides

highly overall accuracy with minimal training and low computational overhead but also presents

some drawbacks as a result of its simplicity: it only recognizes unistroke gestures. To overcome

some of this problems, a significant extension to this approach was later presented [80]: $N rec-

ognizer identifies gestures comprising multiple strokes and automatically generalizes from one

multistroke to all possible multistrokes using alternative stroke orders and direction.

Geometric-based Recognition

Because of the drawing constraints imposed by gesture-based recognition systems, more re-

cent approaches to sketch recognition shifted towards geometric-based techniques. Geometric-

based recognizer focus on what the sketch looks like and less on how it was actually drawn,

allowing users to draw as they would naturally. These techniques are considered geometric be-

cause they compare a stroke to an ideal representation of pre-defined primitives using geometric

formulas. They recognize low-level primitive shapes that can then be combined hierarchically

to form more complex shapes using specialized grammars like LADDER [81], a language pre-

sented by Tracy Hammond and Randall Davis in 2005, to describe how sketched diagrams in a

28 State of the Art

domain are drawn, displayed and edited. It consisted of pre-defined shapes, constraints, editing-

behaviours and display methods as well as a syntax for specifying a sketch grammar and extending

the language, ensuring that shape groups from many domains can be described.

The recognition of high level shapes depends on accurate low-level interpretations so many

geometric-based recognizers have been developed. In 2001, Sezgin et al. presented a three phase

system - approximation, beautification and basic recognition - that focused on interpreting the

pixels generated by the user’s strokes on an input device and producing low level geometric de-

scriptions such as lines, ovals and rectangles [82]. It used a novel approach to detect vertices in

sketched strokes. In 2003, Yu and Cai built a domain-independent system for sketch recognition

that used low-level geometric features [83]. Later, in 2008, Paulson and Hammond presented Pa-

leoSketch, a system that can recognize eight primitive shapes, along with complex shapes, with

accuracy rates over 98.5% [84].

The advantage of geometric-based recognition systems is that they are typically more style-

independent as they allow users to sketch in a non-constrained manner, requiring no individual

training. However, geometric-based recognizers typically use numerous thresholds and heuristic

hierarchies which are not mathematically sound. This makes inferences about generalization hard

to determine because classification is not statistical. In addition, recognition accuracy is modest,

unless tuned for a specific domain.

Figure 2.15: Geometric-based recognizers identify low-level primitive that form more complex
shapes.

SBIM systems often use interfaces based on gestural recognition: simple strokes are used as

input to specify commands and manipulate objects, directly or indirectly. The lack of numerous

complex menus may be less intimidating to a novice user but still requires some learning time and

effort to memorize what stroke corresponds to each operation.

Chapter 3

SketchFACE: Overview of the Proposed
Solution

This chapter provides an overview of the preliminary work that led to the definition of the sys-

tem design for the application developed during the course of this dissertation. It presents the

main problem that inspired the work and details the methodology adopted to achieve the proposed

objectives describing, by the end, all the functionalities expected for the final application.

3.1 Problem Statement

Realistic facial animation that fulfils the viewer expectations is very hard to achieve. Traditional

modeling and animation software, although very powerful, is complex and requires from the users

significant learning time to explore and master multiple menus and functionalities. With the evo-

lution of user interfaces, new approaches to the human-machine interaction model, that replace

traditional WIMP paradigm, have proven to be valid alternatives to ease the animation process.

Sketching on paper is often used in early prototyping stages of characters’ design. By taking

advantage of the fast propagation of natural user interfaces, sketching, as an intuitive means of

communication, can now be used further down the animation pipeline. As they allow a more

direct manipulation of 3D models, sketch-based interfaces reduce the complexity of otherwise

difficult tasks of deforming and animating multiple expressions of a character. And if sketch-

based software, that clearly recognizes people’s intentions, is combined with the convenience

of mobile devices, that require no intermediate input device other than the users fingers, a new

range of opportunities becomes available to non-experienced artist. Thus, exploring more "natural

interfaces" for facial animation, particularly using mobile devices, would be useful to ease the

modeling and animation processes of 3D models, creating new opportunities for novice users and

widening the target users of these animation systems.

29

30 SketchFACE: Overview of the Proposed Solution

3.2 SketchFACE Approach

It is the aim of this dissertation to start from a novel version of a facial sketching interface control

system created by Miranda et al. [13], that allows to manipulate a model’s rig through free-hand

drawing, and deploy it for Apple’s iPad. This takes advantage of the capabilities of mobile devices

and the new ways of human-computer interaction enabled by them and allows to evaluate if a

multi-touch capable interface is useful to decrease user’s learning curve when using software for

facial modeling and animation.

It is also a purpose of this work to create a simple and intuitive facial animation application that

can be used in a collaborative environment with multiple users and external devices that display

content in a more immersive way. This new application, inspired by the LIFEisGAME project,

is called SketchFACE as it provides a Sketch-based Facial Animation Collaborative Environment.

The application fits within the presented project, following the same technological challenges and

interface styles and adding two additional game modes: one that explores a different interaction

model to control the 3D avatar, based on 2D control canvases, and other that explores the possibil-

ity of a collaborative modeling and animation environment where multiple users can, at the same

time, deform a model in a joint effort to produce an animated sequence of poses.

Thus, the major results expected for the end of the dissertation are:

• Deployment of a simple and intuitive sketch-based modeling and animation application for

mobile devices, more specifically, the Apple’s iPad that takes advantage of the touch capa-

bilities of tablets to implement an hybrid sketching/dragging rigging control system;

• Possibility of integration of multiple players and visualization devices in order to create

a collaborative and immersive environment that allows simultaneous alteration of a single

model to increase challenge and entertainment;

• Expansion of the scope of the project LIFEisGAME also to individuals without ASD;

• Seamless integration of the new application into the LIFEisGAME prototype as additional

game modes.

3.3 Challenges

This research supports the creation of a simple and intuitive application for facial animation that

explores a new interface: mobile devices. It also intends to evaluate if these handheld, portable,

touch-capable and easily wirelessly interconnectable devices are useful to ease the task of giving

life to 3D characters, thus opening new opportunities for non experienced users. However, many

challenges are expected being the first ones related with the device chosen for prototyping purposes

- Apple’s iPad:

3.3 Challenges 31

• The iPad’s Closed System: iPad’s operating system, iOS, is extremely restrictive. Apple

is not very permissive in terms of what contents can be transferred to the iPad and creating

applications for the tablet requires licenses, the signature of a a non-disclosure agreement

and the payment a developer subscription. All these restrictions may prove an obstacle to

new developers, that sometimes may find it very hard to find a solution for their problems

that is "Apple approved".

• Reduced public access: tablet technology is not yet as widespread as traditional computers.

In fact, according to data from 2012 from OberCom ("Observatório da Comunicação" - The

Observatory for the Media) about the Internet in Portugal, half (50,5%) of the Portuguese

adults has laptop computers and desktop computers ownership rate is 35,2%. On the other

hand, devices for mobile internet access (21,7%) and tablets (1,5%) are among the types

of equipments held by a limited segment of the population [85]. However, mobile devices’

ownership rates tend to significantly increase, worldwide, in the near future. Forecasts by

the networking giant Cisco say that the fastest growth in device adoption over the next

five years will be for tablets, with a prediction of an average of 46% growth year on year,

and data growth of 113% annually. This way, mobile-connected tablets will generate more

traffic in 2017 (1.3 exabytes per month) that the entire global mobile network in 2012 (885

petabytes per month) [86].

At a more general level, using the multi-touch displays of mobile devices as interface for

this facial animation application raises problems at two different levels, that are discussed in the

following sections, mostly based on the observations of Bill Buxton’s [58]:

• Disadvantages of multi-touch interfaces.

• Interface design concerns.

3.3.1 Disadvantages of multi-touch interfaces

Multi-touch systems have an extraordinary ability of adaptation to almost any imaginable prob-

lematic situation. As screen content can be freely modified, being, for example, able to simulate

input devices (such as keyboards), touch-screens are very flexible user interfaces that enable the

creation of intuitive applications, when correctly designed [87]. But taking advantage of this types

of interfaces may involve considering not only their positive aspects but also some of the disad-

vantages associated to these equipments:

• Constant visual demand: it is virtually impossible to manipulate a touch-screen without

full visual attention on the display (for example when the lights are out or when our eyes

are occupied elsewhere) because there is no tactile feedback that indicates the position of

each interface elements. Thus, this technology has little use for visually impaired users and

may even be dangerous if used while performing other activities such as driving, unless the

device in question also supports speech recognition.

32 SketchFACE: Overview of the Proposed Solution

• Size requirements: the size of the multi-touch display significantly influences the types

of gestures that are suited for the device and the number of fingers/hands that can be used

on the surface. This means that small screens may not be appropriate to some actions like

taking notes or making detailed drawings.

• Sunlight: multi-touch interfaces are usually incorporated in mobile devices that, as the

name indicates, are specially designed to be operated outside the traditional desktops, some-

times even while in movement. This may cause exposure to adverse usability conditions,

such as bright sunlight, that heavily affect visibility. Unless the device has an outstanding

reflective display, it may be unusable in some light conditions.

3.3.2 Interface design concerns

Creating a simple and intuitive user interface is always a major challenge in development of every

application. The interface design major focus must be on the user’s experience and interaction,

allowing simple and effective accomplishment of the goals and tasks at hand. But user interface

design must always take into account the specific characteristics of the hardware for which the ap-

plication was design for. Although often clustered together as computing devices, mobile devices,

such as smartphones or tablets, are very different from traditional desktop computers, either in

terms of screen size, connectivity reliability, bandwidth, battery life, and so on. Given these many

differences, it is clear that designing for mobile devices, often equipped with multi-touch inter-

faces, is very different that designing for the desktop. As applications must embrace the device

characteristics, some aspects should be considered before starting the user interface design:

• Fat finger problem: when drawing on a touch-screen (without a stylus), one sometimes

notices that lines are not represented on the screen exactly on the desired spot. This issue,

know as "fat finger problem", arises from the fact that a finger is usually relatively large

when compared to the small touch-screen. To avoid this, interface interaction elements

must have a certain minimum size in order to be individually and precisely touched by

human fingers.

• Occlusion problem: mobile devices are manipulated with hands, and, more particularly,

with fingers that touch specific parts of the screen. As fingers are not transparent, they

occlude parts of the interface and the smaller the touch-screen or the more fingers are used,

the more covered the display will be. This problem can be eased with clever interface design

approaches [88] or with the substitution of the finger by an appropriate stylus, that is very

skinny and, therefore, does not obscure the screen.

• Interface interaction principles: the types of actions performed to interact with a touch

technology significantly influence users’ assessment of it. The same touch technology, on

the same device, can assume a very different character depending on the nature of the touch

inputs it accepts or, by other words, depending on whether the interface is designed for dis-

crete or continuous actions. Discrete actions correspond, for example, to pushing a graphical

3.4 System Design 33

button or tapping a virtual keyboard key while continuous actions correspond to gestures,

such as the lateral stroke commonly used in photo-viewing application to go to the next or

previous image. Discrete actions must be accompanied by graphical cues (some kind of

feedback that actually works forward and not backwards) that indicate to the users that they

can be performed. Some continuous actions share these properties but many do not like

the "pinching" gesture to zoom in. Somehow, users must already know that it is possible

to execute it, when and where. To ease user interaction, the interaction model chosen must

follow known guidelines defined for the device in question.

– iOS interaction model: iOS devices (such the iPad used in the case of this disser-

tation), are operated with specific sets of standard gestures. People become familiar

with them because built-in applications use them consistently. So, when operating an

iOS device with other application users are already expecting to perform successfully

some particular actions to manipulate on-screen content, such as flick or drag to scroll

a long list, pinch to zoom in on an image or tap a button to activate it. So, iOS de-

velopers must take into account the standards and paradigms people are comfortable

with, maintaining a certain consistency encourage by Apple in its iOS Human Inter-

face Guidelines [89].

3.4 System Design

This section intends to capture and convey the design decisions which have been made prior to

the system’s deployment that served as guidelines for the implementation work. It provides a

comprehensive overview of all the system’s features depicted by an interface prototype.

3.4.1 System Scenarios

The system aims for seamless interaction between many users and devices. It includes two modes:

a standalone version, for a single user and a collaborative environment that allows multiple si-

multaneous users. Each mode supports not only users using individual tablets but also supports

the connection of external devices for better content visualization. Each type of device provides

a different interaction model due to the capabilities it offers in result of its hardware and software

(for example, a TV does not allow multi-touch input as a tablet but a tablet cannot offer a big

screen for content visualization). With this in mind, it was decided that the iPad’s would support

most of the direct interaction with the user (corresponding to the primarily means of input) while

other devices (TV, computer screens, projectors) would provide visual feedback for the actions

executed on the tablet. This option transforms the iPad into a controller for the content displayed

in the external screen. External displays must be connected to the iPad via Apple TV.

The different scenarios of the application are summarized in figure 3.1 and detailed below.

34 SketchFACE: Overview of the Proposed Solution

Figure 3.1: Different usage scenarios for the application

• Scenario 1: a single user runs the application in the iPad without any external display. Both

the controls and results of the modeling and animation processes are displayed in the tablet’s

screen.

Being the simplest scenario, and the first to be implemented, it raises the initial problems

related to sketching control method chosen, that is the foundation of the entire application.

In order to create a simple sketch-based modeling and animation application that allows 3D

model deformation controlled by a 2D interface, Miranda et al.’s approach can be adopted:

several rig controls can be manipulated at the same time with a single stroke. Input infor-

mation acquired in the 2D control interface is mapped to the 3D world coordinate system,

resulting in the creation of different character poses.

• Scenario 2: a single user connects an external display to the iPad. A new icon indicates the

availability of the new display and, if the user chooses to use it, the iPad is used to control

the 3D model displayed on the external device.

This scenario adds the problem of multi-screen support, as the iPad must act as a control

interface while the results of the modeling and animation processes are shown in a larger

display connected to it. This obstacle can be overcome by a new functionality available in

the platform chosen for system prototyping (Unity3D game engine), that allows the commu-

nication between the iPad and an external screen (of an HD TV, for example) via the digital

3.4 System Design 35

media receiver Apple TV, through AirPlay.

• Scenario 3: multiple users, in the same room or not, run the application in their own iPads

in multiplayer mode and cooperate in the modeling and animation processes.

Scenario 3 presents the new obstacles of adding networking capabilities to the application,

in order to allow cooperative work, and the necessity to define some rules that manage this

collaborative intervention, since the actions of one user must not conflict with the actions of

the others. Thus, a client-server approach can be used to guarantee synchronization between

all the participants. Conflicting situations on the modeling process when several users are

simultaneously altering a single character were avoided with the definition of an hierarchy

or alteration powers.

• Scenario 4: multiple users, in the same room, run the application in multiplayer mode but,

as one of the iPads is connected to an external display, all of them can see the results of their

cooperative work in a larger display.

This scenario encompasses all the problems raised by scenarios 1, 2 and 3.

3.4.2 System Use Cases

The user of SketchFACE can perform the following actions:

1. Activate external display: if an external screen is detected, a button allows the user to

activate it so it begins to display a portion of the visual content of the application;

2. Deactivate external display: an active external display can be deactivated so all of the

visual content is shown again on the iPad screen;

3. Create different facial poses: This can be done on-the-fly by drawing strokes on a separate

2D control canvas. Depending on how a stroke is drawn, it may deform a section of the face

or drag certain control points in a determined direction. This can be also done individually

or in a collaborative effort with other users;

4. Save created pose to timeline: poses in the timeline act as key-frames for the animated

sequence. A created pose can be saved to the next available position of the timeline;

5. Drag timeline: When the timeline exceeds the screen size, it can be dragged back and

forward to allow the access to a specific frame;

6. Animate the sequence of poses in the timeline: a "Play" button starts the animation of the

poses in the timeline;

7. Pause timeline animation: a "Pause" button interrupts the animation of the currently play-

ing sequence of poses in the timeline. This button only appears when a sequence is playing.

A paused sequence will start from the same point where it stopped once the "Play" button is

selected again;

36 SketchFACE: Overview of the Proposed Solution

8. Stop timeline animation: a "Stop" button allows the interruption of the animation se-

quence. The stopping point is not recorded so once the "Play" button is selected again,

the animation will start from the first frame of the timeline;

9. Modify order of the poses in the timeline: a timeline frame can be selected and dragged

to a different position;

10. Modify length of a pose in the timeline: timeline frames can be resized so a specific pose

lasts more or less in the animated sequence;

11. Duplicate frame at the end of the timeline: a frame dragged and dropped at the end of the

timeline will be duplicated on this new position;

12. Duplicate frame at the beginning of the timeline: a frame dragged and dropped at the

beginning of the timeline will be duplicated on this new position;

13. Delete pose from timeline: a specific timeline frame dragged to the "Garbage" icon will be

permanently deleted;

14. Delete all poses from timeline: a "Delete All" button will empty the timeline;

15. Clear all deformations from the 3D model: a "Clear" button resets the 3D model to its

initial state, without deformations;

16. Reset a single canvas: a specific stroke drawn on a 2D canvas to deform model’s geometry

can be deleted with an "Eraser" button. This will reset that canvas to its original state.

3.4.3 Interface Prototype

SketchFACE aims to be a simple and intuitive sketch-based facial modeling and animation aplica-

tion. Its major feature intends to be the translation of information acquired through a 2D interface

(that corresponds to strokes drawn by the users) into 3D world coordinates that deform a model’s

pose. In order to fulfil this goal, while keeping special focus on simplicity, interface design must

be a carefully thought issue. Interfaces must, on one side, ensure intuitiveness of the overall sys-

tem so that the user requires no previous learning time or tutorials to explore all the functionalities

available. On the other side, the application must follow the generic guidelines of mobile devices

programming, that take maximum advantage of the hardware and software capabilities, and more

particularly, follow the specific iOS user experience paradigm that corresponds to some expected

interaction and navigation methods usually associated to Apple’s devices.

This way, the problems and concerns discussed in sections 3.3.1 and 3.3.2 were taken into

account when thinking about interface elements positioning.

Figure 3.2 presents a SketchFACE interface prototype, followed by the explanation of each of

its sections.

3.4 System Design 37

Figure 3.2: SketchFACE interface prototype.

• Red area: 2D control canvases over a generic face image where the user draws the strokes

that deform the correspondent 3D model parts.

This section occupies most of the available screen area because it is specially intended to

handle the majority of user’s interactions that require great precision. Some actions, like

pushing an interface button do not require great precision but the actions performed in the

sketching canvases, like moving a control point to refine a particular pose, are very sensitive.

By making this area as big as possible, the fat finger problem is minimized, guaranteeing

that input drawing areas have a certain minimum size that is compatible with their function.

This area processes the events related to Use Case 3.

• Orange area: buttons associated with the modeling process: "reset pose" and "reset a single

canvas".

Were placed next to canvases area because they help the modeling process allowed by stroke

drawing performed on the canvases.

This area processes the events related to Use Cases 15 and 16.

• Green area: section with the visualization of the final 3D model where users can see results

of the deformations, generated by the strokes drawn on the 2D control canvases, and the

animated sequence. A button in this area will be available when an external display is

detected. If the button is selected, the 3D model will be displayed also on the external

screen.

38 SketchFACE: Overview of the Proposed Solution

Results area was placed on the left part of the screen to counteract occlusion problems that

arise when the user is drawing strokes, with the finger, in the canvases areas. As only

an average 10-15% of the population is left-handed [90], it is more likely that users draw

strokes and handle other interface controls with the right hand, thus obscuring that side of

the screen. Placing the results area in the left side guarantees that, for the majority of the

population, they will be visible while handling modeling interactions.

This area processes the events related to Use Cases 1 and 2.

• Light blue area: timeline for the keyframe poses that will generate the animated sequence.

Timeline area is relatively thin in order to leave the majority of screen area to the drawing

canvases. A timeline filled with poses can be dragged to the left and to the right, in order to

show new available positions, with the familiar iOS scroll action.

This area processes the events related to Use Cases 5, 9, 10, 11 and 12.

• Dark blue area: control buttons associated to the timeline.

As they correspond to actions related to the timeline, they were placed near it.

This area processes the events related to Use Cases 4, 6, 7, 8, 13 and 14.

Chapter 4

SketchFACE: Implementation

SketchFACE is a new application specially oriented for Apple’s iPad that proposes the use of a

hybrid sketching and dragging approach to manipulate a model’s control structure, known as rig,

in a collaborative environment where users can join efforts to simultaneously deform and animate

a 3D character. Taking advantage of the “natural interface” offered by this mobile device, it tries to

create new opportunities for non-expert users and wide the target audience of animation systems

while exploring the viability of collaborative work in the modeling and animation processes.

The present chapter describes the implementation of the SketchFACE application. By the end

of it, the reader should have a clear idea about the main design and architectural decisions made

and how the different modules were implemented.

4.1 System Implementation

Figure 4.1: SketchFACE interface.

39

40 SketchFACE: Implementation

SketchFACE is the result of the attempt to create a sketch-based collaborative facial anima-

tion environment. Users interact with a control interface on an iPad to deform a 3D model by

drawing strokes on 2D canvases or by dragging control points that manipulate the character’s rig.

The visual feedback of the performed deformations can be seen on a small corner section of the

tablet’s screen or, for better visualization, the results can be displayed in a much larger screen (of

a HD television) if one is available and connected to the iPad, increasing the immersiveness of

the animation environment. The created poses can then be animated, acting as key-frames for an

animated clip. All these actions that can be performed individually can also be executed along

with other users, in a collaborative animation session similar to a "game room" that allows joint

effort in the modeling process. Figure 4.1 shows the application interface.

The SketchFACE system can be divided into three major modules, depicted in figure 4.2. This

section starts by describing the development tool chosen to create the application prototype and

then presents the system modules and details how each one was implemented.

4.1.1 Development Tool: Unity3D

The first major decision on the path of creating a collaborative facial animation environment was

to choose the appropriate tool to create the prototype. The best and chosen candidate was Unity

game engine [91] since it fulfilled the major development requirements of the project and had

proven to be suitable for prototyping, being used in other modules of LIFEisGAME. Choosing

the same development tool made the integration of the new application SketchFACE within that

project simple and direct.

Unity, also called Unity3D, is a cross-platform game engine developed by Unity Technologies.

It is used to make games for web plugins, desktop platforms, video game consoles and mobile de-

vices that can be deployed to ten global platforms: Windows, Linux, Mac, Android, iOS, Unity

Web Player, Adobe Flash Player, PlayStation 3, Xbox 360 and Nintendo Wii. Unity’s development

ecosystem features a powerful rendering engine with many intuitive tools and a uniquely powerful

and flexible animation system. It supports art assets and file formats from 3ds Max, Maya, Soft-

image, Blender, etc, so models created with other 3D animation software can be easily imported

and managed through Unity’s graphical user interface. It also offers some platform-specific fea-

tures that are very useful because building games for devices like the iPhone and iPad requires

a different approach than creating desktop PC games. For mobile iOS devices, Unity offers, for

example, a number of scripting APIs to access the multi-touch screen, the accelerometer or the

device geographical location system and downloadable content that can be used to implement in-

app purchases. Unity supports JavaScript, C#, and Boo.

Since the chosen development tool was a game engine and given that the resulting application

was integrated in an on-going project whose prototype was a serious game to help children with

ASDs, most of SketchFACE’s architectural decisions were based on theories also applied to game

development and the application was sometimes referred as a game.

4.1 System Implementation 41

Figure 4.2: The three major modules of SketchFACE.

42 SketchFACE: Implementation

4.1.2 Module 1: Sketching Control Method

The work of Miranda et al. [13] proposed a paradigm shift in the way a model’s rig is manipulated

that contrasted with traditional modeling techniques. Instead of handling each control individually,

in a discontinuous way, with their approach an artist can now manipulate several rig controls at

the same time with a single stroke. They developed a facial sketching control system that allows

the artist to draw strokes directly on the 3D mesh or on a virtual canvas and illustrated it with the

deployment of a plug-in for Maya, chosen for prototyping purposes.

This dissertation work focused on deploying a sketch-based facial animation application based

on Miranda’s work, in C#, for the iPad. SketchFACE translates the virtual canvas approach to an

environment where a tablet serves as control interface to deform and animate a 3D model, taking

advantage of the portability and intuitiveness of such mobile device.

In SketchFACE, the sketching control method is essentially responsible for mapping all the

information acquired through the 2D interface, divided into drawing canvases, into the 3D coordi-

nate system of the model geometry, divided into regions. This is done in the following four stages:

initial setup, stroke drawing, repositioning of the reference curves and model deformation.

Initial Setup: Map the default model pose into the 2D interface
The sketch-based interface provided to the user is divided into 12 drawing canvases, as can be

seen of figure 4.1. Each one is responsible to control a particular region of the model. This means

that the strokes drawn on a particular canvas will influence the deformation of all the joints of the

correspondent region of the model. Consequently, the mesh will be deformed creating a facial ex-

pression. Besides being a drawing area, each canvas contains a reference curve that passes through

a set of control points that represent, in 2D coordinates, the current position of the joints of the

correspondent 3D region of the model.

Figure 4.3: Elements of a 2D interface canvas: the control points, the reference curve and the
stroke drawn by the user.

4.1 System Implementation 43

When the application starts, the default model position must be translated into the 2D inter-

face, to provide visual feedback to the user of the available controls to deform the character. This

involves mapping the 3D position of the model’s joints, in world’s coordinate system, to a 2D

location in the screen’s coordinate system.

The world coordinate system is the three dimensional system used for building a 3D scene as

a single unified model. Every object placed in the world has its own coordinate system (model

coordinate system) but there is only one world coordinate system to define the relative position

and orientation of every generated objects. This is why the world coordinate system is always

fixed. Every scene has an origin (0,0,0) and the objects in the scene are placed with reference to

this origin.

The screen coordinate system is defined as a two dimensional device-dependent coordinate

system whose origin is usually located at the lower left corner of the screen. It refers to the physi-

cal coordinates of the pixels on the device screen, based on current screen resolution.

To make this mapping between coordinate systems, an orthographic camera looking at the 3D

model is needed. With a specific camera function provided by Unity3D, the position of the joints

in 3D world space, jiworld is transformed into 2D screen space, defined in pixels, as depicted in

the left side of figure 4.4. However, this points are not yet located inside the correspondent canvas

screen space. They must be repositioned. For regions with only one joint, it is directly repositioned

to the center (horizontally and vertically) of the canvas area. For regions with more that one joint,

a slightly more complex transformation must be performed. First, the bounding box of each group

of joints of a region is calculated, both in world and in screen coordinates, resulting, for each one,

in two pairs of points that represent the bottom-left, r0, and the top-right, r1, extremes. Then, the

correct position of the control point, cpi, in screen coordinates is calculated imposing the following

relation:

r0world− r1world −→ r0screen− r1screen (4.1)

middlePointWorld− jiworld −→ middlePointCanvas− cpi (4.2)

where middlePointWorld and middlePointCanvas are the central points of the bounding boxes

of the groups of joints in both coordinate systems. This is used both for x and y coordinates.

Basically, this imposes that the distance of the point to re-allocate to the center of the bounding

box must be proportional to the length/width of the bounding box in both coordinate systems. After

all these calculations, each control point is correctly represented inside the appropriate canvas, in

screen coordinates, as shown in the right side of figure 4.4. The reference curve that passes trough

them can, then, be calculated, according to a following step of the method. The reference curve is

not equal but calculated from the strokes drawn on the canvas. It is updated with each new drawn

stroke to always depict the position of the joints in the 3D world.

44 SketchFACE: Implementation

Figure 4.4: Mapping the default model pose into the 2D interface. Left: transformation of joints
world coordinates to screen points. Right: repositioning of screen points to fit the appropriate
canvas area.

Stroke drawing
Each stroke, S, drawn on the 2D interface is recorded as an ordered set of n points s0,s1,s2, In

Miranda et al.’s method, each stroke was stored as a parametric NURBS curve N with degree D

= 3. Each curve N was parameterized with t edit points, where t corresponds to the total number

of joints that belong to the same region of the 3D model. In SketchFACE, due to the absence of

a direct representation of a NURBS curve in Unity, a slightly different approach was taken. From

the n points of the stroke S, a set of control points, cpi was chosen. For each stroke drawn on

a particular canvas, the number of control points selected is equal to the number of joints of the

associated model region. The choice of these points is similar to Miranda et al.’s method but here,

each selected point is not an edit point of a NURBS curve. They are called control points because

the movement of each one in the 2D canvas allows individual control of one joint of the associated

region (they must not be mistaken by the control points of a NURBS curve). The chosen set of

points is used to calculate an Hermit curve because it is easier to compute.

The method computes at least 3 control points (or more for regions with more than 3 joints)

according to the following formula:

cpi = S
(

i∗ (n−1)
t−1

)
i = 0, ..., t−1 n > t (4.3)

For regions with only one joint, the chosen point will correspond to the middle control point

and in regions with two joints, it will be considered the first and last control points.

4.1 System Implementation 45

Repositioning of the reference curve
The new position of the reference curve of the 2D interface is calculated through interpolation

between the control points chosen (or the control points position calculated in the first step of this

method). Between each two control points a Hermite curve is calculated. To do this, the following

vectors are needed:

• P1: the start point of the curve;

• T1: the tangent to how the curve leaves the start point;

• P2: the end point of the curve;

• T2: the tangent to how the curve meets the end point.

And the following 4 hermit basis functions are also used:

h1(s) = 2s3−3s2 +1 (4.4)

h2(s) =−2s3 +3s2 (4.5)

h3(s) = s3−2s2 + s (4.6)

h4(s) = s3− s2 (4.7)

To build the interpolated point along the curve the 4 vectors are multiplied by the 4 hermite

basis functions and added together:

p′ = h1×P1+h2×P2 +h3×T1 +h4×T2 (4.8)

These calculated points will generate the new 2D reference curve of that canvas that will

influence the model deformation in 3D coordinates.

Model deformation
Model deformation is done based on the above translation of the control points relative to their

original position. A normalized vector is calculated to represent vertical and horizontal translation

of the control point from its default position towards an edge of the canvas so that (-1, -1) corre-

sponds to the translation of the control point to the inferior-right corner of the canvas and (1, 1)

corresponds to the translation to the upper-left corner of the canvas. Any smaller translation will

correspond to a vector whose coordinates are values of less than 1.

As Unity3D has some problems importing model constraints correctly, in order to restrict the

movements of the bones to believable positions an auxiliary XML file is used. This file contains

information about the maximum translation and rotation that the joints can perform, in model co-

ordinates.

46 SketchFACE: Implementation

Model coordinates is the coordinate system local to a specific object. The origin of the object

model is usually picked somewhere on the model itself but it does not have to be.

The maximum control point translation transmitted by the vector (1,1) will induce the maxi-

mum joint translation/rotation allowed by the XML file. Intermediate values will lead to propor-

tional translations/rotations.

This explains how the x and y coordinates of the world coordinate system are calculated based

on the information acquired from the drawing canvases. However, the world coordinate system

is composed by three coordinates: x, y and z. The z coordinate is calculated through raycasting

techniques similar to the ones described in Miranda et al.’s work [13]. In order to constraint the

joint movement to the 3D mesh, the z coordinate chosen for the final position of the joint is always

tangent to the model’s surface. To compute this, first a normal vector to the mesh is added to the

point obtained with the mapping of the x and y coordinates, resulting in an auxiliary point, in from

of the mesh. Then, the method casts a ray from the auxiliary point in the inverse normal direction

and the intersection between that ray and the mesh is chosen as final position for the joint with xyz

coordinates computed.

This concludes the explanation about how the sketch-based method for facial modeling was

implemented in SketchFACE.

4.1.3 Module 2: Collaborative Environment

In order to allow multiple users to deform a single model, some networking principles needed to be

implemented to create a collaborative environment. Real-time networking is a complex field but

Unity3D makes it easy to add networking features to a game. However, it is useful to have some

idea of the scope of networking before using it in a game. This section explains the fundamentals

of networking applied to the game field, along with the specifics of Unity3D’s implementation,

details the architectural scenarios evaluated and summarizes the decisions made on the topic of

multiplayer support on SketchFACE.

4.1.3.1 Networking Concept

Networking is communication between two or more computers, usually following a model of

client-server. The client is the computer that requests the information while the server is the

computer responding to the request. The server can either be a dedicated host machine used by all

clients, or simply a player machine running the game (client) but also acting as the server for other

players. Once a server has been established and a client has connected to it, the two computers

can exchange data as demanded by gameplay.

4.1.3.2 Networking Approaches

There are two common approaches for structuring a network game which are known as Authorita-

tive Server and Non-Authoritative Server. Both approaches rely on a server connecting clients and

4.1 System Implementation 47

passing information between them and both offer privacy for end users since clients never actually

connect directly with each other or have their IP addresses revealed to other clients.

• Authoritative Server: this approach requires the server to perform all world simulation,

application of game rules and processing of input from the player clients. Each client sends

their input (in the form of keystrokes or requested actions) to the server and continuously

receives the current state of the game from the server. The client never makes any changes

to the game state itself. Instead, it tells the server what it wants to do, and the server then

handles the request and replies to the client to explain what happened as a result.

• Non-Authoritative Server: does not control the outcome of every user input. The clients

themselves process user input and game logic locally, then send the result of any determined

actions to the server. The server then synchronizes all actions with the world state. This is

easier to implement from a design perspective, as the server really just relays messages

between the clients and does no extra processing beyond what the clients do.

After covering the basic architectures of networked games, it is important to explore the lower-

levels of how clients and servers can talk to each other. There are two relevant methods: Remote

Procedure Calls and State Synchronization. It is not uncommon to use both methods at different

points in any particular game.

• State Synchronization: is used to share data that is constantly changing. The best example

of this would be a player’s position in an action game. The player is always moving, running

around, jumping, etc. All the other players on the network, even the ones that are not

controlling this player locally, need to know where he is and what he is doing. By constantly

relaying data about this player’s position, the game can accurately represent that position to

the other players.

This kind of data is regularly and frequently sent across the network. Since this data is time-

sensitive, and it requires time to travel across the network from one machine to another, it

is important to reduce the amount of data that is sent as much as possible. In simpler terms,

state synchronization naturally requires a lot of bandwidth, so you should aim to use as little

bandwidth as possible.

• Remote Procedure Calls (RPCs): are used to invoke functions on other computers across

the network, although the "network" can also mean the message channel between the client

and server when they are both running on the same computer. Clients can send RPCs to the

server, and the server can send RPCs to one or more clients. Most commonly, they are used

for actions that happen infrequently. For example, if a client flips a switch to open a door, it

can send an RPC to the server telling it that the door has been opened. The server can then

send another RPC to all clients, invoking their local functions to open that same door. They

are used for managing and executing individual events.

An RPC call can have as many parameters as desired but numerous or large parameters will

48 SketchFACE: Implementation

have an impact on the network bandwidth involved. Unlike a normal function call, an RPC

needs an additional parameter to denote the recipients of the request which can be: only the

server, everyone or everyone except the sender. RPC calls can also be buffered. Buffered

RPC calls are stored up and executed in the order they were issued for each new client that

connects. This can be a useful way to ensure that a late coming player gets all necessary

information to start.

4.1.3.3 Master Server

Each "game room" where players meet requires one server that assures communications between

them. The server can be a machine that is also running the game, which mean that one of the

players may act as server and the other players connected to it act as clients, or it can be a dedicated

machine that is not participating in the game. Either case, it is always necessary one Master Server

used to matchmake servers and clients so servers can be advertised and compatible clients can

connect to running games. As such, the Master Server is essentially a basic lobby server, but

with some special features. Its purpose is also to hide IP address and port details, and to perform

technical tasks around setting up network connections which otherwise would be impossible, like

acting as a proxy server to let clients behind a firewall act as a game server.

Unity Technologies has a fully deployed online Master Server available for testing purposes.

It is a built-in meeting place for games that are actively seeking clients, and player clients who

want to connect to them. Unfortunately, it has no uptime guaranty which makes it an unreliable

solution. However, the source code of Unity’s Master Server is freely available for anyone to use

and the server can be deployed on Windows, Linux and Mac OS [92]. It can also be customized

with modifications to the source code.

4.1.3.4 SketchFACE Networking Approach

The chosen networking approach for the collaborative environment of the SketchFACE application

relied on a Master Server built and running from the source code made available at Unity3D

website since it fulfils all the necessary networking requirements and overcomes the online server

unreliability. The communication between users is assured by buffered RPC calls, since the data

exchanged is not constantly changing, in order to ensure model, canvas and timeline synchronism

between all users, in the following situations:

• Lock canvas: when a user starts using a particular canvas by beginning a stroke or moving

a control point (Use Case 3), it must be locked for all other users to avoid conflicting model

deformations;

• Unlock canvas: when a user ends the interaction with a particular canvas by ending the

stroke or releasing a control point (end of Use Case 3), it must be unlocked so other user

can use it;

4.1 System Implementation 49

• Send pose information: when the model’s pose is altered by any user (end of Use Case 3),

this information must be send to other users so they can recreate the pose in their devices

and thus, maintain the synchronism inside the collaborative environment;

• Reset pose: when one of the users selects the button responsible for making the model return

to the initial neutral neutral pose (Use Case 15) this transformation must be propagated to

all other users;

• Reset a single canvas: sends the information to reset a particular canvas (control points and

reference curve) and the 3D model bones associated, to all the connected users, when one

of them performs this action (Use Case 16);

• Save pose to timeline: propagates to all the connected users a new frame saved to the

timeline (Use Case 4);

• Delete timeline frame: when a user deletes one of the timeline frames (Use Case 13), it

disappears from the timeline of all the connected users;

• Drop frame at the end of the timeline: a frame dragged and dropped at the end of the

timeline will be duplicated on this new position (Use Case 11). If a user performs this

action it will be replicated on the timeline of all other users;

• Drop frame at the beginning of the timeline: this action is similar to the previous one but

occurs when a frame is dragged and dropped at the beginning of the timeline (Use Case 12);

• Reposition frame: when a user drags and drops a frame to a new timeline position (Use

Case 9) it must be repositioned for all other users;

• Change frame length: when a user changes the length (that corresponds to the duration) of

a frame (Use Case 10), this transformation must be propagated to all other users;

• Clear timeline: if one of the users clears the entire timeline, by selecting the correspondent

button (Use Case 14), all frames from the timelines of all other connected users will be

deleted.

4.1.4 Module 3: Content Visualization

Multiple screen support was always a very desired feature among Unity game developers. Con-

necting external screens supporting Full HD to iOS devices is an important part of creating immer-

sive user experience in native games and multimedia applications. iOS SDK makes supporting this

feature really easy for native applications but with Unity3D engine this is was not an easy task.

By the beginning of the development of this dissertation Unity3D did not support rendering to

multiple targets which meant it only could create one rendering window. And if we wanted an

iPad to be one of the visualization displays, the problem got even more complicated because there

50 SketchFACE: Implementation

were some options available to mirror the iPad screen to an external display but span it so we could

show a different portion of Unity’s rendering scene in each display was extremely tricky.

To overcome this problem some solutions were analysed:

• Render a single really-wide image: the goal was to create a scene with a custom resolution

that corresponded to the sum of the resolution of all connected devices so the image spanned

across the available displays. In order to detect the connection/disconnection of external dis-

plays this solution had to be integrated with plugins. When developing games in Unity3D

it is often necessary to access platform specific features, hardware or anything not available

to Unity via the API. Plugins are a way to establish a bridge between the code in Unity

(C#, Javascript or Boo) and the native platform. It allows the access to any non-supported

features by creating a native binary bundle which can be accessed through an interface in

the Unity script. There are some examples of this kind of implementation but displays were

always connected to a desktop PC and not to the iPad. A prototype of this solution was

deployed but only successfully for multiple desktop screens, not involving an iPad.

• Run different instances of the application on each screen and make then interact: in other

words, we would have a separate executable assigned to each screen. The communication

between them could be implemented via text files or via multiplayer options such as using

localhost.

However, none of the above solutions proved to be ideal. Fortunately, during the development

of the work, a new version of Unity3D (Unity 4.1) became available and with it, new features,

in particular full multi-screen support using AirPlay [93]. AirPlay is a protocol stack developed

by Apple Inc. that allows wireless streaming of audio, video and photos, together with related

metadata between devices. It allows to wirelessly stream what is on one iOS device to an HD TV

and speakers via the digital media receiver Apple TV. This feature is only properly implemented

for iOS but this was exactly the solution for the multi-screen support problem in question. A new

class "Display" shows an array of connected displays and allows selective rendering for each one

so it is possible to render one camera for the iPad and another to an external display connected via

Apple TV. The iPad can now be used as a game controller, running and controlling the game from

the iOS handheld device whilst the action unfolds on a a bigger screen.

Chapter 5

Results and Validation

A series of experiments was conducted in order to validate the system deployed for this disserta-

tion. It was evaluated if this new approach based on mobile devices was more intuitive that the

alternative based on the traditional computer with mouse and it was also tested the relevance and

utility of the collaborative environment. This was done by computing the time and effort it took

for users to create a particular facial expression in the several experimental scenarios and with

questionnaires about subjective usability opinion. The target audience chosen comprised people

with no previous experience with modeling and animation tools but with relatively good familiar-

ity with electronic devices in order to validate if the system was appropriate for novice users. This

chapter describes the experiments conducted, presents their results and exposes the conclusions

that can be drawn from them.

5.1 Experiment Design

During the testing stage, two major experiments were performed: an interface experiment and

a collaborative environment experiment. The interface experiment was designed to evaluate the

effectiveness of the interface device chosen to deploy the application. It intended to analyse if

mobile touch-capable devices such as tablets and, in this particular case, the iPad, are more natural,

intuitive and simpler to use than the traditional computer whose interaction model is based on

mouse clicks. Therefore, the following research questions were formulated:

• Q1: Are mobile device based approaches, with tactile interfaces, as easy and intuitive for

creating facial expressions with a sketch-based method as the traditional computer/mouse

based approaches?

• Q2: Is the necessary time to create facial expressions using the iPad’s touch-capable inter-

face and the computer with a mouse input device similar?

The collaborative environment experiment evaluated if such an environment where multiple

users can deform, at the same time, the same model, can benefit the task of creating facial expres-

sions. Therefore, the following research question was formulated:

51

52 Results and Validation

• Q3: A collaborative facial animation environment is as useful as an individual approach for

the task of creating facial expressions?

To collect data to answer the research questions, some objective measurements were per-

formed: it was recorded the time and number of strokes, control point movements and canvas

resets users made to create a pose. Subjective usability data was collected with a questionnaire,

that can be observed in Appendix A, comprising four questions related to user background, three

questions about the interface experiment, two questions about the collaborative environment ex-

periment and two open questions about improvements suggestions and additional comments.

5.1.1 Participants

Both experiments were performed with a group of 22 people with good or very good level of

familiarity with electronic devices (such as computers, tablets, smartphones, etc) and none or poor

experience with modeling and animation tools. The participants had an average age of 29,77 years

(SD = 3,74) and relatively balanced sex distribution, with 9 males and 13 females performing the

experiments as can be seen on table 5.1.

Table 5.1: Information about the experiments participants.

Sex Age
Male Female Av SD

Participants 9 13 29,77 3,74

5.1.2 Interface Experiment

The interface experiment began with an introductory description of the application and its devel-

opment context as well as a brief explanation of the tests to be performed. Then, two tests were

conducted, one for each evaluated interface device: the computer and the iPad. Each participant

performed the tests individually in sessions of about 10 to 20 minutes.

The computer test was composed of two phases:

• Training phase: the first contact of the participants with SketchFACE. They were given no

explanation about the application and asked to explore the interface during 2 minutes.

• Task Phase: An explanation about every functionality of the application was given to the

participants (2 minutes) and then they were asked to reproduce a particular facial expression

(Figure 5.1). There was no time limit to conclude the task and the only direction provided

was that the users needed to copy, as faithfully as possible, the given expression.

Then, an iPad with the application was presented to the participants. After a short explanation

about the new interaction model allowed by this device (based on strokes drawn with the finger)

and the specific functionalities featured on the mobile device (multi-display support), the test had

also two phases:

5.2 Experiment Results 53

• Training phase: the participants had 2 minutes to explore and get familiar with the new

interface and interaction model;

• Task Phase: the participants were were asked to reproduce the same facial expression

copied in the previous test (Figure 5.1). There was no time limit to conclude de task and

the only direction provided was that the users needed to copy, as faithfully as possible, the

given expression.

Figure 5.1: Facial expression that the participants were asked to reproduce using the SketchFACE
application, both on the computer and on the iPad.

5.1.3 Collaborative Environment Experiment

The same participants of the previous experiment were now paired up. The experiment was com-

posed by 3 tests where users were asked to reproduce the 3 facial expressions of figure 5.2, being

the first one the same already copied in the previous experiment. Users had to work together,

deforming at the same time the same model, in the collaborative environment provided by Sketch-

FACE. There was no time limit for neither one of the tests and the only rule was that the user

should reproduce, as faithfully as possible, the given expressions.

5.2 Experiment Results

In order to answer question Q1 and to try to understand what type of devices are more intuitive

as interfaces for creating facial expressions with a sketch-based method, question 2.1.1 of the

questionnaire was analysed:

• From the following options, choose the one that best matches your opinion:

a) I consider the computer interface easier and more intuitive.

54 Results and Validation

Figure 5.2: Facial expressions that the participants were asked to reproduce using the SketchFACE
application, in the collaborative environment mode.

b) I consider the iPad interface easier and more intuitive.

The results can be seen in figure 5.3.

Figure 5.3: Distribution of the answers to the question about what interface device was more
intuitive.

The analysis of the chart shows that the participants consider the iPad easier and more intuitive.

This way, the null hypothesis is rejected and the alternative hypothesis, that there is significant dif-

ference between the level of intuitiveness of both devices is different is accepted, being the iPad

considered the more intuitive interface. User’s activities, evaluated through the analysis of the

experience’s log that recorded every stroke created, control point moved, complete reset made

or single canvas reset performed, also support this conclusion. Although with a relatively small

margin, users had to perform less actions on the iPad to achieve the same results as can be seen in

figure 5.4.

In order to answer question Q2 and assess the existence of significant difference between the

time spent creating a facial expression on the iPad and on the computer, a difference of means test

was performed. Given the relatively small number of cases evaluated (N = 22) and the fact that

5.2 Experiment Results 55

Figure 5.4: Average number of user actions during the interface experiment by category.

a normality test indicated a non-normal distribution of the results, the time comparison between

both device interfaces was performed with a non-parametric Mann-Whitney test whose results can

be seen on table 5.2.

Table 5.2: Results of the Mann-Whitney test performed.

Av SD Min - Max (seconds) U p
Computer 237,41 107,05 112 - 512

188,00 n.s.
iPad 187,91 101,73 55 - 431

The analysis of table 5.2 indicates that the average time to create a facial pose with Sketch-

FACE on the iPad was smaller than on the computer (as can also be seen on figure 5.5). However,

time differences between both interface devices were not statistically significant (U = 188,00; p >

0,05). This way, the null hypothesis that states that there are no significant differences between the

necessary time to create facial expression using the iPad’s touch-capable interface or the computer

must be accepted.

Regarding the collaborative environment, in order to evaluate if it made the task of creating a

specific facial expression easier, question 2.2.1 from the questionnaire was analysed:

• From the following options, choose the one that best matches your opinion:

a) I consider that the collaborative environment eases the accomplishment of the task.

b) I consider that the collaborative environment does not ease the accomplishment of the

task.

56 Results and Validation

Figure 5.5: Average time necessary to create a given facial pose with SketchFACE on both inter-
face devices.

Results show that 100% of the participants considered that it made the task of creating a par-

ticular facial expression easier so the null hypothesis is rejected and the alternative one accepted.

The average time users spent to reproduce, on the collaborative environment, the same expression

from the interface experiment was slightly smaller than any other previous result (as can be seen

on figure 5.6), supporting the same conclusion. This could be due to the fact that participants

had now learned how to create that particular expression but when confronted with different facial

expressions (poses 2 and 3) time results were even better.

Figure 5.6: Average time necessary to create a given facial pose with SketchFACE on both inter-
face devices.

5.3 Discussion of the Results 57

Regarding the number of actions users had to perform to achieve the target poses, results can

be seen on figure 5.7.

Figure 5.7: Average number of user actions during the collaborative environment experiment, by
category, for the three tested expressions.

5.3 Discussion of the Results

The results of the experiments proven to be according to the desired results, even though more

general conclusions could not be drawn from them due to statistic insignificance. The majority of

the participants chose the iPad as the more intuitive interface probably because the touch-screen

mimics more naturally the experience of drawing on paper as many users found it easier to draw

curves with a finger than with the mouse. However, the fact that the computer was the first inter-

face presented to the participants could also have influenced their answers, as they were already

more familiar with the application by the time the iPad was given to them. Future experiments, be-

sides being performed with a wider number of participants, should use a different group of people

for each tested scenario (the iPad and the computer), in order to remove the users learning factor.

Other option could also be to change the order in which users test both devices so that a portion of

the participants use the iPad first and other use the computer first.

Regarding the absence of significant difference between the necessary time to reproduce facial

expressions using SketchFACE on the computer and on the iPad, it could be explained with the

poor familiarity of the participants with the touch-interface of the iPad. Tablets are recent devices

that have not been as widespread as computers so it is natural that the majority of the population

is more used to manipulate the computer’s mouse rather than a touch-screen.

58 Results and Validation

Chapter 6

Conclusion and Future Work

This dissertation describes a hybrid sketching and dragging rigging control system that takes ad-

vantage of the portability and intuitiveness of modern mobile devices to significantly ease and al-

low collaborative work on the deformation and animation processes of 3D models. The developed

application - SketchFACE - was deployed for Apple’s iPad using Unity game engine that allowed

simple integration on multiplayer and multi-device functionalities. This chapter summarizes the

main conclusions extracted from the research done throughout the course of this dissertation and

defines some guidelines for future work.

6.1 Conclusion

Traditional modeling and animation software enable experienced and very trained artists to pro-

duce realistic animations but high-quality results are usually beyond the reach of novice users

since that deforming and giving life to believable characters requires significant time and effort.

It was the goal of this dissertation to explore a new approach that could open new opportunities

for non-expert users in the field of facial animation. By taking advantage of new user interfaces

that can be considered more natural, as they aim to enable the user to interact with computers

in the same way they interact with the world, an attempt was made to ease the modeling and

animation processes of 3D characters. More specifically, it was analysed the possibility of using

mobile devices as interfaces to control the deformation and animation of 3D characters.

This way, a new application - SketchFACE (Sketch-based Facial Animation Collaborative Sys-

tem) - was deployed for Apple’s iPad. It combines the possibility of controlling a model’s deforma-

tion, using simple 2D strokes, with the simplicity and intuitiveness of drawing in a touch-capable

interface, that mimics more closely the feeling of drawing on paper by allowing direct input us-

ing one’s finger instead of relying on an external input device such as the mouse. SketchFACE

is an application developed in C# using Unity game engine, based on a pre-existing sketch-based

algorithm created by Miranda et al. [13], that presents to the user a set of 2D canvases where he

can draw in order to control different regions of the model’s face. Once a pose is created it can

be saved to a timeline and sets of saved poses can be animated in a very simple and intuitive way.

59

60 Conclusion and Future Work

Modeling and animation processes can be done individually or in a collaborative environment

where multiple users deform, at the same time, the same model and results can be seen in a small

portion of the iPad’s screen or in a much wider HD TV connected via Apple TV.

Thus, SketchFACE results in an hybrid sketching and dragging facial animation control system

with multiplayer and multi-device functionalities. It was inspired and, at the end, integrated in the

LIFEisGAME prototype application - a serious game to help autistic children to recognize and

express emotions through facial expressions.

SketchFACE was tested and validated with a group of individuals with no previous experience

with modeling and animation tools, that correspond to the target audience of the new application.

The performed experiments had a dual focus: evaluating if the new approach based on mobile

devices was more intuitive than the traditional computer and mouse based approach and testing the

relevance and utility of the collaborative environment. This was done by computing the time and

effort it took for users to reproduce given facial expressions, first alone and then in collaboration

with other participants and by analysing their answers to a subjective usability questionnaire.

Although some experiments led to non statistically relevant conclusions, the results of the tests

show that a majority of the participants consider the iPad a more intuitive interface for modeling

tasks when compared to the computer and all the participants considered that the collaborative

environment made the task of creating particular facial expressions easier.

To view a video about SketchFACE or to access additional material related to this dissertation

please visit the website available at http://paginas.fe.up.pt/~ee08175.

6.2 Future Work

This dissertation intended to explore a new approach for facial animation based on mobile devices.

It was not possible, nor was under the scope of this work, to implement every feature and test

every scenario thought out. Instead, a new door was opened and many improvement paths were

created. This document ends with suggestions of potential directions for future work that can be

grouped in three major categories: new features for the application (some thought out but not

implemented due to time constraints and some suggested by the participants that took part on

the validation experiments), improvements to the deployed functionalities and hints for further

validation experiments.

• New features

– Possibility to hide control points: it would be interesting to have the possibility to

show and hide the control points as, sometimes, they interfere with the stroke drawing

action;

– More control areas: some facial regions, as the cheeks and the ears, can not be con-

trolled in the current version of SketchFACE. This feature could easily be implemented

http://paginas.fe.up.pt/~ee08175

6.2 Future Work 61

by adding more 2D control canvases since the model rig used has already bones as-

sociated with these areas. However, increasing the number of control canvases would

difficult their placement in the interface making it harder to combine intuitive posi-

tioning with acceptable drawing area size.

– Multi-touch option: multiple simultaneous input touches to the touch-screen can eas-

ily be detected so it would be easy to implement the option of drawing simultaneously

with several finger (for example, one participant tried to draw, at the same time, both

eyebrows with the two hands but this feature is not currently implemented). It would be

interesting to explore the possibility of performing new actions based on multi-touch

capabilities;

– Tutorials and help menus: although simplicity was a target of the application, to

ease even more the usability of SketchFACE some help menus, tutorials or information

labels could be added to the application explaining the function of some of the buttons

or interface areas. However, this helping content should never be intrusive;

– Undo option: many participants of the validation experiments expressed the desire for

the possibility to revert the last change done to the model instead of only being able to

reset the entire canvas or the entire pose;

– Skin color alteration: besides controlling the deformation of the different regions of

the face, the application could also include the ability to alter skin pigmentation of

some areas to increase faithfulness to real facial expressions.

• Functionalities improvements

– Constraints: due to current difficulty to automatically import constraints defined in

the 3D model to Unity3D game engine, an approach that used an auxiliary XML file

was used. However, this approach is not nearly ideal since it currently imposes rectan-

gular limits for joint movements which doesn’t reproduce real bone movement limita-

tions. If constraints remain impossible to import directly, they should be implemented

in Unity3D for better results;

– Control points: the control points were a functionality added to the application in

order to allow individual rig control point alterations, resulting in more accurate de-

formations. However, the way they were implemented seemed to difficult its original

purpose. As they were relatively small, it was hard to handle them in the touch in-

terface of the iPad causing some unexpected results. For better results, a different

interaction model could be used that altered the curve’s shape without the need to

select a particular control point by "clicking" on it. Small strokes drawn inside the

curve’s bounding box could deform the existing reference curve instead of starting a

new and different stroke. This was the method implemented in Miranda et al.’s work

[13] that seems a good further development for SketchFACE.

62 Conclusion and Future Work

• Further experiments

– Larger group of participants: the performed validation experiments ended up in

many non statistically significant results. The outcome could have been different if a

wider number of participants had been used and if different groups would have been

used for each tested scenario. Further experiments can explore these options;

– Different user profiles: it could have been interesting to widen the experiments to

multiple groups of people with different profiles. The performed tests only targeted

people with good or very good level of familiarity with electronic devices, none or poor

experience with modeling and animation tools and average age of 30 years. Using also

participants with different age groups or with prior experience with animation tools can

add value to the results obtained from these experiments.

– Further evaluation of the collaborative environment: although the system was im-

plemented to support more than two simultaneous users, no tests were conducted in

order to validate other scenarios with more participants. As some aspects of the col-

laborative environment need further testing, future experiments can address this topic.

Appendix A

Validation Experiments Documents

A.1 Usability Questionnaire

The following pages show the usability questionnaire presented to the participants of the validation

experiments performed on SketchFACE.

63

__

SKETCH-BASED FACIAL MODELING AND ANIMATION:

AN APPROACH BASED ON MOBILE DEVICES

Ana Luísa de Vila Fernandes Orvalho

ana.orvalho@gmail.com | ee08175@fe.up.pt

Orientador: Prof. Augusto Sousa (FEUP) | Co-orientadora: Prof. Verónica Orvalho (FCUP)

Introdução
 O presente questionário pretende, do ponto de vista do utilizador, avaliar a usabilidade e validar a

aplicação SketchFACE, desenvolvida no contexto de uma dissertação do Mestrado Integrado em

Engenharia Eletrotécnica e de Computadores.

 As respostas são completamente voluntárias e confidenciais.

Descrição do Projeto
Animação facial que satisfaça as expectativas dos espectadores é muito difícil de se alcançar. O tradicional

software de modelação e animação de modelos 3D, apesar de muito poderoso, é bastante complexo e exige um

tempo de aprendizagem significativo para se conseguir explorar e dominar os seus múltiplos menus e

funcionalidades.

Esta dissertação propõe o uso de uma abordagem baseada em desenhos para manipular a estrutura de controlo dos

modelos 3D, o rig, num ambiente colaborativo, em que vários utilizadores podem unir esforços para

simultaneamente deformar e animar uma personagem 3D. Foi desenvolvido um protótipo de uma nova aplicação,

designada SketchFACE (Sketch-based Facial Animation Collaborative Environment), especialmente orientado

para o iPad. Aproveitando a interface tátil “mais natural” deste dispositivo móvel, tentou-se criar novas

oportunidades para utilizadores com pouca ou nenhuma experiência, alargando, assim, o público-alvo dos

sistemas de animação enquanto se explora a viabilidade do trabalho colaborativo nos processos de modelação e

animação.

A solução proposta foi inspirada no projeto LIFEisGAME – um jogo sério que pretende ajudar crianças com

problemas do espectro do autismo a reconhecer e expressar emoções através de expressões faciais de forma

interativa e creativa.

1) Perfil do Utilizador

1.1) Idade: _____________ Sexo: M F

1.2) Nível de familiarização com dispositivos eletrónicos (computadores, tablets, smartphones…)

 a) Nenhum

 b) Pouco

 c) Bom

 d) Muito Bom

1.3) Nível de experiência com ferramentas de modelação e animação facial.

 a) Nenhum

 b) Pouco

 c) Bom

 d) Muito Bom

ID: _____________

1.4) Background artístico

 a) Nenhum

 b) Pouco

 c) Bom

 d) Muito Bom

2) Sobre o protótipo SketchFACE

2.1) Interface com o utilizador

2.1.1) Das seguintes opções escolha a que melhor corresponde à sua opinião:

 a) Considero que a interface do computador é mais fácil e intuitiva de usar.

 b) Considero que a interface do iPad é mais fácil e intuitiva de usar.

 2.1.2) Considera a interface da aplicação suficientemente clara? Sim Não

2.1.3) Se não, porquê? __

2.2) Ambiente colaborativo

2.2.1) Das seguintes opções, escolha a que melhor corresponde à sua opinião:

 a) Considero que o ambiente colaborativo facilita a realização da tarefa proposta.

 b) Não considero que o ambiente colaborativo facilite a realização da tarefa.

2.2.2) Das seguintes opções, escolha a que melhor corresponde à sua opinião:

 a) Considero que esta ferramenta é inovadora.

 b) Não considero que esta ferramenta seja inovadora.

3) Registe aqui a sua apreciação global sobre este protótipo SketchFACE

3.1) Sugestões de melhoria: __

3.2) Comentários gerais: ___

 Data: _____ /______/_____

 Obrigada pela sua participação

66 Validation Experiments Documents

References

[1] Zhigang Deng and Junyong Noh. Computer facial animation: A survey. In Zhigang Deng and
Ulrich Neumann, editors, Data-Driven 3D Facial Animation, pages 1–28. Springer London,
2007. URL: http://dx.doi.org/10.1007/978-1-84628-907-1_1.

[2] S. Villagrasa, A. Susín Sánchez, et al. Face! 3d facial animation system based on facs. 2010.

[3] Rob Bredow, David Schaub, Daniel Kramer, Matthew Hausman, Danny Dimian, and R. Stir-
ling Duguid. Surf’s up: the making of an animated documentary. In ACM SIGGRAPH 2007
courses, SIGGRAPH ’07, pages 1–123, New York, NY, USA, 2007. ACM. URL: http://
doi.acm.org/10.1145/1281500.1281600, doi:10.1145/1281500.1281600.

[4] O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. Creating a photoreal
digital actor: The digital emily project. In Visual Media Production, 2009. CVMP’09. Con-
ference for, pages 176–187. IEEE, 2009.

[5] David Komorowski, Vinod Melapudi, Darren Mortillaro, and Gene S. Lee. A hybrid ap-
proach to facial rigging. In ACM SIGGRAPH ASIA 2010 Sketches, SA ’10, pages 42:1–42:2,
New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/1899950.
1899992, doi:10.1145/1899950.1899992.

[6] W. GRUBB. Facial animation rig for delgo. Tutorial Notes, 12, 2009.

[7] K. Balci. Xface: Mpeg-4 based open source toolkit for 3d facial animation. In Proceedings
of the working conference on Advanced visual interfaces, pages 399–402. ACM, 2004.

[8] B. Paulson, P. Rajan, P. Davalos, R. Gutierrez-Osuna, and T. Hammond. What!?! no ru-
bine features?: using geometric-based features to produce normalized confidence values for
sketch recognition. In HCC Workshop: Sketch Tools for Diagramming, pages 57–63, 2008.

[9] LIFEisGAME. Learning of facial emotions using serious games, 2010. URL: http://
www.portointeractivecenter.org/lifeisgame/ [last accessed 2013-01-27].

[10] FCT. Fundação para a ciência e a tecnologia. URL: http://www.fct.pt/ [last accessed
2013-01-27].

[11] UT Austin|Portugal. Internationa collaboratory for emerging technologies (colab). URL:
http://utaustinportugal.org/ [last accessed 2013-01-27].

[12] IT. Instituto de telecomunicações. URL: http://www.it.up.pt/ [last accessed 2013-
01-27].

[13] José Carlos Miranda, Xenxo Alvarez, João Orvalho, Diego Gutierrez, A. Augusto Sousa, and
Verónica Orvalho. Sketch express: A sketching interface for facial animation. Computers

67

http://dx.doi.org/10.1007/978-1-84628-907-1_1
http://doi.acm.org/10.1145/1281500.1281600
http://doi.acm.org/10.1145/1281500.1281600
http://dx.doi.org/10.1145/1281500.1281600
http://doi.acm.org/10.1145/1899950.1899992
http://doi.acm.org/10.1145/1899950.1899992
http://dx.doi.org/10.1145/1899950.1899992
http://www.portointeractivecenter.org/lifeisgame/
http://www.portointeractivecenter.org/lifeisgame/
http://www.fct.pt/
http://utaustinportugal.org/
http://www.it.up.pt/

68 REFERENCES

& Graphics, 36(6):585 – 595, 2012. URL: http://www.sciencedirect.com/
science/article/pii/S0097849312000416, doi:10.1016/j.cag.2012.03.
002.

[14] Frederick I. Parke. Computer generated animation of faces. In Proceedings of the ACM
annual conference - Volume 1, ACM ’72, pages 451–457, New York, NY, USA, 1972. ACM.
URL: http://doi.acm.org/10.1145/800193.569955, doi:10.1145/800193.
569955.

[15] K. Ritchie, J. Callery, and K. Biri. The Art of Rigging: A definitive guide to character
technical direction with Alias Maya. CG Toolkit, 2005.

[16] M. Mori. The uncanny valley, translated by karl f. macdorman and takashi minato. Energy,
7(4):33–35, 1970.

[17] D. Hanson, A. Olney, S. Prilliman, E. Mathews, M. Zielke, D. Hammons, R. Fernandez, and
H. Stephanou. Upending the uncanny valley. In Proceedings of the National Conference on
Artificial Intelligence, volume 20, page 1728. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2005.

[18] Canetti Y. Piretti M. Schleifer J., Scaduto-Mendola R. Character setup from rig mechanics
to skin deformations: A practical approach. SIGGRAPH ’02 Course Notes, 2002.

[19] Nikolaos Ersotelos and Feng Dong. Building highly realistic facial modeling and animation:
a survey. The Visual Computer, 24:13–30, 2008. URL: http://dx.doi.org/10.1007/
s00371-007-0175-y, doi:10.1007/s00371-007-0175-y.

[20] V. Orvalho, P. Bastos, F. Parke, B. Oliveira, and X. Alvarez. A facial rigging survey. In
Eurographics 2012-State of the Art Reports, pages 183–204. The Eurographics Association,
2012.

[21] T. McLaughlin and S.S. Sumida. The morphology of digital creatures. In ACM SIGGRAPH,
pages 05–09, 2007.

[22] V.C.T. Orvalho. Reusable facial rigging and animation: Create once, use many. PhD thesis,
Universitat Politècnica de Catalunya, 2007.

[23] J. Fordham. Middle earth strikes back. Cinefex, 2003.

[24] Pushkar Joshi, Wen C. Tien, Mathieu Desbrun, and Frédéric Pighin. Learning controls for
blend shape based realistic facial animation. In ACM SIGGRAPH 2005 Courses, SIG-
GRAPH ’05, New York, NY, USA, 2005. ACM. URL: http://doi.acm.org/10.
1145/1198555.1198588, doi:10.1145/1198555.1198588.

[25] A. Ward. Game character development with maya. New Riders, 2005.

[26] N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing motion dynamics
in key frame animation. Commun. ACM, 19(10):564–569, October 1976. URL: http:
//doi.acm.org/10.1145/360349.360357, doi:10.1145/360349.360357.

[27] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: A unified approach
to shape interpolation and skeleton-driven deformation, 2000.

http://www.sciencedirect.com/science/article/pii/S0097849312000416
http://www.sciencedirect.com/science/article/pii/S0097849312000416
http://dx.doi.org/10.1016/j.cag.2012.03.002
http://dx.doi.org/10.1016/j.cag.2012.03.002
http://doi.acm.org/10.1145/800193.569955
http://dx.doi.org/10.1145/800193.569955
http://dx.doi.org/10.1145/800193.569955
http://dx.doi.org/10.1007/s00371-007-0175-y
http://dx.doi.org/10.1007/s00371-007-0175-y
http://dx.doi.org/10.1007/s00371-007-0175-y
http://doi.acm.org/10.1145/1198555.1198588
http://doi.acm.org/10.1145/1198555.1198588
http://dx.doi.org/10.1145/1198555.1198588
http://doi.acm.org/10.1145/360349.360357
http://doi.acm.org/10.1145/360349.360357
http://dx.doi.org/10.1145/360349.360357

REFERENCES 69

[28] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models. In ACM
Siggraph Computer Graphics, volume 20, pages 151–160. ACM, 1986.

[29] S. Coquillart. Extended free-form deformation: a sculpturing tool for 3D geometric model-
ing, volume 24. ACM, 1990.

[30] Prem Kalra, Angelo Mangili, Nadia Magnenat Thalmann, and Daniel Thalmann. Simula-
tion of facial muscle actions based on rational free form deformations. Computer Graph-
ics Forum, 11(3):59–69, 1992. URL: http://dx.doi.org/10.1111/1467-8659.
1130059, doi:10.1111/1467-8659.1130059.

[31] K. Singh and E. Fiume. Wires: a geometric deformation technique. In Proceedings of the
25th annual conference on Computer graphics and interactive techniques, pages 405–414.
ACM, 1998.

[32] M.A. Warburton. Physically-based facial modelling and animation with wrinkles: 12 month
report. 2011.

[33] Stephen M. Platt and Norman I. Badler. Animating facial expressions. SIGGRAPH Com-
put. Graph., 15(3):245–252, August 1981. URL: http://doi.acm.org/10.1145/
965161.806812, doi:10.1145/965161.806812.

[34] J. Osipa. Stop staring: facial modeling and animation done right. Sybex, 2010.

[35] John Lasseter. Principles of traditional animation applied to 3d computer animation. In
Proceedings of the 14th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’87, pages 35–44, New York, NY, USA, 1987. ACM. URL: http://doi.
acm.org/10.1145/37401.37407, doi:10.1145/37401.37407.

[36] Frederic Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David H. Salesin. Syn-
thesizing realistic facial expressions from photographs. In ACM SIGGRAPH 2006 Courses,
SIGGRAPH ’06, New York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.
1145/1185657.1185859, doi:10.1145/1185657.1185859.

[37] K. Waters and T. Levergood. An automatic lip-synchronization algorithm for synthetic faces.
In Proceedings of The second ACM international conference on Multimedia, pages 149–156.
ACM, 1994.

[38] F.I. Parke. A parametric model for human faces. Technical report, DTIC Document, 1974.

[39] Jun yong Noh and Ulrich Neumann. A Survey of Facial Modeling and Animation Tech-
niques. 1998.

[40] D. Bennett. The faces of the polar express. In ACM Siggraph 2005 Courses, page 6. ACM,
2005.

[41] V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating faces in images and video. Com-
puter Graphics Forum, 22(3):641–650, 2003. URL: http://dx.doi.org/10.1111/
1467-8659.t01-1-00712, doi:10.1111/1467-8659.t01-1-00712.

[42] W.L. Wooten and J.K. Hodgins. Simulating leaping, tumbling, landing and balancing hu-
mans. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Con-
ference on, volume 1, pages 656–662. IEEE, 2000.

http://dx.doi.org/10.1111/1467-8659.1130059
http://dx.doi.org/10.1111/1467-8659.1130059
http://dx.doi.org/10.1111/1467-8659.1130059
http://doi.acm.org/10.1145/965161.806812
http://doi.acm.org/10.1145/965161.806812
http://dx.doi.org/10.1145/965161.806812
http://doi.acm.org/10.1145/37401.37407
http://doi.acm.org/10.1145/37401.37407
http://dx.doi.org/10.1145/37401.37407
http://doi.acm.org/10.1145/1185657.1185859
http://doi.acm.org/10.1145/1185657.1185859
http://dx.doi.org/10.1145/1185657.1185859
http://dx.doi.org/10.1111/1467-8659.t01-1-00712
http://dx.doi.org/10.1111/1467-8659.t01-1-00712
http://dx.doi.org/10.1111/1467-8659.t01-1-00712

70 REFERENCES

[43] I.D. Horswill. Lightweight procedural animation with believable physical interactions. Com-
putational Intelligence and AI in Games, IEEE Transactions on, 1(1):39 –49, march 2009.
doi:10.1109/TCIAIG.2009.2019631.

[44] I.S. Pandzic and R. Forchheimer. Mpeg-4 facial animation. The standard, implementation
and applications. Chichester, England: John Wiley&Sons, 2002.

[45] P. Ekman and W. V. Friesen. Facial action coding system: a technique for the measurement
of facial movement. 1978.

[46] P. Ekman, W.V. Friesen, and J.C. Hager. Facial action coding system. A Human Face, 2002.

[47] Irfan Essa, Sumit Basu, Trevor Darrell, and Alex Pentland. Modeling, tracking and inter-
active animation of faces and heads using input from video. In IN PROCEEDINGS OF
COMPUTER ANIMATION CONFERENCE, pages 68–79. IEEE Computer Society Press,
1996.

[48] Achim Ebert, NahumD. Gershon, and GerritC. Veer. Human-computer interaction. KI -
Künstliche Intelligenz, 26:121–126, 2012. doi:10.1007/s13218-012-0174-7.

[49] Daniel Wigdor and Dennis Wixon. Brave NUI World: Designing Natural User Interfaces
for Touch and Gesture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2011.

[50] R. Harper. Being human: Human-computer interaction in the year 2020. Microsoft Re-
search, 2008.

[51] Microsoft. Surfice sdk. URL: http://msdn.microsoft.com/en-us/library/
ff727815(v=Surface.20).aspx [last accessed 2013-02-04].

[52] NUIGroup. Touchlib. URL: http://nuigroup.com/touchlib/ [last accessed 2013-
02-04].

[53] Carl Kenner. Glovepie. URL: http://glovepie.org/glovepie.php [last accessed
2013-02-04].

[54] Cycling ’74. Max/msp/jitter. URL: http://www.cycling74.com/ [last accessed 2013-
02-01].

[55] vvvv: a multipurpose toolkit. URL: http://vvvv.org/ [last accessed 2013-02-01].

[56] N. Metha. A flexible machine interface. MA Sc. Thesis, Department of Electrical Engineer-
ing, University of Toronto, 1982.

[57] Daniel Wigdor, Joe Fletcher, and Gerald Morrison. Designing user interfaces for multi-
touch and gesture devices. In CHI ’09 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’09, pages 2755–2758, New York, NY, USA, 2009. ACM. URL: http://
doi.acm.org/10.1145/1520340.1520399, doi:10.1145/1520340.1520399.

[58] B. Buxton. Multi-touch systems that i have known and loved. Microsoft Research, 2007.

[59] Circle Twelve Inc. Diamondtouch. URL: http://www.circletwelve.com/
products/diamondtouch.html [last accessed 2013-02-04].

http://dx.doi.org/10.1109/TCIAIG.2009.2019631
http://dx.doi.org/10.1007/s13218-012-0174-7
http://msdn.microsoft.com/en-us/library/ff727815(v=Surface.20).aspx
http://msdn.microsoft.com/en-us/library/ff727815(v=Surface.20).aspx
http://nuigroup.com/touchlib/
http://glovepie.org/glovepie.php
http://www.cycling74.com/
http://vvvv.org/
http://doi.acm.org/10.1145/1520340.1520399
http://doi.acm.org/10.1145/1520340.1520399
http://dx.doi.org/10.1145/1520340.1520399
http://www.circletwelve.com/products/diamondtouch.html
http://www.circletwelve.com/products/diamondtouch.html

REFERENCES 71

[60] P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technology. In Proceedings of the
14th annual ACM symposium on User interface software and technology, pages 219–226.
ACM, 2001.

[61] SMART Technologies Inc. Smart table 230i. URL: http://smart.lsk.hu/edu/
tamogatas/letoltes/pdf/adatlapok/st230i.pdf [last accessed 2013-02-04].

[62] SMART Technologies Inc. Smart table 442i. URL: http://
downloads01.smarttech.com/media/sitecore/en/pdf/products/table/
mktg-913-rev05-ed-fs-table_final.pdf [last accessed 2013-02-04].

[63] Microsoft. Pixelsense. URL: http://www.microsoft.com/en-us/pixelsense/
default.aspx [last accessed 2013-02-04].

[64] Apple Inc. ipad. URL: http://www.apple.com/ipad/features/ [last accessed
2013-02-04].

[65] Microsoft. Microsoft surface. URL: http://www.microsoft.com/Surface/en-US
[last accessed 2013-02-04].

[66] Google. Nexus 7. URL: http://www.google.com/nexus/7/ [last accessed 2013-02-
04].

[67] Google. Nexus 10. URL: http://www.google.com/nexus/10/ [last accessed 2013-
02-04].

[68] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–104, 1991.

[69] Microsoft. Kinect. URL: http://www.xbox.com/en-US/kinect [last accessed 2013-
02-04].

[70] Leap Motion. Leap. URL: https://www.leapmotion.com/ [last accessed 2013-02-
04].

[71] L. Olsen, F.F. Samavati, M.C. Sousa, and J.A. Jorge. Sketch-based modeling: A
survey. Computers and Graphics (Pergamon), 33(1):85–103, 2009. cited By (since
1996) 48. URL: http://www.scopus.com/inward/record.url?eid=2-s2.
0-59249095193&partnerID=40&md5=79316233b31b419e83ca721757c11dfa.

[72] S. Saga. A freehand interface for computer aided drawing systems based on the fuzzy spline
curve identifier. In Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st
Century., IEEE International Conference on, volume 3, pages 2754 –2759 vol.3, oct 1995.
doi:10.1109/ICSMC.1995.538199.

[73] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based interfaces: early
processing for sketch understanding. In Proceedings of the 2001 workshop on Perceptive
user interfaces, PUI ’01, pages 1–8, New York, NY, USA, 2001. ACM. URL: http://
doi.acm.org/10.1145/971478.971487, doi:10.1145/971478.971487.

[74] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based interfaces: early
processing for sketch understanding. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06,
New York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.1145/1185657.
1185783, doi:10.1145/1185657.1185783.

http://smart.lsk.hu/edu/tamogatas/letoltes/pdf/adatlapok/st230i.pdf
http://smart.lsk.hu/edu/tamogatas/letoltes/pdf/adatlapok/st230i.pdf
http://downloads01.smarttech.com/media/sitecore/en/pdf/products/table/mktg-913-rev05-ed-fs-table_final.pdf
http://downloads01.smarttech.com/media/sitecore/en/pdf/products/table/mktg-913-rev05-ed-fs-table_final.pdf
http://downloads01.smarttech.com/media/sitecore/en/pdf/products/table/mktg-913-rev05-ed-fs-table_final.pdf
http://www.microsoft.com/en-us/pixelsense/default.aspx
http://www.microsoft.com/en-us/pixelsense/default.aspx
http://www.apple.com/ipad/features/
http://www.microsoft.com/Surface/en-US
http://www.google.com/nexus/7/
http://www.google.com/nexus/10/
http://www.xbox.com/en-US/kinect
https://www.leapmotion.com/
http://www.scopus.com/inward/record.url?eid=2-s2.0-59249095193&partnerID=40&md5=79316233b31b419e83ca721757c11dfa
http://www.scopus.com/inward/record.url?eid=2-s2.0-59249095193&partnerID=40&md5=79316233b31b419e83ca721757c11dfa
http://dx.doi.org/10.1109/ICSMC.1995.538199
http://doi.acm.org/10.1145/971478.971487
http://doi.acm.org/10.1145/971478.971487
http://dx.doi.org/10.1145/971478.971487
http://doi.acm.org/10.1145/1185657.1185783
http://doi.acm.org/10.1145/1185657.1185783
http://dx.doi.org/10.1145/1185657.1185783

72 REFERENCES

[75] Tevfik Metin Sezgin and All Davis. Scale-space based feature point detection for digital ink.
In In Making Pen-Based Interaction Intelligent and Natural, AAAI Spring Symposium, 2004.

[76] Ivan E. Sutherland. Sketch pad a man-machine graphical communication system. In
Proceedings of the SHARE design automation workshop, DAC ’64, pages 6.329–6.346,
New York, NY, USA, 1964. ACM. URL: http://doi.acm.org/10.1145/800265.
810742, doi:10.1145/800265.810742.

[77] Dean Rubine. Specifying gestures by example. In Proceedings of the 18th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’91, pages 329–337,
New York, NY, USA, 1991. ACM. URL: http://doi.acm.org/10.1145/122718.
122753, doi:10.1145/122718.122753.

[78] A. Chris Long, Jr., James A. Landay, Lawrence A. Rowe, and Joseph Michiels. Visual simi-
larity of pen gestures. In Proceedings of the SIGCHI conference on Human Factors in Com-
puting Systems, CHI ’00, pages 360–367, New York, NY, USA, 2000. ACM. URL: http:
//doi.acm.org/10.1145/332040.332458, doi:10.1145/332040.332458.

[79] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits
or training: a $1 recognizer for user interface prototypes. In Proceedings of the 20th annual
ACM symposium on User interface software and technology, UIST ’07, pages 159–168,
New York, NY, USA, 2007. ACM. URL: http://doi.acm.org/10.1145/1294211.
1294238, doi:10.1145/1294211.1294238.

[80] L. Anthony and J.O. Wobbrock. A lightweight multistroke recognizer for user interface
prototypes. In Proc. Graphics Interface, pages 245–252, 2010.

[81] T. Hammond and R. Davis. Ladder, a sketching language for user interface developers.
Computers & Graphics, 29(4):518–532, 2005.

[82] T.M. Sezgin and R. Davis. Early processing in sketch understanding. Unpublished Master’s
Thesis, Massachusetts Institute of Technology, 2001.

[83] B. Yu and S. Cai. A domain-independent system for sketch recognition. In Proceedings of the
1st international conference on Computer graphics and interactive techniques in Australasia
and South East Asia, pages 141–146. Citeseer, 2003.

[84] B. Paulson and T. Hammond. Paleosketch: accurate primitive sketch recognition and beau-
tification. In Proceedings of the 13th international conference on Intelligent user interfaces,
pages 1–10. ACM, 2008.

[85] OberCom. A internet em portugal, 2012. URL: http://www.obercom.pt/client/
?newsId=548&fileName=sociedadeRede2012.pdf.

[86] Cisco. Cisco visual networking index: Global mobile data traffic forecast update,
2012–2017. URL: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html [last ac-
cessed 2013-08-28].

[87] Patrick Lindemann. A short report on multi-touch user interfaces. Department of Media
Informatics, 2010.

[88] Mike Wu and Ravin Balakrishnan. Multi-finger and whole hand gestural interaction tech-
niques for multi-user tabletop displays, 2003.

http://doi.acm.org/10.1145/800265.810742
http://doi.acm.org/10.1145/800265.810742
http://dx.doi.org/10.1145/800265.810742
http://doi.acm.org/10.1145/122718.122753
http://doi.acm.org/10.1145/122718.122753
http://dx.doi.org/10.1145/122718.122753
http://doi.acm.org/10.1145/332040.332458
http://doi.acm.org/10.1145/332040.332458
http://dx.doi.org/10.1145/332040.332458
http://doi.acm.org/10.1145/1294211.1294238
http://doi.acm.org/10.1145/1294211.1294238
http://dx.doi.org/10.1145/1294211.1294238
http://www.obercom.pt/client/?newsId=548&fileName=sociedadeRede2012.pdf
http://www.obercom.pt/client/?newsId=548&fileName=sociedadeRede2012.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

REFERENCES 73

[89] Apple. ios human interface guidelines. URL: https://developer.apple.com/
library/ios/documentation/userexperience/conceptual/mobilehig/
Introduction/Introduction.html [last accessed 2013-08-14].

[90] Yusra Masud and M Asir Ajmal. Left-handed people in a right-handed world: A phenomeno-
logical study. Pakistan Journal of Social and Clinical Psychology, 9(2):49–60, 2012.

[91] Unity Technologies. Unity. URL: http://unity3d.com/ [last accessed 2013-01-30].

[92] Unity Technologies. Unity networking servers. URL: http://www.unity3d.com/
master-server/index.html [last accessed 2013-02-25].

[93] Apple. Airplay. URL: http://www.apple.com/airplay/ [last accessed 2013-07-04].

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
http://unity3d.com/
http://www.unity3d.com/master-server/index.html
http://www.unity3d.com/master-server/index.html
http://www.apple.com/airplay/

	Front Page
	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	1 Introduction
	1.1 Motivation
	1.1.1 The LIFEisGAME Project

	1.2 SketchFACE Overview
	1.3 Objectives
	1.4 Document Outline

	2 State of the Art
	2.1 Character Facial Animation
	2.1.1 Facial Animation
	2.1.1.1 Facial Animation Pipeline
	2.1.1.2 Facial Rigging
	2.1.1.3 Animation Techniques
	2.1.1.4 Facial Standardization

	2.2 Sketching Interaction
	2.2.1 Interactive Devices
	2.2.1.1 Natural User Interfaces
	2.2.1.2 Multi-touch interfaces
	2.2.1.3 Spatial Interaction

	2.2.2 Sketch-based Interfaces Pipeline
	2.2.2.1 Sketch Acquisition
	2.2.2.2 Sketch Filtering
	2.2.2.3 Sketch Interpretation

	3 SketchFACE: Overview of the Proposed Solution
	3.1 Problem Statement
	3.2 SketchFACE Approach
	3.3 Challenges
	3.3.1 Disadvantages of multi-touch interfaces
	3.3.2 Interface design concerns

	3.4 System Design
	3.4.1 System Scenarios
	3.4.2 System Use Cases
	3.4.3 Interface Prototype

	4 SketchFACE: Implementation
	4.1 System Implementation
	4.1.1 Development Tool: Unity3D
	4.1.2 Module 1: Sketching Control Method
	4.1.3 Module 2: Collaborative Environment
	4.1.3.1 Networking Concept
	4.1.3.2 Networking Approaches
	4.1.3.3 Master Server
	4.1.3.4 SketchFACE Networking Approach

	4.1.4 Module 3: Content Visualization

	5 Results and Validation
	5.1 Experiment Design
	5.1.1 Participants
	5.1.2 Interface Experiment
	5.1.3 Collaborative Environment Experiment

	5.2 Experiment Results
	5.3 Discussion of the Results

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Validation Experiments Documents
	A.1 Usability Questionnaire

	References

