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 Abstract 
 

The ability to asymmetrically distribute components within a single cell, termed cell 

polarity, is an essential feature of most cell types. Loss of cell polarity and chromosome 

instability are hallmarks of cancer, however these defects alone cannot induce 

tumorigenesis. We aim to understand if mitotic defects cooperate with loss of cell polarity 

in tumorigenesis. We screened for genes involved in different aspects of cell division, 

whose simultanous inactivation with polarity genes results in tumorous phenotypes. Using 

the eye imaginal disc and the follicle epithelium as models of epithelial tissue, we 

observed that defects in cytokinesis have the ability to induce the overgrowth of 

disorganized tissue in a polarity defective background. Establishing cell polarity relies on 

the evolutionary conserved apical Par Complex, comprised by Par-3, Par-6 and aPKC 

proteins. In neuroblasts, polarization only occurs during division to determine the 

asymmetric segregation of determinants of the daughter cell fate. In contrast, epithelial 

cells are polarized along the apico-basal (AB) axis during interphase to localize functions 

and adhesive properties at distinct cortical domains. However, during mitosis epithelial 

cells depolarize to accommodate cell shape changes associated with division. Aurora A 

kinase (AurA) has an essential role in neuroblast polarization during mitosis. It 

phosphorylates Par-6, participating in aPKC activation and the consequent 

phosphorylation of Lgl. This cascade of events allows the exclusion of Lgl from the cell 

cortex, which determines the basal positioning of cell fate determinants. To understand 

how epithelial cells link cell polarity and mitotic events, we addressed the role of aurA in 

AB polarity in the follicular epithelium. Mosaic mutant clones of an aurA kinase dead allele 

revealed that aurA kinase activity is not required to maintain epithelial AB polarity. The Lgl 

complex controls epithelial polarization by inhibiting the Par Complex activity on the 

basolateral cortex. Given that Lgl exits from the cell cortex during neuroblast division, we 

tested if it exhibited the same dynamic behaviour in epithelial cell division. In fact, similarly 

to the neuroblast, Lgl exits from the cortex to the cytoplasm prior than Nuclear Envelope 

Breakdown. Importantly, exit from the cortex might depend on phosphorylation, as a triple 

serine mutant version of Lgl is maintained at the cell cortex during division. The mutated 

sequence includes the aPKC phosphorylation site on Lgl, suggesting that aPKC could 

participate in Lgl exclusion from the basolateral cortex. However, when comparing 

depolarization timings between Lgl protein and apical polarity markers in epithelial cells, 

we observed that Lgl exit from the cell cortex begins before aPKC complex depolarization. 

Therefore our data supports that the cascade of events determining changes in polarity 

during mitosis is inverted in epithelial cells.  
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 Resumo 
 

A capacidade de distribuir assimetricamente os constituintes de uma célula, 

polaridade celular, é uma característica essencial na maioria das células. A perda da 

polaridade e a instabilidade cromossómica são marcadores cancerígenos, sendo que 

estas anomalias sozinhas não são capazes de induzir tumorogénese. Propomo-nos a 

entender se anomalias a nível mitótico cooperam com a perda da polaridade celular de 

modo a iniciar a formação de tumores. Com este objectivo, procuramos genes envolvidos 

em diferentes aspectos da divisão celular, cuja inactivação, em simultâneo com a 

inactivação de genes envolvidos em polaridade, pudessem resultar em fenótipos 

tumurais. Usando o disco imaginal do olho e o epitélio folicular como modelos de tecido 

epitelial, observamos que defeitos em citocinese têm a capacidade de induzir o 

crescimento descontrolado de tecido desorganizado em cooperação com defeitos em 

polaridade. O estabelecimento da polaridade celular baseia-se no Complexo Par 

evolutivamente conservado, composto pelas proteínas Par-3, Par-6 e aPKC. Em 

neuroblastos a polarização só ocorre durante a divisão de modo a determinar a 

segregação assimétrica dos determinantes de diferenciação da célula filha. Em contraste, 

as células do epitélio são polarizadas ao longo de um eixo apico-basal (AB) durante a 

interfase para localizar funções e propriedades adesivas em domínios corticais distintos.  

Contudo, durante mitose as células do epitélio despolarizam de modo a 

suportarem as mudanças na forma da célula associadas à divisão. A cinase Aurora A 

(AurA) tem um papel fundamental na polarização do neuroblasto durante a mitose. 

Fosforila o Par-6, participando na activação da aPKC e na consequente fosforilação do 

Lgl. Esta sucessão de eventos permite a exclusão do Lgl do córtex da célula, o que 

determina a posição basal dos determinantes de diferenciação. Para perceber de que 

modo o epitélio relaciona a polaridade celular e os diversos eventos mitóticos, fomos 

analisar qual o papel da AurA na polaridade AB das células epiteliais foliculares da 

Drosophila. Clones mosaicos de um alelo da cinase Aurora A “morto” revelaram que a 

actividade cinase não é necessária para a manutenção da polaridade AB. O complex Lgl 

controla a polarização epitelial ao inibir a actividade do Complexo Par no córtex 

basolateral. Dado que o Lgl sai do cortéx celular durante a divisão do neuroblasto, 

testamos se este exibia o mesmo comportamento dinâmico na divisão das células 

epiteliais. De facto, em semelhança com o neuroblasto, o Lgl sai do córtex para o 

citoplasma antes da ruptura do invólucro nuclear. Mais importante, a saída do córtex 

pode depender de fosforilação, já que uma versão mutante nas três serinas é mantida no 

córtex da célula durante a divisão. A sequência mutante inclui o local de fosforilação pela 

aPKC no Lgl, sugerindo que a aPKC pode participar na exclusão do Lgl do córtex 
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basolateral. Contudo, quando comparando os tempos de despolarização entre o Lgl e os 

marcadores de polaridade apicais na células epiteliais, observamos que a saída do Lgl do 

córtex celular começa antes da despolarização do complexo da aPKC. Portanto, os 

nossos resultados suportam a ideia de que a cascata de eventos que determina as 

mudanças na polaridade durante mitose está invertida nas células epiteliais.  
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CHAPTER 1 – INTRODUCTION 
 

 

 1. Cell division 
 

To create a multicellular organism a single cell must divide multiple times. The 

sequence of events that enable cells to divide and generate two genetically identical 

daughter cells is known as cell cycle. Failure to maintain genomic stability has been 

associated with several diseases including cancer. Cell division comprises two major 

phases: interphase, during which the cell grows and accumulates nutrients required to 

duplicate its content; and the M-phase, during which the cell divides its content into two 

cells.  

Interphase comprises three distinct phases: Gap phase 1 (G1), S phase and Gap 

phase 2 (G2). The DNA is faithfully replicated during S phase. This process is aided by 

both G phases ensuring that the cell is in favourable conditions to undergo division, giving 

time to the cell to accumulate all the macromolecules needed and checking for possible 

replication errors that would be catastrophic to the viability of the organism. If the 

extracellular conditions are not favourable, cells may enter in a specialized resting state 

known as Gap phase 0 (G0). Along with DNA replication, cells also replicate their 

centrosomes but these remain together until the onset of division. M-phase comprises two 

distinct stages: nucleic division also called mitosis, and cytoplasmic division or 

cytokinesis. Mitosis per se is also divided into five stages - prophase, prometaphase, 

metaphase, anaphase, and telophase – that must occur in this sequential order, while 

cytokinesis begins at the end of telophase and is concluded much later (Fig. 1) [2, 3].  

The macromolecular components responsible for induction of all these sequential 

phases are the Cyclin-dependent protein kinases (Cdks), and their regulatory subunits 

called Cyclins. Different Cyclins are produced in each stage of the cell cycle, resulting in 

the formation of a series of Cyclin-Cdk complexes that regulate progression through each 

stage. After S phase, the cell contains a duplicated set of chromosomes each made up of 

two tightly associated sister chromatids. Prophase begins at the onset of chromosome 

condensation. At mid and late prophase, the centrosomes start to separate and the mitotic 

spindle begins to assemble in the cytoplasm, nucleated by the centrosomes [4]. 

Prometaphase begins abruptly with Nuclear Envelope Breakdown (NEBD) that is 

triggered by M-Cdk phosphorylation of the nuclear lamina. NEBD enables microtubules 

from the mitotic spindle to reach and interact with chromosomes (reviewed in [5]). 

Prometaphase continues until all sister chromatids are attached to the spindle and have 

migrated to the equatorial plane of the cell, a process known as chromosome 
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congression. At metaphase, all chromosomes are aligned at the center of the spindle 

(metaphase plate) waiting for the signal to separate (reviewed in [1]). The metaphase-to-

anaphase transition is triggered by the activation of the anaphase promoting complex/ 

cyclosome (APC/C). The activation of APC/C leads to M-Cdk inactivation and Securin 

degradation by ubiquitination, thereby activating Separase – a protease that cleaves the 

cohesion complex that holds sister chromatids together, allowing their separation. In 

telophase, the final stage of mitosis, a nuclear envelope reassembles around each group 

of chromosomes to form the two daughter interphase nuclei (reviewed in [6]).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Schematic representation of kinetochore-microtubule interactions during 

mitosis. As a highly dynamic process, mitosis comprises the occurrence of multiple processes: 

NEBD at prometaphase, chromosome bi-orientation on metaphase, and sister chromatids 

separation during anaphase. The correct interaction of microtubules with kinetochores is the key 

event to successful chromosome segregation. Adapted from ([1]). 

 

Additionally to the precise separation of the DNA, the common cytoplasm and its 

contents must also be divided. The mechanical process that ensures the physical division 

of the cytoplasm is known as cytokinesis. This process in under tight temporal and spatial 

regulation to ensure that it only occurs after chromosome segregation and in a specific 
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orientation. Cytokinesis involves the establishment of a division plane and the fusion of 

the plasma membrane in both sides of the cleavage furrow, after contraction of the 

actomyosin ring. As any other type of cell shape change, cytokinesis requires the 

orchestration between several processes such as cytoskeleton remodelling, endocytic 

traffic of vesicles and the localization of several proteins involved in the process (reviewed 

in [7]). At the end of mitosis, after anaphase onset and chromosome segregation, the 

spindle microtubules in the midzone of the cell are enriched in several proteins that will 

boost cytokinesis (reviewed in	   [8]).  One of these proteins is Anillin, which functions as a 

scaffold protein, binding to F-actin and myosin, and recruiting Septins – GTPases proteins 

- to the contractile ring. The contractile ability of this actomyosin ring is of extreme 

importance. It is this contraction that allows the physical separation of both daughter cells 

by promoting the ingression of the cleavage furrow that will merge at opposite sides of the 

membranes (reviewed in [9]). Anillin depletion in Drosophila and human cells causes 

abnormalities in the symmetry of the cleavage furrow and consequently raises the 

likelihood of cytokinesis failure ([10]). Failures in cytokinesis generally lead to tetraploidy 

creating genomic instability, which is known to be a mechanism that could lead to tumour 

development (reviewed in	  [8]).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 - Representation of cleavage furrow ingression during cytokinesis. The 

figure is showing the position of the contractile ring and its associated proteins. Adapted from 

([11]). 

 

The central purpose of a mitotic cell is to accurately segregate its chromosomes, 

generating two daughter cells with the same amount of DNA. Several strategies ensure 

the fidelity of this process in order to avoid errors that could compromise the viability of the 

organism. One of these strategies is the construction of a physical structure on specific 

regions of condensed chromosomes - the centromeres - that mediates and supports the 
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interaction between the microtubules of the mitotic spindle and the chromosomes. This 

proteinaceous structure is known as kinetochore (reviewed in [1]). If kinetochore formation 

fails, aberrant segregation occurs leading to cell death. Therefore the centromere plays an 

important role in cell cycle: it ensures that kinetochore assembles only in one single site, 

propagating this information through generations. Connecting the centromere to 

kinetochores there is CENP-A, which furnishes the bases to the assembly of the 

subsequent proteins (reviewed in [12]). CENP-C, a structural protein of kinetochores, 

allows the connection between the determinant of kinetochore identity- CENP-A – and the 

interface that will interact with microtubules – the KMN complex. This complex is 

composed by the KNL1 protein (also named Spc105 or Blinkin), and the Mis12 and Ndc80 

sub-complexes. (reviewed in [1], [13]). The four subunit Mis12 complex - Mis12, Nnf1, 

Nsl1 and Dsn1 subunits – do not appear to interact directly with microtubules. However, 

when it binds to KNL-1, the Mis12 complex enhances the microtubule-binding activity of 

KNL-1 ([14]). The Ndc80 complex is composed by two heterodimers, Spc24/Spc25 and 

Ndc80/Nuf2 subunits, being the last heterodimer directly responsible for binding to 

microtubules [14-18]. The four-subunit Chromosomal Passenger Complex (CPC), that 

includes the Aurora B kinase, is the responsible for the correction of the errors in 

kinetochore-microtubule attachments. Lack of tension between sister kinetochores seems 

to be the principal factor that leads to Aurora B phosphorylation of the Ndc80 subunit, 

decreasing the microtubule-binding affinity of the Ndc80 complex, and eliminating 

incorrect kinetochore–microtubule attachments – Fig. 1.3 ([19]). If correction of erroneous 

kinetochore-microtubule attachments is a role for Aurora B kinase, the delay on mitosis 

that gives time to the cell to correct errors relies on the Spindle Assembly Checkpoint 

(SAC) [21-23].  This mitotic checkpoint is composed by several proteins that localize 

transiently in the kinetochore until the correct microtubule attachments are sensed. The 

MAD (mitotic-arrest deficient] proteins - MAD1, MAD2 and MAD3 [BUBR1 in humans) - 

the BUB (budding uninhibited by benzimidazole) proteins - BUB 1 and BUB3 - and also 

the MPS1 protein are all members of the SAC [24-26].  SAC negatively regulates the 

binding ability of Cdc20 - a co-factor of the ubiquitin ligase Anaphase-Promoting 

Complex/Cyclosome (APC/C) – preventing the polyubiquitylation by APC/C and 

consequent degradation of two key substrates, Cyclin B and Securin. As Securin is an 

inhibitor of Separase - a protease that cleaves the cohesin complex that holds sister 

chromatids together – and Cyclin B the activator of the mitotic Cdk, SAC signalling blocks 

cell exit from mitosis (Fig. 1.4).  
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Upon SAC inactivation, anaphase proceeds and the cell exits from mitosis 

(reviewed in [1]; [27, 28]; [29]) . “The Kinetochore is therefore a highly complex machine 

that does not merely bind and affects the dynamic behaviour of attached microtubules, but 

is involved in quality-control mechanisms that detect and correct defective or non-

productive kinetochore-microtubule interactions” (reviewed in [30]).  

 

 

 

 

Figure 1.3 - KMN Network and Aurora B 

controling kinetochore-microtubule 

attachments.	  	  The CPC component Aurora B is 

the responsible for sensing incorrect kinetochore-

microtubule attachments, phosphorylating the 

Ndc80 complex and allowing the reestablishment 

of bipolar attachments. Adapted from ([1]). 

	  

Figure 1.4 - Sister chromatid 

separation after activation of the 

APC/CCdc20 complex . Correct 

kinetochore-MT attachments inactivate 

SAC signaling, that in turn allows the 

binding of Cdc20 to the APC/C. The 

activation of APC/CCdc20 leads to the 

polyubiquitylation of securin and cyclin 

B, targeting them for destruction. 

Securin destruction releases separase 

that cleaves the cohesion complex, 

allowing anaphase completion. 

Adapted from department of Genetics, 

University of Bayreuth, Germany	  
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 2. Cell polarity 
 

 Multicellular organisms are though to result from the necessity to adapt to new 

environmental conditions and to utilize resources that a single-cell organism is unable to 

use. The cells within a multicellular organism are dependent on each other, such that 

each cell type is specialized in different and essential functions. These specialized cells 

constitute distinct tissues that work together within an organism. The epithelial tissue, 

shields us against pathogens, enables selective absorption and it also actively 

participates in the overall body secretion. In order to provide these functions, the 

epithelial tissue must form a selective barrier, so that signals between cells can be 

transmitted but harm signals from the external environment could be prevented to reach 

the organism. Epithelial cells developed a strategy to fulfil this propose: the formation of 

connections between cells. Cell-cell connections are a key feature of epithelial tissue, 

holding cells together in an organized monolayer that offers protection, and 

simultaneously allows transcellular transport. The Adherens Junctions are a type of 

connection only found in epithelium, considered by many as the closest junction in the 

living world. Besides its extracellular functions, Adherens Junctions participate in the 

definition of distinct domains within an epithelial cell by acting as an intracellular barrier 

to macromolecules, regulating cell polarity.       

 Cell polarity refers to all the asymmetry of macromolecules distribution that leads 

to differential localization of functions into particular regions of a given cell. Cell 

polarization is a highly complex process: coordination between microtubule and actin 

remodelling, vesicle trafficking and cell-cell junctions’ establishment must be 

orchestrated to enable cells to carry out their functions properly. The importance of cell 

polarity is illustrated by several examples that rely on it: an axon must be polarized in 

order to transmit information to another neuron or an effector organ ([31]); leukocytes 

migrate towards a stimulus in a polarized-dependent manner ([32]); the establishment of 

asymmetric axes on vertebrate animals; the development of a fertilized egg or the 

growth of an unicellular organism ([33]). In conclusion, a cell from a multicellular 

organism must be specialized in a particular function, and in many cases to gain this 

specialization, that cell must become polarized to asymmetrically distribute its 

components. For instance, in epithelial cells, junctions must be formed at precise 

locations along the apical-basal axis.   
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2.1 Models of epithelial tissue in Drosophila     

 As previously mentioned, cell-cell connections and a remarkable polarization are 

common features of epithelial tissues. Giving their essentiality to the proper function of 

the tissue, these characteristics were conserved among several organisms, being 

Drosophila and mammals a well-known example of distant related eukaryotes where 

these features were retained. In spite of sharing common epithelial characteristics, 

vertebrates and invertebrates display some differences in what epithelial domains 

organization is concerned. Both eukaryotic classes share the existence of the Adherens 

Junctions. However while vertebrates have a Tight Junction above the previous referred 

one, in the invertebrate world such structure does not exist. Invertebrates have a 

Septate Junction that links epithelial cells just below the Adherens Junctions (Fig. 1.5). 

Additionally, there is high conservation among the signalling pathways that enables the 

formation of these features. Drosophila can therefore be used as a model to provide 

insights of how higher eukaryotes regulate their signalling pathways, (reviewed in [34]). 

Throughout this work two different epithelial models from Drosophila were used: the 

ovarian follicular epithelium and the eye/antennal imaginal discs. Description of the 

principal features of these models will be done in the following section.  

 

 

 

 

 

 

Figure 1.5 - Vertebrates and invertebrates epithelial domains organization. Both 

classes have the well-known Adherens junctions, however vertebrates have Tight Junctions 

instead of Septate Junctions that are presented by invertebrates. 

 

 2.1.1. Follicular epithelium     

Each female has a pair of ovaries that are composed of a variable number of 

ovarioles (12 to 20). Each ovariole contains the germarium in the most anterior part, 

followed by progressively old egg chambers ([35]). The germarium accommodates the 
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germline stem cells that divide asymmetrically to give rise to other stem cell and a 

differentiated one, known as cystoblast. By undergoing four rounds of synchronous 

mitosis without complete cytoplasmic division, the cystoblast originates an oocyte and 

15 nurse cells that remain connected by ring canals and therefore share the same 

cytoplasm. At the same time, somatic follicle cells surround the 16-syncytial germline 

cells, forming an epithelial monolayer, the follicular epithelium (reviewed in[36];[37]). 

The epithelial cells within the follicular epithelium show an unequal distribution of its 

proteins, being organized into apical and baso-lateral domains and so defining a striking 

apico-basal polarity (Fig. 1.6). As so this epithelial model can be used to understand a 

variety of biological aspects, as stem cell regulation or cell polarization. Moreover it 

offers the possibility of easily use molecular and genetic tools to manipulate gene 

expression, analysing the effects of the loss of a particular gene expression through 

division.  

 

 

 

 

 

 

 

  

Figure 1.6 - Schematic representation of an ovariole and its specialized 

structures. The ovariole is composed of an anterior germarium that originates the posterior 

older egg chambers, ending in the formation of a mature egg. Surrounding each egg chamber is 

an epithelial monolayer called the follicular epithelium. Within this epithelium, the cells exhibit an 

apico-basal polarity, being the apical domain in intimate contact with the germline and the basal 

domain in contact with the extracellular matrix. Adapted from ([38]). 
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 2.1.2. Eye/antennal imaginal discs 

The adult Drosophila compound eye is another epithelial tissue commonly used 

to different studies. Primordially originated from the eye portion of the eye/antennal 

imaginal disc, the adult eye is constituted by more than 700 precisely arranged single 

unit eyes known as ommatidia. Tightly coordination between cell signalling, proliferation 

and cell death must be achieved in order to position and construct ommatidia correctly, 

enabling fly’s vision. During Drosophila third instar larval stage, proliferation generates 

about 10,000 cells in the eye, setting the base where differentiation shall take place  

(reviewed in [39]). Proliferation ends when a physical constriction – the morphogenetic 

furrow (MF) – appears close to the posterior part of the eye/antennal disc. This 

morphogenetic furrow defines a barrier between proliferation - anterior to the 

morphogenetic furrow - and differentiation – posterior to this physical invagination. 

Within the furrow, cells arrest in G1-phase of the cell cycle. While it moves to the most 

anterior part of the eye portion of the disc, it allows the beginning of cell fate 

determination in its posterior side (reviewed in [40]). The differentiated cells will 

assemble in cores of 8 photoreceptors, cone cells and pigment cells, constituting each 

individual ommatidium (Fig. 1.7). As fly viability does not depend on the existence of an 

eye, the effect of specific genetic manipulations in the eye imaginal disc can be scored 

in the adult eye, which is particularly useful to test the role of essential genes.  

 

 

 

 

 

	  
	  
	  
 

Figure 1.7 - Schematic representation of the eye/antennal imaginal disc in the third 

instar larvae stage.  The morphogenetic furrow constriction initiates in the posterior part of the 

eye portion of the imaginal disc leaving a differentiation track as it moves to the anterior part of the 

eye disc. Adapted from ([41]). 
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2.2. Establishment of epithelial apico-basal polarity in Drosophila 

 Besides generating a huge number of cells to sustain the viability of a multicellular 

organism, these cells must acquire distinct and specific functions. So, different groups of 

cells must become specialized in a particular function to ensure that the organism takes 

the greatest advantage it can from the environmental resources. Cell specialization 

requires changes in the morphologic structure of the cell and in the distribution of its 

molecular contents. The asymmetric distribution of components within a cell that enable it 

to carry out distinct functions by distinct domains is known as cell polarity. Epithelial cells 

are segmented into four main specialized regions due to polarization: (1) an apical domain 

that orchestrates communication between the environment and epithelial cells; (2) 

specialized structures that promote connection of epithelial cells – adherens junction in 

Drosophila and tight junctions on vertebrates; (3) a lateral domain where Septate junctions 

are formed; (4) a basal domain that provides communication with the extracellular matrix 

(reviewed in [42]).  

 But which are the mechanisms that define cell polarization? In addition to my birth, 

key mediators of cell polarity were identified in C.elegans during the eighties. Ken 

Kemphues and Jim Priess aimed to identify proteins that interfere with the partitioning of 

C. elegans’ embryo. During their genetic screen, six proteins, the Partition defective (PAR) 

proteins, were found to be involved in asymmetric cell division and distribution of proteins 

and RNAs essential for cell specification ([43]). This was the first insight that these 

proteins could coordinate an intracellular polarity pathway. The six identified PAR proteins 

have distinct biochemistry properties: PAR-1 and PAR-4 are serine-threonine kinases 

while PAR-5 is a 14-3-3 protein recruited to serines and threonines after phosphorylation. 

PAR-2 has a characteristic RING finger domain whilst PAR-3 and PAR-6 have PDZ 

domains (reviewed in [44]). Upon these findings in C.elegans the question was obvious: 

Do Par proteins also have related functions in other organisms? After cloning the six par 

genes, its sequences revealed that they were evolutionary conserved. Bazooka, a gene 

required in Drosophila cellular polarization, was found to be similar to PAR-3 ([45]). 

Posteriorly, in mammals, it was found that a PAR-3 homolog could bind to an atypical 

protein kinase C (aPKC) that would be sequentially identified in C. elegans as part of the 

group of proteins that causes defects in the partitioning of C.elegans’ embryo ([46],[47]). 

PAR-3, PAR-6 and aPKC not only co-localize on the anterior part of the C. elegans 

zygote, but were also shown to form a complex in multiple systems, suggesting that they 

form a functional unit controlling cell polarization ([43];[48];[49]). 
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2.3. Interactions within the apical Par-6-aPKC-Par-3 Complex  

 It is now known that Par-6, aPKC and Par-3 form a complex involved in cell 

polarization in multiple biological contexts. By acting as a scaffold protein with multiple 

PDZ (Postsynaptic density 95, Discs large, Zonula occludens 1) domains, Par-3  

(Bazooka in Drosophila) – sets the base for the association of Par-6 and aPKC, through 

self-association via its oligomerization CR1 domain in its N-terminal region. 

([46];[50];[51];[52];[49];[53]). Par-6 also acts as a scaffold protein, binding to Par-3 through 

its C-terminal PDZ domain and to aPKC through its N-terminal Phox Bem1 (PB1) domain. 

In the middle of its sequence, Par-6 has a semi-CRIB (Cdc42 Rac Interacting Binding) 

motif that enables it to bind to GTP-bound Cdc42. It is known that when aPKC - the active 

component of the complex – interacts with Par-6, its kinase activity is suppressed. 

However the binding of GTP-bound Cdc42 to Par-6 semi-CRIB motif relieves Par-6 

suppression of aPKC kinase activity. Thus, aPKC is correctly localized via PAR proteins, 

while its kinase activity is modulated via GTPase activity (Cdc42) (review in[54];[55];[52]). 

Mutation in any of the PAR Complex components leads to defects in the establishment of 

polarity, showing the importance of the interactions within the complex for cell polarization 

(reviewed in[34]).  

 

 

 2.4. Apical Polarity regulation 

 Adherens junctions (AJs) provide a cue to the establishment of different domains 

within an epithelial cell. They allow the communication between neighbouring cells while 

they generate an adhesive belt – the zonula adherens – that avoids the free passage of 

molecules from the external environment, improving this way epithelial selectivity. Its main 

constituent is a transmembrane protein, called E-cadherin, whose intracellular domain 

links to the cytoskeleton through β-catenin (Armadillo in Drosophila) that also has a role in 

AJs formation. By localizing themselves close to the apical region of the cell, they act like 

a barrier that is involved in the definition of the apical and the basolateral domains in 

Drosophila (reviewed in[56];[57]). 

 The formation of distinct domains relies on the existence of three different 

complexes: the above-mentioned Par Complex, the Scribble Complex, and also on the 

Crumbs Complex. This last complex is composed by 3 proteins: Crumbs (Crb) that is a 

transmembrane protein which localizes in the apical domain of a polarized cell; Stardust 

(Sdt) which binds to the intracellular region of Crb through its PDZ domains; and dPATJ 

that also interacts with Crb through its multiple PZ domains ([58];[59];[60],[61]). These 
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proteins have an essential role in establishing the apical domain, once that mutations in 

this complex result in loss of the apical identity. However they will not be further described 

because they were not studied on this work. The Scribble Complex will be described 

below.  

 Par-3, Par-6 and aPKC have been assumed to work as a complex to regulate 

polarity in many biological systems. However in epithelial cells, Baz (Par-3) was found to 

localize at the level of Adherens Junctions, being positioned below the Par-6 and aPKC 

proteins. ([62];[63];[64]). Consistent with this, Baz interacts with Armadillo and the Nectin-

like protein Echinoid in Drosophila, and with JAM1-3 and Nectin in mammals, all 

components of Adherens and Tight Junctions, respectively, localizing in a more subapical 

region than the other members of the complex ([65];[66];[67]). In fact Bazooka have an 

essential role in the definition of the apical-lateral border by setting out the correct position 

of the AJs in Drosophila and the Tight Junctions in mammalian cells ([62]; [68];[69]). In the 

most apical region, Par-6, aPKC and Baz bind transiently to each other. However, 

Bazooka is phosphorylated on its serine 980 by aPKC. This action destabilizes the 

complex since phosphorylated Bazooka cannot bind to aPKC, disrupting Baz-aPKC 

interaction. ([46];[52];[49];[70]). Yet, Baz could still be maintained in the tripartite complex 

via its interaction with Par-6’s PDZ domain. Nevertheless, the epithelial specific Crumbs 

Complex competes with Baz for the same PDZ domain of Par-6, breaking the interaction 

with Par-6 and excluding Baz from the apical domain ([70]). This exclusion leads to its 

localization on the subapical region where Baz defines the position of the Adherens 

Junctions. Evidences supporting this mechanism came from the fact that a non-

phosphorylatable form of Bazooka – BazS980A, co-localizes with aPKC suggesting that 

phosphorylation by aPKC is necessary for the apical exclusion of Bazooka ([70]). 

 

    

 2.5. Interactions within the Scribble Complex and mutually inhibitory 
interactions with apical proteins 

Drosophila provided the basis for the discovery of the Scribble Complex. Scribble 

was found in a screen with the purpose to identify maternal mutations involved in the 

disruption of cell adhesion and polarity. scrib mutations caused disorganization in the 

epithelial monolayer of Drosophila embryos ([71]). The Scribble protein belongs to the 

LAP (LRR and PDZ) protein family because it has 16 leucine-rich repeats (LRR) at its N-

terminal region and four PDZ domains in the opposite region ([71]). Posteriorly, two other 

genes, Lethal giant larvae (Lgl) and Discs large (Dlg), were shown to present a similar 

phenotype when mutated, being all three known as tumour suppressor genes as they 
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cause neoplastic growth in larvae imaginal discs ([72]). Dlg is a 102-kDa protein that 

possess 3 PDZ domains, a Src homology 3 (SH3) motif and a guanylate kinase-like 

(GUK) domain, placing this protein as a member of MAGUK  (membrane-associated with 

guanylate kinase domain) family. Lgl is a 130-kDa protein having short motifs (40 amino 

acids) of WD (Trp (W)-Asp (D)) repeats ([73];[74]). Due to their similar phenotype when 

mutated and their interdependent co-localization in multiple biological contexts, Scribble, 

Lgl and Dlg have been considered as a functional complex that regulates basal 

polarization on epithelial cells ([72];[73]). It was shown that Scribble indirectly interacts 

with Dlg in Drosophila neuromuscular synapses by both binding to GUK-holder protein 

(GUKH) ([75]). Furthermore, in mammalian epithelial cells, it was indicated that Scribble 

and Lgl2 had a physical interaction ([76]). None of these interactions have been identified 

in Drosophila epithelial cells so far. Despite of this, it is commonly accepted that these 

proteins function in a complex that orchestrate the basolateral polarity of epithelial cells. In 

fact, mutations in components of Scribble Complex result in the lateral extension of the 

apical domain and lateral disruption of the Adherens Junctions ([71]). As evidence, E-

cadherin and Armadillo, both markers of the Adherens Junctions, are spread through 

plasma membrane in scrib mutants. It is therefore suggested that Scribble Complex 

participates in the exclusion of the apical proteins from the basolateral domain ([71]). 

Both apical and basal complexes are involved in the correct positioning of AJs, 

once that Scribble Complex is essential to avoid AJs spreading through the lateral 

membrane, whereas the apical complex is required to exclude AJs from the apical 

domain. On the other hand, Armadillo prevents Dlg extension through the apical domain 

during follicular epithelium formation ([57]). AJs localization is then controlled by a 

mutually inhibitory mechanisms that comprise both apical and basolateral proteins. In fact, 

several lines of evidence suggest that apical and basal complexes restrict each other 

activity: (1) Loss of Scribble, Dlg or Lgl results in the extension of the apical proteins 

through the basolateral domain ([77]); (2) Both Lgl1 and Lgl2 bind Par-6 and suppress 

aPKC kinase activity in mammalian epithelial cells ([78];[79];[80]); (3) Lgl activity is 

restricted to the lateral cortex in an aPKC-phosphorylation dependent manner ([81]); (4) 

Crumbs overexpression has a similar phenotype as scrib mutant whilst crb mutant 

phenotype can be partially rescued by Scribble reduced levels ([77]); (5) it was found that 

Lgl2 and aPKC/Crb3 have an opposing function during Xenopus blastomeres polarization 

([82]). All these data suggest that the separation between apical and basal domains 

requires the antagonism between the basal and the apical complexes that represses each 

other ectopic activity (Fig. 1.8).  
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Figure 1.8 - Apico-basal interactions on the definition of epithelial cell polarity. 
Representation of the organization of the polarized domains within an epithelial cell. The main 

repressible interactions between Adherens Junctions and the apical a basal domains are 

represented by the inhibitory black curves.  

 
 

 3. Neuroblast polarity  
 

 While apico-basal polarity enables epithelial cells to organize specific functions 

within different cellular domains during interphase, the neuroblast makes use of the 

polarity machinery during mitosis to asymmetrically divide, creating two cells with different 

fates. Diversity is thus generated due to an asymmetric distribution of proteins that 

specifies two distinct regions: a self-renewal region, which will allow the maintenance of 

the neuroblast population, and a differentiation region that will lead to the formation of a 

differentiated cell, called Ganglion Mother Cell (GMC). This GMC will posteriorly divide 

originating two postmitotic cells that will become neurons or glial cells ([83]) (Fig. 1.9). 

 

 

 

 

 

 

 

 

Figure 1.9 - Schematic representation of neuroblast division. Neuroblasts exhibit an 

apico-basal polarity during mitosis. After asymmetric division, two different cells are formed: a 

differentiated ganglion mother cell and a self-renewal neuroblast. Adapted from ([84]). 
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Polarization starts in prophase, when the GMC fate determinants start to be 

excluded from the apical cortex. By the time of metaphase the cell fate determinants are 

localized in the basal region of the dividing neuroblast, while the apical proteins occupy 

the upper domain; these two sets of distinct proteins will be segregated only into the GMC 

and in the self-renewal neuroblast, respectively ([85]).  

The underlying mechanisms that enable the asymmetric distribution of proteins 

within the neuroblast have been extensively studied. Numb was the first identified cell fate 

determinant, being discovered in another cell type that divides asymmetrically, the SOP 

(sensory organ precursor) cells ([86]). Prospero (Pros) is a transcription factor that 

enables early identification of GMC ([87];[88];[89];[90]). Joining to the previous tumour 

suppressors, there is Brain tumour (Brat), which regulates miRNAs production 

([91];[92];[93]). Either Pros or Brat are unable to bind directly to the cortex, requiring the 

adaptor protein Miranda ([94]). Partner of Numb (Pon) is a protein that enhances Numb 

association with the basal cortex ([95]). The mechanisms by which Numb and Miranda, in 

association with the other proteins – Pros, Brat, Pon – are cortically associated remain 

fairly unknown. Nevertheless, it is known that the apical proteins trigger the exclusion of 

the basal determinants to the basal domain, once that in the privation of an adequate 

polarized apical domain, the basal proteins have a cortical localization, which results in 

the loss of a differentiated daughter cell (reviewed in[84]). aPKC assumes an essential 

role in the exclusion of the basal determinants ([96];[97]). Wirtz-Peitz et al. in 2008 

presented a very elegant mechanism by which the basal determinants are excluded in 

asymmetrically dividing cells, such as neuroblasts and SOP (sensory organ precursor) 

cells. These SOP cells are organized along an anterior-posterior axis, contrarily to the 

apico-basal axis arrangement on neuroblast. In SOP cells, during interphase, Lgl forms a 

complex with Par-6 and aPKC, and it is proposed to be an inhibitory substrate for aPKC 

([98]). At the beginning of mitosis, Aurora A phosphorylates Par-6 reliving aPKC kinase 

activity from Par-6 suppression ([99];[98]). Thereby, upon activation, aPKC 

phosphorylates Lgl, solubilizing the protein and excluding it from the cell cortex, allowing it 

localization in the cytoplasm during mitosis in SOP cells ([98]). Lgl occupies the same 

binding site as Bazooka on aPKC and so Lgl exclusion allows Bazooka attachment to the 

Par-6-aPKC complex. Bazooka changes the substrate specificity of aPKC, recruiting 

Numb to be phosphorylated by the active component of the recent formed complex (Baz-

Par-6-aPKC). Numb phosphorylation triggers its exclusion from that side of the cell, 

restricting its localization on the basal side ([100];[101]). Thus, Aurora A starts a cascade 

that ensures that Numb is phosphorylated in the correct time during mitosis, controlling 

neuroblast polarization ([98]). The same correlation between aPKC phosphorylation and 

Numb cortical exclusion was also found in mammals ([101]).  
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 However, there are still many questions unanswered. An important question is how 

aPKC manages to restrict its activity to the apical domain of the neuroblast. As above-

mentioned, these three proteins form a complex that is involved in the polarization of 

many cell types. Bazooka efficiently stabilizes both Par-6 and aPKC in the apical domain 

by directly binding to them, which is consistent with the fact that in baz mutants both Par-6 

and aPKC are mislocalized ([96]). On the other hand, Cdc42 GTPase binds both the 

membrane and Par-6 through its semi-CRIB domain, having thereby a role in the 

recruitment of the Par Complex to the apical side of the neuroblast. Nevertheless, it has 

been shown that Cdc42 is mostly dispensable for Baz localization, suggesting that Baz 

could function upstream of Cdc42 ([99]).  

Neuroblasts and epithelial cells share the key players on cell polarization. 

However, whereas neuroblasts become polarized during mitosis, epithelial cells are 

polarized during interphase. The polarity machinery of epithelial cells face therefore the 

challenge of accommodating large changes in cell shape during cell division. This fact 

lead us to investigate how the polarity machinery is re-organized during epithelial cell 

division and to address if the mitotic kinase Aurora A could contribute for this process.  

 

 
 4. Aurora A: A mitotic kinase with a role in cell polarity 
 

 Aurora A (AurA) gene was identified in a Drosophila screen for genes involved in the 

regulation of spindle-pole dynamics. Furthermore, it was shown that mutations in aurA 

lead to the formation of monopolar spindles by impairing centrosome separation ([102]). 

This gene encodes for a serine/threonine protein kinase. The Aurora gene family is known 

to include at least 3 genes, A, B and C in both invertebrates and vertebrates, however we 

will specifically focus on the functions of Aurora A. Aurora A associates with the 

centrosomes since their duplication in late S/early G2 until the next G1-phase ([102]). 

Moreover, proper centrosome maturation and separation requires Aurora A, whose 

recruitment to these organelles is Polo-like kinase-dependent 

([103];[104];[105];[106];[107]). In aur mutants, the recruitment of several components of 

the pericentriolar material, such as γ-tubulin, is compromised. This fact leads to an 

increase in monopolar mitotic figures, and poliploidy (reviewed in[108]). It have also been 

observed that Aurora A localizes at the midbody, an “organelle” that is required for proper 

cytokinesis ([109];[110]). Finally, it was reported that Aurora A also has a role in the 

mitotic spindle assembly, which is consistent with its localization at the microtubules 

during mitosis. Aurora A targeting to the mitotic microtubules relies on its cofactor Tpx2, 

which promotes both Aurora A kinase activity and its autophosphorylation ([111];[112]). In 
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Drosophila aur mutants, misslocalization of mitotic spindle stabilizing proteins is observed, 

resulting in a reduced number of astral microtubules and a less lengthy bipolar spindle 

(reviewed in[113]).  

 Cell cycle progression is also dependent on Aurora A activity as it was shown 

among several organisms that mitotic entry is delayed when Aurora A function is impaired 

([105];[114];[104]). The M-CDK major mitotic regulator is activated during prophase, 

triggering mitotic entry and being localized at centrosomes in this phase (reviewed 

in[115]). M-CDK localization in the centrosomes is Aurora A-dependent and coincides with 

centrosome maturation ([105]). Furthermore, activation of M-CDK at centrosomes relies 

on the phosphorylation of Cdc25B by Aurora A ([116];[117]). The role of Aurora A on 

mitotic entry was believed to be due to its function on centrosomes. However, it has been 

shown that Aurora A promotes mitotic entry independently of centrosomes in Xenopus 

egg extracts ([118]).  

 In addition to its roles in mitosis, Aurora A also performs functions on cell 

polarization, particularly in asymmetric cell division and cell fate determination. As 

described above, Aurora A initiates a cascade - by phosphorylating Par-6 and thereby 

allowing aPKC activation – that ends up with an asymmetric segregation of cell fate 

determinants during neuroblast division ([98]). Furthermore, a recent study in Drosophila 

S2 cells suggests that Aurora A may be also involved in spindle orientation during 

division. By inducing polarization in non-polarized S2 cells, it was found that Aurora A 

phosphorylates a serine within the PinsLINKER domain of Pins protein, a neuroblast apical 

component with a role on spindle orientation. Upon phosphorylation, this domain is able to 

bind and recruit Dlg, partially regulating spindle orientation ([119]). This relationship is also 

required for larval neuroblast asymmetric cells division in vivo. However, a non-

phosphorylatable form of Pins (PinsS436A), when expressed in neuroblast, gives a weaker 

spindle orientation phenotype than the one observed in aurora A null mutants ([120]; 

[121]). This result is still not surprising as Aurora A seems to regulate other processes that 

may influence spindle orientation, such as centrosome maturation. Through the wide 

range of functions described above, we can see that Aurora A has an important role by 

participating in both cell division and specialization in multicellular organisms. 

  

 

  5. The role of cell polarity and chromosomal instability in 
tumorigenesis 
 

 Cancer is known as a disease characterized by uncontrolled cell proliferation that 

could overflow nearby and distant tissues. In order to transform cells and allowing them to 
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form a tumour, several mechanisms within a cell must be affected. This is known as the 

multistage transformation process of cancer development. Below I will give an overview 

on how cell polarity and chromosomal instability can participate in transformation.   

 Aneuploidy is a term that concerns the changing in the normal number of 

chromosomes per cell, corresponding to the loss or gain of chromosomes.  There are 

multiple mechanisms that can produce chromosome segregation errors, leading to 

aneuploidy. (1) Unequal distribution of the DNA content by failures in the spindle 

assembly checkpoint (SAC) response by delaying anaphase onset until all chromosomes 

are correctly attached (reviewed in [122]; [6]).  (2) Defects on cohesion between sister 

chromatids or incorrect kinetochore-microtubules attachments can also lead to an 

abnormal number of chromosomes. This last condition occurs in the presence of merotelic 

attachments that are not solved by SAC signalling ([123]). (3) By the time of mitotic entry, 

if a cell possesses extra centrosomes, multipolar spindle can be formed and produce 

more than two cells with a defective quantity of DNA (reviewed in [124]). Different studies 

reported that abnormal levels of proteins involved in SAC signalling – MAD1, MAD2, 

BUB1, BUB3 and BUBR1 – and kinetochore structure – NDC80 - causes aneuploidy and 

chromosome instability ([125]; [126]; [127]; [128]; [129]).  

 Chromosome Instability and aneuploidy are often used as synonymous, however 

they do not represent the same phenomenon: while chromosome instability involves a 

dynamic behaviour, where the total chromosomes content within a cell population is 

changing through time, aneuploidy describes an abnormal number of chromosomes that 

resulted from chromosome instability in a precise point (reviewed in [130]).  

 Besides aneuploidy, other alterations in the total number of chromosomes per se 

are suitable to induce tumorigenesis. Proliferation of tetraploid cells was proven to also 

prompt tumour formation ([131]). There are several mechanisms whose disruption can 

lead to tetraploidy, as is the case of endoreduplication in Drosophila or cytokinesis failure 

induced by Aurora A overexpression. Nevertheless, tetraploidy may result in aneuploidy 

as uncontrolled proliferation of tetraploid cells accumulates structural and numerical 

chromosomal abnormalities (reviewed in [130]).   

 Whilst chromosome instability is directly related to cancer development, other 

mechanisms of tumour induction are not so obvious. Loss of cell polarization is a recently 

studied mechanism that has been associated to progression of tumours. Studies in 

Drosophila furnished the first evidences of the so-called tumour-suppressor genes 

(TSGs). The three current known fly TSGs – Lgl, Dlg and Scrib – presented a similar 

phenotype in the imaginal discs and larval brains suggesting that they may work together 

to control cell proliferation ([71]). In general, loss of TSGs in Drosophila results in 

uncontrolled cell proliferation and consequently neoplastic overgrowth and also failures in 
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the differentiation process, causing fly lethality before pupation (reviewed in [73]). In the 

follicular epithelium, loss of dlg causes invasion of germline by epithelial cells, occurring 

disorganization in the epithelial monolayer ([132]). Decreased expression of Scrib, Dlg 

and Lgl1 proteins is also found on human cancers, reinforcing the strategy of using 

Drosophila TSGs to easily provide insights about tumour development in mammals ([133]; 

[134]; [135]). However, as previously described, these TSGs are also implied in epithelial 

cell polarity regulation. Loss of scrib, dlg or lgl causes the spreading of the apical proteins 

and basolateral localization of AJs ([136]; [71]). Furthermore loss of cell polarity and tissue 

architecture has been implicated in various human cancers (reviewed in [73]). In summary 

(1) defects in several mitotic processes lead to tumorigenesis by promoting aneuploidy, 

tetraploidy and chromosome instability; (2) TSGs in Drosophila are both implied in tumour 

formation and loss of cell polarity; (3) loss of cell polarity is verified in several tumours as a 

mechanism that promotes progression during tumorigenesis. During this thesis, we will 

explore the link between mitosis, cell polarization and tumorigenesis.  

 

 

 6. Main goals 
 

 The work proposed in this project aimed to study further the relationship between 

cell polarity and tumour formation. For this we have used two highly polarized tissues of 

the developing Drosophila and asked two major questions: 

 

 1 – Identify possible interactors that would induce tumorigenesis in a polarity 

defective background of both epithelial models; 

 

 2 – Address the role of the mitotic kinase Aurora A in apico-basal polarity of follicle 

cells. 

  

 We hope to shed light on the conservation of cell polarity determination mechanisms 

between different tissues and then identify putative protein involved in tumour formation 

when cell polarity is compromised within a tissue. 
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CHAPTER 2 – MATERIALS AND METHODS 
 
The principal Drosophila stocks used along this study are referred in table 2. The 

constructs non-mentioned in the table are described in Flybase 

(http:/flybase.bio.indiana.edu/). To manage the flies, standard procedures were used. 

 
 
 Table 2. Transgenes used into this study. 
 

Construct Source /Reference 
anillinRNAi 104674 – Vienna Drosophila RNAi Center (VDRC) 
aspRNAi 28741 - Bloomington Drosophila Stock Center (BDSC) 
aur1 Barros et. al, 2005 
aur37 Berdnik and Knoblich, 2002 
aurARNAi 35763 – BDSC 
aurARNAi ‘ 108446- VDRC 
aurBRNAi 28691 - BDSC 
bub3RNAi 21037 - VDRC 
bubRIRNAi 26109 - VDRC 
cenp-cRNAi 34692 – BDSC 
cdc2RNAi 36112 - BDSC 
cnnRNAi 35761 - BDSC 
dlgRNAi 25780 - BDSC 
feoRNAi 28926 - BDSC 
kmn1RNAi 106889 - VDRC 
UASLgl3A-GFP From Jürgen Knoblich 
UASLglWT-GFP From Jürgen Knoblich 
mad1RNAi 43714 - VDRC 
mad2RNAi 106003 - VDRC 
mis12RNAi 19097 - VDRC 
mitchRNAi 104213 - VDRC 
nuf2RNAi 100235 - VDRC 
orbitRNAi 34669 - BDSC 
par-6Par-6S34A From Jürgen Knoblich 
paviRNAi 46137 - VDRC 
peanutRNAi 27712 - BDSC 
poloRNAi 33042 - BDSC 
sakRNAi 105102 - VDRC 
sas4RNAi 35049 - BDSC 
scribRNAi 29552 - BDSC 
septin1RNAi 27709 - BDSC 
septin2RNAi 28004 - BDSC 
smc1RNAi 108922 - VDRC 
smc5RNAi 38969 - VDRC 
tbwRNAi 28982 - BDSC 
UAS-AurA2 8377 - BDSC 
UAS-AurA3 8378 - BDSC 
UAS:BazS980A-GFP Morais-de-Sá et al., 2010 
UAS-polo Mirouse et. al, 2006 
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2.1 The GAL4-UAS system 

 
 The GAL4-UAS system derived from yeast is a biochemical tool widely used to 

study the specific expression of a certain gene ([137]). It is composed by two main 

elements: the GAL4 driver and the Upstream Activating Sequence (UAS). The GAL4 

protein is expressed under the control of a tissue-specific endogenous promoter. In turn 

the UAS sequence drives the expression of our transgene of interest, as the RNAi 

transgenes used into this study. After appropriate fly crossing and progeny selection, we 

have flies that carry concomitantly the GAL4 activator and the UAS-transgene as shown in 

Fig. 2.1. The GAL4 protein will therefore bind to the UAS-sequence, activating the 

expression of the gene that is under the control of the UAS. Therefore expression of our 

transgene of interest only occurs in the tissues that specifically express the GAL4 protein. 

Adaptations were made to this initially system. GAL80ts is a temperature-sensitive protein 

that binds and represses GAL4 protein activity. As so, by placing the GAL80ts under the 

control of the same enhancer of GAL4 promoting their concomitant expression, we are 

able to control the exact time of gene expression by placing the flies in a restrictive 

temperature that disrupts the GAL80ts protein. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 - Schematic representation of a crossing that enables the expression of a 

specific gene using the GAL4-UAS system. Addapted from ([138]). 
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  2.2 The FLP/FRT system  

  
 The GAL4 system can be used in combination with other genetic tools to direct the 

expression of a certain gene to a restrict population of cell within a tissue. One of those 

tools is the “FLPout” system ([139]). The expression of the GAL4 protein is interrupted by 

the presence of a cassette flanked by Flipase recombination target (FRT) sequences, 

regardless the activation of its promoter. Temperature is the key controller of this system. 

By placing the flies at a restrictive temperature, the Flipase (FLP) protein expression is 

induced, once that it is under the control of a heat-shock promoter. Upon its expression, 

the Flipase protein will promote the recombination within the FLP recombination target 

(FRT) specific sites, promoting the excision of the cassette. After this excision, the GAL4 

gene can be transcribed, allowing further activation of UAS sequences. Additionally to the 

UAS-transgene, this strategy concomitantly expresses a UAS-GFP transgene that 

positively marks the cells that are expressing the UAS transgenes, thereby creating GFP 

clones (Fig. 2.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 - Schematic representation of the combination of the FRT/FLP tool with 

GAL-UAS system. Actin5C is an ubiquitous promoter frequently used to drive the 

expression of the GAL4 protein. Adapted from ([140]). 
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2.3 The FRT system 

 

 In this strategy, the FRT sites are placed at identical positions within the 

chromosome arms of non-sister chromatids of the homologs ([141]). Flipase expression is 

induced by heat-shock, by placing the flies at a restrictive temperature. FLP will then 

recombine the FRT specific sites, which allows the exchange of the chromosome arms. If 

this recombination occurs after S-phase, two subsequent different populations of cells will 

be created as could be visualized in Fig. 3. One cell population will inherit both mutated 

alleles, becoming homozygous to the mutation. The other clonal population will be 

inherited both GFP genes, becoming wild-type relatively to the previous mutated allele. 

The wild-type clones are marked by GFP expression, while the mutated clones are 

marked by the absence of GFP, allowing clonal identification (Fig. 2.3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 - Schematic representation of the FRT system operation during mitosis.  
 

 

2.4 Immunofluorescence in Drosophila ovaries  

 Drosophila females were fed with yeast and when necessary placed at 29ºC to 

enhance the expression of the genes of interest. Ovaries were dissected in PBT (PBS + 
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0.2% Tween (Sigma-Aldrich)) and fixed for 20 minutes with a solution of 4% 

paraformaldehyde (Electron Microscopy Sciences) in PBT. Upon fixation the ovaries were 

washed 3x10 minutes with PBT, blocked with PBT-10% (PBT + 10% BSA) for 1 hour and 

incubated with the primary antibody in PBT-1% (PBT + 1% BSA) overnight at room 

temperature. 4x30 minutes washes with PBT+1% followed the removable of the primary 

antibody. Then the ovaries were incubated with the secondary antibody in PBT 0,1% (PBT 

+ 0,1% BSA) during 2 hours. After the removal of the secondary antibody, the ovaries 

were washed 3x10 minutes with PBT and mounted in vectashield with DAPI (Vector 

Laboratories, Inc. Burlingame, CA84010). To perform the phalloidin (Molecular Probes) 

stainings, the ovaries were fixed for 30 minutes in the same solution and phalloidin was 

added during the fixation procedure. The subsequent procedure was the same.  

 

2.5 Immunofluorescence on Drosophila eye/antennal imaginal discs 

 Larvae were picked at the third instar stage and the discs dissected in PBS (1x). 

Posterior fixation in 4% formaldehyde in PBS last for 20 minutes, upon which 3x10 

minutes washes in PBT’ (PBS+0,1%Triton (Sigma-Aldrich)) were performed. The primary 

antibodies were incubated in PBT’ for 2 hours at room temperature or overnight at 4ºC. 

3x30 minutes washes preceded the incubation with the secondary antibodies in PBT’ 

during 1 hour and 30 minutes at room temperature or overnight at 4ºC. The discs were 

washed 3x10 minutes after removal of the secondary antibody and then vectashield with 

DAPI was added. The discs were mounted in 50% glycerol in PBS.  

 

2.6 Clonal analyzes 

 In order to generate clones within the follicular epithelium that would allow the 

expression of specific alleles, female flies were placed at 37ºC for two hours during 3 

days. This increase in temperature will allow the expression of the Flipase protein both in 

FRT and FRT/FLP systems, thereby generating the clones. 

 

 

2.7 Drug-induced treatments 

 To induce an increase in the quantity of mitotic cells within the follicular epithelium, 

Drosophila females starved for 12 hours, upon which were fed with yeast in 500 µL of 20 

µM colchicine (Sigma-Aldrich) during 17-to-19 hours. Ovaries were then dissected 

following the same procedure previously described.  
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2.8 Primary and Secondary antibodies 

 The primary antibodies used were: anti-aPKC (rabbit polyclonal;1/500) from Santa 

Cruz Biotechnology; anti-Arm (mouse monoclonal; 1/100) from Developmental Studies 

Hybridoma Bank (DSHB); anti-Discs large (mouse monoclonal;1/100) from DSHB; anti-

Elav (rat; 1/100) from DSHB; anti-p-Baz (rabbit polyclonal from Eurico Morais-de-Sá et al., 

2010); and pH3 (rabbit polyclonal; 1/500) from Upstate.  

 The secondary antibodies used were Alexa 488, Alexa 594, Alexa 647 from 

mouse, rabbit and rat (Molecular Probes). 

 

2.9 Imaging 

 For time lapse imaging, ovaries were dissected into carbon oil and imaging at 

25ºC using a spinning disk confocal microscope (Andor Revolution XD) with an electron 

multiplying charge-coupled device camera (iXonEM+; Andor) and a CSU-22 unit 

(Yokogawa) based on an inverted microscope (IX81; Olympus). A 63x objective was used 

and imaging was performed using two laser lines - 488 and 561 nm - for the excitation of 

GFP and RFP respectively. Z stacks were acquired every 30 seconds to all movies. 

Acquisition parameters, as exposure time or steps, were controlled by iQ software 

(Andor). Image processing and movie assembly was processed using Fiji. 

To perform imaging of fixed tissues we used an inverted laser scanning confocal 

microscope (Leica TCS SP5 II) using a 40X water objective and the LAS 2.6 software. To 

the imaging four lasers were used: a 405nm Diode laser; the 488 nm Argon laser; the 561 

nm DPSS; and the 633 nm HeNe. Images were preocessed using Fiji. 
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CHAPTER 3 – RESULTS 
 
 

Cooperation between cell division and apico-basal polarity 
defects in tumorigenesis induction  
 

 3. Using the eye/antennal imaginal discs 
 

3.1 Introduction  

Drosophila has been used as a model to address the underlying mechanisms of 

cancer development and progression once that a high conservation of signaling pathways 

between Drosophila and mammals is observed (reviewed in [34]). In turn, epithelial 

cancers are the most common in humans (reviewed in [142]), which means that these 

highly polarized cells are susceptible to give rise to tumors. Furthermore, several studies 

related mutations in polarity proteins to mammalian tumor development (reviewed [143]). 

Besides loss of cell polarity, mitotic defects are also related to tumorigenesis as referred in 

the introductory chapter (reviewed in [130]). Tumor development relies in the acquisition 

of sequential defects that allow the development of each cancer hallmark. Thus, we aimed 

to determine if polarity and mitotic defects could cooperate in tumorigenesis, using the 

follicular epithelium and eye/antennal imaginal discs from Drosophila as working models.  

 Scribble (Scrib), Discs-large (Dlg) and Lethal giant larvae (Lgl) had been described 

as tumour suppressor genes in Drosophila, being also involved in epithelial cell polarity 

regulation ([73]).  Studies reported that ectopic cell proliferation posterior to the 

morphogenetic furrow is observed in scrib mutants eye discs ([144]). Through interactions 

with the oncogenic Ras-Raf pathway, loss of scrib leads to the downregulation of the 

Hippo signaling pathway that is required to control tissue overgrowth ([145]; [144]). 

Furthermore, it was shown that scrib mutant cells are outcompeted by wild-type cells, 

inducing apoptosis in neighboring mutant cells. Therefore substantial overgrowth is only 

observed when all the tissue is mutated ([146]). The eye imaginal discs are widely used in 

cancer research. As previously referred, the eye/antennal imaginal discs develop in a 

short period of time. Thus we can observe the effect of interactions between altered levels 

of proteins on the tissue size and organization just in a few days. In addition, as we can 

induce errors on distinct mitotic processes, several divisions might be required to allow us 

to see the global effect on tissue organization, which is possible due to the high 

proliferation that occurs in the eye imaginal disc.  
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 To carry out this study we induced the expression of a transgene expressing a 

Scribble inverted repeat (scribRNAi) that downregulates scrib levels by RNA interference, 

using the GAL4-UAS system. A specific driver - the eyeless promoter - drive the 

expression of the GAL4 protein, that in turn binds specifically to the UAS sequence 

upstream of the scribRNAi transgene activating its expression specifically on the eye 

imaginal disc. To search for interactions, several RNAis and protein overexpression 

transgenes that affect different mitotic processes were added to the system. The list of the 

different proteins that were under study is presented below (Table 3.1). It is important to 

note that the eyeless promoter was recombined with the Green Fluorescence Protein 

(GFP) allowing us to label the cells that express the different transgenes. 

 

Table 3.1 List of the interacting proteins sorted by the mitotic process that they are affecting.  

General 

Regulators 
Cytokinesis 

Centrosome 

related 

Kinetochores 

related 
SAC 

Aurora A Anillin 
Abnormal-

spindle 
CENP-C Bub3 

Aurora B Fascetto Centrosomin Kmn1 BubR1 

Orbit Pavarotti SAK Mis12 Mad1 

Cdc2 Peanut Sas-4 Nuf2 Mad2 

Polo-like kinase Septin1  Mitch  

UAS-Aurora A  Septin2    

UAS-Polo Tumbleweed    

SMC1     

SMC5     

 

 

3.2 scribRNAi causes a reduction in the size of the Drosophila eye 

Initially, we tested two RNAi constructs directed to the polarity proteins Scrib and 

Dlg, both driven by the eyeless promoter and raised at 25ºC. Although previous reports 

suggested a similar phenotype after Scribble and Dlg depletion, we did not observe that 

with the transgenes used, possibly due to different levels of the knockdown efficiency had 

a similar effect. While dlgRNAi had no effect on the organization of the eye, expression of 

scribRNAi leads to smaller eyes with a reduced number of ommatidia when compared to the 
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wild-type (Fig. 3.1). This reduced eye size is probably due to cell death induced by normal 

cells that did not have a sufficient Scribble depletion. As the RNAi construct does not 

produce complete depletion of Scribble protein, this method generated a reduction in the 

efficiency of the polarity machinery. This weak phenotype allows therefore the 

identification of interactors that induce increased defects in eye organization. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - scribRNAi reduces the normal Drosphila eye size.  
 

 

3.3 Cytokinesis and Aurora A altered levels have an interaction with 
polarity defects to induce eye outgrowth 

 A fly stock containing both the driver and scribRNAi was constructed, which was 

then crossed with the several transgenes to identify potential interactors. Thus, flies 

expressing both scribRNAi and the modulator of the levels of the interacting genes could be 

chosen as indicated by the following scheme (Fig. 3.2). In addition, we also choose the 

sibling progeny that had no scribRNAi as internal controls to check if the altered levels of the 

tested interactors could produce phenotypes on their own. The phenotypes presented by 

the progeny were then classified into the categories that are shown in Figure 3.3. 

Drosophila’s head is essential to the hatching process. We observed that not all the 

progeny were viable revealing that the crucial role of some proteins impairs cell survival, 

leading to partial or complete loss of the head. In fact, we observed the existence of 

headless dead flies in their pupae. The table below summarizes our data relatively to 

progeny lethality (Table 3.2). Previous studies suggested that differences exist between 

males and females replicative times during S-phase, showing that differences between 

males and females are beyond the sexual determinants  ([147]). Indeed, we also verified 
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that the expressivity of the phenotypes for the same transgene were different in males 

and females. In this screen, males seem to be more susceptible to tumor development 

than females since the same interaction could result in no phenotype in females while 

males show a strong phenotype. Therefore, we quantified males and females phenotypes 

individually. 

 

 
 

  

 

 

 

 

 

 

Figure 3.2 - Crossing scheme for the eye screen for interactions between scribRNAi 

and mitotic defects.   

 

Table 3.2 Progeny lethality in males and females. Semi-lethal phenotype includes the 

progeny that have 5 or less viable adults expressing the indicated RNAi transgenes per cross. The 

other tested transgenes were all viable with more than 5 flies [10 eyes] per cross. Differences were 

found between males and females in what concerns to the lethality of certain transgenes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Males Females 

Lethal Semi-lethal Lethal Semi-lethal 

orbit aurora B aurora B mis12 

cdc2 bub3 orbit smc1 

cenp-c mad1 cdc2 tumbleweed 

kmn1 mis12 cenp-c  

peanut mitch kmn1  

polo pavarotti peanut  

smc1 sas-4 polo  

 tumbleweed   



	   40	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Representative pictures of each category used to score the eye 

phenotype. For a more precise quantification, an increase in the number of ommatidia 

maintaining the normal structure of the eye was classified as overgrowth, whereas eye masses 

popping out of the eye were classified as outgrowth.  

 

As the main interest of this study was to test the development of tumor like 

structures due to depletion of interacting genes, we present a graph of the outgrowth 

phenotype observed for each genetic background (See Fig. 3.4, Graph. 3.1 and 3.2). A 

table with all scored phenotypes is presented in the appendix. In general, we observed 

that depletion of proteins with functions on cytokinesis lead to outgrowth phenotypes 

when Scribble protein was simultaneously depleted. In addition, we also found a high 

percentage of outgrowths when we disturbed Aurora A protein levels in a polarity 

defective background. 
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 3.3.1. Cooperation between cytokinesis and polarity defects in 
tumorigenesis does not depend on centrosome amplification  

 As referred in the introductory chapter, failures in the completion of cytokinesis 

eventually leads to polyploidy – increased number of chromosomes per cell - and 

consequently genetic instability ([148]). These two characteristics are widely identified in 

several human cancers, including cervical carcinomas and Barrett’s esophagus, just two 

examples where tetraploid cells were found ([149]; [150]). Besides the accumulation of all 

DNA content after replication just into one cell, failures in cytokinesis also leads to the 

accumulation of the replicated organelles. As so, cytokinesis failures lead to centrosome 

amplification, which is frequently correlated with malignancy of tumors. A cell that 

possesses more than two centrosomes will eventually have multipolar mitotic spindles, 

resulting in chromosome missegregation that probably ends in aneuploidy (reviewed in 

[151]). Therefore, we planned determine which was the process, resulting from 

cytokinesis failure, that was driving tumor development by interacting with polarity defects. 

With this purpose, we tested if the resulting outgrowth phenotype was due to polyploidy, 

centrosome amplification or the cooperation between both defects. 

Sas-4 was shown to be essential for centriole replication in Drosophila, although 

cells lacking of centrosomes are able to divide ([152]). Therefore, by depleting sas-4 we 

were able to provide the acentrosomal background needed for the study. To test if 

centrosome amplification was the underlying cause of tumorigenesis in a polarity and 

cytokinesis defective background, we generated flies that simultaneously lacked 

centrosomes by doing simultaneous depletion of scrib, anillin and sas-4 (Fig. 3.5). 

However these flies were not viable at 25ºC, probably because the combination of the 

three RNAi constructs was causing too many defects within the cells, leading to headless 

flies and consequently their death. To overcome this technical hurdle, we raised the flies 

at 18ºC once that at this temperature the expression of the GAL4 protein and so the 

expression of the RNAi constructs was reduced. At this temperature, flies expressing the 

three RNAi are viable, enabling us to quantify the outgrowth phenotype. However, this 

approach also results in a less pronounced depletion of the respective proteins, it required 

a re-quantification of the phenotypes for the single RNAi depletions.  
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Graph 3.1 Percentage of outgrowth phenotype in males. As can be seen in the graphic, 

proteins that interfere with cytokinesis have a higher percentage of tumour-like phenotype as well 

as the Aurora A altered levels. 
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Graph 3.2. Percentage of outgrowth phenotype in females. Once more cytokinesis 

failures and Aurora A induced the higher percentage of overgrowth among the several proteins 

tested. 
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Figure 3.4	   Examples of outgrowth phenotype observed. These phenotypes were all 

found in the presence of defective levels of  Scribble protein. 

 

As can be seen in Graph 3.3, anillinRNAi and scribRNAi are still interacting in the 

absence of centrosomes as the outgrowth phenotype is still observed in the presence of 

sas4RNAi. As expected, the phenotype is not as strong as it is at 25ºC. It also should be 

noted that sas-4RNAi by itself did not originate tumors at this temperature. Thus, this data 

supports that the underlying mechanism of tumorigenesis induction in a cytokinesis and 

polarity defective background is polyploidy and not centrosomal amplification (see 

appendix and graphic 3.3).  

 
 
 
 
 
 
 

 

 

 

 

Figure 3.5. Crossing scheme to generate adults that simultaneously expressed 

anillin , scrib and sas4 RNAi’s in the eye imaginal discs. 
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Graph 3.3. Centrosome amplification is dispensable to outgrowth formation in the 

cytokinesis/polarity defective background. Representation of the outgrowth phenotype 

observed in males (A) and in females (B). There were no significant differences between the 

percentage of outgrowth phenotype caused by anillinRNAi and scribRNAi when sas-4RNAi was or not 

present in the system.   

 

 

3.4 Anillin and Scribble defective levels causes dramatic 
morphologic changes in the eye/antennal imaginal discs 

 The idea behind this study was to find possible interactions between proteins 

whose depletion causes defects both in mitotic processes and in apico-basal polarity to 

induce tumorigenesis. Upon the observation of the phenotypes derived from those 

interactions, we concluded that cytokinesis and Aurora A were the best candidates as 

interactors to proceed with the studies on the eye/antennal imaginal discs level. Thus we 

attempted to observe the effect of diminishing the levels of the above-mentioned proteins 

in the morphologic organization of the discs. One of the features of these imaginal discs is 

the formation of the morphogenetic furrow by the end of the second instar larvae. This 

morphogenetic furrow (MF) is characterized by dividing the eye disc into two different cell 

populations. By moving in a posterior to anterior axis, the MF promotes cell differentiation 

A	   B	  
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and organization of the photoreceptors in the most posterior part of the disc, within which 

cells are arrested in G1. In the anterior part, cells are undifferentiated and continue to 

proliferate until the Morphogenetic furrow (reviewed in [153]). Scribble has long been used 

in different organisms and tissues to provide insights of how different signaling pathways 

can be related to tumor progression ([154]; [146]; [144]). It was shown that loss of both 

scrib alleles resulted in cell overproliferation and polarity disruption, resulting in neoplastic 

tumors in larval wing imaginal discs ([71]). Particularly in the case of eye imaginal discs, 

clonal analyzes suggested that in homozygous scrib mutants, ectopic cell proliferation is 

observed posterior to the MF ([145]). In this study we used the same scheme presented in 

Fig. 3.2, but the balancer used on the third chromosome was TM6, since that would 

enable us to see the larvae that had no scribRNAi. Then we raised the flies at 25ºC and the 

collection of the larvae was done 7 days after crossing. At this time larvae were in their 

third instar stage just before pupation, allowing us to examine the eye imaginal discs at a 

time that cells would already be differentiated and before metamorphoses. 

Immunofluorescence was performed using anti-Elav - that marks the differentiated cells, in 

this case the photoreceptors – and anti-Phospho-Histone-3 (pH3) – that labels mitotic 

cells. As can be seen in Fig. 3.6, in the wild-type discs the morphogenetic furrow 

separates the differentiated photoreceptors from the cells that are still on division, and no 

labeling by pH3 is found within the MF (Fig. 3.6A). However ectopic cell proliferation is 

found in a band just posterior to the MF, once that cells immediately after the MF 

undergoes a synchronous S phase ([145]). When scribRNAi is expressed in the discs, the 

MF constriction is no longer correctly aligned in a dorsal-ventral axis as in the wild-type 

(Fig. 3.6B). We also observed disorganization in the normal pattern of distribution of 

photoreceptors and an increased number in pH3 positive cells randomly distributed 

between the differentiated photoreceptors. Although this suggests that some cells have 

differentiation problems, this was not generalized. sas-4RNAi did not affect discs 

morphology or photoreceptor organization per se (Fig.3.6C), and when combined with 

scribRNAi the phenotype observed resembles the one of scribRNAi alone, presenting an 

unaligned MF and photoreceptor disorganization when compared to the pattern observed 

in the wild-type discs (Fig.3.6D). Although no significant changes in the morphology of the 

disc are observed in anillinRNAi per se (Fig. 3.6E), when combined with scribRNAi dramatic 

morphologic problems occur: the morphology of the whole disc is affected an the 

morphogenetic furrow can not be distinguished by the absence of pH3 labeling. 

Additionally we found that photoreceptors fail to differentiate once that few cells are 

marked with Elav and pH3 labels random cells within the posterior part of the eye disc 

(Fig.3.6F,G).  
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3.5 Aurora A overexpression induces tumorigenesis by promoting 
photoreceptor differentiation failure 

 Aurora A has several reported functions including involvement in centrosome 

maturation and separation, establishing of spindle bipolarity and a role in the organization 

of apical polarity in Drosophila neuroblasts ([102];	   [120]; [98]). As a consequence, its 

absence causes many defects, such as monopolar spindles due to its role on centrosome 

separation and consequently the production of tetraploid cells ([113]). As previously 

referred, tetraploidy is frequently found in tumors, a fact that might provide insights on how 

Aurora A causes the outgrowth phenotype previously observed (see graphics 3.1 and 

3.2). Additionally Aurora A overexpression was also implied in the generation of 

multinucleated cells and aberrant mitosis in other organisms ([155]; [156]). Aurora A 

altered levels could therefore lead to tumor development. Indeed, our observations 

suggested that when the polarity machinery is weakened, both aurARNAi and UAS-AurA 

causes tumorigenesis. Therefore, we also performed immunofluorescence analyzes in 

aurARNAi and UAS-AurA transgenic discs, in the presence and absence of scribRNAi, using 

both Elav and pH3 antibodies. aurARNAi per se did not result in significant alterations in the 

organization of the disc when compared with the wild-type, but some photoreceptor 

disorganization could be seen (Fig. 3.7A). However, when in a defective polarity 

background, aurARNAi eye imaginal discs show an increased number of cells labeled with 

pH3, indicating that some cells that should be already differentiated are undergoing 

mitosis (Fig. 3.7B). In the case of UAS-AurA, it shows no differences in comparison with 

the wild-type cells (Fig. 3.7C). Yet, when scribRNAi is added to the system, the normal 

morphology of the discs is lost. It should be noted that we observed a correlation between 

high expression of the transgenes (as indicated by the higher levels of GFP) and absence 

of Elav labeling, indicating that the high levels of AurA block cell differentiation (Fig. 3.7D). 

Furthermore we observe multiple layers of cells, which could be an indicative of cell 

overproliferation, explaining the observed outgrowth phenotypes (Fig. 3.7E). In addition, 

pH3 labeling shows random proliferating cells throughout the entire eye/antennal imaginal 

disc suggesting that the MF is not correctly formed (Fig. 3.8).  
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Figure 3.6 Simultaneous anillin and scribble downregulation leads to reduced 

photoreceptor differentiation. Third instar larvae eye discs with the most posterior part at the 

bottom of the figure in all discs. DAPI labels the DNA, anti-Elav the differentiated cells and pH3 the 

cells that are undergoing mitosis. The white bar marks the morphogenetic furrow.  
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Figure 3.7 UAS-AurA causes differentiation failure. Third instar larvae eye discs with the 

most posterior part at the bottom of the figure in all discs. DAPI labels the DNA, anti-Elav the 

differentiated cells and pH3 the cells that are undergoing mitosis. GFP indicates the level of 

expression of the transgenes. The white bar marks the morphogenetic furrow.  
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Figure 3.8 UAS-AurA, scribRNAi causes random proliferation through the entire 

imaginal disc. In the previous present UAS-AurA transgenic discs, anti-pH3 was also used to 

label cells that were undergoing mitosis. Proliferation is observed randomly distributed within the 

imaginal disc. DAPI marks the DNA while Elav labels the differentiated cells. 

 
 
 
 
 4. Using the follicular epithelium from Drosophila ovaries 
	   	  

4.1 Background  

Drosophila oogenesis is a complex process that involves the establishment of 

anterior-posterior and dorsal-ventral axis of Drosophila by localizing RNAs specifically 

within the oocyte ([157]; [158]). As described in the introductory chapter, the ovaries are 

divided in functional “subunits”, the ovarioles, within each the egg is produced. Each 

ovariole contains multiple egg chambers at different stages of oogenesis. Each egg 

chamber develops along 14 stages, classified as early (1 to 6), mid (7 to 10) or late (11 to 

14) stages of oogenesis (reviewed in [36]). The early stages of Drosophila oogenesis 

have particular importance to this work, since it is within these stages that the follicle cells 

chamber are undergoing mitosis. Follicle cells cease dividing at the end of the sixth stage. 

Thus, it possible to perform live imaging studies of division in follicular epithelial cells only 

until stage 6 of oogenesis.  

Using another epithelial system, the follicular epithelium, we could validate the 

previously found interactions in the initial eye screen. In comparison with the eye imaginal 

discs, the follicular epithelium offers us several advantages, including the possibility of 

observing invasion of the tumour-like cells, which is not possible in the eye imaginal disc. 
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Since the epithelial cells are in intimate contact with the germline, when mutations leading 

to the disorganization of the epitelial monolayer occur, we could observe epithelial cells 

streaming within the germline environment. Furthermore, imaging of the apico-basal 

polarity is straightforward in the follicular epithelium, which is compatible with the use of a 

variety of genetic and molecular tools. Thus, it is a good epithelial model to understand 

the underlying mechanisms of tumour development, such as factors that can result in 

tissue disorganization. 

 

 

 4.2 dlgRNAi causes tissue disorganization in the follicular epithelium 

To start the screen, the phenotypes present by RNAi depletion of the polarity 

proteins Scribble and Dlg were addressed. Both RNAis transgenes were driven by the 

actin promoter, however as the loss of TSGs leads to lethality, the flies were raised at 

18ºC using the GAL4/UAS system coupled with the repressor of GAL4, the GAL80ts 

protein. To induce the expression of the RNAi transgenes, flies were placed during 2 days 

at 29ºC, so that GAL80 repression was blocked. While scribRNAi presented a weak 

phenotype, showing just two or more individual cells out of the monolayer, dlgRNAi shows 

groups of cells forming a double layered and disorganized tissue. This was classified as 

an intermediate phenotype (Fig. 4.1). This phenotype is adequate for the propose of the 

study since that enables us test if for interactions that can increase the aggressiveness of 

the phenotype.  

To confirm that the RNAi against Dlg is being effective, we used the Flpout system 

to make clones within the follicular epithelium where the dlgRNAi construct driven by the 

actin promoter is exclusively expressed. The clones expressing the RNAi transgene are 

marked by the concomitant expression of the GFP protein. As can be seen in Fig. 4.2, Dlg 

is highly down regulated in clonal cells when compared with the wild-type cells marked by 

the absence of GFP, showing that the dlgRNAi construct is depleting the Dlg protein. 
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Figure 4.1 Weak and intermediate phenotype present by scribRNAi and dlgRNAi, 

respectively. After two days at 29ºC to inactivate GAL80ts supressor, scribRNAi and dlgRNAi present 

a weak and intermediate phenotype, respectively. DAPI marks DNA, while phalloidin labels the 

actin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 dlgRNAi depletes efficiently the endogenous Dlg protein. The yellow lines 

mark the clones were the anti-Dlg antibody detects very low amounts of protein. This can be 

compared with the wild-type cells marked by GFP absence. 
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4.3 Anillin depletion and Aurora A overexpression enhance the 
intermediate phenotype presented by dlgRNAi  

The same proteins involved in the mitotic processes mentioned in the eye/antennal 

imaginal discs screen were also tested in the follicular epithelium (Table 3.1). The dlgRNAi 

construct was driven by the actin promoter using the system GAL4/UAS system in 

combination with its repressor, the GAL80ts protein that enables flies to born. A stock 

containing the actin promoter and dlgRNAi was constructed and the progeny was chosen as 

indicated in Fig. 4.3. 

The phenotypes observed were classified into 4 main categories. The “None” 

phenotype means that no disruption of the epithelial monolayer was observed. The 

“Weak” phenotype was assigned when one or a few individual cells were seen away from 

the monolayer. “Intermediate” phenotype corresponds to egg chambers where a group of 

cells form a second layer. “Strong” phenotype is observed when more than two layers of 

epithelial cells are seen invading the germline. Examples of the observed phenotypes are 

shown in Fig. 4.4. 

 

 

 

 

 

 

 

 

 

Figure 4.3 Schematic representation of the progeny selection for the follicular 

epithelium screen. The flies were raised at 18ºC once that expression of the RNAi construct in 

the whole organism is lethal. Upon progeny selection, the flies were placed for four days at 29ºC to 

disrupt the GAL4 inhibitor - GAL80ts. 

 

This screen revealed that depletion of a few mitotic genes is occasionally able to 

enhance the phenotype of dlgRNAi (Fig. 4.5). However, as these results are still preliminary, 

we will just focus on the protein interactions that were shown to give a strong phenotype in 

the eye/antennal imaginal disc screen. Therefore, Aurora A and Anillin were the proteins 

chosen to proceed to quantification. Flies with RNAi constructs against these proteins 

show no tumour-like phenotypes per se. The same was tested in relation to UAS-AurA 

and no invasion was observed. As observed in Fig. 4.6, only two of the tested conditions - 
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UAS-AurA2 and anillinRNAi  - seem to enhance the tissue disorganization of the polarity 

defective background tested  (see Fig. 4.4). Double anillinRNAi ,dlgRNAi resulted in the 

strongest phenotype observed in the follicle epithelium, resulting frequently in multiple 

layers of cells within the germline (Fig. 4.6). 

 

 

 

 

 

 

 

 

 

 

 

	   
	  
Figure 4.4 Representation of the three types of phenotype that were classified in the 

follicle epithelium. We show the effect of the combination of defective levels of both Anillin and 

Dlg as an example of a strong phenotype. Yellow arrows show the localization of invasions as well 

as the bar. DAPI is labelling the DNA in red. 

	   	  

On the other hand, depletion of AurA does not seem to interfere with the 

phenotype of dlgRNAi. As can be seen in Graph 4.1, aurARNAi, dlgRNAi have a similar 

penetrance of the intermediate phenotype relative to dlgRNAi alone. In turn, expression of 

UAS- AurA leads to a larger frequency of intermediate phenotypes in the presence of 

dlgRNAi, comparing with dlgRNAi per se. Thus, overexpression of Aurora A seems to be 

inducing higher levels of epithelial cell invasion when the follicular epithelium presents 

defects in the polarity machinery. anillinRNAi, dlgRNAi revealed the presence of several 

strongly affected ovarioles, confirming that also in this ovarian epithelial context, 

cytokinesis cooperates with defects in epithelial polarity to induce tissue disorganization, 

which is a characteristic of tumor malignancy (Graph. 4.1). 
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Figure 4.5 Examples of the strongest phenotypes observed after alteration of the 

levels of a mitotic protein in a polarity defective background. The yellow lines are 

indicating the most affected areas. Phalloidin is labelling the actin filaments while DAPI marks the 

DNA.  

	  
	  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Examples of the observed phenotypes of anillinRNAi and Aurora A 

overexpression when combined with dlgRNAi. When Aurora A is overexpressed in a polarity 

defective background, we observe an increase in the levels of intermediate phenotypes. In turn, 

anillinRNAi , dlgRNAi shown an average percentage of strong phenotypes in the total quantification. 
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Graph 4.1 Quantification of the invasion phenotype per ovariole. anillinRNAi gave the 

strongest interaction with dlgRNAi while Aurora A defective levels seems to have no interaction with 

defective levels of Dlg. 
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 5. Dissecting the role of AurA in the follicular epithelium 
 
 

5.1 Background 

Aurora A is a mitotic kinase that was shown to have a function on neuroblast 

polarization during mitosis. It phosphorylates Par-6, thereby inducing aPKC activation and 

therefore allowing the inclusion of cell fates determinants into the basal domain of 

Drosophila neuroblasts ([98]). Besides its roles on mitosis and neuroblast polarization, 

Aurora A defects were also associated with several human cancers. Both reduction and 

overexpression of Aurora A induces the formation of tetraploid cells, which promotes 

genomic instability which is known as a hallmark of cancer (reviewed in [159]; [160]). 

Furthermore, our screens that searched for possible mitotic interactors to induce 

tumorigenesis within a polarity defective background, suggest Aurora A as a possible 

candidate. Taking these facts into account, we proposed to determine if Aurora A has a 

role in the establishment of epithelial polarization of the follicle epithelium and if, by 

interacting with defective levels of components of Scribble Complex, it induces 

tumorigenesis.  

 

 

5.2 Aurora A overexpression delays anaphase onset 

As previously referred, Aurora A overexpression was found in the root of tetraploid 

cell formation within several cancers. Besides, Aurora A has several roles during mitosis, 

as centrosomal maturation/separation and spindle bipolarity organization, that were 

described in other systems. Therefore, we addressed if Aurora A overexpression could 

alter the dynamics of mitosis within follicle cells. We used flies expressing simultaneously 

His-RFP and Aurora A-GFP (UAS-AurA-GFP) transgene, in order to follow Aurora A 

localization in epithelial cells during mitosis. Not surprisingly, we found that the mitotic 

spindle was unstable for a long time during early stages of mitosis before stabilizing prior 

to anaphase onset. This made timing quantifications difficult since we could not determine 

in many cases the exact moment of anaphase onset. We also found that Aurora A 

overexpression causes a delay in anaphase onset (AO) when compared with the wild-type 

(Fig. 5.1). The timing from NEB to AO was however extremely variable. This might be 

explained by the fact that we used the GR1 promoter, which induces variable mosaic 

UAS-AurA-GFP expression within the epithelial monolayer. Thus, different NEB-to-AO 

timing could result from different levels of transgene expression. Quantifications of NEB-
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to-AO of Aurora A overexpression have shown that Aurora A delays anaphase onset in 

about 9 minutes in relation to the wild-type average (Graph. 5.1).  

 

	   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - Aurora A overexpression cause a delay in anaphase onset. Frames from 

movies showing UAS-AurA-GFP localization during mitosis. The expression of the His-RFP 

construct concomitantly with UAS-AurA-GFP enabled us to visualize NEB and follow Aurora A 

dynamics during the mitotic process. In the wild-type frames, Tubulin was tagged with GFP and 

Histone with RFP (top panel).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 5.1 - NEBD-to-AO mitotic 

timing. The average time that a wild-type 

cell takes from NEBD to anaphase onset is 

about 9 minutes. When Aurora A is 

overexpressed it takes 18.4 ± 6 min (N=4) 

to progess between the same mitotic 

processes. The wild-type takes 9.0 ± 1.4 

min (N=10) since NEB to AO. [Eurico 

Morais-de-Sá and Claudio Sunkel, 

unpublished data] 
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5.3 Low levels of Aurora A do not cause any defects in apico-basal 
polarity 

To address if Aurora A has a role on apico-basal polarity we first expressed a 

RNAi construct against Aurora A (aurARNAi) in the follicular epithelium. aurARNAi was 

expressed with the GR1 promoter, a specific promoter only expressed in the follicle cells. 

Flies were placed at 29ºC to enhance the expression of the RNAi construct to further 

reduce the levels of Aurora A. As can be seen in Fig. 5.2C, defective levels of Aurora A 

did not cause any defects on apico-basal polarity. Both aPKC and Armadillo are properly 

localized in the apical and at the AJs, respectively, similarly to wild-type cells (Fig. 5.2B). 

To directly compare cells depleted of aurA with wild-type cells within the same egg 

chamber, we used the Flpout system. With this system, aurARNAi is only expressed in 

clones of cells that also express GFP, thereby marking the cells that were expressing the 

construct. Once again, we did not detect any defects on the localization of the previously 

referred proteins when compared with the internal control - cells marked with the absence 

of GFP (Fig. 5.2D). Although Aurora A does not seem to affect aPKC localization, we 

considered that it could be required for its kinase activity in epithelial cells. Therefore, anti-

Phospho-Bazooka antibody (p-Baz), which is a marker for functional aPKC kinase activity 

was used to detect aPKC kinase activity in clones from same FRT/Flpout system. This 

antibody detects Bazooka phosphorylated by aPKC in its serine 980 thereby indicating 

whether aPKC is active or not. The results showed that Bazooka phosphorylation is 

unaffected by AurA depletion (Fig. 5.2E). These results indicate that Aurora A does not 

regulate apico-basal polarity in epithelial cells from the follicular epithelium. However, low 

Aurora A levels resulting from RNAi depletion could still be enough to fulfil AurA function. 

Thus, we tested the effect of the same RNAi construct but in a background that was 

heterozygous for a deficiency that removes aurA locus. We used this strategy, to 

decrease the levels of Aurora A even further. Immunofluorescence assays were 

performed using antibodies against aPKC and Dlg. It can be seen that the localizations of 

both proteins is similar to that of the wild-type in this condition (Fig. 5.2F). Following the 

same strategy, we combined the deficiency covering aurA locus with a hypomorphic allele 

for the same protein ([161]). A hypomorphic allele results in a protein that has a partial 

loss of function. This combination would lower even more the levels of functional Aurora 

A. Upon testing aPKC, Arm and Dlg antibodies, we found no alterations in the apico-basal 

polarity in the epithelium (Fig. 5.2G). These results confirm that lower levels of Aurora A 

do not cause any perturbation in the apico-basal polarity of epithelial cells and therefore 

AurA does not appear to have a major role in apico-basal polarity within the follicle 

epithelium. 
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Figure 5.2 - Low levels of Aurora A have no effect on apico-basal polarity of follicle 

cells.  Anti-aPKC, anti-Arm, anti-Dlg and anti-p-Baz antibodies were tested and no changes in the 

localization of the referred proteins were found. DAPI marks the DNA and phalloidin the actin 

filaments in A. 
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5.4 Aurora A kinase activity is not required to maintain apico-basal 
polarity in epithelial cells 

In SOP cells, Aurora A kinase dead mutants (aurA37) failed in Lgl cortical exclusion 

during mitosis once that Aurora A kinase activity is required for aPKC activation, and the 

consequent Lgl phosphorylation and exclusion from the cell cortex ([98]). Therefore, we 

decided to test if apico-basal polarity of epithelial cells also require Aurora A kinase 

activity. We selected the FRT system to induce clones that express in both chromosomes 

the aur37 allele. The kinase dead allele presents an arginine-to-histidine transition within 

the catalytic site impairing Aurora A substrates phosphorylation ([103]). Anti-aPKC, anti-p-

Baz and anti-Arm antibodies were used and they show that the localization of the proteins 

was the same both in clones marked by GFP absence and in wild-type cells (Fig. 5.3). 

These results suggest that Aurora A has no major role on the establishment of apico-

basal polarity in the epithelial cells of the follicular epithelium. 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.3 - Aurora A kinase activity is not required to maintain apico-basal polarity 

of follicle cells. Clones homozygous to the aurA37 kinase dead allele show no disruption of 

apico-basal polarity. Homozygous mutant cells are marked by GFP absence. 
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5.5 Par-6 phosphorylation on Ser34 is dispensable for apico-basal 
polarity 

As previously mentioned, Par-6 is phosphorylated by Aurora A to initiate the 

establishment of the apical domain of neuroblasts ([98]). Although our previous results 

suggest that Aurora A does not have a role in the establishment of apico-basal polarity of 

the follicle epithelium, we wanted further confirmation to support this conclusion. We 

created flies that were homozygous for a par-6 null mutation, but that were expressing the 

Par-6S34A transgene under the control of the endogenous par-6 promoter (Fig. 5.4).  

 

 

 
 
 
 

 

 

Figure 5.4 - Stock created to test if Par-6S34A is able to rescue apical domain 

disruption in par-6 mutans. A non-phosphorylatable form of Par-6 on its serine 34 (Par-6S34A), 

the conserved residue of Aurora A phosphorylation, was expressed in par-6D226 mutant flies.  

 

 

To confirm that par-6 causes apical proteins mislocalization, immunofluorescence 

analyses were performed. Anti-aPKC and anti-Arm antibodies show mislocalization of 

both proteins when compared with the internal control, marked by the presence of GFP 

(Fig. 5.5A). Par-6S34A rescues this phenotype as can be seen by the presence of aPKC in 

the apical domain (Fig. 5.5B). Thus, Par-6 phosphorylation in Ser34, which is dependent 

on Aurora A kinase on the neuroblast, is also not required for apical-basal polarity further 

demonstrating the AurA has no role in setting up or maintaining apico-basal polarity of the 

follicle epithelium.  
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Figure 5.5 - Par-6 phosphorylation is dispensable for the maintenance of apico-

basal polarity in follicle cells. The non-phosphorylatable form of Par-6 rescues mislocalization 

of the apical proteins in par-6 mutants. 

 
 

 5.6 Lgl dynamics during mitosis on the follicular epithelium 

 The conservation among the proteins that govern cell polarity is well known. Lgl 

exclusion from the posterior cortex in SOP cells is essential for cell fate determination 

since that it exclusion allows the association of Bazooka with the PAR Complex and 

thereby Numb phosphorylation ([98]). Our results suggested an independence of Aurora A 

kinase activity in epithelial polarization. However, given the conservation of the proteins 

among different organisms, it is important to determine if the underlying mechanism of Lgl 

dynamics is also essential for epithelial cell polarization, given that Aurora A kinase 

activity is not. The behaviour of Lgl in SOP cells during mitosis is well known: Lgl starts to 

be excluded from the cortex in early prophase, remaining in the cytoplasm during mitosis 

([98]). A form of Lgl that is non-phosphorylatable by aPKC - the Lgl3A – remains localized 

in the cortex during cell division, suggesting that Lgl exits from the cortex in a 

phosphorylation-dependent manner ([98]). Accordingly, we wanted to know how Lgl 

behaves during mitosis in epithelial cells. We followed cell division using His-GFP to mark 

DNA, together with Lgl-RFP. We concluded that Lgl starts to exit from the cell cortex 
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around 21 minutes prior to Nuclear Envelope Breakdown (NEBD) remaining in the 

cytoplasm during division and returning to the cortex after cytokinesis (Fig. 5.6 and Graph. 

5.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 - LglWT-GFP behaviour during mitosis in epithelial cells. Frames were taken 

from movies that show Lgl:RFP dynamics during mitosis. His:GFP enables us to determine the 

exact moment of anaphase onset. We took this time as a start point to quantify when Lgl exits and 

then returns to the cortex. 

 

 

 

 

 

 

 

 

 

 

Graph 5.2 - Lgl and BazS980A dynamics during mitosis. Lgl starts to exit from the cell cortex 

21.3 ± 2 min (N=6) prior than anaphase onset and returns 8.4 ± 2 min (N=6) after anaphase 

onset. In turn, BazS980A  starts to depolarize in average 8.1 ± 3 min (N=4) prior than anaphase 

onset while it fully returns to the apical mesh in  10.7 ± 2 min (N=6) after AO. This results shows 

that BazS980A depolarization starts after Lgl cortical exclusion. 

 

Accordingly, to determine whether Lgl cortical exclusion is phosphorylation 

dependent, we performed immunostaining in cells from flies with LglWT-GFP and Lgl3A-

GFP using anti-pH3 to mark the cells that were undergoing mitosis. Our observations 
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show that LglWT-GFP localizes at the cell cortex during interphase, however, in cells that 

were labelled with pH3, LglWT-GFP was diffused in the cytoplasm (Fig. 5.7A). In turn, the 

non-phosphorylatable form (Lgl3A-GFP) remained in the cortex during interphase and 

mitosis (Fig. 5.7B). These results suggest that during mitosis, Lgl has a similar behaviour 

in SOP cells and in epithelial cells, being excluded from the cortex in an aPKC 

phosphorylation dependent manner.  

 

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.7. Lgl is excluded from the cortex in a phosphorylation dependent manner. 
The non-phosphorylatable form of Lgl remains cortically during all cell cycle (B) when comparing to 

the wild-type (A). Anti-pH3 labels cells that are undergoing mitosis. Frames from movies of Lgl3A-

GFP show that this mutant variant remains in the cortex during mitosis (C).  

 
 

 5.7 Using BazS980A to address the dynamic behaviour of apical 
proteins during mitosis in epithelial cells 

After characterizing the dynamics of Lgl during mitosis, we asked how would the 

apical domain behave. Given that Lgl cortical exclusion occurs in a phosphorylation-
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dependent manner, lateral exclusion of Lgl would be expected to be preceded by a re-

organization of apical proteins. In order to determine the localization of apical proteins 

during mitosis, we used colchicine to increase the percentage of mitotic cells within the 

follicular epithelium. We performed immunostainings using flies that expressed Par-6-

GFP, to address the localization of the apical complex during mitosis. As can be seen in 

Fig. 5.8, the nucleus of the follicle cells are labelled with pH3, indicating that many cells 

are undergoing mitosis. Both the anti-aPKC antibody and the endogenous Par-6-GFP 

revealed that the apical proteins present different localizations in the cells that were 

labelled with pH3. pH3 marks the phosphorylation of the Histone 3 since the beginning of 

mitosis – prophase – which means that all the cells that are in prophase or the 

subsequent phases are labelled with pH3. Since, we observe that in some cells, indicated 

by the yellow arrow, aPKC and Par-6 are distributed essentially through the cytoplasm 

while in others (marked by the green arrow) aPKC and Par-6 remain in the apical mesh. 

This result suggests that the apical complex has a specific time during mitosis within 

which depolarization starts.  

 

 

 

 

 

 

 

 

 

 

Figure 5.8 - Apical Complex localization in a mitotic enriched follicular epithelium. 
Females were fed with colchicine, which blocks microtubules depolymerisation, thereby arresting 

cells in metaphase. pH3 staining (red) shows cells that are undergoing mitosis. The Par-6-GFP 

(green) construct and the anti-aPKC antibody (red) show the subcellular localizations of the apical 

complex. 
 

To characterize the dynamic of depolarization of the apical complex during mitosis, 

we performed live imaging. In the absence of a functional fluorescent tagged aPKC 

protein, we used the non-phosphorylatable form of Bazooka (BazS980A-GFP) to mark the 

localization of apical proteins throughout mitosis. Since it cannot be phosphorylated by 

aPKC, BazS980A is not excluded from the apical complex. It was surprising to find that 

BazS980A starts to extend through the cortex around 8 minutes before NEBD (Graph. 5.2). 



	   67	  

Furthermore, complete re-localization of BazS980A to the cortex occurs after cytokinesis 

around the same time that LglWT-GFP relocalizes to the cell cortex (Fig. 5.9). Differences 

were seen between Par-6-GFP and BazS980A localization during mitosis. While Par-6-GFP 

presents a cytoplasmic localization, BazS980A extends through the cell cortex. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.9 - BazS980A-GFP extends through the cortex during mitosis. Frames from 

movies of BazS980A-GFP (that is shown in red) showing its cortical extension occuring after 

LglWT cortical exclusion. The apical-basal axis orientation is shown to each figure. This 

extension occurs after LglWT cortical exclusion. BazS980A dynamic times during mitosis are 

shown in Graph. 5.2. 
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CHAPTER 4 – DISCUSSION AND CONCLUSION 
 
 
Several mitotic defects have been associated with the induction of cellular 

transformation presumably by promoting aneuploidy, a chromosomal defective condition 

that is frequently found in tumors ([130]). On the other hand, loss of cell polarity was also 

associated with cancer progression since it causes tissue disorganization and cell 

overproliferation ([162]). These observations provide the basis for the main aim of this 

work: to search for mitotic interactors that would enhance tumorigenesis in a polarity 

defective background. To accomplish this, we used two different epithelial models from 

Drosophila: the eye/antennal imaginal discs and the ovarian follicular epithelium. As 

described in the results chapter, two proteins, Anillin and Aurora A, were identified as 

possible interactors that severely enhanced the tumor-like phenotype of these cells when 

cell polarity is compromised.  

 

 6.1 Cytokinesis failures can drive tumorigenesis in a 
polarity defective background 

 

Anillin is a scaffold protein, whose depletion results in cytokinesis failure both in 

Drosophila and humans, resulting in tetraploidy ([10]). The expression of anillinRNAi within 

a polarity defective background in both epithelial models revealed an enhancement of the 

tumor-like phenotype when compared with the respective controls. This result suggests 

that cytokinesis failure cooperates with polarity defects to induce tumorigenesis. However, 

incomplete cytokinesis also leads to the accumulation of centrosomes within a single cell. 

The increasing number of centrosomes could generate multipolar spindles at the time of 

division, resulting in the formation of aneuploidy cells (reviewed in [130]). Therefore, anillin 

depletion could be enhancing tumorigenesis due to the formation of multipolar spindles 

and not due to its role in cytokinesis. To address which was the driving force that was 

enhancing tumorigenesis after anillin depletion, we depleted sas-4 in the context of 

scribble and anillin depletions, providing an acentrosomal background to these cells. Our 

observations suggest that anillin depletion induces tumorigenesis independently of 

centrosome accumulation, since the reduction of the levels of sas-4, and consequently the 

absence of centrosomes, was irrelevant to the enhancement of the tumor-like phenotype. 

However, the levels of protein depletion caused by using sas4RNAi need to be verified to 

ensure that centrosome duplication is indeed impaired. Furthermore, studies using sas4 

null mutants associated with the deficiency for the sas4 locus would be required in order 
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to ensure that centrosomes are completely absent from the epithelial tissue. Nevertheless, 

our results indicate that, polyploidy is most likely the cause underlying the enhancement 

of tumor-like phenotypes produced by anillin RNAi. Consistent with this, the direct 

tumorigenic potential of tetraploid cells has been previously documented. Induction of 

cytokinesis impairment into p53-/- mouse mammary epithelial cells (MMECs) leads to the 

formation of tetraploid cells ([131]). Carcinogenic experiments in vitro have shown that 

tetraploid cells were able to be transformed and to induce malignant pathologies after 

removal of the carcinogen. Consistently, other studies provided evidences that although 

extra centrosomes can induce tumorigenesis in specific fly tissues, they do not always 

lead to aneuploidy and genetic instability, given that extra centrosomes appear to 

coalesce, allowing the formation of mostly bipolar spindles in these abnormal cells ([163]).  

Although mutations on Aurora A gene seem to be insufficient to initiate the 

malignant pathology, Aurora A has long been associated with tumour formation in 

different organisms ([164]; [165]; [156]). The reduction of Aurora A levels causes defects 

on the mitotic spindle due to the impairment of centrosome maturation and separation, 

leading to the formation of tetraploid cells. In turn these tetraploid cells are frequently 

found in cancers suggesting that tetraploidy promotes genomic instability, which is a well-

known hallmark of cancer (reviewed in[159]). Consistently, we observed that the 

expression of aurARNAi induced outgrowth phenotypes within the Drosophila eye. However, 

the observation of larvae imaginal discs did not allow us to conclude what happens at the 

cellular level, since the morphology of the disc was not significantly altered when 

compared with the wild-type, regardless an increase in cell proliferation throughout the 

whole disc. Further studies will aim to elucidate if downregulation of AurA resulted in 

tetraploidy in the larvae imaginal discs. On the other hand, the expression of aurARNAi in 

the follicle cells whose polarization is compromised, did not result in a significant increase 

of invasion into the germline, although some intermediate phenotypes are observed. One 

possible explanation is that the depletion by expression of RNAi constructs is variable. 

Additionally, in Drosophila early stages of oogenesis, the expression of the RNAi 

constructs is low and epithelial cells divide just until stages 6/7. Therefore, a possible 

explanation for these results relies on the weak depletion of the protein levels by aurARNAi 

with the few divisions of the epithelial cells that did not allow the accumulation of errors 

and consequently cell transformation and invasion. The imaginal discs are dissected 

around 6/7 days after egg laying but the Drosophila eye can only be seen after the fly 

hatches, which means about 10 days after fertilization. As the RNAis have a variable 

expression and as efficient protein depletion takes several days to be achieved, it is 

possible that the effect seen in the adult eye is stronger than in the imaginal discs. 

Furthermore, as the drivers expressing the RNAis constructs in both epithelial models are 
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different, the level of depletion of Aurora A achieved within both systems is different. 

Moreover, the expression of the RNAi construct in the eye is longer than in the follicular 

epithelium due to the large development period of the eye. This may explain why we 

observe that Aurora A cooperates with compromised polarity in the eye but not in the 

follicular epithelium. 

 During both screens we also noticed that UAS-AurA caused an enhancement of 

the tumour-like phenotype in cooperation with defects in the polarity machinery. Although 

differences between males and females were significant in the eye, the overexpression of 

Aurora A lead to a substantial outgrowth in association with a high percentage of 

overgrowth phenotypes in the adult flies eyes. Further analyses of the larvae imaginal 

discs have shown that overexpression of Aurora A induced a failure in photoreceptor 

differentiation along with a random cell proliferation throughout all disc regardless MF 

constriction. Likewise, overexpression of this mitotic kinase regulator promoted an 

increase in the intermediate phenotype on the follicular epithelium when compared with 

the polarity defective control. However, this phenotype was not as aggressive as in the 

eye. This could be explained by fewer divisions of the epithelial monolayer, which 

decrease the accumulation of errors that would be required to allow cell transformation. It 

has been described that Aurora A overexpression induces cytokinesis failures and p53 

inactivation and degradation ([118]; [166]). By promoting cytokinesis failure, Aurora A 

promotes the formation of tetraploid cells that would normally arrest in the next G1-phase 

([167]; [168]; [169]; [170]). However, by destabilizing p53 through phosphorylation, the 

p53-dependent checkpoint that prevent tetraploid cell division is weakened, enabling 

tetraploid cells to divide and proliferate ([155]; reviewed in [160]). Therefore, the 

underlying mechanism by which UAS-AurA cooperates with polarity defects probably 

relies on the ability of Aurora A (when overexpressed) to promote cytokinesis failure 

resulting in tetraploidy. Phosphorylation and consequently degradation of p53 induced by 

Aurora A is also observed at physiological levels, however this effect is increased upon 

Aurora A overexpression. This may explain why cells depleted of Aurora A have a less 

consistent tumour-like phenotype, since the p53-checkpoint is not weakened as a result of 

decreased levels of Aurora A phosphorylation ([166]).  

 

 6.2 Aurora A is not required to the establishment of apico-
basal polarity in epithelial cells  

 

Studies performed in Drosophila neuroblasts have shown that Aurora A kinase 

activity is essential to differentially segregate Numb into the GMC. Aurora A 

phosphorylation on Par-6 relieves aPKC suppression, and therefore activates it. aPKC 
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activation is essential to neuroblast polarization during its asymmetric division to 

phosphorylate Numb, allowing its specific localization into the GMC and therefore cell 

differentiation ([98]). Our results show that Aurora A cooperates with polarity defects to 

induce tumorigenesis, suggesting that it might also have a role in the establishment of 

epithelial polarity. Therefore, we wanted to determine whether Aurora A is also involved in 

epithelial polarization. 

We started by expressing a specific RNAi construct against Aurora A, thereby 

decreasing its levels in the follicular epithelium. As no defects of the apical-basal polarity 

were observed, we used a hypomorphic allele combined with the deficiency for the locus 

of Aurora A to decrease even further its protein levels. Our results suggested that 

decreased levels of Aurora A had no influence on the establishment of epithelial apico-

basal polarity. However, it was still possible that incomplete depletion of Aurora A by the 

RNAi transgene was enough to support the normal functions of the mitotic kinase. 

Therefore, we used a kinase dead allele to address if its kinase activity was required for 

the maintenance of epithelial polarity. Immunostainings using phospho-specific antibodies 

revealed that Aurora A kinase activity was not required for aPKC apical localization or 

activity, as shown by the wild-type localization of anti-p-Baz antibody within the GFP 

clones. Therefore, our results suggested that Aurora A does not have a major role in the 

establishment of follicle cell polarity.  

Several hypotheses could be raised to explain why Aurora A activity is dispensable 

for follicle cell polarity. Looking at aPKC kinase activity essentiality along the 

establishment of apico-basal polarity during epithelial interphase, it is reasonable to 

propose that at some point its kinase activity would be activated to carry out aPKC 

specific functions. This activation could be performed by a kinase other than Aurora A, 

thereby maintaining part of the mechanism identified in neuroblasts. Other possibility 

could rely on activation by Cdc42 during interphase, since it was described in mammals 

that although Par-6 is the responsible for aPKC localization, Cdc42 modulates it kinase 

activity ([171]; [55]; [52]). Finally, aPKC could be constitutively active throughout the cell 

cycle and thereby any activation would be dispensable. Nevertheless, follicle cells seem 

to undergo depolarization during mitosis, and therefore it is possible that the activity of 

aPKC is dispensable at this stage. Given that the apical and basolateral domains are 

depolarized during mitosis, aPKC activity may not be needed to restrain their locations 

during interphase.  
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 6.3 Possible role of Lgl in driving mitotic depolarization of 
epithelial cells 

 

To understand if the mechanisms triggered by Aurora A phosphorylation in 

neuroblasts/SOPs were also conserved in epithelial cells, we analysed the dynamic 

behaviour of Lgl during mitosis. As in SOP cells, Lgl is cortically excluded during mitosis in 

a phosphorylation-dependent manner as a form of Lgl (Lgl3A-GFP) that is non-

phosphorylatable by aPKC remains cortical during all cell cycle. In SOP cells, Aurora A 

phosphorylation induces aPKC activation whose kinase activity is responsible for Lgl 

exclusion from the cortex ([98]). However, despite our results demonstrating that Aurora A 

function is not required in epithelial cells, aPKC still phosphorylates and excludes Lgl from 

the apical domain during interphase, whereas it is known that Lgl is able to repress aPKC 

activity if stably bound to it ([81]; [79]; [96]). Therefore, we wanted to investigate how the 

apical domain behaves during mitosis in epithelial cells. It has been previously found in 

the lab [Eurico Morais de Sá and Claudio Sunkel, unpublished data] that the proteins Par-

6 and aPKC lose their polarized apical distribution during mitosis. Increasing the 

frequency of mitotic follicle cells (using colchicine) in flies that carry a Par-6-GFP 

construct, we were able to see that epithelial cells labelled with pH3 had different 

subcellular localizations of both anti-aPKC and Par-6-GFP, thereby suggesting a dynamic 

depolarization during mitosis. Therefore we used BazS980A as a surrogate marker of the 

apical complex to determine in detail the dynamics of the apical complex. Our data 

supports that the apical complex starts to extend throughout the cortex after Lgl cortical 

exclusion. However, while Par-6-GFP shows a cytoplasmic localization, BazS980A 

depolarization was restricted to the extension through the cortex. BazS980A cortical 

localization could partially reflect its ability to bind Adherens Junctions components. Given 

that Par-6-GFP is expressed at endogenous levels, its localization is more reliable in 

reflecting the localization of the apical Complex. Previous results in the lab show that the 

depolarizing times in Par-6-GFP expressing cells, are nevertheless similar to the ones 

obtained with BazS980A. A timeline showing and overview of the respective timings is 

shown in Fig 6. 
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Figure 6 - Relative timings of the re-organization of the polarity proteins during cell 

division in follicle cells. NEB – Nuclear Envelope Breakdown. AO – anaphase onset. It is 

worth to note that similar timings were observed for exclusion of Par-6 from the apical cortex 

[Eurico Morais de Sá and Claudio Sunkel, unpublished data]. 

  

These results are somewhat paradoxical. On the one hand, Lgl cortical exclusion 

is phosphorylation-dependent. The mutation of the three phosphorylatable sites by aPKC 

within Lgl leads to a retention in the cortex during all cell cycle, thereby suggesting that 

aPKC could be the kinase responsible for it exclusion. On the other hand, we have results 

indicating that Lgl exclusion from the lateral cortex occurs previously to the lateral 

extension of apical proteins. Therefore, how can aPKC be responsible for Lgl removal 

from the cortex if Lgl is already in the cytoplasm at that time? To resolve the issue we 

propose a model that places Lgl as a controller of epithelial depolarization during mitosis 

by promoting the apical exclusion of the PAR complex. This model is based in the 

particular features relative to the timing and purpose of polarization that vary between the 

neuroblast and the follicle cell systems. (1) For the correct asymmetric division of the 

neuroblast, polarization must occur during mitosis in order to accurately segregate the cell 

fate determinants. Instead, epithelial cells are already polarized during interphase, and 

contrary to the neuroblast, there is depolarization during mitosis. (2) Aurora A triggers a 

phosphorylation cascade that leads to aPKC activation and consequently to Lgl exclusion 

from the PAR Complex. Contrarily, Aurora A kinase activity is unnecessary for the activity 

of aPKC in epithelial cells. This is in agreement with the idea that aPKC does not need to 

be polarized during epithelial cell division. However conserved features are also observed, 

since Lgl presents the same dynamic behaviour during mitosis in both systems meaning 

that it is excluded in a phosphorylation-dependent manner. Three phosphorylation 

residues within the Lgl are conserved between humans and Drosophila, and only the 

mutation of the three residues blocks cortical exclusion during mitosis ([81]). Therefore, 
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we propose that Lgl could be excluded by other kinase rather than aPKC. After activation 

and consequent lateral exclusion, Lgl would be able to bind aPKC on the apical domain, 

inhibiting its activity and exerting a depolarizing effect over the apical domain. Indeed, 

Par-6-GFP shows a cytoplasmic localization during mitosis that would be consistent with 

Lgl binding to the apical complex and sequestering it in the cytoplasm. Thus, we could 

hypothesize that Lgl could be the driver for depolarization of epithelial cells during mitosis, 

while aPKC is the driver of polarization during neuroblast division. Supporting this idea is 

the previous mentioned observation that Lgl is able to bind and inactivate aPKC, which 

also agrees with a depolarization model of epithelial mitosis that does not require an 

activated aPKC. Accordingly, the formation of a complex formed by Lgl, Par-6 and aPKC 

is increased during mitosis in HEK293 cells ([80]). Furthermore, other studies using 

MDCK cells, that are also epithelial cells, suggested a comparable model to the one we 

propose for follicle cells. During depolarization of MDCK cells, it has been found that Lgl 

induces the disassembling of the apical proteins, Par-6 and aPKC. Through Ca2+ 

depletion, MDCK cells undergo depolarization that is mediated by Lgl suppression of the 

apical proteins by impairing Par-6-aPKC interaction with Par-3 or Cdc42 ([80]). Moreover, 

a recent study proposed that Lgl is able to stimulate the endocytosis of the apical 

transmembrane protein Crumbs, blocking the spreading of the apical proteins into the 

basolateral membrane. On the other hand Crb-Crb interactions stabilize the localization of 

the apical proteins Par-6/aPKC into the apical domain ([172]). Thus, Crumbs endocytosis 

mediated by Lgl could participate in the destabilization of apical pool of Crb-Par-6-aPKC. 

This mechanism could alternatively explain how Lgl drives apical depolarization during 

mitosis in epithelial cells, as proposed by our model. Although depolarization during 

mitosis might be important to allow symmetric cell division of epithelial cells, the question 

of how it is regulated is unclear. Determining if the apical domain remains polarized in 

cells that are unable to recruit any Lgl to the cytoplasm during mitosis will start answering 

this question in the future.   

 During this work we also found that cytokinesis impairment cooperates with polarity 

defects to induce tumorigenesis in flies, providing therefore a starting point to dissect 

interactions between mitotic and polarity proteins in tissue architecture and proliferation. It 

was also found that Aurora A is dispensable for epithelial polarity suggesting that a 

different regulatory mechanism directs the polarity machinery during epithelial cell 

division. Although this finding presents to be different from neuroblasts, some similar 

features between neuroblast and epithelium polarity are conserved, as is the case of Lgl 

dynamic behaviour during mitosis. Our results suggest that Lgl could act as a driver of 

depolarization in epithelial cells, however further evidences need to be found in order to 

support our model. 
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Appendix 
 
WT-‐	  Wild-‐type;	  S-‐eye	  –	  Small	  eye;	  M-‐eye	  –	  Micro	  eye;	  R-‐eye	  –	  Rough	  eye;	  D	  –	  eye	  –	  
disorganized	  eye;	  T	  –	  eye	  –	  Outgrowth;	  O-‐	  eye	  –	  Overgrowth;	  N	  –	  eye	  –	  No	  eye	  
 
 
 
Table 1. Frequency of phenotypes shown in male eyes in the absence of scribRNAi . 
WT-‐	  Wild-‐type;	  S-‐eye	  –	  Small	  eye;	  M-‐eye	  –	  Micro	  eye;	  R-‐eye	  –	  Rough	  eye;	  D	  –	  eye	  –	  
disorganized	  eye;	  T	  –	  eye	  –	  Outgrowth;	  O-‐	  eye	  –	  Overgrowth;	  N	  –	  eye	  –	  No	  eye	  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e. WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye N 
anillin 40 27 3 16 7 0 0 0 93 
asp 4 30 0 0 0 0 0 0 34 
aurA 27 35 0 2 0 0 0 0 64 
aurA’ 76 14 0 0 0 0 0 0 90 
bub3 20 48 0 0 0 0 0 0 68 
bubRI 40 0 0 0 0 0 0 0 40 
cnn 14 22 0 2 0 3 0 0 41 
feo 43 47 0 4 0 0 3 0 97 

mad1 6 2 0 0 0 0 0 0 8 
mad2 22 0 0 0 0 0 0 0 22 
mis12 0 1 2 0 0 0 0 3 6 
mitch 8 17 0 7 8 4 0 0 44 
nuf2 58 0 0 0 0 0 0 0 58 
pavi 0 0 0 0 0 0 0 2 2 
sAK 8 38 0 0 0 0 0 0 46 

sas-4 130 6 0 0 0 0 0 0 136 
scrib 2 18 0 1 1 0 0 0 22 
sept1 26 12 0 0 0 0 0 0 38 
sept2 48 25 0 1 0 0 0 0 74 
smc1 14 4 0 0 0 0 0 0 18 
smc5 32 12 0 0 0 0 0 0 44 

UAS-AurA2 52 36 0 0 1 1 0 0 90 
UAS-AurA3 20 9 0 0 0 0 5 0 34 
UAS-Polo 28 30 0 0 0 0 0 0 58 
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Table 2. Frequency of phenotypes shown in female eyes in the absence of scribRNAi . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e. WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye N 
anillin 123 19 1 16 6 0 0 0 165 
asp 8 30 0 0 0 0 0 0 38 
aurA 91 11 0 2 0 0 0 0 104 
aurA’ 100 0 0 0 0 0 0 0 100 
bub3 14 58 0 1 0 0 0 0 73 
bubRI 56 2 0 0 0 0 0 0 58 
cnn 59 17 0 0 0 0 0 0 76 
feo 98 34 0 1 0 8 3 0 144 

mad1 12 4 0 0 0 0 0 0 16 
mad2 30 0 0 0 0 0 0 0 30 
mis12 2 9 8 1 3 0 0 3 26 
mitch 33 18 4 3 7 2 0 1 68 
nuf2 52 8 0 0 0 0 0 0 60 
pavi 0 0 0 1 1 0 0 0 2 
sAK 8 28 0 0 0 0 0 0 36 

sas-4 146 0 0 0 0 0 0 0 146 
scrib 38 123 0 2 5 1 0 0 169 
sept1 50 14 0 0 0 0 0 0 64 
sept2 52 0 0 0 0 0 0 0 52 
smc1 18 16 0 1 1 0 0 0 36 
smc5 48 32 0 0 0 2 0 0 82 

UAS-AurA2 58 44 0 0 0 0 0 0 102 
UAS-AurA3 39 27 0 0 0 0 0 0 66 
UAS-Polo 80 6 0 0 0 0 0 0 86 
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Table 3. Frequency of phenotypes shown in male eyes expressing scribRNAi. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e. WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye N 
anillin 2 4 0 0 2 8 1 1 18 
asp 0 28 0 0 0 0 0 0 28 
aurA 1 6 0 2 0 18 7 0 34 
aurA’ 10 12 0 1 0 6 15 0 44 
bub3 0 28 0 5 5 13 3 0 54 
bubRI 5 37 0 0 2 4 0 0 48 
cnn 0 14 0 0 0 0 0 0 14 
feo 0 17 0 4 0 21 10 0 52 

mad1 6 2 0 0 0 0 0 0 8 
mad2 5 17 0 6 2 0 0 0 30 
mis12 0 2 0 0 0 0 0 0 2 
mitch 5 0 2 0 2 1 0 0 10 
nuf2 4 14 0 0 0 2 0 0 20 
pavi 0 0 0 0 0 1 1 2 4 
sak 0 32 0 1 0 5 0 0 38 

sas-4 6 0 0 0 0 0 0 0 6 
sept1 2 36 0 0 0 0 0 0 38 
sept2 16 6 0 0 3 11 0 0 36 
smc1 0 0 0 0 0 0 0 0 0 
smc5 14 5 0 6 0 11 0 0 36 

UAS-AurA2 5 13 2 4 1 16 1 0 42 
UAS-AurA3 0 3 0 1 0 5 5 0 14 
UAS-Polo 18 47 0 0 1 0 4 0 70 
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Table 4. Frequency of phenotypes shown in female eyes expressing scribRNAi. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e. WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye N 
anillin 20 23 0 6 5 18 1 1 74 
asp 0 20 0 0 0 2 0 0 22 
aurA 5 10 0 10 0 16 12 0 53 
aurA’ 17 40 0 2 0 2 5 0 66 
bub3 5 20 3 6 1 5 0 0 40 
bubRI 34 35 0 0 8 1 0 0 78 
cnn 0 11 0 1 0 0 0 0 12 
feo 8 30 0 11 0 0 7 0 56 

mad1 11 27 0 1 0 1 0 0 40 
mad2 7 27 0 0 0 0 0 0 34 
mis12 3 4 2 1 0 0 1 1 12 
mitch 11 6 0 4 4 2 0 1 28 
nuf2 23 17 0 1 0 1 0 0 42 
pavi 0 9 3 5 5 12 1 3 38 
sak 0 49 0 4 0 5 0 0 58 

sas-4 11 1 0 4 4 4 0 0 24 
sept1 4 12 0 0 0 0 0 0 16 
sept2 6 10 1 1 1 7 2 0 28 
smc1 0 2 0 0 0 5 1 0 8 
smc5 25 34 0 2 0 0 0 0 61 

UAS-AurA2 23 32 0 0 5 4 1 0 65 
UAS-AurA3 9 13 0 3 0 1 2 0 28 
UAS-Polo 26 35 0 4 0 5 0 0 70 
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Table 5. Relative percentage of the frequency of phenotypes shown in male eyes 
expressing scribRNAi. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e% WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye 
anillin 11,1 22,2 0 0 11, 44,4 5,6 5,6 
asp 0 100 0 0 0 0 0 0 
aurA 2,9 17,6 0 5,9 0 52,9 20,6 0 
aurA’ 22,7 27,3 0 2,3 0 13,6 34,1 0 
bub3 0 51,9 0 9,3 9,3 24,1 5,6 0 
bubRI 10,4 77,1 0 0 4,2 8,3 0 0 
cnn 0 100 0 0 0 0 0 0 
feo 0 32,7 0 7,7 0 40,4 19,2 0 

mad1 75 25 0 0 0 0 0 0 
mad2 16,7 56,7 0 20 6,7 0 0 0 
mis12 0 100 0 0 0 0 0 0 
mitch 50 0 20 0 20 10 0 0 
nuf2 20 70 0 0 0 10 0 0 
pavi 0 0 0 0 0 25 25 50 
sak 0 84,2 0 2,6 0 13,2 0 0 

sas-4 100 0 0 0 0 0 0 0 
sept1 5,3 94,7 0 0 0 0 0 0 
sept2 44,4 16,7 0 0 8,3 30,6 0 0 
smc1 0 0 0 0 0 0 0 0 
smc5 38,9 13,9 0 16,7 0 30,6 0 0 

UAS-AurA2 11,9 31,0 4,8 9,5 2,4 38,1 2,4 0 
UAS-AurA3 0 21,4 0 7,1 0 35,7 35,7 0 
UAS-Polo 25,7 67,5 0 0 1,4 0 5,7 0 
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Table 6. Relative percentage of the frequency of phenotypes shown in female eyes 
expressing scribRNAi. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e% WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye 
anillin 27,0 31,1 0 8,1 6,8 24,3 1,4 1,4 
asp 0 90,9 0 0 0 9,1 0 0 
aurA 9,4 18,9 0 18,9 0 30,2 22,6 0 
aurA’ 25,8 60,6 0 3,0 0 3,0 7,6 0 
bub3 12,5 50 7,5 15 2,5 12,5 0 0 
bubRI 43,6 44,9 0 0 10,3 1,3 0 0 
cnn 0 91,7 0 8,3 0 0 0 0 
feo 14,3 53,6 0 19,6 0 0 12,5 0 

mad1 27,5 67,5 0 2,5 0 2,5 0 0 
mad2 20,6 79,4 0 0 0 0 0 0 
mis12 25 33,3 16,7 8,3 0 0 8,3 8,3 
mitch 39,3 21,4 0 14,3 14,3 7,1 0 3,6 
nuf2 7,1 9,5 4,8 2,4 0 0 2,4 2,4 
pavi 0 23,7 7,9 13,2 13,2 31,6 2,6 7,9 
sak 0 84,5 0 6,9 0 8,6 0 0 

sas-4 45,8 4,2 0 16,7 16,7 16,7 0 0 
sept1 25 75 0 0 0 0 0 0 
sept2 21,4 35,7 3,6 3,6 3,6 25 7,1 0 
smc1 0 25 0 0 0 62,5 12,5 0 
smc5 41,0 55,7 0 3,3 0 0 0 0 

UAS-AurA2 35,4 49,2 0 0 7,7 6,2 1,5 0 
UAS-AurA3 32,1 46,4 0 10,7 0 3,6 7,1 0 
UAS-Polo 37,1 50 0 5,7 0 7,1 0 0 
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Table 7. Relative percentage of the frequency of phenotypes shown in male eyes in 
the absence of scribRNAi. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e% WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye 
anillin 43,0 29,0 3,2 17,2 7,5 0 0 0 
asp 11,8 88,2 0 0 0 0 0 0 
aurA 42,2 54,7 0 3,1 0 0 0 0 
aurA’ 84,4 15,6 0 0 0 0 0 0 
bub3 29,4 70,6 0 0 0 0 0 0 
bubRI 100 0 0 0 0 0 0 0 
cnn 34,1 53,7 0 4,9 0 7,3 0 0 
feo 44,3 48,4 0 4,1 0 0 3,1 0 

mad1 75 25 0 0 0 0 0 0 
mad2 100 0 0 0 0 0 0 0 
mis12 0 16,7 33,3 0 0 0 0 50 
mitch 18,2 38,6 0 15,9 18,2 9,1 0 0 
nuf2 100 0 0 0 0 0 0 0 
pavi 0 0 0 0 0 0 0 100 
sak 17,4 82,6 0 0 0 0 0 0 

sas-4 95,6 4,4 0 0 0 0 0 0 
sept1 68,4 31,6 0 0 0 0 0 0 
sept2 64,9 33,8 0 1,4 0 0 0 0 
smc1 77,8 22,2 0 0 0 0 0 0 
smc5 72,7 27,3 0 0 0 0 0 0 

UAS-AurA2 57,8 40 0 0 1,1 1,1 0 0 
UAS-AurA3 58,8 26,5 0 0 0 0 14,7 0 
UAS-Polo 48,3 51,7 0 0 0 0 0 0 
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Table 8. Relative percentage of the frequency of phenotypes shown in female eyes 
in the absence of scribRNAi. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi/O.e% WT S-eye M-eye R-eye D-eye T-eye O-eye N-eye 
anillin 74,5 11,5 0,6 9,7 3,6 0 0 0 
asp 21,1 78,9 0 0 0 0 0 0 
aurA 87,5 10,6 0 1,9 0 0 0 0 
aurA’ 100 0 0 0 0 0 0 0 
bub3 19,2 79,4 0 1,4 0 0 0 0 
bubRI 96,6 3,4 0 0 0 0 0 0 
cnn 77,6 22,4 0 0 0 0 0 0 
feo 68,1 23,6 0 0,7 0 5,6 2,1 0 

mad1 75 25 0 0 0 0 0 0 
mad2 100 0 0 0 0 0 0 0 
mis12 7,7 34,6 30,8 3,8 11,5 0 0 11,5 
mitch 48,5 26,4 5,9 4,4 10,3 2,9 0 1,4 
nuf2 86,7 13,3 0 0 0 0 0 0 
pavi 100 0 0 0 0 0 0 0 
sak 22,2 77,8 0 0 0 0 0 0 

sas-4 100 0 0 0 0 0 0 0 
sept1 78,1 21,9 0 0 0 0 0 0 
sept2 100 0 0 0 0 0 0 0 
smc1 50 44,4 0 2,8 2,8 0 0 0 
smc5 58,5 39,0 0 0 0 2,4 0 0 

UAS-AurA2 56,9 43,1 0 0 0 0 0 0 
UAS-AurA3 59,1 40,9 0 0 0 0 0 0 
UAS-Polo 93,0 7,0 0 0 0 0 0 0 
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Table 9. Frequency of phenotypes shown in male eyes. 
 
 

 
 
Table 10. Frequency of phenotypes shown in female eyes 
 
 

 
 
Table 11. Relative percentage of the frequency of phenotypes shown in male eyes  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNAi WT S-
eye 

M-
eye 

R-
eye 

D-
eye 

T-
eye 

O-
eye 

N-
eye 

N 

anillin 15 4 3 14 0 2 0 4 42 
sas-4 22 20 0 0 0 0 0 0 42 

anillin+aas-4 11 9 8 80 18 7 3 0 136 
scrib+anillin 4 0 4 12 2 7 2 0 31 
scrib+sas-4 12 30 0 0 2 1 3 0 48 

scrib+anillin+sas-4 29 19 3 23 18 20 7 2 121 

RNAi WT S-
eye 

M-
eye 

R-
eye 

D-
eye 

T-
eye 

O-
eye 

N-
eye 

N 

anillin 47 7 5 10 3 4 1 0 77 
sas-4 39 9 0 0 0 0 0 0 48 

anillin+aas-4 14 7 2 106 16 3 7 1 156 
scrib+anillin 20 6 1 18 3 9 4 1 62 
scrib+sas-4 22 19 0 1 0 2 2 0 46 

scrib+anillin+sas-4 14 12 6 55 26 23 16 0 152 

RNAi WT S-
eye 

M-
eye 

R-
eye 

D-
eye 

T-
eye 

O-
eye 

N-
eye 

N 

anillin 35,7 9,5 7,1 33,3 0 4,8 0 9,5 100 
sas-4 52,4 47,6 0 0 0 0 0 0 100 

anillin+aas-4 8,1 6,6 5,9 58,8 13,2 5,1 2,2 0 100 
scrib+anillin 12,9 0 12,9 38,7 6,5 22,6 6,5 0 100 
scrib+sas-4 25 62,5 0 0 4,2 2,1 6,25 0 100 

scrib+anillin+sas-4 24,0 15,7 2,5 19,0 14,9 16,5 5,8 1,7 100 
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Table 12. Relative percentage of the frequency of phenotypes shown in female eyes  
 
 

 
 
 
 
 
 
 
 
 
 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 

 

 

 

 

 

 

 

 

 

RNAi WT S-
eye 

M-
eye 

R-
eye 

D-
eye 

T-
eye 

O-
eye 

N-
eye 

N 

anillin 61,0 9,1 6,5 13,0 3,9 5,2 1,3 0 100 
sas-4 81,3 18,7 0 0 0 0 0 0 100 

anillin+aas-4 9,0 4,5 1,3 68,0 10,3 1,9 4,5 0,6 100 
scrib+anillin 32,3 9,7 1,6 29,0 4,8 14,5 6,5 1,6 100 
scrib+sas-4 47,8 41,3 0 2,2 0 4,3 4,3 0 100 

scrib+anillin+sas-4 9,2 7,9 3,9 36,2 17,1 15,1 10,5 0 100 
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