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Abstract:The functions of proteins in livingorganisms are related to their 3-D
structure,which is known tobeultimately determinedby their linear sequence
of amino acids that together form these macromolecules. It is, therefore, of
great importance to be able to understand and predict how the protein 3D-
structure arises fromaparticular linear sequence of amino acids. In this paper
we report the application ofMachine Learningmethods to predict, with high
values of accuracy, the secondary structure of proteins, namely α-helices and
β-sheets, which are intermediate levels of the local structure.

Keywords: data mining; machine learning; classification; decision
trees; rule induction; instance-based learning; Bayesian algorithms;
WEKA; bioinformatics; protein folding; predicting secondary structure
conformations.

Copyright © 2012 Inderscience Enterprises Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143393647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


572 R. Camacho et al.

Reference to this paper should bemade as follows: Camacho,R., Ferreira, R.,
Rosa, N., Guimarães, V., Fonseca, N.A., Costa, V.S., de Sousa, M. and
Magalhães, A. (2012) ‘Predicting the secondary structure of proteins using
Machine Learning algorithms’, Int. J. Data Mining and Bioinformatics,
Vol. 6, No. 6, pp.571–584.

Biographical notes: Rui Camacho got his first degree in 1984 in Electrical
Engineering and Computers from University of Porto. He got his M.Sc.
degree in Electrical Engineering and Computers from Instituto Superior
Technical University of Lisbon, in 1989. He got is PhD from University of
Porto in 2000. He is currently Associate Professor at Faculty of Engineering
University of Porto and a researcher at Laboratory of Artificial Intelligence
and Decision Support (LIAAD). His research interests encompass data
mining, bio-informatics, machine learning, and distributed computing.

AnaRita Ferreira is currently aM.Sc student at Faculdade de Engenharia da
Universidade do Porto, Portugal in the course of Master in Bioengineering,
Biomedical Engineering. Her main interests are medical instrumentation
and rehabilitation systems, medical image analysis, 3D biomodeling and
biomaterials.

Natacha Rosa is currently a M.Sc student at Faculdade de Engenharia da
Universidade do Porto, Portugal in the course of Master in Bioengineering.
Her main interests are: biomedical instrumentation, Rehabilitation
engineering, nanotechnology in drug delivery and biomimetics.

Vânia Guimarães is currently aM.Sc student at Faculdade de Engenharia da
Universidade do Porto, Portugal in the course of Master in Bioengineering,
Biomedical Engineering. Hermain interests aremedical instrumentation and
rehabilitation systems,medical image analysis, computer aided diagnosis and
Informatics.

Nuno A. Fonseca received in 1996 his first degree in Computer Science
from the Faculty of Science of the University of Porto, later, in 2001,
he obtained the M.Sc. degree in Artificial Intelligence and Computation
from the Faculty of Engineering of the University of Porto, and the Ph.D.
degree in Computer Science from the Faculty of Science of the University of
Porto in 2006. Currently, he is a research fellow at the Center for Research
on Advanced Computing Systems (CRACS) and INESC Porto LA. His
research interests encompass bio-informatics, machine learning, and high
performance computing.

Vítor Santos Costa is an associate professor at Faculdade de Ciencias,
Universidade do Porto. He received a bachelor’s degree from the University
of Porto in 1984 and was granted a PhD in Computer Science from the
University of Bristol in 1993. He is Visiting Professor at the University
of Wisconsin-Madison. His research interests include logic programming
and machine learning, namely inductive logic programming and statistical
relational learning. He has published more than 100 refereed papers in
Journals and International Conferences, is then main developer of YAP
Prolog, has chaired two conferences, and has supervised 5 PhD students.

Miguel M. de Sousa graduated in 2002 with a degree in Biochemistry/
Biophysics. Since then has worked in the research of metallo-surfactant



Predicting the secondary structure of proteins 573

properties of Iron(II) complexes and in the field of Photochemistry
investigating lanthanide-based complexes and their application as molecular
logic gates. He is currently working on his PhD in the field of Bioinformatics
studying amino acid patterns and pattern side-chain topology in protein
secondary structures, particularly alpha-helices andbeta-sheets, to be applied
to the development of protein structure prediction algorithms.

Alexandre L. Magalhães received in 1997 his PhD in Chemistry from the
University of Porto. He is an Assistant Professor at the Faculty of Sciences
of the University of Porto where he gives several courses in the area of
Computational Chemistry. His scientific interests include Protein structure
and supramolecular chemistry.

1 Introduction

Proteins are complex structures synthesised by living organisms. They are a
fundamental type of biomolecules that perform a large number of functions in
cell biology. Proteins can assume catalytic roles and accelerate or inhibit chemical
reactions in our body. They can assume roles of transportation of smaller molecules,
storage, movement, mechanical support, immunity and control of cell growth and
differentiation (Alberts et al., 2002). All of these functions rely on the 3D-structure of
the protein. The process of going from a linear sequence of amino acids, that together
compose a protein, to the protein’s 3D shape is named protein folding. Anfinsen’s
work (Sela et al., 1957) has proven that primary structure determines the way protein
folds. Protein folding is so important that whenever it does not occur correctly it may
produce diseases such as Alzheimer’s, Bovine Spongiform Encephalopathy (BSE),
usually known asmad cows disease, Creutzfeldt-Jakob (CJD) disease, a Amyotrophic
Lateral Sclerosis (ALS), Huntingtons syndrome, Parkinson disease, and other diseases
related to cancer.

A major challenge in Molecular Biology is to unveil the process of protein folding.
Several projects have been set up with that purpose. Although protein function is
ultimately determined by their 3D structure there have been identified a set of other
intermediate structures that can help in the formation of the 3D structure.We refer the
reader to Section 2 for a more detailed description of protein structure. To understand
thehigh complexity of protein folding it is usual to followa sequenceof steps.One starts
by identifying the sequence of amino acids (or residues) that compose the protein, the
so-called primary structure; then we identify the secondary structures conformations,
mainly α-helices and β-sheet; and then we predict the tertiary structure or 3D shape.

In this paper we address the step of predicting α-helices and β-strands based on
the sequence of amino acids that compose a protein. More specifically, in this study
models based on Machine Learning algorithms were built to predict the start, inner
points and end of secondary structures. A total of 1499 protein sequences were selected
from the PDB and data sets were appropriately assembled to be used by Machine
Learning algorithms and thus construct the models. In this context rule induction
algorithms, decision trees, functional trees, Bayesian methods, and ensemble methods
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were applied. The models achieved an accuracy between 84.9% (in the prediction of
α-helices) and 99.6% (in the prediction of the inner points of β-strands). The results
show also that small and intelligible models can be constructed.

The rest of the paper is organised as follows. Section 2 gives basic definitions
on proteins required to understand the reported work. Related work is reported
in Section 3. Our experiments, together with the results obtained, are presented in
Section 4. Conclusions are presented in Section 5.

2 Proteins

Proteins are build up of amino acids, connected by peptide bonds between the carboxyl
and amino groups of adjacent amino acid residues as shown in Figure 1(b) (Petsko and
Petsko, 2007). All amino acids have common structural characteristics that include an
α carbon to which are connected an amino group and a carboxyl group, an hydrogen
and a variable side chain as shown in Figure 1(a). It is the nature of side chain that
determines the identity of a specific amino acid. There are 20 different amino acids
that integrate proteins in cells. Once the amino acids are connected in the protein chain
they are designated as residues.

In order to function in an organism a protein has to assume a certain 3D
conformation. To achieve those conformations apart from the peptide bonds there
have to be extra types of weaker bonds between residues. These extra bonds are
responsible for the secondary and tertiary structure of a protein (Gsponer et al., 2003).

One can identify four types of structures in a protein. The primary structure of
a protein corresponds to the linear sequence of residues. The secondary structure is
composed by subsets of residues arranged mainly as α-helices and β-sheets, as seen
in Figure 2. The tertiary structure results for the folding of α-helices or β-sheets. The
quaternary structure results from the interaction of two or more polypeptide chains.

Secondary structure’s conformations, α-helices and β-sheets, were discovered in
1951 by Linus Carl Pauling. These secondary structure’s conformations are obtained
due to the flexibility of the peptide chain that can rotate over three different chemical
bonds. Most of the existing proteins have approximately 70% of their structure as
helices that is the most common type of secondary structure.

Figure 1 (a) General structure of an amino acid; side chain is represented by the letter R
and (b) a fraction of a proteic chain, showing the peptide bounds (see online version
for colours)
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Figure 2 Secondary structure conformations of a protein: α-helices (left); β-sheet (right)
(see online version for colours)

3 Related work

Arguably, protein structure prediction is a fundamental problem in Bioinformatics.
Early work by Chou and Fasman (1978), based on single residue statistics, looked
for contiguous regions of residues that have an high probability of belonging
to a secondary structure. The protein sample used was very small, resulting in
overestimating the accuracy of the reported study.

Qian and Sejnowski (1988) used neural networks to predict secondary structures
but achieved an accuracy of only 64.3%. They used a window technique (of size 13)
where the secondary structure of the central residues was predicted on the base of its
12 neighbours.

Neural Networks were also used in the work byRost and Sander (1993). They used
a database of 130 representative protein chains of known structure and achieved an
accuracy of 69.7%. Later, Rost and Sanderwith used the PHD (Rost, 1996) method
on the RS126 data set and achieved an accuracy of 73.5%. JPRED (Cuff et al.,
1998) exploited multiple sequence alignments to obtain an accuracy of 72.9%. NNSSP
(Salamov and Solovyev, 1995) is a scored nearest neighbourmethod by considering the
position of N and C terminal in α-helices and β-strands. Its prediction accuracy on the
RS126 data set was 72.7%. PREDATOR (Frishman andArgos, 1997) used propensity
values for seven secondary structures and local sequence alignment. The prediction
accuracy of this method for RS126 data set achieved 70.3%. PSIPRED (Jones, 1999)
used a position-specific scoring matrix generated by PSI-BLAST to predict protein
secondary structure and achieved 78.3.

DSC (King and Sternberg, 1996) achieved 71.1% prediction accuracy in the
RS126 data set by exploring amino acid profiles, conservation weights, indels, and
hydrophobicity.

Using a Inductive Logic Programming (ILP) another series of studies improved the
secondary structure prediction score. In 1990Muggleton et al. (Muggleton, 1992) used
only 16 proteins (in contrast with 1499 used in our study) and theGOLEM(Muggleton
and Feng, 1990) ILP system to predict if a given residue in a given position belongs
or not to an α-helix. They achieved an accuracy of 81%. Previous results had been
reported byKneller and Langridge (1990) usingNeural Networks, achieving only 75%
accuracy. The propositional learner PROMIS (King and Sternberg, 1990; Sternberg
et al., 1992) achieved 73% accuracy on the GOLEM data set.

It has been shown that the helical occurrence of the 20 type of residues is highly
dependent on the location, with a clear distinction between N-terminal, C-terminal
and interior positions (Richardson and Richardson, 1988). The computation of amino
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acid propensities may be a valuable information both for pre-processing the data and
for assessing the quality of the constructed models (Fonseca et al., 2008). According to
Blader et al. (1993) an important influencing factor in the propensity to form α-helices
is the hydrophobicity of the side-chain. Hydrophobic surfaces turn into the inside of
the chain giving a strong contribution to the formation of α-helices. It is also known
that the protein surrounding environment has influence in the formation of α-helices.
Modelling the influence of the environment in the formation of α-helices, although
important, is very complex from a data analysis point of view (Krittanai and Johnson,
2000).

4 Experiments

4.1 Experimental settings

To construct models to predict the remarkable points of secondary structures we have
proceeded as follows.We first downloaded a list of proteins with low structure identity
from the Dunbrak’s website (Wang and Dunbrack, 2003).1 The list contains 1499
proteins with structure identity less than 20%. We then downloaded the PDB2 for
each of the protein in the list. Each PDB was processed in order to extract secondary
structure information and the linear sequence of residues of the protein. We have used
a data set much larger than the standard RS126 dataset of Rost et al. (Rost, 1996). We
have also used a data set of proteins with structure identity (20%) lesser than the one
used in RS126 (25%).

In our data sets an example is a sequence of a fixed number of residues (window)
before and after the remarkable points3 of secondary structures. We have produced
24 data sets using 4 different window sizes (2, 3, 4 and 5), 3 types of remarkable points
(start, inner and end points) and 2 types of structures (α-helices and β-sheets). The
size of the data sets, for the different window sizes, is shown in Table 1. To obtain the
example sequences to use we have selected sequences that are:

1 at the start of a α-helix

2 at the end of a α-helix

3 in the interior of a α-helix

4 at the start of a β-strand

5 at the end of a β-strand

6 in the interior of a β-strand.

To do so, we identify the ‘special’ point where the secondary structures start or end,
and then add W residues before and after that point. Therefore the sequences are
of size 2 × W + 1, where W ∈ [2, 3, 4, 5]. In the interior of a secondary structure
we just pick sequences of 2 × W + 1 residues that do not overlap. With these
sequences we envisage to study the start, interior and end points of secondary
structures.
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Table 1 Characterisation of the data sets according to the number of examples (E) and
number of attributes (A). The number of examples and attributes depends only on
the window size (W)

Window size (W)

W = 2 W = 3 W = 4 W = 5

E A E A E A E A

62,050 270 49,242 451 40,528 632 34,336 813

Theattributesused to characterise the examples areof threemain types:whole structure
attributes; window-based attributes; and attributes based on differences between the
‘before’ and ‘after windows’.

The whole structure attributes include: the size of the structure; the percentage of
hydrophobic residues in the structure; the percentage of polar residues in the structure;
the average value of the hydrophobic degree; the average value of the hydrophilic
degree; the average volume of the residues; the average area of the residues in the
structure; the averagemass of the residues in the structure; the average isoelectric point
of the residues; and, the average topological polar surface area.

For the window-based attributes we have computed a set of attributes based on
the properties of residues shown in Table 2. For each amino acid of the window and
amino acid property we computed the following attributes: the value of the property
of each residue in the window; either if the property ‘increases’ or decreases the value
along the window; the number of residues in the window with a specified value and;
whether a residue at each position of the window belongs to a pre-computed set of
values.

Table 2 List of amino acid properties used in the study

Polarity Hydrophobicity Size Isoelectric
Charge h-bonddonor xlogp3 Side chain polarity
Acidity Rotatable bond count h-bondacceptor Side chain charge

For the attributes capturing the differences we have computed the average values of
numerical properties of amino acids in eachwindow and then define the a new attribute
as the difference in the values of those two averages. For non numerical properties
we first performed some countings in the windows before and after the critical point.
Based on those countingswe have defined new attribute as the difference between those
countings. For example we have counted the number of hydrofobic amino acids in the
before and after window and the define a new attribute as the difference between those
countings.

Altogether there are between 253 (window size of 2) to 745 (window size of 5)
attributes. In each of the 6 types of data sets, the sequences with one chosen remarkable
point is taken as belonging to one class and all other sequences are assumed to belong to
the other class. For example when predicting the end-point of β-strands the sequences
with a β-strands end-point are in one class and all other sequences (start-point of both
helices and strands, inner points of both helices and strands and the end-points of
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helices) are in the other class (thus transforming the problem to a binary classification
problem).

Table 3 Performance measures (b) used in the experiments computed after the confusion
matrix (a)

The quality of the constructed models was estimated using measures computed after
the Confusion Matrix4 (Table 3(a)). From the Confusion Matrix we compute the
Accuracy measure, the True Positive Rate (TPR) and the True Negative Rate (TNR)
of the model (Table 3(b)). The Accuracy captures the global performance of the model
whereas the TPR and the TNR provide information on the performance of predicting
the individual classes.

The experiments were done in a machine with 2 quad-core Xeon 2.4 GHz and
32 GB of RAM, running Ubuntu 8.10. We used machine learning algorithms from the
Weka 3.6.0 toolkit (Witten and Frank, 2005) and a 10-fold cross validation procedure
to estimate the quality of constructed models. We have used rule induction algorithms
(Ridor), decision trees (J48 Quinlan, 1993 and ADTree Freund and Mason, 1999),
functional trees (FTGama, 2004; Landwehr et al., 2005), instance-based learning (IBk
Aha and Kibler, 1991), bayesian algorithms (NaiveBayes and BayesNet John and
Langley, 1995) and one ensemble method (RandomForest Breiman, 2001).5

4.2 Experimental results

The results obtained with the Machine Learning algorithms are shown in Tables 4–9.
The results presented show high values of accuracy with a minimum of 84.9%, in

the prediction of the starting point of helices using Functional Trees, and a maximum
of 99.6%, in the prediction of inner positions of β-strands also using Functional Trees.
In each table the best accuracy value was quite above the base line value. The base line
value was taken as the ZeroR prediction that is actually the majority class prediction.
Good values of TPRwere also achieved with a maximum of 72.6% in the prediction of
β-strands end point. Functional Tree algorithm produce the best results for α-helices
whereas in the prediction of β-strands Bayesian Networks achieves the best TPRs,
while RandomForest and IBk the best accuracy values. Overall Functional Trees have
a very good performance both inAccuracy and TPR in almost all prediction problems.
The BayesianNetworks performed quite well in terms of TPR in the β-sheet prediction
problems.

Looking at Tables 4–6 we see that the best TPR is obtained by functional Trees
using a window size of five. That is a reasonable result since α-helices have 3.6 amino
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Table 4 Results of predicting α-helices starting point. The accuracy results (%) are shown in
(a). The improvement over the majority class prediction is shown in (b). The true
positive rate (%) results are shown in (c). The true negative rate (%) results are shown
in (d). Results were obtained for windows of size 2, 3, 4 and 5 residues. RF stands for
RandomForest and FT for Functional Tree

Table 5 Results of predicting α-helices inner points. The accuracy results (%) are shown in
(a). The improvement over the majority class prediction is shown in (b). The true
positive rate (%) results are shown in (c). The true negative rate (%) results are shown
in (d). Results were obtained for windows of size 2, 3, 4 and 5 residues. RF stands for
RandomForest and FT for Functional Tree
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Table 6 Results of predicting α-helices end point. The accuracy results (%) are shown in (a).
The improvement over the majority class prediction is shown in (b). The true positive
rate (%) results are shown in (c). The true negative rate (%) results are shown in (d).
Results were obtained for windows of size 2, 3, 4 and 5 residues. RF stands for
RandomForest and FT for Functional Tree

Table 7 Results of predicting β-strand start point. The accuracy results (%) are shown in (a).
The improvement over the majority class prediction is shown in (b). The true positive
rate (%) results are shown in (c). The true negative rate (%) results are shown in (d).
Results were obtained for windows of size 2, 3, 4 and 5 residues. RF stands for
RandomForest and FT for Functional Tree
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Table 8 Results of predicting β-strand inner points. The accuracy results (%) are shown in (a).
The improvement over the majority class prediction is shown in (b). The true positive
rate (%) results are shown in (c). The true negative rate (%) results are shown in (d).
Results were obtained for windows of size 2, 3, 4 and 5 residues. RF stands for
RandomForest and FT for Functional Tree

Table 9 Results of predicting β-strand end point. The accuracy results (%) are shown in (a).
The improvement over the majority class prediction is shown in (b). The true positive
rate (%) results are shown in (c). The true negative rate (%) results are shown in (d).
Results were obtained for windows of size 2, 3, 4 and 5 residues. RF stands for
RandomForest and FT for Functional Tree
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Figure 3 Attributes tested near the root of a 139 node tree constructed by J48

acids per turn of the helix, which places the C=O group of amino acid in position P
exactly in line with the H-N group of amino acid P + 4. This happens for all algorithms
in the prediction of the start of the helix and for most algorithms in the prediction of
inner and end points of helices. Since β-strands do not have a periodic structure the
window size with the best TPR are 3 and 4 suggesting that close neighbour residues
are sufficient for making good predictions.

We have also investigated the use of the different types of attributes. We have
inspected themodels constructed byFunctional Tree and by J48. There is no significant
difference in the percentage of the different types of attributes between the terminal
points of β-strands and the inner points. There is, however, in α-helices a significant
difference in the use of attributes that differentiate properties of the window before
the remarkable point and properties of the window after the remarkable point. The
number of such attributes are much higher in the trees predicting the start or end-point
of an helix than the trees predicting inner positions.

For some data mining applications having a very high accuracy is not enough.
In some applications it would be very helpful if one can extract knowledge that helps
in the understanding of the underlying phenomena that produced the data. That is
very true for most of Biological problems addressed using data mining techniques.
Some of the algorithms used in this study can produce models that are intelligible to
experts, such as J48 and Ridor. Using J48 we manage to produce a small size decision
tree (shown in Figure 3) that uses very informative attributes near the root of the tree.

5 Conclusions and future work

In this paper we have addressed a very relevant problem inMolecular Biology, namely
that of predicting the occurrence of a secondary structure. To study these problems
we have collected sequences of amino acids from proteins described in the PDB. For
each problem of predicting a ‘remarkable’ point is a specific structure we have defined
two class values: a class of sequences were the ‘remarkable’ point in study occurs and;
all other types of sequences where other remarkable points not in study occur.



Predicting the secondary structure of proteins 583

We have applied a set of Machine Learning algorithms and almost all of them
made predictions above the naive procedure of predicting the majority class. We have
achieved a maximum score of 99.6% accuracy and 72.6% True Positive Rate with an
algorithm called Functional Tree. We have also managed to construct a small decision
tree that has accuracy under 80%, but that is an intelligible model that can help in
unveiling the chemical justification of the formation of α-helices.
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Notes

1http://dunbrack.fccc.edu/Guoli/PISCES.php
2http://www.rcsb.org/pdb/home/home.do
3Start, inner position and end of a secondary structure.
4Also known as Contingency Table.
5Basically RandomForest constructs several CART-like trees (Breiman et al., 1984) and
produces its prediction by combining the prediction of the constructed trees.


