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1.  Abstract/Resumo 

English Version 

Pain arising from joint inflammatory conditions is an incapacitating, serious clinical 

problem affecting millions of people worldwide and representing a huge economic burden 

for the governmental entities. Mostly due to the lack of more knowledge concerning the 

underlying neurobiological mechanisms, diagnoses are still poor and undifferentiated 

while the current treatments are often ineffective. In this context, chronic animal models 

exhibiting a full spectrum of pathological changes comparable to those found in humans, 

are very relevant tools. 

In these studies, by using the monoarthritis (MA) model, induced by complete Freud’s adjuvant (CFA) injection in the tibiotarsal joint, we explored several molecular 

and cellular mechanisms at the dorsal root ganglia (DRG). Indeed, the DRG are important ǲpain structuresǳ, containing the cell bodies of nociceptors, where the information arising 

from the periphery is firstly processed. Thus, in Publication I, we show that the neuronal 

injury marker activating transcriptional factor 3 (ATF3) is induced in DRG of MA rats 

particularly at day 4 of disease evolution. This evidence suggests the activation of ǲneuronal damage programsǳ during this inflammatory condition. Moreover, we 
demonstrate that ATF3 is majorly expressed in peptidergic neurons, putatively C-fiber 

nociceptors already shown to be relevant in persistent pain processing mechanisms. 

Therefore, data made us hypothesize about a role for ATF3 in pain processing  

Indeed, some authors had previously suggested that injury markers (like ATF3) 

could be the triggers of signaling cascades involved in neuron-glia communication. 

Activation of glial cells and their interaction with neurons (in bidirectional crosstalk) have 

been greatly associated with the development of pain states. In Publication II, we show 

that satellite glial cells (SGCs) surrounding primary afferents, are activated and proliferate 
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after 1 week of MA. Moreover, we also demonstrate that the activation of SGCs occurs 

preferentially around ATF3-expressing neurons, which suggested a possible association of 

these two events (and again a role of ATF3 in pain processing).  

Activation of SGCs is mostly attributed to the stimulation of the purinergic receptor 

P2X7 (expressed only in SGCs) and indeed, in Publication III, we demonstrate an up-

regulation of this receptor around 7d of MA, corresponding to the temporal profile of SGCs 

activation. Down-regulation of P2X3R (expressed only in neurons) was also observed after 

this timepoint. These data suggested that a negative feedback control of P2X7R over 

P2X3R expression, previously reported by other authors, was activated during MA; 

possibly to regulate excessive damage. Moreover, these results presuppose a crosstalk 

between neurons and SGCs within the sensory ganglia.  

Data pointed to a role of ATF3 in the MA pathophysiology, possibly associated with 

pain mechanisms. Thus, in order to find novel targets under ATF3 regulation and better 

dissect its signaling pathways, we then suppressed ATF3 expression in DRG cell cultures. 

Interestingly, we detected a significant decrease in the mRNA levels of the heat shock 

protein 90 (HSP90), another stress inducible gene implicated in the inflammatory 

response (Publication III). Indeed, in the DRG of inflamed animals, we then found 

increased levels of HSP90, indicating a role for this chaperone in MA pathophysiological 

mechanisms (Publication IV). In this study, we also demonstrated that HSP90 is massively 

cleaved during MA and we propose this might be a relevant event in the pathophysiology 

of this disease. 

Interestingly, besides reducing the inflammatory response, HSP90 inhibition had 

been shown to alleviate pain. In order to better evaluate the role of HSP90 in MA, we then 

intrathecally administered 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin 

(17-DMAG, an HSP90 inhibitor) to inflamed animals. Thus, in Publication IV, we 

demonstrate that 17-DMAG attenuated MA-induced allodynia which was accompanied by 

a reversion in HSP90 up-regulation and cleavage. Also, the expression of P2X3R and GFAP 
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(typically augmented in MA) significantly decreased following HSP90 inhibition, while 

ATF3 expression was even more exacerbated. Thus, the observed antinociceptive effect 

induced by HSP90 inhibition is likely to result from the attenuation of neuronal 

sensitization (P2X3R) and glial activation (GFAP), as well as of a possible protective role 

of ATF3. Moreover, 17-DMAG seemed to effectively protect HSP90 from cleavage. We 

suggest that the reduced cleavage of the protein might somehow correlate with the 

molecular changes observed, although HSP90 is still not functional as a chaperone after 

17-DMAG treatment. Indeed, this event should be further investigated as it might also 

dictate the efficacy of HSP90 blockers that seem to be promising drugs for pain 

management. 

Altogether, we believe our studies contributed to the better understanding of MA 

pathophysiology. Hopefully, by showing the activation of ǲneuronal damage programsǳ in 
this inflammatory condition, we sustained a new mechanistic perception that considers 

the convergence of neuropathic and inflammatory events overtime. Better knowing these 

mechanisms is crucial for the development of more efficient treatments. In this context, 

ATF3 might be one important key molecule in many of the underlying signaling pathways. 

Our studies also support that SGCs are critical players in pain conditions and thus, 

considering only neuronal activity no longer provides a complete understanding of these 

events. Finally, we unveiled novel molecules and signaling cascades (e.g. HSP90) that can 

be targeted not only to ameliorate the inflammatory response but also to control pain 

associated with joint inflammation 

. 
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Portuguese Version 

A dor associada a inflamações articulares, muitas vezes incapacitante, é uma 

condição clínica grave que afeta milhões de pessoas em todo o mundo e que representa 

um enorme encargo económico para as entidades governamentais. Os diagnósticos são 

ainda pouco completos e indiferenciados e os tratamentos muitas vezes ineficazes. Isto 

deve-se, em grande parte, ao considerável desconhecimento dos mecanismos 

neurobiológicos associados a estas doenças. Neste contexto, os modelos animais crónicos 

que exibem muitas das alterações patológicas observadas no humano constituem 

ferramentas muita valiosas. 

Neste trabalho, usámos como modelo animal a Monoartrite (MA) induzida por 

injeção de adjuvante completo de Freund’s ሺACFሻ na articulação tibiotársica, para 
estudarmos vários mecanismos moleculares e celulares que ocorrem nos gânglios 

raquidianos. De fato, estes gânglios são importantes estrututras envolvidas no 

processamento da dor pois contêm os corpos celulares dos nociceptores. É aqui que a 

informação que vem da periferia é primeiramente processada. Assim, na Publicação I, 

demonstrámos que a expressão do fator de ativação de transcrição 3 (ATF3), um 

marcador de lesão neuronal, é induzida nos DRG de ratos com MA, mais significativamente 

aos 4 dias de doença. Estes resultados sugerem que durante esta condição inflamatória ocorre ativação de ǲprogramas de dano neuronalǳ. Demonstrámos também que o ATF3 é 
maioritariamente expresso em neurónios peptidérgicos, presumidamente em 

nociceptores com fibras C, cuja ativação se mostrou relevante na dor persistente. Assim 

sendo, hipotetizámos que o ATF3 pudesse ter um papel nos mecanismos de 

processamento de dor.  

De fato, alguns autores já tinham sugerido que seria a expressão de fatores de lesão 

(como o ATF3) que levaria à ativação de cascatas de sinalização envolvidas na 

comunicação neurónio-glia. A ativação das células da glia e a sua interação com neurónios 
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(numa comunicação bidirecional) são mecanismos fundamentais ao desenvolvimento de 

estados de dor. Tendo estes dados em consideração, na Publicação II, mostrámos que as 

células gliais satélite (SGCs) que circundam os corpos celulares dos aferentes primários 

são ativadas e proliferam, especialmente 1 semana após indução da MA. Para além disso, 

demonstrámos que a ativação destas células ocorre preferencialmente em redor de 

neurónios que expressam ATF3 o que sugere uma possível associação destes dois eventos 

(e mais uma vez que o ATF3 poderá ter um papel no processamento da dor). 

A ativação das SGCs é em grande parte atribuída à estimulação dos recetores 

purinérgicos P2X7 (expressos unicamente nas SGCs). De acordo, na Publicação III, 

demonstrámos a sobre-expressão deste recetor, especialmente a partir do dia 7 de MA, o 

que é coincidente com o pico da ativação das SGCs. Também observámos a sob-expressão 

do recetor P2X3 (expresso unicamente nos neurónios) a partir deste mesmo tempo. Estes 

resultados sugerem que a regulação negativa do P2X7R sobre a expressão de P2X3R, 

descrita previamente por outros autores, é ativada durante a MA, possivelmente de forma 

a controlar danos excessivos. Estes dados pressupõem também que durante a MA são 

ativados mecanismos de comunicação neurónio-glia nos gânglios sensitivos.  

Estes estudos apontam assim para um papel do ATF3 na patofisiologia da MA, 

possivelmente associado a mecanismos de dor. De forma a identificar novos alvos sob a 

regulação do ATF3, de seguida silenciámos a expressão deste gene em culturas primárias 

de DRG. Surpreendentemente, detetámos uma diminuição significativa nos níveis do 

ARNm da proteína de choque térmico 90 (HSP90), um gene também extremamente 

induzido pelo stress e envolvido na resposta inflamatória (Publicação III). 

Posteriormente confirmámos que a expressão de HSP90 está significativamente 

aumentada em DRG de animais inflamados o que indica um possível envolvimento desta 

proteína nos mecanismos da MA (Publicação IV). Neste estudo também mostrámos que a 

HSP90 é altamente clivada, o que nos parece ser um fenómeno relevante na patofisiologia 

desta condição inflamatória. 
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De facto, para além dos seus conhecidos efeitos na redução da resposta inflamatória, 

o uso de inibidores da HSP90 revelou-se recentemente eficaz no alívio de dor. Assim sendo 

e por forma a melhor compreendermos o papel da HSP90 na MA, inibimos esta proteína 

por administração intratecal de 17-DMAG (17-(Dimetilaminoetilamino)-17-

demetoxygeldanamicina, um inibidor de HSP90) a animais inflamados. Na Publicação IV, 

demonstrámos que o inibidor consegue atenuar a alodínia inerente à condição 

monoartrítica e que tanto a sobreexpressão de HSP90 como a sua clivagem são revertidas. 

Também a expressão de P2X3R e GFAP (tipicamente aumentadas na MA) diminuíu 

significativamente após a inibição da HSP90, enquanto que a expressão de ATF3 aumentou 

ainda mais. Desta forma, é provável que o efeito anti-nociceptivo da droga resulte de uma 

atenuação da sensitização neuronal (P2X3R) e da activação de células da glia (GFAP), 

assim como de um possivel papel protector do ATF3. Para além disso, o 17-DMAG parece 

evitar a clivagem do HSP90. Mediante estes resultados, sugerimos que a menor clivagem 

da proteina possa de alguma forma correlacionar-se com os efeitos moleculares 

observados, muito embora a HSP90 não restitua as suas funcionalidades como chaperone 

após o tratamento com 17-DMAG. Assim, é de extrema relevância investigar e melhor 

perceber este mecanismo de clivagem já que este pode inclusivamente limitar a eficácia 

dos inibidores da HSP90, cujo potential no controlo da dor parece ser inegável. 

Assim sendo, acreditamos que os nossos estudos contribuíram para uma melhor 

compreensão dos mecanismos patofisiológicos da MA. Esperamos que, ao mostrar a ativação de ǲprogramas de dano neuronalǳ numa condição inflamatória, tenhamos 
contribuído para fortalecer a recente teoria de convergência de mecanismos neuropáticos 

e inflamatórios ao longo da progressão da doença. Conhecer estes mecanismos é então 

crucial para que se desenvolvam tratamentos mais eficazes. Neste contexto, o ATF3 parece 

ser uma molécula chave estando envolvida em muitas das vias de sinalização ativadas 

nestas condições. Os nossos estudos mostram também que as SGCs são intervenientes 

cruciais em condições de dor, e portanto, considerar apenas a atividade neuronal já não é 
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suficiente para que se possam compreender integralmente estes fenómenos. Por fim, 

acreditamos ter desvendado algumas novas moléculas e cascatas de sinalização (como por 

exemplo o HSP90) que podem ser alvos terapêuticos relevantes não só na atenuação da 

resposta inflamatória, mas também no combate à dor inerente à inflamação articular 
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2. Introduction  

2.1 Pain as a disease 

Pain is postulated by the International Association for the Study of Pain (IASP) as 

"an unpleasant sensation and an emotional experience associated with a real or a potential tissue damage or described in terms of such damageǳ. It is a physiological protective 

mechanism that acts as a warning signal to any kind of threat to the body integrity. 

However, it can become a pathological condition when it persists without biological 

significance. In these cases, there is a chronification of the underlying mechanisms turning 

pain into a serious clinical problem. Therefore, and contrarily to acute pain that is 

characterized as a short duration, phasic and intense physiological event, chronic pain is a 

long-lasting, tonic, persistent pathological event characterized by its spontaneous nature 

and lack of evident biological reason (Tracey, I and Bushnell, MC 2009). 

It is highly relevant to further elucidate pain processing mechanisms since millions 

of people continue suffering due to lack of more efficient treatments and knowledge in this 

field. In fact, chronic pain is highly prevalent in developed countries (Breivik, H et al. 2006, 

Azevedo, LF et al. 2012, Breivik, H et al. 2013) and in Portugal it is estimated that about 

37% of the population suffers from this pathological state (Azevedo, LF et al. 2012). This 

condition has serious consequences, such as the patient’s incapacity to perform the 
normal daily tasks, which also affect the family and social environment (Reid, KJ et al. 

2011, Gorczyca, R et al. 2013). Therefore, chronic pain also has an enormous economic 

impact to nations since it is a burden to the government due to considerable direct (like 

health-related services) and indirect (like lower productivity of these patients and family) 

costs (Reid, KJ et al. 2011, Breivik, H et al. 2013). It has been estimated that chronic pain in 

the Portuguese population is associated with a total of 2,000 million euros per year in 
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direct costs which include visits to health care professionals, treatments and medical tests, 

while the total annual indirect costs were underestimated to be around 2,600 million 

euros, mostly concerning early retirement, job loss and absenteeism (Azevedo, LF et al. 

2014). Being such a relevant and serious clinical problem, understanding chronic pain is 

crucial for the development of better therapeutic approaches which would solve several of 

the above mentioned issues.  

 

2.2 Physiology of the nociceptors and pain processing 

Pain transmission is initiated by the activation of nociceptors, a specialized sub-

population of sensory neurons of the peripheral somatosensory nervous system capable of 

transducing and encoding noxious stimuli (Gold, M and Caterina, M 2008). Sensory 

neurons or primary afferents have their cell bodies (perikarya or somas) located in the 

dorsal root ganglia (DRG), or in the trigeminal ganglia in case of innervation from the 

head. Their axons are T-shaped, bifurcating into a longer branch that extends to the 

peripheral tissues (skin, muscle and other organs) and another branch extending to the 

dorsal horn of the spinal cord, where the axonal terminal synapses with the second order 

neurons. DRG are also constituted by non-neuronal cells, the satellite glial cells (SGCs) that 

envelop the cell bodies of these primary neurons (Fig. 1). SGCs can also be activated by 

intense stimuli, having a crucial role in intra-ganglionic communication, as will be later 

explored (please refer to chapter 2.5 and 2.6).  
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Fig. 1 - Schematic representation of the primary sensory neurons. Their cell bodies are enveloped 

by satellite glial cells and altogether form the dorsal root ganglia (DRG). One of the branches from 

these neurons extend to the peripheral tissues and the other connects to a second neuron in the 

spinal cord, allowing centralization of a stimulus (from (Takeda, M et al. 2009). 

 

The term nociceptor distinguishes afferents capable of responding to stimuli that 

are potentially dangerous to tissue from those that normally only encode innocuous 

stimuli. Nociceptors convert environmental stimuli into nerve impulses (action potentials) 

in a process called transduction. During this process, the stimuli induces conformational 

changes in the structure of proteins located at the nociceptor peripheral terminals, which 

ultimately leads to the opening/closure of ionic channels resulting in the generation of an 

action potential (Messlinger, K 1997). These neurons codify not only the type of the 

stimulus but also its intensity and location. Localization depends on the somatotopic 

distribution of the central terminals at the dorsal horn of the spinal cord while the 

intensity will depend on the number and frequency of the action potentials generated. 

Perception of pain usually results from the sum of several successive action potentials or 
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the activation of various nociceptors simultaneously, which is known as spatial and 

temporal summation (Reichling, DB and Levine, JD 1999). Lastly, pain perception is 

generated if these firings are propagated to the central terminal of the nociceptor leading 

to successful synapses with the second order spinal cord neurons (Treede, RD 1999). 

However, an interesting feature of the nociceptors is that they can also generate 

outgoing signals towards their peripheral terminals which may alter the peripheral tissues 

they innervate and contribute to the aggravation and perpetuation of the pathological 

states (Carlton, SM 2014). Consequently, the terminals of these neurons release a number 

of mediators produced in their cell bodies that will increase the vascular permeability, 

thus resulting in edema. Following trauma, immune cells are recruited and triggered to 

release inflammatory mediators at the injury site leading to the formation of an 

inflammatory milieu. These released mediators act directly on receptors located at the 

primary afferents terminals, activating several intracellular signaling cascades. In this 

process, called neurogenic inflammation, neuronal excitation will alter the sensitivity of 

these cells to subsequent stimuli (Cervero, F 2008, Basbaum, AI et al. 2009), ultimately 

resulting in phenotypic changes that largely contribute for the development of chronic 

pain states (Cervero, F 2008, Gold, M and Caterina, M 2008).  

 

2.2.1 Classification of the nociceptors 

Nociceptors are known to be anatomically, electrophysiologically and 

neurochemically heterogeneous, which results in distinct sensitivities to different stimuli. 

For example, the cutaneous sensory fibers can be categorized according to the diameter 

and degree of myelination of their axons, and conduction velocity (Table 1). This 

classification is usually applied to the generality of the fibers reaching other 

tissues/organs. Briefly, A-beta ሺAȾሻ fibers have the largest axon diameter, are highly 

myelinated and have higher conduction velocities. A-delta ሺAɁሻ fibers are thinner than AȾ 
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fibers, are thinly myelinated, and have lower conduction velocities. Finally, C fibers have 

the smallest axon diameter, are unmyelinated, and have the lowest conduction velocities 

(Alvarez, FJ and Fyffe, RE 2000, Gold, M and Caterina, M 2008) 

 

Table 1 - Classification of cutaneous sensory fibers 

Fiber type Diameter ሺμmሻ Myelination Conduction 

velocity (m/s) 

% AȾ >10 Thick 30-100 20 AɁ 2-6 Thin 12-30 10 

C 0.4-1.2 None 0.5-2 70 

 

Under normal physiological conditions, any of these subtypes may conduct 

innocuous information, but the majority of nociceptive afferents have C and AɁ fibers. 

When a nociceptive stimulus is applied to the skin, the AɁ nociceptors are the ones 

responsible for transmitting well-localized, immediate, acute pain, which is then followed 

by a more diffuse, poorly localized, slow pain caused by activation of C fibers. Activation of 

C nociceptors is assumed as a cause for the clinically relevant persistent pain (Baron, R 

2000, Kleggetveit, IP et al. 2012, Weng, X et al. 2012). On the other hand, most AȾ fibers 

respond to innocuous mechanical stimulation. During tissue inflammation or peripheral 

nerve lesion, structural, neurochemical and physiological changes may occur in AȾ 
neurons that will facilitate the transduction and encoding of nociceptive stimuli by these 

primary afferents (Baron, R 2000). 

Nociceptors are also classified taking into account the type of the stimulus they 

respond to which can be chemical (C), thermal (T), or mechanical (M) (Table 2). Type I AɁ 
nociceptors, also called high-threshold mechanical nociceptors (HTM), predominantly 

respond to mechanical stimuli under physiological conditions but may also respond to 
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chemical stimuli. Even though they have relatively high heat thresholds (>50ºC) they can 

be sensitized by heat stimuli of long duration such that they will start responding to lower 

temperatures. Tissue injury may also sensitize these fibers lowering both their heat and 

mechanical thresholds. On the other hand, Type II AɁ nociceptors are mainly sensitive to 

thermal stimuli under physiological conditions, although they may also become sensitive 

to chemical stimuli. On the contrary, they have very high thresholds or are unresponsive to 

mechanical stimuli. C nociceptors are also categorized into polymodal nociceptors which 

are sensitive to thermal, mechanical and chemical stimuli, comprising most of the type C 

nociceptors, and mechano-insensitive afferents (MIAs) C-fibers which are responsive only 

to thermal and chemical stimuli (Table 2) (Alvarez, FJ and Fyffe, RE 2000). 

 

Table 2 - The most consensual categorization of the fiber types according to the stimulus 

they respond to. 

Fiber type Type of stimulus Nomenclature/classification AɁ 
Mechanical (chemical and high 

heat) 
Type I (HTM) AɁ 

Thermal (chemical); mainly 

unresponsive to mechanical stimuli 
Type II (A-MIAs) 

C 
Mechanical, thermal and 

chemical 
Polymodal 

C 
Mainly unresponsive to mechanical 

stimuli 
C-MIAs 

 

Nociceptors can also be classified according to the molecular markers they express. 

Among these are neuropeptides, enzymes, receptors and growth factors. Larger 

nociceptors are positive for neurofilament 200 (NF-200), while smaller cells, likely 

representing unmyelinated slow conducting neurons, are negative for this protein. The 

sub-population of smaller nociceptors are generally classified as peptidergic if they 

express Substance P (SP), calcitonin gene-related protein (CGRP) or somatostatin (SOM) 

or classified as non-peptidergic cells if they contain fluoride-resistant acid phosphatase 
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(FRAP) and bind to the plant isolectin B4 (IB4) from Griffonia simplicifolia (Fig. 2) 

(Alvarez, FJ and Fyffe, RE 2000, Priestley, JV 2009). 

 

Fig. 2 – Summary of the main neurochemical populations of the DRG (modified from (Priestley, JV 

2009). CGRP- Calcitonin gene-related protein; IB4 - isolectin B4 from Griffonia simplicifolia; NF-200 – neurofilament 200. 

 

In rats, around 50% of sensory neurons are peptidergic cells and they also express 

tyrosine kinase receptor A (TrkA), the receptor for nerve growth factor (NGF). These cells 

also express the transient receptor potential vanilloid 1 (TRPV1, also known as capsaicin 

receptor) that is activated by heat stimuli. Peptidergic neurons project to lamina I and the 

outer lamina II of the dorsal horn of the spinal cord (Fig. 2 and 3). On the other hand, non-

peptidergic IB4-positive cells express glial cell-derived neurotrophic factor (GDNF). 

Additionally, these cells are the ones normally expressing P2X3, a purinergic ligand-gated 

ionic channel for adenosine triphosphate (ATP). These neurons terminate in the inner part 

of lamina II (Fig. 3). Although this neurochemical classification of primary afferent 

neurons is widely accepted, it is important to recognize that there is sometimes an overlap 

in the expression of these markers, even though this is limited to a very small neuronal 

population (Fig. 2). Moreover, the expression of these markers changes during 
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development and after injury/inflammation, a fact that is also necessary to take into 

consideration (Fig. 3) (Alvarez, FJ and Fyffe, RE 2000, Priestley, JV 2009).  

 

Fig. 3 – Representation of the different neuronal populations in the DRG, according to their size, 

myelination and projection to the spinal cord (modified from (Priestley, JV 2009). Unmyelinated 

peptidergic neurons express neuropeptides such as substance P (SP) and calcitonin gene-related 

protein (CGRP). Moreover, they express tyrosine kinase receptor A (TrkA), the receptor for nerve 

growth factor (NGF), and the channel transient receptor potential vanilloid 1 (TRPV1). Peptidergic 

neurons project to lamina I and the outer lamina II of the dorsal horn of the spinal cord. Non-

peptidergic neurons, positive for isolectin B4 from Griffonia simplicifolia (IB4) express glial cell-

derived neurotrophic factor (GDNF) and the purinergic receptor P2X3. These neurons terminate in 

the inner part of lamina II. Larger myelinated nociceptors are positive for neurofilament 200 (NF-

200) and project to deeper dorsal horn layers. PKCɀ - protein kinase C gamma; NK1 - neurokinin 1 

receptor of SP. 
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The sensory neurons express a wide range of cell surface proteins which are 

commonly used as markers of the neuronal sub-populations (as shown above in Fig. 3). 

Additionally, and more importantly than that, these proteins are crucial mediators in 

signaling processes. Among these, we can outline three subclasses; ion channels, 

metabotropic G protein-coupled receptors (GPCRs) and receptors for neurotrophins and 

cytokines. It is the activation of these receptors on the cell surface that triggers the 

activation of distinct nociceptors and leads to different responses according to the 

environmental stimuli. Thus, they are qualitatively and quantitatively responsible for the 

conversion of a generated potential into a signal. Among the ligand-gated ion channels, the 

purinergic receptors (P2XR) are highly involved in the transduction of extracellular 

signals in response to ATP (Gold, M and Caterina, M 2008); please refer to chapter 2.5.1 

for further detail). 

 

2.3  Neuropathic versus inflammatory painful conditions 

Physiological pain is a protective signal needed for survival whose mechanisms can 

be easily described as consisting on the transmission of impulses from the peripheral 

nociceptors to the central structures. However, when nerve injury or tissue damage occurs 

(including inflammation) a different pain state is generated. In those cases, there is 

nociceptor sensitization and amplification of the general neuronal excitability with greater 

spontaneous and evoked firing. If this overwhelming state persists in time, pain becomes 

pathological and its perception is modified. Chronic pain states might have different 

origins but it is a consensus that in all types of pain the hypersensitization and higher 

firing of the neurons is occurring (Gold, M and Caterina, M 2008). 

Neuropathic pain is caused by a lesion or disease of the somatosensory nervous 

system. According to the IASP definitions, the term lesion is commonly used when 
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diagnostic investigations (e.g. imaging, neurophysiology, biopsies, laboratory tests) reveal 

an abnormality or when there was obvious trauma. The term disease is commonly used 

when the underlying cause of the lesion is known (e.g. stroke, vasculitis, diabetes mellitus, 

genetic abnormality)(Merskey, H and Bogduk, N 1994); updated by the IASP taxonomy 

working group). Indeed, there is some heterogeneity in the causes of neuropathic pain since it can develop following trauma ሺlike transection, compression…ሻ, metabolic 
disorders (such as diabetes), infections (like HIV), exposure to chemicals (for example 

chemotherapy) and immune diseases (like multiple sclerosis). This fact certainly 

contributes to the lack of more knowledge concerning the molecular mechanisms 

underlying neuropathic pain. Clinical and experimental evidence suggests that not only the 

initiation but also the maintenance of neuropathic pain is a result of an aberrant activity of 

the afferent neurons (Gascon, E and Moqrich, A 2010). In fact, upon nerve injury or nerve 

disease, peripheral nerve fibers develop ectopic discharges originating from the site of the 

nerve lesion or the cell body of damaged fibers (Schaible, HG 2007).  

On the other hand, nociceptive pain (designated to contrast with neuropathic pain) 

arises from actual or threatened damage to non-neural tissue and results from the 

activation of nociceptors (Merskey, H and Bogduk, N 1994) updated by the IASP taxonomy 

working group). Inflammatory pain presumes the occurrence of tissue damage and the 

recruitment of different immune cells along with the release of inflammatory molecular 

mediators at the lesion site , that are also capable of activating specific receptors at the 

peripheral terminals. Following activation, these receptors induce an increase in the 

nociceptor excitability that, among others, leads to lower pain thresholds. Besides pain, 

the typical symptoms of an inflammatory condition also include redness in the affected 

area, heat and swelling. There is an acute phase of inflammation characterized by tissue 

healing normally in a short-period. However, prolonged inflammatory states lead to 
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adaptive changes in the central nervous system (CNS) that result in continuous and 

intense pain sensation (Ji, RR et al. 2009). 

In both the neuropathic and inflammatory conditions, the altered sensitivity of these 

neurons normally results in the manifestation of two characteristic phenomena, 

hyperalgesia and allodynia. Hyperalgesia refers to increased pain on suprathreshold 

stimulation (resulting from a stimulus that normally provokes pain), and is therefore an 

increased response at a normal threshold, or at an increased threshold (Merskey, H and 

Bogduk, N 1994) updated by the IASP taxonomy working group). It refers directly to more 

pain in response to the same stimulus and must not be confused with the term ǲsensitizationǳ that refers to an increased response of nociceptive neurons to their normal 
input, and/or recruitment of a response to normally subthreshold inputs (Merskey, H and 

Bogduk, N 1994)updated by the IASP taxonomy working group). Primary hyperalgesia is 

confined to the site of injury while secondary hyperalgesia occurs in uninjured tissue 

nearby the site of the lesion. Primary hyperalgesia, in response to both heat and mechanical stimuli, is produced by activation of AɁ and C fibers that trigger pain pathways 

in the CNS, while secondary hyperalgesia, in response only to mechanical stimuli, is produced by activation of AȾ fibers that trigger tactile pathways (Cervero, F and Laird, JM 

1996, Cervero, F 2008, Sandkuhler, J 2009). The development of allodynia, which is the 

occurrence of a pain following an innocuous stimulus (that does not normally provoke 

pain(Merskey, H and Bogduk, N 1994)updated by the IASP taxonomy working group) is 

also a consequence of the changes in the excitability thresholds of these neurons and is 

also a common feature in chronic pain states (Cervero, F and Laird, JM 1996, Cervero, F 

2008, Sandkuhler, J 2009).  
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2.3.1 Common events and converging mechanisms 

Although the etiologies of neuropathic and inflammatory conditions are different, 

there are several common events in the generation of these pain states (Xu, Q and Yaksh, 

TL 2011). It has been extensively shown that there is immune (i.e. recruitment and 

activation of immune cells) and inflammatory modulation (i.e. release of pro-

inflammatory mediators) in response to nerve injury (the referred neurogenic 

inflammation) (Moalem, G and Tracey, DJ 2006). Others have also shown that excessive 

inflammation in both the peripheral nervous system (PNS) and CNS is one of the causes 

for the initiation and maintenance of a neuropathic pain condition (Ellis, A and Bennett, 

DL 2013). Indeed, recent findings suggest that neuropathic and inflammatory conditions 

tend to mechanistically converge along disease progression. 

Among the several mechanisms that can be observed in both tissue and nerve injury 

pain states, one interesting and important aspect is the altered gene expression of 

receptors, mediators and transcriptional factors at the DRG level, as summarized in Fig. 4 

(Xu, Q and Yaksh, TL 2011). One of the most relevant mediators whose expression is 

changed in both pain conditions is tumor necrosis factor Ƚ ሺTNF-Ƚሻ which is involved, for 

instance, in inflammatory diseases like rheumatoid arthritis (RA) (Taylor, PC and 

Feldmann, M 2009) and in neuropathic pain states as inferred by studies in the spared 

nerve ligation (SNL) model (Schafers, M et al. 2003). Additionally, voltage-gated sodium 

and calcium channels (NaV and CaV, respectively) are also altered in the DRG during both 

conditions, playing a critical role in the control of nerve impulses and neurotransmitters 

release, respectively (Xu, Q and Yaksh, TL 2011). One intriguing point of convergence 

between both pain types is the expression of neuronal injury markers, like that of the 

activating transcriptional factor 3 (ATF3), which is found not only in nerve injury 

conditions but also in inflammatory pain states, as will be later detailed (please refer to 

section 2.6) (Fig. 4). Lastly, in both these conditions there is activation of glial cells (Xu, Q 
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and Yaksh, TL 2011) (Fig. 4) which are critical players in the continued neuronal 

sensitization, known today to be crucial for the development of pain states (detailed in 

sections 2.4/2.5).  

 

Fig. 4 – Changes at the DRG that result in persistent pain, after non-neural tissue injury and/or nerve 

injury. The altered expression of genes in the DRG (TNF and its receptor TNFr, and voltage-gated 

sodium channels or NaV are the most frequently implicated) and the activation of glial cells are 

common events in both neuropathic and inflammatory pain (modified from (Xu, Q and Yaksh, TL 

2011)). 

This mechanistic convergence might explain why the resolution of the original 

injury in many cases of inflammatory pain, does not reverse persistent pain. Indeed, tissue 

resection, herniorrhaphy and joint repair were shown to be ineffective approaches for 

pain control in arthritic patients (Xu, Q and Yaksh, TL 2011). In animals with rheumatoid 

arthritis, amelioration of the inflammatory component did not alleviate persistent 
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allodynia (Christianson, CA et al. 2010). Accordingly, a shift to a more ǲneuropathic pain phenotypeǳ has been suggested for osteoarthritis, as a consequence of the activation of ǲdamage-related programsǳ (Ferreira-Gomes, J et al. 2012, Su, J et al. 2015). Therefore, 

understanding how inflammatory and neuropathic pain mechanisms converge overtime 

will hopefully help develop more efficient treatments and better targeted approaches. 

 

2.4 Joint inflammatory pain 

According to the World Health Organization, musculoskeletal disorders are the most 

frequent cause of disability, the number of cases having increased dramatically in the past 

decade. Chronic or episodic pain is assumed as the main cause for loss of joint mobility 

and function which can deeply result in impaired quality of life. The current treatments 

used for the management of joint pain have limited effectiveness and one of the major 

reasons for this is the lack of knowledge concerning the mediators and mechanisms 

involved in those conditions (McDougall, JJ 2006).  

 

2.4.1 Innervation of the joints and articular pain 

Joints are innervated by branches descending from main nerve trunks or their 

muscular, cutaneous and periosteal branches. A typical joint nerve contains all the three 

types of fibers already mentioned, namely the thick myelinated AȾ, thinly myelinated AɁ, 
and a high proportion (~80%) of unmyelinated C fibers, the latter being either sensory 

afferents or sympathetic efferents (each ~50%). The AȾ fibers are not nociceptive while numerous articular AɁ and C fibers are, terminating as non-encapsulated or ǲfreeǳ nerve 

endings in the fibrous capsule, adipose tissue, ligaments, menisci and periosteum. The 

major neuropeptides in joint nerves are SP, CGRP and somatostatin. Neuropeptide Y has 

also been localized in joint afferents (Schaible, HG et al. 2002).  

http://dx.doi.org/10.1007/978-3-540-29805-2_4274
http://link.springer.com/search?dc.title=CGRP&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://dx.doi.org/10.1007/978-3-540-29805-2_4075
http://dx.doi.org/10.1007/978-3-540-29805-2_2692
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Pain in the joints can be elicited when noxious mechanical or chemical stimuli are 

applied to the fibrous structures, such as ligaments and fibrous capsule, while no pain is 

elicited by stimulation of cartilage as it is not innervated. Stimulation of normal synovial 

tissue rarely evokes pain, and innocuous mechanical stimulation of fibrous structures can 

evoke pressure sensations (Kidd, BL et al. 1996, Ebersberger, H-GSaA 2009). Therefore, 

joint pain arises from peripheral sensitization of joint afferents, being characterized by 

hyperalgesia and persistent pain at rest, while allodynia might be present in movements 

within the working range or during gentle pressure (Schaible, HG et al. 2009). 

It is still unclear how a mechanical stimulus in the joint is converted into a noxious 

electrical signal and propagated along sensory nerves to the CNS. So far, it is assumed that 

movement of the joint generates shear stresses on the axolemma of the 'free' nerve 

endings which results on the opening of mechano-gated ion channels (McDougall, JJ 2006). 

The generated action potentials are then decoded into a mechanosensation, increasing the 

firing rate of the afferent nerve upon a noxious movement of the joint and leading to pain. 

The factors that may alter joint mechanosensitivity and promote nociception can be 

divided into mechanical factors and inflammatory mediators (McDougall, JJ 2006). 

Following joint injury or during inflammation, the synovial blood vessels become 

increasingly permeable to plasma proteins resulting in fluid accumulation into the joint 

with subsequent edema. This effusion causes a dramatic increase in the intra-articular 

pressure as the joint is an enclosed space. Studies in animal models have shown that an 

elevation in intra-articular pressure results in burst firing of articular afferents in a rate 

proportional to the level of pressure incurred. Thus, the increased intra-articular pressure 

and edema formation in arthritic joints seems to activate joint nociceptors, leading to pain. 

On the other hand, following injury or pathogenic infection, a typical inflammatory 

response is often triggered in the joints, as part of an innate healing process initiated to 

repair the damaged tissues. However, these same inflammatory mediators released in this 
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healing process also act on joint sensory nerves, leading to either excitation or 

sensitization. So far, many mediators were shown to be crucial in these processes (such as 

cytokines and prostaglandins production or the expression of P2X purinergic receptors) 

but it is still unclear how joint afferents phenotypically differ from other peripheral 

nociceptors, which would certainly help understand the mechanisms underlying joint 

diseases (Grubb, BD 2009). Moreover, revealing the inflammatory agents that induce 

noxious stimulation and the respective molecular mechanisms is of major therapeutic 

value (McDougall, JJ 2006), as this will help the development of novel and successful 

approaches. 

 

2.4.2 The Monoarthritis (MA) model 

Among several diseases, monoarthritis (MA) is a condition characterized by the 

inflammation of one joint (Byng-Maddick, R et al. 2012). Symptoms resolving within 4 

weeks are described as acute, whereas those persisting beyond 3 months are considered 

chronic. The causes for the development of such conditions can be either inflammatory or 

not and the overlapping of the general symptoms frequently leads to incorrect diagnoses 

which consequently results in poor responses to conventional pharmacological treatments 

like non-steroidal anti-inflammatory drugs ሺNSAID’sሻ (Byng-Maddick, R et al. 2012) 

(Table 3). In the treatment of diseases like osteoarthritis, cyclooxygenase (COX) inhibitors 

(especially COX-2), a sub-class of NSAID’s, are frequently used (Kivitz, A et al. 2008). 

Pharmacological inhibition of COX results in the impairment of prostanoids production 

and release (including prostaglandins), providing pain relief and amelioration of the 

inflammatory process (Laveti, D et al. 2013). Even though these drugs are normally 

effective in some joint inflammatory conditions, a high percentage of cases still remain 

without a successful treatment. 
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Table 3. Differential diagnoses for monoarthritis in humans and the typical protocol for the 

treatment (modified from (Byng-Maddick, R et al. 2012). 

 
Causes Such as  

  
treatment algorithm  

  

 
       

In
fl

a
m

m
a

to
ry

 

Infection bacterial, fungal, viral   NSAID's 

systemic inflammatory 

arthritis 
rheumatoid arthritis 

  ↓ 

Spondyloarthritis psoriatic and reactive arthritis 

  

disease-modifying 

antirheumatic drugs 

(DMARDs) and corticosteroids 

connective tissue 

disease 
Lupus 

  ↓ 

crystal arthritis Gout   biological therapies (anti-TNF) 

Neoplasia 
chondrosarcoma, synovioma, 

osteoma 
  ↓ 

    
  

synovectomy (chemical or 

surgical) 

n
o

n
-

in
fl

a
m

m
a

to
ry

 

Trauma stress fractures, lipomas   ↓ 

Degeneration Osteoarthritis 
  others in the future 

Haemarthroses anticoagulation disorders 
   

 

 

In this context, animal experimental models are exceptional tools to bring light into 

the pathophysiological molecular and cellular mechanisms of these diseases. 

Monoarthritis can be induced in rats by the injection of complete Freund’s adjuvant (CFA -

a solution containing Mycobacterium butyricum) into the tibiotarsal joint, constituting a 

well-established model of inflammatory articular pain firstly described by Butler et al 

(Butler, SH et al. 1992).CFA injection not only in the joint but also into the tail, paw or 

muscle has been consistently used to mimic chronic inflammatory pain conditions (more 

severe than carrageenan) that might occur in humans along with rheumatoid arthritis or 

tendonitis (Gregory, NS et al. 2013).  
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In MA, intra-articular injection of CFA produces an anatomically limited arthritic 

process in rats, stable over 6 weeks and suitable for behavioral and neurochemical studies 

along the disease progression related to the condition and with the outcome of various 

chronic pain treatment methods. It is confined to a single joint making it possible to use 

the contralateral paw as an internal control. Animals normally gain weight and remain 

active which indicates this model has little systemic disturbance, in opposition to 

polyarthritis which can be very aggressive to animals. Sometimes MA may develop into a 

polyarthritic condition, characterized by observable swelling in the contralateral paw and 

sometimes the tail, but in those cases animals are excluded from the study (Butler, SH et 

al. 1992). It is a model widely used in the pain field for which the associated physiological, 

morphological, neurochemical and behavioral changes have been extensively explored 

(Neto, FL et al. 1999, Schadrack, J et al. 1999, Lourenco Neto, F et al. 2000, Neto, FL and 

Castro-Lopes, JM 2000, Neto, FL et al. 2001, Ferreira-Gomes, J et al. 2004, Cruz, CD et al. 

2005, Ferreira-Gomes, J et al. 2006, Potes, CS et al. 2006, Neto, FL et al. 2008, Pozza, DH et 

al. 2010, Borges, G et al. 2014). 

 

2.5 Role of glial cells in chronic pain 

Pathological states were initially believed to be confined only to neuronal 

mechanisms, although considering only neuronal activity provides an incomplete 

understanding of these phenomena. Indeed, glial cells, as non-conducting cells, were firstly 

proposed to give only nutritional and mechanical support to neurons, but nowadays they 

are assumed as key modulators of neurotransmission at the synaptic level and as having a 

role in promoting and controlling the homeostasis of the nervous system (Vallejo, R et al. 

2010). During dysfunctional pain signaling, as it happens in chronic pain states, glial cells 

are abundantly activated, proliferate and may also suffer several biochemical 
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modifications (Milligan, ED and Watkins, LR 2009). They are key modulators of these 

events and potent enhancers of neuronal sensitization, therefore emerging as new targets 

for drug development (Watkins, LR and Maier, SF 2003). 

Indeed, glial cells in the CNS have long been recognized for their responses to injury, 

as well as having a critical role in the genesis and persistence of pain (Watkins, LR and 

Maier, SF 2003). For a long time, the activation of astrocytes and microglia has been 

proposed as a common mechanism underlying several pathological painful conditions 

from different origins (Milligan, ED and Watkins, LR 2009). In contrast, only over the last 

two decades, the peripheral SGCs that remained in the shadow for many years, emerged as 

crucial players in pain modulation. Their unique location in the sensory ganglion was 

shown to strongly contribute to pain facilitation, turning SGCs into promising new targets 

for the development of analgesic drugs (Jasmin, L et al. 2010) 

 

2.5.1 Satellite glial cells: properties and functions 

In the peripheral sensory ganglia, the cell bodies of primary afferents are 

surrounded by SGCs (Fig. 5). Each sensory neuron has its own SGCs sheath, therefore 

forming a distinct morphological and functional unit, separated by regions containing 

connective tissue. In some cases, these units can aggregate forming clusters that, however, 

are more prevalent in young organisms. Space between neurons is minimal and, in 

addition, they have fine processes that sometimes fit into invaginations of SGCs (Hanani, M 

2005). This special localization and physical contact between SGCs and neurons allows a 

perfect communication that is functionally very relevant. 
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Fig. 5– A – Electron micrograph of mouse DRG showing the cell body of a sensory neuron (N1) 

surrounded by a SGCs sheath (in red) (from (Hanani, M 2015). B - Schematic representation of cell 

bodies of primary afferent neurons enwrapped by SGCs, which altogether make part of a dorsal 

root ganglion (modified from (Takeda, M et al. 2009). 

 

SGCs can be easily identified by the presence of several proteins. Just like astrocytes, 

they express glial fibrillary acidic protein (GFAP) and S100, which are both part of its 

cytoskeleton, and glutamine synthetase (GS). GFAP is often used as a marker of SGCs 

activation, since in normal physiological conditions it is barely detectable by 

immunohistochemistry, but increases dramatically after inflammation and/or neuronal 

injury (contrarily to what happens in astrocytes of the CNS where GFAP is readily 

detectable in the cells resting state) (Ohara, PT et al. 2009)). Even though SGCs are often 

compared to astrocytes, there are many other characteristics, as for example their 

embryonic origin, that are completely distinct (Ohara, PT et al. 2009). S100 remains 

unexplored in sensory ganglia and is not a good marker for these cells since it can be also 

expressed by Schwann cells and a subpopulation of sensory ganglia neurons. GS is so far 

the most useful marker, while GFAP is used to identify activated SGCs (Hanani, M 2005, 

Jasmin, L et al. 2010). 
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Evidence shows that SGCs play an active role in the neuronal changes occurring 

during pathological states and therefore they are not just bystanders of these conditions. 

Indeed, these cells were shown to be crucial for the development of chronic pain states, in 

many different experimental models. Upon inflammation or neuronal damage, not only 

primary sensory neurons but also the surrounding SGCs undergo characteristic changes. 

SGCs become activated expressing higher levels of GFAP (Dublin, P and Hanani, M 2007, 

Gunjigake, KK et al. 2009, Liu, FY et al. 2012) and their proliferation is significantly 

increased (Elson, K et al. 2004, Elson, K et al. 2004). Moreover, upon nerve injury or 

inflammation the number of gap junctions are increased not only between SGCs of the 

same sheath (the only communication observed in physiological states) but also between 

SGCs surrounding neighboring distinct neurons (Huang, LY et al. 2013). These events 

greatly contribute to the propagation of an excitatory state in the sensory ganglia and the 

continued neuronal sensitization (Takeda, M et al. 2007, Takeda, M et al. 2009) which is 

highly associated with pain sensation.  

Since these changes are common features in both neuropathic and inflammatory 

pain states, exploring SGCs activation and the associated events becomes crucial to better 

understand the pathomechanisms of these conditions at the sensory ganglia level (Xu, Q 

and Yaksh, TL 2011). Indeed, it is nowadays believed that inhibiting SGCs 

activation/proliferation or disrupting their communication might be excellent strategies 

to alleviate pain, in some pathological conditions. In fact, the administration of the SGCs 

metabolic inhibitor fluorocitrate (FC) to neuropathic pain animals, reversed the typical 

pain-induced behaviors (Liu, FY et al. 2012, Cao, J et al. 2014). Moreover, gap junction 

blockers were shown to decrease the spontaneous activity of neurons in injured DRG and 

also reduce pain-induced behaviors, which supports a role of gap junctions in the ectopic 

discharges that contribute to chronic pain states (Hanani, M 2005, 2012, Huang, LY et al. 

2013). 
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Altogether these findings strongly support that communication among SGCs is a key 

mechanism in pain processing. However, it is not only important how SGCs communicate 

with each other but also how they communicate with neurons (and vice-versa), within the 

sensory ganglia, and how they contribute for pain states. 

 

2.6 Neuron-glia interactions in sensory ganglia 

Normally, neurons communicate directly with each other through the release of 

neurotransmitters and activation of receptors. However, in the DRG, a synaptic contact 

between neurons rarely occurs since they are completely wrapped and isolated by SGCs. 

Therefore, it is nowadays assumed that communication between primary afferents is 

majorly mediated by SGCs. Indeed, some authors have proposed a model of ǲtransglial transmissionǳ in the communication between a stimulated and a passive neuron. In these 

studies, they showed the formation of trimers (neuron-SGCs-neuron) wherein communication is majorly done via the SGC in a ǲsandwich synapseǳ mode (Rozanski, GM 

et al. 2013, Rozanski, GM et al. 2013) Fig. 6). 

 

Fig. 6 – Two models of possible communication between neurons within the sensory ganglia. In 

Model A, designated as volume transmission, there is a direct communication between two 

neighbor neurons by the release of chemical mediators (NS for neuronal somata). In Model B, the 
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released transmitters activate the surrounding SGCs instead, which in their turn release other 

molecules that will activate the second neuron. This transglial activation was proposed to be the 

major mechanism of communication within the DRG and to be a finer modulatory mechanism of the 

neuronal activity (Rozanski, GM et al. 2013, Rozanski, GM et al. 2013) (Figure from (Rozanski, GM 

et al. 2013). 

 

In sensory ganglia, the release of mediators from neuronal somata is crucial for the 

communication between the different cells. Many studies have demonstrated that ATP is 

the major mediator released from primary afferent neurons, capable of activating SGCs 

(Wirkner, K et al. 2007). In their turn, these glial cells exert a complex excitatory and 

inhibitory modulation of the neuronal activity. Hence, SGCs are actively involved in 

afferent signaling and therefore in pain processing. This bidirectional communication 

between neuronal somata and SGCs, under injurious conditions, implicates the 

participation of a number of receptors, of which the purinergic receptors are those having 

a dominant role (Gu, Y et al. 2010). 

 

2.6.1 Purinergic system in neuron-SGCs communication 

ATP is one of the major transmitters released by stimulated/sensitized neurons. The 

purinergic receptors, activated in response to purine nucleotides and nucleosides (such as 

ATP), can be divided into metabotropic and ionotropic, the P2Y and P2X being 

respectively the most widely studied receptors in each subfamily. Several subtypes of P2Y 

receptors have been implicated in nociception and are expressed in the DRG (Gerevich, Z 

and Illes, P 2004). Among these, P2Y1 and P2Y2 are highly expressed in rat sensory 

neurons while only low levels of mRNA can be found for P2Y4 and P2Y6 (neither receptor 

has been localized in sensory neurons; (Ruan, HZ et al. 2005). 
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However, it is widely accepted that P2X are more relevantly involved in pain 

transmission (Gerevich, Z and Illes, P 2004), being found in both neurons and SGCs within 

the sensory ganglia. To date, seven mammalian P2X receptor subunits (P2X1–P2X7) have 

been identified in the form of homotrimers, heterotrimers or multimers (Habermacher, C 

et al. 2015). The different subunits share the same general structure with an intracellular 

N- and C-termini, two membrane-spanning domains and a large extracellular loop 

containing 10 conserved cysteine residues. They differ in their affinity to ATP (and other 

analogues) as well as in the ATP-evoked currents (Dunn, PM et al. 2001). These receptors 

are non-selective channels with considerable permeability to Ca2+ and Na+ ions. 

Interestingly, when activated, some (but not all) might even expand their pores allowing 

larger molecules to pass (Khakh, BS and North, RA 2006). Among the seven subclasses 

known so far, P2X2–P2X6 mRNAs were found in DRG neurons (data on P2X1R are 

controversial (Kobayashi, K et al. 2005)) while P2X7 and P2X4 were the only subtypes 

detected in SGCs (North, RA 2002, Kobayashi, K et al. 2005) (Table 4). P2X3R is 

particularly relevant in sensory ganglia as it is the most abundant subclass found in 

primary afferents. Almost all neurons express P2X3R at embryonic stages, however at day 

14 post-natal only 50% of the small and medium primary afferents express this receptor 

(Ruan, HZ et al. 2004). In fact, P2X3 is majorly expressed in non-peptidergic C-fiber 

nociceptors being frequently used as a marker of this neuronal population (Fig. 3; (Chizh, 

BA and Illes, P 2001, Puchalowicz, K et al. 2014, Beamer, E et al. 2015).  

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0301008201000053#200002557
http://www.sciencedirect.com/science/article/pii/S0301008201000053#200024329
http://www.sciencedirect.com/science/article/pii/S0301008201000053#200014114
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Table 4 - Expression of P2X receptors in primary afferent neurons (modified from (Dunn, PM et al. 

2001) and SGCs in the sensory ganglia. 

Neuronal cell body 

 

SGCs around cell bodies 

P
ro

te
in

 

P2X3 -  high level of expression in 

non-peptidergic small- to medium-

diameter neurons; many bind IB4 

 

P2X2 - present in many small and 

large neurons 

 

P2X1; P2X4,5,6 variable low level 

of expression in some cells 

P2X7 abundantly expressed 

m
R

N
A

 

tr
a

n
sc

ri
p

ts
 P2X1-6 - all present; the highest 

level was found for the P2X3 

transcript (others could not find 

P2X1R mRNA in the DRG) 

P2X7 abundantly expressed 

P2X4 less extent 

 

Remarkably, a unique feature of sensory ganglia is that P2X7Rs are abundantly and 

exclusively expressed in SGCs (not in DRG neurons) (Chen, Y et al. 2008), while P2X3Rs 

can only be found in DRG neurons (Chen, Y et al. 2008) (Table 4). This distinct expression 

suggests that ATP acts differently on neurons and on SGCs (Gu, Y et al. 2010) and supports 

the relevance of P2XR in the communication between these two cell types. 

At the DRG level, even though neurons almost do not communicate chemically with 

each other, there is evidence that they release chemical signals, which might affect the 

excitability of SGCs instead. Besides the release of mediators such as SP, CGRP or nitric 

oxide (NO), it has also been reported that the electrical stimulation of DRG neurons 

induces robust vesicular ATP release from the somata, in a process that requires entry of 

Ca2+ (Zhang, X et al. 2007) (Fig. 7). The ATP released from sensitized neurons is then 

capable of activating the P2X7R found exclusively in the SGCs, therefore mediating the 

communication between the neuronal soma and glial cells. In fact, P2X7R is assumed as a 

crucial key for the neuron-glia communication in the sensory ganglia and one of the major 
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triggers for SGCs activation and proliferation, during pathological conditions (Villa, G et al. 

2010, Hanani, M 2012). Moreover, P2X7R activation is intimately associated with the 

production and release of pro-inflammatory mediators, such as tumor necrosis factor 

alpha (TNFȽ) and interleukin 1 beta (IL-1Ⱦ), by activated SGCs, which highly contributes 

for the continued neuronal sensitization, in these conditions (Alves, LA et al. 2013). 

Interestingly, ATP is also released by activated SGCs exerting a similar effect on neurons. 

Furthermore, the glial release of TNFȽ and ATP, by independent signaling pathways, is 

capable of increasing the activity of P2X3R in the soma (Takeda, M et al. 2009, Gu, Y et al. 

2010, Huang, LY et al. 2013), which is also reported to increase neuronal excitability (Xu, 

GY and Huang, LY 2002); Fig. 7). 

However, in addition to the above mentioned excitatory effect, activation of P2X7R 

in SGCs was also found to exert inhibitory actions on DRG neurons. It has been 

demonstrated that blocking P2X7Rs and their mediated ATP release resulted in increased 

P2X3R expression in DRG neurons and that reducing P2X7R expression (by using small 

interference RNA, siRNA) also increased P2X3R expression. These findings highly suggest 

that P2X7R activation tonically suppresses the expression of P2X3Rs in DRG neurons 

(Chen, Y et al. 2008). Additionally, this suppression was reverted by treating ganglia with 

an antagonist for the metabotropic P2Y1 receptor, which supports that the activation of 

P2Y1Rs in neurons is required and sufficient for the inhibitory P2X7R-P2X3R control 

(Chen, Y et al. 2008, Chen, Y et al. 2012) Fig. 7).  
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Fig. 7 – Summary of the most relevant mechanisms in neuron-glia communication in the sensory 

ganglia, upon nerve stimulation. Calcum entry (1) is needed for the release of intravesicular ATP 

(2) upon an electrical stimulus of DRG neurons. Released ATP exerts an effect on the excitability of 

SGCs, through activation of P2X7R (found exclusively in these cells) (3). Besides ATP, other 

mediators such as CGRP, SP and NO are also released from hypersensitized neurons, acting on 

specific receptors on the SGCs membrane (4). P2X7R activation is closely associated with the 

production and release of the pro-inflammatory mediators TNFȽ and IL-1Ⱦ, from the activated SGCs 
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ሺ5ሻ. Both ATP and TNFȽ directly and indirectly increase neuronal P2X3R activity (6), while ADP in 

a P2Y1-mediated cascade (7) will down-regulate P2X3R expression in a inhibitory mechanistic 

control (8) (modified from (Costa, FA and Moreira Neto, FL 2015). 

 

Many studies show that disruption of these signaling cascades, namely the activation 

of these receptors and ATP release, results in a lower neuronal hypersensitization and 

reduced nociceptive behavior, turning P2X receptors into novel and appealing targets for 

more effective pain treatments. In the case of sensory ganglia, the fact that P2X7R is 

exclusively expressed in SGCs while P2X3R can only be found in neurons, along with the 

known negative regulation of P2X7R over P2X3R expression, makes them even more 

interesting targets to be evaluated in pain conditions.  

 

2.6.2 P2X receptors in pain processing 

The release of ATP from damaged or inflamed tissue was assumed as a nociceptive 

stimulus after it was found that administration of this molecule induced pain in humans 

(Bleehen, T and Keele, CA 1977). This supports per se the involvement of P2XR in 

nociception. In fact, the genetic disruption of P2X3R resulted in the total abolishment of 

transient ATP-evoked currents in cultured sensory neurons (Cockayne, DA et al. 2005). 

Numerous reports show the antinociceptive effect of P2X3R antagonists in both 

inflammatory (Prado, FC et al. 2013) and neuropathic pain models (Jarvis, MF et al. 2002). 

Additionally, null-P2X3R mice show decreases in nociceptive behavior, comparing to naïve 

animals, when injected with ATP (known to induce pain-like behavior) (Cockayne, DA et 

al. 2000). Alterations in P2X3R mRNA and protein levels have also been extensively 

documented for different painful pathological conditions (Tsuzuki, K et al. 2001, Xu, GY 

and Huang, LY 2002). However, data are sometimes inconsistent concerning the direction 
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of these changes and therefore further investigation is needed to better understand the 

role of P2X3R in pathological states and nociception.  

On the other hand, P2X7R, expressed in SGCs instead, appears to be crucial for the 

development of normal inflammation and hyperalgesia (Dell'Antonio, G et al. 2002, 

Chessell, IP et al. 2005). Activation of P2X7R is directly associated with the release of 

cytokines like TNFȽ and IL-1Ⱦ from glial cells, upon injury or inflammation. In fact, P2X7R 

knock-out mice lack the ability to release IL-1Ⱦ in response to ATP stimulation (Solle, M et 

al. 2001) and therefore do not develop swollen paws or joint cartilage lesions as wild-type 

arthritic animals do (Labasi, JM et al. 2002). Additionally, many studies demonstrate that 

P2X7R expression is up-regulated in these pathological conditions (Chen, Y et al. 2008) 

and that it has a functional role in pain processing. Indeed, in a model of CFA induced 

hyperalgesia, the nociceptive behavior was reverted by the administration of oxidized 

ATP, an irreversible inhibitor of P2X7R (Dell'Antonio, G et al. 2002). Furthermore, P2X7R 

knock-out mice do not show thermal and mechanical hypersensitivity following 

inflammation, nerve ligation or lipopolysaccharide (LPS) treatment (Clark, AK et al. , 

Chessell, IP et al. 2005). 

Both P2X3 and P2X7 receptors are undoubtedly involved in nociception and as a 

result they are pointed as novel targets for the relief of chronic pain (Chizh, BA and Illes, P 

2001). However, the available data are still inconsistent concerning the expression of 

these receptors (and their contribution to pain processing) in different pathological 

conditions or distinct stages of the diseases progression. Additionally, the complexity of 

the signaling cascades involved, namely the P2X7R-P2X3R inhibitory control, might 

contribute to the apparently controversial data. Thus, in order to develop successful 

analgesic drugs, it is crucial to better elucidate the purinergic signaling cascades and 

underlying mechanisms, in painful conditions. 
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2.7 Activating Transcriptional Factor 3 (ATF3) – the stress 

inducible gene 

Activating Transcriptional Factor 3 (ATF3) is a member of the mammalian 

activating transcription factor /cAMP responsive element binding (ATF/CREB) family of 

transcription factors. In what regards to the nervous system, ATF3 is assumed and 

commonly used as neuronal injury marker (Tsujino, H et al. 2000) as it is significantly 

induced in primary afferents, in several models of neuropathy (Tsujino, H et al. 2000, 

Liang, L et al. 2010, Hunt, D et al. 2012). However, more recently, it has also been found in 

sensory ganglia neurons upon inflammatory conditions that are believed to reach a 

neuropathic state (Xu, Q and Yaksh, TL 2011). Even though some of their functions and 

signaling cascades are known, its exact role in the nervous system is still poorly 

understood. Indeed, ATF3 is an interesting gene known to initiate a wide range of 

signaling cascades that, depending on the cellular context, might inclusively result in 

opposite cell fates. Therefore, it seems crucial to evaluate ATF3 role in different painful 

conditions, namely during inflammation where data are more inconclusive. Identifying the 

ATF3 signaling cascades in these conditions will help better understand the convergence 

of inflammatory and neuropathic mechanisms over time and the eventual relevance of this 

factor in nociception (regulating, for example, neuron-SGC communication). 

 

2.7.1 Gene variants, induction, regulation and function 

Interestingly, ATF3 is a transcriptional factor that represses rather than activates 

transcription from promoters with ATF sites. There are different isoforms and 

alternatively spliced forms of ATF3 that differ in their mechanism of action (Fig. 8).  
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Fig. 8 – Activating transcription factor 3 (ATF3) gene and protein structure. A schematic 

representation of the ATF3 gene structure and transcript splice variants (Hunt, D et al. 2012). 

 

In contrast to ATF3 that is a repressor, the ATF3ΔZip isoform lacks a leucine zipper 

domain and does not bind to DNA, therefore promoting transcription with or without ATF 

sites, possibly by sequestering inhibitory co-factors away from the promoter (Fig. 9) 

(Chen, BP et al. 1994). ATF3 has been described as an immediate early gene, a stress 

inducible gene and an adaptive response gene (Thompson, MR et al. 2009). The regulation 

of ATF3 expression appears to take place mainly at the translational level and ATF3 

promoters contain transcription factor binding sites consistent with its expression being 

induced by stressful stimuli (Hunt, D et al. 2012). Other research groups, interested in the 

molecular mechanisms of ATF3, showed that the repression of the ATF3 promotor can be 

done by the ATF3 gene itself which provides a possible mechanisitic explanation for the 
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transient expression of ATF3 upon stress induction (Wolfgang, CD et al. 2000). This auto-

repression shortens the period of its expression in response to stressful stimuli which is 

an important regulation of the stress response itself (Hunt, D et al. 2012); Fig. 9). 

 

 

Fig. 9 – Mechanisms of inhibition (A) and activation (B) of transcription by ATF3. ATF3 represses 

transcription from a promoter with ATF sites by stabilizing inhibitory co-factors at the promoter 

(A). Other isoforms might activate transcription from a promoter without ATF sites by sequesterig 

the inhibitory co-factors away from the promoter (Chen, BP et al. 1994). 

 

ATF3 is expressed in a wide range of cells from different tissues such as 

cardiomyocytes (Nobori, K et al. 2002), adipocytes (Jang, MK and Jung, MH 2015), 

myeloid-derived cells and parenchymal cells from the lung ((Shan, Y et al. 2015), retinal 

ganglia cells (Saul, KE et al. 2010) or immune cells (Thompson, MR et al. 2009), among 

others. In general, it has a low expression level (if at all) in the quiescent cells of healthy 

tissues, but it is increased/induced under stress conditions, such as injury, ischemia, 

ischemia/reperfusion or chemical toxin (Hai, T and Hartman, MG 2001). The ATF3 

expression that occurs after an insult was shown to be either detrimental or protective 

depending on the different stimuli (Zhou, H et al. 2014) and therefore ATF3 is considered 

to be an adaptive-response gene (Hai, T and Hartman, MG 2001). In fact, it has already 

been associated to apoptosis, for example, in human colorectal cancer cells (Lee, JR et al. 
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2014). On the other hand and controversially to its pro-apoptotic characteristics, it has 

been referred several times as a survival promoter. In fact, many studies have already 

shown how ATF3 expression acts as a protective mechanism and cellular improvement 

promoter (Seijffers, R et al. 2014, Xie, JJ et al. 2014). 

This discrepancy may be due to the fact that ATF3 can be either a repressor or an 

activator, as already mentioned. Therefore, it is possible that, when induced during stress 

responses, ATF3 activates some target genes but represses others, depending on the 

promoter and cellular context (Hai, T et al. 1999). In conclusion, ATF3 regulates multiple 

targets and may play different roles. In 2010, Tsonwin Hai, expanded these concepts 

referring to ATF3 as ǲa hub of the cellular adaptive-response network to respond to signals perturbing homeostasisǳ (Hai, T et al. 2010) please refer to section 2.7 for details 

on the related signaling pathways). 

Despite the evident induction of ATF3 by stress signals, the inherent consequences 

of its activation during a stress response are not clear and even less is known about its 

functional significance in physiological states (Hai, T et al. 1999). This reinforces the fact 

that continue studying ATF3 is crucial as it is a key regulator of some pathological 

signaling cascades.  

 

2.7.2 ATF3 expression in the nervous tissue in physiological and 

pathological conditions 

ATF3 can be found in both the central and peripheral nervous systems, including 

neurons and glial cells. Centrally, it has been detected in areas of peri-infart cortex and 

thalamus cortical neurons, after middle cerebral artery occlusion (model cerebral 

ischemia) (Ohba, N et al. 2003), and up-regulated after intracortical axotomy (Mason, MR 

et al. 2003). Unlike peripheral neurons, neurons from the CNS do not regenerate and 
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therefore the presence of ATF3 is found exclusively after damage and in very specific 

cases, confined to very small regions near the lesion.  

In the PNS, ATF3 is mainly expressed in the cell bodies of the primary afferent 

neurons in the sensory ganglia. As it happens in other tissues, ATF3 is either not expressed 

or expressed at very low levels in physiological conditions (intact neurons in vivo). 

Indeed, some detected ATF3 in the nuclei of a very small percentage of primary sensory 

neurons in uninjured rats (Averill, S et al. 2002) but others failed to find ATF3-positive 

immunoreactivity in the same uninjured cells (Tsuzuki, K et al. 2001). On the other hand, 

the undoubtable induction of ATF3 expression in primary afferents (but not spinal cord), 

in many models of neuronal injury, strongly suggests it plays a role in these damaged 

neurons. In fact, ATF3 up-regulation was found in DRG neurons after peripheral nerve 

compression (Isacsson, A et al. 2005), chronic constriction injury (CCI;(Obata, K et al. 

2003, Pavel, J et al. 2013), spinal nerve ligation (SNL; (Fukuoka, T et al. 2012), spared 

nerve injury (SNI; (Cachemaille, M et al. 2012) or spinal nerve transection (Tsujino, H et 

al. 2000). The indirect development of peripheral neuropathy, like that induced by the 

chemotherapy treatment with Paclitaxel, also leads to the upregulation of ATF3 in primary 

sensory neurons in both DRG and trigeminal ganglia of experimental animals (Jimenez-

Andrade, JM et al. 2006, Peters, CM et al. 2007). Diabetic peripheral neuropathy also 

caused ATF3 upregulation in mouse DRG neurons (Wright, DE et al. 2004). Altogether 

these findings largely contributed to the use of ATF3 as a neuronal injury marker. 

On the other hand, ATF3 expression during inflammatory conditions is more 

inconsistent and controversial. Capsaicin, formalin, mustard oil or menthol injected into 

the plantar surface of the hind paw of mice also induced expression of ATF3 in distinct 

subpopulations of sensory neurons (Braz, JM and Basbaum, AI 2010). The injection of formalin into the footpad of rats induced an inflammatory response accompanied by 
induction of ATF3 expression in some DRG neurons and even a few motor neurons in the 



Activating transcriptional factor 3 in joint inflammatory pain: 

exploring mechanisms at the sensory ganglia 

Porto, 

2016 

 

51 

spinal cord (Tsujino, H et al. 2000). Additionally, ATF3 was upregulated in DRG neurons in 

rat models of osteoarthritis induced by monoiodoacetate (MIA) or collagenase injection in 

the knee joint, where the extent of axonal injury is unknown (Ivanavicius, SP et al. 2007, 

Ferreira-Gomes, J et al. 2012, Adaes, S et al. 2015). However, ATF3 is not always induced 

or expressed in the same way, during an inflammatory condition. For example, CFA did not 

produce ATF3 upregulation when injected into the rat footpad, although it induced a profound inflammatory response (Braz, JM and Basbaum, AI 2010). It seems then that 

ATF3 is induced in particular inflammatory conditions proposed to concur with some extent of neuronal damage and shift to a ǲneuropathic phenotypeǳ (Braz, JM and Basbaum, 

AI 2010). Different agents and the severity of the local damage might dictate the existence 

or not of a neuropathic component in these cases (triggered by an inflammatory initial 

condition).  

Also controversial is the expression of ATF3 in peripheral glial cells. Some showed 

that ATF3 immunoreactivity was present not only in the sensory neurons’ cell bodies but 
also in the SGCs of all ganglia after paclitaxel treatment in rats, while the same was not 

observed in ganglia of vehicle-treated animals. The highest number of ATF3-

immunoreactive (IR) SGCs was observed in lumbar ganglia as well as the greatest number 

of nodules of Nageotte (Jimenez-Andrade, JM et al. 2006). Others also showed expression 

of ATF3 in Schwann cells during sciatic nerve repair in diabetic rats (Stenberg, L et al. 

2012) and sciatic nerve compression (Isacsson, A et al. 2005). However, this has not been 

generally reported, perhaps because the expression is much weaker than in the sensory 

neurons (Hunt, D et al. 2012) or due to the different mechanisms triggered upon different 

initial stimuli. Therefore, the relevance of glial expression of ATF3 in a pathological 

conditions is still unknown  

Taking all this in consideration, it seems of extreme relevance to further investigate 

the role of ATF3 in both inflammatory and neuropathic conditions in order to better 
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understand how these underlying mechanisms converge over time. Consequently, 

unraveling the ATF3 signaling pathways will also shed light into the transition from acute 

to persistent pain and into how the cell fate of the neurons is decided in each case ሺbetween survival, regeneration, apoptosis…ሻ. Moreover, it is also important to evaluate 

the ATF3 possible effect(s) on pain processing since these signaling pathways might act as 

regulating events with relevant contributions for the nociception-related mechanisms, 

such as those implicated in neuron-glia communication (SGCs activation/proliferation) or 

neuronal regeneration. 

 

2.8 ATF3 signaling pathways: interactions with other proteins 

Peripheral injury or inflammation elicits a sequence of molecular, cellular and 

ultrastructural responses at the DRG level. Among these, the expression of ATF3 in sensory 

neurons was curiously observed in both conditions. Interestingly, evidence suggests that 

ATF3 is much more than a marker of neuronal injury, but its complex interactions with 

other transcription factors and proteins make it hard to evaluate the role of ATF3 in the 

injured nervous structures (Hunt, D et al. 2012). As previously mentioned, ATF3 can be 

part of a wide range of signaling pathways that, according to the cellular context 

(extracellular signals), may decide the cell fate (Hai, T et al. 2010, Hunt, D et al. 2012). The 

existence of activation and repression isoforms also expands the regulatory functions of 

this factor. However, the majority of the studies showing that ATF3 is an adaptive gene 

involved in the pathogenesis of several diseases were carried out in non-neuronal cells 

(Hai, T et al. 1999, Hai, T et al. 2010). Thus, the role of ATF3 in the nervous system still 

remains to elucidate and part of these signaling cascades still need in vivo validation.  

Further investigating these events seems crucial to understand the transition from acute to chronic pain as well as identifying the ǲprogramsǳ triggered at each stage of a 
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painful condition, that basically decide the cell fate. In this context, it is important to 

overview the ATF3 most important signaling pathways, and its association with other 

relevant molecules. 

 

Neuroprotection and regeneration pathways 

ATF3 expression in many tissues is associated with dysfunction and disease 

progression, but interestingly, in neurons its expression is normally correlated with 

axonal regeneration and neuroprotection. Indeed, ATF3 was proposed to promote cell 

survival and enhance neurite outgrowth, in a c-Jun dependent pathway involving heat 

shock protein 27 (HSP27) and Akt activation (Nakagomi, S et al. 2003). Moreover, ATF3 

was shown to induce the regeneration of sensory axons. In transgenic mice, the 

constitutive expression of ATF3 in DRG neurons enhanced the rate of nerve regeneration, 

following sciatic nerve injury (Seijffers, R et al. 2007). This phenomenon was again 

accompanied by an increased expression of regeneration-associated genes such as small-

proline rich protein 1A (SPRR1A), HSP27 and c-Jun. In that study, no changes in GAP-43 or 

the signal transducer and activator of transcription 3 (STAT3), a regeneration-related 

transcription factor, were observed (Seijffers, R et al. 2007). However, others have 

suggested a parallel increase in the expression of ATF3 and GAP-43 in a model of 

osteoarthritis (Su, J et al. 2015) and increased GAP-43 expression in ATF3-positive 

neurons (Ferreira-Gomes, J et al. 2012), which supports a relation between these proteins 

and a role for ATF3 in neuronal regeneration (Ferreira-Gomes, J et al. 2012).  

In fact, due to their high co-expression following traumatic injury and other stressful 

stimuli, c-Jun is proposed as a prime candidate for controlling ATF3. However, increases in 

c-Jun are not required for ATF3 upregulation in primary sensory neurons (Tsujino, H et al. 

2000). Mitogen-activated protein kinase (MAPK) pathways are also involved in the 

cellular response to many of these external stimuli. Among these, the p38 pathway, 
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extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) 

pathways are also known to regulate ATF3 expression (Hai, T et al. 1999, Lu, D et al. 2007, 

Hai, T et al. 2010, Lee, JR et al. 2014).  

 

Fig. 10 – ATF3 as a hub of the cellular adaptive-reponse network. ATF3 is involved in the 

pathogenesis of diseases, being triggered by diverse extracellular stress signals and involved in 

several signaling pathways (modified from Hai, 2010 #234). 

 

Inflammatory signaling pathways 

Interestingly, ATF3 is known to be involved in the resolution of the inflammatory 

response by negatively regulating the toll-like receptor 4 (TLR4) pro-inflammatory 

signalling pathway (Gilchrist, M et al. 2008). TLRs are pathogen recognition receptors 

activated during innate immune system responses and known to identify both pathogen–
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associated molecular patterns (PAMPs) and danger–associated molecular patterns 

(DAMPs; (Li, J et al. 2013). There are several subfamilies according to the type of host they 

recognize. TLR4 is one of these receptors highly involved in inflammatory responses, 

activating signaling pathways that result in the production of proinflammatory cytokines 

and chemokines. LPS, a membrane component typical of Gram-negative bacteria, is one of 

its well-known ligands. Besides microglia in the CNS and macrophages, TLR4 is also 

expressed in primary afferents of the sensory ganglia. (Barajon, I et al. 2009). Curiously, 

and contrarily to what happens in the CNS, TLR4 cannot be found in glial cells (SGCs) at 

the DRG.  

Activation of TLR4 during inflammation induces ATF3 expression through 

stimulation of the JNK, p38 MAPK and nuclear factor κB (NF-κB) pathways, while ATF3, in 

its turn, exerts a negative feedback control on this cascade (Whitmore, MM et al. 2007, 

Suganami, T et al. 2009, Lai, PF et al. 2013, Park, HJ et al. 2014). In this negative control, 

ATF3 down-regulates pro-inflammatory mediators like TNFȽ and also IL-1Ⱦ (Suganami, T 

et al. 2009), possibly to control the extent of the tissue damage. Indeed, evidence strongly 

suggest that ATF3 expression in the nervous system is majorly protective (Hunt, D et al. 

2012). 

Moreover, in mouse embryonic fibroblasts and macrophages, ATF3 was shown to 

mediate a mechanism of IL-6 down-regulation via the heat shock transcription factor 1 

(HSF1;(Takii, R et al. 2010). HSF1 is a highly conserved transcription factor that 

coordinates stress-induced transcription (of genes like ATF3) and strongly induces 

transactivation of heat shock proteins (HSPs; (Vihervaara, A and Sistonen, L 2014). HSPs 

are abundant and highly conserved chaperones that, likewise ATF3, are dramatically 

increased in cells upon stress ሺsupposedly as ǲdanger signalsǳ to promote protection; 

(Osterloh, A and Breloer, M 2008)). They are crucial for the survival of eukaryotic cells by 

promoting the correct folding of client proteins. Although ATF3 has been associated with 
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other HSPs (Nakagomi, S et al. 2003), its relation with HSP90 recently stand out. Indeed, 

ATF3 was shown to be regulated by HSP90 at the mRNA stage (Sato, A et al. 2014) while in 

cancer derived cell lines HSP90 inhibition induced ATF3 expression (Hackl, C et al. 2010). 

Interestingly, HSP90 is an attractive chaperone in the context of inflammation because it 

induces the production of proinflammatory cytokines (by the monocyte-macrophage 

system) via the TLR4 signal transduction pathways (Tsan, MF and Gao, B 2004), while 

HSP90 inhibitors are known to attenuate these responses (Hutchinson, MR et al. 2009, 

Yun, TJ et al. 2011, Qi, J et al. 2014). Therefore, besides their well-documented effects in 

cancer treatment (Neckers, L and Neckers, K 2002, Soti, C et al. 2005, Neckers, L 2007), 

recent studies started exploring the potential anti-inflammatory properties of HSP90 

inhibitors. Even though this is not clear, evidence suggest that ATF3 could be part of the 

TLR4-HSP90 signalling pathway in inflammation. 

 

Pain-related pathways 

It is still unknown whether ATF3 plays a relevant role in nociception or not, and 

probably the major reason has been the lack of efficient transgenic mice for a long time 

(Hunt, D et al. 2012). However, many studies suggest that ATF3 regulates signaling 

pathways that are, directly or indirectly, associated with pain processing. Indeed, in TLR4 

deficient mice, both the cisplatin-evoked allodynia and the induced ATF3 expression in 

DRG neurons were reduced in comparison to wild type mice. This not only suggests that 

the neuronal ATF3 is regulated by the activation of the TLR4 cascades in the DRG, but also 

that those events might be correlated with pain processing (Park, HJ et al. 2014). 

However, others have shown that TLR4 activation was not sufficient to induce pain 

sensation and that second mediators were necessary. Indeed, they demonstrated that 



Activating transcriptional factor 3 in joint inflammatory pain: 

exploring mechanisms at the sensory ganglia 

Porto, 

2016 

 

57 

HSP90 is required, as part of the TLR4-mediated pathway, for enhancement of CCI-

induced allodynia (Hutchinson, MR et al. 2009).  

Despite the lack of more knowledge concerning the role of chaperones in the 

nociception, HSP90 was interestingly shown to be one of the 11 molecules that make part 

of a P2X7 receptor-protein complex (Adinolfi, E et al. 2003). Since P2X7 is highly 

associated with pain states, being the major responsible for the activation of SGCs in these 

conditions (Chen, Y et al. 2008, Arulkumaran, N et al. 2011, Alves, LA et al. 2013), the 

presence of HSP90 in this complex might also support a role for this chaperone in 

nociception. Moreover, the reported association of ATF3 with HSP90 (Hackl, C et al. 2010) 

might again suggest the involvement of this transcriptional factor in pain signaling 

cascades. 

Also curious is that some studies suggest that ATF3 and P2XR might be included in 

the same signaling cascades, contributing to the development of pain states. Indeed, in a 

model of neuropathy induced by resiniferatoxin (RTX), a capsaicin analog, the number of 

P2X3+/ATF3+ sensory neurons was linearly correlated with increased mechanical 

thresholds (Hsieh, YL et al. 2012). As previously mentioned, P2X3R is intimately 

correlated with pain states (Wirkner, K et al. 2007) and implicated in neuron-SGCs 

interactions, in a P2X7R-mediated mechanism (Chen, Y et al. 2012). Indeed, some authors 

defend that it is the expression of injury factors (like ATF3) in damaged neurons that 

might signalize and initiate these neuron-glia communication events (Elson, K et al. 2004).  

Therefore, although evidence might suggest the involvement of ATF3 in nociception 

(possibly through P2X receptors, TLR4, HSP90), not much is known so far. Particularly in 

DRG neurons, it is still not fully understood how ATF3 expression is correlated with pain 

processing events and which are the principal signaling cascades. 
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3. Aims 

Joint inflammatory conditions are one of the major causes for chronic debilitating 

pain with an alarming increase in the number of cases worldwide. In fact, due to their 

complexity, pain processing mechanisms are still not fully understood. The lack of more 

knowledge might account for the substantial inefficacy of the most common treatments. 

Taking this in consideration, the main aim of this work was to explore the 

pathophysiological mechanisms underlying the MA inflammatory pain condition, at the DRG 

level, namely the involvement of ATF3. In order to do so, several tasks were designed, each 

devoted to a specific objective.  

Increasing evidence showing that inflammatory and neuropathic conditions 

mechanistically converge along disease progression, together with studies suggesting the 

occurrence of neuronal damage in joint pain, were the first triggers that led us to explore 

these events in MA. Thus, as a first objective we aimed at investigating the expression of 

the neuronal injury marker ATF3 in primary afferents of MA rats along the disease 

progression, as an indication of a possible transition to a ǲneuropathic phenotypeǳ in the 
pathophysiology of the disease. To better understand the possibility of a neuropathic 

component in this condition, ATF3 expression was also evaluated in DRG of MA animals 

treated with ketoprofen, a NSAID used for the amelioration of the inflammatory 

component (Publication I). We then aimed at identifying the DRG neuronal population(s) 

expressing ATF3 in order to find out the type of nociceptors being injured which would 

allow us not only to infer about the expression of other molecules but also about ATF3 

involvement in nociception (Publication I). 

While studying MA pathophysiological mechanisms at the DRG, the emerging role of 

SGCs in pain processing as well as their active intervention in neuron-glia communication 

within the sensory ganglia, soon stand out. Thus, we evaluated both the activation (by 
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quantifying the expression of GFAP) and the proliferation (by quantifying the 

incorporation of bromodeoxyuridine - BrdU) of SGCs in the DRG of MA animals, along the 

disease progression (Publication II). Moreover, since some suggested it is the expression 

of injury factors that initiate neuron-glia crosstalk mechanisms, we speculated about a role 

of ATF3 in regulating these events .Therefore, to understand if activation of SGCs was 

preferentially occurring around damaged neurons, and find some sort of correlation 

between these events, we also evaluated the SGCs activation around ATF3-expressing 

neurons (Publication II). 

Interestingly, P2X receptors had been greatly associated with activation of SGCs and 

proposed as the most relevant players in neuron-glia communication (Chizh, BA and Illes, 

P 2001). Thus, we then evaluated the temporal profile of P2X7R and P2X3R expression in 

sensory ganglia of MA animals (Publication III). However, whether ATF3 was regulating 

the expression of these receptors was still not clear. To do so, we silenced ATF3 by using 

siRNA in primary cell cultures of DRG and assessed the expression of P2X7R and P2X3R 

(at mRNA level). To also investigate the effect of ATF3 knock-down on SGCs activation, 

GFAP expression was equally quantified (Publication III). Moreover, in this study, we also 

evaluated the expression of HSP90, upon ATF3 suppression. Indeed, HSP90 is also a stress 

inducible gene expressed upon inflammation (via TLR4-signaling pathway) (Tsan, MF and 

Gao, B 2004, 2009) but poorly explored at the DRG. Besides being previously associated 

with ATF3 (Hackl, C et al. 2010, Sato, A et al. 2014), HSP90 had been described to be part 

of a P2X7R-protein complex (Nollen, EA and Morimoto, RI 2002, Adinolfi, E et al. 2003), 

which altogether prompted us to investigate the mRNA levels of the HSP90 chaperone in 

ATF3-silenced cell cultures.(Publication III). 

Taking in consideration the results from these in vitro experiments, as well as the 

known great involvement of HSP90 in the inflammatory response, we hypothesized about 

a role of HSP90 in MA pathophysiological mechanisms. To test this, the expression of the 
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two isoforms of HSP90 was then evaluated in the DRG of MA animals by real time 

quantitative polymerase chain reaction (RT-qPCR), along with the expression of ATF3, 

GFAP, P2X3 and P2X7, to confirm previous data (Publication IV).  

In order to better explore the role of HSP90 in MA, we then intrathecally 

administered an HSP90 inhibitor, 17-(Dimethylaminoethylamino)-17-

demethoxygeldanamycin (17-DMAG) to inflamed animals and assessed the effect of this 

drug on nociceptive behavior (Publication IV). Indeed, besides the successful use of these 

drugs in the treatment of cancer (Neckers, L and Neckers, K 2002), neurodegenerative 

diseases (Waza, M et al. 2006) and inflammatory conditions (Madrigal-Matute, J et al. 

2010), HSP90 inhibition had also been shown to alleviate pain in a neuropathic model 

(Hutchinson, MR et al. 2009) suggesting a novel role of this chaperone in nociception.  

Subsequently, we investigated the effect of this inhibition on the gene expression of 

ATF3, since its association with HSP90 had been previously reported (Hackl, C et al. 2010). 

Moreover, HSP90 had been found to promote glial activation while HSP90 inhibition 

resulted in suppression of these mechanisms (Kakimura, J et al. 2002, Lisi, L et al. 2013). 

Therefore, after 17-DMAG administration to MA animals, we also analyzed the expression 

of ATF3, GFAP, P2X3 and P2X7 at the DRG (Publication IV). Furthermore, the level of 

HSP90 cleavage was assessed as a functional relevant event since it is highly promoted by 

reactive oxygen species (ROS) that are increased in inflammatory conditions like MA 

(Publication IV). 
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4.1 Publication I 

Neuronal injury marker ATF-3 is induced in primary afferent 

neurons of monoarthritic rats. Neurosignals (2011) 
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from the first days of disease, mainly affecting small-to-me-

dium peptidergic neurons. The intra-articular injection of 

complete Freund’s adjuvant and the generation of a neuro-

inflammatory environment seem to be the plausible expla-

nation for the local nerve damage.  

Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Joint inflammation is a major clinical problem and a 
main cause of debilitating chronic pain, characterized by 
pronounced mechanical hyperalgesia and persistent pain 
at rest  [1] . Pain mechanisms require the sensitization of 
primary sensory neurons, whose cell bodies are located 
in dorsal root ganglia (DRG), and involve several media-
tors that trigger particular signal-transduction pathways. 
A great part of these pathways imply the activation of 
transcription factors, in which gene expression becomes 
altered. In particular pathological conditions, DRGs are 
actually responsible for the synthesis of signaling mole-
cules involved in reaction cascades that can ultimately 
lead to phenomena like survival or regeneration. Elucida-
tion of these related molecular mechanisms is crucial to 
understand pain transmission processing in an inflam-
matory condition, bringing into light possibilities for new 
treatment approaches  [2] .

 Key Words 

 Activating transcription factor 3  �  Calcitonin gene-related

peptide  �  Isolectin B4  �  pAkt  �  Dorsal root ganglia  � 

Joint inflammatory pain  �  Neuronal damage  �  

Immunohistochemistry 

 Abstract 

 Activating transcription factor 3 (ATF-3) expression has been 

associated with several signaling pathways implicated in 

cellular stress response in many cell types and is usually re-

garded as a neuronal damage marker in dorsal root ganglia 

(DRG). We investigated ATF-3 expression in primary affer-

ents in the monoarthritic (MA) model of chronic inflamma-

tory joint pain. Immunohistochemistry revealed that ATF-3 

is highly induced mainly in small and medium neurons, es-

pecially at 2 and 4 days of MA in L 5  DRGs. Colocalization with 

calcitonin gene-related peptide (CGRP) and isolectin B4 

(IB4) demonstrated that ATF-3-immunoreactive cells are 

mainly peptidergic. The lack of significant differences in 

ATF-3 and pAkt colocalization indicated that ATF-3 is prob-

ably not involved in a pAkt-mediated survival pathway.

Anti-inflammatory (ketoprofen) administration failed to re-

verse ATF-3 induction in MA rats, but significantly increased 

CGRP expression. These data suggest that ATF-3 expression 

is definitely involved in MA, actually marking injured neu-

rons. Some degree of neuronal damage seems to occur right 
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  Activating transcription factor 3 (ATF-3) has been sug-
gested as acting as an ‘adaptive response’ due to its ability 
to respond differently accordingly to the cellular context 
 [3] . Its inclusion in anti- and pro-apoptosis mechanisms 
 [4] , cell survival  [5] , regeneration  [6]  and neuroprotection 
 [7]  signaling events has been reported. In a pAkt-mediat-
ed survival pathway the ATF-3/c-Jun heterodimer has 
been suggested to promote nerve elongation and inhibit 
apoptosis in neurons under death stress such as nerve in-
jury  [8] . In pain models, a marked increase in pAkt levels 
was observed following peripheral nerve injury, whereas 
carrageenan-induced inflammation induced only slight 
increases in the number of pAkt-positive DRG neurons 
without affecting the activated (phosphorylated) protein 
levels. Despite the significance of these results, a very lim-
ited effect of the intradermal carrageenan injection, and 
the associated inflammatory mechanisms, was demon-
strated  [9] . However, the role of these biomolecules in pain 
pathophysiology is still to be unmasked.

  Nowadays, ATF-3 is mostly assumed as a neuronal
injury marker, after its expression was found to be high-
ly induced in several models of neuropathic pain  [10–
12] . Interestingly, in the collagen-induced arthritis and 
monoiodoacetate-induced osteoarthritis joint pain mod-
els, ATF-3 was also expressed in DRG neurons  [13, 14] , 
suggesting some degree of neuronal damage is occurring. 
However, data on ATF-3 expression in primary afferents 
in different models of inflammatory pain have not always 
been consistent  [15–17] . For example, intraplantar injec-
tion of complete Freund’s adjuvant (CFA) did not induce 
any ATF-3 expression, suggesting there is no neuronal 
damage associated  [15, 16] .

  Taking into account these controversial data and the 
sparse information available on the role of ATF-3 in pain 
processing, we aimed to investigate its expression pattern 
in primary afferents during different timepoints of 
monoarthritis (MA), a well established model of chronic 
joint inflammatory pain induced by injection of CFA into 
the tibiotarsal joint  [18] . In order to characterize the neu-
ronal populations most implicated, we further analyzed 
the ATF-3-expressing cells’ size distribution and colocal-
ization with isolectin B4 (IB4) or calcitonin gene-related 
peptide (CGRP)  [19] . CGRP has early been described to 
potentiate pain signaling from primary sensory neurons 
to the spinal cord, functioning as a mediator of neuro-
genic inflammation at the periphery  [20] . It has been rec-
ognized as a nerve regeneration-promoting peptide, after 
neuronal damage  [21] . More recently, its expression was 
shown to be either increased or decreased depending on 
the sciatic nerve injury, indicating that the nature of the 

peripheral injury has an impact on CGRP expression  [22]  
even affecting different neuronal populations  [23] . Thus, 
possible changes in CGRP expression during MA were 
also evaluated. In order to investigate the trigger of a pos-
sible survival pathway associated to ATF-3 induction in 
MA, pAkt expression was also analyzed. Additionally, we 
administered an anti-inflammatory non-selective cyclo-
oxygenase (COX) inhibitor (ketoprofen) in order to eval-
uate its effect on ATF-3 and CGRP expression during es-
tablishment of MA. Parts of this work have been pub-
lished in abstract form  [24, 25] .

  Materials and Methods 

 Animal Handling and MA Induction 
 Experiments were carried out in adult male Wistar rats 

(Charles River Laboratories, France) weighing between 200 and 
300 g. A total of 42 animals were used in this study but 2 of them 
were excluded since they developed signs of polyarthritis (see Re-
sults). Animals were housed 2–3 animals per cage under con-
trolled conditions of lighting (12-hour light/12-hour dark cycle) 
and temperature as well as water and food ad libitum. Efforts were 
made in order to minimize pain and distress and reduce the num-
ber of animals used. All procedures were carried out according
to the European Communities Council Directive 86/609/EEC 
amended by the Directive 2003/65/CE of July 22, 2003 and to the 
ethical guidelines for investigation of experimental pain in ani-
mals  [26] . MA was induced by injecting 50  � l of CFA into the left 
tibiotarsal joint  [18]  under isoflurane anesthesia (5% for induc-
tion, 2.5% for maintenance). CFA was prepared as previously de-
scribed  [27]  and MA animals were allowed to survive for 2, 4, 7 
and 14 days. Control animals were injected with 50  � l of CFA ve-
hicle (composed by the same reagents as CFA except for  Mycobac-
terium butyricum ) and allowed to survive for 2 days. To minimize 
fear-motivated behaviors, animals were habituated to the experi-
menter for several days before CFA injection and during the pro-
gression of MA. The evolution of the inflammatory reaction was 
monitored daily and was scored according to Castro-Lopes et al. 
 [28] . This score takes in consideration the inflammatory signs of 
the injected ankle and reduction of the locomotor activity. Score 
0 means no inflammatory signs. Score 1 indicates the presence of 
minor changes such as redness and swelling and score 2 denotes 
more intense swelling and some avoidance of passive movements. 
In score 3, additionally, rats show reluctance to place weight over 
the affected limb. In score 4, there is severe inflammation with 
persistent flexion of the affected limb and repercussion over the 
motor activity of the animal. In order to better evaluate the sever-
ity of inflammation, the diameter of the animals’ affected paw 
was also measured, right before sacrificing them.

  Immunohistochemistry 
 All animals were perfused through the ascending aorta with 

250 ml of oxygenated Tyrode’s solution followed by 750 ml of para-
formaldehyde 4% in phosphate buffer (PB) 0.1  M , after intraperi-
toneal anesthesia with chloral hydrate 35% (0.1 ml/100 g of animal 
weight). The ipsi- and contralateral DRGs corresponding to spinal 
segments L 3 , L 4  and L 5  were removed and post-fixed in the same 
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fixative solution for 4 h and then cryoprotected overnight (sucrose 
30% in phosphate buffer saline (PBS) 0.1  M ). The DRGs, either be-
longing to CFA vehicle-injected controls or inflamed CFA-inject-
ed animals with 2, 4, 7 and 14 days of MA, were cut sequentially 
into 14- � m sections in a freezing cryostat (–20   °   C). The material 
was collected into poly- L -lysine-coated slides, air dried and stored 
at –20   °   C until immunohistochemistry was performed.

  After the blocking step in the correct normal serum (normal 
goat serum for ATF-3 single and ATF-3/pAkt double immunohis-
tochemistry and normal horse serum for triple immunoreaction 
against ATF-3, CGRP and IB4), in order to avoid unspecific bind-
ings, slides containing every fifth section of each DRG were incu-
bated for 48 h at 4   °   C in appropriate primary antibodies. Sections 
were then incubated for 1 h at room temperature in the suitable 
secondary antibodies. For the single immunolabeling against 
ATF-3, L 3 , L 4  and L 5  ipsi- and contralateral DRG sections (n = 5 
rats for each experimental group) were incubated in polyclonal 
rabbit anti-ATF-3 (1:   500; C-19: sc-188; Santa Cruz Biotechnolo-
gy, Inc.). Detection was achieved by Alexa 594 goat-anti-rabbit
(1:   1,000; A11012; Molecular Probes, USA). For the double immu-
nolabeling against ATF-3 and pAkt, L 5  ipsilateral DRG sections 
(n = 4 rats for controls; n = 5 rats for each of the other experimen-
tal groups) were incubated in polyclonal rabbit anti-ATF-3 (1:   500) 
and monoclonal mouse anti-pAkt (1:   1,000; 5106S; Cell Signal-
ling). Detection was achieved by Alexa 594 goat-anti-rabbit
(1:   1,000) for ATF-3, and Alexa 488 goat-anti-mouse (1:   1,000; 
A11029; Molecular Probes) for pAkt. For the triple immunolabel-
ing against ATF-3, CGRP (neuronal marker for peptidergic pri-
mary afferents) and IB4 (neuronal marker for non-peptidergic 
primary afferents), L 5  ipsilateral DRG sections (n = 5 rats for con-
trols and the 4d MA; n = 4 rats for each of the other experimental 
groups) were firstly incubated in polyclonal rabbit anti-ATF-3
(1:   500) and polyclonal sheep anti-CGRP (1:   4,000; ab22560;
Abcam, Cambridge, UK). Detection was achieved using Alexa 
488 donkey anti-rabbit (1:   1,000; A21206; Molecular Probes) for 
ATF-3, and Alexa 568 donkey anti-sheep (1:   1,000; A21099; Mo-
lecular Probes) for CGRP. Slides with the DRG sections were af-
terwards incubated in the biotin-conjugated IB4 from  Bandeiraea 
simpli cifolia  (1:   1,000; L2140; Sigma-Aldrich) specially diluted in 
a PBS with Triton X-100 (PBST) solution (without normal serum),
containing magnesium chloride (MgCl 2 ), manganese chloride 
(MnCl 2 ) and calcium chloride (CaCl 2 ) in a 1:   50 final concentra-
tion, for one night, at room temperature. Detection was achieved 
by incubation in Streptavidin 350 (1:   200; Jackson ImmunoRe-
search Laboratories, Inc.). As specificity controls for each immu-
noreaction, slides were processed in a similar way as described 
above but without incubation in primary antibody.

  At the time of analysis, glass slides containing the immunore-
acted sections were coverslipped with glycerol prepared with PBS 
0.4  M  and visualized under fluorescence microscope.

  Ketoprofen Treatment 
 MA was induced in rats as described above, and ketoprofen, a 

non-steroidal anti-inflammatory COX inhibitor drug, was daily 
administered subcutaneously (5 mg/kg of rat/24 h). In a first ex-
perimental group, ketoprofen daily treatment started at day 0, 
when MA was induced by CFA injection, to diminish the develop-
ment of the neuroinflammatory environment right from the be-
ginning. In a second experimental group, ketoprofen daily treat-
ment started only after day 2 of MA, as we knew that ATF-3 was 
already significantly induced in L 5  ipsilateral DRGs at this time-

point. A control group of rats was injected with CFA into the tib-
iotarsal joint to induce MA, and received a daily subcutaneous 
saline injection. All animals were perfused at 4 days of MA (n = 5 
rats for each experimental group), the peak of ATF-3 expression, 
and the L 5  ipsi- and contralateral DRGs were dissected and fur-
ther processed for immunohistochemistry against ATF-3 (n = 4 
rats for each experimental group) and CGRP (n = 5 rats for each 
experimental group) as described above. All animals were evalu-
ated for the severity of inflammatory symptoms by using an ap-
propriate score  [28]  and by measuring the diameter of the in-
flamed paw as described above.

  Data Analysis 
 Cell Counting 
 Immunohistochemistry analysis was performed in a blinded 

manner using a fluorescence microscope (AxioImager Z1; Zeiss) 
coupled to a digital camera (AxioCam MRm) and computer im-
age software (AxioVision 4.6) to grab the images. For the photo-
micrographs, the acquisition conditions such as amplification of 
the objective, light intensity, contrast and hue were maintained 
constant.

  For ATF-3 single labeling, all immunoreactive (IR) cells were 
counted in every fifth section of the ganglion and divided by the 
total of tissue sections containing neuronal cell bodies present in 
the respective glass slides (approximately 9–12 sections per DRG). 
ATF-3 nuclear labeling is very clear and undoubtedly easy to de-
tect, so only cells where nuclei were visualized were considered. 
For quantification of pAkt-IR cells in ATF-3+pAkt double label-
ing, a threshold was established based on labeling for fibers, and 
only cells with a signal above that threshold were considered as 
positive. This was performed with the help of the ImageJ �  version 
1.37 (free access software) computer program. At least 350 total 
cells with visible nuclei per rat (corresponding more or less to a 
sample of 1,500 cells per experimental group) were randomly cho-
sen from 8 to 9 (every fifth) sections of the same DRG and were 
counted, as similarly described before  [23, 29] . pAkt immunore-
activity was expressed as the percentage of pAkt-IR cells in the 
total number of counted neurons. Colocalization between pAkt 
and ATF-3 was expressed as the percentage of double IR cells in 
the total number of ATF-3-IR cells (ATF-3 neuronal population). 
For the triple immunolabeling against ATF-3, CGRP and IB4, 
quantification was done also randomly in 8–9 sections by using 
an approach similar to that described for pAkt. Depending on the 
marker this corresponded to 400–750 labeled neurons per exper-
imental group. Thus, in order to evaluate the expression of ATF-3 
and the two markers individually, IR cells (for each of the three 
molecules) were counted and divided by the total number of se-
lected neurons. To obtain percentages of colocalization between 
ATF-3 and CGRP or ATF-3 and IB4, double labeled cells were also 
counted and divided by the total number of ATF-3-expressing 
neurons  [15] . This same random selection of at least 350 total cells 
in 8–9 sections of the same DRG and a similar calculation of per-
centage values was used in single CGRP labeling for both untreat-
ed MA and ketoprofen-treated MA animals.

  Cell Size Distribution 
 Areas of all the ATF-3-IR cells were measured in all experi-

mental groups (n = 4 rats for 7d MA; n = 5 rats for each of the 
other experimental groups), in order to evaluate possible switches 
in ATF-3-positive neuronal population(s) along MA progression. 
CGRP-positive neuron areas were measured in the same IR cells 
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randomly selected for cell counting (n = 5 rats for controls and the 
4d MA; n = 4 rats for each of the other experimental groups). IR 
cells with visible nuclei were manually outlined using a computer 
mouse and the cross-sectional area was determined using the Im-
ageJ version 1.37 (free access software)  [29, 30] . Cell areas were 
grouped into three categories: small ( ! 600  � m 2 ), medium (600–
1,200  � m 2 ) and large neurons ( 1 1,200  � m 2 ) as described by No-
guchi’s group  [31] .

  Statistical Analysis 
 Statistical analysis was performed by using GraphPad Prism 

5 �  (GraphPad Software) and SPSS 13.0. One-way analysis of vari-
ance (one-way ANOVA) was performed for all data to investigate 
significant differences between experimental groups, followed by 
the appropriate post-hoc tests when the level of significance was 
considered as p  !  0.05.

  Bonferroni post-hoc test was used to discriminate differences 
between all experimental groups in ATF-3 and pAkt single im-
munolabeling, ATF-3 and pAkt colocalization and also in triple 
immunoreactions against ATF-3, CGRP and IB4. This post-hoc 
test was also used to evaluate differences in paw diameter. The 
Newman-Keuls multiple comparison test was used to discrimi-
nate differences in cell size distribution of ATF-3- or CGRP-pos-
itive cells. In order to find differences in ATF-3 or CGRP expres-
sion between the non-treated 4d MA rats (non-ketoprofen group), 
the 4d MA rats treated during 2 days (2d ketoprofen) and the 4d 
MA rats receiving ketoprofen from day 0 (4d ketoprofen), the 
Newman-Keuls multiple comparison post-hoc test was also used.

  Results 

 MA Was Successfully Induced 
 All CFA-injected rats showed severe inflammatory 

symptoms such as swelling, redness and avoidance to put 
weight over the inflamed paw. This was reflected in mean 
inflammatory scores near 4 (maximum score), right after 
the second day of MA (3.67  8  0.12), maintaining this 
condition up to the 14th day (3.75  8  0.13) in accordance 
with our previous work  [32, 33] . Controls showed insig-
nificant mean scores (0.67  8  0.11), probably due to local 
trauma caused by the injection procedure. MA animals’ 
inflamed paws showed also significantly (p  !  0.001) 
greater diameters at all inflammatory timepoints (1.24  8  
0.03 cm for 4d MA, for example) than controls (0.59  8  
0.02 cm). Therefore, MA was successfully and homoge-
nously induced in all animals injected with CFA, as they 
were all showing similar physiological responses at each 
timepoint of disease.

  Some animals in the latter phases of the condition (14 
days of MA majorly) may develop polyarthritis, with the 
contralateral non-injected paw and sometimes the tail 
starting to show inflammatory signs, as described by 
Butler et al.  [18] . In our study, all animals showing signs 
of polyarthritis (n = 2 rats) were immediately excluded.

  ATF-3 Is Highly Induced in Primary Afferents during 
MA 
 ATF-3 expression was induced in the ipsilateral DRG 

neurons of MA rats at all timepoints of inflammation 
( fig. 1 b, c). The number of ATF-3-IR cells per tissue slice 
was significantly increased at 2 and 4 days of MA and it 
started diminishing after that period, although at 7 and 
14 days of inflammation ATF-3 was still induced. In-
creases were observed in all DRG levels studied (L 3 , L 4  
and L 5 ), but were more considerable in L 4  and L 5  ganglia, 
while DRGs from control rats showed no significant 
ATF-3 expression ( fig.  1 c). Statistical significant differ-
ences were reached at 4 days of MA for the L 4 , and at 2 
and 4 days of MA for the L 5  DRGs (p  !  0.05; one-way 
ANOVA followed by Bonferroni post-hoc test ;   fig. 1 c). No 
significant expression of ATF-3 was observed in either 
controls or contralateral DRGs in any experimental 
group ( fig. 1 a).

  ATF-3-Expressing Cells Are Mainly Small-to-Medium 
Neurons 
 Measurement of the cells’ areas indicated that ATF-3 

is majorly expressed by small- to medium-sized neurons 
during MA. This is especially obvious for the later stages 
of disease, since the number of ATF-3-expressing cells 
belonging to the large-sized group of neurons ( 1 1,200 
 � m 2 ) is much lower than that of small ( ! 600  � m 2 ) and 
medium cells (600–1,200  � m 2 ) in the 7 and 14d MA rats 
( fig. 1 d). Statistical analysis of significant differences in 
the number of ATF-3-IR cells between each of the three 
distinct sizes within the same experimental group re-
vealed that they were only significant for the 14d MA an-
imals (1.3  8  0.2, 2.2  8  0.4 and 0.3  8  0.1 ATF-3-IR cells/
tissue slice for sizes  ! 600, 600–1,200 and  1 1,200  � m 2 , 
respectively). Greater statistical significance was reached 
for differences between the number of medium- and 
large-sized ATF-3-IR cells (p  !  0.001, one-way ANOVA 
followed by Newman-Keuls multiple comparison test), 
reflecting the lower number of ATF-3-expressing cells 
with a cross-sectional area  1 1,200  � m 2  ( fig. 1 d).

  Expression of ATF-3 Is Higher in Peptidergic than in 
Non-Peptidergic Neurons 
 Analysis of ATF-3 single labeled cells ( fig. 2 a) corrobo-

rated data previously obtained confirming that MA in-
duces ATF-3 expression in ipsilateral primary afferent 
neurons ( table 1 ). Thus, the ATF-3 expression was always 
higher in MA animals when compared to controls which 
showed no ATF-3 expression. As in the previous data,
the 2d (with 6.1  8  1.0% ATF-3-IR cells) and 4d (8.0  8  
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  Fig. 1.  ATF-3 expression in primary affer-
ents of MA rats.  a ,  b  Fluorescent micro-
scope photo images depicting single im-
munolabeling for ATF-3 in L 5  ipsilateral 
DRG neurons from a non-inflamed con-
trol rat ( a ) and from a CFA-injected rat 
with 4 days of MA ( b ). ATF-3-expressing 
cells are shown with the red-labeled nuclei 
(white arrows). Scale bar represents 100 
 � m.  c  The number of ATF-3-IR cells/tis-
sue slice was significantly increased (in 
comparison to controls) at 4d MA for the 
L 4  ganglia and at 2d and 4d MA for the L 5  
ganglia. Although statistical significances 
were not reached for other MA timepoints, 
inflamed animals showed always higher 
expression than controls. Values shown as 
mean  8  SEM.  *  represents p  !  0.05 (one-
way ANOVA followed by Bonferroni post-
hoc test). n = 5 rats per experimental group. 
 d  Cell size distribution of ATF-3-express-
ing cells, as described in Fukuoka et al. 
 [31] , revealed they were mainly small 
( ! 600  � m 2 ) and medium-sized (between 
600 and 1,200  � m 2 ) neurons at all time-
points of MA. This is especially evident for 
the later stages of disease (14d MA) where 
significant differences were found for dif-
ferent size categories.  *  represents p  !  0.05 
and  *  *  *   represents p  !  0.001.   One-way 
ANOVA followed by Newman-Keuls mul-
tiple comparison test   for evaluating differ-
ences in the numbers of IR cells between 
each size within each experimental group. 
n = 5 rats for all groups except for 7d MA 
with n = 4 rats. 
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2.4% ATF-3-IR cells) MA animals were the ones showing 
greater and significantly different values in comparison 
to vehicle-injected rats (p  !  0.01 and p  !  0.001 for the 2d 
and 4d MA, respectively; one-way ANOVA followed by 
Bonferroni post-hoc test;  table 1 ).

  Colocalization percentages for CGRP (marker of pep-
tidergic primary afferents) and ATF-3 within the ATF-3-
positive neuronal population ( fig. 2 d;  table 1 ) were low in 
MA rats, especially at later stages of disease (low at 7 days 

and no colocalization at 14 days;  table 1 ). As expected, no 
colocalization was found for controls, where no ATF-3 
expression was observed. However, statistically signifi-
cant differences were detected for the population of ATF-
3 cells also expressing CGRP. Indeed, colocalization be-
tween ATF-3 and CGRP was significantly different for 2d 
MA (16.0  8  3.7% CGRP+ATF-3-IR cells in the ATF-3 
neuronal population) and 4d MA (26.7  8  2.4%) when 
comparing either to 7d or to 14d MA rats ( table 1 ). These 
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  Fig. 2.  ATF-3 colocalization with CGRP 
and IB4, and CGRP expression pattern. 
 a–d  Fluorescent microscope photo images 
depicting single immunolabeling for ATF-
3 (green nucleus) ( a ), CGRP (red cyto-
plasms) ( b ), IB4 (blue cytoplasms) ( c ) and 
triple immunolabeled cells ( d ), in a L 5  gan-
glia of a 4d MA animal (20 !  magnifica-
tion). Scale bars represent 50  � m.  e  Cell 
size distribution of CGRP-expressing cells 
in the whole DRG neuronal population re-
vealed no neuronal population switch dur-
ing MA, also reinforcing that these pepti-
dergic neurons are mainly small-sized. 
Values shown in percentages as mean  8  
SEM.  *  were used to point significant dif-
ferences between small-sized neurons and 
the other two size categories (medium and 
large);  #  were used to point significant dif-
ferences between medium- and large-sized 
neurons.  #   represents p  !  0.05 and 
 *  *  * / ###   represents p  !  0.001. One-way 
ANOVA followed by Newman-Keuls mul-
tiple comparison test. n = 5 rats for con-
trols and 4d MA, and n = 4 for each of the 
other experimental groups. 
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enhanced colocalizations for the 2d and 4d MA reflect 
the increases in ATF-3 expression during MA at these 
timepoints, as described above ( fig. 1 c;  table 1 ). On the 
other hand, colocalization percentages of ATF-3 and IB4 
(marker of non-peptidergic primary afferents) within the 
ATF-3-positive neuronal population were very low (much 
lower than ATF-3 and CGRP colocalization) and did not 
show any significant differences (fig. 2d;  table 1 ).

  Quantification of CGRP or IB4 ( fig. 2 b, c;  table 1 ) sin-
gle labeled IR cells in ipsilateral ganglia revealed no sta-
tistically significant differences in their expression dur-
ing MA. Also, no noticeable changes in CGRP labeling 
intensity were seen.

  CGRP-Expressing Cells Do Not Undergo a Neuronal 
Population Switch during MA 
 The majority of CGRP-expressing cells, in respect to 

the total CGRP-positive neuronal population, were small-
sized neurons (above 80% for all experimental groups), 
and a smaller portion were medium-sized neurons 
(around 15%; no significant differences between experi-
mental groups). On the other hand, the percentage of 
larger CGRP neurons was nearly insignificant ( fig. 2 e). 
This pattern for the size distribution of CGRP-IR cells 
was also observed when analyzing in respect to the total 
DRG neuronal population (data not shown).

  Possible changes in the pattern of size distribution of 
CGRP-expressing neurons in response to MA were also 
investigated, but these were not found. In fact, percentage 
 values (both in respect to CGRP-positive or to the total 
DRG neuronal populations) were very similar when com-
paring all the different experimental groups ( fig. 2 e;  ta-
ble 1 ).

  ATF-3 and pAkt Colocalization Has Not Changed 
during MA 
 The number of pAkt-IR cells was relatively high at 

baseline, with ipsilateral L 5  DRGs from control animals 
showing 52.3  8  3.0% pAkt-IR cells in the total DRG neu-
ronal population ( fig.  3 b, d). This number was main-
tained quite constant throughout the earlier timepoints 
of MA (50.2  8  2.0 and 55.0  8  1.3% for the 2 and 4 days 
of MA, respectively;  fig.  3 d), and showed a minor de-
crease in the later timepoints (44.2  8  3.5 and 48.0  8  
4.3% for the 7 and 14 days of MA, respectively;  fig. 3 d), 
that did not reach statistical significance (p  1  0.05, one-
way ANOVA).

  In what concerns pAkt colocalization with ATF-3 
( fig. 3 c, e), the quantification revealed that the percentage 
of double-labeled cells in respect to the total population 
of ATF-3-positive neurons achieved values around 55% 
(50.4  8  4.3, 55.8  8  5.6, 47.8  8  14.2 and 64.6  8  4.4 for 
the 2, 4, 7 and 14 days of MA rats, respectively). This val-
ue has not significantly changed between MA inflamed 
animals, as can be easily observed in  figure 3 e. No colo-
calization was found for controls, where none ATF-3 ex-
pression was observed.

  Ketoprofen Treatment Did Not Affect ATF-3 
Induction during MA but Increased CGRP Expression 
 Ketoprofen-treated MA rats showed significantly (p  !  

0.01) smaller paw diameters (1.1  8  0.1 and 1.0  8  0.0 cm 
for 4dMA+2dKet and 4dMA+4dKet, respectively) in 
comparison with respective untreated MA animals (1.2 
 8  0.0 cm for 4d MA), although main inflammatory 
signs, as some swelling, redness and still some reluctance 
to place weight over the affected limb, remained. How-

Table 1. P ercentage (mean 8 SEM) of ATF-3-, CGRP- and IB4-expressing cells in the total DRG neuronal population, and of ATF-3-
IR cells also expressing CGRP or IB4 (double labeling), in L5 DRGs from controls (vehicle-injected) and MA rats at 2, 4, 7 and 14 days 
post-CFA intra-articular injection

Controls n 2d MA n 4d MA n 7d MA n 14d MA n

% DRG cells expressing ATF-3 0 5 6.181.0* 4 8.082.4** 5 2.180.6 4 1.780.4 4
% DRG cells expressing CGRP 33.082.6 5 32.084.0 4 31.681.3 5 27.482.4 4 25.782.6 4
% ATF-3 cells expressing CGRP N/A 5 16.083.7#, §§ 4 26.782.4###, §§§ 5 3.183.1 4 0 4
% DRG cells expressing IB4 50.882.9 5 45.184.1 4 36.882.7 5 47.184.5 4 52.387.3 4
% ATF-3 cells expressing IB4 N/A 5 3.881.5 4 7.082.6 5 11.587.9 4 4.284.2 4

C olocalization between ATF-3 and the neuronal markers used was lower than expected; however, significant differences were found 
in the colocalization with CGRP for the 2d and 4d MA rats. Similar differences were never found for colocalization of ATF-3 with IB4. 
* Significant differences to control. # Significant differences to 7d MA. § Significant differences to 14d MA. * or # represents p < 0.05; 
** or §§ represents p < 0.01; ### or §§§ represents p < 0.001. One-way ANOVA followed by Bonferroni post-hoc test.
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ever, no differences for ATF-3 expression were found 
( fig. 4 g) in MA animals subjected either to 2 ( fig. 4 c) or 4 
days ( fig. 4 e) of ketoprofen daily injection (6.4  8  1.2 and 
8.1  8  1.4% for 4dMA+2dKet and 4dMA+4dKet, respec-
tively) when compared to MA animals with no anti-in-
flammatory treatment (5.7  8  0.7%;  fig. 4 a). Contralat-
eral ATF-3 expression in L 5  DRGs from the ketoprofen-
treated MA experimental groups was null in accordance 
to what we had previously observed for MA animals (data 
not shown).

  Regarding CGRP expression ( fig. 4 h), MA untreated 
animals showed significantly lower values (31.6  8  1.3%; 
 fig. 4 b) when compared to MA animals treated for both 
2 (43.5  8  2.2%;  fig. 4 d) or 4 days with ketoprofen (37.8  8  
2.3%;  fig. 4 f).

  Discussion 

 In this study, it is reported for the first time that CFA 
intra-articular injection induces an immediate and tran-
sient ATF-3 expression in ipsilateral DRGs. ATF-3 ex-
pression occurs mainly in small-to-medium peptidergic 
neurons. No relevant colocalization was found for ATF-3 
and pAkt, suggesting ATF-3 is not implicated in a sur-
vival pathway involving pAkt during MA. Finally, ad-
ministration of an anti-inflammatory drug did not re-
verse ATF-3-induced expression in MA.

  As ATF-3 is regarded as a marker of neuronal lesion 
 [12] , data suggest that some degree of neuronal damage is 
probably occurring, at least in an initial phase of the dis-
ease. This is supported by studies in the MIA-induced 
osteoarthritis model (in the knee joint) where a great ex-
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  Fig. 3.  pAkt expression in primary afferents of MA rats and colo-
calization with ATF-3.  a–c  Fluorescent microscope photo images 
depicting single immunolabeling for ATF-3 (red nuclei pointed 
with white arrows) ( a ), pAkt (green cytoplasms pointed with 
white arrows) ( b ), and double immunolabeled cells (red nuclei and 
green cytoplasms pointed with white arrows) ( c ) in a L   5  ganglia 
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cells) in the total DRG neuronal population, in L 5  ipsilateral 
DRGs, revealed no statistically significant differences among the 
experimental groups.  e  Percentage (%) of colocalization between 
ATF-3 and pAkt did not show any significant difference during 
disease progression. All values shown as mean  8  SEM. One-way 
ANOVA followed by Bonferroni’s test. n = 5 rats for each of the 
MA experimental groups and n = 4 rats for the control group.           
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pression of ATF-3, suggestive of possible neuropathy in 
the early phase of the disease, was observed  [14] . Contro-
versially, others showed that antigen-induced arthritis in 
the knee did not induce ATF-3 expression, although there 
was great macrophage infiltration, implying that pro-
found inflammation by itself cannot trigger ATF-3 in-
duction  [17] . It seems that peripheral injection of different 

chemical stimuli induced a stable, time- and dose-depen-
dent significant ATF-3 expression in DRG neurons, while 
intraplantar injection of CFA failed to evoke ATF-3 in-
duction  [15] . Considering our data in MA, it appears that 
CFA only triggers ATF-3 expression in primary afferents 
when injected in joints. The intra-articular injection pro-
cedure per se does not seem to induce nerve damage, 
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cent microscope photo images depicting 
single immunolabeling for ATF-3 (red-la-
beled nuclei pointed with white arrows) ( a , 
 c ,  e ) and single immunolabeling for CGRP 
(red-labeled cytoplasms pointed with 
white arrows) ( b ,  d ,  f ), in L 5  DRGs of 4d 
MA rats injected with ketoprofen vehicle 
(     a ,  b ), 4d MA rats with 2d of ketoprofen 
administration ( c ,  d ) and 4d MA rats with 
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 g  ATF-3 expression was still induced in 
MA animals upon treatment with the anti-
inflammatory drug. No significant differ-
ences were found between any groups. Val-
ues shown as mean      8  SEM. One-way 
ANOVA followed by Newman-Keuls mul-
tiple comparison. n = 4 for each of the 
three experimental groups.  h  The number 
of CGRP-IR cells was significantly in-
creased in the L 5  ganglia belonging to both 
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SEM.  *   represents p        !  0.05 and  *  *   repre-
sents p  !  0.01. One-way ANOVA followed 
by Newman-Keuls multiple comparison.
n = 5 for each of the three experimental 
groups. 
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since no ATF-3 expression was detected in controls. Thus, 
the only possible neuronal damage inducer is likely to be 
CFA itself. This may also be related to specific sensitiza-
tion of joint nociceptors, different for those found in skin 
 [1] . In fact, most studies focus on cutaneous nociception, 
while joint pain mechanisms are not fully clarified. 
Chronic pain incidence in deeper tissues and joints might 
actually reflect enhanced vulnerability of the anatomical 
structures involved  [1] . Additionally, as ATF-3 expression 
is triggered by TNF- �  and IL-1  [3, 34] , it is likely that the 
neuroinflammatory environment generated in response 
to CFA leads to local nerve damage in the joint and con-
sequently induces ATF-3 expression in primary afferent 
neurons. In support, Dilley et al.  [35]  found ATF-3 was 
upregulated in DRGs following local nerve inflammation 
of intact sciatic nerves induced by wrapping oxidized cel-
lulose saturated in CFA around the nerve. The transient 
ATF-3 expression also found in MA is consistent with 
other studies  [36, 37] . This temporal pattern is probably 
due to an ability of ATF-3 to act as a transcriptional
autorepressor  [38] . Alternatively, the transient pattern 
might be explained by the occurrence of regeneration 
mechanisms, which in fact have already been associated 
with ATF-3 expression  [39, 40] .

  Cell size measurement of ATF-3-expressing neurons 
indicated they are mainly distributed among small-to-
medium populations in L 5  DRGs from MA rats. This size 
distribution was relatively constant throughout disease 
progression. Significant differences within each experi-
mental group were found only at 14 days, indicating that 
in later phases of the disease ATF-3 is induced mainly
in medium-sized neurons. However, triple immunoreac-
tions against ATF-3 and the CGRP and IB4 neuronal 
markers did not show the expected colocalization with 
ATF-3 suggested by cell size analysis. The number of IB4-
IR cells did not significantly change along MA or when 
compared to controls. Moreover, the ATF-3 and IB4 co-
localization did not suffer any changes between experi-
mental groups, and, besides, was very low. Considering 
that a high number of ATF-3-positive neurons were 
small-sized, this low colocalization with IB4 might seem 
surprising. However, others found no IB4/ATF-3 double 
labeled cells following severe nerve damage  [29] .

  The ATF-3 and CGRP colocalization was significant-
ly increased at 2 and 4 days of MA, which reflects the sig-
nificantly increased ATF-3 expression we found at these 
timepoints of disease. However, the same was not found 
for colocalization with IB4. Thus, this increased colocal-
ization with CGRP probably means ATF-3 is mainly in-
duced in peptidergic primary afferents at the early time-

points of MA. However, the values of this colocalization 
were lower than expected if considering that a high num-
ber of ATF-3-positive neurons during MA were small-to- 
medium-sized. Indeed, ATF-3 expression has been asso-
ciated with reduced CGRP mRNA expression after nerve 
crush, with CGRP being expressed only in uninjured 
neurons neighboring injured sensory neurons, which 
may paradoxically alter how CGRP is expressed in intact 
neurons  [41] . This is a plausible explanation for the low 
colocalization found for ATF-3 and CGRP.

  CGRP is normally released under painful stimulation 
potentiating nociceptive signaling  [42] , and plays impor-
tant roles in the maintenance of both neuropathic and 
inflammatory pain states  [22, 23, 43, 44] . In MA, no sig-
nificant differences in CGRP expression were found. Al-
though increased CGRP levels are usually driven by in-
flammation, our data are actually in accordance with 
previous reports where CGRP expression in DRGs was 
not significantly altered until the later timepoints (21 
days) in arthritic pain  [43] . Additionally, there is ATF-3 
expression in DRGs during MA which indicates neuronal 
injury is most likely occurring. As discussed earlier, it has 
been proposed that injured neurons may alter CGRP ex-
pression in intact neurons  [41] . Furthermore, the nature 
of the peripheral nerve injury seems to have an effect on 
CGRP expression dynamics  [22] . Others observed a con-
siderable increase in CGRP release from DRGs during the 
development of inflammation and hyperalgesia, there-
fore explaining the significantly decreased number of 
CGRP-IR cells in primary afferents 2 days after CFA sub-
cutaneous injection  [44] . Cell size measurement of CGRP-
expressing cells showed they are mostly small and that
no neuronal population switch occurs, meaning CGRP is 
expressed in neurons with identical size profiles during 
MA, similar to other studies  [44] .

  In the nervous tissue, ATF-3 has been found to en-
hance neurite outgrowth  [39]  and to increase the intrinsic 
growth state of injured neurons  [40] . Overexpression of 
ATF-3 induces neurite elongation and inhibits apoptosis 
via Akt activation  [8] . Therefore, we hypothesize that 
ATF-3 is induced during MA as a neuronal injury/stress 
factor, in order to drive cells into a survival/regeneration 
pathway. The percentage of pAkt-IR cells in the total neu-
ronal population was relatively high even in control ani-
mals. This is in accordance with Pezet et al.  [45]  who re-
ported that pAkt is present in almost every DRG neuron 
of the rat, although in low levels. pAkt expression reached 
values around 50% which is also supported by the study 
of Hökfelt’s group  [9] , although this was performed in 
mice. Other studies in rat revealed this percentage only 
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achieves values around 10%  [46] , but a lot of controversy 
still remains. Besides possible species differences, the dif-
ficulty in detecting pAkt expression and the sensitivity of 
the methodological approaches might also be implicated 
 [9] . pAkt individual expression did not show any signifi-
cant difference among any experimental groups. While 
capsaicin- or carrageenan-induced inflammation seems 
to induce increases in pAkt activation  [9, 45] , one of the 
few studies on pAkt expression after peripheral nerve in-
jury showed a strong reduction 7 days after the model 
induction  [46] . Although MA is mainly an inflammatory 
model, some degree of peripheral neuronal damage seems 
to occur judging from ATF-3 expression, and addition-
ally the time frame of the inflammation is distinct from 
that observed upon carrageenan or capsaicin. Thus, a 
possible overlap between inflammatory and neuropathic 
events might be balancing Akt phosphorylation levels in 
MA. Also pAkt and ATF-3 colocalization, around 55%, 
did not change during MA progression. Thus, it is not 
probable that a survival pathway involving both Akt and 
ATF-3 is being activated during MA.

  The upregulation of COX-2 and production of pros-
tanoids are the central mechanisms for the higher hyper-
algesia found in many models of peripheral inflamma-
tion  [47] . In MA rats, administration of ketoprofen, a 
COX inhibitor anti-inflammatory drug, could not re-
verse ATF-3 expression. Thus, prostanoid production is 
unlikely to trigger ATF-3 induction, and consequent neu-
ronal injury, in the MA model. Ketoprofen-treated MA 
animals showed slightly reduced paw diameters than un-
treated MA rats, though this was not reflected in ATF-3 
expression (therefore suggesting neuronal damage is still 
present). Additionally, ketoprofen-treated rats showed 
higher CGRP expression, particularly in the 4d MA+2d 
Ket group. Staton et al.  [48]  observed decreased CGRP 

expression following oral administration of rofecoxib to 
CFA knee-injected rats between days 13 and 17. Separated 
quantification of small- or medium-sized cells, but par-
ticularly the differing treatments (ways of administration 
and timepoints) may account for the disagreement with 
our data in MA. Of note, our treatments started at the 
peak of ATF-3 induction, when apparently neuronal in-
jury is occurring. With ketoprofen treatment, although 
inflammation is partially subsided, some degree of neu-
ropathy still remains, since ATF-3 expression did not 
change. As discussed above, CGRP expression under 
these conditions might show distinct dynamics  [22] . Ad-
ditionally, considering Galeazza et al.’s studies  [44]  it is 
possible that the anti-inflammatory drug is blocking 
CGRP release from DRGs. These two conditions may 
lead to the greater values of CGRP immunoreactivity 
found in DRGs of ketoprofen-treated animals.

  In conclusion, ATF-3 is expressed in DRGs in early 
stages of MA, suggesting neuronal damage is occurring. 
This is probably due to the neuroinflammatory environ-
ment induced by CFA intra-articular injection.
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Abstract

Joint inflammatory diseases are debilitating and very painful conditions that still lack effective treatments. Recently, glial
cells were shown to be crucial for the development and maintenance of chronic pain, constituting novel targets for
therapeutic approaches. At the periphery, the satellite glial cells (SGCs) that surround the cell bodies of primary afferents
neurons in the dorsal root ganglia (DRG) display hypertrophy, proliferation, and activation following injury and/or
inflammation. It has been suggested that the expression of neuronal injury factors might initially trigger these SGCs-related
events. We then aimed at evaluating if SGCs are involved in the establishment/maintenance of articular inflammatory pain,
by using the monoarthritis (MA) model, and if the neuronal injury marker activating transcriptional factor 3 (ATF3) is
associated with these SGCs’ reactive changes. Western Blot (WB) analysis of the glial fibrillary acidic protein (GFAP)
expression was performed in L4-L5 DRGs from control non-inflamed rats and MA animals at different time-points of disease
(4, 7, and 14d, induced by complete Freund’s adjuvant injection into the left hind paw ankle joint). Data indicate that SGCs
activation is occurring in MA animals, particularly after day 7 of disease evolution. Additionally, double-immunostaining for
ATF3 and GFAP in L5 DRG sections shows that SGCs’s activation significantly increases around stressed neurons at 7d of
disease, when compared with control animals. The specific labelling of GFAP in SGCs rather than in other cell types was also
confirmed by immunohistochemical labeling. Finally, BrdU incorporation indicates that proliferation of SGCs is also
significantly increased after 7 days of MA. Data indicate that SGCs play an important role in the mechanisms of articular
inflammation, with 7 days of disease being a critical time-point in the MA model, and suggest that ATF3 might be involved
in SGCs’ reactive changes such as activation.
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Introduction

Inflammation of the joint is characterized, among others, by

debilitating mechanical hyperalgesia and persistent pain at rest. It

is one of the major causes of chronic pain and therefore a relevant

clinical problem in need of better therapeutic approaches. In spite

of the great advances in the study of articular inflammatory painful

conditions and the existence of reliable experimental models, the

nociceptive neuronal mechanisms behind these pathologies are still

vague and lack investigation [1].

In the peripheral nervous system (PNS), pain mechanisms

involve sensitization of primary afferents neurons whose cell bodies

are located in the dorsal root ganglia (DRG). In fact, the thermal

and mechanical sensations captured at the skin, viscera and joints

are conveyed into the CNS through the DRGs, implying that they

are the first relay centers for sensory input transmission from

periphery [2] and an important site for the processing of neural

information [3].

In the DRGs, the cell bodies of these primary afferents are

anatomically surrounded by satellite glial cells (SGCs) forming

distinct functional units [4]. SGCs may be identified by the

expression of several glial markers such as glutamine synthetase

(GS) and S100b. The immunoreactivity against glial fibrillary

acidic protein (GFAP), an intermediate filament protein, is not

readily detectable in SGCs at a resting state or under normal

physiological conditions. However, following nerve injury, inflam-

mation or viral infection, GFAP becomes detectable in the SGCs

that become activated by the pathological insult. Thus, in the

PNS, GFAP expression is commonly used as a marker of SGCs

activation [4–6]. Although SGCs’ properties and functions have

not yet been fully studied, it is now clear that these cells take an

important part in the ‘‘intercellular communication’’ [3] with the

neuronal cells they are in contact with.

The role of SGCs has been underestimated for a long time [7],

but the available data reveal that they are important in the

establishment and maintenance of pathological conditions, largely

contributing to the development of chronic pain states. In fact, the
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SGCs’ unique localization around neuronal cell bodies allows a

bidirectional crosstalk [4] known to strongly influence nociceptive

processing [3,8]. Thus, under a pathological condition, neurons

are known to release specific mediators, such as ATP, nitric oxide,

and neuropeptides as calcitonin gene-related protein (CGRP) and

substance P, that are able to activate SGCs. Activated SGCs may

also release pro-inflammatory agents that contribute to continued

neuronal sensitization [9]. There is also strong evidence pointing

to the occurrence of morphological and biochemical changes in

SGCs as a response to pathological conditions. Accordingly, both

activation [11,12] and proliferation [7,13] of these cells have been

described as a response to nerve injury and/or inflammation, and

consequent pain development. However, the exact factors and the

associated mechanisms leading to these reactive morphological

and biochemical changes in SGCs, during a pathological

condition, are still partially unknown. Additionally, the onset of

those alterations in relation to disease progression has not either

been thoroughly investigated in the majority of the studies.

Using a model of chronic articular inflammatory pain, the

monoarthritis (MA) induced by Complete Freund’s Adjuvant

(CFA) injection in the tibiotarsal joint, we investigated if SGCs

might also be playing a role in this pathological condition. In order

to evaluate SGCs activation, we quantified GFAP expression in

the DRGs of MA animals by Western Blot (WB). We also

confirmed by immunohistochemistry (IHC) that GFAP expression

is specifically occurring in SGCs. To evaluate the time course

pattern of such changes in relation to the progression of the

inflammatory condition we used different time-points of the

disease (4, 7 and 14d after CFA injection), that allowed us to

correlate the data with our previous studies in the same pain model

[14]. We have previously found a significantly increased expres-

sion of the neuronal injury marker activating transcriptional factor

3 (ATF3) in the DRGs at the initial time-points of MA [14], with a

peak of expression at day 4, which suggested that some degree of

neuronal damage is occurring in the early stages of this disease.

Moreover, it has been suggested that the expression of injury

factors might trigger part of the neuron-SGCs communication

events [15]. Thus, with the aim of evaluating if activation of SGCs

occurs preferentially around damaged/stressed neurons, we also

performed co-immunolabeling assays for GFAP and ATF3 in the

DRGs of controls and MA animals. Lastly, we also analyzed the

incorporation of bromodeoxyuridine (BrdU) as a way to investi-

gate if proliferation of SGCs is also occurring during MA.

Materials and Methods

Animal handling and Monoarthritis (MA) induction
All the procedures were carried out according to the European

Communities Council Directive of September 22, 2010 (2010/63/

EC) and to the ethical guidelines for investigation of experimental

pain in animals [16], and were authorized by the animal welfare

body (ORBEA) of the Faculty of Medicine of the University of

Porto, where the experiments were performed. Animals used for

Western Blot (WB) purposes (section 2.3) were decapitated after

light volatile anesthesia with isoflurane. Those animals that were

perfused through the ascending aorta for IHC assays (section 2.4),

were deeply anesthetized with sodium pentobarbital. The humane

endpoints defined for this project were always respected. Efforts

were made in order to minimize pain and distress and reduce the

number of animals used. Experiments were carried out in a total of

44 adult male Wistar rats (Charles River Laboratories, France)

weighing between 200 and 300 g. Animals were housed 2–3

animals per cage under controlled conditions of lighting (12 h

light/12 h dark cycle) and temperature as well as water and food

ad libitum.

Monoarthritis (MA) was induced by injecting 50 mL of complete

Freund’s adjuvant (CFA), into the left tibiotarsal joint [17] under

isoflurane anesthesia (5% for induction, 2.5% for maintenance).

The CFA solution (5,45 mg/mL) was prepared as previously

described [18] and monoarthritic animals were sacrificed at 4, 7 or

14 days of inflammation. Control (non-inflamed) animals were

similarly injected with 50 mL of CFA vehicle and were allowed to

survive for 2 days, as previously described [14]. Habituation of the

animals to the experimenter was performed for several days before

CFA injection and during the progression of MA, to minimize

fear-motivated behaviors. The evolution of the inflammatory

reaction was monitored daily and was scored taking in consider-

ation the inflammatory signs of the injected ankle and reduction of

the locomotor activity [19]. The severity of the inflammation was

further evaluated by measuring the diameter of the animals’

affected paw just before sacrifice [14]. One of the animals that had

been injected with CFA to be used in the BrdU experiments

developed polyarthritis, characterized by inflammatory signs in the

contralateral non-injected paw and tail, as described before [17],

and therefore was immediately excluded from the study.

Bromodeoxyuridine (BrdU) administration
Bromodeoxyuridine (BrdU-B5002, Sigma-Aldrich) was intra-

peritoneally (i.p.) injected (50 mg/Kg of animal weight) immedi-

ately after the preparation of a solution of 50 mg/mL, 10% in

dimethyl sulfoxide (DMSO) [8]. Injections were performed twice

daily, beginning at the day of CFA or CFA vehicle intra-articular

injection (day 0), until 24 h prior to animals sacrifice (to allow

BrdU clearance) by intracardiac perfusion, as described below.

The following experimental groups were used: controls (CFA-

vehicle non-inflamed rats injected with BrdU until day 3 and

sacrificed at day 4; N= 6 rats), 4d MA (CFA-inflamed rats injected

with BrdU until day 3 and sacrificed with 4d of disease; N= 5 rats)

and 7d of MA (CFA-inflamed rats injected with BrdU until day 6

and sacrificed with 7d of disease; N= 6 rats). Prior to these

experiments, a group of naive animals was injected twice a day,

with 10% DMSO solution i.p., for 6 days and no toxic effects or

signs of peritoneal inflammation were found (data not shown).

Analysis of GFAP expression by Western Blotting
In order to investigate SGCs activation, the expression of glial

fibrillary acidic protein (GFAP) was evaluated by WB analysis of

freshly harvested DRGs from MA (with 4, 7 and 14 days of

disease, N=5 animals per group) and control animals (N= 6) that

had been sacrificed by decapitation under light anesthesia with

isoflurane. To correlate data with the previous studies [14], DRGs

from 2d MA animals were also analyzed but significant changes

were not found (data not shown). Thus, this time-point was

excluded from the following experiments.

For each animal, the L4 and L5 ganglia were pooled, separately

for the ipsi and contralateral sides, and then were lysed and

homogenized in 70 mL of radio immuno precipitation assay (RIPA)

buffer containing sodium chloride 150 mM, triton X-100 1%,

sodium deoxycholate 0.5%, sodium dodecyl sulphate (SDS) 0.1%

and Tris pH 8.0 50 mM. Cocktails of protease and phosphatase

inhibitors (1:100, Sigma-Aldrich P8340, P5726 and P0044) were

also added to the buffer. The samples were sonicated and

centrifuged (20 minutes at 20,000 g), the pellets were discarded

and the supernatants were used for analysis. The proteins were

quantified by the bicinchoninic acid (BCA) protein assay. After

heating at 94uC, 30 mg of protein were loaded for each lane and

separated on 14% sodium dodecyl sulphate-polyacrylamide (SDS/
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PAGE) gels. The proteins were then transferred into nitrocellulose

membranes which were blocked with non-fat milk (5%milk powder

diluted in tris buffer saline tween20; TBST buffer), for one hour, at

room temperature, to prevent non-specific bindings. In order to

detect GFAP, the membranes were incubated in monoclonal mouse

anti-GFAP antibody (Mab360, Chemicon-Millipore) diluted 1:500

in TBST with 2% of normal goat serum (NGS), for 24 hours at 4uC.

As a loading control, the detection of b-actin (polyclonal rabbit anti-

b-actin antibody, Ab8227 ABCAM, Cambridge, UK) diluted

1:4000 in TBST with 2% of normal horse serum (NHS) was also

performed.

Detection of GFAP was achieved by incubation in goat anti-

mouse secondary antibody conjugated with horseradish peroxi-

dase (HRP; sc-2031, Santa Cruz Biotechnology, Inc), diluted

1:5000 in TBST with 5% milk powder, for 1 hour, at room

temperature. b-actin was also detected using a donkey anti-rabbit

secondary antibody conjugated with HRP (711-035-152, Jackson

Laboratories), diluted 1:5000 in TBST with 5% milk powder.

Antibody binding was visualized with the SuperSignal West Pico

Chemiluminescent Substrat kit (Thermo Scientific; 34080) and the

bands were detected by exposing the membranes to X-ray films

(KODAK XOMAT Blue (XB) Film, Perkin Elmer, USA;

NEF586001EA). Each blot, containing independent samples,

was run in triplicates and means were used as raw values.

Double Immunohistochemistry against GFAP-ATF3 or
BrdU-GS
After deep anesthesia with sodium pentobarbital (Eutasil, Ceva,

Sante Animale, France; i.p., 75 mg/kg of animal body weight), the

animals were perfused through the ascending aorta with 250 mL

of oxygenated Tyrode’s solution followed by 750 mL of parafor-

maldehyde (PFA) 4% in phosphate buffer saline 0.1 M (PBS

0.1 M). The ipsi- and contralateral DRGs corresponding to spinal

segment L5 were removed and post fixed in the same fixative

solution for 4 h and then cryoprotected over night (in sucrose 30%

in phosphate buffer 0.1 M). The DRGs were cut into 14 mm

sections in a freezing cryostat (220uC). The tissue was collected

sequentially into 5 different poly-L-lysine coated slides, was air

dried and stored at 220uC until immunohistochemistry was

performed.

To confirm if activation of SGCs is possibly occurring in cells

surrounding damaged/stressed neurons (ATF3-positive profiles),

double immunoreactions against GFAP and ATF3 were per-

formed. Each slide (containing every fifth section of each L5 DRG)

from both controls non-inflamed and 7d MA animals was first

thawed and washed in PBS 0.1 M and then PBS containing 0.3%

Triton X-100 (PBST). In order to avoid unspecific bindings,

sections were incubated for 1 hour in a blocking solution

containing 10% of NGS in PBST. Afterwards, slides were

incubated for 48 h at 4uC in the primary antibodies rabbit anti-

GFAP (ab7260, Abcam, 1:1000), and mouse anti-ATF3 (ab58668,

Abcam, 1:200), diluted in PBST containing 2% of NGS. After

several washes in PBST with 2% of NGS, slides were finally

incubated, for 1 hour, at room temperature, in goat anti-rabbit

568 (A11011, Molecular Probes, 1:1000) and donkey anti-mouse

488 (A21202, Molecular Probes, 1:1000) secondary antibodies

diluted in a solution of PBST with 2% of NGS.

To evaluate SGCs proliferation, sections from perfusion-fixed

L5 DRGs of control non-inflamed, 4d and 7d MA animals,

previously injected with BrdU, were double immunoreacted

against BrdU (which marks proliferating cells) and GS. Slides

containing every fifth section of each DRG were treated following

a protocol similar to that described above, except that slides were

firstly incubated in HCl at 60uC for 30 minutes and then 5 minutes

in Borax 0.1 M, for antigen retrieval. Blocking was done in a

solution of 10% normal swine serum (NSS) in PBST with 7.5 mg/

mL of glycine. Slides were afterwards incubated in sheep anti-

BrdU (BP2295, Acris, 1:100) and mouse anti-GS (MAB302,

Millipore, 1:500), in a PBST solution with 2% of NSS. Detection

was achieved by incubation in a biotinilated donkey anti-sheep

secondary antibody (B-7390, Sigma Aldrich), 1:200 diluted in

PBST with 2% of NSS, for 1 hour at room temperature. After

thorough washes in PBST, the slides were incubated in

streptavidin 488 (S32354, Molecular Probes) and Alexa 568

donkey-anti-mouse (A10037, Molecular Probes), both 1:1000 in

PBST with 2% of NSS.

After the immunoreaction, the slides with the stained sections

were stored in PBS 0.1 M at 4uC until they were mounted for

visualization under a fluorescent microscope. For microscopic

analysis, the slides were coverslipped with a mounting media

(solution containing 3 parts of glycerol and 1 part of PBS 0.4 M).

Data analysis
Quantification of band intensity in Western

Blotting. The protein levels were obtained by densitometric

analysis of the signal intensity in the blots, in pixels, using the

image computer software ScionImageR (Scion Corporation). Both

the areas of the lanes and the background signal were used for

values normalization. b-actin was used as loading control and a

ratio between GFAP/b-actin protein levels was calculated.

Additionally, ratios between the ipsi and contralateral levels were

calculated for comparison between the different MA groups and

controls. The assays were typically performed three times on

samples obtained from independent groups of rats and means of

these triplicates were used as raw values.

Immunoreactivity detection and cell counting. The

immunohistochemistry analysis was performed by using a

fluorescence microscope (AXIO Imager.Z1, Zeiss), coupled to a

digital camera (Axiocam MRm) and a computer image software

(Axiovision 4.6) to grab the images. For the photomicrographs the

acquisition conditions, such as amplification of the objective, light

intensity, contrast and hue, were maintained constant.

The expression of GFAP in SCGs was confirmed by

immunodetection. SCGs were distinguished from nerve cell soma

and other perineuronal cells by their shape, position, orientation

and nuclear characteristics [20]. Neurons surrounded by GFAP-

positive SGCs in half or more than half of their circumference

were assumed as positive neuronal profiles. The total number of

these immunolabeled GFAP-positive neuronal profiles (GFAP+
to-

tal NP) was quantified. The total number of cells bodies of primary

afferents analyzed was defined here as NPtotal and counted for

each slide (corresponding to an animal and containing every fifth

section of each L5 DRG). For normalization GFAP+
total NP was

divided by NPtotal (GFAP+
total NP/NPtotal), and presented as

percentage.

The total number of double labeled neuronal profiles (GFAP-

positive neuronal profiles also expressing nuclear ATF3; Dou-

ble+total) was also counted and divided by the total number of

analyzed neurons (Double+total/NPtotal), and the final value is

presented as percentage. Additionally, we calculated the percent-

age of double labeled neuronal profiles in the total ATF3-positive

population (Double+total/ATF3
+
total).

To evaluate the proliferation of SGCs, the total number of

double-labeled cells against BrdU and GS (SGCs+ total) was

counted in each slide (containing every fifth section of each L5

DRG). For normalization, a ratio between SGC+
total/NPtotal was

calculated so that values of different animals could be compared.

In order to calculate the mean of proliferating SGCs (SGC+)
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around neurons, we divided the SGCs+ total by the total number

of neuronal profiles surrounded by at least one positively labeled

SGC (Mean SGC+ around NP) [7]. Neuronal profiles

surrounded by SGC+ in half or more than half of their

circumference were also counted and denominated as NP+ [21].

Again, for means of standardization, a ratio between NP+
total/

NPtotal was calculated to allow comparison between different

animals and experimental groups.

Statistical analysis. Statistical analysis was performed by

using GraphPad Prism 5 (GraphPad Software) and SPSS 13.0.

One-way analysis of variance (one-way ANOVA) was performed

to investigate significant differences between the different exper-

imental groups. For the WB data, ANOVA was followed by the

Tukey’s Multiple Comparison post-hoc test. In this case, the values

were calculated as ratios between the ipsi and contralateral sides

after normalization against the loading control, b-actin. Results

were displayed as mean6SEM (N=6 for controls; N= 5 for all the

other experimental groups). Data from immunohistochemical

GFAP detection was analyzed using ANOVA followed by the

Bonferroni post-hoc test. Results (GFAP+
total;NP/NPtotal) were

shown as mean6SEM (N=5 for all the experimental groups). The

GFAP-ATF3 double-labeling data was analyzed using one-tailed

Student’s t-test analysis between the controls and 7d MA groups.

Results (Double+total/NPtotal and Double+total/ATF3
+
total)

were displayed as mean6SEM (N=5 for 7d MA and N=4 for

controls). For BrdU quantification, ANOVA was followed by the

Newman Keuls Multiple Comparison test, for all the three

different displayed results. All values (SGC+
total/NPtotal; NP+

to-

tal/NPtotal; Mean SGC+/NP) were shown as mean6SEM

(N=6 for controls and 7d MA; N=5 for 4d MA). In all the

statistical analyses, a level of significance of P,0.05 was assumed.

Results

SGCs are activated during MA
MA was successfully and homogenously induced in all the

animals injected with CFA, as they were all showing severe

inflammatory symptoms with swelling, redness and avoidance to

put weight over the inflamed paw at each time-point of disease.

This was reflected in mean inflammatory scores near 4 (maximum

score), immediately after the second day of MA. This condition

was maintained up to the 14th day, as well as increased paw

volumes (data not shown), in accordance with our previous work

[14]. Controls showed insignificant mean scores.

Western blot analysis showed that the GFAP levels in MA

animals were always higher in the ipsilateral (lanes 3, 5, 7 of

Fig. 1A) than in the contralateral DRGs (lanes 4, 6, 8 of Fig. 1A).

Consequently, ratios between ipsi and contralateral GFAP levels

were significantly increased at day 7 (2.7160.35; p,0.05) and 14

of disease (2.9160.47; p,0.01), when compared with controls

(1.1360.08) (Fig. 1A and B). Controls showed a non-significant

basal expression in both ipsi- and contralateral sides, as expected.

In order to confirm that the GFAP expression detected by

Western blot was actually occurring in SGCs, we immunoreacted

perfusion-fixed L5 DRG sections of control, 4d, 7d and 14d MA

animals against GFAP. The specific labeling, the morphology and

the unique localization around the cell bodies of DRGs neurons

confirmed that GFAP expression is actually occurring in SGCs

(Fig. 1C) [4]. Quantification of the total number of positive GFAP

neuronal profiles (GFAP+
total NP/NPtotal) revealed that there

are significant increases for 7d MA animals (34.4561.95%; p,

0.01) when compared with controls (13.0962.95%) (Fig. 1D).

Animals with 14d MA presented also an increased number of

GFAP-positive neuronal profiles in comparison to non-inflamed

Figure 1. GFAP overexpression during MA. (A) GFAP levels in 4d,
7d and 14d MA animals were always higher in the ipsilateral DRGs (lines
3, 5, 7) when comparing to DRGs from the contralateral side (lines 4, 6,
8). As expected, control values were similar for both ipsi and
contralateral sides (lanes 1 and 2). (B) The ratios between Ipsi and
Contralateral GFAP levels (GFAP/actin values) were significantly
increased at day 7 and 14 days of MA which suggests activation of
SGCs at around 1 week after disease induction. (C) Single immunolabel-
ing for GFAP (red) specifically in SGCs, in a L5 DRG from a 7d MA animal
(bar represents 20 mm). D) The percentage of the total number of
GFAP-positive neuronal profiles in the total neuronal population
(GFAP+

total NP/NPtotal) significantly increases at 7d MA. All values
are shown as Mean6SEM, In B) N = 6 for controls and N= 5 for all the
other experimental groups. * represents p,0.05 relatively to controls.
One-way ANOVA was followed by Tukey’s Multiple Comparison post-
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controls, although statistical significance was not achieved

(Fig. 1D).

Activation of SGCs increases around stressed neurons,
in MA
The total number of neurons counted as positive for both ATF3

and GFAP (Double+total/NPtotal) (Fig. 2A and B) was signifi-

cantly increased at 7 days of MA (5.7662.12%) when compared

with controls (0.6360.18%, p,0.05) (Fig. 2C). Also, the percent-

age of double labeled cells in the total ATF3-positive neuronal

population (Double+total/ATF3
+
total) increased at 7d MA

(43.0962.37%, p,0.05) in comparison with controls

(17.3865.68%).

SGCs proliferate during MA
BrdU was injected in controls (non-inflamed) and in 4 and 7d

MA animals (Fig 3D, E, F). In order to confirm BrdU

incorporation in SGCs, a double immunocolocalization with GS

was performed (Fig. 3A, B, C for GS immunoreactivity; Fig. 3G,

H, I for colocalization of BrdU with GS). The SGC+
total/NPtotal

significantly increased at 7d of MA (1.0060.11), when compared

with both controls (0.5360.07; p,0.01) and 4d MA (0.4960.15,

p,0.05) animals (Fig 3J and Table 1). Not only the overall

number of SGC+ increased in the ganglia along disease

progression, but, in addition, the number of proliferating SGCs

around a specific neuron also augmented. In fact, the Mean

SGC+ around NP was also significantly higher at 7d MA

(2.3060.13) than in controls (1.7560.08; p,0.05) and 4d MA

(1.7560.23; p,0.05) animals (Fig 3K and Table 1). Moreover, as

the number of proliferating SGCs around a neuron increased,

more positive neuronal profiles were also found. Thus, NP+
total/

NPtotal was also significantly higher in 7dMA (1.5560.29) than in

controls (0.2960.21; p,0.01) and 4d MA (0.5160.28; p,0.05)

(Fig 3L and Table 1). In summary, in all three types of

hoc test. In D) N= 5 for all experimental groups.** represents p,0.01,
relatively to controls. One-way ANOVA was followed by Bonferroni
post-hoc test.
doi:10.1371/journal.pone.0108152.g001

Figure 2. GFAP labeling in SGCs surrounding ATF3 positive neurons increases at 7d MA. (A, B) Double labeling for ATF3 (green) and
GFAP (red), in L5 DRGs sections from a control (A) and a 7d MA animal (B). (C) The percentage of double labeled neuronal profiles in the total
neuronal population (% Double+total/NPtotal) increases at 7d MA. (D) The percentage of double labeled neuronal profiles in the total ATF3-positive
neuronal population (Double+total/ATF3

+
total) also increases after 7d MA, even though ATF3-positive neurons represent a small portion of the total

neuronal population of the DRG (%ATF3+total/NPtotal). In A and B, the bar represents 50 mm, # identifies a single labeled GFAP-positive neuronal
profile, 1 identifies a single labeled ATF3-positive neuron and* identifies co-labeling of both GFAP and ATF3. In C and D, all values are shown as
Mean6SEM with N= 5 for 7dMA and N=4 for controls. * Represents p,0.05 relatively to control animals. One-tailed Student’s t-test analysis.
doi:10.1371/journal.pone.0108152.g002
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Figure 3. BrdU incorporation increases during MA. (A–I) Immunofluorescence labeling for GS (red) (A, B, C), BrdU (green) (D, E, F) and
respective colocalization between both (G, H, I), in a L5 DRG of a control and a 7d MA animal (bar represents 100 mm). Arrows point to well visible
double-labeled SGCs. An amplified image from a L5 DRG of a 7d MA animal shows BrdU labeling in detail (bar represents 20 mm) (C, F, I). (J) The
number of proliferating SGCs (SGCs+), in the total number of neuronal profiles (SGC+

total/NPtotal), significantly increases at 7d MA. (K) The mean
number of proliferating SGCs around a specific neuron (Mean SGC+/NP) also increases at 7d MA. (L) The number of positive neuronal profiles
(NP+

total/NPtotal) is also significantly higher in 7d MA, when compared with both control non-inflamed and to 4d MA animals. All values shown as
Mean6SEM. N= 6 for controls and 7d MA, and N=5 for 4d MA experimental group.* Significant differences relatively to control. # Significant
differences relatively to 4d MA.* or # represents p,0.05; ** represents p,0.01. One-way ANOVA was followed by Newman-Keuls Multiple
Comparison post-hoc test.
doi:10.1371/journal.pone.0108152.g003

SGCs Undergo Activation and Proliferation, during MA

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e108152



quantification, the controls and 4d MA animals showed very

similar values, both being statistically different from 7d MA

(Table 1).

Discussion

In this study, we show for the first time in the CFA-induced

monoarthritis model of chronic joint inflammation that SGCs are

activated and proliferate, with a specific temporal profile.

Moreover, significant increases in the GFAP labeling in activated

SGCs surrounding ATF3 positive (stressed) neurons were also

found. This fact suggests that neuronal ATF3 might be involved in

the reactive biochemical and morphological changes occurring in

SGCs during a chronic pathological state.

Western blot analysis showed that GFAP levels in the ipsilateral

DRGs of MA rats are higher than in the contralateral ganglia, and

that this ipsi/contra ratio is significantly increased at 7 and 14 days

of disease induction, when compared with control non-inflamed

animals. Immunohistochemical quantification of GFAP-positive

neuronal profiles in the sections of L5 DRGs also showed

significantly increased levels at 7 days of MA. At 14d of MA,

although statistical significances were not found, the values were

still higher than in controls. The slight differences between WB

and IHC data at 14 days of MA are certainly due to the distinct

methodological approaches. In the WB assay we measured the

total amount of protein in the whole DRGs, which contain both

neurons, SGCs and Schwann cells. It is possible that Schwann

cells, that also express GFAP [22–24], have a small contribution to

the proteic levels measured in the WB. On the other hand, the

IHC data represent the number of neurons surrounded by GFAP-

positive SGCs, and it is unlikely that this quantification has been

biased by considerable Schwann cells’ contribution since these

cells are morphologically distinct from SGCs. Thus, altogether the

data from these two different experiments indicate that SGCs are

significantly activated after 7days of MA and at least until 2 weeks

of disease induction, and that the number of positive neuronal

profiles increases around day 7, suggesting a higher number of

sensitized neurons. In fact, activated SGCs are known to release

several pro-inflammatory and other mediators that promote

neuronal sensitization [9,25]. Accordingly, it is expectable that

neurons surrounded by a higher number of activated SGCs are

also in a higher level of excitability [3,4,10].

These data are in accordance with several recent studies

proposing that, after peripheral injury and/or inflammation,

SGCs undergo relevant reactive biochemical and phenotypic

changes (such as activation, proliferation and hypertrophy) that

might be related to the establishment/maintenance of certain

pathological and painful states [6,9,11,26–28]. In fact, GFAP

expression was found to be increased in inflamed DRGs, at 7 days

of model induction (chromic gut suture application onto the DRG)

[6], as well as in the trigeminal ganglia of rats with orofacial

inflammatory pain [27]. Additionally, two days post-CFA injection

into the whisker pad area, the mean percentage of trigeminal

ganglia neurons encircled by GFAP and IL-1beta-immunoreactive

cells was significantly increased compared with controls [25].

These data corroborate with our results for the GFAP expression

in MA animals and indicate that the first week of disease

progression seems to be crucial for the events associated to SGCs

activation. The slight differences in the temporal expression

pattern of GFAP are probably due to the pathophysiological

differences of the models under study. As observed, SGCs

activation occurs in the initial time-points of disease progression

in inflammatory conditions, while little is known about the more

prolonged time-points [6,25–27]. Conversely, it seems that nerve

damage provokes a more demarked and prolonged effect on SGCs

activation. Indeed, in neuropathic pain models, such as in

chemically-induced neuropathy, GFAP levels were also signifi-

cantly higher after 1 week, followed by a decrease to control values

only 1 month later [28]. In the spinal nerve ligation (SNL)

neuropathy model, GFAP expression increased immediately after

4 hours, gradually increasing up to 7 days and staying high until

the end of the experiment at day 56 [21]. In our studies, we

observed that the activation of SGCs is significantly higher than in

non-inflamed animals at least until 14 days of MA. We have

previously proposed the occurrence of a neuropathic component

in MA, possibly triggered by the initial inflammatory milieu at the

joint cavity [14]. Actually, we reported that ATF3, a neuronal

injury marker, is induced in primary afferent neurons, with a peak

of expression at 4 days of MA [14], a fact that has not been

described frequently in studies using other inflammatory models

[1,29,30]. Therefore, the fact that neuronal damage is possibly

occurring during MA, might be one of the reasons for the still

significantly increased GFAP levels that we found at day 14. For

time-points of disease evolution longer than this it is hard to

speculate since the information available in the literature is limited.

However, it is possible that GFAP levels do not remain high for

too long, as it happens in a neuropathy, since MA is still a model

triggered by an inflammatory insult.

Many studies are nowadays devoted to the identification of

possible inducers of SGCs activation, in different conditions.

Recently, some authors suggested a novel mechanism mediated by

Table 1. SGCs significantly proliferate at 7d of MA.

Total SGCs+total/NPtotal Mean SGCs around NP % (NP+
total/NPtotal)

Controls 0.5360.07 1.7560.08 0.2960.21

(6485/12715) (21/12715)

4dMA 0.4960.15 1.7560.23 0.5160.28

(4401/9117) (28/9117)

7dMA 1.0060.11**# 2.3060.13*# 1.5560.29**#

(13500/14048) (212/14048)

Significant increases in the total number of proliferating SGCs (SGC+
total/NPtotal), in the mean number of SGC+ surrounding a specific NP (Mean SGC+ around NP),

and in the total number of positive neuronal profiles (NP surrounded by half or more than half of their circumference by SGC+ - NP+
total/NPtotal), were found at 7dMA.

Values shown as Mean6SEM. In brackets, the total number of cells analyzed for each ratio is displayed. N= 6 for controls and 7d MA; N= 5 for 4d MA. * Significant
differences relatively to controls. # Significant differences relatively to 4d MA.* or # represents p,0.05; ** represents p,0.01. One-way ANOVA followed by Newman-
Keuls Multiple Comparison post-hoc test.
doi:10.1371/journal.pone.0108152.t001
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fractalkine as the trigger for SGCs’ activation in the carrageenan-

induced inflammation model [26]. Many other molecules were

shown to be released by neurons with their receptors being found

in SGCs [31,32], therefore constituting possible mediators in

neuron-glia crosstalk and triggers of SGCs’ activation. Some

authors also suggested that the expression of injury factors in

stressed neurons might be one possible trigger for the activation

and proliferation of SGCs as well as for the augmented

intraganglionar communication [7]. Considering our previous

data [14], we asked if ATF3 could be one of the injury factors

involved in SGCs activation and in communication within

neurons, during MA. Interestingly, we also found significant

increases in the number of ATF3 positive neurons surrounded by

GFAP-positive cells, in both the total neuronal (Double+total/

NPtotal) and ATF3-positive populations (Double+total/ATF3
+
to-

tal), at 7d MA, which supports our hypothesis of a possible role of

neuronal ATF3 in the reactive changes occurring in SGCs during

articular inflammation. After 7d of MA, more than 40% of the

ATF3-positive neurons were surrounded by GFAP-positive SGCs,

even though the ATF3-positive population represents a small

portion of all DRG neurons in the CFA-induced MA model, as we

have previously described [14]. Our data are in accordance with

other studies showing that the number of ATF3-immunoreactive

(IR) neurons enclosed by GFAP-IR SGCs increased in a time-

dependent manner in the maxillary nerve region of the trigeminal

ganglia [12], in a model of molar extraction in the rat. Also, after

chronic constriction injury of the infraorbital nerve, SGCs

proliferation was observed preferentially around ATF3-positive

neurons of the trigeminal ganglia, although GFAP expression was

associated with both ATF3 IR and immunonegative neurons [13].

In a pathological condition, the number of gap junctions between

SGCs increase and this phenomenon is intimately related to SGCs

activation. Interestingly, gap junctions promote communication

between adjacent SGCs enveloping neighboring neurons [3,4,10].

This might result in GFAP labeling around adjacent ATF3-

negative neurons, suggesting that it is highly possible to have

activated SGCs surrounding non-stressed neurons. Indeed,

Gunjigake et al. also demonstrated in the model of rat molar

extraction that SCGs’ activation spread to uninjured neurons in

the maxillary nerve region, as well as to the mandibular nerve

region [12]. In these studies, as it happened in our case, it has been

shown that there is a basal expression of GFAP in control animals,

which is probably not labelling activated SGCs [12,33]. Yet, the

fact that these increases in GFAP labeling around ATF3 positive

neurons are statistically different at 7 days of MA points to a

possible relation between ATF3 expression and SGCs-related

events.

In the MA animals, the number of SGCs proliferating in the

whole DRG was also significantly higher at day 7 of disease when

comparing with both controls and 4d MA. Not only the overall

number of BrdU-positive SGCs in the DRG increased but also the

number of SGCs proliferating around a specific neuron. More-

over, we found significantly more positive neuronal profiles in 7d

MA animals, which is in accordance with other studies. There are

few reports regarding the proliferation of SGCs, but early in the

nineties other authors already showed that these cells proliferated

after L5 nerve transection, with maximum activity of the

incorporated radioactive marker 1 week after the model induction.

In this case, proliferation started decreasing after this time-point

[34]. Later, other BrdU incorporation studies showed that SGCs

proliferate during Herpes Simplex virus infection, with increases

up to 5 days of disease, the latest time point evaluated [35]. This

was proposed to be part of a mechanism of neuronal survival

during the disease [35]. The same group also found proliferation

of SGC in an animal model of scarification of the skin, considered

to be a model of minor tissue trauma [7]. BrdU incorporation

increased by a 10 times fold 5 days after model induction, when

compared with controls. Just recently, peaks of SGCs’ proliferation

were also observed nearly 4 days after model induction by chronic

constriction injury of the infraorbital nerve [13]. Our results are in

agreement with these previous studies, indicating that, also in MA,

a significant proliferation of SGCs occurs. Also, they suggest that

7d of disease is a triggering time-point for this event.

The reactive changes observed in SGCs appear to be correlated

with hypersensitivity to noxious stimuli, although the related

mechanisms and their players still remain to be explored. In fact, it

has been proved in several models that the administration of

fluorocitrate, a metabolic inhibitor of SGCs, not only abolishes

GFAP labeling in the DRGs but also alleviates pain [21,26]. MA

animals display increased allodynia and hyperalgesia in the

ipsilateral paw, after 1 week of CFA injection, as we have already

reported [36]. Therefore, it seems that the temporal profile of the

biochemical changes found in the ipsilateral DRGs of these

animals matches with the painful behavior. Although further

studies are needed, data suggest that SGCs might be involved in

the MA nociceptive mechanisms, as, in fact, found for other

chronic pain models [21].

In summary, this study indicates that SGCs are not bystanders

to MA, but that they are crucial in the mechanisms underlying

articular inflammation. The reactive changes involving SGCs,

namely their activation and proliferation, seem to be particularly

active in the early phases of MA development, with peaks around

the 7th day, when the expression of the neuronal injury marker

ATF3 is already subsiding, and allodynia and hyperalgesia are

already obvious in the ipsilateral paws of inflamed animals. The

exact functional implications of this early onset for the progression

of the disease are still unknown. Additionally, ATF3 might be one

potential target for the control of SGCs-mediated mechanisms.

Thus, in the future, it will be important to unravel these key

mechanisms which will be crucial for the development of new

drugs targeting SGCs. This might help to overcome the inefficacy

of certain pain-alleviating therapies [8], that have been tradition-

ally devoted to target primary afferent neurons. This is highly

relevant since pain associated with joint inflammatory diseases is

still a challenge in the clinical practice.
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Purinergic ionotropic P2X receptors are highly implicated in pain processing and may constitute novel analgesic therapeutic 

targets. Purinergic signaling is involved in the activation of satellite glial cells (SGCs) surrounding neurons in dorsal root 

ganglia (DRG) and in neuron-glia communication. We have previously shown that SGCs undergo activation and proliferation 

after 7 days of Monoarthritis (MA), a model of joint painful inflammation. Moreover, SGCs activation occurred preferentially 

around damaged neurons expressing activating transcription factor 3 (ATF3). Here, the expression profile of P2X7R and 

P2X3R was evaluated in sensory ganglia of MA rats. Western blot showed that P2X7R protein levels increase in ipsilateral 

DRGs after 1 week of disease, while P2X3R immunoreactivity decreases around the same timepoint. We have knocked-

down ATF3 by RNAi in DRG cell cultures to evaluate its effects on the expression of P2X receptors and heat shock protein 

90 (HSP90). This chaperone is part of a P2X7R-protein complex and was recently proposed to have a role in nociception. 

ATF3 knockdown had no effect on the expression of P2X7R, P2X3R or glial fibrillary acidic protein (GFAP – marker of 

SGCs activation) as determined by qRT-PCR. Conversely, HSP90 levels were dramatically decreased upon ATF3 

downregulation. Our data suggest that P2X7R/P2X3R signaling is activated during MA, possibly triggering the activation of 

SGCs. Additionally HSP90 emerges as a novel protein under ATF3 regulation. Since ATF3 is greatly induced in MA, it is 

conceivable that HSP90 is also involved in MA pathophysiology. Further investigation is needed to confirm the biological 

significance of these findings. 
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1. Introduction 

P2X purinoceptors (P2XR) are a family of 

cation-permeable fast acting ion channels that 

open in response to the binding of extracellular 

adenosine 5'-triphosphate (ATP) [1]. Many studies 

indicate that these receptors are involved in pain 

processing mechanisms, constituting possible 

targets for analgesic drugs [2]. P2XR function in 

the form of homotrimers (P2X1–7), heterotrimers 

or multimers [1] and are differently distributed in 

the nervous tissue, including in many relevant pain 

neuronal structures. With the exception of P2X1R 

(data is controversial [3]), expression of all the 

other subtypes was found in the dorsal root ganglia 

(DRG) [4,5], which contain the cell bodies of a 

subpopulation of primary afferent neurons, the 

nociceptors, that are capable of encoding and 

transmitting nociceptive stimuli [2]. 

In the rat DRG, P2X3 is the most abundant 

P2XR subtype, being predominantly expressed in 

non-peptidergic C-fiber nociceptors [6,2,7]. The 

anti-nociceptive effect of P2X3R antagonists has 

been observed in both inflammatory [8] and 

neuropathic pain models [9], and null-P2X3R 

mice show decreases in nociceptive behavior, 

comparing to naïve animals, when injected with 

ATP (known to induce pain-like behavior) [10]. 

Moreover, alterations in P2X3R mRNA and 

protein levels have been documented for different 

painful pathological conditions [11,12]. However, 

data are somehow inconsistent concerning the 

direction of these changes and, therefore, further 

investigation is needed to better understand the 

role of P2X3R in pathological states and 

nociception, and to evaluate their potential as 

targets for more effective treatments.  

In the DRG, P2X7R are not found in primary 

afferent neurons, but in satellite glial cells (SGCs) 

[13]. SGCs enwrap the cell bodies of these 

neurons, forming individual functional units [13], 

which are nowadays known to be crucial for the 

development of chronic pain states [14]. It has 

been demonstrated that, upon pathological 

conditions such as inflammation or nerve damage, 

P2X7 receptors can mediate the activation of 

SGCs [15] that occurs in response to the ATP 

released from the sensitized neuronal somata. This 

evidence supports a role for P2X7R in nociception, 

but also indicates that they are key players in 

neuron-glia communication mechanisms [16-19]. 

Additionally, it has been demonstrated that P2X7R 

expression is up-regulated in these pathological 

conditions [20] and that it has a functional role in 

pain processing. Indeed, in a model of Complete 

Freund’s Adjuvant (CFA) induced hyperalgesia, 

the nociceptive behavior was reverted by the 

administration of oxidized ATP, an irreversible 

inhibitor of P2X7R [21]. 

The activation of P2X7R triggers various 

signaling cascades. Heat shock protein 90 

(HSP90) appears to be one of the 11 molecules that 

makes part of a P2X7 receptor-protein complex, 

responsible for the activation of the different 

signaling pathways. HSP90 is a homodimer that 

belongs to the chaperone family, which are 

abundant and conserved proteins dramatically 

increased in cells upon stress, including 

inflammation. Indeed, similarly to the activating 

transcriptional factor 3 (ATF3), HSP90 is also 

referred as a “danger signal” [22] being an 

important regulator of inflammation pathways 

[23]. Therefore, HSP90 inhibition has been used in 

order to suppress the inflammatory response in 

diseases like rheumatoid arthritis [24]. Curiously, 

a few papers show that HSP90 inhibitors can also 

alleviate pain [25], although very little is known 

about the underlying mechanisms and the possible 

role of HSP90 in the nervous system, in general, 

and in nociception, in particular. 

We have previously demonstrated that SGCs 

are activated and proliferate after 1 week of 

Monoarthritis (MA), a joint inflammatory pain 

model in the rat [26]. SGCs activation occurred 

preferentially around neurons positively labelled 

for ATF3 [26], which is a neuronal injury marker 

also significantly induced in primary afferents of 

MA animals [27]. To better understand the 

mechanisms of neuron-SGC crosstalk in this 

painful inflammatory condition, and partly 

elucidate the signaling cascades involved, we have 

evaluated the expression of P2X7R and P2X3R in 

glial and neuronal cells of the DRG, respectively, 

at different timepoints of MA. As the expression 

of injury factors (like ATF3) is also proposed to be 

involved in mechanisms of neuron-glia 

communication [18], we then silenced ATF3 in 

DRG primary cell cultures using specific small 



 

 

interference RNA (siRNA). Besides evaluating the 

effect of ATF3 silencing on the purinergic system 

and on the activation of SGCs, we also assessed 

HSP90 expression, as some evidence suggest that 

ATF3 may be regulated by or regulate chaperones 

like HSP90 in response to stress [28,29].  

 

 

2. Materials and methods 

2.1. Monoarthritis (MA) induction 

Monoarthritis (MA) was induced as previously 

described [26] in male Wistar rats weighing 

between 200 and 300g (Charles River 

Laboratories, France). Briefly, animals were 

injected with 50 µL of complete Freund’s adjuvant 
(CFA), into the left tibiotarsal joint [30] under 

isoflurane anesthesia. The CFA solution 

(5.45mg/mL of mycobacterium butyricum) was 

prepared as previously described [31] and MA 

animals were sacrificed at different timepoints 

after intraarticular injection, in accordance with 

each experiment. Control (non-inflamed) animals 

were similarly injected with 50 µL of CFA vehicle 

and were sacrificed after 2 days, as also previously 

described [26]. After injections, animals were 

monitored daily and scored according to the 

inflammatory signs and the guarding behavior 

towards the inflamed paw (in detail in [32,27,26]) 

All the procedures in animals were carried out 

according to the European Communities Council 

Directive of September 22, 2010 (2010/63/EC) 

and the ethical guidelines for investigation of 

experimental pain in animals [33]. The 

experiments were authorized by the animal 

welfare body (ORBEA) of the Faculty of Medicine 

of the University of Porto. The humane endpoints 

defined for this project were always respected. 

Efforts were made in order to minimize pain and 

distress and reduce the number of animals used. 

Habituation to the experimenter was done several 

days prior to the experiments and animals were 

daily monitored after the interventions. Animals 

were housed 2-3 animals per cage under controlled 

conditions of lighting (12 h light/12 h dark cycle) 

and temperature, with water and food ad libitum.  

 

 

 

2.2. DRG primary cell cultures and 

transfection with siRNAs 

Primary cell cultures of DRG were obtained 

following a similar protocol as in Delree, et al [34]. 

Briefly, all DRGs were freshly harvested from 

each adult naive rat (between 200-300g) and 

dissociated by incubation for 1 hour in a cocktail 

of dispase (3mg/mL) and collagenase (100μg/mL), 
at 37°C in a 5% CO2 atmosphere. Prior to 

mechanical dissociation with glass Pasteur 

pipettes, cells were also incubated with trypsin 

(0.25%) in order to better digest the connective 

tissue between neurons and SGCs. Cells were 

plated in 6-well plates previously coated with 

poly-D-lysine. Cultures were maintained at 37°C 

in a 5% CO2 atmosphere, in F12 Ham’s media 
supplemented with 50 μg/mL penicillin and 
streptomycin, 10% heat-inactivated horse serum 

and Nerve Growth Factor (NGF) at a final 

concentration of 50 ng/mL. Growth medium was 

changed after 2 days. Cell cultures grew for 4 days 

in order to allow the establishment of interactions 

between SGCs and neurons. When plated the 

proportion between neurons and SGCs was around 

50%-50%, as previously described for normal 

mixed DRG cell cultures [35]. 

After 4 days in culture, ATF3 silencing was 

done according to Schmutzler, et al [36]. Briefly, 

the transfection agent Metafectine Pro (Biontex 

Laboratories, Martinsried, Planegg, Germany) was 

diluted in Optimem reduced serum media 

(Invitrogen, Carlsbad, CA) to a titer of 1:250. In 

separate eppendorfs, the siRNA molecules (smart 

pool of 4 sequences from Dharmacon, CO, USA) 

were also diluted in Optimem and left at room 

temperature for two minutes. The Metafectine and 

siRNA dilutions were then mixed at a 1:1 ratio and 

incubated at room temperature for more 20 

minutes. The final mixture was added to each well 

so that the final concentration of siRNA was 100 

nM. Cells from each animal that were previously 

divided in 3 wells received either a control 

scramble sequence of siRNA (siCT), a specific 

siRNA for ATF3 (siATF3) or only the transfection 

reagent (TR). After 24h, cells were stimulated 

with Lipopolysaccharide (Ultra pure LPS from E. 

coli 0111:B4 strain, Invivogen, 1μg/mL)[35] for 

more 24h before lysis, meaning that siRNAs were 

maintained in culture for 48h. Cells were then 



 

 

washed twice with PBS, scraped in 100μL of 

TRI® reagent (T9424, Sigma) and frozen for later 

analysis by real time quantitative polymerase 

chain reaction (RT-PCR). 

Stimulation with LPS was used in order to trigger 

inflammatory signaling cascades (through 

activation of TLR4) [37]. Additionally, LPS-

induced pathways are involved in the upregulation 

of ATF3 [37], as well as in P2X7 activation and the 

release of HSP90 [6]. ATF3 expression occurs in 

around 90% of the neurons in culture without any 

treatment, due to the nerve axotomy induced when 

harvesting the DRGs (data not shown). By using 

LPS stimulation we intended to better control ATF3 

expression in these cultures and to induce typical 

inflammatory pathways, so that the effects of ATF3 

silencing could be studied in an activated system. 

 

2.3. Real-time quantitative polymerase chain 

reaction (RT-qPCR)  

For RT-qPCR, samples were homogenized in 

TRI® reagent and processed for RNA extraction 

according to manufacturer’s instructions. Briefly 

chloroform was added to the cell lysates and, 

following centrifugation, the RNA-containing 

upper phase was recovered for subsequent total 

RNA extraction. 

Total RNA was isolated using the SV Total 

RNA Isolation System (Promega) according to the 

manufacturer’s instructions. Quantification was 

performed using a Nanodrop 2000 and RNA 

integrity was assessed using the Agilent 2100 

Bioanalyzer. All samples had a RNA Integrity 

Number (RIN) ≥ 7. The RevertAid H Minus cDNA 
synthesis kit (Fermentas) was used to reverse 

transcribe 1 µg of total RNA with random primers, 

and the resulting cDNA was diluted 1:20, 

aliquoted and stored at -20 ºC for subsequent use. 

The expression levels of selected genes were 

measured by qPCR using the StepOnePlus Real-

Time PCR System (Applied Biosystems). 

Triplicates were performed for each reaction, 

using Maxima SYBR Green/ROX qPCR Master 

Mix (Fermentas), 400 nM of primers (except 

where noted, Table S1) and 3μL of 20x diluted 

cDNA (described above), in a 12.5μL final 
volume. A standard curve made up of 1/2 dilutions 

of pooled cDNA of all samples was run on each 

plate for each primer set assay for relative 

quantification. Target gene expression was 

normalized to the expression of glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). The 

estimated efficiency of all qPCR assays ranged 

between 90-100%. Primer sequences and 

annealing temperatures are shown in Table 1. 

 Table 1. Primer sequences and annealing temperatures 

for quantitative PCR 

F: forward primer; R: reverse primer 

2.4. Western Blotting (WB) 

In order to investigate P2X7R expression 

during MA, animals were sacrificed by 

decapitation under light anesthesia with isoflurane 

after 4, 7 and 14 days of MA induction. Control 

non-inflamed animals were sacrificed 2 days after 

vehicle injection. For each animal, freshly 

harvested L4 and L5 ganglia were pooled together 

but separately for the ipsi and contralateral sides. 

DRGs were then lysed and homogenized in 70µL 

of radio immuno precipitation assay (RIPA) buffer 

supplemented with protease and phosphatase 

inhibitors, as previously described [26]. Proteins 

were quantified by the bicinchoninic acid (BCA) 

protein assay. After heating at 94ºC, 20µg of 

protein were loaded for each lane and separated on 

Transcript Primers 
Annealing 

(ºC) 

Atf3 

F: CCAGAACAAGCACCTTTGCC 

R: GTTTCGACACTTGGCAGCAG 

60 

Gfap 

F: AATTGCTGGAGGGCGAAGAA 

R: TTGAGGTGGCCTTCTGACAC 

60 

P2rx3 

F: TTCCTTCACTCGGCTGGATG 

R: TGCCAGCGTTCCCATATACC 

60 

P2rx7 

F: GCACATGACCGTCTTTTCCT 

R: CAAAGGGAGGGTGTAGTCGG 

60 

Hsp90aa1 

F: CTGCGTATTTGGTTGCTGAGA 

R: ACCTTTGTTCCACGACCCAT 

60 

Hsp90ab1 

F: AAATTGCCCAGCTGATGTCC 

R: ACTTGGAAGGGTCAGTCAGG 

60 

Gapdh 

F: CCATCACCATCTTCCAGGAG 

R: GCATGGACTGTGGTCATGAG 

60 



 

 

12% sodium dodecyl sulphate-polyacrylamide 

(SDS/PAGE) gels. Proteins were then transferred 

into nitrocellulose membranes and blocked with 

non-fat milk (5% milk powder diluted in tris buffer 

saline tween20; TBST buffer), for one hour, at 

room temperature. Membranes were then 

incubated in polyclonal rabbit anti-P2X7R 

antibody (APR-004, Alomone Labs, Jerusalem, 

Israel) diluted 1:500 in TBST with 2% of normal 

goat serum (NGS), for 24 hours at 4 ºC. Incubation 

in rabbit anti-β-tubulin (Ab6046 ABCAM, 

Cambridge, UK) diluted 1:10,000 in TBST with 

2% of NGS, overnight at 4 ºC, was also performed 

as a loading control. Lastly, blots were incubated 

in donkey anti-rabbit secondary antibody 

conjugated with HRP (711-035-152, Jackson 

Laboratories), diluted 1:5000 in TBST with 5% 

milk powder. Antibody binding was visualized 

with the SuperSignal West Pico 

Chemiluminescent Substrat kit (Thermo 

Scientific; 34080) and chemiluminescent signals 

were detected by exposure in the ChemiDoc™ 
system (BioRad). 

The protein levels were obtained by 

densitometric analysis of the band signal intensity 

using the image computer software ScionImageR 

(Scion Corporation). The protein density was 

determined for each band after subtracting the 

background of the surrounding region and 

normalizing for the selected area. This density was 

corrected against the loading control signal, for 

each blot (ratio P2X7R/β-tubulin). Assays were 

performed twice on samples obtained from 

independent groups of rats. 

ATF3 detection by WB was also performed in 

DRG cell cultures samples to confirm the 

knockdown of this protein in cells treated with 

siRNA for ATF3. Briefly, cells were scraped in 

100 μL of RIPA buffer and after quantification of 

the total protein, 10μg of each sample was loaded. 
Basically, WB was performed exactly as described 

above, except that these blots were incubated in 

polyclonal rabbit anti-ATF-3 (diluted 1:100 in 

TBST with 2% of NGS; C-19: sc-188; Santa Cruz 

Biotechnology, Inc.), overnight at room 

temperature, and afterwards incubated in HRP-

donkey anti-rabbit (1:5000 as described above). 

 

 

2.5. Immunohistochemistry (IHC) 

In order to evaluate P2X3R expression in 

primary afferent neurons during MA, we 

performed immunohistochemistry (IHC) assays in 

DRG slices of inflamed (4, 7 and 14d of MA) and 

control non-inflamed animals. The protocol for 

IHC was previously described in detail in 

Nascimento et al., 2011 [27]. Briefly, rats were 

perfused with 4% paraformaldehyde (PFA) and 

the dissected biological material was post-fixed in 

the same solution before cryoprotection in 30% 

sucrose. The ipsi- and contralateral DRGs 

corresponding to the L5 spinal segment were then 

cut into 14 µm sections in a freezing cryostat (-

20ºC) and tissue sections were collected 

sequentially into 5 different poly-L-lysine coated 

slides. 

Each slide was firstly thawed and washed in 

PBS 0.1M and then in PBS containing 0.3% Triton 

X-100 (PBST). The blocking step was done in 

10% of NGS in PBST for 1 hour. Afterwards, 

slides were incubated for 48h at 4ºC in the rabbit 

anti-P2X3R primary antibody (RA10109, 

Neuromics), diluted 1:4000 in PBST containing 

2% of NGS. After several washes in PBST with 

2% of NGS, slides were incubated for 1 hour at 

room temperature, in goat anti-rabbit 568 

(A11011, Molecular Probes) secondary antibody 

diluted 1:1000 in a solution of PBST with 2% of 

NGS. To allow visualization under a fluorescent 

microscope, slides were coverslipped with a 

mounting media (solution containing 3 parts of 

glycerol and 1 part of PBS 0.4M). 

Images were obtained in a fluorescence 

microscope (AXIO Imager.Z1, Zeiss), coupled to 

a digital camera (Axiocam MRm) and a computer 

image software (Axiovision 4.6). Acquisition 

conditions, such as amplification of the objective, 

light intensity, contrast and hue, were maintained 

constant. 

 

2.6. Data and statistical analysis 

Statistical analyses were performed using 

GraphPad Prism 5® (GraphPad Software). One-

way analysis of variance (one-way ANOVA) was 

used to evaluate significant differences between 

the different experimental groups and Student’s t-
test to evaluate differences between only two 



 

 

different conditions. Data passed the normality 

Kolmogorov-Smirnov test. 

In the WB assays, the density of P2X7R bands 

was corrected against the loading control (ratio 

P2X7R/β-tubulin) and values from MA 

experimental groups (4, 7 and 14d) were 

calculated relatively to control non-inflamed 

samples (assumed as the reference experimental 

group and normalized to 1). The heavier band 

(77KDa) assumed as a glycosylated form of the 

receptor [38] showed a completely distinct profile 

of expression and therefore was quantified in 

separate. The other two bands (65-69KDa, the 

predicted weight for this protein taking in 

consideration its sequence of aminoacids) always 

showed identical profiles and were similar in size, 

possibly resulting from other smaller post-

translational modifications [39], although this has 

not been consistently reported. Therefore they 

were quantified as one. Data from both 

quantifications was analyzed using ANOVA 

followed by the Dunnett’s post-hoc test. Results 

are displayed as mean±SEM (N=4 for 7dMA and 

N=5 for controls, 4 and 14d MA).  

For the IHC assays against P2X3R, each slide 

containing every fifth sequential section of the L5 

DRG was entirely photographed. For each image, 

cell counting was done using a grid which allowed 

a random selection of the areas used for 

quantification. The total number of P2X3R-

positive neurons was counted throughout the 

ganglia, normalized for the total number of 

neurons in the same area and calculated as 

percentages (% Total P2X3R+ neurons/Total 

neurons), in accordance with [27]. Statistical 

analysis of P2X3R immunodetection was done 

using ANOVA followed by Dunnett’s post-hoc 

test. Results are shown as mean±SEM (N=5 for 

controls and 14d MA; N=6 for 4d MA and N=7 for 

7d MA).  

For the data analysis of RT-qPCR performed 

in the DRG cell cultures, we assumed normalized 

siCT as a reference experimental condition (set to 

1) and the normalized values from siATF3 cells 

were compared to this control. No significant 

differences in gene expression were found 

between cells in the TR condition in comparison 

to those from the siCT control condition (data not 

shown) indicating that the sequences of negative 

control siRNA had no apparent effect on the cells. 

Statistical analysis was done using two-tailed 

Paired Student’s T-test to evaluate differences 

between these two groups. Results are shown as 

mean±SEM and percentages are also displayed. 

Biological replicates (N=4 for both siCT and 

siATF3 groups of treated cells) were analyzed in 

triplicate for all genes investigated. 

For all the statistical analyses, a level of 

significance of P < 0.05 was assumed.  

 

3. Results 

P2X7R expression increases during 

MA 

The WB detection of P2X7R resulted in 3 

distinct bands one around 77KDa and the other two 

around 65-69KDa (Fig. 1a), which were quantified 

separately. The quantification of the 77KDa and 65-

69KDa bands (Figs. 1b and 1c), was also done 

separately for ipsi (Fig. 1b) and contralateral DRGs 

(Fig. 1c), assuming non-inflamed controls as the 

reference group. P2X7R expression was increased 

in ipsilateral DRGs homogenates of MA animals, 

after 1 week of disease induction. Thus, 

quantification of the P2X7R lighter bands (65-

69KDa) intensity showed statistically significant 

increases in the ipsilateral DRGs of 7d MA 

(2.55±0.27, p<0.05) and 14d MA (2.69±0.37, 

p<0.05) animals, when comparing to the respective 

controls (1.00±0.26) (Fig. 1b). Conversely, in 

contralateral DRGs, expression of the 65-69KDa 

peptides was also upregulated in the experimental 

group but not significantly (Fig. 1c). The 

glycosylated and heavier form (77KDa) of P2X7R 

remained unchanged, for either the ipsi or 

contralateral DRGs (Figs. 1b and 1c), suggesting 

that glycosylation of this receptor is not a crucial 

event in MA. 



 

 

 
Fig. 1 P2X7R expression increases during MA. P2X7R 

detection in the Western blots resulted in three bands, one at 

77KDa proposed to be a glycosylated form and two more at 

65-69KDa (the predicted weight for the receptor), assumed 

and quantified as one. The increases in P2X7R expression 

are easily observed especially for the 65-69KDa band, after 

7days of MA induction (a). The 77KDa and 65-69KDa bands 

were quantified separately for both the ipsilateral (b) and 

contralateral (c) DRGs. After correction for the loading 

control (P2X7R/β-tubulin ratio), data from MA animals were 

normalized against the respective control group. The 65-

69KDa forms showed significant increases in the ipsilateral 

DRGs of MA animals after 7 and 14d of disease when 

comparing to controls (b). In the contralateral DRGs of MA 

animals no significant changes were found in comparison to 

controls for any of the detected forms (c). All values are 

shown as Mean±SEM. N=4 for 7d MA and N=5 for all the 

other experimental groups. * represents p < 0.05 relatively to 

control non-inflamed animals. One-way ANOVA was 

followed by Dunnett’s Multiple Comparison post-hoc test. 

I=Ipsilateral; C=Contralateral 

P2X3R expression decreases at later 

timepoints of MA 

P2X3R expression in L5 DRGs, as assessed by 

immunohistochemistry, decreased along the 

progression of MA, as shown in figures 2a and 2b. 

The percentage of P2X3R-positive cells was 

significantly reduced in the L5 ipsilateral ganglia 

of 7d (35.78±0.96%, p<0.05; Fig. 2c) and 14d 

(30.98±1.90%, p<0.001; Figs. 2b and 2c) MA 

animals, when compared with non-inflamed 

controls (42.08±2.05%; Figs. 2a and 2c). These 

data suggest a downregulation in neuronal P2X3R 

expression at those timepoints of MA. 

 
Fig. 2 P2X3R expression decreases along MA 

progression. (a, b) Immunolabeling for P2X3R (red), in L5 

DRGs sections from a control (a) and a 14d MA animal (b). 

(c) The percentage of P2X3R-positive neurons in the total 

neurons counted (% Total P2X3R+ neurons/Total 

neurons).decreased in L5 ipsilateral DRGs of animals with 



 

 

7d and 14d of MA. All values are shown as Mean±SEM. 

N=5 for controls and 14dMA; N=6 for 4dMA and N=7 for 

7dMA. * Represents p < 0.05 and *** represents p<0.001, 

relatively to control non-inflamed animals. One-way 

ANOVA was followed by Dunnett’s post-hoc test 

 

ATF3 knockdown does not affect 

P2X3R/P2X7R or GFAP expression  

Transfection of DRGs primary cell cultures 

with siRNAs specifically targeting ATF3 

(siATF3) resulted in a significant knockdown of 

ATF3. Messenger RNA levels were decreased by 

approximately 60% in siATF3 –treated cells 

(siATF3 cells: 0.41±0.10, p<0.01; Fig. 3a), 

relative to those transfected with scramble 

sequences (siCT), used as a negative control for 

the silencing (siCT cells: 1.00±0.14). This was 

confirmed by WB analysis, which showed a 

similar reduction at the protein level in siATF3 -

treated cells (Fig. 3a, top right insert). However, 

this level of ATF3 silencing did not induce any 

significant changes in GFAP gene expression 

(1.12±0.27 for siATF3 treated cells vs. 1.00±0.11 

for siCT treated cells; Fig. 3b). Moreover, 

knockdown of ATF3 did not significantly affect 

the expression of P2X7 (1.13±0.43 for siATF3 vs. 

1.00±0.24 for siCT; Fig. 3c) or P2X3 (0.82±0.21 

for siATF3 vs. 1.00±0.11 for siCT; Fig. 3d) 

purinergic receptors in the cultured DRG cells.

 
 Fig. 3 ATF3 knockdown in DRG 

primary cell cultures does not alter 

P2X7R/P2X3R or GFAP gene 

expression but induces a significant 

decrease in HSP90 gene expression. 

RT-PCR analysis showed that ATF3 

gene expression was knocked-down 

at around 60% in DRG cell cultures 

treated with ATF3 siRNAs (siATF3), 

when comparing to cells treated with 

a negative control scrambled 

sequence (siCT). This reduction was 

also observed in the protein 

expression by WB analysis (a). 

However, this knockdown in ATF3 

did not induce changes in the gene 

expression of GFAP, or of the P2X7 

and P2X3 purinergic receptors (b, c, 

d). Surprisingly, the gene expression 

of both the highly inducible 

HSP90aa1 and the constitutive 

HSP90ab1 isoforms of HSP90 was 

decreased in cell cultures after ATF3 

knockdown (e, f). Values from 

siATF3 cells were calculated 

comparatively to siCT, assumed as a 

reference condition and normalized to 

1. All values shown as Mean±SEM. * 

Represents p < 0.05 and ** p<0.01. 

N=4 for both siCT and siATF3 

experimental conditions, for all genes 

investigated. Statistical analysis was 

done using two-tailed Paired 

Student’s T-test to evaluate 

differences between the two groups. 

Percentages are also displayed. 

TR=transfection reagent. 

 



 

 

ATF3 knockdown significantly 

decreases HSP90 gene expression  

The knockdown of ATF3 expression in the 

DRG cells transfected with siATF3 resulted in a 

significant reduction in the expression of both 

HSP90 chaperone isoforms (HSP90aa1 and 

HSP90ab1), with decreases of 27% for HSP90aa1 

(0.73±0.15, p<0.01; Fig. 3e) and 25.5% for 

HSP90ab1 (0.74±0.19, p<0.05; Fig. 3f), relative to 

the expression found in siCT-treated cells 

(1.00±0.12 for HSP90aa1 and 1.00±0.13 for 

HSP90ab1). HSP90aa1 encodes for the HSP90α 
isoform which is highly inducible and HSP90ab1 

encodes for HSP90β which is the constitutive form 
[40]. 

 

4. Discussion 

We show for the first time that P2X7R 

expression increases in the DRGs of rats after one 

week of Monoarthritis and that, around the same 

timepoint, the expression of P2X3R is 

significantly decreased in primary afferent 

neurons. This suggests that the P2X7R/P2X3R-

mediated purinergic signaling is implicated in the 

pathophysiology of MA. We also show that ATF3 

expression directly regulates the expression of the 

inducible and constitutive isoforms of the HSP90 

chaperone in the DRG neurons. Thus, it is 

conceivable that these molecules may be part of 

the same signaling cascade triggered during the 

MA condition, although the subsiding mechanisms 

require further investigation. 

In this study, WB analysis revealed significant 

increases of P2X7R expression in ipsilateral DRGs 

of monoarthritic animals. In fact, 3 distinct bands for 

P2X7R were found in the western blots, 

corresponding most probably to different post-

translational modifications. The N-linked 

glycosylation is a very important modification that 

promotes P2X receptors trafficking to the cell 

surface [41]. In human cell lines, P2X7R is N-linked 

glycosylated on five residues and this post-

translational modification appears to be important 

for P2X7 signaling and pore formation [42]. 

However, in the present study, we detected no 

changes in protein levels of the heavier (77 KDa) 

band, proposed as the glycosylated form of PX7R, 

in the DRGs of MA animals comparing to non-

inflamed controls. In contrast, the non-glycosylated 

forms with 65-69KDa (possibly cytosol stored 

protein) were significantly increased in the 

ipsilateral DRGs of MA animals.  

Although very little is known about these P2X7R 

post-translational modifications, which would allow 

us to better understand their biological role in 

physiological an pathological states, it is interesting 

to note that P2X7R levels were significantly 

increased in animals with 7 and 14d MA. This time 

pattern of changes in P2X7R expression is 

particularly interesting as it is in accordance with 

our previous studies showing that SGCs are 

activated and proliferate around 7 days of MA [26]. 

In the DRG, P2X7R are located exclusively in the 

SGCs, implying that these receptors exert their 

effects almost exclusively through glia–neuron 

interactions [20], and possibly contributing to pain 

processing mechanisms [43-45,21]. Indeed, upon 

inflammation and/or nerve injury, neurons in the 

sensory ganglia release ATP which may bind to 

P2X7R located in SGCs and consequently lead to 

SGCs activation [43,45,46]. Thus, the timecourse of 

increased expression of  P2X7R throughout the 

monoarthritic condition is consistent with the 

timecourse of SGCs activation/proliferation events 

we had previously reported in the same joint 

inflammatory model [26], strongly suggesting that 

P2X7R might be implicated in SGCs activation 

during MA. Moreover, our data is in accordance 

with other studies showing that P2X7R is 

upregulated in DRGs of animals inflamed with CFA 

in the plantar surface of the paw [20], while others 

have shown increased levels of P2X7R mRNA in a 

model of inflammatory bowel disease [47]. 

Interestingly, P2X7R was also upregulated in DRGs 

of neuropathic pain patients [48]. 

Chen and colleagues demonstrated that P2X7R 

upregulation exerts a negative feedback control 

mechanism over neuronal P2X3R expression 

[49,50,20]. Accordingly, we show that the number 

of P2X3R-positive neurons in the ipsilateral DRG 

of MA animals was significantly decreased after 7 

days of disease duration, and this was even more 

pronounced at day 14 of MA. Therefore, it is likely 

that a similar P2X7R/P2X3R negative control is 

also occurring in MA. Since P2X3R is highly 

involved in nociception [51], by reducing its 



 

 

expression the P2X7R-negative control can 

effectively prevent allodynia in inflamed rats 

acting as a protective mechanism [20]. 

Considering this, even though P2X7R are still 

relevant targets to be studied in the MA condition, 

its inhibition might not be a good strategy to 

alleviate pain, as in fact proposed by others. 

Our results are also in accordance with previous 

studies showing that the initial expression of 

P2X3R in around 35% of the L4 and L5 DRG 

neurons dropped more than 50% after sciatic nerve 

axotomy [52]. In contrast, in a model of trigeminal 

neuropathic pain, the initial decrease of P2X3R 

expression in the first two weeks (in agreement 

with our results) was followed by increases not 

only in P2X3R expression but also in the number 

of new neuronal branches in the affected areas 

[53]. Moreover, both P2X3R and the neuropeptide 

galanin (involved in neuroprotection/ 

neurogenesis) were significantly increased in the 

DRG of mice with 15 and 47 days of collagen 

antibody-induced arthritis (CAIA) [54]. Thus, it 

seems that at later stages of the disease, a shift in 

the expression profile of P2X3R can occur and 

different signaling pathways (e.g. 

neuroprotection/regeneration cascades) may be 

activated.  

A shift in the mechanisms and signaling 

cascades to a more “neuropathic pain phenotype”, 
with the activation “damage-related programs” has 

also been proposed in models of joint pain (like in 

osteoarthritis - OA) [55,54]. Interestingly, we have 

previously found a dramatic increase in the 

expression of the neuronal injury marker ATF3, in 

the DRG of MA animals which prompted us to 

suggest that some degree of neuronal damage is 

occurring in this condition [27]. Thus, like in OA, 

plastic changes might be occurring during MA 

leading to the development of a more neuropathic-

like phenotype [55,54]. These shifts might explain, 

at least in part, the changes in the expression 

profile of P2X3R in these conditions. Accordingly, 

it has also been reported that P2X3 mRNA 

decreased in ATF3-expressing neurons, after 

nerve injury [56]. This indicated that P2X3R was 

increased specifically in intact neurons, which is 

suggestive of a protective role of this receptor [11]. 

Even though P2X3R do not necessarily co-localize 

with ATF3, this factor seems to be extremely 

relevant in these events.  

ATF3 is quite a particular molecule since it can 

trigger different signaling pathways according to 

the cellular environment [57]. In the nervous 

tissue, besides being recognized as a neuronal 

injury marker [56], it promotes neurite outgrowth 

and enhances peripheral nerve regeneration after 

axotomy [58,59]. In a previous study, we have also 

demonstrated that an augmented activation of 

SGCs at day 7 of MA occurs preferentially around 

ATF3-positive sensory neurons [26]. Curiously, 

some authors have proposed that the expression of 

injury factors might possibly be one of the triggers 

for the initiation of the neuron-glia communication 

upon a pathological condition [18]. Thus, ATF3 

could be one of the factors implicated in SGCs 

activation, through mechanisms involving P2X3R 

and P2X7R. If confirmed, ATF3 could be 

triggering different signaling pathways along MA 

progression. To test this hypothesis, we knocked-

down ATF3 in primary cell cultures of DRG. 

ATF3 knockdown did not induce any changes in 

the expression of P2X7R and/or P2X3R or even in 

the activation of SGCs, as inferred by no changes 

in the levels of GFAP. This suggests that either the 

achieved degree of silencing (~60%) is insufficient 

to disrupt the activity of ATF3 in inducing 

significant and quantifiable changes in the 

purinergic system (threshold effect) or, at least in 

vitro, ATF3 expression is not implicated in these 

events. However, before completely excluding a 

relation between ATF3 expression and the 

activation of SGCs through these purinergic 

receptors it is necessary to consider the 

methodological limitations inherent to the use of 

in vitro systems. Indeed, the disruption of the 

SGC-neuron functional units during the DRG 

dissociation may have prevented the occurrence of 

particular events that are dependent on this 

structural organization and tight communication 

between the neuronal cell bodies and their satellite 

cells. 

Interestingly, even in the absence of a total 

silencing of ATF3, we found significant decreases 

in gene expression of both the inducible (alpha-α) 
and constitutive (beta-β) isoforms of the HSP90 

chaperone in the DRG cell cultures. An ATF3 

upregulation has been observed after HSP90 



 

 

inhibition [28,29], but little is known about the 

regulation of HSP90 by ATF3. It has been 

demonstrated that ATF3 negatively regulates the 

TLR4 inflammatory signaling cascade [37] while 

HSP90 is a ligand of this receptor [60] contributing 

to the inflammatory response. Although the 

information about its function in the nervous 

system is scarce, our results showing a HSP90 

upregulation in DRG cultures following ATF3 

suppression may suggest an involvement of this 

chaperone in the MA pathophysiology (where 

ATF3 is significantly induced). Moreover, HSP90 

was shown to be part of a P2X7-protein complex 

[61], a receptor whose expression was also up-

regulated in MA. Interestingly, besides reducing 

inflammation [24], HSP90 inhibitors reversed 

neurodegeneration [62] and alleviated allodynia in 

a model of neuropathic pain [23,25]. 

In summary, our data demonstrates the 

involvement of P2X7R and P2X3R in MA 

pathophysiology. It is likely that P2X7R is 

involved in the activation of SGCs, being a key 

mediator in the SGCs-neuron communication 

occurring in this pathology. We also propose that 

glial P2X7R induces a negative feedback control 

over P2X3R expression in the MA condition. In 

this study, we also show that the expression of 

HSP90, involved in the P2X7R-protein complex, 

is under ATF3 regulation in DRG neurons. 

However, further studies are still needed to 

understand if these mechanisms are possibly 

mediated by ATF3 in the MA condition (as 

evidence suggests) and to evaluate the role of these 

proteins in the nociceptive behavior. 
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Abstract  
Heat shock protein 90 (HSP90) inhibitors have recently been shown to ameliorate 

neurodegenerative diseases and inflammatory conditions. They also alleviated pain in a 

neuropathic model suggesting a novel role of this chaperone in nociception. We have previously 

demonstrated that activating transcriptional factor 3 (ATF3) is significantly induced in dorsal 

root ganglia (DRG) neurons of Monoarthritic (MA) rats. Interestingly, when suppressing ATF3 

in DRG cell cultures, we observed a significant decrease in HSP90 expression. Altogether data 

suggested an involvement of HSP90 in MA pathophysiological mechanisms, which we further 

investigated. Here, the mRNA levels for both the inducible and constitutive HSP90 isoforms, 

evaluated by qRT-PCR, were considerably increased in the ipsilateral DRG of MA animals, as 

well as the cleavage of its N-terminal, analyzed by western blot. The intrathecal administration 

of 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an HSP90 

inhibitor, attenuated MA-induced mechanical allodynia, assessed by the ankle bend test, mainly 

1h-post injection. The drug also induced significant decreases in the expression of the HSP90 

isoforms and reversed the high levels of the cleaved protein. The expression of the P2X3 

purinergic receptor (but not P2X7) as well as of glial fibrillary acidic protein (GFAP, marker 

of satellite glial cells activation) was also decreased after 17-DMAG administration. 

Oppositely, ATF3 expression, already known to be induced in MA, was even higher in 17-

DMAG-treated animals. Data suggest that HSP90 plays a role in MA and that its cleavage is a 

key event to understand these mechanisms. Interestingly, even though HSP90 chaperoning 

functions are most likely compromised, 17-DMAG attenuates glial activation (GFAP) and 

neuronal sensitization (P2X3R) which might correlate with the pain alleviation observed in the 

MA animals. Data suggest that 17-DMAG prevents the cleavage of HSP90, which can possibly 

relate with the amelioration of the pathological condition. However, further investigation is 

needed to clarify these mechanisms 
 

Key words: HSP90inhibition, joint inflammatory pain, DRG neurons, N-terminal cleavage, ATF3, P2X 

receptors, SGCs activation  
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1. Introduction 

Heat shock protein 90 (HSP90) belongs to a 

family of conserved molecular chaperones that 

play important roles for the basic function of the 

cell like signal transduction, intracellular transport 

and protein stabilization/degradation [1]. They are 

triggered by various cellular stresses (rather than 

heat) protecting the cells against damage [2]. In 

eukaryotic cells, there are two major isoforms of 

this chaperone, HSP90α that is inducible under 
stress conditions and HSP90ȕ that is constitutively 
expressed. Both isoforms contain three main 

domains: an N-terminal and a C-terminal that 

include an ATP-binding pocket and a middle 

domain responsible for the binding to client 

proteins [3].  

The use of HSP90 blockers was primarily 

investigated as a cancer treatment [4,5] and indeed 

many of these compounds have already reached 

phase I clinical trials, while their properties (such 

as pharmacokinetics, bioavailability, tissue 

distribution and metabolism) are being 

expansively evaluated. Since many events (such as 

aberrant cytokine production, receptors signaling 

and cellular invasion) are common to both cancer 

and inflammation, HSP90 inhibition has also been 

evaluated in the treatment of inflammatory 

diseases, including rheumatoid arthritis [6] and 

atherosclerosis [7]. In the nervous system, HSP90 

inhibitors reduce neurodegeneration [8] and 

promote neuroprotection [9] being pointed as 

possible therapies for neurodegenerative diseases. 

Interestingly, intrathecal and systemic 

administration of HSP90 inhibitors can alleviate 

pain in chronic constriction injury (CCI) 

neuropathic animals [10], suggesting a role for 

HSP90 in painful states. However, still very little 

is known about its involvement in pain processing, 

mainly because HSP90 signaling pathways and 

functions in neurons remain unclear. 

In a couple of studies, HSP90 expression has 

been associated to activating transcriptional factor 

3 (ATF3) [11], a molecule whose expression is 

also triggered in stressing conditions and 

considered a marker of neuronal injury [12]. 

However, these have been conducted in other cell 

types rather than neurons and by using distinct 

approaches [11]. Interestingly, by silencing the 

expression of ATF3 in primary cell cultures of 

dorsal root ganglia (DRG) neurons, we found a 

significant decrease in the expression of both the 

inducible and constitutive forms of HSP90 [13] 

which suggests a regulation of ATF3 over HSP90 

gene expression in primary afferent neurons. This 

data, together with our previous studies showing 

ATF3 is significantly induced during 

monoarthritis (MA) [14], a model of joint 

inflammatory pain induced by injection of 

complete Freund’s adjuvant (CFA) in the 

tibiotarsal joint of the rat [15], pointed to a possible 

role of HSP90 in MA pathophysiology. 

Moreover, a significant activation of satellite 

glial cells (SGCs), preferentially surrounding 

ATF3-positive neurons in the DRG, was also 

detected around 1 week of MA [16]. Indeed, 

HSP90 is also involved in glial activation [17,18], 

one of the major events implicated in pain 

processing [19-21]. However, it is still unknown 

whether the HSP90-mediated regulation of glial 

cells activation also occurs at the periphery (in 

SGCs) since the few reports available were 

conducted mainly in the spinal cord. In fact, SGCs 

activation during painful conditions is majorly 

mediated by P2X7R, a purinergic receptor that is 

highly associated with pain states [19,21,22]. Due 

to their selective localization, P2X7R (found 

exclusively in SGCs) and P2X3R (expressed only 

in neurons) [23] are known to be involved in 

mechanisms of neuron-glia crosstalk which also 

explain their relevant role in pain processing. 

Moreover, activation of P2X7R is known to down-

regulate the activity of the neuronal P2X3R as a 

sort of protective mechanism to prevent further 

neuronal sensitization and damage [24-26]. In MA 

animals, not only we have shown P2X7R up-

regulation in the DRG of MA animals, but also 

observed this negative feedback control resulting 

in P2X3R down-regulation in neurons [13]. 

Excitingly, HSP90 was found to be part of a 

P2X7R-protein complex [27,28]. 

Altogether, these evidences led us to 

hypothesize a role for HSP90 in the 

pathophysiological mechanisms underlying the 

MA condition. Therefore, in order to study the role 

of HSP90 in MA, we analyzed changes in HSP90 

at the mRNA and protein levels in MA animals. 

Additionally, we intrathecally administered the 

HSP90 inhibitor, 17-Dimethylaminoethylamino-

17-demethoxygeldanamycin (17-DMAG), to 



 

inflamed animals. We then evaluated the effect of 

17-DMAG treatment in their nociceptive behavior 

and HSP90 expression levels, as well as in the 

expression of ATF3, glial fibrillary-acidic protein 

(GFAP) (used as marker of SGCs activation) and 

the purinergic receptors P2X7R and P2X3R. With 

this study, we hope we contributed to clarify the 

role of HSP90 in the MA condition as well as of 

the use of HSP90 inhibitors in similar 

inflammatory conditions. 

 

2. Materials and methods 

2.1. Animal handling 

The experiments were authorized by the animal 

welfare body (ORBEA) of the Faculty of Medicine 

of the University of Porto. Procedures were carried 

out according to the European Communities 

Council Directive of September 22, 2010 

(2010/63/EC) and to the ethical guidelines for 

investigation of experimental pain in animals [29]. 

Measures were taken in order to minimize pain and 

distress as well as to reduce the number of animals 

used. Accordingly, animals were housed 2-3 

animals per cage under controlled conditions of 

lighting (12h light/12h dark cycle) and 

temperature as well as water and food ad libitum. 

They were habituated to the experimenter and the 

equipment used for behavioral assessment for 

several days before initiating the experiments. 

After the first intervention they were monitored 

daily. The humane endpoints defined for this 

project were always taken into consideration. 

 
2.2. Monoarthritis (MA) induction 

Monoarthritis (MA) was induced in male 

Wistar rats (Charles River Laboratories, France) 

weighing between 200 and 300g, as previously 

described [16]. Briefly, animals were injected with 

50µL of complete Freund’s adjuvant (CFA), into 
the left tibiotarsal joint [15] under isoflurane 

anesthesia. The CFA solution (5,45mg/mL of 

mycobacterium butyricum) was prepared as 

previously described [30]. Control (non-inflamed) 

animals were similarly injected with 50µL of CFA 

vehicle (detailed in [14,16]). 

 

 

 

2.3. HSP90 inhibition by 17-DMAG 

administration  

In order to study the possible regulation of 

HSP90 on the expression of specific targets as well 

as on the nociceptive behavior of the animals with 

a joint inflammatory condition, we administered 

17-Dimethylaminoethylamino-17-

demethoxygeldanamycin (17-DMAG- 

Calbiochem, San Diego CA, USA), an HSP90 

inhibitor, to MA animals. The choice of 17-

DMAG (a benzoquinone ansamycin, second 

generation geldanamycin derivate), among other 

available HSP90 inhibitors in phase I clinical 

testing, was based on its improved properties. It is 

water-soluble, has greater oral bioavailability, is 

widely distributed to tissues and quantitatively 

much less metabolized and hepatotoxic than other 

similar derivatives [31]. 

Animals were divided into 4 different 

experimental groups: non-inflamed animals (intra-

articular injection of vehicle) receiving an 

intrathecal (i.t.) injection of either saline 

(Control+saline) or 17-DMAG 

(Control+17DMAG), and 4d MA inflamed 

animals (intra-articular injection of CFA) 

receiving either i.t saline (MA+saline) or 17-

DMAG (MA+17DMAG). At day 4 after 

CFA/vehicle intraarticular injections, 17-DMAG 

or saline were intrathecally administered in order 

to reach the lumbar spinal segments, using a non-

surgical approach according to a protocol adapted 

from Ossipov et al, 1988 [32] and De la Calle et 

al, 2002 [33]. Basically, 26G needles were used to 

perform an injection through the intervertebral 

disc of the L5-L6 or L6-S1 segment while animals 

were kept under light isoflurane anesthesia (5% for 

induction, 2% for maintenance). Briefly, the lower 

half of the animal’s back was shaved and 
disinfected with ethanol 70%. Using the anterior 

part of the iliac crest as a tactile landmark for the 

L6 vertebra, the animal was firmly held by the hip 

bones with one hand in order to lift the spinal 

column at the L5-S1 vertebral level and create a 

slight curvature, and the L5-L6 and the L6-S1 

intervertebral spaces were identified using the 

index finger. Animals were injected either at the 

L5-L6 or L6-S1 intervertebral space by 

introducing the 26-gauge needle connected to a 

100µL Hamilton syringe through the widest 

intervertebral space, lowering it until contact with 



 

the vertebral body and penetrating into the 

intrathecal space, perceived by a change of 

resistance. Correct dura puncture and position of 

the tip of the needle was verified by a reflexive 

flick of the tail or a hind paw flinch.  

Animals were injected with γ0μL of either 17-

DMAG solution (10μg dissolved in saline [10]) or 

saline, daily, during 4 days (that is, on day 4 after 

CFA/vehicle injections and until day 7 as shown in 

Fig. 1A diagram). Animals were sacrificed at day 

7, 2 hours after the last injection, and the ipsi and 

contralateral L3-L5 DRG were freshly harvested 

and instantly frozen for later real-time quantitative 

PCR (RT-qPCR) analysis. 

 
2.4. Nociceptive behavioral analysis  

A habituation period of 7 days, to both the 

experimenter and the behavior protocols, preceded 

the tests. Nociceptive behavioral evaluation was 

performed by an experimenter blind to the 

solutions previously intrathecally injected by 

using the Ankle-Bend (AB) test. Tests were 

performed in all experimental groups but data were 

analyzed only for MA animals (MA+saline vs 

MA+17DMAG) since control non-inflamed 

animals did not show any significant pain 

symptoms (in accordance with our previous 

studies [34-37]). AB baseline tests were performed 

at day 0 (before MA induction) and at day 4 of MA 

(before intrathecal injections). Then, to evaluate 

the effect of the drug at day 4, AB tests were 

performed 1, 3 and 4 hours after the intrathecal 

injections of 17-DMAG or saline. To assess the 

possibility of an accumulative effect, animals were 

similarly tested on days 5 and 6 of MA, but only at 

3h after injection. This timepoint was chosen to 

avoid the more acute effects by taking in 

consideration the behavior responses obtained at 

day 4. More prolonged timepoints were not 

assessed as the drug’s concentration in plasma 
drops considerably after the 3 hours [38,39]. At 

day 7, the animals were similarly intrathecally 

injected but no behavior analysis was performed, 

as they were sacrificed 2h post-injection instead 

(Fig. 1A). The timepoints for sacrifice were also 

chosen taking in consideration the drug’s 
pharmacokinetics and the effects observed on day 

4. Behavioral tests were always performed in both 

the ipsilateral inflamed and contralateral non-

inflamed paws, as the latter were used as internal 

controls.  

The ankle-bend test was used to evaluate 

physiological movement-induced nociception 

(allodynia)[40]. Five alternate flexions and 

extensions of the ankle joint were performed and 

the animals’ response (squeaks and struggle 
reactions) was scored according to an established 

scale, as previously described [40]. Basically, the 

higher scores (score 2) indicate squeak responses 

to moderate manipulations of the inflamed joint, 

whereas lower scores (score 0) indicate the 

absence of a response to manipulation. A mild 

response is reflected by the retraction of the paw 

without squeak (score 1). Each extension/flexion 

is scored and in the end a sum of the scores from 

the ten maneuvers is calculated (maximum 

possible score is 20), meaning that higher ankle-

bend scores are indicative of allodynia (as in [41]). 

 

2.5. Real-time quantitative polymerase chain 

reaction (RT-qPCR)  

Animals were sacrificed by decapitation under 

light anesthesia with isoflurane. For each animal, 

freshly harvested L3, L4 and L5 ganglia were 

pooled together but separately for the ipsi- and 

contralateral sides. Snap frozen DRG tissue 

specimens were homogenized in 750μL of TRI® 

reagent using a MagNA Lyser System (Roche). 

Following addition of chloroform and 

centrifugation, the RNA-containing upper phase 

was retrieved for subsequent total RNA extraction. 

The organic phase was stored at 4°C for 

subsequent isolation of proteins. 

 

RNA extraction and cDNA synthesis 

Total RNA was isolated using the SV Total 

RNA Isolation System (Promega) according to the 

manufacturer’s instructions. Quantification was 
performed using a Nanodrop 2000 and the RNA 

integrity was assessed using the Agilent 2100 

Bioanalyzer; all samples had a RIN ≥ 7. The 
RevertAid H Minus cDNA synthesis kit 

(Fermentas) was used to reverse transcribe 1µg of 

total RNA with random primers, and the resulting 

cDNA was diluted 1:20, aliquoted and stored at -

20ºC for subsequent use. 

 

 

 



 

Gene expression studies 

The expression levels of the selected genes 

were measured by RT-qPCR using the 

StepOnePlus Real-Time PCR System (Applied 

Biosystems). Each reaction was performed in 

triplicate, with Maxima SYBR Green/ROX qPCR 

Master Mix (Fermentas), 400nM of primers 

(except where noted, Table S1) and γμL of β0x 
diluted cDNA (described above), in a 12.5μL final 

volume. A standard curve made up of 1/2 dilutions 

of pooled cDNA of all samples was run on each 

plate for each primer set, to assay for relative 

quantification. Target gene expression was 

normalized to the expression of Gap3dh 

(GAPDH). The estimated efficiency of all qPCR 

assays ranged between 90-100%.Primer sequences 

and annealing temperatures are shown in Table 1. 
 

Table 1. Primer sequences and annealing temperatures 

for quantitative PCR 

F: forward primer; R: reverse primer 

Protein Extraction 

The precipitation and extraction of total protein 

from the organic phase of DRG tissue 

homogenized in TRI reagent was conducted 

according to the manufacturer’s instructions 
(Sigma). Briefly, the precipitate was obtained by 

adding 2-propanol and allowing the samples to rest 

for 10min at room temperature. After 

centrifugation (12000g at 4ºC), the supernatants 

were discarded and pellets were successively 

washed in ammonium acetate 0.1M (80% in 

methanol). Lastly, the pellets were dried using 

ethanol and dissolved in SDS 1%, until the 

precipitate was completely dissolved. Protein 

fractions were stored at -20ºC prior to use. 

 

2.6. Western Blotting (WB) 

Protein fractions of the DRG homogenates that 

have been processed for gene expression analysis 

were used to evaluate the expression of HSP90, in 

the protein form. The double extraction of RNA 

and protein from the same samples allowed for a 

correlation of data from behavior, gene and protein 

expression.  

The protein fractions were quantified by the 

bicinchoninic acid (BCA) protein assay. After 

heating at 94ºC, between 20-30µg of protein were 

loaded for each lane and separated on 10% sodium 

dodecyl sulphate-polyacrylamide (SDS/PAGE) 

gels. The proteins were then transferred into 

nitrocellulose membranes and blocked with non-

fat milk (5% milk powder diluted in Tris buffer 

saline with tween20; TBST buffer), for one hour, 

at room temperature. Membranes were then 

incubated in polyclonal rabbit anti-HSP90 

(ab13495, Abcam) diluted 1:2500 in TBST with 

2% of normal goat serum (NGS), for 24 hours at 

4ºC. Incubation in mouse anti-Ȗ-actin (A8481, 

Sigma) diluted 1:10,000 in TBST with 2% of 

NGS, overnight at 4ºC, was also performed as a 

loading control. Lastly, blots were incubated in 

donkey anti-rabbit secondary antibody conjugated 

with HRP (711-035-152, Jackson Laboratories) or 

goat anti-mouse secondary antibody conjugated 

with HRP (sc-2005, SantaCruz Biotechnology), 

diluted 1:5000 in TBST with 5% milk powder. 

Antibody binding was visualized with the 

SuperSignal West Pico Chemiluminescent 

Substrat kit (Thermo Scientific; 34080) and 

chemiluminescent signals were detected by 

exposure in the ChemiDoc™ system (BioRad). 
The protein levels were obtained by 

densitometric analysis of the band signal intensity 

using the image computer software ScionImageR 

(Scion Corporation). The protein density was 

determined for each band after subtracting the 

Transcript Primers 
Annealing 

(ºC) 

Atf3 

F: CCAGAACAAGCACCTTTGCC 

R: GTTTCGACACTTGGCAGCAG 

60 

Gfap 

F: AATTGCTGGAGGGCGAAGAA 

R: TTGAGGTGGCCTTCTGACAC 

60 

P2rx3 

F: TTCCTTCACTCGGCTGGATG 

R: TGCCAGCGTTCCCATATACC 

60 

P2rx7 

F: GCACATGACCGTCTTTTCCT 

R: CAAAGGGAGGGTGTAGTCGG 

60 

Hsp90aa1 

F: CTGCGTATTTGGTTGCTGAGA 

R: ACCTTTGTTCCACGACCCAT 

60 

Hsp90ab1 

F: AAATTGCCCAGCTGATGTCC 

R: ACTTGGAAGGGTCAGTCAGG 

60 

Gapdh 

F: CCATCACCATCTTCCAGGAG 

R: GCATGGACTGTGGTCATGAG 

60 



 

background of the surrounding region and 

normalizing for the selected area. This density was 

corrected against the loading control signal, for 

each blot. Assays were performed twice on 

samples obtained from independent groups of rats 

and averages were used for analysis. 

 

Visualization in the Odyssey system 

In order to identify the 70KDa band found in 

the blots for HSP90 detection, two more WB 

assays were performed to visualize the membranes 

with the Odyssey® CLx infrared system (LI-COR, 

Biosciences). The Odyssey system allows the 

detection of two targets whose antibodies have 

been made in different species. By using 

secondary antibodies linked to fluorescent dyes 

that have distinct absorption and emission 

wavelengths, it is possible to visualize both targets 

simultaneously, in distinct colors. By also 

allowing the overlapping of the signals it gives 

additional information when comparing to the 

traditional WB detection with chemiluminescent 

substrates. 

The WB protocol was similar to that described 

above except for a few modifications in order to 

reduce background. Briefly, blots were blocked in 

a solution of 5% bovine serum albumin (BSA) in 

TBST instead, and no detergent was used prior to 

the blocking step (washes in TBS only). Primary 

antibodies were also diluted in the 5% BSA in 

TBST solution and secondary antibodies diluted in 

0.5% milk in TBST. After the incubations, 

membranes were washed in TBS and dH2O in 

order to remove any trace of detergent. In a first 

experiment, the blots were incubated in polyclonal 

rabbit anti-HSP90 (1:2500, ab13495, Abcam) 

together with monoclonal mouse anti-HSP90 

(1:1000, ab82395, Abcam) specific for N-terminal 

residues. In a second experiment, the membranes 

were incubated again in rabbit anti-HSP90, but 

now together with monoclonal mouse anti-HSP70 

(1:2500, ab6535, Abcam). Detection was done 

using, for both experiments, IRDye® 800CW 

Donkey anti-Rabbit (926-32213, LI-COR 

Biosciences) and IRDye® 680LT Donkey anti-

Mouse (926-68022, LI-COR Biosciences), both at 

1:15,000 in 0.5% milk in TBST. Only a qualitative 

analysis of this data was performed. 

 

 

2.7. Data and statistical analysis 

Statistical analyses were performed by using 

STATISTICA 10.0 (StatSoft, Tulsa, U.S.A.) or 

GraphPad Prism 5® (GraphPad Software). All 

data are presented as mean±standard error of the 

mean (SEM). The normality of all data was 

analyzed by the Kolmogorov-Smirnov test. 

To investigate whether MA induced pain-like 

behaviors (model validation), the ipsilateral AB 

scores of all MA animals were compared between 

day 0 (before model induction) and day 4 of MA 

(prior to drug administration) using a two-way 

repeated measures analysis of variance (ANOVA) 

followed by Bonferroni post-hoc tests (N=17). 

Animals were then randomly divided to be injected 

either with saline (MA+saline) or the drug 

(MA+17DMAG). To evaluate the effect HSP90 

inhibition on pain behavior, differences between 

these two experimental groups, for each timepoint, 

were assessed by two-way ANOVA followed by 

the least significant difference (LSD) post-hoc test 

(N=6 for MA+saline and N=11 for 

MA+17DMAG).  

To evaluate changes in gene expression of these 

same animals, data from the RT-qPCR performed 

in DRG were normalized against the 

control+saline group (defined as 1). Statistical 

analysis was done using one-way ANOVA 

followed by Newman-Keuls post-hoc test (N=7 for 

control+saline; N=5 for Control+17DMAG; N=6 

for MA+saline and N=11 for MA+17DMAG).  

In the WB assays, two bands were identified for 

HSP90 detection, one around 90KDa which is the 

predicted weight for the full length protein, and 

another one around 70KDa believed to be a 

cleaved form of this chaperone (rarely reported). 

Therefore, the density of the two bands was 

quantified separately. Values were corrected 

against the loading control (Ȗ-actin) and ratios with 

the control+saline group were calculated 

afterwards (defined as 1). One-way ANOVA 

followed by Newman-Keuls post-hoc test allowed 

to assess differences between the experimental 

groups for each of the HSP90 forms (N=6 for 

control+saline; N=5 for Control+17DMAG; N=6 

for MA+saline and N=11 for MA+17DMAG). By 

following a protocol of double extraction of RNA 

and protein we were able to use the exact same 

animals for the WB and RT-qPCR analysis, with 



 

the exception of a control+saline animal whose 

sample was not suitable for WB.  

For all the statistical analyses, a level of 

significance of P < 0.05 was assumed.  

 

3. Results 

MA animals show movement-induced 

allodynia 

Monoarthritis was successfully induced in all 

animals injected with CFA. The ipsilateral paws of 

MA animals showed demarked inflammatory 

signs (as described in [37,41-43]). The 

contralateral paws of both MA and control animals 

have never shown signs of inflammation or 

hypersensitivity (0.0±0.0 AB scores; data not 

shown). The AB test confirmed that all inflamed 

animals at 4d of MA (N=17) showed significantly 

increased movement-induced nociception in their 

ipsilateral paws (19.1±0.3 mean AB scores) when 

comparing to day 0 (prior to MA induction; 

0.0±0.0) (p<0.0001; Fig. 1B). Since control 

animals did not show any significant pain-like 

behavior (2.9±0.5 AB scores, probably due to 

tissue trauma inherent to the injection procedure, 

in accordance with previous studies [34-37]; data 

not shown), the behavioral responses to the AB test 

after 17-DMAG or saline i.t administration were 

only scored in inflamed animals to check the drug 

effects in nociceptive behavior during MA.  

 

17-DMAG alleviates mechanical 

allodynia 

We have previously observed that ATF3 

silencing in DRG cell cultures resulted in reduced 

HSP90 expression [13]. Since ATF3 is highly 

induced in the DRG of MA animals, we 

hypothesized about a role of HSP90 in this 

condition. 

To evaluate this, 4dMA animals were randomly 

separated into two different groups for intrathecal 

(i.t.) administrations of saline (MA+saline; N=6) 

or of the HSP90 inhibitor 17-DMAG 

(MA+17DMAG; N=11), followed by AB 

behavioral tests (schematized in 1A). The 

statistical analyses revealed that 1 hour after the 

17-DMAG treatment MA animals show a 

significant reduction in the AB scores (14.6±1.5; 

Fig. 1B), comparatively to the animals injected 

with saline (20.0±0.0; Fig. 1B). Differences were 

still significant 3h after the drug administration 

(15.7±1.3 for MA+17DMAG vs 19.5±0.5 for 

MA+saline; Fig. 1B). Data indicate that MA 

animals treated with this HSP90 inhibitor show 

less movement-induced allodynia (Fig. 1B). 

Interestingly, the statistical differences between 

the animals receiving saline (19.3±0.7) or HSP90 

inhibitor (17.6±0.8) were no longer found at 

4hours post-injection, suggesting that after this 

timepoint there is a reversion of the drug effect 

(Fig. 1B).  

 

 
Fig. 1 – 17-DMAG treatment alleviated MA-induced 

mechanical allodynia. A) Schematic representation of the 

experiment. After 4d of MA induction, animals were 

divided into two groups receiving either saline or the drug 

intrathecally. AB was performed 1, 3 and 4h after the 

administration. To assess a possible accumulative effect of 

the drug, animals were again injected in the following days 

(5 and 6), and tested 3h after. Animals were sacrificed at day 

7, 2h after the last injection. B) 17-DMAG significantly 



 

reduced AB scores of MA animals. All ipsilateral paws of 

inflamed rats showed high AB scores at day 4 of MA (near 

20, the maximum value) when comparing to day 0 (prior to 

MA induction). Contralateral paws or control animals never 

showed any signs of inflammation or pain (data not shown). 

Values are shown as Mean±SEM (N=17). Differences 

between D0 and D4 MA were assessed using two-way 

ANOVA, followed by Bonferroni post-hoc tests (### 

represents p<0.001). To evaluate the effect of HSP90 

inhibition, 4d MA animals were divided in two groups 

receiving either saline or 17-DMAG. The drug significantly 

attenuated mechanical allodynia in inflamed rats, mainly 1h-

post injection. Values were still significantly different 3h 

after the injection but at 4h the effect could no longer be 

observed, suggesting an acute action of the drug. Behavioral 

analysis at the following days showed that repeated 

injections do not increase the response to 17-DMAG, which 

excludes a putative accumulative effect of the drug. Values 

are shown as Mean±SEM (N=6 for the MA+saline and N=11 

for the MA+17-DMAG group). Two-way ANOVA repeated 

measures analysis of variance was used followed by the LSD 

post-hoc test. * represents p<0.05 and ** represents p<0.01 

between the two groups for each timepoint. 

 

The AB tests performed at 3h after the injection 

on days 5 and 6 showed no significant differences 

between the MA animals injected with the drug or 

saline, excluding the hypothesis of an 

accumulative effect of the drug. Here, the AB 

scores of MA+17DMAG animals were very 

similar to those found on day 4 also 3h after drug 

injection (14.00±1.23 for day 5 and 15.00± 0.99 

for day 6, 3h post-injection), however the AB 

scores of MA+saline animals considerably 

decreased (16.50±0.50 for day 5 and 15.83±0.75 

for day 6, 3h-post injection), which might explain 

the lack of differences (Fig. 1B). Therefore, it is 

shown for the first time in this study that 17-

DMAG induces an acute pain alleviation in MA 

animals. 

 

HSP90 is up-regulated in DRG of MA 

animals and 17-DMAG treatment 

reverses it 

The RT-qPCR performed in the DRG of MA 

animals showed that both the inducible (α-HSP90) 

and the constitutive (ȕ-HSP90) HSP90 isoforms 

were significantly increased (1.92±0.08 for α- 

HSP90, Fig. 2A; 1.9γ±0.07 for ȕ-HSP90, Fig. 2B), 

comparing to controls (control+saline; normalized 

to 1). This is the first time that HSP90 isoforms 

levels are shown to be increased in primary 

afferents during MA, once again supporting the 

role of these chaperones in inflammatory chronic 

conditions. Moreover, treatment with 17-DMAG, 

shown above to reduce pain-like behavior in these 

animals, was capable of significantly reversing 

these increases. Indeed, the HS90 levels of both 

isoforms decreased considerably after the 

treatment (1.48±0.16 for α-HSP90 and 1.42±0.13 

for ȕ-HSP90; Fig. 2A and B). The drug induced no 

changes in the HSP90 expression of non-inflamed 

animals (control+17DMAG; 0.99±0.12 and 

0.97±0.05 for α and ȕ isoforms, respectively; Fig. 

2A and B). 

 

17-DMAG reverses the increases in 

GFAP and P2X3 found in MA animals 

while ATF3 remains up-regulated 

The RT-qPCR analyses of the DRG 

homogenates from MA animals (injected with 

saline) showed increased mRNA levels of ATF3 

(MA+saline; 3.50±0.90) in comparison to non-

inflamed controls (control+saline; normalized to 

1; Fig 2C), although these changes were not 

statistically significant (p=0.0609). This is in 

accordance with our previous work showing that 

at day 7 the number of ATF3-positive DRG 

neurons was no longer significantly increased, 

although still higher than controls [14].  

Interestingly, the i.t. administration of the HSP90 

inhibitor during 4 consecutive days induced an 

even higher increase in the ATF3 mRNA levels in 

ipsilateral DRG of MA animals (4.43±1.00; 

MA+17DMAG) than that found in non-treated 

animals (3.50±0.90; MA+saline), which was 

statistically significant when comparing to 

controls (control+saline; Fig. 2C). The drug had no 

effect on ATF3 expression in control animals 

(controls+17DMAG; 1.00±0.12; Fig. 2C). 

The DRG of MA animals also presented 

significant increases in the mRNA levels of GFAP 

(MA+saline; 9.13±2.82) when comparing to 

control+saline (normalized to 1; Fig. 2D), which 

again corroborates with a previous work where we 

demonstrated a dramatic increase in GFAP protein 

levels, by WB in the DRG of MA animals [16]. 

The MA animals treated with 17-DMAG showed 

a significant decrease in GFAP gene expression 

(MA+17DMAG; 4.69±0.70), even though it was 

still 4 to 5 times higher than in non-inflamed 

controls (Fig. 2D). Again, the drug induced no 



 

significant changes in control non-inflamed 

animals (control+17DMAG; 2.07±0.64; Fig. 2D).  

The mRNA expression of both the P2X3 and 

P2X7 purinergic receptors was also significantly 

increased in MA animals (MA+saline; 1.92±0.11 

and 2.11±0.18, respectively) when comparing to 

non-inflamed control+saline (normalized to 1; Fig. 

2E and F) which is also partially in agreement with 

preliminary data from a previous study [13]. 

Similarly to GFAP, we observed that 17-DMAG 

administration to MA animals diminished the 

expression of the neuronal P2X3R 

(MA+17DMAG; 1.42±0.13; Fig. 2E). On the other 

hand, the drug had no effect in the expression of 

the glial P2X7R in MA animals, which remained 

high (MA+17DMAG; 2.00±0.22; Fig. 2F). The 

drug also had no effect on the expression of any of 

the purinergic receptors in control animals 

(control+17DMAG; Fig. 2E and F). Altogether 

data demonstrate that HSP90 inhibition is capable 

of inducing molecular changes at the DRG level 

that might be associated with distinct signaling 

pathways and mechanism 

 
 

 

Fig. 2 - HSP90 is up-regulated in 

MA and its inhibition by 17-DMAG 

reverses it and attenuates other 

pathomechanisms in the DRG. A, F) 

Both inducible (A) and constitutive 

(B) isoforms of HSP90 were increased 

in DRG of MA rats (MA+saline in 

comparison to control+saline), and 

these increases were reversed by 

treatment with 17-DMAG 

(MA+17DMAG). The decrease in 

HSP90 expression in treated animals 

was accompanied by a significant 

increase in ATF3 expression (C) and a 

decrease in both GFAP (D; suggesting 

less activation of SGCs) and P2X3R 

(E; inferring lower neuronal 

sensitization). No differences were 

found for the P2X7R mRNA levels 

suggesting that the changes observed 

in SGCs are unlikely to be mediated 

by this receptor (F). TData suggest 

that HSP90 inhibitors attenuate MA 

inflammatory signaling and 

pathomechanisms which may also 

explain pain alleviation. Values are 

shown as Mean±SEM (N=6 for 

control+saline; N=5 for 

Control+17DMAG; N=6 for 

MA+saline and N=11 for 

MA+17DMAG). One-way ANOVA 

followed by Newman-Keuls post-hoc 

test was used to assess differences 

between the experimental groups. * 

represents p<0.05, ** represents 

p<0.01 and *** represents p<0.001 to 

the control+saline group. # represents 

p<0.05 to the control-17DMAG 

group. § represents p<0.05 and §§ 

represents p<0.01 to the MA-saline 

group. 

 

 



 

HSP90 is cleaved during MA and 17-

DMAG treatments seems to prevent it 

Two distinct bands were observed in the WB 

detection of HSP90 using a polyclonal antibody 

that detects both α and ȕ isoforms of the protein. 

In the DRG homogenates one band around 90KDa 

(the predicted weight for HSP90) and another one 

around 70KDa (Fig. 3A) were detected. Based on 

a few other reports [3] we hypothesized that the 

70KDa band is a cleaved form of the HSP90 

chaperone. This was confirmed by a simultaneous 

detection (Odyssey® CLx infrared system) of the 

polyclonal antibody for HSP90 with a monoclonal 

antibody specific for an N-terminal region,  

showing that the70KDa band lacks the N-terminal 

(Fig. 3B; left column).We also discarded the 

possibility of this being a nonspecific detection of 

the HSP70 chaperone (since these two proteins 

share some conserved domains) as the signals 

from these two chaperones were not coincident 

(even though they have a very similar molecular 

weight; Fig. 3B right column). Altogether, these 

data indicate that a full length form (90KDa) and a 

cleaved form (lacking the N-terminal - 70KDa) of 

HSP90 has been detected in the DRG 

homogenates. 

Quantification of WB data from ipsilateral 

ganglia showed a significant increase in the 

HSP90 cleaved form levels for the MA animals 

(5.02±0.57 for MA+saline; Fig 3A and C), when 

comparing to the control non-inflamed group 

(control+saline; normalized to 1; Fig. 3A and C). 

Interestingly, 17-DMAG administration to MA 

animals was capable of reversing the high values 

of cleaved protein found in the disease, to values 

that are very similar to those detected in controls 

(2.28±0.44 for MA+17DMAG, Fig. 3 A and C). In 

the MA animals the levels of full length protein 

were slightly decreased, most likely due to the 

remarkable and immediate cleavage of the protein, 

but no significant differences were found for this 

form when comparing to any of the experimental 

groups (Fig. 3C). Similarly, both forms of the 

protein remained unaltered in control animals 

treated with the drug (1.94±0.84 for the full length 

and 2.27±0.64 for the cleaved form; Fig. 3A and 

C). These results highly suggest that HSP90 

cleavage is a relevant event occurring during MA. 

Moreover they suggest that 17-DMAG might 

protect HSP90 from cleavage, therefore reversing 

the high levels of cleaved protein found in these 

animals. 

 
Fig. 3 – HSP90 is highly cleaved in MA animals while 17-

DMAG seems to prevent it. A) WB analyses of the 

ipsilateral DRG homogenates demonstrate the existence of 

two HSP90 forms of distinct size, one at 90KDa which is the 

expected size of this chaperone and another one at 70KDa 

proposed to be a cleaved form. B) Odyssey® CLx infrared 

detection allowed the double detection of the HSP90 

polyclonal antibody (green, left column) with a specific 

HSP90 N-terminal antibody (red, left column), confirming 

that the lightest form lacks the N-terminal region. The signal 

of this smaller fragment (green, right column) did not 

overlap with the signal obtained for the HSP70 detection 

(red, right column), excluding the hypothesis of an 

unspecific labeling. C) Quantification of the 90KDa (“full 
length form”) and 70KD (“cleaved form”) bands separately 
showed a significant increase in the protein levels of the 

cleaved form in MA animals. Data further showed that the 



 

administration of 17-DMAG for 4 days protects HSP90 from 

being cleaved resulting in the lower amounts of cleaved 

protein (similar to controls). Values were normalized against 

the control+saline group and are shown as Mean±SEM (N=7 

for control+saline; N=5 for Control+17DMAG; N=6 for 

MA+saline and N=11 for MA+17DMAG). One-way 

ANOVA followed by Newman-Keuls post-hoc test was used 

to discriminate statistical significances. *** represents 

p<0.001 differences to the control+saline group and ## 

represents p<0.01 differences to the MA+saline group 

 

4. Discussion 

In this study, we show for the first time that the 

HSP90 mRNA levels are significantly increased in 

DRG of MA animals, which is accompanied by an 

augmented cleavage of the N-terminal of the 

protein. Treatment with an HSP90 inhibitor (17-

DMAG) alleviated movement-induced allodynia 

(ankle bend test) and resulted in a decreased 

expression of HSP90, mostly observed in the 

cleaved protein levels. This suggests that HSP90 

inhibition most likely protects HSP90 from 

cleavage. 17-DMAG administration also resulted 

in a significant up-regulation of ATF3 and 

decrease in SGCs activation (evaluated by GFAP 

expression). Consistently, the inhibitor led to a 

decrease in the expression of the neuronal P2X3 

purinergic receptor (but not of P2X7R). Here, we 

suggest that HSP90 plays a role in the MA 

pathomechanisms and that HSP90 cleavage might 

be a central event that needs to be better explored. 

The mRNA levels of both the constitutive and 

inducible forms of HSP90 were significantly 

increased in the ipsilateral DRG of MA animals. 

The observed HSP90 up-regulation in MA is in 

accordance with several studies showing that 

HSPs are induced in response to many stressful 

conditions that can go from heat shock, to hypoxia 

and inflammation [44]. Evidence suggests a role 

for HSP90 in inflammatory diseases such as 

rheumatoid arthritis [6], mainly through activation 

of innate immunity responses via nuclear factor ƙȕ 

(NF-ƙȕ) and toll-like receptor 4 (TLR4) signaling 

[10]. Interestingly, we found out that this protein 

is considerably cleaved in DRG of MA animals. 

Even though these mechanisms are not yet well 

explored, the cleavage of HSP90 by reactive 

oxygen species (ROS) at a highly conserved N-

terminal amino acid motif has already been 

reported [3]. The exacerbated production of ROS 

is characteristic of inflammatory conditions [45], 

like MA, and therefore this is very likely to be the 

reason for the massive cleavage observed in this 

disease. As a result of this cleavage, HSP90 was 

shown to become less functional which leads to the 

disruption of its chaperoning/stabilization 

properties and degradation of its client proteins 

instead [3,46]. Thus, although HSP90 expression 

is augmented in MA condition, this protein is most 

likely dysfunctional which might result in the 

impaired folding of the client proteins [5,28]. We 

propose that the compromised activity of the 

chaperone may, per se, trigger the increases in 

HSP90 expression found in the MA animals, as a 

compensatory mechanism.  

Here, and in accordance with previous data, we 

also demonstrate that the up-regulation of HSP90 

in the DRG of MA rats is accompanied by 

increases in the mRNA levels of GFAP [16] and 

P2X7R [13], suggesting a possible association of 

these signaling pathways. Additionally, ATF3 

expression was also higher in MA animals than in 

controls, but these differences were not significant 

mostly because ATF3 expression is transient and 

at day 7 its levels are already retuning to 

physiological values, in accordance with our 

previous work [14]. Interestingly, in a previous 

study, we show that knockdown of ATF3 in DRG 

primary cell cultures decreases HSP90 expression, 

therefore suggesting a positive ATF3-HSP90 

regulation that is also consistent with the present 

data [13]. Additionally, increased levels of P2X3R 

mRNA were observed in MA+saline animals. In a 

previous work, we described a decrease in the 

number of P2X3R immunoreactive neurons, at the 

more prolonged timepoints of disease [13] that is 

likely to be a consequence of the activation of a 

P2X7R/P2X3R negative feedback control [24-26]. 

Taking into account this new evidence, it is highly 

possible that up-regulation of P2X3R (largely 

associated with pain-like behaviors [47]) occurs 

within the first week of MA development. Only 

after, when P2X7R levels re significantly 

increased, the P2X7R/P2X3R negative control 

might be triggered and down-regulation of P2X3R 

is then observed. It is also important to note that 

the quantification methodologies are distinct and 

animals from this study were manipulated daily for 

the AB behavioral tests. Nevertheless, even though 

all these markers were consistently up-regulated in 



 

MA DRG, more studies are needed to prove a real 

association of these phenomena. 

Thus, in order to better understand the 

biological significance of HSP90 in the MA 

condition, the HSP90 inhibitor 17-DMAG was 

intrathecally (i.t.) administered to MA animals. A 

reduction in the movement-induced nociception of 

MA rats was observed at 1 and 3 hours after drug 

administration in the first day (day 4 of MA). After 

4hours the effect was reversed and differences 

were no longer evident between the MA animals 

receiving either the inhibitor or saline. These 

findings show that a single injection of 17-DMAG 

induces an effective but transient anti-nociceptive 

effect in MA animals. This is in accordance with 

another study showing decreased mechanical 

allodynia (Von Frey test) in chronic constriction 

injured (CCI) rats following 17-DMAG i.t. 

injection, in the same temporal window [10]. No 

differences between the nociceptive behavior of 

the two groups could be observed on the following 

days (5 and 6, 3h-post injection), suggesting that 

repeated (daily) injections do not necessarily 

increase the response to 17-DMAG, therefore 

excluding a possible accumulative effect of the 

drug. In fact, even though differences were not 

found, the AB values of MA+17DMAG animals 

on days 5 and 6 were very similar to those on day 

4 for the 3h timepoint, suggesting that the drug is 

similarly effective. On the other hand, MA+saline 

animals showed considerably reduced AB scores. 

A possible habituation of the animals to the AB 

test, together with a slight amelioration of the MA 

condition (already observed in our previous 

studies [34]), might have contributed to these 

events which were obviously more evident in the 

untreated group where AB scores had been 

extremely high in the beginning of 17-DMAG 

treatment. It is also plausible that HSP90 cleavage 

in MA animals limits the efficacy of the drug as 

17-DMAG might not be able to bind to the 

fragments. Starting the treatment simultaneously 

to MA induction (prior to ROS production) would 

perhaps show more dramatic effects. Nevertheless, 

the strong effects observed in the initial timepoints 

should further encourage the study of HSP90 

inhibitors in pain management. 

This anti-nociceptive effect of 17-DMAG was 

accompanied by considerable changes on the 

expression of specific molecular targets at the 

DRG. Indeed, HSP90 expression decreased 

significantly comparatively to non-treated MA 

animals. Moreover, it is highly possible that, by 

binding to HSP90 instead of ROS [3], 17-DMAG 

prevented HSP90 cleavage, reversing the high 

levels of cleaved protein detected in MA animals. 

As above discussed, HSP90 is probably highly 

dysfunctional in the MA condition due to 

cleavage, which could trigger increases in its 

expression in a sort of compensatory mechanism. 

Likewise, the fact that 17-DMAG prevents HSP90 

cleavage could explain why the treatment lowers 

HSP90 expression in MA animals. However, it is 

unlikely that the HSP90 functionalities and 

chaperone properties had been restored since 17-

DMAG, by binding to the ATP site, also disrupts 

the functional activity of these chaperones [5,31]. 

Therefore, other mechanisms should explain the 

effects observed with 17-DMAG treatment. In 

fact, HSP90 is assumed as the major repressor of 

the heat shock factor 1 (HSF1), forming with it a 

complex in unstressed cells [31]. In stressful 

conditions, HSF1 dissociates being therefore able 

to translocate to the nucleus and activate other 

molecules [48,49]. Similarly, 17-DMAG (and 

other related compounds) binds to the HSP90 N-

terminal freeing HSF1, which promotes the 

expression of stress-responsive genes [50]. This 

mechanism could possibly explain the effects of 

17-DMAG even though HSP90 is not functional as 

a chaperone when the drug is bound to it. 

Interestingly, 17-DMAG treatment also 

reduced GFAP expression in DRG of MA animals 

suggesting that HSP90 is somehow associated 

with SGCs activation. In fact it has been 

previously shown that the treatment with another 

HSP90 inhibitor (PU-H71) reduced astrocyte 

activation in an experimental autoimmune 

encephalomyelitis (EAE) model [18], while 17-

DMAG was shown to suppress microglia 

activation in experimental stroke [51]. Although 

little is known about the underlying mechanisms, 

HSP90 involvement with SGCs activation in the 

MA condition is unlikely to be mediated by 

P2X7R since their levels remained unchanged 

with 17-DMAG treatment. We also observed a 

significant reduction in the mRNA levels of the 

neuronal P2X3R in 17-DMAG-treated animals, 

suggesting that HSP90 inhibition attenuates 

neuronal sensitization in MA. Accordingly, others 



 

have shown that HSP90 inhibitors alter ATP-

induced currents in DRG neurons, inferring not 

only the involvement of HSP90 with purinergic 

receptors but also a possible role in nociception 

[52]. Indeed, both SGCs activation [19,21,53] and 

P2X3R up-regulation [47,54,55] are highly 

associated with the generation of pain states and 

likewise, the suppression of these events directly 

contributes to pain alleviation [56,57]. Therefore, 

it is likely that the decreased SGCs activation and 

expression of P2X3R induced by the treatment 

with 17-DMAG, are implicated in the anti-

nociceptive effects of the drug observed in the MA 

animals. Overall, HSP90 inhibition may activate 

some mechanisms and suppress others, which 

ultimately will attenuate typical inflammatory 

events at the DRG.  

The expression of ATF3 was also up-regulated 

after HSP90 inhibition in MA animals. Others 

have previously shown that ATF3 expression is 

regulated by HSP90 at the mRNA level [58] and, 

in fact, in cancer derived cell lines 17-DMAG was 

shown to increase ATF3 expression [11]. 

Moreover, since ATF3 is also a stress-inducible 

gene, it is likely to be up-regulated by the 

activated/free HSF1, which further supports that 

this cascade is part of 17-DMAG’s mechanism of 

action. Recently, consistent and increasing data in 

the nervous system have been demonstrating the 

role of ATF3 in neuroregeneration, survival and 

tissue repair [59-61]. ATF3 is also known to be 

involved in the resolution of the inflammatory 

response by negatively regulating the toll-like 

receptor 4 (TLR4) pro-inflammatory signalling 

pathway [62]. Interestingly, HSP90 is capable of 

inducing the production of proinflammatory 

cytokines via TLR4 signal transduction pathways 

[63], while HSP90 inhibitors are known to 

attenuate these responses [10,51,64]. These 

findings suggest that HSP90 inhibition attenuates 

the MA inflammatory pathomechanisms at the 

DRG level (namely SCGs activation and P2X3R 

expression), revealing a possible protective role of 

ATF3. 

In conclusion, we propose a role for HSP90 in 

MA pathophysiology. A remarkable cleavage of 

HSP90 is demonstrated suggesting that the 

chaperone is most likely non-functional in MA. 

We show evidence for an anti-nociceptive effect of 

17-DMAG (HSP90 inhibitor) in MA animals, 

possibly due to diminished SGCs activation, 

decreased purinergic activity and a protective role 

of ATF3. Data suggest that HSP90 inhibition by 

17-DMAG attenuates the inflammatory signaling 

at the DRG level with implications in the pain 

behavior of MA animals. 17-DMAG also seems to 

protect HSP90 from cleavage. We hypothesize 

that HSP90 cleavage is a central event in the 

mechanisms underlying the role of this chaperone 

in DRG neurons, which might also determine the 

efficacy of HSP90 inhibitors. Even though HSP90 

chaperoning properties might not be restored, this 

can be somehow associated with the molecular 

changes observed and the nociceptive effects of 

the drug. Further investigation is needed to clarify 

this. 
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5. Discussion 

The present study focused on the molecular and cellular mechanisms occurring in 

the sensory ganglia, during the MA joint inflammatory condition. Indeed, chronic pain is 

one the main causes for disability and loss of joint function which has serious impact in the patient’s quality of life and in the governmental finances. Moreover, these conditions are 
often poorly diagnosed which results in a high percentage of unsuccessful treatments 

(McDougall, JJ 2006). With this work, we hope we contributed to the better understanding 

of the pathophysiology mechanisms of MA occurring at the DRG level, namely of the 

involvement of ATF3 and SGCs. 

The intra-articular injection of complete Freund’s adjuvant ሺCFA) produces a 

prominent, stable and anatomically limited inflammatory condition in the joint. We 

demonstrated that MA significantly induced ATF3 expression in L3, L4 and L5 ipsilateral 

DRG (Publication I) (Nascimento, D et al. 2011). This up-regulation was transient, with the 

most significant increases being found after 4 days of disease which was followed by a 

decrease and return to control values around day 14. Since ATF3 is assumed as a neuronal 

injury marker (Tsujino, H et al. 2000), this evidence suggests that the MA inflammatory 

condition might lead to some degree of neuronal damage (Publication I) (Nascimento, D et 

al. 2011). Indeed, others have also observed the induction of ATF3 in models of 

osteoarthritis induced by MIA injection in the knee joint, suggesting a possible 

neuropathic component in this condition (Ivanavicius, SP et al. 2007). In addition, other 

studies in OA, either induced by MIA or collagenase injection, support that the initial 

inflammatory state shifts to a ǲneuropathic pain phenotypeǳ with the progression of the 
disease (Ferreira-Gomes, J et al. 2012, Adaes, S et al. 2015, Su, J et al. 2015). Also the 

injection of capsaicin, formalin, mustard oil or menthol injected into the plantar surface of 
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mice induced the expression of ATF3 in distinct subpopulations of sensory neurons (Braz, 

JM and Basbaum, AI 2010).  

Despite being expressed during these particular joint painful conditions (like in OA 

and MA), ATF3 is not often induced in DRG neurons upon peripheral inflammation. For 

example, in the antigen-induced arthritis (AIA) model none ATF3 expression was 

observed, is spite of the profound inflammatory state (Segond von Banchet, G et al. 2009). 

Moreover, intraplantar injection of CFA also failed to evoke ATF3 induction (Braz, JM and 

Basbaum, AI 2010). Indeed, contrarily to our experimental model that is induced by intra-

articular injection of CFA (Publication I, (Nascimento, D et al. 2011)), no ATF3 expression 

or neuronal damage seems to occur when the same inflammatory agent is injected in the 

soft tissue (Braz, JM and Basbaum, AI 2010). Therefore, ATF3 expression seems to be 

somehow selective for the inflammatory agent but also dependent on the severity of the 

model. Probably, during MA and other similar pathologies in the joint, the increase in the 

intra-articular pressure activates mechanoreceptors in the terminals of primary afferents 

that result in higher neuronal excitability and activation of the so-called ǲneuronal-damage programsǳ (Su, J et al. 2015). Unfortunately, most studies focus on cutaneous nociception, 

while chronic pain arising from deeper tissues and joints are less explored. Thus, it is 

likely that ATF3 is selectively induced in neurons marked as damaged but actual nerve 

lesion/injury is not necessarily required. 

The hypothesis of a neuropathic component during MA was further supported by 

another set of experiments where we demonstrated that the administration of Ketoprofen, 

a COX inhibitor NSAID, to MA animals failed to reverse ATF3 expression, either when 

given prior to disease induction or after 2 days (Publication I) (Nascimento, D et al. 2011). 

Ketoprofen-treated MA animals showed reduced paw diameters suggesting an attenuation 

of the inflammatory component, although this exerted no effect on ATF3 expression. Thus, 

we conclude that production of prostanoids (among these, prostaglandin E2 - PGE2) is 
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unlikely to be the trigger of ATF3 expression, and these molecules do not seem to be 

associated with the presumed activation of neuronal damage programs occurring in the 

MA model. Although the production of prostanoids and up-regulation of COX-2 are 

intimately associated with thermal and mechanical hyperalgesia in peripheral 

inflammation (Schaible, HG et al. 2002), some authors failed to show pain relief after 

administration of a non-selective COX-inhibitor in the OA model (Ivanavicius, SP et al. 

2007). Once again, this evidence supports that pain arising from chronic joint pathology, 

after a certain timepoint of disease progression, no longer seems to be dependent on the 

initial inflammatory mechanisms. In fact, even though neuropathic and inflammatory 

conditions have different etiologies, their mechanisms are nowadays believed to converge 

over time (Xu, Q and Yaksh, TL 2011). This might also explain why resolution of the 

original injury (such as joint repair) does not revert persistent pain in arthritic patients 

and why anti-inflammatory drugs are so often inefficient in those cases (Christianson, CA 

et al. 2010, Xu, Q and Yaksh, TL 2011). Therefore, investigating what triggers neuronal 

damage programs in these painful conditions is crucial to understand the pathophysiology 

of these diseases, and ATF3 expression seems to hold the key for some of the answers.  

On the other hand, ATF3 was shown to negatively regulate the expression of 

prostaglandins and COX-2 in acute inflammation (Hellmann, J et al. 2015) suggesting that 

ATF3 itself might down-regulate the expression of these pro-inflammatory mediators and 

not necessarily the other way around. Indeed, ATF3 is known to be involved in the 

resolution of the inflammatory response, as it is also a negative regulator of the TLR4 pro-

inflammatory signalling pathway (Gilchrist, M et al. 2008). Contrarily to its detrimental 

functions in other tissues, ATF3 actions are frequently protective in the nervous system 

(Hunt, D et al. 2012), where it has been mainly correlated to neuronal regeneration and 

protection. This is not necessarily contradictory to its use as a neuronal injury marker, 

since some damage is needed for the activation of regeneration/protective mechanisms 
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(Xu, Q and Yaksh, TL 2011). ATF3 promotes, for example, neurite outgrowth (Seijffers, R 

et al. 2006), increases the intrinsic growth state of injured neurons (Seijffers, R et al. 

2007), and improves motor function promoting motor neuron survival (Seijffers, R et al. 

2014). Additionally, overexpression of ATF3 was shown to induce neurite elongation and 

promote survival (by inhibiting apoptosis) via Akt activation (Nakagomi, S et al. 2003). 

Therefore, we questioned whether ATF3 was being induced during MA in order to drive 

cells into a survival/regeneration pathway. However, contrarily to other chronic pain 

models (like capsaicin injection and axotomy) where pAkt was increased (Nakagomi, S et 

al. 2003, Pezet, S et al. 2005, Shi, TJ et al. 2009), in the MA animals we observed a 

reduction in the number of pAkt IR cells (Publication I, (Nascimento, D et al. 2011)). 

Although the number of pAkt-positive neurons in the DRG were similar to what is 

reported (Shi, TJ et al. 2009), data suggest that this survival factor and the respective 

signalling pathway are not activated during MA, and therefore are not associated with MA 

pathophysiology. This might also justify why pAkt and ATF3 colocalization did not change 

during MA progression, suggesting that, in this condition, ATF3 is not likely triggered via a 

pAkt-mediated signaling pathway (Publication I, (Nascimento, D et al. 2011)). 

In order to better understand the biological significance of ATF3 at the DRG level, we 

also tried to identify the ATF3-expressing neuronal population. Cell size measurement 

revealed that ATF3 is mainly expressed in small-to-medium populations in L5 DRG from 

MA rats. Moreover, expression of ATF3 and CGRP in the same neurons was significantly 

increased at 2 and 4 days of MA (Publication I, (Nascimento, D et al. 2011)) which did not 

occur with IB4. Therefore, data suggest that ATF3 is mainly induced in peptidergic 

primary afferents at the early time points of MA. Indeed, CGRP is a key mediator of 

neurogenic inflammation at the periphery, but it also greatly contributes to nociceptive 

central mechanisms. Primary afferents are the major source of CGRP in the rat dorsal horn 

and this is known to have major repercussions in central pain processing, namely in the 
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development of hyperalgesia and allodynia (Galeazza, MT et al. 1995, Calza, L et al. 1998, 

Greco, R et al. 2008, Seybold, VS 2009). Therefore, the fact that ATF3 is mainly expressed 

in CGRP-positive neurons (double labelled cells significantly increased in MA) might 

suggest the involvement of this transcriptional factor in pain signalling (Publication I, 

(Nascimento, D et al. 2011)). 

Contrarily to some reported increases of CGRP expression in DRG during 

neuropathic and inflammatory pain states (Tie-Jun, SS et al. 2001, Nakanishi, M et al. 2010, 

Wang, Z et al. 2013, Quartu, M et al. 2014), in MA we observed instead a non-significant 

decrease on CGRP overall expression, along the disease progression (Publication I, 

(Nascimento, D et al. 2011)). Indeed, in a model of colonic inflammation, the initial 

decreases in CGRP content were suggested to be caused by a greater peripheral and 

central CGRP demand (Li, XQ et al. 2004). The release of this neuropeptide in the dorsal 

horn of the spinal cord (Ryu, PD et al. 1988, Seybold, VS 2009) is proposed to result in a 

decreased immunoreactivity for CGRP in primary afferents neurons after 2d of CFA 

subcutaneous injection, an event that might be happening in MA as well. This ǲcompensatory balanceǳ between release and de novo production might justify the lack of 

more significant differences in CGRP expression, during MA. In addition, Ketoprofen-

treated animals showed higher CGRP expression in comparison to non-treated MA animals 

(Publication I, (Nascimento, D et al. 2011)). Indeed, in neurons from the trigeminal ganglia 

(TG), CGRP release was shown to be mediated by a COX-2 dependent pathway. Therefore, 

it is highly possible that COX-2 inhibition by ketoprofen impairs CGRP release from 

primary afferents, which probably contributes to its accumulation in the DRG (Neeb, L et 

al. 2011). Overall, data concerning the expression of CGRP in the DRG and spinal cord are 

difficult to interpret since in pathological conditions many factors may contribute to 

peptides plasticity. The contradictory data found in the literature may result from changes 

in peptide synthesis, degradation or release (Galeazza, MT et al. 1995). In addition, the use 
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of different experimental models and timepoints contribute to some of this discrepancy, 

leading to a still incomplete scenario regarding the functional plasticity of neuropeptides. 

Interestingly, it has been shown that stimulation of primary afferents evokes release 

of CGRP at the sensory ganglia which results in the activation of neighboring SGCs and 

release of pro-inflammatory cytokines (Ceruti, S et al. 2011). Indeed, the release of 

neuronal CGRP promotes the expression of several pro-inflammatory mediators such as 

IL-1Ⱦ, which is suggested to have major repercussions in the activation of SGCs (Capuano, 

A et al. 2009), in what seems to be a cycle of glial-neuronal continued excitation (Takeda, 

M et al. 2009). SGCs are active modulators of neuronal activity, amplifying the 

inflammatory responses and sustaining the sensory transmission within the ganglia, 

therefore being greatly involved in the development of hyperalgesia and allodynia 

(Hanani, M 2005, Takeda, M et al. 2007, Takeda, M et al. 2008, 2009, Hanani, M 2012). 

These findings support the notion of an important bidirectional crosstalk between 

neurons and glial cells, during pathological painful conditions, where peptides like CGRP 

may play a role (Capuano, A et al. 2009, Takeda, M et al. 2009, Neeb, L et al. 2011). 

Moreover, some authors suggest that it is the expression of neuronal injury factors, just 

like ATF3, that might trigger the activation of SGCs and therefore the initiation of neuron-

glia interactions (Elson, K et al. 2004). Indeed, we observed a selective increase of ATF3 

expression in CGRP-containing peptidergic neurons in the DRG of MA rats (Publication I, 

(Nascimento, D et al. 2011)). Considering all these evidences, we then decided to evaluate 

the involvement of SGCs in the MA pathophysiological mechanisms, and hypothesized 

about a possible role of ATF3 in the regulation of those mechanisms. 

Thus, we then demonstrated that SGCs are activated mainly after day 7 of MA, as 

inferred by the significant increases of GFAP protein levels detected by WB analysis. 

Quantification of GFAP-positive neuronal profiles (neurons surrounded in 50% or more of 

their perimeter by GFAP labeling) in L5 DRG also showed significantly increased levels at 
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7 days of MA (Publication II, (Nascimento, DS et al. 2014)). Our data corroborate with 

previous studies indicating that the 1st week of disease progression seems to be crucial 

for the events associated with SGCs activation. In fact, GFAP expression was increased in 

inflamed DRG, 7 days after chromic gut suture application onto the DRG (Siemionow, K et 

al. 2009), as well as in the TG of rats with orofacial inflammatory pain (Stephenson, JL and 

Byers, MR 1995). Additionally, CFA injection into the rat whisker pad area induced 

significant increases in GFAP and IL-1b co-labeling, after 2 days (Takeda, M et al. 2007).  

However, data show that nerve damage provokes a more demarked and prolonged 

effect on SGCs activation. Indeed, in neuropathic pain models, such as in chemically-

induced neuropathy, GFAP levels were still increased 1 month later (Warwick, RA and 

Hanani, M 2012). In the spinal nerve ligation (SNL) neuropathic model, GFAP expression 

increased immediately after 4 hours, gradually increasing up to 7 days and staying high 

until the end of the experiment at day 56 post-model induction (Liu, FY et al. 2012). We 

observed that GFAP expression (and therefore the activation of SGCs) remains 

significantly higher than controls at least until 14 days of MA (Publication II), while in 

other inflammatory models GFAP levels have already returned to control values at this 

timepoint, or at least started decreasing. The fact that neuronal damage programs are 

possibly being triggered during MA (as suggested by ATF3 expression) might account for 

the significantly increased GFAP levels at day 14. Interestingly, we detected significant 

increases in the GFAP labeling around ATF3-positive neurons (Publication II, (Nascimento, 

DS et al. 2014)), suggesting that ATF3 could be one of the injury factors regulating these 

mechanisms, as suggested by others (Elson, K et al. 2004). Indeed, other studies have 

shown that the number of ATF3-positive TG neurons enclosed by GFAP-immunoreactive 

SGCs increased in a time-dependent manner in a model of molar extraction in the rat 

(Gunjigake, KK et al. 2009). Although ATF3 is significantly induced in MA, it is only 

expressed in a small percentage of neurons with a temporal profile that is distinct from 
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SGCs activation. Therefore, the fact that we observed significant increases in ATF3-GFAP 

positive profiles is highly suggestive of a relation between these two events. 

Additionally, the proliferation of SGCs preferentially occurring around ATF3-

positive TG neurons was also observed after chronic constriction injury of the infraorbital 

nerve (Donegan, M et al. 2013). In MA animals, the number of proliferating SGCs 

(measured by incorporation of BrdU) in the whole DRG was also significantly higher after 

7d of disease. Not only the overall number of BrdU-positive SGCs in the DRG increased but 

also the number of SGCs proliferating around a specific neuron. Moreover, we found 

significantly more GFAP-positive neuronal profiles in 7d MA animals (Publication II, 

(Nascimento, DS et al. 2014). Our data are in accordance with other studies where SGCs 

proliferation was observed mostly 1 week after L5 nerve transection (Lu, X and 

Richardson, PM 1991). Additionally, BrdU incorporation was increased up to 5 days after 

Herpes Simplex virus infection (Elson, K et al. 2003). The same research group then 

showed that proliferation of SGCs also occurs in an animal model of scarification of the 

skin, considered to be a model of minor tissue trauma (Elson, K et al. 2004). Moreover, 

SGCs' proliferation was equally reported at 4 days after chronic constriction injury of the 

infraorbital nerve (Donegan, M et al. 2013).  

Altogether our studies indicate that SGCs are not bystanders in MA 

pathophysyiology, but instead that they are crucial mediators in the mechanisms 

underlying articular inflammation. Indeed, many studies demonstrate that administration 

of fluorocitrate (FC), a metabolic inhibitor of SGCs, not only abolishes GFAP labeling in the 

DRG but also alleviates pain (Souza, GR et al. , Liu, FY et al. 2012). Parallel studies in our 

group showed that in the OA model induced by collagenase injection in the knee, the 

intrathecal injection of FC alleviated the movement- and loading-induced mechanical 

allodynia in the first couple of hours after administration (1h for the knee bend and 2h for 

the CatWalk tests) (Adães, et al manuscript submitted). Unfortunately, the exact functional 
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implications of SGCs activation/proliferation in nociception were not explored in MA. 

Nevertheless, our findings reinforce that the classical analgesic approaches mainly 

focusing on neurons should be substituted by broader strategies targeting SGCs and their 

communication with neurons instead (Ceruti, S et al. 2011). 

Even though it is currently assumed that activation of SGCs and neuron-glia 

interactions within the sensory ganglia are crucial for the subsistence of the inflammatory 

response and modulation of sensory transmission (including nociception) (Hanani, M 

2005, Dublin, P and Hanani, M 2007, Ohara, PT et al. 2009, Jasmin, L et al. 2010), the 

mediators and signaling pathways involved in these mechanisms remain still poorly 

elucidated (in comparison with the CNS, for example). However, in the last years, the 

purinergic system has emerged as one of the most relevant players in those events. 

Indeed, ATP is one of the major neurotransmitters important for the communication 

between neurons and glia. Moreover, in the sensory ganglia, P2X7R is exclusively 

expressed in SGCs while P2X3R can only be found in neurons, which implies that these 

receptors exert their effects almost exclusively through glia–neuron interactions (Chen, Y 

et al. 2008). Their inhibition/suppression also contributes to pain relief which 

demonstrates they also play a role in nociception (Dell'Antonio, G et al. 2002, 

Arulkumaran, N et al. 2011, Alves, LA et al. 2013, Antonioli, L et al. 2014).  

Therefore, in another study, we have shown that the expression of P2X7R increases 

in the DRG of rats after 1 week of MA induction (Publication III, submitted). Western blot 

analysis revealed three distinct bands for P2X7R detection, corresponding most probably 

to different post-translational modifications. Indeed, in order to be addressed to the cell 

surface and become functional these receptors need to be glycosylated in two or more 

sites (Dunn, PM et al. 2001, North, RA 2002). In MA, we observed no changes in the 

protein levels of the heavier band, proposed to be the glycosylated form of P2X7R. 

Controversially, the non-glycosylated forms at 65-69KDa (possibly cytosol stored protein) 
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were significantly increased in ipsilateral DRG of MA animals (Publication III, submitted). 

Unfortunately, the biological significance of these post-translational modifications is still 

poorly elucidated. Moreover, with the antibodies available it is still difficult to distinguish 

homomeric from heteromeric receptors which altogether might result in the divergence 

that is often found between functional and molecular studies. For that reason, we later 

demonstrated that P2X7R mRNA levels are also significantly increased in the DRG of 7d 

MA (Publication IV, under submission). Data are in accordance with other studies showing 

that P2X7R is up-regulated in DRG of animals inflamed by CFA intraplantar injection 

(Chen, Y et al. 2008) or in a model of inflammatory bowel disease (Liu, S et al. 2015). 

Interestingly, P2X7R was also increased in DRG of neuropathic pain patients (Chessell, IP 

et al. 2005). Moreover, these results are in agreement with our previous studies showing 

that SGCs are activated and proliferate also around 7 days of MA (Publication II, 

(Nascimento, DS et al. 2014)). Indeed, since P2X7R is so intimately associated with SGCs 

activation (Takeda, M et al. 2009, Arulkumaran, N et al. 2011, Alves, LA et al. 2013), the 

finding of a similar temporal profile between P2X7R up-regulation and SGCs activation 

during MA development reinforces that these events are interconnected and that P2X7R-

mediated signaling is relevant in MA pathophysiology.  

Interestingly, others have shown that P2X7R up-regulation exerts a negative 

feedback control mechanism over neuronal P2X3R expression (Chen, Y et al. 2008, Chen, Y 

et al. 2012, 2015). By reducing P2X3R neuronal expression, P2X7R-negative control was 

proposed to act as a protective mechanism shown to effectively prevent allodynia in 

inflamed rats. In the MA condition, we did find a significant decrease in the number of 

P2X3R-positive neurons (Publication III, submitted). Therefore, it is likely that the 

P2X7R/P2X3R negative control mechanism suggested by Chen and colleagues (Chen, Y et 

al. 2008, Chen, Y et al. 2012, 2015) is also occurring in MA. Accordingly, others have 
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detected a more than 50% drop in P2X3R expression in L4 and L5 DRG neurons after 

sciatic nerve axotomy (Bradbury, EJ et al. 1998). 

Curiously, we observed that the P2X3R mRNA levels are increased in the DRG of 7d 

MA animals (Publication IV, under submission). Although apparently this is in 

contradiction with the immunohistochemistry data, this is not necessarily the case. 

Besides the two methodological approaches, namely immunohistochemistry and RT-qPCR, 

being totally distinct, it is also known that P2X receptors are highly dependent on post-

translational modifications and therefore changes at the mRNA level might not always 

correlate with data from the protein form or with a functional effect (North, RA 2002). 

Indeed, P2X3R is increased at the DRG level in both inflammatory (Prado, FC et al. 2013, 

Su, J et al. 2015) and neuropathic pain (Jarvis, MF et al. 2002, Taylor, AM and Ribeiro-da-

Silva, A 2011) models, and these increases are proposed to be critical for the development 

of hyperalgesia in the peripheral tissue. It is possible that P2X3R expression is initially 

increased in response to the exacerbated neuronal excitation at the DRG (as suggested by 

increases in mRNA levels), and only after significant activation of P2X7R occurs, likely 

around day 7 of MA, the known P2X7R-P2X3R negative feedback control (Chen, Y et al. 

2008, Chen, Y et al. 2012, 2015) is triggered, as suggested by the decreases in the number 

P2X3R-expressing neurons. Due to their involvement in pain processing, many studies 

now evaluate these receptors as targets for novel analgesic therapies (Chessell, IP et al. 

2005, Arulkumaran, N et al. 2011). Our data not only provide evidence of the involvement 

of the purinergic system in MA, but they also demonstrate that P2X7R is most probably 

controlling an excessive activation of P2X3R, and consequently the extent of neuronal 

excitation, as part of a mechanism that can be assumed as protective (Tsuzuki, K et al. 

2001). Therefore, a possible antinociceptive therapeutic approach based on targeting the 

inhibition of P2X7R should be carefully studied, since disrupting the P2X7R-P2X3R 

negative feedback might exacerbate the painful condition. 
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Interestingly, some studies had indicated that the co-expression of P2X3R and ATF3 

in the same neurons was linearly correlated with increased mechanical thresholds (Hsieh, 

YL et al. 2012). In the MA model we have not evaluated the co-expression of both 

molecules. In fact we were not expecting a meaningful induction of ATF3 in P2X3R-

positive neurons (which are mainly IB4 non-peptidergic) in the DRG of MA animals, since 

we had previously shown that this transcriptional factor is preferentially expressed in 

peptidergic neurons. Moreover, as P2X3R immunoreactivity decreased along MA it would 

be difficult to find a correlation between ATF3 and P2X3R expression, based solely on 

immunohistochemistry co-localization assays. Some studies have already shown that P2X3 

mRNA decreased in ATF3-expressing neurons, indicating that P2X3R was increased 

specifically in non-stressed neurons, supposedly as part of a protective mechanism 

(Tsuzuki, K et al. 2001). Indeed, ATF3 is also assumed to have a protective role in neurons. 

Thus the down-regulation of P2X3R, as observed in MA, might be part of this ATF3-

mediated protective mechanism, therefore justifying a lack of co-localization between 

these two proteins. In addition, some authors proposed that it is the expression of injury 

factors (just like ATF3) that signalizes and initiates mechanisms of neuron-glia crosstalk 

(Elson, K et al. 2004) which, as previously discussed, are strongly associated with P2X 

receptors. Therefore, even though they might not co-localize, it is still plausible to 

hypothesize a relation between ATF3 and P2X receptors. 

Thus, in order to evaluate if ATF3 could be regulating both SGCs activation and the 

expression of purinergic receptors, we silenced ATF3 by using siRNAs in primary cell 

cultures of DRG. ATF3 knock-down did not induce any changes in the expression of P2X7R 

and/or P2X3R or even in the activation of SGCs, as inferred by no changes in the levels of 

GFAP. This suggests that, at least in vitro, ATF3 expression is not implicated in these 

events (Publication III, submitted). Nevertheless, it must be taken in consideration that 

although in most cases in vitro systems are excellent tools, they often fail in reproducing 
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biological phenomena. Indeed, when culturing DRG cells we disrupted the SGC-neuron 

structure. Since both cell types constitute functional units, strongly dependent on this 

morphological organization, the communication between the neuronal cell bodies and 

their satellite cells in the cultured DRG might have been impaired. Additionally, a knock-

down of 60% in the expression of the ATF3 gene might not have been enough to induce 

significant and quantifiable changes in the purinergic system. However, due to their 

relevance in pathological conditions like MA, it is still worthy to continue investigating 

these targets and their association, in vivo.  

Quite surprisingly, we found that ATF3 knock-down in the DRG cell cultures induced 

significant decreases in the gene expression of both the inducible and constitutive 

isoforms of the HSP90 chaperone (Publication III, submitted). Indeed, others have shown 

that ATF3 mRNA expression is regulated by HSP90 (Sato, A et al. 2014) but not much is 

known about the regulation of ATF3 over HSP90. Additionally, the HSP90 role in the 

nervous system, namely in the DRG, is still poorly elucidated. Despite the lack of more 

knowledge, it has recently been demonstrated that HSP90 inhibitors can reduce 

neurodegeneration (Waza, M et al. 2006) and promote neuroprotection (Lu, Y et al. 2009). 

Moreover, HSP90 was found to induce the production of proinflammatory cytokines 

through TLR4 signal transduction pathways (Tsan, MF and Gao, B 2004) while HSP90 

blockers were shown to attenuate these responses (Yun, TJ et al. 2011, Qi, J et al. 2014). 

Even more remarkably, HSP90 was shown to be necessary (as part of theTLR4 signaling 

cascade) for the pain enhancement observed in CCI rats, while HSP90 inhibition proved to 

be effective in pain relief (Hutchinson, MR et al. 2009). 

Taking all this in consideration, we hypothesized that HSP90 could have a role in MA 

pathophysiology, and that ATF3 and HSP90 could be possibly associated, in similarity to 

what had been observed in the in vitro studies. In accordance, we then demonstrated that 

the mRNA levels of both the constitutive and inducible forms of HSP90 are significantly 
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increased in the ipsilateral DRG of MA animals (Publication IV, under submission). These 

data are in agreement with several studies showing that HSPs are induced in response to 

many stressful conditions, namely during inflammation (Sevin, M et al. 2015). Indeed, 

some studies suggest HSP90 plays a role in inflammatory diseases such as rheumatoid 

arthritis (Rice, JW et al. 2008). HSP90 up-regulation in MA is also consistent with ATF3 

induction, suggesting that the ATF3-HSP90 positive regulation found in DRG cell cultures 

might also occur in vivo.  

Curiously, we also detected a significant increase in the cleavage of HSP90 during 

MA (Publication IV, under submission). Although the underlying mechanisms are not fully 

explored, HSP90 cleavage has been mainly attributed to the binding of ROS at a highly 

conserved N-terminal amino acid motif (Beck, R et al. 2012). Interestingly, inflammatory 

conditions (like MA) are greatly associated with ROS production (Poulet, B and Beier, F 

2016), and therefore this is likely to be the reason for the massive cleavage observed in 

this disease. As a result, HSP90 chaperoning functions are compromised and degradation 

of its client proteins might occur instead (Beck, R et al. 2012, Castro, JP et al. 2014). Thus, 

although HSP90 expression is augmented in MA condition, we believe that it is most likely 

dysfunctional. We further propose that it is actually the disruption of HSP90 activity 

sensed by the cell that may trigger the up-regulation of HSP90 in MA animals, in a sort of 

compensatory mechanism (Publication IV, under submission). 

Although some of the HSP90 signaling cascades are known, the studies have been 

mostly conducted in macrophages, so that the role of this chaperone in sensory neurons is 

still not clear. Encouraged by our previous findings in DRG cell cultures (Publication III, 

submitted), and other studies suggesting a possible role of HSP90 in pain processing 

(Hutchinson, MR et al. 2009), we then intrathecally administered 17-

Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a HSP90 inhibitor, to 

MA animals. Indeed, movement-induced nociception of 4d MA rats was significantly 
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attenuated with the drug in the first 3h post-injection. After 4h the effect was reverted and 

differences were no longer evident (Publication IV, under submission). Accordingly, others 

have shown decreased mechanical allodynia (Von Frey test) in chronic constriction 

injured (CCI) rats following 17-DMAG i.t. injection, in the same temporal window 

(Hutchinson, MR et al. 2009). With this, we show for the first time that a single injection of 

17-DMAG induces an acute anti-nociceptive effect in MA animals which further encourages 

the study of HSP90 inhibitors in pain management (Publication IV, under submission). 

Moreover, we also observed that 17-DMAG treatment reversed the high levels of 

cleaved HSP90 observed in MA animals (Publication IV, under submission). We propose 

that, by binding to HSP90 instead, 17-DMAG prevents HSP90 cleavage by ROS (Beck, R et 

al. 2012). According to the compensatory mechanisms mentioned above, it is likely that 

the decreased expression of HSP90 in 17-DMAG-treated animals is associated with the 

lower levels of cleaved protein. However, the down-regulation of HSP90 cannot be 

attributed to the restitution of its chaperone properties, since 17-DMAG, by binding to the 

ATP site, also disrupts the HSP90 functional activity (Neckers, L and Neckers, K 2002, 

Gorska, M et al. 2012). Thus it is possible that 17-DMAG effects might be mediated by heat 

shock factor 1 (HSF1), a major repressor of HSP90. Indeed, in unstressed cells HSF1 can be 

found in its inactive form consisting of a complex with HSP90 (Gorska, M et al. 2012). 

Similarly to what happens in stressful conditions, 17-DMAG binds to HSP90, resulting in 

HSF1 dissociation (Zou, J et al. 1998, Wolfgang, CD et al. 2000). This free HSF1 then 

translocates to the nucleus and promotes the expression of stress-responsive genes (Neef, 

DW et al. 2011). Therefore, this mechanism could possibly explain the molecular changes 

observed following 17-DMAG treatment, even though HSP90 is probably not functional.  

Interestingly, the expression of ATF3 was also up-regulated after HSP90 inhibition 

in MA animals (Publication IV, under submission). In fact, since ATF3 is also a stress-

inducible gene, it is likely to be up-regulated by the activated/free HSF1, which further 
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supports that this cascade is part of 17-DMAG mechanism of action. In fact, in cancer 

derived cell lines 17-DMAG was shown to increase ATF3 expression (Hackl, C et al. 2010), 

although the mechanisms for this association are still unknown. Many studies have 

recently demonstrated that ATF3 might have a protective role in the nervous system 

(Seijffers, R et al. 2007, Hunt, D et al. 2012, Seijffers, R et al. 2014), rather than a 

detrimental  function as suggested for other tissues. Additionally, ATF3 appears to be also 

involved in the resolution of the inflammatory response by negatively regulating the toll-

like receptor 4 (TLR4) pro-inflammatory signalling pathway (Gilchrist, M et al. 2008). 

Interestingly, HSP90 is capable of inducing the production of proinflammatory cytokines 

via TLR4 signal transduction pathways (Tsan, MF and Gao, B 2004), while HSP90 

inhibitors are known to attenuate these responses (Hutchinson, MR et al. 2009, Yun, TJ et 

al. 2011, Qi, J et al. 2014). Thus, it is plausible that HSP90 inhibition attenuates the pro-

inflammatory cascades at the DRG level, possibly through ATF3. 

Accordingly, 17-DMAG treatment also reduced GFAP expression in the DRG of MA 

animals suggesting a suppression of SGCs activation (Publication IV, under submission). 

Similar effects were observed in the CNS, where the HSP90 inhibitor PU-H71 reduced 

astrocyte activation in an experimental autoimmune encephalomyelitis (EAE) model (Lisi, 

L et al. 2013) while 17-DMAG suppressed microglia activation in experimental stroke (Qi, J 

et al. 2014). Although our studies do not allow greater conclusions regarding the 

underlying mechanisms, this diminished SGCs activation is unlikely to be mediated by 

P2X7R as their expression remained unchanged in 17-DMAG treated animals (Publication 

IV, under submission). On the other hand, the expression of the neuronal P2X3R 

significantly decreased in 17-DMAG-treated animals, suggesting that HSP90 inhibition also 

attenuates neuronal sensitization in MA (Publication IV, under submission). Accordingly, 

others have shown that HSP90 inhibitors alter ATP-induced currents in DRG neurons, 

which suggests not only the involvement of HSP90 with purinergic receptors but also a 
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possible role in nociception (McDowell, TS and Yukhananov, RY 2002). Indeed, both SGCs 

activation (Hanani, M 2005, Dublin, P and Hanani, M 2007, Jasmin, L et al. 2010) and 

P2X3R-mediated neuronal sensitization (Xu, GY and Huang, LY 2002, Wirkner, K et al. 

2007, Prado, FC et al. 2013) constitute pathomechanisms involved in the MA painful 

condition. Thus, also these findings indicate that HSP90 inhibition suppresses the 

inflammatory signaling at the DRG level. Likewise, the decreased SGCs activation and 

expression of P2X3R may explain the anti-nociceptive effects of 17-DMAG observed in the 

MA animals.  

In summary, with these studies, we unraveled several mechanisms occurring at the 

DRG (the first place for the processing of information arising from the periphery) upon the 

induction of the MA inflammatory condition (as schematized in Fig. 11 A). In most of the 

cases, we were also able to find temporal correlations between the events under study (as 

schematized in Fig. 11 B). We hope we contributed to a better understanding of the 

pathophysiological mechanisms underlying the establishment and progression of MA and 

that, by further elucidating these signaling cascades, we shed light into novel potential 

therapeutic approaches.  
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Fig. 11 – Summary of the major findings observed at the DRG during MA (A) and the 

temporal profile of some of these events (B). 
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The stress inducible gene ATF3 was induced mainly in small peptidergic DRG neurons 

(most likely representing C-fiber nociceptors) at the initial timepoints of MA (Publication 

I), suggesting its possible role in pain processing (A, 1). Being a transcriptional factor that 

is rapidly and transiently expressed in MA (around day 2 and 4), its peak of expression 

occurs prior to all the other molecular and cellular changes observed in these studies, 

therefore suggesting it is upstream the signaling pathways investigated (scheme B). 

P2X7R, expressed exclusively in SGCs, was also up-regulated around 1 week of MA 

(Publication III) (A, 2) which is proposed as the most relevant mechanism for SCGs 

activation. Indeed, SGCs activation and proliferation were also observed around the same 

timepoint of disease progression (Publication II) (A, 3), demonstrating a temporal 

correlation with P2X7 up-regulation (represented in B). Interestingly, SGCs activation was 

detected preferentially around ATF3-expressing neurons. Indeed, the activation of glial 

receptors/cells suggests the occurrence of neuron-glia communication events which are 

proposed by some authors to be initiated by injury markers like ATF3. Moreover, the 

mRNA levels of the neuronal P2X3R were also increased in the DRG of 7d MA animals 

(Publication III) (A, 4; also represented in B), while IHC assays showed that after this 

timepoint P2X3R immunoreactivity in the ganglia significantly decreased (mostly at 14d 

MA; Publication III) (A, 5; also represented in B). This suggests that, as previously 

reported, a P2X7R-P2X3R negative feedback control might be activated during MA. Finally, 

we demonstrate that HSP90 is another stress inducible gene up-regulated during MA (A, 

6), although it is most likely dysfunctional due to massive cleavage by ROS, as the levels of 

the cleaved form of HSP90 are also increased in MA animals (A, 7), (Publication IV). We 

propose that, besides being expressed as a stress gene in MA, the high cleavage of HSP90 

into non-functional fragments might trigger its own up-regulation in a sort of 

compensatory mechanism (A, 8). Our experiments in primary cell cultures of DRG 

demonstrated a positive regulation of ATF3 over HSP90 (A, 9), and in fact both genes seem 
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to be both augmented in the MA condition (Publication III). However, the exact correlation 

between these two events is still not clear and lacks further investigation. Also supportive 

of a role of HSP90 in MA were the effects observed with the administration of 17-DMAG 

(HSP90 inhibitor) to inflamed animals (Publication IV). Indeed, by preventing ROS 

binding, 17-DMAG seems to protect HSP90 from cleavage (A, a). Probably due to the 

release of HSF1, ATF3 was up-regulated after 17-DMAG treatment in what we believe to 

be a protective mechanism (A, b). HSP90 inhibition was shown before to exert anti-

inflammatory effects by the suppression of a HSP90-TLR4-mediated signaling pathway. In 

fact, also ATF3 is known to be a negative regulator of this cascade and to be involved in the 

resolution of the inflammatory response (A, 10). Moreover, in 17-DMAG treated animals, 

SGCs activation and P2X3R expression were decreased, which further supports a role of 

these drugs in the attenuation of the inflammatory signaling. These findings might also 

explain the pain alleviation observed in MA animals injected with the inhibitor. Hopefully, 

these studies will allow a better understanding of MA pathophysiology and open a door for 

new possible targets for pain management in joint inflammatory conditions.(Note: dashed 

lines in A represent documented findings used to explain our data but that were not investigated in 

the present work. White dashed lines represent possible mechanisms, here proposed, that were 

still not described, at least directly). 
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6. Conclusions 

In summary, the main conclusions of these studies are: 

 

1. ATF3 is significantly and transiently induced in DRG neurons in early stages of a MA 

condition induced by intra-articular CFA injection. Ketoprofen (NSAID) 

administration ameliorated the MA typical inflammatory signs but did not reverse 

ATF3 expression. 

 

This suggests some degree of neuronal damage occurs in this inflammatory condition, or at least the activation of ǲneuronal damage programsǳ along disease 
progression. 

 

2. SGCs are activated and proliferate during MA, particularly at the first week of 

disease. 

 

SGCs are not bystanders to MA pathophysiology but they are active players in this 

condition.  

 

3. P2X7R is up-regulated in sensory ganglia of MA rats mainly after day 7 of disease, 

which is in agreement with the activation of SGCs, while P2X3R is down-regulated 

after the same timepoint (more significantly at 14d MA). 

 

The P2X7R/P2X3R purinergic system is activated during MA. Glial P2X7R is most 

likely down-regulating neuronal P2X3R in a feedback negative control. 
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SGCs activation in MA is probably mediated by P2X7R, as this receptor is assumed to 

be the major responsible for these events.  

 

The activation of glial cells and receptors supports the hypothesis of neuron-glia 

communication events taking place during MA, which are highly correlated with 

pain states. 

 

4. Silencing of ATF3 expression in DRG cultures significantly reduced the expression of 

both the inducible and constitutive isoforms of HSP90. 

 

ATF3 seems to positively regulate HSP90 expression in DRG neurons. 

 

5. HSP90 mRNA was up-regulated in DRG of MA animals but protein analysis showed it 

was massively cleaved in this condition.  

 

HSP90 is most likely dysfunctional in MA due to cleavage by ROS.  

 

6. 17-DMAG administration attenuated MA-induced allodynia and reversed the 

cleavage of the HSP90 protein. Additionally, HSP90 inhibition decreased GFAP and 

P2X3R expression while ATF3 was significantly increased.  

 

17-DMAG exerts an antinociceptive effect in MA animals possibly due to the 

suppression of MA inflammatory cascades at DRG, namely SGCs activation and 

purinergic signaling. We also propose a protective role for ATF3 as a consequence of 

HSP90 inhibition.  
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17-DMAG disrupts HSP90 chaperoning functions but it prevents it from being cleaved. 

This event seems to be correlated with the molecular changes at the DRG and pain 

alleviation observed in MA animals following administration of 17-DMAG. 
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