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Resumo 

O cancro da tiróide é a neoplasia endócrina mais frequente, representando cerca 

de 1% de todos os cancros, sendo mais comum em mulheres. Os tumores da tiróide 

compreendem um largo espectro de lesões benignas e malignas, mostrando diferenças 

morfológicas e de prognóstico. Nos útlimos anos foi alcançado um avanço significativo no 

conhecimento dos mecanismos moleculares da carcinogénese e progressão do cancro da 

tiróide, onde mutações recorrentes em cancro da tiróide foram associadas com fenótipos 

tumorais específicos e implicados na etiologia da doença. A ativação da via mitogen-

activated protein kinase (MAPK) e da phosphatidylinositol 3-kinase (PI3)/AKT, 

frequentemente em estreita ligação e cooperação, constituem os principais mecanismos 

para o desenvolvimento e progressão da maioria dos tumores da tiróide.  

O objectivo deste trabalho centrou-se na organização de um repositório de tumores 

da tiróide e construção de uma base de dados, proporcionando um acesso facilitado a 

amostras de DNA, RNA e proteínas de alta qualidade, com os principais dados clínico-

patólogicos e análise molecular de cada caso, para utilização em estudos futuros no grupo 

de investigação.  

Os protocolos standard estabelecidos para a extracção de ácidos nucleicos 

revelaram uma taxa de sucesso acima de 97.0% e a base de dados construída incluiu 54 

amostras de bócios nodulares, 24 amostras de adenomas foliculares, 117 amostras de 

tumores malignos e 30 amostras de tiróides normais.  

Considerando todas as amostras de tumores analisadas, 26 tumores (21.1%) eram 

positivos para mutações no BRAF, 20 tumores (14.9%) para mutações no NRAS, 4 tumores 

(2.9%) para mutações na região promotora do TERT, 12 tumores (9.1%) eram positivos 

para os rearranjos RET/PTC1, 2 tumores (1.5%) para os rearranjos do RET/PTC3, e 2 

tumores (1.5%) para rearranjos PAX8-PPARɣ. 

Várias diferenças estatisticamente significativas foram encontradas na análise das 

caracteristicas clínico-patológicas e moleculares, quando os tumores foram agrupados por 

diagnóstico e comparados.  

A organização do repositório de material biológico de tumores da tiróide e a 

construção da base de dados foram objectivos cumpridos, com o estabelecimento de 

protocolos standard. As perspectivas futuras centram-se na organização dos restantes 

casos no repositório, a caracterização clinico-patológica completa, com revisão histológica, 

da totalidade das lesões do repositório e com a análise rápida das alterações genéticas 

mais conhecidas em tumores da tiróide. 
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Abstract 

Thyroid cancer is the most frequent endocrine neoplasia, accounting for about 1% 

of all human cancers being more frequent in women than in men. Thyroid tumours comprise 

a spectrum of benign and malignant lesions showing very diverse morphologic and 

prognostic differences. In recent years a significant knowledge in molecular mechanisms of 

thyroid carcinogenesis and progression has been achieved, where recurrent mutations in 

thyroid carcinomas are predominantly associated with specific tumour phenotypes and are 

implicated in the disease aetiology. While several molecular alterations are implied in 

thyroid carcinogenesis, the activation of the mitogen-activated protein kinase (MAPK) and 

phosphatidylinositol 3-kinase (PI3K)/AKT pathways, commonly in close connection and 

cooperation, constitute the major mechanisms for the development and progression of most 

thyroid tumours. 

The challenge for this work was the organization of a repository of thyroid tumours 

and construction of a new database, providing an easier availability to DNA, RNA, and 

protein components with high quality, with the main clinico-pathological and molecular data 

available for each case, to be used for furthers studies in the research group.  

The established standard protocols for the extraction of the nucleic acids revealed 

a success rate above 97.0% and the database included 54 samples of nodular goiter, 24 

samples of follicular thyroid adenoma, 117 samples of malignant tumours and 30 samples 

of normal thyroid. 

Considering all tumour samples analysed, 26 (21.1%) were positive for the BRAF 

mutations, 20 tumours (14.9%) were positive for NRAS mutations, 4 tumours (2.9%) were 

positive for TERT promoter mutations, 12 tumours (9.1%) were positive for RET/PTC1 

rearrangement, 2 tumours (1.5%) were positive for RET/PTC3 rearrangement and 2 

tumours (1.5%) were positive for PAX8-PPARɣ rearrangement.  

Several statistically significant differences were found in the analysis of clinico-

pathological and molecular features, when the tumours were grouped by diagnosis and 

compared.  

The organization of the repository of biological material of thyroid tumours and 

database was an achieved purpose with the establishment of successful standard 

protocols. The future perspectives include the organization of the remaining cases from the 

repository, complete clinico-pathological characterization, with histological revision, and the 

screening of the most common genetic alterations known in thyroid tumours.
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Introduction 

Thyroid cancer is the most frequent endocrine neoplasia, accounting for about 1% 

of all human cancers (1) being more frequent in women than in men (2). With the 

improvement of the detection methods the incidence of thyroid cancer has been steadily 

increasing, about 6.6% per year, worldwide over the last few decades (3).   

In Portugal, thyroid cancer is the third most frequent cancer in women according to 

the Oncologic Regional Registry of the North database [Registo Oncológico Regional do 

Norte (RORENO)] (4). Thyroid cancer may occur at any age, being the peak incidence 45 

to 49 years in women and 65 to 69 years in men (5). 

Even though the death rate of thyroid cancer is relatively low, the social and 

economic impact of this disease, is a major concern since the rate of disease recurrence or 

persistence is high (6).  

In recent years, research has been directed to personalized medicine, where the 

availability of banks of biological material with large series of biospecimens are important 

tools for the identification/validation of novel parameters with clinical impact (7). A bank of 

biological material collects a high variety of biological samples, including tumour/non tumour 

tissues, cells, blood, plasma and other body fluids, DNA and RNA (8). The availability of 

high quality human samples is fundamental in the modern molecular medicine for the 

validation of novel signalling pathways and to personalized therapeutic regimens for 

treatment (9). 

In oncological investigation, sample collections with high quality DNA, RNA and 

proteins, together with relevant clinical, molecular and pathological data, are a gold 

standard to ensure the accuracy and validation of biomarkers for diagnostic and prognostic 

purposes, or for the identification of genes for targeting therapy. 

Thyroid tumours 

The thyroid is mainly composed by differentiated epithelial cells known as thyroid 

follicular cells (TFC) that are responsible for the production and export of thyroid hormones, 

such as triiodothyronine (T3) and thyroxine (T4), essential for growth, development and 

survival. More than 95% of thyroid cancer cases are originated from TFC, and can be 

classified in several histological types and subtypes with different characteristics and 

prognoses (10).  

Thyroid tumours comprise a spectrum of benign and malignant lesions showing very 

diverse morphologic and prognosis differences. In one hand of the spectrum we have the 

follicular thyroid adenoma, a benign encapsulated lesion, and in the other end we have a 

highly invasive tumour the undifferentiated thyroid carcinoma. 
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Epithelial thyroid malignancies can be divided in differentiated thyroid carcinomas 

(DTC), which include papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma 

(FTC), poorly differentiated thyroid carcinomas (PDTC) and undifferentiated thyroid 

carcinomas (UTC) (10).  

Medullary thyroid carcinoma (MTC), originated from the parafollicular C-cells, 

accounts for a small proportion (5%)  of all thyroid malignancies (10).  

We will now describe the main histological variants of thyroid tumours emphasising 

those that will be addressed in our analysis. 

Follicular thyroid adenoma  

 Follicular thyroid adenoma (FTA) is a benign lesion of the thyroid gland, defined as 

an encapsulated tumour showing evidence of follicular cell differentiation. Typically is 

enclosed in a fibrous capsule of variable thickness and by definition, capsular or vascular 

invasion are absent (11). The architectural patterns and cytological features are different 

from those of the surrounding thyroid tissue. 

The differential diagnosis between FTA and FTC is based on the presence of 

vascular and/or capsular invasion, which determines the importance of tumour sampling 

(11). 

 Several histologic variants of FTA have been described besides the conventional 

FTA. 

Oncocytic thyroid adenoma 

The oncocytic FTA is composed by cells with abundant granular eosinophilic 

cytoplasm and large open nuclei, with a variety of architecture patterns ranging from well-

formed follicles to solid and/or trabecular growth (12). The nuclear criteria excludes the 

oncocytic variant of PTC and the lack of capsular or vascular invasion excludes the 

oncocytic variant of follicular thyroid carcinoma (oncocytic FTC) (11). 

They are often associated with Hashimoto thyroiditis, and can occur particularly in 

young female patients and are associated with a risk of progression to carcinoma (13). 

Fetal thyroid adenoma  

 The fetal thyroid adenoma is characterized by a microfollicular/trabecular structure 

in an oedematous stroma, particularly in the centre of the tumours (14).  

Papillary thyroid carcinoma  

PTC account for more than 85% of DTCs, and is by definition a malignant epithelial 

tumour showing evidence of follicular cell differentiation, being characterized by distinctive 

nuclear features (15), such as large and clear nuclei, with cytoplasmatic inclusions and 

grooves (16).   
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When the PTC, besides the characteristic nuclear features, are composed totally or 

in part by papillae it is classified as a classic variant of PTC (cPTC), that is the more common 

histotype. There are several other histological subtypes of PTC described, besides the 

cPTC.  Always presenting the characteristic nuclei, the variants of PTC differ in the 

morphologic organization and background (15). 

Follicular variant of papillary thyroid carcinoma 

The follicular variant of PTC (FVPTC) often resembles encapsulated follicular 

neoplasm. They are composed of small follicles with virtually no papillary structures (less 

than 5%), however the nuclear changes typical of PTC allows this variant to be distinguished 

from the other follicular patterned lesions (15). The FVPTC may appear as encapsulated or 

infiltrative/diffuse tumours (17). The first form rarely metastasize to lymph node, only in 

around 5% of cases, whereas the infiltrative variants often harbour lymph node metastasis, 

which is reported in around 65% of cases. The prognosis of these tumours is similar to the 

cPTC (17). 

Diffuse sclerosing variant of papillary thyroid carcinoma 

 The diffuse sclerosing variant of PTC (diffuse sclerosing PTC) is a rare variant of 

PTC characterized by diffuse involvement of one or both thyroid lobes, usually without 

forming a dominant mass (15). In the presence of dominant nodules, the neoplastic cells 

appear similar to those of cPTC and occasionally show a predominant follicular pattern. 

They tend to occur in younger patients, may harbour prominent regional node metastases 

and lung metastases can also be present at presentation (15). 

Tall cell variant of papillary thyroid carcinoma 

 The tall cell variant of PTC (tall cell PTC) is an uncommon variant of PTC. It is 

predominantly composed of cells whose heights are at least three times their widths. This 

variant is composed of a combination of papillary, trabecular or cord-like patterns (15). 

 These tumours occur in older patients, often males, and tend to show a more 

aggressive clinical behaviour than cPTC (18). 

Solid variant of papillary thyroid carcinoma 

 The solid variant of PTC (SVPTC) is characterized by the presence of solid sheets 

of tumours cells with typical nuclear features of PTC, and it is only is considered when more 

than 50% of the neoplastic cell present a solid growth pattern (19). These tumours are more 

frequent in children, including those who have been exposed to radiation (15). 
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Oncocytic variant of papillary thyroid carcinoma 

 The oncocytic variant of PTC (oncocytic PTC) is characterized by the presence of 

mitochondria-rich follicular cells presenting eosinophilic and granular cytoplasm – oncocytic 

cells – that may have a papillary or follicular architecture (20, 21). The diagnosis of the 

oncocytic PTC is based on the nuclear features of these lesions which are identical to those 

seen in cPTC (15). These tumours can present well circumscribed, however some degree 

of infiltration of the surrounding capsule can be found, and they can be widely invasive (15).  

Follicular thyroid carcinoma 

 FTCs account for about 5-10% of the DTC (22). FTCs are identified by their follicular 

organization and by the lack of PTC nuclear features. The differences between FTCs and 

FVPTCs are not always clear. The diagnosis of FTC also depends on evidence of vascular 

or capsular invasion in the tissue sample, and therefore occasionally a minimally invasive 

FTC will mistakenly be classified as a FTA. Molecular markers that can distinguish minimally 

invasive FTCs from FTAs have proved elusive but are continuously being sought (23). 

Oncocytic variant of follicular thyroid carcinoma 

 Oncocytic FTC is a subtype of FTC, that accounts for 3-4% of thyroid cancer and is 

characterized by large, mitochondria-rich oncocytic cells that represent more than 75% of 

the cells, and dense nuclei and nucleoli (24, 25).  

This variant also has a high propensity for metastasis and a poor prognosis (26), 

harbouring nodal metastases in approximately 30% of cases or distant metastases involving 

lung and bone (27). 

Poorly differentiated thyroid carcinoma 

 PDTC represent less than 5% of thyroid carcinomas (22), and by definition are 

follicular-cell neoplasms that show limited evidence of follicular cell differentiation and 

occupy both morphologically and behaviourally an intermediate position between DTCs and 

UTCs (28). For the PDTC diagnosis, several criteria have to be fulfilled, the tumour has to 

include presence of a solid/trabecular/insular pattern of growth; absence of the conventional 

nuclear features of papillary carcinoma; and presence of at least one of the following 

features: convoluted nuclei; mitotic activity >or=3 x 10 HPF; or tumour necrosis. An 

algorithmic approach was devised for practical use in the diagnosis of this tumour (29). 

  

Undifferentiated thyroid carcinoma 

 UTC is the deadliest subtype of thyroid cancer. It is rare, accounting for at most 2% 

of cases and causes up to 14-50% of thyroid cancer deaths (30). UTCs, also called 

anaplastic thyroid carcinoma, are highly malignant tumours composed of undifferentiated 
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cells that exhibit immunohistochemical or ultra-structural features indicative of epithelial 

differentiation. They are usually large, locally invasive, and consist of admixtures of spindle, 

epithelioid and pleomorphic giant cells (31). The fact that UTCs are massively infiltrated 

with macrophages may contribute in part to their heterogeneous appearance (32, 33). 

Medullary thyroid carcinoma  

 MTC is a malignant tumour that harbours C-cell differentiation. Histologically the 

MTC presents sheets, nests or trabeculae of polygonal, round or spindle cells, separated 

by varying amounts of fibrovascular stroma, giving rise to more or less lobular or trabecular 

arrangement (34-36).  

This malignant tumour tends to metastasize early, particularly to cervical lymph 

nodes, and haematogenous MTC tends to metastasize to liver, lungs and bone, and 

occasionally to the brain, soft tissues around the neck and to the bone marrow (37).  

Genetic alterations in thyroid tumours 

In recent years a significant knowledge in molecular mechanisms of thyroid 

carcinogenesis and progression has been achieved, where recurrent mutations in thyroid 

carcinomas are predominantly associated with specific tumour phenotypes and are 

implicated in the disease aetiology. While several molecular alterations are implied in 

thyroid carcinogenesis, the activation of the mitogen-activated protein kinase (MAPK) and 

phosphatidylinositol 3-kinase (PI3K)/AKT pathways, commonly in close connection and 

cooperation, constitute the major mechanisms for the development and progression of most 

thyroid tumours (38).  

The MAPK pathway (Figure 1) has a fundamental role in the regulation of cell 

growth, proliferation, apoptosis and metabolic activities through regulation of the expression 

of several genes, while the PI3K-AKT (Figure 2) pathway also plays a similar role in cell 

regulation (39, 40). Nevertheless, activation of these pathways is attributed to different 

genetic or epigenetic alteration of oncogenes and tumours suppressor genes. In thyroid 

cancer, these pathways are driven by genetic alterations that are found in 65-70% of the 

TFC derived tumours, that include BRAF, RAS and TERT mutations, RET/PTC and PAX8-

PPARɣ rearrangements, and in some cases by the recently discovered ALK mutations (41-

44). Mutations in tumour suppressor gene p53 are the major event in the UTC (45). 
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Figure 1 - The MAPK and related pathways in thyroid cancer. Adapted from: Xing, M. 

2005. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 
13(3):184-99. 

 BRAF mutations 

BRAF, a proto-oncogene located at 7q24, is a member of RAF kinase family 

proteins, which are intracellular effectors of the MAPK pathway signalling cascade. Their 

activation is triggered by RAS binding and protein recruitment to the cell membrane which 

will stimulate its serine/threonine kinase activity, and result in phosphorylation and activation 

of MEK, which in turn activates ERK and consequent effectors of the MAPK cascade (46, 

47).  

All three functional human RAF proteins – A-RAF, B-RAF and C-RAF- share several 

highly conserved regions in the N-terminal regulatory domain and C-terminal kinase 

domain. Of all RAF proteins, BRAF has the highest basal kinase activity and is more active 

in phosphorylating MEK, since it has higher affinity for MEK 1 and 2 and is more efficient in 

phosphorylating MEKs upon RAS activation than the other two family members (46). 

 

http://www.ncbi.nlm.nih.gov/pubmed/23429735
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 BRAF gene alterations were associated with human carcinogenesis after the 

description of a high frequency of BRAF activating mutations in melanomas, colorectal and 

ovarian carcinomas (48). All mutations described occurred within the kinase domain of the 

protein, involving either the activation loop or the ATP binding site (48), disrupting the 

interaction between both lobes of the protein and destabilizing the inactive conformation of 

the kinase, and resulting in BRAF constitutive activation. Most, but not all, know oncogenic 

BRAF genetic alterations allow the formation of new interactions that fold the kinase into a 

catalytically competent structure (49). 

 A wide variety of BRAF mutations are found in a wide range of cancers, but more 

than 95% of the cases are of a single variety denoted BRAF (p.V600E). This mutation was 

characterized for the first time in thyroid carcinomas in 2003 (41, 50, 51). It is a missense 

thymine to adenine transversion at the 1799 nucleotide position in exon 15 that leads to a 

valine to glutamate substitution at the 600 amino acid position, in the kinase domain (52, 

53). The mutation results in a constitutive activation of the BRAF, no longer dependent on 

RAS, and hence causes constitutive MEK/ERK activation (52, 53). 

In 1% to 2% of PTC, other BRAF mutations can be found such as BRAF (p.K601E) 

point mutation, small in-frame insertions or deletions surrounding codon 600 (54) and a 

Figure 2 - The PI3K-AKT and related pathways in thyroid 
cancer. Adapted from: Xing, M. 2005. Molecular 
pathogenesis and mechanisms of thyroid cancer. Nat Rev 
Cancer. 13(3):184-99. 
 

http://www.ncbi.nlm.nih.gov/pubmed/23429735
http://www.ncbi.nlm.nih.gov/pubmed/23429735
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chromosomal rearrangement resulting in the fusion gene AKAP9-BRAF, that was found in 

PTCs associated with radiation exposure (55).  

The BRAF (p.K601E) mutation consists in a missense adenine to guanine 

transversion at the 1801 nucleotide position that leads to a lysine to glutamate substitution 

at the 601 amino acid position (48), and has a similar effect than the BRAF (p.V600E) 

mutation.  

BRAF mutations are now thought to be the most common mutation in PTC, with an 

incidence of 45%, with the highest frequencies in tall cell PTC (80%), cPTC (60%) and less 

frequent in FVPTC (10%) (56). In PTC the most common mutation is the BRAF (p.V600E), 

however in the FVPTC the BRAF (p.K601E) is frequently found (57).  

BRAF mutations are more common in PTC of adults than in PTC from children (58), 

and are rare in radiation-induced PTCs (59). 

An initiator role for BRAF mutation in PTC has been advanced by the demonstration 

that thyroid-targeted BRAF (p.V600E) transgenic mice develop thyroid tumours with PTC 

features (60), and by the frequent detection of BRAF mutations in papillary thyroid 

microcarcinomas (20-52%) (57). BRAF (p.V600E) induces genomic instability (61), 

facilitating the acquisition of secondary genetic events that promote tumour progression 

(62). Early or late expression of BRAF (p.V600E) in transgenic mice rapidly produces 

enlarged and abnormal thyroids followed by invasive PTC within a year, confirming BRAF 

mutations as a causative event in PTCs (60, 63).  

BRAF is frequently associated with aberrant methylation of several tumour 

suppressor genes, such as the tissue inhibitor of matrix metalloproteinase-3 (TIMP3), the 

death-associated protein kinase (DAPK), SLC5A8, and retinoic acid receptor β2 (RAR β2) 

(64). In vitro studies have demonstrated that BRAF (p.V600E) confers enhanced 

invasiveness to thyroid cells, through increased expression of matrix metalloproteinase 3, 

9 and 13, VEGF and by activation of the nuclear transcription factor kB (NF-kB) – coupled 

signalling, which promotes apoptosis resistance, cell proliferation, angiogenesis, invasion 

and metastasis (64). The enhanced invasiveness may explain why thyroid BRAF (p.V600E) 

transgenic mice develop more invasive PTCs (60) that frequently evolve to PDTCs and 

supports the role of BRAF in tumour progression.  

Clinical studies have demonstrated BRAF association with extrathyroidal extension, 

lymph node metastasis, advanced tumour stages, older age at diagnosis, disease 

recurrence, and even patient mortality when associated with other features of bad prognosis 

(65). These data have been interpreted as indicative of poorer prognosis in BRAF-mutated 

thyroid carcinoma (66).  

There is also recent evidence showing an association between the presence of 

BRAF mutations and PTC recurrence, mortality and resistance to radioiodine therapy (67-
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69), that is probably related to the association of BRAF mutations with silencing of iodine-

handling genes (70), and to the demonstration that BRAF-mutated PTC may evolve to 

PDTC and UTC (71). The more aggressive behaviour of BRAF (p.V600E) positive tumours 

may be due to the propensity of these tumours to dedifferentiate, and to the fact that this 

mutation leads to the alteration of the function of sodium iodide symporter (NIS) and other 

genes metabolizing iodide, thus decreasing the ability of tumour cells to trap radioiodine 

and predisposing to treatment failure and recurrent disease (44, 69-71). 

However, recent studies have challenged this concept, by demonstrating that, when 

confounding factors are accounted for by means of a multivariate statistical analysis, BRAF 

per se is not correlated with bad prognostic features. As a result, a recent review has 

concluded that there is still not enough evidence to warrant a more aggressive approach to 

thyroid carcinomas harbouring BRAF mutations, given the high general incidence of BRAF 

mutations would put as many as 30% of all PTC patients at risk of overtreatment (64).  

More importantly, BRAF (p.V600E) has been found to be an independent predictor 

of treatment failure and tumour recurrence, even in patients with low-stage disease (44, 72, 

73), and as an risk factor for tumour-related death (74). 

BRAF mutations have also been described in 10 to 44% of UTC (69, 75, 76); in such 

BRAF-mutated UTC, the mutations are frequently also detected in adjacent foci of PTC that 

are thought to represent the origin of UTC. This supports the idea that BRAF mutations can 

be implicated in the progression of DTC to PDTC or UTC (44, 77). 

In accordance with a stepwise progression model, BRAF mutations are more 

frequent in PDTC arising from PTC, than in PDTC associated with FTC (75, 76). This was 

clear when Soares et al. evaluated a group of PDTC exclusively composed of insular and 

insular-like tumours, thus excluding PDTC with foci displaying PTC nuclei (76). No BRAF 

mutations were detected in this group, supporting the assumption that pure and insular-like 

PDTC are more closely related to FTC than to PTC (76). BRAF mutations were nevertheless 

described in PDTC with PTC-like nuclei, as well as in PDTC coexisting with foci of PTC (69, 

75). 

NRAS mutations 

The RAS proteins are plasma membrane GTPases that regulate key cellular 

processes involved in growth, differentiation, survival, adhesion and migration (47, 78, 79). 

RAS genes encode highly related G proteins that are located at the inner surface of the cell 

membrane and propagate signals arising from the cell membrane receptor tyrosine kinase 

and G-protein-coupled receptors along the MAPK, PI3K/AKT, and other signalling 

pathways. RAS exists in a guanosine triphosphate (GTP)-bound active state or a guanosine 

diphosphate (GDP)-bound inactive state, and RAS activation is induced by external signals 
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such as from cell surface receptor tyrosine kinases. Constitutively activating RAS mutations 

are one of the most common mutations in cancers (80). 

 The three members of the RAS family, HRAS, located on chromosome 11p11, 

KRAS, located on chromosome 12p12 and NRAS, located on chromosome 1p12, have 

been shown to be mutated in thyroid cancer, where they become constitutively activated 

either by mutations that enhance their GTP-binding affinity (codons 12/13) or that decrease 

their intrinsic GTPase activity (codon 61) (78, 79). 

 Overall, the most frequent mutations in thyroid cancer lie in codon 61 of NRAS and, 

less commonly, codon 61 of HRAS (79) . In the Switch II region of the G domain, in codon 

61, several mutations can be found, for example the NRAS (p.Q61R) mutation that is a 

missense adenine to guanine transversion at the 182 nucleotide position that leads to 

glutamine to an arginine substitution. The NRAS (p.Q61K) mutation is a missense cytosine 

to adenine transversion at the 181 nucleotide position that leads to a glutamine to a lysine 

substitution at the 61 amino acid position. Both mutations will lead to a constitutive activation 

of the NRAS, even in the absence of growth factor signalling (78, 79, 81).  

 In thyroid tumours, RAS mutations are more common in iodine-deficient areas (81) 

and rare in radiation-induced thyroid cancers of Chernobyl (82). RAS mutations are present 

in 20-40% of FTA, 40-50% of FTCs, and 10-20% of PTCs (the majority in the FVPTC) with 

the following relative frequency: NRAS> HRAS> KRAS (83).  

RAS mutations were thought to be early events in thyroid carcinogenesis, due to 

their presence in both FTAs and FTCs; however this may result in part from the high degree 

of inter observer variability concerning the distinction of FTA from FTC (84, 85). 

In addition, recent studies have convincingly shown lower rates of RAS mutations in 

DTCs and higher in PDTCs and UTCs, suggesting a role of RAS in tumour progression, 

rather than initiation (86, 87) . This is supported by in vitro observations of increased 

genomic instability induced by RAS – genomic instability is believed to be a key step in 

tumour progression by allowing tumour cells to accumulate mutations that promote 

increased survival and invasiveness (88). Moreover, an animal model of thyroid-targeted 

RAS mutation resulted in follicular thyroid tumours that progressed to PDTCs (89). 

Nevertheless, RAS mutations are also prevalent in FTA, and are seen in FVPTC with good 

clinical behaviour and with few metastases (90-92).  

RAS mutations have been detected in 18-27% of PDTCs and up to 60% of UTCs; 

however the prognostic value of RAS mutations in thyroid cancer is not well established. In 

the more aggressive tumours, such as PDTC and UTC, some series showed that RAS 

mutations were associated with aggressive tumour phenotypes and poor prognosis (86, 

87), whereas in others series such associations were not observed (69). It has been 

advanced that PDTC and UTC tumours with mutated NRAS are significantly associated 
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with the appearance of haematogenous (particularly bone) metastases, suggesting a role 

of RAS gene activation in the metastatic capability of these tumours (87, 93, 94). 

RET/PTC rearrangements 

 The RET (rearranged during transfection) proto-oncogene is located on 

chromosome 10q11.2 and encodes a single-pass transmembrane tyrosine kinase that has 

an extracellular ligand-binding domain with four cadherin-like repeats and a cysteine-rich 

region, a hydrophobic transmembrane domain, and a cytoplasmic tyrosine kinase domain 

(95). This peculiar organization defines RET as distant member of cadherin superfamily and 

raises the possibility that RET may have arisen by a recombination of an ancestral cadherin 

with a tyrosine kinase gene (95). 

 The structure of RET implicated it as a transmembrane receptor; however it 

remained an orphan receptor until a knockout mouse model deficient in glial-derived 

neurotrophic factor (GDNF) was found to exhibit a phenotype identical to RET -/- mice (96, 

97). It was then established that RET functions as the receptor for GDNFs, which activate 

RET when bound to GDNF-family receptor-α (GFRα) and that both are essential for the 

development of the sympathetic, parasympathetic, and enteric nervous system, the kidney 

and the testis (95). 

In PTC, RET-related carcinogenesis occurs not by gain-of-function mutations, but 

through the action of fusion proteins generated by rearrangement of RET that fuse the 

tyrosine kinase domain of RET with the 5’-terminal region of unrelated genes. These have 

been collectively designated RET/PTC rearrangements. The first RET/PTC rearrangement 

was discovered in 1987 (98), and since then, at least 11 rearranged forms of RET have 

been described (99, 100), and others have recently been reported (101, 102). RET/PTC1 

(alias CCDC6-RET) results from a paracentric chromosomal inversion inv(10)(q11.2q21), 

leading to the fusion of RET and CCDC6 (alias H4); and RET/PTC3 (alias NCOA4-RET) 

results from a paracentric inversion, inv(10)(q11.2;q11) that fuses RET and NCOA4 (alias 

ELE1) (103, 104).  

RET/PTC1 is the most common rearrangement type and comprises up to 60-70% 

of all positives PTC cases (105). RET/PTC3 accounts for 20 to 30% and RET/PTC2 and 

other novel rearrangements types for fewer than 5% of all detected rearrangements in PTC 

(106, 107). 

RET/PTC rearrangements place RET under the transcriptional control of its fusion 

partner gene promoter, which allows the expression of RET in TFC, where it is normally not 

expressed. The rearrangement also deletes the signal sequence, the extracellular ligand-

binding domain and the intracellular juxta membrane domains of the receptor, re-locating 

the RET/PTC protein to the cytosolic compartment, and preventing it from interacting with 
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many of its negative regulators. In addition, the presence of coiled-coil domains (protein-

protein interaction domains able to mediate dimerization) in RET fusion partners result in 

ligand-independent dimerization and phosphorylation of RET downstream targets, with 

constitutive activation of the RAS/MAPK pathway and the PI3K/AKT pathways (105, 108-

111). The altered function of RET fusion partners, which have so far not been extensively 

studied, may also account for some of the oncogenic properties (105). Altered function of 

RET fusion partners may also explain why the RET/PTC variants have different biological 

activities. Some examples are RET/PTC2, whose fusion partner, the regulatory subunit type 

I α of protein kinase A (PRKAR1A) is a tumour suppressor, similarly, CCDC6 when 

overexpressed induces apoptosis, suggesting that abrogation of this function may facilitate 

PTC cell survival (112). 

RET/PTC rearrangements have so far been identified only in thyroid lesions, in 

particular PTC cases, where their prevalence ranges from 13-46%, depending on the 

detection method used and the geographic region studied (56). It has been reported that 

RET rearrangements are more frequent in tumours with classic architecture, and rare in the 

FVPTC (113). 

 A high prevalence of RET/PTC mutations is found in tumours from patients who 

received external radiation and in post-Chernobyl PTCs (over 60%). Among those, 

RET/PTC3 was more prevalent in short latency PTCs, whereas RET/PTC1 was more 

frequently found in latter latency and sporadic PTCs (114). Corroborating these 

observations, in vitro studies have confirmed a causative role for X-ray irradiation in the 

formation of RET/PTC rearrangements (115). This might be favoured by the fact that the 

most common partners (NCOA4 and CCDC6) lie in closer proximity in interphase thyroid 

cells than would be expected by their genomic localization (116) due to large-scale 

chromosome folding in the region of chromosome 10 spanning these loci (117). 

RET/PTC1 tumours are associated with cPTC histology while RET/PTC3 are 

associated with more aggressive SVPTC (103, 114, 118). 

 The role of RET/PTC rearrangements as early events in thyroid carcinogenesis is 

supported by the finding of RET/PTC rearrangements in a high percentage of papillary 

thyroid microcarcinomas (119, 120) as well in nodules with incomplete morphological 

evidence of PTC (121). In addition, introduction of RET/PTC retroviral constructs into thyroid 

epithelial cells leads to development of typical nuclear morphology that is diagnostic of PTC 

(122). Thyroid targeting of RET/PTC1 (104, 123) or RET/PTC3 (124) in transgenic mice 

leads to the development of tumours that resemble PTC. In non-malignant primary thyroid 

cells or cell lines, RET/PTC expression decreases thyroid specific gene expression, alters 

cell and colony morphology to resemble features of PTC, renders cell insensitive or 
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independent from TSH signalling, and especially in the cases of RET/PTC3, markedly 

increases cell proliferation (103, 125, 126). 

 It has been suggested that RET-associated PTCs are phenotypically indolent, rarely 

exhibit lymph node invasion or distant organ metastases (124) and have a very low 

probability of progression to PDTC and UTC (107). Although few correlations have been 

made between RET/PTC rearrangements and clinic-pathological features, there are some 

studies that observed increased lymph node metastases in these cases (107, 113, 127).  

This lack of poor prognosis is in striking contrast, however, to the RET-related 

aggressive MTCs. RET mutations are frequently found in MTC, in 98% of hereditary MTCs 

a germline point mutation of RET is identified and in 30-70% of sporadic MTCs somatic 

mutations are found (128). In vitro studies show that both genetic alterations, the 

rearrangement and point mutations, activate similar downstream signalling pathways, and 

that the cytoplasmic location of RET/PTC actually increases its stability, by protecting it from 

receptor-mediated endocytosis and degradation. One possible explanation lies in the fact 

the transcript levels of RET/PTC were shown to be lower than the full-length RET, which is 

probably due to a relative weakness of the RET/PTC1 and RET/PTC3 in thyroid C-cells 

(129). 

RET/PTC rearrangements have also been described in tumours with follicular 

pattern, particularly in oncocytic FTA and oncocytic FTC (12, 130, 131), with frequencies of 

30% in oncocytic FTA and 38% for the oncocytic FTC, where all positive tumours displayed 

a solid growth pattern (132). 

The frequency of RET/PTC in PDTC has been reported to be considerably lower 

than in PTC (13-17%) (69, 127) or absent (87, 107). Moreover the few RET/PTC-positive 

PDTC are not associated with increased aggressiveness or poor patient survival and 

usually show histological evidence indicating coexistence with or possible evolution from 

PTC often diagnosed as cPTC, SVPTC and tall cell PTC (69, 127, 133).  

Concerning UTC, all previous studies reported an absence of RET/PTC 

rearrangements in this setting (69, 107); only the study by Mochizuki et al., who studied 

seven composite UTC (UTC having a PTC component) and 14 single component UTC, has 

found the presence of a RET/PTC3 rearrangement in both components (UTC and PTC) of 

one composite UTC, whereas all 14 single component UTC were RET/PTC negative (134). 

PAX8-PPARɣ rearrangement 

PAX8 is a transcription factor important for thyroid development, and in the mature 

gland it drives the expression of many thyroid-specific genes such as those encoding 

thyroglobulin, thyroid peroxidase and NIS (135). The peroxisome proliferator-activated 

receptor gamma (PPARɣ), member of the steroid/thyroid nuclear receptor family, is a 
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nuclear receptor/transcription factor essential for adipogenesis that is expressed at very low 

levels in the normal thyroid and has no known function in this organ (136).  

The PAX8-PPARɣ fusion oncogene results from a balanced translocation, 

t(2;3)(q13:p25), that results in the fusion of the promoter and most of the PAX8 gene to the 

coding exons of the PPARɣ gene. Thus the PAX8-PPARɣ fusion protein (PPFP) is 

expressed under the control of the PAX8 promoter, which is highly active in the thyroid 

(137). The functional consequences of expression of PAX8-PPARɣ are still not fully 

understood (138). 

 A separate fusion protein resulting from a t(3;7)(p25;q34) chromosomal 

rearrangement between CREB3L2 and PPARɣ has been reported in one case of FTC (139). 

That two distinct chromosomal translocations involving PPARɣ have been associated with 

FTC, suggests that modulation of PPARɣ-regulated pathways is important for PAX8-

PPARɣ-mediated carcinogenesis. However the oncogenic mechanism of PAX8-PPARɣ is 

poorly understood and its functional relationship to PPARɣ is complex (23).  

 The prognostic significance of PAX8-PPARɣ expression in FTC or FVPTC has not 

been extensively studied. PAX8-PPARɣ is associated with a younger age at presentation 

and increased vascular invasion (140-142). However, others report that PAX8-PPARɣ is 

associated with indicators of good prognosis including markers of differentiation and few 

metastases (143). 

 An important point that remains to be elucidated is whether PAX8-PPARɣ is 

sufficient by itself to promote thyroid tumourigenesis or whether additional genetic or 

epigenetic events are required to enable the full phenotypic expression of follicular thyroid 

carcinoma.  An average of different studies conducted so far shows the presence of PAX8-

PPARγ in 36% FTCs (0-63%), 11% of FTAs (0-55%), 13% of FVPTC (0-50%), but not in 

UTCs (144, 145).  

 In the majority of the FTA cases that harbour the PAX8-PPARɣ rearrangement, the 

nodule harbour a thick capsule suggesting that they may represent pre-invasive follicular 

carcinomas or malignant tumours where invasion was overlooked during histological 

examination(142).   

PAX8-PPARγ rearrangements are absent from all PDTC and UTC so far analysed 

(69, 87). It should also be pointed out that the data suggesting that RET/PTC and PAX8-

PPARɣ are not found in UTCs or in higher percentages in DTCs and PDTCs is mostly 

performed through mRNA expression data and this is dependent on promoters of genes 

that are expressed in differentiated thyroid cells. In these cases, DNA studies, able to detect 

the presence of the rearrangement even in the absence of mRNA expression, are required 

to elucidate this controversial issue (146). 
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TERT promoter mutations 

The thyroid tissue is a conditional-renewal tissue, which proliferates very slowly and 

rarely; human thyroid cells are supposed to divide about five times in the adult life (147).In 

the thyroid gland there is not a well-defined stem cell population that might constitute a pool 

of cells responsible for retaining the capacity of division. Some authors advanced that, the 

so-called Solid Cell Nests (SCNs) of the thyroid, which are embryonic remnants of the 

ultimobranchial body may represent the pool of the thyroid stem cells as they expressed 

several stem cell markers, namely telomerase (148). 

Telomerase activation is known to be a hallmark of cancer (149), being detected in 

80 to 90% of malignant tumours (150, 151). High telomerase activity has been reported in 

thyroid tumours, particularly in advanced forms of the disease, but is rare in normal thyroid 

tissues (152-154). 

Human telomerase reverse transcriptase (hTERT) gene is located on chromosome 

band 5p15.33 and encodes the catalytic subunit of telomerase that together with a RNA 

component, TERC, maintains genomic integrity by telomere elongation (155). Though 

TERT and TERC are sufficient for in vitro telomerase activity, the in vivo telomerase 

functioning requires additional components that associate with TERT and TERC, to form 

the holoenzyme (156, 157). 

The mechanism of TERT upregulation in cancers has been attributed to several 

mechanisms including epigenetic deregulation as well as genetic amplification of the locus 

containing TERT gene (158, 159). The recently discovered TERT promoter mutations add 

new dimensions to the acquisition of telomerase activity in human cancers, since somatic 

mutation in the coding region of TERT are infrequent in human cancer (160-163). 

TERT promoter mutations occur in two hotspot positions, - 124 and - 146, where -1 

is the base just upstream the A of the ATG translation start site. They represent nucleotide 

changes of -124 C>T and -146 C>T (G>A on opposite strand). Both mutations create an 

11-base nucleotide stretch 5’-CCCCTTCCGGGG-3’, which contains a consensus binding 

site, GGAA (in reverse complement), for ETS transcription factors, suggesting potentially 

important biological relevance for these mutations (160, 161). 

In fact, the two mutations have been demonstrated to confer increased 

transcriptional activity on the TERT promoter (160, 161). These mutations are not found in 

normal human subjects and in the public genetic databases and are, therefore, cancer-

specific somatic genetic alterations, further supporting their important role in human 

tumourigenesis. This is consistent with the previously observed increased telomerase 

activities in several human cancers (164, 165). Thus, TERT promoter mutations, by 

promoting the expression of the catalytic subunit of telomerase may play an important role 

in human carcinogenesis. 



Ana Cristina Afonseca Pestana 

 

16 
 

In thyroid cancer, recent studies observed that TERT promoter mutations were only 

found in TFC-derived cancer, such as DTC, PDTC and UTC. No mutations were described 

in normal adjacent thyroid tissue nor in benign lesions such as goiter, adenomas or 

thyroiditis (45, 163, 166). 

 Telomerase activity has been found in 48% of PTC, 71% of FTC and 78% of UTC 

(153, 167-169), whereas TERT promoter mutations were found in 12% of the DTC tumours 

(170) , being present in 7.5% of the PTCs (163, 170, 171), 17.1% of the FTC (163, 170), 

29.0% of PDTC and 33.0% of UTCs (163, 170, 171), where the most frequent mutation was  

-124C>T mutation (163). 

It has been suggested that telomerase may contribute to a more aggressive 

behaviour of the thyroid cancer (152, 168, 169), and TERT promoter mutations were 

associated in PTC with patient older age, larger tumour size and higher stage (170-173). 

 In PTC, a significant association between BRAF or NRAS and TERT promoter 

mutations was found, however this co-association was not associated with more aggressive 

clinico-pathological features or worse outcome than the cases that harboured just the TERT 

promoter mutation (173). 

Until recently, TERT promoter mutations have only been identified in malignant 

thyroid lesions (163, 170, 173), however, in one cohort (174), it was found in a FTA a TERT 

promoter mutation -124C>T, and in two cases diagnosed as atypical FTA, an entity with 

uncertain malignant potential, with a frequency of 17%, which lead to the question at what 

stage of carcinogenesis occurs the TERT promoter mutation and telomerase activity (174).  

 TERT promoter mutations may play a role in the de-differentiation, progression, 

aggressiveness and may be one of the mechanisms that underlies telomerase reactivation 

in several types of human tumours (45). 
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Aims 

 The initial challenge for this work was the organization of a repository of thyroid 

tumours, providing an easier availability to DNA, RNA, and protein components with high 

quality, and with the main clinico-pathological and molecular data available for each case, 

to be used for furthers studies in the research group.  

 To achieve this goal, the first step was the organization and elaboration of a 

database of the frozen tissues from the repository. To construct the database it was 

necessary to select the cases according to the available histological report, and the clinico-

pathological information that would be relevant to further studies.  

The second aim was the development of a standard protocol allowing the extraction 

of DNA, RNA and protein lysates from the tumour sample. The purpose of the protocol was 

the analysis of the same area of the tumour, allowing a perfect match between the DNA, 

RNA and protein characteristics, insuring high quality and preservation of the extracted 

components.  

 The third aim was the characterization of the main genetic alterations in thyroid 

tumours from the repository – BRAF and NRAS mutations, TERT promoter mutations, and 

RET/PTC1, RET/PTC3 and PAX8-PPARɣ rearrangements. 

 Having the genetic characterization available and to access the quality and 

representation of the repository, statistical analyses were performed to verify the clinico-

pathological and genetic associations. 
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Materials and Methods 

Samples 

 All the procedures described in this study were performed according with the 

national ethical rules and with the approval of the ethic committee of the Centro Hospitalar 

de São João (CHSJ).  

 The frozen samples were obtained from CHSJ, between the years 1989 and 2012, 

and kept at a temperature of -80°C at the Institute of Molecular Pathology and Immunology 

of the University of Porto (Ipatimup). Diagnosis and clinico-pathological data were retrieved 

from the files of the Department of Pathology from the CHSJ.  

 The repository consisted of 500 cases. According to the availability of pathological 

report or clinical information 225 samples from 184 patients were selected for the 

subsequent study. Those samples correspond to 54 samples of nodular goiter, 24 samples 

of FTA, 117 samples of malignant tumours and 30 samples of normal thyroid. 

DNA, RNA and protein extraction 

Sample preparation 

 The samples were thawed at room temperature and fragments representative of the 

entire sample were taken, each with a dimension of about 1 cm. The fragments were 

homogenized in 2mL TRIzol® Reagent (ref 15596018, Life Technologies™, Carlsbad, 

USA). After tissue homogenization, the sample was equally divided in two tubes (1.5 mL), 

for DNA / RNA extraction and protein extraction. The sample was then stored at -80ºC.  

RNA extraction 

 The RNA extraction was performed according to the manufacturer protocol (175), 

where the tube with the sample for DNA/RNA extraction was incubated at room temperature 

for 5 minutes to allow the complete dissociation of the nucleoprotein complex. 

 With the purpose of separating the RNA, DNA and proteins, it was induced the 

chloroform phase separation by the addition of 200µL chloroform to the sample, and 

vigorously mixed and incubated 2-3 minutes at room temperature. The sample was then 

centrifuged at 12,000g for 15 minutes at 4ºC and the aqueous phase was carefully removed 

to a new tube (1.5 mL) and added 500 µL absolute isopropanol, and the remaining phases 

(interphase and organic) were stored at -80º for DNA extraction.  

 The tube with RNA and isopropanol was inverted several times and incubated at 

4ºC for 10 minutes. Subsequently the sample was centrifuged at 12,000g for 10 minutes at 

4ºC. The supernatant was removed and discarded; the RNA pellet was washed in 1mL 75% 

ethanol and then centrifuged at 12,000g for 5 minutes at 4ºC. Again the supernatant was 

removed and discarded; the RNA was dried for a few seconds in a hot plate at 55ºC.  
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 The RNA pellet was then dissolved in 50µL of DNase and RNase free water and 

quantified through the Nanodrop ND-1000 Spectrophotometer (Thermo Scientific, 

Lithuania, EU). The samples were then stored at -80ºC.  

DNA extraction 

 The tube (1.5mL) that contained the interphase and organic phase was vigorously 

mixed, centrifuged at 12,000g for 15 minutes at 4ºC, and the possible remaining aqueous 

phase removed and discarded.  

 Absolute ethanol (300µL) was added to precipitate the DNA, and the sample was 

mixed by inversion several times being thereafter incubated at room temperature for 2-3 

minutes. The sample was then centrifuged at 12,000g for 10 minutes at 4ºC. The 

supernatant was removed and discarded; the pellet was dried for a few seconds in a hot 

plate at 55ºC.  

 Lysis Solution (600µL; ref CL-250, Citogene®, Citomed, Lisbon, Portugal) was 

added to the sample and vortexed. Subsequently, 20µL Proteinase K (20mg/dL) was added 

to the mixture, and incubated overnight at 55ºC and with shaking (125rpm). The samples 

were incubated with more 10µL Proteinase K 20mg/dl for more 4-5 hours in the same 

conditions previously described.  

 The sample was cooled at room temperature, and 200µL of Protein Precipitation 

Solution (ref PP-125, Citogene®, Citomed, Lisbon, Portugal) was added and mixed for 20 

seconds, and incubated in ice for at least for 5 minutes. Then, the samples were centrifuged 

at 16,000g for 3 minutes at 0ºC.  

 The supernatant was transferred to a new tube (1.5mL) containing 600µL of absolute 

isopropanol and 1µL of glycogen (20mg/mL; ref #50561, Thermo Scientific, Lithuania, EU), 

and the mixture was inverted at least 50 times. Then the tube was centrifuged at 16,000g 

for 3 minutes at 15ºC. The supernatant was removed and discarded; the DNA pellet was 

washed in 300µL of ethanol (70%). The tube was inverted several times, and centrifuged at 

16,000g for 3 minutes at 15ºC.  

 The supernatant was carefully removed and discarded, and the pellet was dried in 

a hot plate at 55ºC for 10 seconds. Then the DNA pellet was dissolved in 50µL of DNase 

and RNase free water, quantified by Nanodrop N-1000 Spectrophotometer (Thermo 

Scientific, Lithuania, EU) and stored at -20ºC. 

Protein extraction 

 The protein extraction was done according to the modified TRIzol® protocol 

developed by Simões et al. (176). In order to promote the phase separation, as previously 

explained, 200 µL of chloroform was added to the sample, which was incubated at room 

temperature for 3 minutes and centrifuged at 12,000 g for 15 minutes at a temperature of 
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4ºC, where the aqueous phase was removed and discarded. The centrifugation step was 

repeated at least once to remove the remaining aqueous phase supernatant.  

 To precipitate the DNA, the samples were mixed by inversion of the tube with 300µL 

absolute ethanol and then centrifuged at 2,000g for 5 minutes at 4 ºC. 

 The supernatant was removed to a 2mL tube, where 1.5mL isopropanol was added 

to precipitate the proteins. The sample was mixed and incubated at room temperature for 

10 minutes. Subsequently the sample was centrifuged at 12,000g for 10 minutes at 4ºC and 

the supernatant discarded.  

 Proteins pellets were next washed three times in 2mL 0.3M guanidine hydrochloride 

in 95% ethanol. In each wash, the sample was vigorously mixed, incubated at room 

temperature for 20 minutes and centrifuged at 7,500g for 5 min at 4ºC.  

 After the final wash and spin, 2mL absolute ethanol was added; the sample was 

incubated at room temperature for 20 minutes, and centrifuged at 7,500g for 5 minutes at 

4ºC.  

 The supernatant was removed and 1mL 1:1 solution of 1% SDS and 8M urea in Tris-

HCl 1M, pH 8.0 was added to the protein pellets, followed by 5 cycles of 20 seconds 

sonication and 30 seconds of ice incubation (Bandelin Sonopuls, model HD2070, 

Heinrichstraβe, Berlin - 70 watts, ultrasonic frequency 20kHz), to solubilize the protein.  

 Finally, the sample was centrifuged at 3,200g for 10 min at 4ºC, to sediment 

insoluble material. The supernatant containing the solubilized proteins was transferred to a 

new 1.5 ml tube and stored at -80ºC. 

cDNA synthesis  

 With the purpose to verify the quality of the extracted RNA and to study the 

rearrangements, cDNA for each sample was synthetized. To guarantee the preparation of 

DNA-free RNA, the samples were treated with DNase I, RNase-free, which is an 

endonuclease that cleaves DNA in a non-specifically way to release 5'-phosphorylated di-, 

tri-, and oligonucleotide products (177).  

To this procedure 1µg of RNA from each sample was diluted in DNase and RNase 

free water, in 8µL of total volume and 1µL of DNase I RNase-free 1U/µl and 1µL of 10X 

Reaction Buffer with MgCl2 for DNase I were added, followed by incubation at 37°C for 30 

minutes. After the period of incubation 1µL of 50 mM EDTA was added to the mix followed 

by incubation at 65ºC for 10 minutes (ref #EN0521, Thermo Scientific, Lithuania, EU).  

 To this mix 1 µL of Random Hexamer Primer 0.2 µg/µL (ref #SO142, Thermo 

Scientific, Lithuania, EU) was added, and incubated at 65ºC for 5 minutes. After this step 

the sample was immediately put on ice. The Random Hexamer Primers are a mixture of 

single-stranded random hexanucleotides with 5’- and 3’ hydroxyl ends.  
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A RT master mix, in a total of 8µL, was prepared with 0.5µL of Ribolock RNase 

Inhibitor 40U/µL (ref #EO0382, Thermo Scientific, Lithuania, EU), a component that inhibits 

the activity of the RNases A, B and C by binding them in a non-competitive mode at 1:1 

ratio; 4µL of 5X Reaction Buffer for reverse transcriptase, 2µL of dNTP Mix 40mM (10mM 

each, ref #RO192, Thermo Scientific, Lithuania, EU), 0.5µL of DNase and RNase free 

water, and 1µL of RevertAid Reverse Transcriptase 200U/µL(ref #EP0441, Thermo 

Scientific, Lithuania, EU). The master mix was added to the previous prepared mix and 

followed incubation at 25ºC for 10 minutes, 42ºC for 60 minutes and 70ºC for 10 minutes.  

 To the final product 20µL DNase and RNase free water was added, finalizing the 

procedure with 40µL of cDNA. 

Table 1 - Number of cases extracted, with the description of the samples of each cases and procedure applied 
in each one. 

Number of Cases Sample Procedure 

54 Benign lesions (Nodular 

Goiter) 
Lesion 

Homogenized and stored in TRIzol 

at -80˚C; 

20 Benign lesions (Follicular 

Adenoma) 
Lesion 

DNA, RNA and Protein extraction 

and genetic alterations analysis 

2 Benign lesions (Follicular 

Adenoma) 
Lesion and normal thyroid tissue 

1 Benign lesion (Follicular 

Adenoma) 

Two independent lesions and 

normal thyroid tissue 

74 Malignant lesions Lesion 

23 Malignant lesions Lesion and normal thyroid tissue 

6 Malignant lesions Two independent lesions 

4 Malignant lesions 
Two independent lesions and 

normal thyroid tissue 
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Genetic alterations 

The tumours were characterized for the most frequent genetic alterations in thyroid 

tumours, namely BRAF, NRAS and TERT mutations. The presence of RET/PTC1, 

RET/PTC3 and PAX8-PPARɣ rearrangements were also screened. 

Polymerase Chain Reaction (PCR)  was performed with GoTaq® G2 Flexi DNA 

Polymerase (Promega, WI, USA), for the detection in the hotspot regions of NRAS (codon 

61), BRAF (Exon 15) and TERT (promoter region) mutations, under the conditions 

described by Castro et al. (144) and Vinagre, et al. (163).  

For BRAF and NRAS the PCR final mix, 25µL in total, contained 100ng of genomic 

DNA, 1µL of 4you4 dNTP Mix 10mM each (ref 110001,BIORON GmbH, Ludwigshafen, 

Germany), 1µL of each primer 10mM  (forward and reverse), 5µL of 5X Green GoTaq® 

Flexi Buffer (ref M891A, Promega, Madison, WI, USA), 0.15µL of GoTaq® G2 Flexi DNA 

Polymerase 1U/µL (ref M830B, Promega, Madison, WI, USA), 13.35µL of DNase and 

RNase free water and 2.5µL of MgCl2  25mM (ref A315H, Promega, Madison, WI, USA). 

 For TERT the PCR final mix, 20µL in total, contained 100ng of genomic DNA, 4µL 

of 5X Green GoTaq® Flexi Buffer, 1.2µL de MgCl2 25mM, 0.8µL 4you4 dNTP Mix 10mM 

each, 0.45µL of each primer 10mM (forward and reverse), 12µL of DNase and RNase free 

water and 0.1 µL of GoTaq® G2 Flexi DNA Polymerase 1U/µL.  

The presence of the rearrangements was determined through Reverse 

Transcriptase PCR (RT-PCR), using GoTaq® G2 Flexi DNA Polymerase (Promega, WI, 

USA). The cDNA sequences were analysed for the PAX8-PPARɣ rearrangement according 

to the procedure described by Marques, et al. (178), RET/PTC1 and RET/PTC3 according 

to Lima, et al. (179). To access the quality of the synthetized cDNA, previously described, 

a RT-PCR was performed for a house-keeping gene, the β-actin gene. 

 

Figure 3 - Image representative of the result of an electrophoresis gel of the 
RT- PCR products for the β-actin gene, with a size of about 877 base pairs, 
captured by ChemiDoc™ XRS Imaging System. The signalled sample has 
degraded RNA, which result in an inefficient amplification. 

RT-PCR was performed, with a final mix of 25µL. It contained 2µL of cDNA, 5µL of 

5X Green GoTap® Flexi Buffer; 1.5µL of MgCl2 25mM; 1µL 4you4 dNTP Mix 10mM each; 

DNA 

Ladder 
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1µL of each primer 10mM (forward and reverse), 13.2µL of DNase and RNase free water 

and 0.3µL of GoTaq® G2 Flexi DNA Polymerase 1U/µL. 

All the RT-PCR reactions were performed using samples positive for each 

rearrangement in question, to assure the efficiency of the reaction.  

All the PCR and RT-PCR reactions were run in GeneAmp® PCR System 2700 

(Applied Biosystems®, CA, USA), with an annealing temperature of 55°C for RET/PTC1 

and RET/PTC3;  58°C for BRAF, PAX8-PPARɣ and β-actin; 57°C for NRAS and 62°C for 

TERT. 

 

Figure 4 - Image representative of the result of an electrophoresis gel for the 
RT-PCR reaction for the RET/PTC1, with a size of about 200 base pairs, and 
RET/PTC3 rearrangements, with a size of about 387 base pairs, respectively, 
captured by ChemiDoc™ XRS Imaging System, with the cases screened for 
the rearrangement and the positive control signalled. The C+ represents the 
positive control for each PCR reaction; all the cases analysed in the gel were 
negative for the rearrangement. 

To insure the efficiency of the PCR and RT-PCR reactions the products were run in 

a 2% agarose gel electrophoresis, using the SGTB 1x buffer (ref GB01.0520, GRiSP, 

Oporto, Portugal). The samples were mixed with 1µL of Loading Buffer with Gel Red® 

Nucleic Acid Gel Stain 3X (ref 41003, Biotium, Inc., CA, USA), where the Loading Buffer 

provides  density to the sample and include coloured dyes used to monitor the progress of 

the electrophoresis and the Gel Red® intercalate into the major grooves of the DNA and 

will be fluorescent under UV light, according to the manufacturer guidelines (Biotium Inc., 

Ca, USA).To evaluate the size of the PCR products in the electrophoresis gel, 1kb Plus 

DNA Ladder (ref 10787-026, Invitrogen, CA, USA) was used. 

The gel was analysed in ChemiDoc™ XRS Imaging System, BIORAD in an UV filter 

lamp (Model: Universal Hood II, Hercules, CA, USA - 50/60 Hz) (Figure 3). 

C+ C+ DNA 

Ladder 

RET/PTC1 RET/PTC3 
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Figure 5 - Figure representative of the results of an agaroses gel 
electrophoresis for the PCR of NRAS codon 61, with a size of about 119 base 
pairs, captured with ChemiDoc™ XRS Imaging System, where all the cases 
studied showed amplification of the fragment of interest. 

To allow the sequencing of the PCR and RT-PCR products it was necessary to purify 

them. The ExoSAP method uses two hydrolytic enzymes, Exonuclease I 20U/µL (ref 

#ENO582, Thermo Scientific, Lithuania, EU) and Shrimp Alkaline Phosphatase (Fast AP 

Thermosensitive Alkaline Phosphatase 1U/µL, ref #EF0651, Thermo Scientifics, Lithuania, 

EU), to remove the unwanted extraneous single-stranded DNA, dNTPs and primers that 

were not used in the PCR reaction.  

 To the PCR product (10µL) 1.5 µL of ExoSAP was added, followed by incubation at 

37ºC for 30 minutes, which was the optimal temperature for the enzymes action, and 80ºC 

for 15 minutes for their inactivation. 

This procedure of purification was applied in all the PCR and RT-PCR products. 

However in some cases, in the RT-PCR reaction, it occurred the amplification of several 

bands. In those it was necessary to proceed to the extraction of bands in 1% agarose gel 

electrophoresis, to allow the sequencing of the samples. For this, it was used the DNA Gel 

Extraction Kit (LSKGEL050, Millipore, MA, USA), according to the manufacturer procedure.   

All the PCR products for BRAF, NRAS and TERT promoter hotspot mutations, and 

the RT-PCR positive cases for rearrangements, were analysed by DNA sequencing 

(Sanger sequencing) using the ABI Prism BigDye Terminator Kit v3.1 Cycle Sequencing 

(ref 4337455, Applied Biosystems®, Warrington, UK). 

The final sequencing mix, total 10µL, has incorporated 0.5µL of Big Dye, 3,5µL of 

5X Sequence buffer (Big Dye® Terminator v1.1, v1.3, ref 4336697, Applied Biosystems®, 

Warrington, UK),  0.3µL of the primer of interest 10mM (forward or reverse), 2.7µL DNase 

and RNase free water and 3µL of the purified PCR product. The final mix was amplified in 

a GeneAmp® PCR System 2700 (Applied Biosystems®, CA, USA) termocycler, with an 

annealing temperature of 55 ºC. 

The final amplified product was precipitated in Zetadex- 50 Superfine Gel Filtration 

Matrix (ref TM-0104-E500.0-001, emp Biotech GmbH, Berlin, Germany) columns to remove 

all the ddNTPs that were not incorporated and that could interfere with the reading signal 

conducted by the laser.  

DNA 

Ladder 
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 After precipitation, 15µL of HiDi™ Formamide (ref 1403305, Applied Byosystems®, 

Woolsten Warrington, UK) was added to the sample. Finally the sample was analysed in 

the ABI prism 3100 Genetic Analyzer (Perkin-Elmer).  

 All positive cases for mutations and rearrangements were validated by a new 

independent analysis.    

Statistical analysis 

 Statistical analysis was conducted with IBM SPSS Statistics version 21 (IBM, New 

York, USA). The results were expressed in frequency, percentage and mean, taking into 

count that there were 135 independent lesions that belonged to 128 patients.  

 For the analysis of the relationship between patient’s age and tumour size with 

diagnosis, histological characteristics and molecular status, unpaired t-test, Mann-Whitney 

test and analysis of variance was used.   

 Chi-Square with Fisher’s correction was used in the statistical analysis of the other 

parameters, which included diagnosis, histological and clinical characteristics and 

molecular status.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ana Cristina Afonseca Pestana  

 
 

27 
 

Results 

The construction of the database with the clinico-pathological data and genetic 

characterization was successful. The development of standard protocols for the extraction 

of nucleic acids and proteins of high quality was complete with high success rates. 

Of the 171 extracted samples (Table 1), tumours and normal thyroids, a success 

rate of 99.4% for DNA extraction was achieved, where only the extraction of one sample of 

a malignant tumour was inefficiently obtained.  

In the RNA extraction, an efficiency rate of 97.7% was obtained, where the extraction 

of RNA was unsuccessful for 3 tumours samples, two malignant and one benign, and for 

one normal thyroid sample. The sample, from which DNA extraction was proved as 

inefficient, was also one of the 3 samples whose RNA extraction was also ineffective. 

The clinico-pathological characterization for the database, which was performed by 

obtaining information from histopathological reports, remained incomplete in some cases. 

Due to the update in recent years in the criteria for diagnosis, many of the considered fields 

were not mentioned in the report and remained unfulfilled. This limitation of the study was 

considered in the construction of the database and also in the statistical analysis performed. 

The samples included in the database belonged to 128 patients, whose mean age 

was 44 (11-82) years. Of these patients 22 were male (17.5%), with mean age of 41 (11-

80) years. There were 104 female patients (82.5%), with a mean age of 45 (13-82) years.  

Table 2 presents the frequency of diagnosis of the 135 tumour samples belonging 

to 128 patients, where were considered 7 patients who harboured 2 independent tumours.  

Table 2 – Diagnosis of the extracted tumour samples that composed the repository (n=135). 

 

Legend: FTA, follicular thyroid adenoma; FTC, follicular thyroid carcinoma; PTC, papillary thyroid carcinoma; FVPTC, follicular variant papillary 

thyroid carcinoma; PDTC, poorly differentiated thyroid carcinoma.  

Diagnosis Number Percent (%) 

FTA 24 17.8 

FTC 14 10.4 

PTC 63 46.7 

FVPTC 25 18.5 

PDTC 3 2.2 

MTC 3 2.2 

Metastasis 3 2.2 

Total 135 100.0 
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Table 3 - Characterization of the genetic alterations in the tumour samples (n=135). 

Genetic alterations 

Tumour diagnosis 

FTA FTC PTC FVPTC PDTC MTC DM Total 

BRAF 

WT 
12 

100.0% 

14 

100.0% 

39 

61.9% 

23 

92.0% 

3 

100.0% 

3 

100.0% 

3 

100.0% 

97 

78.9% 

p.V600E 
0 

0.0% 

0 

0.0% 

24 

38.1% 

1 

4.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

25 

20.3% 

p.K601E 
0 

0.0% 

0 

0.0% 

0 

0.0% 

1 

4.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

1 

0.8% 

NRAS 

WT 
23 

95.8% 

10 

71.4% 

57 

90.5% 

19 

76.0% 

2 

66.7% 

2 

66.7% 

2 

66.7% 

115 

85.2% 

p.Q61R 
1 

4.2% 

4 

28.6% 

6 

9.5% 

4 

16.0% 

0 

0.0% 

0 

0.0% 

1 

33.3% 

16 

11.9% 

p.Q61K 
0 

0.0% 

0 

0.0% 

0 

0.0% 

2 

8.0% 

1 

33.3% 

1 

33.3% 

0 

0.0% 

4 

3.0% 

 

 

TERT 

 

 

 

WT 
23 

95.8% 

13 

92.9% 

61 

98.4% 

24 

96.0% 

3 

100.0% 

3 

100.0% 

2 

66.7% 

130 

96.3% 

-124 C>T 
1 

4.2% 

1 

7.1% 

0 

0.0% 

1 

4.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

3 

2.2% 

-146 C>T 
0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

1 

33.3% 

1 

0.7% 

-150 C>T* 
0 

0.0% 

0 

0.0% 

1 

1.6% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

1 

0.7% 

RET/PTC1 

WT 
23 

100.0% 

13 

92.9% 

53 

85.5% 

23 

95.8% 

3 

100.0% 

3 

100.0% 

2 

66.7% 

120 

90.9% 

Rearranged 
0 

0.0% 

1 

7.1% 

9 

14.5% 

1 

4.2% 

0 

0.0% 

0 

0.0% 

1 

33.3% 

12 

9.1% 

RET/PTC3 

WT 
23 

100.0% 

14 

100.0% 

61 

98.4% 

23 

95.8% 

3 

100.0% 

3 

100.0% 

3 

100.0% 

130 

98.5% 

Rearranged 
0 

0.0% 

0 

0.0% 

1 

1.6% 

1 

4.2% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

2 

1.5% 

PAX8-PPARɣ 

WT 
23 

100.0% 

13 

92.9% 

62 

100.% 

23 

95.8% 

3 

100.0% 

3 

100.0% 

3 

100.0% 

130 

98.5% 

Rearranged 
0 

0.0% 

1 

7.1% 

0 

0.0% 

1 

4.2% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

2 

1.5% 

Legend: FTA, follicular thyroid adenoma; FTC, follicular thyroid carcinoma; PTC, papillary thyroid carcinoma; FVPTC, follicular variant papillary 

thyroid carcinoma; PDTC, poorly differentiated thyroid carcinoma; MTC, medullary thyroid carcinoma; DM, distant metastases; WT, wild-type; 

* TERT polymorphism. 

  

Of the 135 tumours samples, 18% were diagnosed as FTA; 75% were DTCs (11% 

FTCs and 46% were PTCs); 2% were PDTC; 2% were distant metastases from primary 

tumours with PTC and FVPTC diagnosis; and 2% were MTC (Table 2). 
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The FTA group comprised 18 samples of FTA, 4 samples of fetal FTA, and 1 sample 

of oncocytic FTA. The PTC group comprised 54 samples of cPTC; 5 samples of diffuse 

sclerosing PTC; 2 samples of tall cell PTC; 1 sample of SVPTC; and 1 sample of oncocytic 

PTC, whereas the FTC group comprised 13 samples of FTC and 1 sample of oncocytic 

FTC.  

Table 3 presents the genetic alterations found in the tumour samples, grouped by 

diagnosis as previously described, and supplementary Tables 14 and 15 present the 

genetic alterations comprising all the diagnosis individually.  

Considering all tumour samples analysed, 25 (20.3%) were positive for the BRAF 

(p.V600E) mutation (Figure 6A) and 1 (0.8%) tumour was positive for the BRAF (p.K601E) 

mutation (Figure 6B). 

In the genetic analysis of BRAF exon 15, it was interesting to report that one 

particular patient harboured two nodules, both cPTC, where one of them harboured a BRAF 

(p.V600E) mutation whereas the other one was negative for BRAF mutations. In another 

patient with two cPTCs, both nodules harboured the BRAF (p.V600E) mutation.  

When the NRAS point mutations in codon 61 were screened, 16 tumours (12%) had 

the NRAS (p.Q61R) mutation (Figure 7A) and 4 tumours (3%) had the NRAS (p.Q61K) 

mutation (Figure 7B).  

A 

B 

Figure 7 - Representative result obtained 
through sequencing of NRAS codon 61 
region, primer forward. A: Representative 
chromatogram of the signalled NRAS 
(p.Q61R) mutation, adenine to guanine 
transversion, c.182A>G; B: Representative 
chromatogram of the signalled NRAS 
(p.Q61K) mutation, cytosine to adenine 
transversion, c.181C>A. 
 

A 

B 

Figure 6 - Representative result obtained 
through sequencing of BRAF exon 15, primer 
forward. A: Representative chromatogram of 
the signalled BRAF p.V600E mutation, 
thymine to adenine transversion, c.1799T>A; 
B: Representative chromatogram of the 
signalled BRAF p.K601 mutation, adenine to 
guanine transversion, c.1801A>G.   
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Within this genetic analysis it was curious to 

report that the majority of the FVPTCs positive for 

the NRAS mutations were encapsulated. 

 In the analysis of the promoter region of the 

TERT gene, 3 tumours (2%) harboured the -

124C>T mutation (Figure 8A), 1 tumour (1%) 

harboured the -146C>T mutation (Figure 8B) and 1 

tumour (1%) harboured the -150 C>T polymorphism 

(Figure 8C). 

The PTC harbouring the TERT -150 C>T 

polymorphism, overlapped with a BRAF (p.V600E) 

mutation (Table 4).  

One of the two samples of distant 

metastases, from a primary tumour diagnosed as 

FVPTC, harboured a TERT promoter -146 C>T 

mutation and a NRAS (p.Q61R) mutation (Table 4).  

For RET/PTC1 rearrangement, 12 tumours 

(9.1%) were positive (Figure 9A) and in RET/PTC3 

rearrangement screening 2 tumours (1.5%) were 

positive (Figure 9B).  

 

 

 

 

Table 4 – Malignant tumour samples with overlapping of genetic alterations. 

Tumour diagnosis Age (years) Tumour size (cm) 
Overlapping of genetic 

alterations 

cPTC 22 1.4 
TERT -150C>T* 

BRAF (p.V600E) 

FVPTC metastasis 63 7.5 
TERT – 146C>T) 

NRAS (p.Q61R 

cPTC 41 4.5 
BRAF (p.V600E) 

RET/PTC1 

FTC minimally invasive 56 4.0 
RET/PTC1 

PAX8-PPARɣ 

Legend: cPTC, classic papillary thyroid carcinoma; FVPTC, follicular variant of papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; * 

TERT polymorphism. 

In one case of PTC where tissue from the primary and corresponding metastases 

was available, both samples were positive for RET/PTC1 rearrangement (Table 3).  

A 

B 

C 

Figure 8 - Representative result obtained 
through sequencing of the TERT promoter 
region, primer reverse. A: Representative 
chromatogram of the signalled -124C>T 
mutation, a cytosine to thymine 
transversion, (G>A in the opposite strand); 
B: Representative chromatogram of the 
signalled -146C>T mutation, cytosine to 
thymine transversion, (G>A in the opposite 
strand); C: Representative chromatogram of 
the signalled -150C>T mutation, cytosine to 
thymine transversion, (G>A in the opposite 
strand. 
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A PTC harboured the overlapping of a 

BRAF (p.V600E) mutation and RET/PTC1 

rearrangement (Table 4).  

Two tumours (1.5%), a FTC and a FVPTC, 

were positive for the PAX8-PPARɣ rearrangement, 

(Figure 10). The FTC positive for PAX8-PPARɣ 

rearrangement was also positive for the RET/PTC1 

rearrangement (Table4).   

For the statistical analysis only the tumours 

diagnosed as FTC, PTC and FVPTC were selected, 

given their malignant status, significant number of 

samples, the complete genetic characterization and 

their pathological reports, which were the most 

complete. We excluded from the analysis all benign 

lesions, distant metastases, PDTC, MTC, while the 

rare variants, as diffuse sclerosing PTC, tall cell 

PTC, SVPTC and oncocytic PTC were included in 

the PTC group; whereas the oncocytic FTC was 

included in the FTC group, as previously mentioned. 

The number of tumours considered was 

102, where the mean age of the patients was 41 

(11-82) years. From the selected group 14 were 

male patients (14.1%) and 83 were female patients 

(85.9%). 

 Considering only the three diagnosis, 63 

tumours were PTC (61.8%), 25 were FVPTC 

(24.5%) and 14 tumours were FTC (13.7%).  

Table 5 presents the clinico-pathological 

characterization collected from these samples. 

 Considering the three groups, 25 tumours (24.5%) harboured the BRAF (p.V600E) 

mutation and 1 tumour (1.0%) harboured the BRAF (p.K601E) mutation. For the NRAS 

analysis 14 samples (13.7%) harboured the NRAS (p.Q61R) mutation and 2 tumours (2.0%) 

the NRAS (p.Q61K) mutation. In the TERT promoter 2 tumours (2.0%) had the TERT -124 

C>T mutation.  

 When the rearrangements were analysed, 11 tumours (11.0%) were positive for the 

RET/PTC1 rearrangement, 2 tumours (2.0%) were positive for RET/PTC3 rearrangement 

and 2 tumours (2.0%) were positive for the PAX8-PPARɣ rearrangement. 

Figure 9 - Representative result obtained 
through sequencing of the RT-PCR for 
RET/PTC rearrangements. A: Representative 
chromatogram of the signalled fusion between 
the exon 1 of CCDC6 gene with the exon 12 
of the RET gene, primer forward. B: 
Representative chromatogram of the 
signalled fusion between the exon 7 of 
NCOA4 gene and the exon 12 of RET gene. 

Figure 10 - Representative result obtained 
though sequencing of the RT-PCR product for 
PAX8-PPARɣ rearrangement, primer forward, 
with the representative chromatogram of the 
fusion between exon 10 of PAX8 gene and 
exon 3 of PPARɣ gene. 
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Table 5 – Clinico-pathological characterization of the malignant tumour samples. 

Characteristics (n) PTC FVPTC FTC 

Frequency (102) 
63 

61.8% 

25 

24.5% 

14 

13.7% 

Gender 

(101) 

Male (14) 
7 

11,3% 

4 

16,0% 

3 

21,4% 

Female (83) 
55 

88,7% 

21 

84,0% 

11 

78,6% 

Age (101) 

 

Mean 

(range) 

39.2 

(11-76) 

43.0 

(16-70) 

51.9 

(29-82) 

Tumour 

size (101) 
Mean (cm) 

2.7 

(0.20-10.00) 

2.1 

(0.30-5.50) 

3.7 

(1.40-7.00) 

Number of 

tumours 

(102) 

Single 
33 

52.4% 

16 

64.0% 

7 

50.0% 

Multiple 
30 

47.6% 

9 

36.0% 

7 

50.0% 

Tumour capsule (101) 
22 

35.5% 

13 

52.0% 

14 

100.0% 

Tumour capsule invasion 

(41) 

10 

66.7% 

2 

16.7% 

14 

100.0% 

Lymph node metastasis 

(74) 

19 

44.2% 

4 

21.1% 

0 

0.0% 

Vascular invasion (101) 
33 

53.2% 

4 

16.0% 

10 

71.4% 

Extra-thyroid invasion 

(89) 

19 

36.5% 

2 

8.7% 

0 

0.0% 

Hashimoto thyroiditis (79) 
3 

6.3% 

0 

0.0% 

0 

0.0% 

Lymphocytic thyroiditis 

(102) 

28 

44.4% 

8 

32.0% 

4 

28.6% 

Multinodular goiter (101) 
12 

19.4% 

7 

28.0% 

4 

28.6% 

Other lesions (71) 
34 

69.4% 

11 

61.1% 

1 

25.0% 

Minimally invasive (14)* - - 
10 

71.4% 

Widely invasive (14)* - - 
4 

28.6% 

Legend: PTC, papillary thyroid carcinoma, FVPTC, follicular variant of papillary thyroid carcinoma, FTC, follicular thyroid carcinoma; min, 

minimum age; max, maximum age; * only for FTC. 

. 

When the three groups were compared, several statistical differences and 

associations were found. Although some associations have no immediate biological 

significance, we decided to show them as results found in the statistical analysis. The 
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following tables present the most relevant results that were statistically significant or 

presented a tendency, for each variable analysed. 

The PTC group and the FVPTC groups harboured several differences (Table 6), 

where the patients within the PTC group harboured more lymph node metastasis (42.2% 

vs. 21.1%), vascular invasion (53.2% vs. 16.0%) and extrathyroidal invasion (36.5% vs. 

8.7%) when compared with the FVPTC group.  

 PTC group harboured more frequently BRAF mutations (38.1% vs. 8.0%) than the 

FVPTC group; however the PTC group had less NRAS mutations (9.5% vs. 24.0%) than 

the FVPTC group. 

Table 6 – Comparison between the PTC and FVPTC, in relation to the variables lymph node metastasis, 
vascular invasion, extra-thyroid invasion, BRAF and NRAS mutational status. 

Characteristics 
Tumour diagnosis 

p-value 
PTC FVPTC 

Lymph 

node 

metastasis 

Absent 
24 

55.8% 

15 

78.9% 
0.071 

Present 
19 

44.2% 

4 

21.1% 

Vascular 

invasion 

Absent 
29 

46.8% 

21 

84.0% 
0.001 

Present 
33 

53.2% 

4 

16.0% 

Extra-

thyroid 

Invasion 

Absent 
33 

63.5% 

21 

91.3% 
0.013 

Present 
19 

36.5% 

2 

8.7% 

BRAF 

WT 
39 

61.9% 

23 

92.0% 
0.005 

Mutated 
24 

38.1% 

2 

8.0% 

NRAS 

WT 
57 

90.5% 

19 

76.0% 
0.079 

Mutated 
6 

9.5% 

6 

24.0% 

Legend: Statistical differences are considered as significant when p-value<0.05; PTC, papillary thyroid carcinoma, FVPTC, follicular variant of 

papillary thyroid carcinoma; WT, wild type. 

 When the FVPTC and FTC groups were compared (Table 7), it was possible to 

observe that the patients with FTC diagnosis harboured larger tumours (3.7 cm vs. 2.1 cm). 

All the FTCs were encapsulated and all of them presented tumours capsule invasion, 

whereas in the FVPTC group, 52.0% of the tumours were encapsulated and only 16.7% of 

them had tumour capsule invasion. The FTC group also harboured more frequently vascular 

invasion (71.4% vs. 16.0%) than the FVPTC. 
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Table 7 - Comparison between the FVPTC and FTC, in relation to the variables tumour size, tumour capsule, 
tumour capsule invasion and vascular invasion. 

Characteristics 
Tumour diagnosis 

p-value 
FVPTC FTC 

Tumour 

size 
Mean (cm) 2.08 3.68 0.003 

Tumour 

capsule 

Absent 
12 

48.0% 

0 

0.0% 
0.001 

Present 
13 

52.0% 

14 

100.0% 

Tumour 

capsule 

invasion 

Absent 
10 

83.3% 

0 

0.0% 
0.000 

Present 
2 

16.7% 

14 

100.0% 

Vascular 

invasion 

Absent 
21 

84.0% 

4 

28.6% 
0.001 

Present 
4 

16.0% 

10 

71.4% 

Legend: Statistical differences are considered as significant when p-value <0.05; FVPTC, follicular variant of papillary thyroid carcinoma; FTC, 

follicular thyroid carcinoma.  

When the analysis between the PTC and FTC group was performed (Table 8), it 

was possible to report that the patients within the PTC group were younger (39 years vs. 

52 years) and had smaller tumours (2.7cm vs. 3.7cm) when compared with the FTC group. 

All the FTCs were encapsulated and all of them presented tumour capsule invasion, 

whereas in the PTC group, 35.5% of the tumours were encapsulated and 66.7% of them 

had tumour capsule invasion. 

 The PTC patient’s harboured more frequently lymph node metastasis (44.2%) and 

extra-thyroid invasion (36.5%), when compared with the FTC group, where none of the 

patients harboured these characteristics. 

 In the molecular analysis, BRAF mutations were exclusive to the PTC group 

(38.1%), and the NRAS mutations were present in both groups, although more frequent in 

the FTC group (28.6% vs. 9.5%). 
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Table 8 - Comparison between the PTC and FTC, in relation to the variables age, tumour size, tumour capsule, 
tumour capsule invasion, lymph node metastasis, extra-thyroid invasion and BRAF and NRAS mutational status. 

Characteristics 
Tumour diagnosis 

p-value 
PTC FTC 

Age 
Mean 

(years) 
39.2 51.7 0.011 

Tumour 

size 

Mean 

(cm) 
2.7 3.7 0.017 

Tumour 

capsule 

Absent 
40 

64.5% 

0 

0.0% 
0.000 

Present 
22 

35.5% 

14 

100.0% 

Tumour 

capsule 

invasion 

Absent 
5 

33.3% 

0 

0.0% 
0.025 

Present 
10 

66.7% 

14 

100.0% 

Lymph 

node 

metastasis 

Absent 
24 

55.8% 

12 

100.0% 
0.003 

Present 
19 

44.2% 

0 

0.0% 

Extra-

thyroid 

Invasion 

Absent 
33 

63.5% 

14 

100.0% 
0.004 

Present 
19 

36.5% 

0 

0.0% 

BRAF 

WT 
39 

61.9% 

14 

100.0% 
0.003 

Mutated 
24 

38.1% 

0 

0.0% 

NRAS 

WT 
57 

90.5% 

10 

71.4% 
0.077 

Mutated 
6 

9.5% 

4 

28.6% 

Legend: Statistical differences are considered as significant when p-value <0.05; PTC, papillary thyroid carcinoma; FTC, follicular thyroid 

carcinoma; WT, wild type. 

 The statistical analysis of the clinico-pathological features and mutational status of 

the tumours was also performed considering the PTC, FVPTC and FTC groups individually. 

The PTCs had the highest number of statistical relationships, as this was the group with the 

higher number of tumour samples, when compared to the FVPTC and FTC groups although 

some associations have no immediate biological significance as previously mentioned 

(please see Supplementary Tables 16-20). 

Table 9; 10; 11; 16; 17 and 18 present the significant relations found in the PTC 

group, which will be further addressed. 

When the relation between gender and the other variables was analysed (Table 9) 

it was possible to identify several statistically significant differences between the male and 
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female gender. The male patients were younger (28 years vs. 41 years) and had larger 

tumours (4.5cm vs. 2.4cm) than the female patients. Tumours from male patients also 

harboured more frequently vascular invasion (100.0% vs. 49.1%) than the tumours from 

female patients. 

 In the BRAF genetic analysis, none of the tumours from male patients harboured 

BRAF mutations, while 41.8% of the tumours from female patients harboured these 

mutations.  

Table 9 - Comparison between male and female patients with PTC, in relation to the variables age, tumour size, 
vascular invasion and BRAF mutational status. 

Characteristics 
Gender 

p-value 
Male Female 

Age 
Mean 

(years) 
28.0 40.6 0.045 

Tumour size Mean (cm) 4.5 2.4 0.003 

Vascular 

invasion 

Absent 
0 

0.0% 

28 

50.9% 
0.020 

Present 
6 

100.% 

27 

49.1% 

BRAF 

WT 
7 

100.0% 

32 

58.2% 
0.031 

Mutated 
0 

0.0% 

23 

41.8% 

Legend: Statistical differences are considered as significant when p-value <0.05; WT, wild type. 

 When variable lymph node metastasis was compared with the others (Table 10), it 

was possible to observe that patients that had lymph node metastasis were younger (32 

years vs. 44), harboured more frequently vascular invasion (78.9% vs. 39.1%), and more 

extra-thyroid invasion (44.4% vs. 7.1%) than the ones that did not harbour lymph node 

metastases. 

 For patients who harboured lymph node metastases only 21.1% of them were BRAF 

mutated, however all patients with positive tumours for the RET/PTC rearrangement 

harboured lymph node metastases, representing 38.6% of all patients with lymph node 

metastases.  

In the analysis of the variable vascular invasion (Table 11), it was possible to take 

notice that patients with vascular invasion harboured larger tumours (2.1cm vs. 3.3cm); had 

more extra-thyroid invasion (57.1% vs. 13.0%) than the patients without vascular invasion; 

and also harboured less BRAF mutations (27.3% vs 51.7%) than patients with wild-type 

tumours. 
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Table 10 - Comparison between PTC without or with lymph node metastasis, in relation to the variables age, 
vascular invasion, extra-thyroid invasion, BRAF and RET/PTC mutational status.  

Characteristics 
Lymph Node Metastasis 

p-value 
Absent Present 

Age 
Mean 

(years) 
44.2 32.2 0.017 

Vascular 

invasion 

Absent 
14 

60.9% 

4 

21.1% 
0.010 

Present 
9 

39.1% 

15 

78.9% 

Extra-

thyroid 

invasion 

Absent 
13 

92.9% 

10 

55.6% 
0.024 

Present 
1 

7.1% 

8 

44.4% 

Multinodular 

goiter 

Absent 
24 

100.0% 

13 

72.2% 
0.010 

Present 
0 

0.0% 

5 

27.8% 

BRAF 

WT 
11 

45.8% 

15 

78.9% 
0.028 

Mutated 
13 

54.2% 

4 

21.1% 

RET/PTC1 

Negative 
23 

100.0% 

12 

63.2% 
0.002 

Positive 
0 

0.0% 

7 

36.8% 

Legend: Statistical differences are considered as significant when p-value <0.05; WT, wild type. 

 
Table 11 - Comparison between PTC without or with vascular invasion in relation to the variables tumour size, 
extra-thyroid invasion and BRAF mutational status.  

Characteristics 
Vascular invasion 

p-value 
Absent Present 

Tumour size Mean (cm) 2.1 3.3 0,007 

Extra-

thyroid 

invasion 

Absent 
20 

87.0% 

12 

42.9% 
0,001 

Present 
3 

13.0% 

16 

57.1% 

BRAF 

WT 
14 

48.3% 

24 

72.7% 
0.043 

Mutated 
15 

51.7% 

9 

27.3% 

Legend: Statistical differences are considered as significant when p-value <0.05; WT, wild type. 
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Tables 12; 19 and 20 present the relations found between the clinico-pathological 

features and mutational status found within the FVPTC group. 

When the relation between gender and other variables was analysed (Table 12), 

was observed with statistical significance that male patients harboured more frequently 

vascular invasion than the female patients (75.0% vs 4.8%). 

Table 12 - Comparison between male and female patients with FVPTC, in relation to the variable vascular 
invasion. 

Characteristics 
Gender 

p-value 
Male Female 

Vascular 

invasion 

Absent 
1 

25.0% 

20 

95.2% 
0.007 

Present 
3 

75.0% 

1 

4.8% 

Statistical differences are considered as significant when p-value <0.05 

 Table 13 presents the only significant relation found within the FTC group, when the 

features and mutational status were analysed.   

When the number of tumours was analysed, a relation with NRAS mutational status 

was found. Patients with multiple tumours at diagnosis harboured more NRAS mutations 

(57.1% vs. 0.0%) than patients with single tumours. 

Table 13 - Comparison between single and multiple FTC in relation with the variable NRAS mutational status. 

Characteristics 
Number of tumours 

p-value 
Single Multiple 

NRAS 

WT 
7 

100.0% 

3 

42.9% 
0.035 

Mutated 
0 

0.0% 

4 

57.1% 

Legend: Statistical differences are considered as significant when p-value <0.05; WT, wild-type. 

When the analysis for TERT promoter mutations was performed, no significant 

relation was found, but a tendency with older age at diagnosis was observed. In this series 

there were few lesions that harboured these genetic alterations and for this analysis all 

tumours that harboured TERT promoter mutations that created a consensus binding site 

(TERT -124 C>T and -146 C>T) were considered. The FTA, FVPTC, metastasis of FVPTC 

and FTC cases were then considered in a parallel statistical analysis.  

A significant association was found between TERT promoter mutations and patient’s 

age (Table 21); patients that harboured these mutations were significantly older (71 years 

vs. 44 years old) than the patients that did no harbour these mutations. 
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Discussion 

The main goal, to build a repository of biological material of thyroid tumours, and a 

database that harbours samples of thyroid tumours with clinico-pathological features and 

characterization of the genetic alterations, was accomplished with success. The repository 

has samples of DNA, RNA and proteins of 24 samples of benign tumours, diagnosed as 

FTA, 117 samples of malignant tumours and 30 samples of normal thyroid tissue.  

 The established standard protocols for the extraction of the nucleic acids revealed 

a success rate above 97.0%, which allowed the use of the extracted components in 

molecular studies subsequently conducted, and a confidence in the obtained results.  

 The construction of this database met the purpose to provide a platform of samples 

with clinico-pathological features and genetic characterization that will allow the selection 

of specific cases, with specific features or genetic alterations, in order to perform additional 

studies in thyroid tumours etiopathogenesis and progression.  

 The additional aim, characterization of the genetic alterations in thyroid tumours, 

namely the point mutations in BRAF, NRAS and TERT genes, achieved through the 

molecular analysis of the DNA samples had a rate of success of 100.0%, considering all 

the samples in which DNA extraction was possible (99.4%). The research of 

rearrangements was also effective in all the samples where RNA extraction was possible 

(97.7%) and the results were reliable, due to the verification of the quality of the cDNA, the 

positive control used in each reaction and the sequencing of the RT-PCR product. Thus, 

only 1 malignant tumour was excluded from the point mutations and rearrangements 

analysis, and 2 tumours were excluded from the rearrangements analysis. 

 Regarding the genetic analysis performed in this work, the frequency and genetic 

alterations found were, in the majority of the cases, in agreement with literature reports.  

 It was possible to report in the present work a frequency of 38.1% of BRAF 

(p.V600E) mutations in PTCs, and 4.0% in FVPTCs which meets the reports in the literature, 

being the most common alteration found the BRAF (p.V600E) (56); whereas the mutations 

on this gene are less frequent in FVPTC, less than 10% (57). It is also possible to report 

the frequency of 4.0% of BRAF (p.K601E) in FVPTC, which is described in the literature as 

a rare mutation, representing 1-2% in all PTCs (54). 

 In the current study the analysis of point mutations in codon 61 of the NRAS gene 

revealed frequencies of 4.2% in FTAs; 28.6% in FTCs and 24.0% in FVPTC, which are 

comparable, to the ones previously described in the literature (144). It was also possible to 

report a frequency of NRAS mutations of 33.3% in PDTCs and 33.3% in distant metastasis. 

Regardless the limited size of the series, these results may be related with previous studies 

that show a higher frequency of RAS mutations in advanced stages of the disease, since 
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the authors believe that such mutations leads to tumour progression, rather than tumour 

initiation (86-89). 

The incidence found of NRAS mutations in the PTC group was 9.5%.  It is stated in 

the literature that the RAS mutations are a rare molecular alteration in PTC, with an overall 

frequency of 10-20%, particularly in FVPTCs (92), and that papillary carcinomas harbouring 

RAS mutations almost always have a follicular variant histology (113). In the near future we 

intend to do the histological revision of all the slides available for these tumours, in order to 

clarify our results.  

One out of 3 (33.3%) MTC cases analysed showed NRAS mutation.  RAS mutations 

have been recently described in a percentage of RET-negative sporadic MTC, where these 

molecular alterations seem to be mutually exclusive (180). The RAS mutations described 

in MTC, were KRAS and HRAS point mutations (181), nevertheless, recently it was reported 

a 1.8% frequency of NRAS mutations in MTC that were concomitant with PTCs (182). We 

do not have information if the MTC from our series positive for NRAS mutation also 

presented a concomitant PTC and further work will be necessary to explore a putative 

association between concomitant PTC/MTC cases and NRAS mutations.  

The frequency of mutations in the promoter region of TERT in our series (7.1% in 

FTC, 4.0% in FVPTC and 33.3% in distant metastases) was lower than in other series of 

DTCs previously reported (163, 170, 171, 173). The TERT -124C>T was the most common 

mutation, as previously described by our group (163).  Contrary to other reports (163, 170, 

171, 173), a TERT -124C>T mutation was found in a benign lesion, a FTA, that did not 

harbour any other genetic alteration. Similarly to our findings on this work, it was recently 

reported in the literature a frequency of TERT promoter mutations of 2% in FTAs and 17% 

in atypical FTAs (174). We think this is a very interesting finding that deserves further work 

in the future in order to ascertain the frequency of TERT promoter mutations in thyroid 

benign lesions and to verify if these mutations correlated with the age of the patients or with 

other particular clinico-pathological features. 

As described in the literature the RET/PTC rearrangements prevalence can range 

from 13-46% in PTCs (56), where the most frequent rearrangement is the RET/PTC1 (105). 

In this work RET/PTC1 showed an incidence of 9.1% when compared with the incidence of 

1.5% of RET/PTC3. RET/PTC1 rearrangements were present in PTCs (14.5%) and in 

FVPTCs (4.2%) whereas RET/PTC3 rearrangements were found in a PTC (1.6%) and in 

FVPTC (4.2%).  

The PAX8-PPARɣ rearrangements were only found in tumours with follicular 

architecture, with an incidence of 4.2% in the FVPTCs and 7.1% in the FTCs, frequencies 

that are lower than the ones described in the literature (144, 145). 
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 Some of our results in the characterization of the genetic alterations were interesting 

and open for discussion, such as the overlapping of genetic alterations and tumour 

heterogeneity.  

One case of cPTC harboured the overlapping of a BRAF (p.V600E) with a 

polymorphism in the TERT promoter. The TERT -150 C>T polymorphism does not create 

a de novo binding site, however it has been described that some polymorphisms may 

predispose to a worse prognosis in bladder cancer (183), and it would be interesting to 

perform further studies of the presence of TERT promoter polymorphisms present in thyroid 

tumours and its possible effects.  

In a FVPTC metastasis both TERT -146 C>T and NRAS (p.Q61R) mutations were 

found, unfortunately the sample of the primary tumour was not available for genetic 

characterization. Landa et al. found an association between TERT promoter and NRAS 

mutations in PDTC and UTC and Melo et al. reported an association between TERT 

promoter mutations and higher stages of the disease (173). It will be interesting in this case 

to have access to the primary tumour in order to see if it also harboured these two molecular 

alterations and how these alterations contributed to the progression of the disease.  

Another interesting case to report was one cPTC that harboured the BRAF 

(p.V600E) and a RET/PTC1, similar results were described in a recent study that suggests 

that these dual mutations are not rare events in well- differentiated PTC, occurring in a 

frequency of 19.3% (184). In our work, this was not confirmed, since only one of the positive 

cases for RET/PTC rearrangement harboured the BRAF (p.V600E) mutation. It will be also 

interesting to verify if both genetic alterations are present in the same cell or if it reflects 

tumour heterogeneity. 

Interestingly the only FTC positive for PAX8-PPARɣ rearrangement was also 

positive for RET/PTC1 rearrangement. RET/PTC rearrangement distribution within the 

tumour may be quite heterogeneous, varying from involving almost all neoplastic cells, 

clonal RET/PTC, or being detected in only a small fraction of tumour cells, non-clonal 

RET/PTC, as advanced by Unger et al. (185) in post-Chernobyl cases and Zhu, et al. in 

sporadic cases (100). This heterogeneous pattern of RET/PTC rearrangement was found 

in previous studies in adenomas and in other benign thyroid lesions (100). It is also possible 

that the presence of those rearrangements reflect the morphologic differentiation of the 

tumours with some areas of the tumour with solid architecture harbouring the RET/PTC1 

rearrangement (132), and areas with follicular differentiation harbouring PAX8-PPARɣ 

enabling the identification of both rearrangements in the same tumour.  

Still related to tumour heterogeneity, it was possible to identify in the case of a patient 

with two independent tumours, both with cPTC diagnosis, that only one of them harboured 

BRAF (p.V600E) mutation. In another patient with two independent tumours, both also with 
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cPTC diagnosis, both harboured a BRAF (p.V600E) mutation. These findings can be related 

with the often multicentric presentation of cPTC, that can be clonally independent from each 

other (186), and result in the presence of several lesions with similar or different molecular 

profiles.  

 For the statistical analysis we decided to consider only the three groups of tumours 

with the highest number of samples, the PTC (which included cPTC, diffuse sclerosing PTC, 

tall cell PTC, SVPTC and oncocytic PTC), the FVPTC and the FTC (which included FTC 

and oncocytic FTC).  

 Not all results, presented above will be discussed, as it would be necessary to 

increase the number of certain types of tumours, especially in the FVPTC and FTC groups, 

to report accurate and reliable data. 

 When the comparison between PTCs and FVPTCs was performed, it was possible 

to observe that patients with PTC had more often lymph node metastasis than the FVPTCs. 

As described in the literature, PTCs have a tendency to spread into lymphatic channels and 

in this way to lymph nodes, and this pattern of metastisation is found at a significant 

proportion of the cases at diagnosis (15). The FVPTCs can present two different growth 

patterns, infiltrative and encapsulated (17); the first tends to give rise to lymph node 

metastasis, and present a similar patterns with the PTCs; whereas the second tends to give 

rise, whenever displaying angioinvasiveness, to lung and bone metastasis, similar to the 

behaviour of FTCs (17).  

Due to the high frequency of patients with PTCs that harboured lymph node 

metastasis, it was also expected an association with vascular invasion, which may include 

venous and/or lymphatic invasion, and extra-thyroid invasion as they are more invasive 

tumours. This relation was found when the PTC group was compared with the FVPTC and 

with the FTC group. 

The differences found in the comparisons of the mutational status of the BRAF and 

NRAS in PTC vs FVPTC and PTC vs FTC were expected and in accordance with the 

published studies, i.e., mutations in the BRAF gene are common in PTCs and rare in the 

FVPTCs (57), and mutations on the RAS gene are rare in PTCs, more frequent in FVPTCs 

(92), and common genetic alterations in FTCs (83).  

 The FTCs were encapsulated and all of them harboured tumour capsule invasion, 

which was significantly different from PTCs. Nevertheless this association was not 

surprising, since the encapsulation of the tumour and tumour capsule invasion are 

characteristic criteria for the diagnosis of FTC (27). Although there were significant 

differences in the comparison between PTC, FVPTC and FTC, it is important to refer that 

the number of samples in the groups is not considerable, especially in the FVPTC and FTC 

group.  
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When the statistical analysis was performed within the PTC group, it was possible 

to verify that the male patients, although younger, harboured larger tumour and higher 

vascular invasion than the female patients. Although some studies have shown associations 

between the male gender and worse prognosis (187), this was not verified in other studies 

and in the present work, even though some associations are significant, the number of 

patients is not considerable to draw conclusions.  

The patients with PTCs with BRAF mutations harboured less lymph node 

metastases and vascular invasion than patients with these alterations. These are interesting 

associations to explore further, due to the active discussion in the field about the clinico-

pathologic associations of the BRAF mutations in PTC (64).  

 In the present work all RET/PTC positive tumours harboured lymph node 

metastasis. Some previous studies report the presence of RET/PTC rearrangement in 

younger patients and with higher rates of lymph node metastases (113), and given the 

present results it would be interesting to further study this possible association in sporadic 

PTCs(187). 

 TERT promoter mutations were significantly associated with older age of the 

patients, when all the 4 tumour samples with these mutations were considered. Although 

based in a small number of cases this finding is in accordance with what was previously 

described by our group, when Melo et al. reported an association between TERT promoter 

mutations and older age at diagnosis, besides other features associated with worse 

prognosis (larger tumours, higher frequency of distant metastases and higher tumour stage) 

(173).  

 Although the construction of a repository of biological material and database of 

thyroid tumours was successful, some difficulties and limitations were encountered during 

the course of the work. One limitation was the absence of histological review of the cases.  

This fact rise some uncertainty in the classifications since, as already mentioned, some 

diagnosis were done some decades ago, when the diagnostic criteria were different from 

those used nowadays. A future work to be done will be the histological review of all the 

cases what will, eventually, answer some of the questions previously raised.  

 Another challenge in this work was the successful extraction of the nucleic acids, 

due to the very long time of storage at -80°C for some samples (more than 20 years). 

Although it is reported that the storage at ultra-low temperatures may preserve high 

molecular weight nucleic acids and proteins, it is known that RNA may be more prone to 

degradation in these conditions (188). Furthermore, in several specimens, it is unknown the 

time that elapsed between the collection of the sample from the surgical room and the frozen 

storage, which may have been delayed for unknown reasons (189). One of the future 

perspectives is the extraction of nucleic acids and proteins of the oldest cases that remain 



Ana Cristina Afonseca Pestana 

 

44 
 

in the repository in order to, at least, prevent further degradation that can occur by long time 

storage at low temperatures. 

 Another difficulty encountered in the work was the insufficient information about the 

localization of the frozen fragment in relation to the whole tumour sample, i.e., most reports 

did not refer to the precise localization of the fragment selected for storage at -80°C. 

Although the general rule indicates that the sample was taken from the more relevant nodule 

this fact implies some uncertainty about the actual sampling of the tumour. However in the 

future we can validate the genetic alterations found in each frozen case by using the 

corresponding paraffin embedded material and correlate this information with that from the 

histological slides including the evaluation of the architectural pattern and genetic 

alterations found.  
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Conclusions 

The organization of a repository of biological material of thyroid tumours was 

successful and the protocols of extraction of nucleic acids and proteins were established. 

These facts fulfilled the aim of the conception of a standard protocol that insured the quality 

and availability of diverse biological material (DNA, RNA and proteins) from the same 

tumour area to be applied in several projects developed by our group in this area. 

Through the creation of the database, that includes the clinico-pathological 

information for each case and the information about the genetic alterations frequent in 

thyroid tumours, it was possible to analyse differences and associations between the 

collected data. In several aspects it was possible to verify concordance with the information 

already reported in the literature, whereas in others, our results brought the attention to 

several questions that need to be addressed further to get a full understanding of the 

mechanisms of initiation and progression of thyroid tumours. This could be achieved in the 

future with a larger repository and a more complete database, where the differences and 

associations could be proved, and where the samples could be applied in parallel projects 

to provide new insights on the evolution of these tumours. 

In conclusion, the organization of a repository of biological material of thyroid 

tumours and the elaboration of a database was an achieved purpose with the establishment 

of successful standard protocols; nevertheless this is an ongoing work, where more cases 

must be added, the clinico-pathological characterization needs to be completed and the 

quick screening of the most common genetic alterations known in thyroid tumours must be 

fully performed. 
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Supplementary tables 

Table 14 - Characterization of the genetic alterations in the malignant tumour samples, displaying the frequency 
and percentage within diagnosis (n=111). 

Diagnosis 

BRAF NRAS TERT 

WT p.V600E p.K601E WT p.Q61R p.Q61K WT 
-124 

C>T 

-146 

C>T 

-150 

C>T 

PTC 
3 

42.9% 

4 

57.1% 

0 

0.0% 

7 

100.0% 

0 

0.0% 

0 

0.0% 

7 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

cPTC 
28 

59.6% 

19 

40.4% 

0 

0.0% 

41 

87.2% 

6 

12.8% 

0 

0.0% 

46 

97.9% 

0 

0.0% 

0 

0.0% 

1 

2.1% 

FVPTC 
23 

92.0% 

1 

4.0% 

1 

4.0% 

19 

76.0% 

4 

16.0% 

2 

8.0% 

24 

96.0% 

1 

4.0% 

0 

0.0% 

0 

0.0% 

Diffuse 

sclerosing 

PTC 

4 

80.0% 

1 

20.0% 

0 

0.0% 

5 

100.0% 

0 

0.0% 

0 

0.0% 

5 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

Tall cell 

PTC 

2 

100.0% 

0 

0.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

SVPTC 
1 

100.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

Oncocytic 

PTC 

1 

100.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

Metastasis 

PTC 

2 

100.0% 

0 

0.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

Metastasis 

FVPTC 

1 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

FTC 
13 

100.0% 

0 

0.0% 

0 

0.0% 

9 

69.2% 

4 

30.8% 

0 

0.0% 

12 

92.3% 

1 

7.7% 

0 

0.0% 

0 

0.0% 

Oncocytic 

FTC 

1 

100.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

PDTC 
3 

100.0% 

0 

0.0% 

0 

0.0% 

2 

66.7% 

0 

0.0% 

1 

33.3% 

3 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

MTC 
3 

100.0% 

0 

0.0% 

0 

0.0% 

2 

66.7% 

0 

0.0% 

1 

33.3% 

3 

100.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

Total 
85 

76.6% 

25 

22.5% 

1 

0.9% 

92 

82.9% 

15 

13.5% 

4 

3.6% 

107 

96.4% 

2 

1.8% 

1 

0.9% 

1 

0.9% 

Legend: PTC, papillary thyroid carcinoma; cPTC, classical papillary thyroid carcinoma; FVPTC, follicular thyroid carcinoma; diffuse sclerosing 

PTC, diffuse sclerosing variant of papillary thyroid carcinoma; tall cell PTC, tell cell variant of papillary thyroid carcinoma; SVPTC, solid variant 

of papillary thyroid carcinoma; oncocytic PTC, oncocytic variant of papillary thyroid carcinoma; metastasis PTC, metastasis of papillary thyroid 

carcinoma; metastasis FVPTC, metastasis of follicular variant of papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; Oncocytic FTC, 

Oncocytic follicular thyroid carcinoma, PDTC, poorly differentiated thyroid carcinoma; MTC, medullary thyroid carcinoma; WT, wild type; TERT 

promoter polymorphism.  
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Table 15 - Characterization of the genetic rearrangements, in the malignant tumour samples, displaying the 
frequency and percentage within diagnosis (n=109). 

Diagnostic 

RET/PTC1 RET/PTC3 PAX8-PPARɣ 

WT Rearranged WT Rearranged WT Rearranged 

PTC 
6 

85.7% 

1 

14.3% 

7 

100.0% 

0 

0.0% 

7 

100.0% 

0 

0.0% 

Classic PTC 
38 

82.6% 

8 

17.4% 

46 

100.0% 

0 

0.0% 

46 

100.0% 

0 

0.0% 

FVPTC 
23 

95.8% 

1 

4.2% 

23 

95.8% 

1 

4.2% 

23 

95.8% 

1 

4.2% 

Diffuse 

sclerosing 

PTC 

5 

100.0% 

0 

0.0% 

4 

80.0% 

1 

20.0% 

5 

100.0% 

0 

0.0% 

Tall cell 

PTC 

2 

100.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

SVPTC 
1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

Oncocytic 

PTC 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

Metastasis 

PTC 

1 

50.0% 

1 

50.0% 

2 

100.0% 

0 

0.0% 

2 

100.0% 

0 

0.0% 

Metastasis 

FVPTC 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

FTC 
12 

92.3% 

1 

7.7% 

13 

100.0% 

0 

0.0% 

12 

92.3% 

1 

7.7% 

Oncocytic 

FTC 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

1 

100.0% 

0 

0.0% 

PDTC 
3 

100.0% 

0 

0.0% 

3 

100.0% 

0 

0.0% 

3 

100.0% 

0 

0.0% 

MTC 
3 

100.0% 

0 

0.0% 

3 

100.0% 

0 

0.0% 

3 

100.0% 

0 

0.0% 

Total 
97 

89.0% 

12 

11.0% 

107 

96.4% 

2 

1.8% 

107 

96.4% 

2 

1.8% 

Legend: PTC, papillary thyroid carcinoma; cPTC, classical papillary thyroid carcinoma; FVPTC, follicular thyroid carcinoma; diffuse sclerosing 

PTC, diffuse sclerosing variant of papillary thyroid carcinoma; tall cell PTC, tell cell variant of papillary thyroid carcinoma; solid SVPTC, solid 

variant of papillary thyroid carcinoma; oncocytic PTC, oncocytic variant of papillary thyroid carcinoma; metastasis PTC, metastasis of papillary 

thyroid carcinoma; metastasis FVPTC, metastasis of follicular variant of papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; Oncocytic 

FTC, Oncocytic follicular thyroid carcinoma, PDTC, poorly differentiated thyroid carcinoma; MTC, medullary thyroid carcinoma; WT, wild type.  
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Table 16 - Comparison between PTC without or with tumour capsule in relation to the variable multinodular 
goiter. 

Characteristics 
Tumour capsule 

p-value 
Absent Present 

Multinodular 

goiter 

Absent 
29 

74.4% 

21 

95.5% 
0.037 

Present 
10 

25.6% 

1 

4.5% 

Legend: Statistical differences are considered as significant when p-value <0.05. 

 
Table 17 - Comparison between PTC without or with tumour capsule invasion in relation to the variable vascular 
invasion. 

Characteristics 
Tumour capsule invasion 

p-value 
Absent Present 

Vascular 

invasion 

Absent 
4 

80.0% 

2 

20.0% 
0,047 

Present 
1 

20.0% 

8 

80.0% 

Legend: Statistical differences are considered as significant when p-value <0.05. 

 
Table 18 - Comparison between PTC without or with BRAF mutations in relation to the NRAS mutational status. 

Characteristics 
BRAF 

p-value 
WT Mutated 

NRAS 

WT 
33 

84.6% 

24 

100,0% 
0,048 

Mutated 
6 

15.4% 

0 

0,0% 

Legend: Statistical differences are considered as significant when p-value <0.05; WT, wild type. 

 
Table 19 - Comparison between FVPTC without or with lymphocytic thyroiditis in relation to the variable 
multinodular goiter. 

Characteristics 
Lymphocytic thyroiditis 

p-value 
Absent Present 

Multinodular 

goiter 

Absent 
10 

58.8% 

8 

100.0% 
0.040 

Present 
7 

41.2% 

0 

0.0% 

Legend: Statistical differences are considered as significant when p-value <0.05. 
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Table 20 - Comparison between single and multiple FVPTC in relation to the variable tumour size.  

Characteristics 
Number of tumours 

p-value 
Single Multiple 

Tumour size 1.6 3.0 0.042 

Legend: Statistical differences are considered as significant when p-value <0.05. 

 
Table 21- Comparison between TERT promoter mutational status, considering all positive cases for the 
mutation, in relation to the variable age.  

Characteristics 
TERT promoter 

p-value 
WT Mutated 

Age Mean 43.6 71.0 0.001 

Legend: Statistical differences are considered as significant when p-value <0.05; WT, wild type. 

 


