
Generation of hardware modules for run-time
reconfigurable hybrid CPU/FPGA systems

Miguel L. Silva
FEUP/DEEC

Rua Dr. Roberto Frias, s/n
4200-465 PORTO, Portugal

mlms@fe.up.pt

Jõao Canas Ferreira
FEUP/DEEC and INESC Porto

Rua Dr. Roberto Frias, s/n
4200-465 PORTO, Portugal

jcf@fe.up.pt

Abstract— This paper describes a tool that creates partially-
reconfigurable modules from the bitstreams of individual com-
ponent modules. The resulting modules are intended for use
in applications that exploit partial dynamic reconfiguration.
The tool is integrated in a design flow particularly aimed at
dynamically-reconfigurable platform FPGAs. The corresponding
design flow is described together with a basic run-time support
system.

I. I NTRODUCTION

Run-time reconfiguration of programmable hardware has
long been recognized as a potentially advantageous approach
for the design and implementation of digital systems [1],
[2]. The commercial introduction of FPGAs containing both
an embedded CPU and a dynamically reconfigurable logic
fabric (in addition to various dedicated block like RAMs and
multipliers) provides an improved platform for complex sys-
tems, particularly for embedded applications. In this context,
run-time reconfiguration may be a very important tool for
accelerating critical, data-intensive sections of an application,
since the availability of a CPU means that the complex and
control-intensive task of selecting, tailoring and loading the
appropriate configurations may be done on-chip by software,
together with the management of the available resources.

It has often been noted that the lack of tool that ad-
equately support the development process is an important
factor that contributes to keeping dynamic reconfiguration
from entering the mainstream. This paper describes a tool,
calledBitLinker, that combines multiple hardware modules
in bitstream format to create a new bitstream suitable for use
in dynamic partial reconfiguration. Furthermore, we describe
a run-time support subsystem that loads the bitstreams to the
FPGA’s configuration memory and transparently handles all
communication between CPU and the dynamically-configured
modules.

The role ofBitLinker can be described by an analogy
with the software application development process. The tool
described in this paper is equivalent to a linker, because
it assembles “pre-compiled” modules (partial bitstreams)to
produce another binary module. In both cases, this involves

This work has been partially funded by the Department of Electrical and
Computer Engineering of the Faculty of Engineering of the University of
Porto (FEUP), under contract DEEC-ID/05/2003.

the modification of the modules to fix inter-module references
(correspondingly, the connections between hardware modules)
and adjust the final result to its final location for use (reloca-
tion). Before activating the module produced by the linker,it
must be loaded to the appropriate locations. In the regular
software flow, this task is handled by the loader; in our
environment the task is mostly performed by the run-time
support system that resides on the embedded CPU.

PARBIT is software tool similar to ours that was developed
by Horta an Lockwood at Washington University [3]. This
tool was developed for the Xilinx Virtex-E and does not work
on our target platform Virtex-II Pro, which has a different
bitstream organization. The authors also employ the same
type of connection between dynamic and static areas [4].
PARBIT does not seem to be targeted at implementing in run-
time reconfigurable platforms like ours. Furthermore, the tool
described in this paper has other features like the ability to link
multiple module configurations in the same partial bitstream.

The rest of the paper is organized as follows. Section II sets
the background to our work by describing the organization of
the target hardware infrastructure. Section III describesthe
hardware-related section of the design flow foe the develop-
ment of an application that employs dynamic reconfiguration.
Section IV describes the issues related to the module generator
in greater detail, including a description of the requirements
to be met and the status of the current implementation. The
run-time support facilities available are described in section V.
Finally, section VI briefly concludes the paper.

II. TARGET SYSTEM ORGANIZATION

The reconfigurable fabric of the system is conceptually
divided in two areas, the static area and the dynamically re-
configurable area. The first area is used for hardware modules
that remain unchanged during the whole application execution.
The dynamic area is time-shared between the dynamic hard-
ware modules; they are loaded as needed by the application
running on the embedded CPU with the help of the run-time
management system. The overall organization of the system
is shown in fig. 1

For this work we use a board with a Xilinx XC2VP7
FPGA and 32 MB of external memory. The FPGA contains
an embedded PowerPC (PPC) 405 processor. The static area

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143393834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Overview of the general system setup.

of the system contains the following modules (more can be
added if necessary):

• A memory interface unit; the external memory stores both
the reconfiguration data of the dynamic modules and the
application-specific data.

• A reconfiguration control unit, that performs the recon-
figurations using the Virtex-II Pro Internal Configuration
Access Port (ICAP).

• Two I/O units: one to communicate with the modules in
the dynamic area and one to transfer data to/from external
devices (for instance, a controlling computer).

The Xilinx Embedded Development Kit (EDK) is used to
develop the system, so many on the necessary modules are
already available [5].

For data transfers between the CPU and the dynamic mod-
ules, we developed an On-Chip Peripheral Bus (OPB) interface
called OPB Dock, using the Xilinx OPB IPIF (Intellectual
Property Interface) module available with EDK. Additional
ancillary modules include an interrupt controller, a DMA
controller and General-Purpose Input/Output port controller;
they are optional but can be included if increased flexibility
and performance is needed.

As suggested in [6], the communication between the dy-
namic and the static area is done through unidirectional, 3-state
buffer (TBUF) long lines, with a fixed mapping and routing:
this ”channel” is called a Bus Macro.

The implementation of the dynamic modules must take
some restrictions into account. The first one is naturally
the limited number of resources available. In our current
implementation, the static area occupies the greater part of
the available FPGA. If multiple modules are to be instantiated
simultaneously in the reconfigurable area, their use of the
resources must be still further constrained. Currently, the
dynamic area occupies 12 by 28 CLBs.

The placement of the modules in the reconfiguration area
is also an important issue. Figure 2 illustrates some of the

Fig. 2. Module placement in the dynamic area

supported arrangements. It is important that the modules
have standard sizes, because of restrictions imposed by the
implementation and reconfiguration process and also by the
device itself. For instance, because of the way TBUFs are
distributed throughout the fabric, the width of a module should
be a multiple of four CLBs. It is possible to place modules so
that they share columns (see the left drawing of fig. 2), as long
as the restrictions mentioned earlier are satisfied. Due to the
constraints of the underlying reconfigurable fabric, the height
of the modules (in CLBs) must be at least half the number
of inputs or outputs, whichever is higher. For flexibility in
swapping the modules, it is useful to keep to a set of a few
standard sizes.

III. D ESIGN FLOW

In this section we describe the information flow for building
an application. Figure 3 shows the information flow for the
creation of all the data.

The initial step is the specification of the base system
with help of the Xilinx EDK. VHDL descriptions of the
system and the synthesized peripherals are then exported to
the Xilinx Integrated Synthesis Environment (ISE) [7] for



Fig. 3. Data creation information flow

implementation. The results of this step may be reused for
multiple projects.

The next step is to add the Bus Macro to the design, in
the form of a relatively placed and synthesized design, and
connect it to the inputs/outputs of the OPB Dock. The creation
of this Bus Macro design is made in a different ISE project.
After translation, mapping and routing of the main design, we
obtain the NCD file that defines the basis of the system (NCD
is an internal format used by ISE). That file is them convert
into the FPGA configuration data file, designated bitstream.
In this case we will have a full configuration bitstream that is
ready the be downloaded to the FPGA.

The implementation of the dynamically loadable modules
starts with the specification and synthesis of the corresponding
design. We use VHDL descriptions with Xilinx ISE, but other
tools can be used. Next, the synthesized file is encapsulated
inside another design and connected to the Bus Macro. One
NCD file is created for each module implementation by
translating, mapping and routing the designs. One NCD file is
created for each stage implementation by translating, mapping
and routing the designs. Then a bitstream is generated for
each design. For assembling the different configurations into
a partial bitstream that combines the module bitstream and the
base bitstream we useBitLinker, a JBits [8] based program
we developed. The program uses the module configuration
information and the base system dynamic area configuration
information, to create a partial bitstream that configures the

modules in a user defined location in the dynamic area.
Multiple modules can be assembled to one partial bitstream,
this is done when modules share the same column area.

All partial reconfiguration files have to be transformed into
Module-based Partial Reconfiguration (MPR) files, which are
used by our run-time system to manage module information.
These files are created byMPRCreator, an application we
developed for this purpose.

In order to be downloaded to the board, all MPR files are
processed by themfsgen tool (included in the EDK), to
create a Xilinx Memory File System (MFS) image. Whenever
the application runs, the appropriate file system image is
downloaded to the development board’s memory, where the
MPR files are then accessed by the run-time system.

The implementation of the software, is performed in the
EDK environment. Starting from the EDK project for the base
system, the first step is to configure the Xilinx Microkernel.
The application can be written in C/C++, and should use the
facilities provided by the Module Manager library we devel-
oped to handle the dynamic reconfigurable modules. Finally
the whole application must be compiled to a downloadable
binary file.

IV. M ODULE GENERATION

We developed theBitLinker program to automatically
build the hardware modules for a Virtex-II-Pro-based run-
time reconfigurable platform from the bitstreams of individual
components. The program is written in the Java language and
uses the JBits library. In this section, we will discuss the
requirements thatBitLinker should meet and will present
the current prototype implementation. Because this tool works
by manipulating configuration bitstream, we start the section
with a brief introduction to the conceptual organization ofthe
configuration memory of Virtex-II Pro devices.

A. Conceptual organization of the configuration memory

The current target of our applications is a device of the
Xilinx Virtex-II Pro family [9]. Every programmable resource
in these devices (look-up table contents, signal routing, etc.)
is defined by volatile internal memory cells. These memory
cells are known as the configuration memory. The bitstream
is a stream of data that contains instructions for the config-
uration control logic and data for the configuration memory.
It is delivered to the device through one of its programming
interfaces.

The configuration data is organized in sections that cor-
respond to columns of logic resources in the FPGA. Each
configuration section is divided into frames. The frame is the
smallest addressable segment of the Virtex-II Pro configuration
memory space, so any reconfiguration operation will act on at
least one whole configuration frame. Frames do not directly
map to any single piece of the FPGA’s logic resources; rather
they are used to configure a narrow vertical slice of many
different logic resources. In general, the reconfigurationof one
logic resource may involve several frames (for example, 22 for
a CLB).



Fig. 4. Conceptual model of configuration memory.

There are six different types of columns, each with a fixed
number of frames. These columns correspond roughly to the
physical resources of the device. The types are:

• CLB columns that include CLB logic and interconnec-
tions, and also top and bottom I/O resources;

• IOB (I/O block) columns and IOI (I/O Interconnect)
columns that correspond to I/O resources on the left and
right sides of the FPGA;

• the GCLK column corresponds to one “central” column
that is associated with global clock resources;

• BlockRAM columns that the contents of dedicated RAM
blocks;

• BlockRAM interconnect columns that correspond to other
resources associated with dedicated block RAMs and
multiplexers.

Conceptually the CLB configuration columns can also be
grouped into “tiles” that represent the whole configuration
information of a given CLB, including both logic and inter-
connect resources. A tile spans a fixed number of rows on all
the frames of a column. In order to reconfigure a (horizontal)
tile, it is necessary to load all the frames associated with the
given resource column.

The other column resources can also be organized into tiles,
but here we restrict our attention to CLBs only. Figure 4
illustrates the configuration memory organization.

There is an addressing scheme associated with the configu-
ration memory, so that each frame’s location can be represent
by a 32-bit number that is composed of three “coordinates”:

• A block address (BA), that indicates the type of column
group the frames belongs to; (There are three block types
that are used to group the six different column types.)

• A major address (MJA), the specifies the frame column
number within a block;

• A minor address (MNA), that specifies the number of the
frame within the column.

The bitstream information is organized in packets. Each
packet targets a specific configuration register to set config-
uration options, program the configuration memory, or toggle

internal signals. A packet that has data to program the con-
figuration memory uses the 32-bit address number to identify
the frame location. For contiguous frames only the first frame
address is needed. In the case of partial reconfiguration there
may be several independent groups of frames, so a data packet
is needed for each one.

B. Tool requirements

TheBitLinker tool works with bitstream configurations.
It manipulates the configuration and addressing information
of the individual components in order to produce partial bit-
streams for the dynamic area run-time reconfigurable platform.

The main requirements that must be met by such a tool are
the following:

• The configuration information of the individual compo-
nents must be extracted from the corresponding complete
bitstream. This information consists of a rectangular area
of configuration tiles that include all the CLBs used by
the module.

• The component modules must be relocated. It should be
possible for the extracted module to be assigned to any
compatible section of the dynamic area.

• The tool must be able to process multiple modules and
to use the same module multiple times.

• The tool must ensure that the created bitstream is adapted
the structure of the dynamic area. The individual modules
cannot occupy the whole FPGA column (the dynamic
area does not extend to the bottom of the FPGA in
our case), and so the resulting partial bitstream must
complete the information according to the base setup
of the dynamic area. It is also possible that the area
affected by the reconfiguration (but not occupied by the
module) already has other resident modules that must be
preserved. This implies that bitstream of those modules
must be integrated into the final result.

• The tool must perform area compatibility tests, i.e. the
tool must check if the destination area for the relocated
module is compatible with the module’s original specifi-
cation. All the resources required by the module must be
available at the destination in the same relative positions.

• The tool must perform connection tests. The modules
communicate with the static area though a Bus Macro;
the tool must check that the destination location of the
module is compatible with its Bus Macro. The tool
should also provide a modification procedure to adapt
the connections in case of incompatibility.

• The tool must produce a correct partial reconfiguration
file for the whole area that is affected by the reconfigu-
ration. In general, this area will be larger than the total
of the area occupied by the individual modules.

Figure 5 show an example of the sequence of operations
required.

C. Current prototype implementation

Our currentBitLinker implementation is a Java appli-
cation with a command line interface. Multiple modules are



Fig. 5. Conceptual model ofBitLinker operation.

supported and the user must specify the modules configuration
files and the position of the module to be extracted (position
of the module’s upper left corner together with the module’s
height and width).

The destination for each module has to be provided (only
the first row and column are needed). The base configuration
file must also be specified.

The current implementation only supports CLBs, so the
module must occupy only CLB columns. The destination
area must also meet this criterion. Support for other types of
resources is under development. Verification is only partially
implemented, so the user must ensure that the module’s
destination area is suitable and that the Bus Macro connections
are compatible.

The inter-module connections constitute a difficult problem.
Currently, communication compatibility between modules is
ensured by requiring that the modules and the base system
use an identical Bus Macro. In this way making the modules
abut is enough to ensure the establishment of the connections.
This isn’t a very flexible approach, so a more sophisticated
communications structure is being developed to enable some
measure of link-time modification and, consequently, a larger
number of inter-module communication patterns.
BitLinker operates in the following manner. After

processing the command line parameters, the program reads
in the base system’s bitstream together with the first module’s
bitstream. The configuration data corresponding to all the tiles
of the component module are read into an array. Then this
information is added to the base system configuration. This
is possible because all CLB tiles have the same configuration
bits.

The same procedure is repeated for all modules. After the

last module is written, a partial bitstream is generated from
the modified base system.

V. RUN-TIME SUPPORT FOR DYNAMIC RECONFIGURATION

The software we developed to manage the run-time re-
configuration of the dynamic area is written in C and is
implemented as a software library that must be linked to the
final executable.

A. Module-based Partial Reconfiguration File

An MPR file is used to store information about the con-
figuration of the modules to be implemented in the dynamic
areas. The file is divided in two blocks, the header block
and the configuration data block. The latter contains the
partial reconfiguration information. The header block contains
information related to the module, or modules, implemented
by the configuration data:

• the file type—there are three types, an empty bitstream,
a file with one module, and a file with multiple modules;

• the range of columns occupied by the module(s);
• the size of the partial bitstream, in bytes;
• the number of modules implemented by the file.
If there are multiple modules, the remaining items are

repeated for each one:
• module identification number—a unique 32-bit number

for each module used by the implemented application;
• connections range — this parameter gives information

about the location in which the module connects to the
dock, and also the number of inputs and outputs;

• the range of rows occupied by the module.
The MPRCreator tool was developed to create these

files. Currently, this process is separated from the previously
described module creation process; the necessary data is
provided by user through a file in which the parameter values
are preceded by the corresponding keywords. We are planning
a new tool that will combine the module creation process with
MPR file creation.

B. Library Organization and Operation

Our run-time library allows an application to:
• load or remove dynamic hardware modules from the

dynamic area;
• add or remove MPR files from the on-board memory;
• transfer data to and from an installed dynamic module;
• list available modules and their properties;
Internally, the library includes a data manager, a reconfigu-

ration manager and an input/output manager.
The data manager manages the local cache of MPR files.

When the system is prepared for execution, a file system image
is downloaded to memory. The data manager provides the
functions to access the MPR files in that image.

The reconfiguration manager provides higher-level functions
for performing reconfiguration. It basically encapsulatesthe
use of the Xilinx OPB HWICAP driver, providing the func-
tions necessary for the module reconfiguration and a stable
interface against future changes to the driver or hardware.



The input/output manager provides functions to send and
receive data to/from the modules. For now these functions
simply determine the correct memory-mapped I/O address
and perform the I/O transaction. Higher-level functions will
be added that convert the data to/from application-specified
formats.

The module manager uses an array of structures to store
information about known modules. The information consists
mainly of: the name of the file that contains the module’s
partial bitstream; the location of the module, i.e., the co-
ordinates of row and columns where it begins and ends;
and information about the connection to the Bus Macro—its
location, and the number of inputs and outputs. Each module
has a unique identification number that is also stored. The
program also stores information about the modules that are
currently configured and the associated “empty” modules.

The application must start by calling an initialization pro-
cedure, that loads the MPR files into local (on-chip) memory
and initializes the array with information for all available. The
possibility of including additional modules is foreseen, but not
yet implemented, because it depends on the communication
procedure with a host system, which is currently under devel-
opment.

In order to load a dynamic module, the reconfiguration
manager first checks the information for the new module and
the status of the area to be used. If the area is occupied by
another module (totally or partially), the program looks for the
corresponding empty module and uses it to logically erase the
current configuration; then is proceeds with the configuration
of the requested module. Finally, the current configuration
information is updated.

Upon receiving a data transfer request from the application,
the input/output manager checks whether the module is cur-
rently active. If that is the case, it looks up the information
about the module’s communication configuration. Based on
that information and the one about the OPB Docks in the
base system, it determines the correct addresses for memory-
mapped communication and proceeds with the desired trans-
fers.

VI. CONCLUSION

The paper describes a tool (calledBitLinker) that puts
partial reconfiguration bitstreams from a bitstreams of individ-
ual modules, thus making it possible to easily reuse modulesin
multiple designs. The modules put together byBitLinker
are suitable for use in a run-time reconfigurable environment
based on a platform FPGA equipped with a dedicated CPU.
The current implementation is aimed at Virtex-II Pro based
embedded systems.

Applications that use the modules produced by
BitLinker may employ a small run-time management
library that provides basic operations, like configuration
loading and I/O transfers.

Further work on this subject will address three main issues:
a) improved checking of destination compatibility; b) provid-
ing support for the use of dedicated resources in the dynamic

area (like block RAMs and dedicated multipliers); c) explicit
support for an explicit interconnection arrangement between
the modules.

REFERENCES

[1] M. Wirthlin and B. Hutchings, “Improving functional density using
run-time circuit reconfiguration,”Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 6, no. 2, pp. 247–256, 1998.

[2] S. A. Guccione and D. Levi, “Design advantages of run-timereconfigu-
ration,” J. Schewel, P. M. Athanas, S. A. Guccione, S. Ludwig, and J. T.
McHenry, Eds., vol. 3844, no. 1. SPIE, 1999, pp. 87–92.

[3] E. Horta and J. W. Lockwood, “PARBIT: a tool to transform bitfiles to
implement partial reconfiguration of field programmable gate arrays (FP-
GAs),” Washington University in Saint Louis, Department of Computer
Science, Tech. Rep. WUCS-01-13, July 6, 2001.

[4] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an FPGA with partial run-time reconfiguration,” in
Design Automation Conference (DAC), New Orleans, LA, June 2002.

[5] Embedded Development Kit Documentation, Xilinx, 2004.
[6] Xilinx, “Two flows for partial reconfiguration: Module base or small bit

manipulations,” Application note 290, Xilinx, Sept. 2004.
[7] Integrated Synthesis Environment, Xilinx, 2004.
[8] S. Guccione, D. Levi, and P. Sundararajan, “JBits: Java based interface

for reconfigurable computing,” inMAPLD’99, Maryland, Sept. 1999.
[9] Virtex-II Pro Platform FPGA Handbook, Xilinx, Sept. 2002.


