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SUMMARY: This paper presents a numerical approach to study the vibro-acoustic behavior of composite struc-
tures immersed in a surrounding fluid medium. Such approach consists on the development of a coupled mitigation
strategy aiming either vibration suppression or acoustic attenuation. To this end, viscoelastic damping technologies
are applied to the composite host structure in a standard integrated layer damping configuration whereas surface
mounted poroelastic materials are included to perform the design of the damped and quieter composite structure.
A finite element model is developed to model multi-layered structures which is based on the layerwise kinematic
assumptions. On the other hand, poroelastic treatments are developed based on the Biot theory of poroelasticity.
As a result, using the capabilities of the multi-layered model developed, different vibro-acoustic indicators are an-
alyzed, namely, the mean square velocity and the radiation efficiency of the composite host plate, the transmission
loss of the fluid-plate system and the radiated sound power. In addition, a study addressing the physical coupling
between both solid and fluid phases of the poroelastic material is performed in order to realise the consequences in
terms of the sound mitigation performance of the poroelastic treatment owing to the variability in the distributed
stiffness of the host composite plate imposed by different fibers orientation.
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1 INTRODUCTION

Lightweight composite panels used in automotive and aerospace constructions suffer from low acoustic perfor-
mance when subjected to mechanical and/or acoustic excitations. Many research efforts have been done towards to
develop passive damping technologies to control vibrations and acoustic problems by exploring damping proper-
ties of polymer-based materials embedded onto laminated components. Therewith, for an accurately prediction of
the behavior of laminated components several finite element models have been developed. In general, the equiva-
lent single layer model or the layerwise model are employed. In the equivalent single layer model the multi-layer
structure is considered as a unique homogeneous layer for which equivalent mechanical properties are derived.
On the other hand, a layerwise model takes each layer separately which allows for an effective modeling of the
deformation process in multi-material laminated structures [1].
Regarding the vibration control through passive damping technologies, those using viscoelastic materials inter-
leaved with stiff isotropic elastic layers have been extensively applied to suppress resonant mechanical behavior
[2–4] and sound radiation problems [5–8]. The open literature regarding vibrations and sound radiation from fiber
composite structures is less abundant. However, the anisotropic characteristics of the laminae allows for a well-
suited design in terms of damping treatments [9, 10] with respect to vibro-acoustic performance. In the present
work the constrained damping treatment consisting of a thin viscoelastic layer embedded into the main vibrating
component and covered with a stiffer elastic layer is studied, which constitutes, in general, the most effective
damping configuration owing to higher amount of energy dissipated caused by high transverse shear deformations
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developed within viscoelastic layer due to the translation of the neutral plane caused by the constraining layer.
In conjunction with viscoelastic materials further control solutions by using porous materials are increasingly
applied for noise control purposes owing to their sound absorption features due to its porous and filamentous mi-
crostructure being frequently used in a structure-lined design, bonded, unbounded or mounted closed to the main
vibrating component. A certain class of porous foams with flexible skeleton exhibits viscoelastic behavior con-
tributing either for airborne noise mitigation or further structural damping [11]. The porous materials considered in
this work are those consisting of an elastic frame (solid phase) saturated by an acoustic fluid (fluid phase). The be-
havior of such materials can effectively be predicted by using the Biot’s theory of poroelasticity [12, 13] for which
various formulations were developed in the last decade and half. In the present work, the mixed-displacement
pressure formulation [14] is used, which is an exact formulation with respect to the Biot model.
The sound radiation from non-porous structures has been investigated along the past decades. However, the liter-
ature focusing the radiation behavior of porous foams is still scarce. In a recent paper, Atalla et al. [15] presented
an extended integral weak formulation for Biot’s equations considering further virtual work contributions of the
radiated pressure using Rayleigh integral. The authors show that the proposed radiation impedance approach al-
lows for an improved accounting of the radiation damping near to resonance frequencies. In addition, they also
concluded that porous foams have small radiation efficiency what constitutes a motivation to use such foams as
free-layer sound absorbing treatments mounted in efficient radiators.
The porous materials are often acoustically characterized considering airborne excitations with porous sample
mounted over a rigid surface. Under these conditions, porous performance indicators may only be valid for acoustic
excitations, disregarding the radiation behavior arising from low-frequency mechanical excitations provided from
vibrations of host components. A few research has been conducted to consider the influence of the base motion
on absorption performance of porous materials [16–18]. In the present study, this issue is studied considering
orthotropic components as the base which constitute an enlargement of the state-of-the-art in this field.
This paper presents a numerical approach based on a coupled Finite Element - Rayleigh Integral strategy to study
vibro-acoustic response from fiber composite panels embedding viscoelastic layers and lined with a sound absorb-
ing poroelastic foam. The present approach is used to predict the dynamics of such a panel immersed in an acoustic
domain in which both mechanical and acoustic excitations are applied to the panel. To the author’s knowledge,
studies devoted on the sound radiation from viscoelastically damped fiber composite structures lined with poroe-
lastic foams was not properly explored regarding the sound radiation process from the porous foam mounted over
a vibrating orthotropic panel.

2 THEORETICAL FORMULATION

2.1 Description of mathematical model

The problem under analysis is shown in Fig. 1. A rectangular plate is comprised of an elastic plate (a× b×
he) covered by a poroelastic foam (a× b× hp). The elastic plate may be simply isotropic or an anisotropic
structure with a generic stacking of isotropic/orthotropic layers. In addition, a viscoelastic layer may be considered
embedded to the elastic structure. The entire coupled elasto-visco-porous structure is assumed to be in the reference
plane (x,y) located at the middle surface of the elastic plate and placed between two infinite rigid baffles. One
of the baffle separates a semi-infinite acoustic domain for z < 0 and the other one for z > hp. Therefore, the
entire structure can interact with surrounding acoustic medium on its lower and upper surfaces. The plate may be
subjected to harmonic forces provided from mechanical loads and/or acoustic sources.

2.1.1 Composite plate modelling

The displacement field in each layer k of the elastic plate is written as [1]
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where u0, v0 are the in-plane displacements in the x and y directions and w0 is the out-of-plane displacement in the
transverse direction z of the first layer of the generalized multilayered model. β x

k and β
y
k are the rotations in the xz

and yz planes around the y and x axes, respectively. For each layer the kinematics based on the first-order shear
deformation theory (FSDT) is assumed. According to (1) the continuity of interlayer displacements is assured. The
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Figure 1 – Geometry of the composite plate structure covered by a poroelastic foam. Global reference (x,y,z) and
material reference (1,2,3).

model is used here to modelling multilayered composite panels including fiber composite laminates, viscoelastic
materials and isotropic laminae.
The governing equations of motion of the plate vibration can be derived using the Hamilton’s principle,

δ

∫ t2

t1
(V −U +W )dt = 0, (2)

where V , U and W are the kinetic energy, the potential (strain) energy and the work done by the external applied
loads, respectively. The kinetic and potential energies of a laminated with N layers are given by the summation of
the contributions of each layer k,

V =
N

∑
k=1

1
2

∫
A

u̇TJku̇dA, (3)

U =
N

∑
k=1

1
2

∫
A

uTBT
k DkBkudA, (4)

where u and u̇ are, respectively, the displacement and the velocity vectors, Bk is the deformation matrix and Jk is
the inertia matrix. The constitutive matrix Dk for each lamina is given by,

Dk =

hkCk 0 0
0 h3

k
12 Ck 0

0 0 hkGk

 , (5)

where hk is the layer thickness and Ck and Gk are the constitutive matrices in the global reference given by,

Ck = TfCTT
f , Gk = TsSTT

s , (6)

where Tf and Ts are the transformation matrix from local to global reference for bending and shear elasticity
matrices,

Tf =

c2 s2 −2cs
s2 c2 2cs
cs −cs c2− s2

 , Ts =

[
c −s
s c

]
, (7)

where c = cos(θ), s = sin(θ) and θ is the angle between the material axis 1 and the global direction x. For an
orthotropic lamina the constitutive matrices in the material reference one writes,

C =

C11 C12 0
C12 C22 0
0 0 C44

 , S =

[
C55 0
0 C66

]
, (8)
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in which the elasticity coefficients are given by,

C11 =
E1

1−ν12ν21
, C44 = G12, (9)

C12 =
ν21E1

1−ν12ν21
, C55 = G13, (10)

C22 =
E2

1−ν12ν21
, C66 = G23. (11)

For an isotropic layer, the constitutive matrix is defined as,

Ck =
Ek

1−ν2
k

 1 νk 0
νk 1 0
0 0 1−νk

2

 , Gk =
Ek

2(1+νk)

[
1 0
0 1

]
, (12)

where Ek and νk are the Young’s modulus and Poisson’s ratio of the material.
The virtual work done by an external distributed loading applied to the plate surface one writes,

δW =
∫

S
δuTqdS, (13)

where q is the distributed load and S is the plate area.
Applying the Hamilton’s principle and assuming a steady harmonic time-dependence ejωt the weak form of the
composite plate problem can be expressed as follows,

N

∑
k=1

(∫
A

δuTBT
k DkBkudA−ω

2
∫

A
δuTJkudA

)
=
∫

S
δuTqdS. ∀(δu) (14)

2.1.2 Poroelastic material modeling

The fundamental equations of the Biot’s theory of the poroelasticity [12, 13] in conjunction with the frequency-
domain mixed displacement-pressure formulation (u, p) [14] are considered here to modeling an isotropic poroe-
lastic foam saturated by an acoustic fluid. The Biot model applied to the poroelastic foam comprises two ho-
mogeneous and continuum mediums (a solid phase and fluid phase) which are coupled by inertial and viscous
forces developed into the porous medium owing to the relative motion of the solid and fluid particles. In the
case of the mixed formulation the primary variables are the fluid pressure p and the solid phase displacements
us = [ux,uy,uz]

T; the poroelastic model thus requires only four degrees of freedom instead of six ones of the
displacement-displacement formulation primarily derived.
Considering the Biot equations and using the principle of the virtual work, the weak form for the poroelastic
material yields in the form,∫

Ωp

ε(δus)
TD̃ε dΩp−ω

2
ρ̃

∫
Ωp

δuT
s us dΩp +

φ 2

ω2ρ̃22

∫
Ωp

∇δ pT ·∇pdΩp−
φ 2

R̃

∫
Ωp

δ p · pdΩp

− γ̃

∫
Ωp

∇δ pT ·us dΩp− γ̃

∫
Ωp

δuT
s ·∇pdΩp−

∫
∂Ωp

φ(u f −us)nδ pdΓ

−
∫

∂Ωp

δuT
s σ̂ pndΓ = 0, ∀(δus,δ p) (15)

where σ̂ p and ε are, respectively, the total stress tensor and the strain tensor of the solid phase, D̃ is the elasticity
matrix of the solid phase which may account for damping in the solid skeleton, us and u f are the macroscopic
displacements of the solid and fluid phases, respectively, R̃ is the bulk modulus of the air within a fraction φ of
the volume of the porous material and ρ̃ and ρ̃22 are the effective densities of the solid phase and the fluid phase,
respectively. n is the unit normal vector outwards from the boundary, σ̂ p ·n stands for external surface forces per
unit area along the normal direction at the boundary surface ∂Ωp. The parameter γ̃ is defined as follows,

γ̃ = φ

(
ρ̃12

ρ̃22
− Q̃

R̃

)
, (16)

where Q̃ is the elastic coupling coefficient between the solid and fluid phases. Ωp and ∂Ωp denote, respectively,
the poroelastic domain and its boundary and ω is the angular frequency.
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Figure 2 – Frequency dependency of the viscoelastic properties of the material 3M ISD-112 at 27 oC, used in this
study. Shear storage modulus G′(ω) and loss factor η(ω).

2.1.3 Continuity coupling plate-foam

The poroelastic foam is considered perfectly bonded to the composite plate. Therefore, appropriate interface
conditions have to be satisfied at the plate-foam interface to ensure continuity of normal stresses, the zero relative
mass flux between the porous solid and fluid phases across the interface and the displacement continuity between
both solid domains. Those interface restraints can be conveniently written in the form,

σ̂ pn = σ en, (17)

φ(u f −us)n = 0, (18)

ûp = ue, (19)

where σ e is the elastic (plate) stress tensor, ûp and σ̂ p are the total displacement vector and stress tensor of the
porous material, respectively, and ue, u f and us are the displacement vectors of the elastic (plate), porous fluid
phase and solid phase, respectively. n is the interface normal vector and φ is the porosity. Once the coupling
between the poroelastic domain and the elastic domain is natural [19] only the kinematic condition (19) has to be
explicitly imposed on the plate-foam interface. To this end, in this work the Lagrange multipliers method is used
to enforce the normal continuity of both elastic plate and solid phase displacement fields.

2.1.4 Viscoelastic damping modelling

The viscoelastic material considered throughout this work is the ISD-112 of 3M in which the frequency-dependent
mechanical properties are determined using the three-series Anelastic Displacement Field model for a temperature
of 27 oC. In terms of the finite element implementation the complex modulus approach is considered for which the
mechanical properties of the viscoelastic material are given in terms of the complex shear modulus,

G(ω) = G′(ω)[1+ jη(ω)], (20)

in which G(ω) stands for the frequency-dependent shear modulus and η(ω) is the loss factor of the material,

η(ω) =
G′′(ω)

G′(ω)
, (21)

where G′(ω) and G′′(ω) are, respectively, the shear storage modulus and the shear loss modulus, the latter ac-
counting for energy dissipation effect. In addition, once the Poisson’s ratio can be reasonably taken as frequency-
independent the extensional modulus can be easily taken on the model implementation. Fig. (2) shows the fre-
quency dependency of the viscoelastic properties in terms of the shear storage modulus and the loss factor of the
material ISD-112 over the frequency range [0−1000] Hz.
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2.2 Finite element implementation

The variational forms of the elastic plate and poroelastic foam domains, given respectively in Eqs. (14) and (15),
are discretized using the Galerkin finite element method. In that sense, for poroelastic problem the following
mapping is considered,

us = NsUs, p = N f P, (22)

where Us and P are the vectors of nodal displacements of the solid phase and nodal pressures, respectively, N
are the interpolation functions within the finite element and the subscripts s and f denote the solid and the fluid
component, respectively. The discretization of the variational form given in (15) yields,∫

Ωp

ε(δus)
TD̃ε dΩp =⇒ δUTKsU, (23)∫

Ωp

δuT
s us dΩp =⇒ δUTMsU, (24)∫

Ωp

δuT
s ·∇pdΩp =⇒ δUTHs f P, (25)∫

Ωp

∇δ pT ·∇δ pdΩp =⇒ δPTK f P, (26)∫
Ωp

δ p · pdΩp =⇒ δPTM f P, (27)∫
Ωp

∇δ pT ·us dΩp =⇒ δPTH f sU, (28)

In addition, δUs and δP as well can be arbitrary (stationarity condition) leading to the following system of discrete
equations, [

Ks−ω2Ms Hs f
H f s K f /ω2−M f

]{
Us
P

}
=

{
Fs

F f /ω2

}
, (29)

where Ms and Ks are the equivalent mass and stiffness matrices for the solid phase, respectively, and M f , K f
are the equivalent kinetic and compression matrices for the fluid phase, respectively. Hs f is the volume coupling
matrix between both solid phase displacement and fluid pressure and H f s =−HT

s f . Fs and F f are the load vectors
of the applied forces on the solid phase and fluid phase, respectively.
Using similar procedure as for poroelastic problem, the finite element discretization of the variational form for
elastic plate given in (14) yields in the form,

N

∑
k=1

∫
A

δuTJkudA =⇒ δUT
e MeUe, (30)

N

∑
k=1

∫
A

δuTBT
k DkBkudA =⇒ δUT

e KeUe. (31)

The stationarity condition leads to the following system of discrete equations for elastic composite plate,[
Ke(ω)−ω

2Me

]
Ue = Fe, (32)

where Me is the consistent mass matrix of the composite panel and Ke(ω) =Kel +Kv(ω) where Kel is the stiffness
matrix of the composite elastic plate and Kv(ω) is the frequency-dependent stiffness matrix of the viscoelastic
layer defined according the complex modulus approach. Fe is the load vector applied to the elastic plate. The fully
coupled plate-foam finite element model yields in the following frequency-domain system of discrete equations,


Ke 0 0 L
0 Ks 0 R
0 0 K f 0

LT RT 0 0

 −ω
2


Me 0 0 L
0 Ms 0 R
0 0 M f 0

LT RT 0 0





ue
us
p
λ

=


Fe
Fs
Fp
0

 , (33)

where L and R accounting for additional constraints involving the free normal degrees of freedom in both plate
and foam models.
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2.3 Acoustic model

The radiation process considered herein comprises two parts, namely, the radiation describing the transmission
from the plate to the acoustic medium and the fluid loading takes into account for the effect of the fluid on the
structure. This problem may be accounted by several approaches according to the fluid/structure impedance ratio.
For a light fluid, the fluid mass may be neglected and both acoustic and structural problems can be solved indepen-
dently. For heavy fluids, the problem is more complex owing to strong acoustic radiation damping and added mass
effects which may significantly change the inertia of the coupled structure. In the present work we are concerned
mainly with radiation involving light fluids such as the air. However, the fluid loading is also considered in the
present approach. Considering the plate immersed in an acoustic environment as described previously, each surface
pertains to a plane which is rather contained in an infinite plane rigid baffle. In this context, the acoustic radiation
from the entire plate may be accounted through the boundary Rayleigh integral approach [20]. Let p1(x,y,z) and
p2(x,y,z) be the acoustic pressure field in the half-space Ω1 (z < 0) and Ω2 (z > hp), respectively. Following the
Rayleigh integral procedure and considering the Cartesian reference the pressure fields in each half-space are given
by the following integral equations,

p1(r) = ρ1ω
2
∫

Se
G(r,r0)w(r0)dSe, z < 0 (34)

p2(x) =−ρ2ω
2
∫

Sp
G(x,x0)w(x0)dSp, z > hp (35)

where ρ1 and ρ2 are the fluid densities, G = e−jkR/2πR is the free-field Green’s function which satisfies the
condition ∂G/∂n on the rigid baffle, k = ω/c is the acoustic wave number and R corresponds to the distance
between the surface source points (r0, x0) (integration points) and the receiver points (r, x) (evaluation points) on
the acoustic field. The main advantage of the Finite Element - Rayleigh Integral approach presented in this work
is that no additional unknowns are required beyond the structural ones arising from the finite element method. In
addition, the weak and strong coupling can suitably be accounted by an acoustic impedance matrix. The main
drawback yields from the frequency-dependency of the impedance matrix which usually leads to time-consuming
computations. However, in some cases interpolation procedures can be chosen to improve time computations
without compromising the accuracy of calculations.
The vector of applied forces to the plate accounting for mechanical and fluid forces is given in left-hand side of
Eq. (32). The counterpart due to the acoustic load may be written as,

Fa =
∫

S
NT pdS. (36)

Substituting Eq. (34) into Eq. (36) yields,

Fa = ω
2
ρ1ZUe, (37)

where Z(ω) is the geometrical and frequency-dependent radiation impedance matrix written as,

Z =
∫

S

∫
S

NTG(r,r0)NdSdS. (38)

The real part of Z corresponds to the acoustic radiation damping whereas its imaginary part is a measure of the
fluid added mass. The numerical evaluation of the radiation matrix is time consuming particularly for higher
frequencies where high integration orders are required to get accurate results. A comprehensive review on the
evaluation of the radiation impedance matrix calculation is done in [21]. In the present work, the radiation matrix
is calculated for the finite element used considering two different numerical integration schemes based on the
standard Gauss-Legendre quadrature. The cross-influence coefficients involving non-coincident finite elements
are calculated using standard numerical integration where each surface integral contributes in a similar fashion to
each matrix coefficient. On the other hand, the self-influence coefficients involving coincident elements require an
accurate procedure to deal with the weak singularity appearing in the integrand coming from Green’s function. In
the present work, a technique based on the Lachat-Watson transformation is used.
The most disadvantage dealing with the radiation matrix Z lies on its frequency-dependency leading to prohibitive
computational times for frequency response calculations. To avoid the calculation of the matrix at each frequency
point for a given frequency band of interest, some techniques considering interpolation procedures are available
in the literature. However, due to the smoothness of the kernel Green’s function with respect to the frequency a
simple interpolation can be chosen[5]. In this work, a simple quadratic interpolation is considered. The matrix
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is calculated at the frequency points ωi, ω j and ωi j (with ωi < ωi j < ω j) and the matrix values between those
frequency points are simply interpolated with the following relation,

Z(ω) = qi(ω)Z(ωi)+qi j(ω)Z(ωi j)+q j(ω)Z(ω j), (39)

where the frequency coefficients q(ω) are the well-known Lagrange basis functions written as,

qi(ω) =
(ω−ωi j)(ω−ω j)

(ωi−ωi j)(ωi−ω j)
, (40)

qi j(ω) =
(ω−ωi)(ω−ω j)

(ωi j−ωi)(ωi j−ω j)
, (41)

q j(ω) =
(ω−ωi)(ω−ωi j)

(ω j−ωi)(ω j−ωi j)
. (42)

2.4 Plate loading

In the present model both acoustic and mechanical loads may be applied on to plate surface. In terms of mechanical
loads only point force excitations are of interest here. On the other hand, regarding the acoustic external loads only
incident pressure fields by plane waves are considered. For the plate under acoustic loading the total pressure pt
developed on the plate surface is given by,

pt = pr1− pr2 + pb, (43)

where pr1 and pr2 are the radiated pressure fields on the loaded side and free side, respectively, and pb is the fluid
pressure that occurs on the incident side if the plate is perfectly rigid. Considering the plate fully immersed in a
light fluid, the pressure caused by the radiation impedances of the fluid medium can reasonably be neglected to the
plate loading. Moreover, the pressure radiated on the loaded side may also be disregarded when compared with the
blocked pressure pb. Thus, the pressure load may be given by the blocked pressure which may be approximated
by twice the incident pressure [22],

pi(x,y,ω) = 2 p̄i e-j(kxξ+kyη), (44)

where pi is the frequency-domain incident pressure field generated by an incident plane wave, p̄i is the amplitude
of the incident pressure field and ξ = x−a/2 and η = y−b/2, according to the global reference considered in Fig.
(1). The components of the wave vector k = {kx ky} in the incident acoustic medium are given by,

kx = k sin(θ)cos(φ), ky = k sin(θ)sin(φ), (45)

where k = ω/c is the wave number and c is the speed of sound in the incident acoustic medium, θ is the incident
angle (measured from z axis) and φ is the azimuthal angle. Consequently, the force vector due to the incident
pressure field one writes,

Fa = 2 p̄i

∫
S

NTpi(ω)dS. (46)

2.5 Vibration and acoustic indicators

The most useful vibration and acoustic indicators used in this work to study the dynamics of composite plate lined
with the poroelastic foam are given in the following.

• Mean Square Velocity

The mean square velocity relating the overall behavior of the plate vibration is defined as,

v2 =
1

2S

∫
S
|v|2dS, (47)

where v is the plate velocity and S is the plate surface.

• Radiated Sound Power
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The radiated sound power characterizes the acoustic radiation from the plate and is defined as,

Πr =
1
2

∫
S

Re(pv∗)dS, (48)

where p is the radiated sound pressure and v∗ is the complex conjugate plate velocity.

• Radiation Efficiency

The non-dimensional radiation efficiency of the plate-acoustic system characterizing the acoustic radiation is de-
fined as the ratio of the acoustic energy radiated by the structure to its potential energy,

σ =
Πr

ρcSv2 . (49)

• Transmission Loss

The transmission loss (TL) on the plate is defined by,

TL = 10log
(

Πi

Πr

)
, (50)

where Πr is the radiated sound power given by Eq. (48) and Πi is the incident power due to an incident acoustic
pressure field. For an incident plane wave excitation the incident power is given by,

Πi =
|p̃i|2cos(θ)S

2ρ f c f
, (51)

where p̃i and θ are the incident pressure field amplitude and the incident angle measured from z axis, respectively,
and ρ f and c f are the mass density and the speed of sound of the excited acoustic medium, respectively.

• Absorption coefficient

The absorption coefficient of the panel when subjected to an incident acoustic pressure field may be defined as
follows,

α(θ ,ϕ) =
Πi

Πd
, (52)

where Πd stands for the dissipated power on the plate.

3 NUMERICAL APPLICATION

In this section a simply supported plate-foam example is considered to assess the proposed numerical approach. In
Table 1 it is presented the material properties for an isotropic plate and poroelastic foam as well. Table 2 presents
the mechanical properties for two different material laminae. Here, only mechanical displacement responses
considering a constrained viscoelastic damping treatment (CLD) are shown. The thickness of the viscoelastic
layer (VEM) is 0.127 mm and the constraining one is 0.254 mm. The plate response is calculated at point (x,y) =
(0.12,0.11).
The material laminae is the Graphite-Epoxy and a laminated with stacking sequence [45 o/VEM/0 o/90 o/0 o] is
chosen in which an orthotropic lamina (45 o) is used to the constraining layer. An incident plane wave (θ ,φ) =
(85 o, 45 o) is applied to the elastic composite plate. Fig. 3 presents the damped plate response for a fiber laminated
composite and the aluminum plate. Fig. 4 and 5 presents, respectively, the elastic plate and foam responses in the
coupled plate-foam system. It is shown that, in general, fiber composite plate response is higher for the frequency
band chosen and for the acoustic excitation considered.

4 CONCLUSION

In this paper a numerical approach based on the finite element method and Rayleigh integral is developed to
simulate vibro-acoustic response of fiber composite materials treated with viscoelastic materials and lined with
poroelastic sound absorbing foams. The model allows for taking the fluid loading into consideration by an acous-
tic impedance matrix. Some results are shown in order to assess the model performance by comparison two
responses in terms of an isotropic plate-foam and a fiber laminated composite plate-foam systems both considering
a constrained viscoelastic damping treatment.
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Table 1 – Aluminum plate and foam properties.

Plate Al
Lateral dimensions 0.48 × 0.42 m2

Thickness 1 mm
Mass density 2680 kgm−3

Young|s modulus 66 GPa
Poisson|s ratio 0.33
Loss factor 0.0

Foam
Thickness 3 cm
Porosity 0.98
Flow resistivity 13500 Nsm−4

Tortuosity 1.70
Viscous charac. length 20 µm
Thermal charac. length 160 µm
Mass density 30.0 kgm−3

Young|s modulus 540 kPa
Poisson|s ratio 0.35
Loss factor 0.01

Table 2 – Properties of the composite material layers.

Material Graphite-Epoxy Boron-Epoxy
(T300/934) (Br-Ep)

E1 131 207 GPa
E2 10.3 20.7 GPa
G12 6.9 6.9 GPa
G13 6.2 6.9 GPa
G23 6.2 4.1 GPa
ν12 0.22 0.3
ρ 1500 2000 kg/m3
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Figure 3 – Plate (CLD) displacement response without foam for an incident plane wave excitation (θ ,φ) =
(85 o, 45 o).
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Figure 4 – Plate (CLD) displacement response with surface mounted foam for an incident plane wave excitation
(θ ,φ) = (85 o, 45 o).
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Figure 5 – Foam point displacement response for plate (CLD) with surface mounted foam for an incident plane
wave excitation (θ ,φ) = (85 o, 45 o)
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