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Abstract

Narrow-band Imaging (NBI) is a recent and promising technique which is being applied to

modern endoscopes. It allows to enhance the contrast between super�cial and deeper vessels

by illuminating the tissue with white light and having two �lters in the Charged-Coupled

Device (CCD) sensor with di�erent wavelengths. These wavelengths match the absorption

peaks of haemoglobin. Based on the di�erent penetration depths of light (longer wavelengths

penetrate deeper) the super�cial vessels will be enhanced by blue and the deeper vessels will

be enhanced by green. This increase in contrast allows a better identi�cation of vascular

alterations indicative of a pathology. It also brings new patterns that need to be interpreted

in order to perform a correct and precise classi�cation of these new images that contain

information that is of di�cult perception when using conventional white light. The special

conditions that these new endoscopic images are acquired allows us to modulate these images

with a physical model that describes the distribution of light in the tissue. With this in mind

we can rebuild the information from the RGB channels and extract features that exhibit

special photometric invariances.

In this thesis we built a Computer Aided Diagnosis (CAD) support system specialized to

learn these new patterns in order to perform a correct and precise classi�cation. For our

system we developed a framework encompassing three standard steps: feature extraction

and description, and pathology learning. A physical model for feature description of coloured

gastroenterology images was assessed. To test the developed framework we used an image

dataset with 250 endoscopic images from the oesophagus were 61 are normal and 189 present

pre-cancer lesions. Converting the images to gray we obtained a performance of 79% and

adding colour information we obtained a performance of 84% using the opponent colours.
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Resumo

Narrow-band Imaging (NBI) é uma técnica recente e promissora, que tem sido aplicada

a endoscópios modernos. Permite aumentar o contraste entre os vasos super�ciais e mais

profundos, iluminando o tecido com luz branca e colocando dois �ltros no sensor Charged-

Coupled Device (CCD) com diferentes comprimentos de onda. Estes comprimentos de onda

correspondem aos picos de absorção da hemoglobina. Com base nas diferentes profundidades

de penetração da luz (comprimentos de onda mais longos penetram mais profundamente), os

vasos super�ciais serão enaltecidos pelo azul e os vasos mais profundos pelo verde. Este au-

mento no contraste permite uma melhor identi�cação de alterações vasculares indicativas de

patologia. Mas também mostram novos padrões que precisam de ser interpretados de forma

a realizar uma classi�cação correta e precisa destas novas imagens que contêm informação

que é de difícil percepção pelo uso de luz branca convencional. As condições especiais em

que estas novas imagens endoscópicas são adquiridos permite-nos modulá-las com um modelo

físico que descreve a distribuição da luz no tecido. Podemos então reconstruir as informações

dos canais RGB e extrair características que apresentam invariâncias fotométricas especiais.

Nesta tese, construímos um Sistema Computorizado de Auxílio ao Diagnóstico (CAD) espe-

cializado para estes novos padrões por forma a realizar uma classi�cação correta e precisa.

Para o nosso sistema, desenvolvemos uma abordagem que engloba três etapas: extração de

características e descrição e aprendizagem da patologia. Um modelo físico para a descrição

de características de imagens coloridas em gastroenterologia foi avaliado. Para testar o

modelo desenvolvido foi utilizado um conjunto com 250 imagens endoscópicas do esófago em

que 61 são normais e 189 apresentam lesões pré-cancerosas. Convertendo as imagens para

cinza obtivemos um desempenho de 79 % e adicionando informação da cor obtivemos um

desempenho de 84 %, usando as cores oponentes.
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Chapter 1

Introduction

"A picture is worth more than a thousand words". This old adage referring to the amount

of information an image can convey has been around us for ages. Of course its origins had

nothing to do with medical images, but its essence is totally applied. With the advances

in science and technology, we are nowadays capable to obtain better quality images of the

human body. This has brought major advantages in diagnosing, monitoring or treating a

disease. In Medical Imaging it is common to use either invisible light, as in an X-Ray exam

or visible light like in an endoscopic procedure. In both the interpretation of these images is

drawn by the physicians experience and expertise adding always a subjective element to the

analysis. With the introduction of computers in Medical Imaging the subjectiveness in the

analysis has diminished. It was in this context that the Computer Aided Diagnosis (CAD)

support systems appeared, to help in the decision and classi�cation process. The advantage

of having a system insensitive to fatigue or distraction is a major plus because we are also

withdrawing the ambiguity and subjectiveness of human analysis. The �rst CAD systems

appeared initially connected to endoscopic images (Liedlgruber & Uhl, 2011).

Endoscopy is a technique widely used in modern medicine to observe the inner cavities

of the human body. It makes use of an endoscope which is basically a �exible tube that

consists of a bundle of optical �bres. The endoscope has evolved a lot since the �rst rigid

endoscope introduced in a demonstration of gastroscopy by Adolph Kussmaul in 1868. The

modern ones allow to view a real time image on a monitor. They are called video endoscopes
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and use a Charged-Coupled Device (CCD) for image generation. A CCD chip is an array of

individual photo cells (or pixels) that receive photons re�ected from a surface and produce

electrons proportionally to the amount of light received. This information is then stored in

memory chips and processed in a monitor (Muto et al., 2009).

A recent technique in endoscopy consists in using only certain wavelengths of visible light

by placing a �lter in front of the light source therefore narrowing the bandwidth of the light

output. This technique is called Narrow-band Imaging (NBI) and is a very promising tool

in the diagnosis of gastrointestinal diseases. The NBI system uses two speci�c wavelengths,

415 nm and 540 nm that match the absorption peaks of haemoglobin. NBI can be used

in a RGB Sequential System which consists of inserting a RGB rotary �lter in front of the

light source but only the green and blue �lter are activated. Another approach is to place

colour �lters in each pixel of the CCD chip. In both systems a Xenon lamp is used as a light

source (Muto et al., 2009). In the illumination process of the tissue using NBI, blue is mainly

absorbed by super�cial vessels while green continues to penetrate the tissue and is absorbed

by deeper vessels (see the absorption spectra of haemoglobin in Figure 2.3). The capillaries

in the super�cial mucosal layer are then emphasized by the blue light and the deeper mucosal

and submucosal vessels are made visible by the green light. However, to reproduce a colour

image in the monitor we need three images in the R, B and G channels. The R channel

records the signal derived from green illumination so the vessels in the deeper layer will have

a cyan colour. The B and G channels record the signal derived from blue illumination and

the super�cial vessels will appear brownish (Muto et al., 2009).

(a) White Light. (b) NBI �lter.

Figure 1.1: E�ect of NBI (Figure from Muto et al. (2009))1.

1Better viewed in colour.
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Figure 1.1 shows how a Human sees a tissue without (left �gure) and with NBI (right �gure).

In the normal image vascular patterns are di�cult to visualize. The surface of the oesophagus

appears smooth. Depending of the NBI technology employed, we are able to identify some

polyps and a vascular pattern at the surface with a brownish colour. Deeper vessels are

also emphasized appearing with a slight cyan colour. Despite of the technology, NBI is

a very promising tool in the early diagnosis of gastroenterological pathologies decreasing

the examination time, reducing unnecessary biopsies and increasing the accuracy of such

examinations (Muto et al., 2009).

1.1 Motivation

In the twentieth century the average life expectancy from birth in Portugal has increased

and in 2011 was of about 80 years. The main causes of death are cardiovascular diseases and

cancer2. Although the e�orts for prevention and early detection have been made, cancer is

still an issue in public health. According to Registo Oncológico Regional do Norte (RORENO)

the total number of new patients observed at Instituto Português de Oncologia do Porto

Francisco Gentil (IPO-Porto) in 2010 was of 102413. From those 7050 were malignant.

The most frequent oncological pathology observed was the gastrointestinal tract, 23,2% of

the cases, followed by the genitourinary organs, 22,2%, and breast with 19,9%3. From the

diagnosed cancers within the gastrointestinal tract one of the deadliest is the oesophageal

cancer together with the liver and pancreas.

Figure 1.2: 5-year survival rate for some parts of the gastrointestinal tract3.

2Data available at http://www.pordata.pt/Portugal
3Data available at http://www.roreno.com.pt/

http://www.pordata.pt/Portugal
http://www.roreno.com.pt/
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Oesophageal cancer is classi�ed mainly in two groups: squamous cell carcinoma and adeno-

carcinoma. According to RORENO the squamous cell carcinoma represents 101 of the 121

diagnosed cases and adenocarcinoma represents 14 cases and other tumours with 6 cases3.

The disease can also be classi�ed in terms of its extension in �ve groups4.

In Situ malignant tumour that has not penetrated the basement membrane not

extended beyond the epithelial tissue

Localized invasive malignant tumour con�ned to the organ of origin

Regional malignant tumour that has extended beyond the limits of the organ of

origin directly into surrounding organs and tissues or evolved through

the lymphatic system or both

Distant malignant tumour that has spread to parts of the body remote from the

primary tumour either by direct extension or by metastasis

Not Recorded insu�cient information to assign a stage

Table 1.1: Classi�cation of Oesophageal cancer according to its extension.

Most of oesophageal cancer is regional or distant representing 51 and 35 respectively of the

121 diagnosed cases.

Figure 1.3: Distribution of oesaphageal cancer according to its extension3.

They also reveal the lowest 5-year survival rate (6.7% and 5.5% respectively) when compared

to the other extension groups. But the 1-year survival rate is drastically higher, 59.3% if

4This information was retrieved from http://seer.cancer.gov/tools/ssm/

http://seer.cancer.gov/tools/ssm/
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regional, and 30.3% if metastatic3.

It is thus crucial to detect oesophageal cancer, or any other type of cancer per say, in its early

stages. In this context the NBI technique provides a valuable tool, emphasizing the mucosal

microvasculature allowing the identi�cation of vascular alterations indicative of a pathology.

The use of two well de�ned wavelengths allows to visualize structures that were masked by

conventional light. The possibility of observing structures lying deeper in the mucosa and the

increase in contrast of super�cial patterns that may be indicative of a pathology supply a very

important visual tool for a correct early diagnosis. A CAD system capable of an accurate

early detection is crucial in order to increase the odds for survival. Unfortunately, according

to a study performed by Liedlgruber & Uhl (2011) the number of CAD related publications

on the oesophagus is small when compared to other parts of the gastrointestinal tract. This

number is even smaller when considering the new images acquired by NBI endoscopy.

1.2 Objectives

The increasing need of better decisions on the recognition of a pathology leads to the

development of more accurate CAD system. In this context with this thesis we propose

to study existing methods in the image processing �eld and apply them to NBI images. The

special characteristics in the acquisition of NBI images leads to the need of developing new

methods to describe these images in order to attain an improved classi�cation performance.

Rich information is therefore necessary and due to the fact that NBI is a quite recent

technology, the lack of works done in this area is a big drawback.

In this thesis we study state of the art image processing techniques to describe gastroen-

terological images and develop a robust framework to classify these new images. Although,

Computer Vision community usually use local or global analysis techniques for the processing

and description of information, in gastroenterological images most research has been focused

on global analysis techniques (a more detailed description will be given in Section 3.2). In

this work we explore the usage of local image information.

The impact in classi�cation of the independent information from the RGB channels is

also studied by considering some physical principles in the image acquisition process. The
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new patterns revealed by NBI and the high mortality of oesophageal cancer demands the

development of a CAD system specialized in the determination of patterns that may be

indicative of an evolution to cancer.

1.3 Thesis Outline

In Chapter 1 the NBI was introduced. The arising of NBI was natural in the sense of looking

for ways of increasing the contrast between structures to allow a better early diagnostic. Some

statistical data from RORENO is presented in order to motivate the need of the introduction

of a CAD system appropriated to these new images.

In Chapter 2 we begin by introducing the physiological and anatomical properties of the

oesophagus for a better understanding of the patterns found in the mucosa that will be

characteristic of a possible pathology. All the images were in a pre-cancer stage and the

used grading system is also presented. The scienti�c basis behind NBI is analysed and the

main physical principles of the interaction of light with matter are introduced for a better

understanding of the characteristics of the images and �nally the Dichromatic Re�ection

Model are also presented.

Chapter 3 is dedicated to the process of extracting features from the images and we begin

by presenting a literature review on this subject. In his thesis we propose to perform this

task with local descriptors. We also present the sampling strategy that was used to extract

rich information from the images.

Chapter 4 is dedicated to the presentation of some photometric invariants derived from the

valid assumption of the Dichromatic Re�ection Model. These photometric invariants are

derived from the RGB colour model and we also derive the expressions for the opponent

colour system as well as the respective invariants.

Chapter 5 is dedicated to the presentation of the learning method used in this thesis were

we present some basic principles of the Support Vector Machine. In Chapter 6 we begin by

presenting the separation of the images into two classes thus reducing to a binary classi�cation

problem. The main idea is to separate normal from abnormal cases. The used methodology

to extract features, to build a vocabulary that will describe each image and the determination
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of a proper set of descriptors to build our classi�er, is also presented.

Next, in Chapter 7 we present the obtained results and we perform the discussion of the

same and �nally, in Chapter 8 we present the �nal conclusions of the developed work and

future developments in the sense of improving the obtained results.

1.4 Contributions

The main contributions of the work presented in this thesis towards the recognition of pre-

cancer lesions in gastroenterological images were the following:

1. Development of a framework for the representation of the images;

2. Analysis and assessment of the e�ectiveness of local descriptors;

3. Improvement of the recognition of pathologies through the addition of colour informa-

tion based on physical models;

4. The developed work in this thesis was published at RecPad 2013 5.

5http://soma.isr.ist.utl.pt/recpad/

http://soma.isr.ist.utl.pt/recpad/
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Chapter 2

Background Knowledge

In this Chapter we begin to review the morphological and physiological characteristics of the

oesophagus. In the �rst Section the structure of the oesophagus is described as well as the

functionality of the di�erent layers. It is also referred the main types of cancer found. Next,

the visual patterns of the oesophagus that indicate a possible pathology are explained based

on a simpli�ed grading system of mucosal morphology against histology. We introduce the

scienti�c basis behind NBI giving special focus on the absorption phenomenon that occurs

due to the presence of haemoglobin in the capillaries. This absorption will have an impact on

the formed image and thus it is critical to understand. We also review some basic physical

principles mainly the ones that allow the understanding and in�uence the colours obtained

from the image. Colour is in fact the crucial basis of this work and a more detailed description

of the physical phenomenons that a�ect colour are referred as well as a physical model from

whom all the images will be based. This model will be used in later chapters to build

alternative colour spaces and derive photometric invariants.

2.1 The Oesophagus

The oesophagus is a �attened muscular tube of 18 to 26 cm in length. Microscopically, the

oesophageal wall is composed of 4 layers: internal mucosa, submucosa, muscularis propria

and adventitia. Unlike the remainder of the gastrointestinal tract, the oesophagus has no

serosa. This fact allows tumours to spread more easily and make them harder to treat

9
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surgically and also makes luminal disruptions more challenging to repair (Jobe et al., 2009).

Figure 2.1: The layers in the oesophagus.

The internal mucosa is the most inner layer of the oesophagus and is considerably thick. It

basically consists of the three sub-layers: the mucous membrane, which is a nonkeratinized

squamous epithelium, lamina propria that contain vascular structures and the muscularis

mucosa which is a thin layer of irregular arranged muscle �bres. As for the submucosa it

mainly contains lymphocytes, plasma cells, nerve cells, a vascular network and submucosal

glands. The muscularis propria lying more super�cially then the submucosa is responsible

for the motor function being composed exclusively of striated and smooth muscle. Adventitia

is the most super�cial layer of the oesophagus covering it and connecting it to neighbouring

structures. It mainly contains small vessels, lymphatic channels and nerve �bres providing a

support role (Jobe et al., 2009).

Oesophageal cancer, as referred in Section 1.1 is classi�ed in two main groups: the Squamous

Cell Carcinoma (SCC) and adenocarcinoma. These two types of cancer arise in di�erent

depths of the oesophagus. The �rst one, SCC occurs in the middle third of the oesophagus

and the second one, adenocarcinoma is more common in the lower third of the oesophagus

(Jobe et al., 2009). SCC seems to be the more frequent case of oesophageal cancer at least

according to the data from RORENO representing 101 of the 121 diagnosed cases. The main

visual signs that can be visualized with white light endoscopy or even better with NBI are

the Gastroesophageal Re�ux Disease (GERD) and Barrett's Oesophagus (BE). GERD is a

symptom resulting from the upcoming of the gastric acid to the oesophagus. In its chronic
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stage it is more likely to originate BE because repeated mucosal injury is thought to stimulate

the progression of intestinal metaplasia. BE is de�ned as the replacement, or metaplasia,

of the normal oesophageal squamous mucosa with a columnar epithelium containing goblet

cells. It is the most important risk factor for oesophageal adenocarcinoma (Muto et al.,

2009).

2.2 Grading System

BE is one of the main indicators of a possible pathology in the oesophagus. In Singh

et al. (2008) it was studied and validated a simpli�ed grading system of the several patterns

observed in BE. The system is based on the regularity of the patterns of the pits present in

the mucosa as well as the patterns observed for the capillaries. The proposed system analyses

images in a pre-cancer stage and classi�es them into four distinct classes. As the mucosa

starts to evolve into cancer it's surface becomes smoother, this is, the regular patterns start

fading away. With their study they concluded that the patterns could be divided into four

groups:

Type A : Round pits with regular microvasculature;

Type B : Villous/ridge pits with regular microvasculature;

Type C : Absent pits with regular microvasculature;

Type D : Distorted pits with irregular microvasculature;

Type A Type B Type C Type D

Figure 2.2: Sample images of our dataset following Singh's Grading System.
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Type A images are normal and type B images are considered with low metaplasia. As for

type C images the absent pits suggest a low dysplasia and type D are in a pre-cancer stage,

high dysplasia. This simpli�ed grading system was the base for this thesis to perform the

separation of the images into the corresponding classes. They were previously classi�ed by a

cohort of experts and validated by histology.

2.3 The Theory of Narrow-Band Imaging

In the NBI technique the selection of two wavelengths that match the absorption peaks of

haemoglobin will cause a maximum absorption of blue and green in di�erent layers of the

mucosa. Absorption occurs because part of the energy of the incident light is converted into

heat through the vibrations of the molecules in the absorbing material. It is described by

Lambert-Beer Law:

I(z) = I0 exp(−µaz) (2.1)

where I(z) is the intensity of light after a path z along the tissue with µa absorption

coe�cient. I0 is the incident intensity. One can de�ne the absorption length L as the

inverse of the absorption coe�cient: L = 1
µa
. This quantity measures the distance z in which

the intensity I(z) has dropped to 1
e of its incident value I0. In Figure 1.1 we can see the

absorption spectra of haemoglobin (HbO2) which is predominant in vascularized tissues. We

can observe four relative absorption peaks around 280 nm, 415 nm, 540 nm and 580 nm and

a cut-o� at approximately 600 nm (Niemz, 2007).

Figure 2.3: Absorption spectra of haemoglobin in blood (Figure from Niemz (2007)).
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Note that the absorption length is wavelength dependent. Blue will be absorbed more

super�cially while green will be absorbed at a deeper layer. For this matter the resulting

image can be thought as the combination of two independent absorption layers. The �rst

one, more super�cial corresponding to the blue light and a deeper one from the green light.

This fact as a strong impact on the resulting image. The super�cial capillaries will appear

brown because the information of the blue is the input for the grenn and blue channels. The

deeper vessels will appear cyan because the green is the input for both the red channel in

the monitor. Figure 2.4 illustrates the di�erent absorption lengths and the impact on the

resulting image.

Figure 2.4: Absorption lengths in NBI and the enhancement of the capillaries (Figure from

Bryan et al. (2008)).

While light penetrates in the tissue it interacts with small particles that may be cells,

cell organelles and various �bre structures. Size, shape, density, their refractive index

with respect to the tissue and the polarization states of these structures all interfere in

the propagation of light in tissue. Scattering is the main factor that limits the imaging

depth and contrast. Rayleigh scattering assumes that the distance between the scattering

particles are much smaller than the wavelength of the incident radiation. The measured

losses in light intensity due to scattering are quanti�ed by an exponential decay law, de�ning

a scattering coe�cient µs. Neglecting the wavelength dependence of the index of refraction

(thus neglecting dispersion phenomenons) we obtain Rayleigh's law of scattering:

Is ∼
1

λ4
(2.2)

And taking the angle of scattering into consideration we obtain:

Is(θ) ∼
1 + cos2(θ)

λ4
(2.3)
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If the spacing between the particles is comparable to the wavelength of the incident light,

as is in blood cells (Niemz, 2007), another theory must be used: Mie scattering. The main

di�erence to Rayleigh's scattering is the dependence on wavelength (∼ λ−x with 0.4 ≤
x ≤ 0.5). But the probability of a photon to be scattered in a certain direction must be

taken into consideration. For this matter Henyey�Greenstein proposed the following phase

or probability function:

p(θ) =
1− g2

(1 + g2 − 2g cos θ)
3
2

(2.4)

where g represents the coe�cient of anisotropy and has the values 1 or -1, forward and

backward scattering respectively. If g = 0 isotropic scattering occurs. Typical values for g

range from 0.7 to 0.99 for biological tissues and the corresponding scattering angles are 8o

and 45o (Niemz, 2007).

Most biological tissues are turbid and therefore both scattering and absorption will occur.

The mucosa is no exception. For such media one must then de�ne a total attenuation

coe�cient as:

µt = µa + µs (2.5)

thus considering the contributions of scattering (µs) and absorption (µa). One can also de�ne

the mean free optical path of the photons through the mucosa as:

Lt =
1

µt
(2.6)

In order to have a better idea if a medium is mostly absorbing or scattering, and thus the

attenuation of light is mostly due to absorption or scattering, it is usually de�ned another

parameter, the optical albedo a, given by:

a =
µs
µt

(2.7)

If a = 0, attenuation is mostly due to absorption, if a = 1 attenuation is mostly due to

scattering and if a = 1
2 both occur.

In the literature it is common to work with the reduced scattering coe�cient, de�ned as:

µ
′
s = µs(1− g) (2.8)

Another useful parameter is the optical penetration depth, de�ned as:

d =

∫ s

0
µtds

′
(2.9)
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where ds
′
is an in�nitesimal segment of the optical path and s is the total length (Niemz,

2007). These de�nitions are very useful for an experimental determination, using for example,

the inverse adding-doubling method. This was performed by Bashkatov et al. (2005). They

determined some optical properties of human skin, subcutaneous adipose tissue and human

mucosa for a wavelength window of 400 nm to 2000 nm. Borrowing the data related to the

human mucosa from their work we observe that the absorption coe�cient of the human

mucosa presents two peaks at approximately 415 nm and 540 nm due to the presence of

haemoglobin in the oxygenated form in the super�cial vessel of the mucosa. The reduced

scattering spectra actually reveals that for the used wavelengths the mucosa is a quite

scattering tissue and presents an anomalous behaviour near the absorption peaks. This

is due to an anomalous light dispersion phenomenon. It is also observed that the penetration

depth of light at the referred wavelengths is very super�cial.

If we illuminate the tissue with white light some of the vascular structures are not visible

neither are other patterns that maybe indicative of a tissue lesion. But narrowing the band

of the light output will reduce scattering e�ects and increase the image de�nition and with

the absorption phenomenon the contrast between super�cial and deeper vessels is achieved

providing a high quality tool for a better diagnosis.

2.4 The Dichromatic Re�ection Model

When a light ray hits a surface of a material part of it will be re�ected and the remaining will

penetrate throw the tissue. While light penetrates in the tissue it can be scattered, absorbed

or in a more realistic case, a little bit of both. If we consider the angle of incidence as being

θi and the angle of re�ection as θr with respect to the normal of the incidence plane, we

have θi = θr. This is the �rst part of the Law of Re�ection. The second part states that the

incident ray, the perpendicular of the surface and re�ected ray all lie in a plane called the

plane of incidence. Ignoring polarization we can obtain the re�ectivity or re�ectance given

by for normal incidence:

R = r2 =

(
n0 − n1
n0 + n1

)2

(2.10)

where n0 and n1 are the refractive indices of the incidence and transmission media and

they are wavelength dependent, so R will vary along the spectrum. If a re�ecting surface
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is smooth, that is, the irregularities, are small compared to the wavelength, the light re-

emitted by the millions of atoms will combine to form a well de�ned beam in a process called

specular re�ection. On the other hand if the surface is rough compared to the wavelength

the emerging rays will have di�erent directions constituting what is called di�use re�ection

(Hecht, 1998).

The Dichromatic Re�ection Model (DRM) was originally proposed by Shafer (1985). Before

introducing the model it is important to make some considerations. The tissue constituting

the surface of the mucosa can be modelled considering it to be optically inhomogeneous.

This means that the light will interact with the surface matter and with particles of a called

colourant, responsible for producing scattering and colouration. The surface is also considered

opaque, this is, it does not transmit light from one side to the other.

Figure 2.5: Re�ection of light from an inhomogeneous material (Figure from Shafer (1985)).

As light hits the interface of the mucosa it encounters a di�erent index of refraction and

therefore some of it will be re�ected according to Equation 2.10. In a �rst approximation the

re�ection will be in the perfect specular direction. The surface is optically rough, meaning

that the local surface normals are di�erent from the considered surface normal and hence

light will be slightly scattered. The re�ection that occurs at the surface is called interface

re�ection. Interface re�ection is said to be constant with respect to wavelength and thus has

the same colour as the illuminant (Shafer, 1985).

While light penetrates the mucosa it can be scattered by the colourant, and be transmitted

through the mucosa, it can be absorbed by haemoglobin molecules or it can be re-emitted
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through the mucosal surface, producing the body re�ection as illustrated in Figure 2.5. The

geometric distribution of light resulting from the body re�ection is considered isotropic,

meaning independent of the viewing angle. Its colour will be di�erent from the illuminant

because absorption or scattering occurs and their probabilities are wavelength dependent.

The DRM then considers that the image is formed by two terms: interface and body

re�ection. The illumination direction and surface normal are represented by I and N . V is

the viewing direction and J is the direction of the macroscopic perfect specular re�ection.

The photometric angles are i, the incidence angle, e is the angle of emittance between N and

V , g is the phase angle between I and V and s is the o�-specular angle de�ned between the

viewing direction N and the direction of the perfect specular re�ection J . The re�ectance

geometry is shown in Figure 2.6.

Figure 2.6: Photometric Angles (Figure from Shafer (1985)).

The model states that:

L(λ, i, e, g) = Li(λ, i, e, g) + Lb(λ, i, e, g) (2.11)

where L is the total radiance of the re�ected light, Li is the interface re�ection term and

Lb is the body re�ection term. Both radiances can be decomposed into a relative spectral

power distribution (composition) ci and cb, that depend only on the wavelength and are

independent of geometry, and a geometric scale factor (magnitude) mi and mb that depend

only on geometry. Equation 2.11 can then be rewritten as:

L(λ, i, e, g) = mi(i, e, g)ci(λ) +mb(i, e, g)cb(λ); (2.12)

The validity of the model assumes certain circumstances such as the inhomogeneity and

opacity of the surface, a uniform distribution of the colourant, no �uorescence or thin-�lm
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properties, isotropic re�ection from the surface, no inter-re�ection among surfaces, no di�use

illumination and a relative spectral power distribution of the illumination across the scene.

The generality of the model is based on not making assumptions on the geometry imaging,

the fact that it doesn't specify if the surface is planar or curve, it does not assume any speci�c

functions for the terms mi, mb, ci and cb. It also applies equally well if we have a point light

source, an extended light source or in�nitely far way light source. Finally it does not assume

that the amount of illumination is the same everywhere in the scene but only the spectral

power distribution to be the same thus approximating to a more realistic situation (Shafer,

1985).

When a sensing device such as a camera records an image, light is integrated over the entire

spectrum. This process of spectral integration sums the amount of incoming light L(λ, i, e, g),

weighted by the spectral transmittance of the �lter, τ(λ), and the spectral responsivity of

the camera, s(λ), over all the wavelengths:

C =

∫

λ
L(λ, i, e, g)τ(λ)s(λ)dλ (2.13)

By using a red, green and blue �lters we are reducing the problem to a three dimensional

vector space. The spectrum of an incoming beam at pixel position (x, y) is represented by a

triplet C(x, y) = [R,G,B] where i, e and g are determined by x and y and by the position

of the object relative to the camera. Spectral integration is a linear transformation (Shafer,

1985). For this matter Equation 2.12 still holds after the spectral integration and we can

write the DRM in a three dimensional space as follows:

C(x, y) = mi(i, e, g)Ci +mb(i, e, g)Cb (2.14)

C(x, y) is thus a linear combination of two three dimensional vectors, Ci = [Ri, Gi, Bi] and

Cb = [Rb, Gb, Bb], that spans the dichromatic plane in the three dimensional colour space.

Within the de�ned parallelogram by Ci and Cb, the position of any colour is de�ned by the

magnitude of the coe�cients mi and mb at the corresponding point. The DRM thus provides

a mathematical tool to predict the distribution of colours in an object.



Chapter 3

Invariant Features

In this chapter we begin to review some of the literature related to techniques to extract

features from the images. These techniques can be grouped according to their domain:

spatial or frequency, or according to the level they are extracted: high or low level features.

For this task we propose the usage of a local descriptor based on spatial domain features.

These features are proved to be invariant to scale, rotation and translation transformations

(Lowe, 2004).

3.1 Related Work

In this section we review some of the work done in the extraction of features and the di�erent

methods that several authors have used in their works to treat and classify all the information

contained in an image, de�nitely worth more then a thousand words.

Spatial Domain Features: In Sousa et al. (2009) adapted colour features combined

with local binary patterns were used in order to build a texture descriptor to natural

endoscopic images. This work was based on Dinis-Ribeiro visual classi�cation for gastric

mucosa and used statistical pattern recognition methodologies to mimic this visual work done

by clinicians. An MPEG-7 visual descriptor for feature extraction in capsule endoscopy was

analysed by Coimbra & Cunha (2006). MPEG-7 is a multimedia content description standard

19
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that de�nes a variety of visual descriptors for video classi�cation that mainly divide in two

groups, colour descriptors and texture descriptors. They showed that the Scalable Colour

and Homogeneous Texture descriptors are the most adequate to visually detect an event in

capsule endoscopy videos. In Poh et al. (2010) a fusion of low-level features with intermediate-

level features was presented. Their work was to classify Wireless Capsule Endoscopy (WCE)

images as bleeding or non-bleeding. At a low-level they divided the image into square sized

cells of pixels characterizing it with an adaptive colour histogram and then using a cell-

classi�er. In an intermediate-level they divided the image in blocks and then classi�ed each

block combining this information with the previous one. The conclusions were that this

multi-level system actually improved the information representation for WCE images.

Frequency Domain Features: Features are extracted from an image or from the colour

channel after applying some transformation to the data in the frequency domain. Colour

wavelet features were used by Karkanis et al. (2003) to extract information from endoscopic

video images. The features were based on covariances of second-order textural measurements

calculated over the wavelet frame transformation of di�erent colour bands. Expanding

this work, in Lima et al. (2008) a third and forth order moments were added to cope

with distributions that tend to become non-Gaussian in some pathological cases. They

achieved 95% speci�city and 93% sensitivity although only 6 full endoscopic exams were

used. Also in this context, in Kwitt & Uhl (2007) a feature extraction method based

on �tting a two parameter Weibull distribution to the wavelet coe�cient magnitudes of

sub-bands was presented. They assumed textural measures from zoom-endoscopy images

that were calculated from the sub-bands of a complex wavelet transform variant known as

the Dual-Tree Complex Wavelet Transform. They claimed a signi�cant improvement of

the leave-one-out cross-validation (LOOCV) accuracy compared with the classic mean and

standard deviation features. Texture has also been the main property evaluated by Karkanis

et al. (2001). They used second order statistics of the wavelet transformation of each video-

frame. That information was estimated utilizing co-occurrence matrices that were textural

signatures of the corresponding regions. A big di�erence to other works is that they used

a multi layer feed forward Neural Network (MFNN) architecture which was trained using

features on normal and tumour regions. Another approach was proposed by Khademi &

Krishnan (2007). They extracted statistical features from the wavelet domain describing the
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homogeneity of areas in small bowel images. They explored a shift-invariant discrete wavelet

transform (SWIDWT) claiming a high classi�cation rate.

High-level Features: Other authors prefer to work with features that are not extracted

based on colour or texture properties but instead they describe geometrical properties of

shapes extracted from the images. They usually use an edge detector algorithm like the

Canny or SUSAN edge detectors. Some authors have also used a di�erent approach with

region-based algorithms such as segmentation or region growing. An extension of a state-

of-the-art algorithm for boundary detection and segmentation in application to colonoscopic

NBI images that perform automatic segmentation to the images was proposed by Ganz

et al. (2012). Another approach was done by Coimbra et al. (2010) were they measured

the impact of several segmentation algorithms and performing an automatic classi�cation of

gastric tissue. Another one was done by Karargyris & Bourbakis (2009) using Log Gabor

�lters in Wireless Capsule Endoscopy videos. The idea was to use a SUSAN edge detector

in conjunction with a Log Gabor �lter to automatically detect the presence of polyps. In

Stehle et al. (2009) the extraction of vascularization features using and comparing di�erent

segmentation algorithms to vessels were performed concluding that the phase symmetry and

the fast marching algorithms gave the best results.

3.2 Scale Invariant Feature Transform

In this thesis we propose a di�erent approach based on the spatial domain features. For our

local descriptor we used Scale Invariant Feature Transform (SIFT). It was �rst introduced

by Lowe (1999) in the attempt of providing a method to extract features that could be used

for image matching. The extracted features showed to be invariant to scale and rotation and

provided a robust image matching in a wide variety of transformations in the image due to

the distinctiveness of the features (Lowe, 2004).

The SIFT approach can be divided into two parts. The �rst one consists in detecting points of

interest or key-points by smoothing the image with di�erent levels and making the di�erence

in order to detect a maxima or a minima, in a process called SIFT detector. This approach

intends to mimic the object recognition process in primates based on invariant features to
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scale, rotation and illumination. Some neurons in the inferior temporal cortex highly respond

to shape features that share the same complexity of the SIFT features (Lowe, 1999).

The second part is the description of the image around the detected key-point achieved by

stacking spatial gradient histograms descriptive of an image region. This part is called the

SIFT descriptor.

Figure 3.1: The SIFT method (Adopted from (Vedaldi & Fulkerson, 2008).

3.2.1 The SIFT detector

The �rst step in detecting the key-points is to �nd locations that are invariant to scale

changes. This is done by searching for stable features across di�erent scales of the image using

a continuous function of scale know as scale space (Lowe, 2004). It is also proved that the

only possible function that assures this invariance is the Gaussian function. The scale-space

of an image can then be built by convoluting the image with a Gaussian function. Suppose

our image is de�ned as I(x, y) and the scale dependent Gaussian function as G(x, y, σ) =

1
2πσ2 e

−(x2+y2)

2σ2 . The scale space of an image, L(x, y, σ) is de�ned as:

L(x, y, σ) = G(x, y, σ) ∗ I(y, y) (3.1)

By smoothing the image with a Gaussian function, (Lowe, 1999) intends to obtain similar

results with the response of some neurons to colour and texture.

The idea is to compare nearby scale-spaces of an image in order to assure the stability

of the key-point. This is done using the Di�erence-of-Gaussian (DoG) function, D(x, y, σ)

convolved with the image. By taking two nearby scales separated by a multiplicative factor

k, the DoG is simply the subtraction of the images convolved by the two scales respectively,
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and is given by:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3.2)

Each octave of the scale space is divided into an integer number, s, so that k = 2
1
s . To cover

a whole octave we need s+ 3 scale-space images and two adjacent ones are then subtracted

to compute the DoG images. Once a complete octave is processed, the scale-space images are

down-sampled by two and the process is repeated. This means that increasing the scale by

an octave is the same as halving the image resolution (Vedaldi & Fulkerson, 2008). Figure 3.2

illustrates this methodology.

Figure 3.2: The computation of the DoG. (Figure from Lowe (2004)).

Maxima and minima of the DoG are determined by comparing a sample point to it's 8 nearest

neighbours in 3x3 regions at the current image and nine neighbours in the scale above and

below. If this point is the greatest or the smallest of all them, then it's a candidate for a

key-point.

To achieve the desired stability of the key-points not all of them will be considered. Points

that present low contrast, thus sensitive to noise, are rejected by using a Taylor expansion

up to second order of the DoG function. Points that are poorly localized in an edge are also

discarded by taking the curvature of the peak computed with a 2× 2 Hessian matrix, at the

location and scale of the key-point. A bad key-point will have a large curvature across the

edge but a small one at the perpendicular direction (Lowe, 2004).

Once the key-point is determined, the magnitude of the gradient, m(x, y), and its orientation,

θ(x, y) are computed in order to achieve invariance to rotation and to scale, and they are

computed using pixel di�erences by the following expressions (Lowe, 2004):

m(x, y) =
√

((L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.3)
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θ(x, y) = tan−1
[
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

]
(3.4)

The SIFT detector is a circle of radius equal to the scale. A geometric frame of four

parameters will describe the key-point. The x and y position of the center of the key-point

determined by Equation 3.3, it's scale, s and orientation θ given by Equation 3.4.

3.2.2 The SIFT descriptor

The determined scale will in�uence the level of the Gaussian blur at which the image is

smoothed and the orientation of the key-point will rotate the descriptor geometry. Around

the key-point a sample array of 16×16 is de�ned and for each one of this regions the gradient

magnitude and orientation is computed according to Equations 3.3. The magnitude of the

gradients are then stacked into 8 possible orientations thus summarizing the information of

a 4× 4 region as shown in Figure 3.3.

Figure 3.3: The SIFT descriptor.

The length of the arrows shown in Figure 3.2 on the right are the result of the summation of

the magnitudes of the gradients to their closest orientations according to the 8 bin orientation

histogram in the middle. A Gaussian weighting function is also applied to give less importance

to the gradients farther away from the center of the key-points. Each descriptor around the

key-point will thus have 8×4×4 = 128 dimensions. This way of sampling the image gradients

into 4× 4 regions is proved by Lowe (2004) to give the best results.
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3.2.3 Sampling Strategies

The SIFT approach consists in calculating the position of a key-point by computing the DoG

and extract the desired features around that key-point. The features consist of the computed

gradients stacked in a spatial histogram that contains information of a 4x4 region. But a

question arises. What is the best sampling strategy to use in this set of images? Should we

determine the location of the key-point or could we skip that part of the SIFT approach and

perform a di�erent type of sampling? According to Nowak et al. (2006) the performance of

a classi�er based on SIFT features increases with an increasing number of points per image.

They also concluded that for a high number of points the best way of sampling an image was

to perform a uniform random sampling (Nowak et al., 2006). With this in mind and knowing

we have images whose textures are spread over a region, thus having a considerable number

of points per image, we chose to perform a dense sampling of the SIFT descriptors. This way

of densely sampling an image is called a DSIFT. It consists in skipping the detection stage

of the key-points. The idea is to place a quadrangular grid of key-points on top of the image

and extract SIFT descriptors around each key-point. The regularly placed key-points are all

at the same scale and orientation and so are the extracted descriptors.

Figure 3.4: Dense sampling strategy.

Figure 3.4 is an example of applying DSIFT to an image. We see the quadrangular grid of

key-points placed on top of the image. The extracted SIFT descriptors will be placed at

the center of each key-point. The radius of the circles is the scale of the key-point which in

turn is the parameter for the smoothing Gaussian. The orientation of the key-point which in

this type of sampling is equal to every key-point will be also the orientation of the extracted

descriptor2.

2More technical details will be explained further in Chapter 6.
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Chapter 4

Adding Colour Information

With the Dichromatic Re�ection Model, presented in Section 2.4, in this Chapter we seek

alternative formulations for the RGB colours in an attempt to improve the results obtained

by a regular conversion to gray-scale. The RGB colour system and some of its proper-

ties are brie�y presented as well as the opponent process theory and the derivation of

the mathematical expressions of the opponent colours. These colour systems are endowed

by important photometric invariance properties that augment the robustness of posterior

recognition process.

4.1 Colour Spaces

We saw in Section 2.4 that the spectrum of an incoming beam at position (x, y) is given by

Equation 2.13. Most of the device manufacturers opted to use a red, green and blue �lter

and the sensitivities of each �lter are reasonably well matched to the human eye. By doing

so, we are reducing the problem to three dimensions and thus the spectrum of the incoming

beam is represented by a triplet C = [R,G,B].

RGB Colour System: The RGB colour system is an additive colour model. A broad array

of colours can be reproduced by adding certain amounts of red, green and blue. We can then

build a colour cube de�ned by the R, G and B axis. White is produced when all colours are

27
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at a maximum light intensity. Black on the other hand is produced when all colours are at

a minimum light intensity, the origin of the referential. The diagonal connecting the white

and black corners of the RGB cube de�nes the intensity:

I(R,G,B) = R+G+B (4.1)

Figure 4.1 (a) shows the addictiveness of the RGB colours and Figure 4.1 (b) shows the RGB

colour cube.

(a) (b) (c)

Figure 4.1: (a) The addictiveness of the RGB system. (b) The RGB cube. (c) The

chromaticity triangle.

All the points in a plane perpendicular to the gray axis have the same intensity. Such plane

cuts an equilateral triangle de�ning the rgb chromaticity triangle (Figure 4.1 (c)) given by:




r(R,G,B)

g(R,G,B)

b(R,G,B)


 =




R
I

G
I

B
I


 (4.2)

This normalization allows one to calculate colour features from the original R, G and B values

from the corresponding red, green and blue images provided by the colour camera. Brie�y,

on Section 4.2, we will see the advantages of using the rgb normalized colour system.

Hue, Saturation and Intensity: One of the de�nitions of hue is that it is described by

the dominant wavelength of a spectral power distribution. Saturation is usually de�ned as the

purity of a colour, decreasing when more achromaticity is mixed into a colour. Completely

desaturated colours coincide with the gray axis, while fully saturated colours coincide with

pure colours. Intensity is de�ned, for the RGB colour system by Equation 4.1.
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Opponent Colour System: Human beings do not rely on long (L), middle (M) and short

(S) wavelengths channels like the RGB system assumes. The human retina possesses ganglion

cells that combine L, M and S channels to work in opponent colours in order to enhance the

detection of events of interest. The opponent colour theory started about the year 1500

when Leonardo da Vinci came to the conclusion that colours were produced by a mixture

of red-green, yellow-blue and white-black. This opponent colour theory was completed by

Edwald Hering in late 19th century (Gevers et al., 2012). He stated that humans had three

types of photo receptors corresponding to each pair of the opponent colours. But nowadays,

we now that those cells do not exist, but he was right about one thing, the computation of

opponent colours (Gevers et al., 2012).

Figure 4.2: The opponent process theory.

The colour photo receptors at the retina, the cones, are sensitive to long, L-cone, middle,

M-cone and short, S-cone, wavelengths. A single cone is colour blind since its activation

depends on both the wavelength and the intensity of the stimulus. A comparison of the

signals from di�erent classes of photo receptors is therefore the basis for a vision system.

At an early stage in the red-green opponent pathway, signals from the L and M cones are

opposed and in the yellow-blue pathway signals from S cones oppose a combined signal from

L and M cones. In addition, there is a third luminance or achromatic mechanism in which

retinal ganglion cells receive L and M cones input. Thus L, M and S belong to a �rst layer

of the retina whereas luminance and opponent colours belong to a second layer, forming the
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basis of chromatic input to the visual primary cortex.

Despite this physiological interpretation of the opponent colours we can get a more math-

ematical derivation based on photometric derivatives. By considering the DRM referred in

Section 2.4 we can take the spatial derivative of the expression given by Equation 2.14 to

get:

C
′

= embc
′
b + (e

′
mb + em

′
b)cb + (em

′
i + e

′
mi)ci (4.3)

This photometric derivative can be seen as a combination of three vectors. Lets take a closer

look at each one of them (Figure 4.3).

Figure 4.3: (a) Shadow-shading direction. (b) Specular direction. (c) Hue direction.

(Adopted from Van De Weijer et al. (2005)).

First lets look at the term dependent on cb, the second term. What we have are two di�erent

physical phenomenons. For example, if we have changes in the illumination direction and

a �xed object, this is we have e
′
mb, we will have a shadow. On the other hand if we have

a �xed illumination direction but a varying geometry coe�cient we have a shading. This

vector direction at which this changes occur is then called the shadow-shading direction. In

the specular direction, where changes in mi occur, we also have two terms, one corresponding

to changes of the illumination direction, e
′
mi which represents a shadow on top of a specular

re�ection and another that corresponds to changes in the geometric coe�cient em
′
i. We can

also de�ne a third direction that will be perpendicular to this last two and that is where the

hue direction arises, the direction of the vector c
′
b (Van De Weijer et al., 2005).

If we transform the RGB colour space coordinates by means of a spherical transformation

and taking the shadow-shading as one if its coordinates, we get the rθφ colour space given
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by: 


r

θ

φ


 =




√
R2 +G2 +B2 = |C|

arctan G
R

arcsin
√
R2+G2√

R2+G2+B2


 (4.4)

On the other hand if we take the specular direction as a component of a new orthogonal

space we get the opponent colour space, which for a known illuminant cs = (α, β, γ)T , is

given by:



O1

O2

O3


 =




βR−αG√
α2+β2

αγR+βγG−(α2+β2)B√
(α2+β2+γ2)(α2+β2)

αR+βG+γB√
α2+β2+γ2




(4.5)

By taking white illumination the source term is cs = (1, 1, 1)T , and so the opponent colour

formulas simplify into: 


O1

O2

O3


 =




R−G√
2

R+G−2B√
6

R+G+B√
3


 (4.6)

If we take the hue direction as a component for a new coordinate system we get the hue-

saturation-intensity for the opponent colours, simply by considering a polar coordinate

transformation of the Red Green Blue (RGB) colour space and are given by:




h

s

i


 =




arctan
(
O1
O2

)

√
O2

1 +O2
2

O3


 =




arctan
(√

3(R−G)
R+G−2B

)
√

4
6(R2 +G2 +B2 −RG−RB −GB)

R+G+B
3
√
3


 (4.7)

O1 roughly corresponds to the red-green channel, O2 to the yellow-blue channel and O3 to the

intensity channel. The opponent colour system largely decorrelates the RGB colour channels

although it is device dependent and it is not perceptually uniform, this is, the numerical

distance between to colours cannot be related to perceptual di�erences.

4.2 Photometric Invariant Features

The DRM can be applied to derive photometrically invariant features. If we assume only

matte, or dull surfaces, specular re�ection is negligible, this is mi = 0. The angles i, e and
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g fully specify the location of the pixel so we can simplify the notation by denoting ρ as the

spatial coordinates, and so Equation 2.14 reduces to the Lambertian model for di�use body

re�ection:

C(ρ) = mb(ρ)Cb (4.8)

A zero-order invariant can be obtained building each channel with the assumption given in

Equation 4.8. This way the normalized rgb can be considered invariant to lighting geometry

and viewpoint, this is, independent of mb, since:

r =
R

R+G+B
=

mb(ρ)CRb
mb(ρ)(CRb + CGb + CBb

=
CRb

CRb + CGb + CBb
(4.9)

Similar equations can be obtained for the normalized g and b. It thus results in the indepen-

dence for the surface orientation, illumination direction and illumination intensity, assuming

Lambertian re�ection and white illumination. This normalized rgb space depends only on

the factors CRb , C
G
b and CBb which depend on the sensor and the surface albedo (Gevers

et al., 2012).

gray r g

Figure 4.4: Gray-scale image and the r and g channels.

In fact with the DRM applied to each channel we can perform any linear combination. One

of the reasons to do so is the possibility to capture intensity variations in regular surfaces.

This way we have to analyse the proportion of these variations in order to diminish this

dependency. That said we can compute:

CRGB =

∑
i ai(C

R)pi (C
G)qi (C

B)ri∑
j bj(C

R)sj(C
G)tj(C

B)uj

=

∑
i ai(mb(ρ)CRb )pi (mb(ρ)CGb )qi (mb(ρ)CBb )ri∑

j bj(mb(rho)C
R
b )sj(mb(ρ)CGb )tj(mb(ρ)CBb )uj

=

∑
i aimb(ρ)p+q+r(CR)pi (C

G)qi (C
B)ri∑

j bjmb(ρ)s+t+u(CR)sj(C
G)tj(C

B)uj

(4.10)
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Since p+ q + r = s+ t+ u, Equation 4.10 can be further simpli�ed to:

CRGB =

∑
i ai(C

R
b )pi (C

G
b )qi (C

B
b )ri∑

i bi(C
R
b )sj(C

G
b )tj(C

B
b )uj

(4.11)

Numerous invariants can be obtained. The set of �rst-order invariants involves the set where

p+ q + r = s+ t+ u = 1: {
R

G
,
R

B
,
G

B
, · · ·

}
(4.12)

This set of invariants show the same invariance properties as the normalized rgb colours.

R
G

R
B

G
B

Figure 4.5: The ratio of the channels.

It happens that there are quick density variations that cannot be captured linearly. So in

this work we introduce the proportion under the logarithm for this end.
{

log

(
R

G

)
, log

(
R

B

)
, log

(
G

B

)
, · · ·

}
(4.13)

log
(
R
G

)
log
(
R
B

)
log
(
G
B

)

Figure 4.6: The logarithm of the ratio of the channels.

Regions with low illumination or irregular surfaces not clearly illuminated may have lesions

and hence gradient information cannot be explicitly extracted. Performing a non-linear
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mapping on the combined colour system will provide the necessary enhancement to properly

analyse the variations of these proportions. For instance, darker regions will have high slopes

of information variations whereas lighter regions will have slower variations (e.g., specular

highlights).

For the opponent colour space, assuming dichromatic re�ection and white illumination, the

channels O1 and O2 are independent to highlights.

 O1

O2


 =




(mb(ρ)C
R
b +mi(ρ))−(mb(ρ)CGb +mi(ρ))√

2
(mb(ρ)C

R
b +mi(ρ))+(mb(ρ)C

G
b +mi(ρ))−2(mb(ρ)CBb +mi(ρ))√
6




=




mb(ρ)C
R
b −mb(ρ)C

G
b√

2
mb(ρ)C

R
b −mb(ρ)C

G
b −2mb(ρ)C

B
b√

6




(4.14)

O1 and O2 are still dependent on mb(ρ) and so they are sensitive to geometry, shading and

the intensity of the light source. The O3 channel is the intensity and contains no invariance

properties at all.

O1 O2

Figure 4.7: The opponent colour channels.

By taking the hue for the opponent colour space and assuming a matte surface we obtain:

hue = arctan

(
O1

O3

)
= arctan

( √
3(CRb − CGb )

CRb + CGb + CBb

)
(4.15)

The chromatic opponent colours can also be computed.


 Ca

Cb


 =




O1
O3

O2
O3


 =




√
3
2

(
CRb −C

G
b

CRb +CGb +CBb

)

√
1
2

(
CRb +CGb −2C

B
b

CRb +CGb +CBb

)


 (4.16)

Both the hue and the chromatic opponent colours are invariant to lighting geometry and

specularities (Gevers et al., 2012).
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hue Ca Cb

Figure 4.8: The Hue and the chromatic opponent colours.
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Chapter 5

Pathology Recognition

We saw in Chapter 3 how to extract features from the images and based on the DRM we

obtained special photometric invariant features in Chapter 4. In Section 2.2 the images were

grouped into two classes according to Singh's taxonomy. But know a question arises. How

can we actually build a CAD system to help us automatically classify these images? For this

matter we will resort to a powerful classi�cation tool known as Support Vector Machine, a

learning mechanism that became very popular two decades ago. For self-contained reasons

of this document we will review the concepts behind SVMs.

5.1 Linearly Separable Binary Classi�cation

The design of automatic learning algorithms is one classic research problem from the pattern

recognition community. The most well-known problem is classi�cation. The idea is to take

some input vector x and assign it to some discrete class, Ck where k = 1, ...K. The input

feature space will be divided into decision regions, bounded by a called decision boundary. If

the data set has classes that can be separated exactly by a computed linear decision boundary,

the classes are said to be linearly separable. The simplest way of doing this is to construct a

linear discriminant function that takes an input vector x and directly assigns it to a speci�c

class. It is represented by the following expression:

g(x) = wTx+ w0 (5.1)

37
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where w is the weight vector and w0 is a bias parameter (Bishop & Nasrabadi, 2006).

Reducing the problem to two classes, say C1 and C2 and assuming we have an input vector x,

the linear discriminant function will assign it to class C1 if g(x) > 0 and to class C2 otherwise.

The decision boundary is de�ned as g(x) = 0. If the feature space is D-dimensional, the

decision boundary will be (D+1)-dimensional.

For any two points, xa and xb lying on the decision surface, we have that wTxa + w0 =

wTxb + w0, in other words wT (xa − xb) = 0, which indicates that w is normal to any vector

lying in the decision boundary and thus de�nes the orientation of the decision surface.

Let us assume for simplicity that we have only two features, x1 and x2. Any point in the

feature space will be a linear combination of these two features. The discriminant function

gives us the decision boundary, g = 0, thus separating the feature space into two regions,

R1 and R2. Considering that the distance of x to the decision boundary is r, as shown in

Figure 5.1.

Figure 5.1: Linear discriminant function in a two dimensional feature space (Adopted from

Bishop & Nasrabadi (2006)).

As xp is the projection of x into the decision boundary, we can express x as:

x = xp + r
w

‖w‖ (5.2)
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But xp lies on the decision boundary and therefore g(xp) = 0, so multiplying both sides of

the equation by wT and adding w0, we obtain (Bishop & Nasrabadi, 2006):

g(x) = wTx+ w0 = r‖w‖ (5.3)

which gives

r =
g(x)

‖w‖ (5.4)

The linear discriminant thus divides the feature space through a decision boundary or

hyperplane if we have more than two dimensions. The orientation of the hyperplane is

controlled by the weight vector w and the bias parameter w0 controls the location of the

hyperplane relative to the origin of the feature space. The linear discriminant function g(x)

gives us a signed measure of the perpendicular distance of x to the decision boundary as

demonstrated by Equation 5.4 (Bishop & Nasrabadi, 2006).

SVM rely on the same principles, but they represent the data in a much higher dimension

than the original feature space by means of a linear mapping, φ(x).

g(x) = wTφ(x) + b (5.5)

where b is the bias parameter. Lets assume, as before, we have N input vectors x1, xn, ..., xN

with the corresponding labels y1, yn, ..., yN where yn ∈ {−1, 1}. The transformed data points

by means of φ(x) will be classi�ed according to the sign of g(x). Lets also assume the case

where the training data set is linearly separable, this is, Equation 5.5 has at least one solution,

satisfying the condition g(xn) ≥ 0 for points with label yn = +1 and g(xn) < 0 for points

with yn = −1. But multiple solutions may arise. We must then �nd the solution with the

smallest generalization error (Bishop & Nasrabadi, 2006).

SVM makes use of the called Support Vectors, the points that are closest to the decision

boundary. This distance is called the margin and the idea behind the SVM is to maximize

this margin.

In Figure 5.2 we have two classes represented by the green and blue dots and the respective

support vectors represented by a yellow contour. x
′
1 and x

′
2 are the transformed features by

means of φ(x). m1 and m2 are the respective distances to the hyperplane separating the two

classes. To implement a SVM we need to calculate the variables w and b so that our training
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Figure 5.2: Decision plane through two linearly separable classes.

data can be described by:

wTφ(xn) + b ≥ 1 for yn = +1

wTφ(xn) + b ≤ −1 for yn = −1
(5.6)

These equations can be combined into:

yn(wTφ(xn) + b)− 1 ≤ 0 ∀n (5.7)

Considering just the support vectors, we can de�ne two corresponding hyperplanes, S1 and

S2 as:

wTφ(xn) + b = +1 for S1

wTφ(xn) + b = −1 for S2

(5.8)

A SVM will �nd a hyperplane that makes the distances from the support vectors to the

corresponding hyperplanes equal, thus de�ning the margin. The orientation of the hyperplane

will be such, that the margin is maximized. By vector geometry we can �nd that the margin

is equal to 1
‖w‖ and maximizing it subject to the constraints de�ned by Equation 5.7 is

equivalent to �nding:

min‖w‖ such that yn(wTφ(xn) + b)− 1 ≤ 0 ∀n (5.9)

Minimizing ‖w‖ is equivalent to minimizing 1
2‖w‖2 and we need to perform a Quadratic

Programming optimization. For more details see Bishop & Nasrabadi (2006).
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5.2 Binary Classi�cation for Data not Fully Linearly Separable

If the data is not fully linearly separable, we need to relax the constraints slightly in order

to allow for misclassi�ed points. This is achieved introducing a positive slack variable, ξn as

illustrated in Figure 5.3.

Figure 5.3: Decision plane through two non-linearly separable classes

In this case the equations for the hyperplanes will have to account for the penalty factor and

so they can be written as:

wTφ(xn) + b ≥ +1 + ξn for yn = +1

wTφ(xn) + b ≤ −1 + ξn for yn = −1

ξ ≥ 0 ∀n

(5.10)

which can be combined into:

yn(wTφ(xn) + b)− 1 + ξn ≥ 0 where ξn ≥ 0∀n (5.11)

This is called a soft margin SVM. Decision points on the incorrect side of the decision

boundary will have a penalty factor that increases with the distance from it. To try to

reduce the number of miss-classi�cations is to �nd:

min
1

2
‖w‖2 + C

N∑

n=1

ξn (5.12)

subject to the constraints:

yn(wTφ(xn) + b)− 1 + ξn ≥ 0 ∀n (5.13)
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where the parameter C controls the trade-o� between the slack variable penalty and the size

of the margin. See Bishop & Nasrabadi (2006) for more details.

5.3 Non-linear Support Vector Machine

When applying our SVM to linearly separable data we create a matrix H, from the dot

product of our input variables.

Hn,m = ynymK(xn, xm) = xn · xm = xTnxm (5.14)

K(xn, xm) is an example of a family of functions called Kernel functions, where K(xn, xm)

is the Linear kernel. There are other kernel functions as the Intersection kernel de�ned as

KHI(xn, xm) = min(xn, xm) or the χ2 kernel, Kχ2 = 2xtnxm
xn+xm

. These special functions allow

to transform the features into a higher dimensional space, so that the data can actually be

completely separated and we can classify our images based on the constructed decision plane.

We shall not enter in many details as this is a wide subject and is out of the scope of this

thesis1.

1For a more detailed description on this subject see Shawe-Taylor & Cristianini (2004)



Chapter 6

Experimental Study

We begin this chapter by presenting the image dataset used in these experiments and the

separation that we performed in order to build a training set and a test set. We also present

the used methodology to extract features from the images in order to properly recognize

lesions in the tissues. The method consists of extracting SIFT features, sampling the

descriptors with a regular grid. The method to construct new image histograms is also

presented forming the vocabulary of each image. These new histograms will be the input

for our classi�er. As we saw in Chapter 5 the classi�cation step will be performed using

a Support Vector Machine (SVM). The methods that we used in order to optimize the

classi�cation process and to assess the classi�er performance are also presented.

6.1 Image dataset

The image set is composed of endoscopic images from the Barrett's oesophagus, collected by

a research group. We have a total of 250 images classi�ed according to Singh's classi�cation

proposal (Singh et al., 2008) as presented in Section 2.2. They were also annotated, this

is, the region of interest was selected in order to discard irrelevant information, by clinical

experts with di�erent expertises. In this thesis the images were grouped into two classes,

normal (C1) versus pathologic (C2), reducing the problem to a binary classi�cation system.

Type A images are normal, they do not present any kind of irregularity either in the pit

patterns or in the microvasculature. Types B, C and D do show some irregularities and may

43
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be evolving to cancer. Having this in mind Type A is from now on relative to C1 and the

other types to C2, as illustrated in Table 6.1. From the 250 images we have 61 images of

class C1 and 189 images of class C2. As we can see the dataset is quite unbalanced.

Singh's Classi�cation Number of Images Assigned Class

Type A 61 C1

Type B 81

C2Type C 17

Type D 61

Table 6.1: Grouping the images for a binary classi�cation system.

The separation in two classes is thought to separate normal images from images that may

evolve to cancer and therefore require some deeper analysis. In order to train our SVM we

separated the images into a training dataset and a test dataset. The �rst one is used to

train the classi�er and the second one to evaluate the classi�er performance. To balance the

dataset in the training stage we chose to use 50 images of class C1 and 50 images for class

C2 leaving 11 of class C1 and 139 of class C2 for the test dataset.

6.2 Methodology

Figure 6.1: Experimental Setup

In this Section we will describe the method to build our framework. Figure 6.1 illustrates

the methodology for this purpose.
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6.2.1 Extracting colour features

In this thesis SIFT features were extracted using a dense approach since the texture of NBI

images �lls the whole image. The images were previously annotated and thus we rejected the

key-points or frames lying outside the region of interest. Figure 6.1 shows the methodology

used in this thesis. The extraction of SIFT features (step b), the representation of the images

(step c) and the recognition of the pathology (step d), were performed using the vlfeat library

(see http://www.vlfeat.org/ for a detailed description).

Figure 6.2 illustrates an example of the application of the DSIFT approach to a masked

image. Two di�erent scales were also used to extract the descriptors as seen by the two

di�erent radius circles.

(a) Application of DSIFT to a masked image. (b) The two scales.

Figure 6.2: Multi-scale DSIFT extraction.

From Figure 6.3 we see that there are several parameters that can be adjusted like the

sampling step of the key-points and the bin size of the descriptor. We �xed these values in

10 for the sampling step and 8 for the bin size as these gave the best empirical results.

Figure 6.3: The geometry of the DSIFT approach.

http://www.vlfeat.org/
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The sampling step controls the horizontal and vertical distance between the key-points and

the bin size controls the number of pixels covered by the spatial bin of the descriptor. In

fact the size of the spatial bin is related to the key-point scale by a magni�cation factor, so

the descriptors are extracted at a scale equal to S = bin size
magni�cation factor

. The image is also

pre-smoothed with a Gaussian of variance (S)2 − 0.25 (Vedaldi & Fulkerson, 2008).

The methodology to study the impact of colour information begins with the SIFT features

extracted converting the image to gray. To add information from colour and evaluate the

possible gains we incrementally add colour information following the photometric invari-

ant properties presented in Chapter 4.For this purpose we extracted features from the R,

G and B channels independently and added them to the gray descriptor, obtaining the

set {gray; rgb}. Adding the set of �rst-order colour invariants
{
R
G ; RB ; GB

}
to the previous

set we get {gray; rgb; ratio}. We then took the logarithm of each ratio and added to

all the other descriptors. For simplicity this means {gray; rgb; ratio; log}. The descrip-

tors from the opponent colour space were also added. As for the RGB, the descriptors

are extracted independently for each channel {O1;O2;O3} adding them to the previous

ones, {gray; rgb; ratio; log; opp} In a �nal step we extracted the features from chromaticity

opponent channels given by Equations 4.16. Simultaneously we also extracted features

from the hue and added them to the previous descriptors, obtaining the set of descriptors

{gray; rgb; ratio; log; opp; chroma;hue}. All the descriptors were stacked vertically in order

to increase dimensionality.

Algorithm 6.1 Method to extract multi-scale features from the images

De�ne samplingstep = 10; binsize = 8;magnification = {2, 4};
Convert the image to gray

for n=1 to N do

for i=1 do 2 . We used 2 scales for smoothing

Calculate the scalei = binsize
magnificationi

Smooth the image with a Gaussian of variance: (scalei)
2 − 0.25

Extract the frames and the descriptors for imagen

if frames outside the mask then

Discard frames and descriptors

repeat the algorithm with the next set of descriptors
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6.2.2 Building the vocabulary

Bag of Words: Each extracted key-point is then a vector in the feature space described

by a histogram of oriented gradients. An image will be described by a set of these descriptors

that can be thought as a set of visual words where each key-point is described by a visual

word. If we group these visual words using a clustering algorithm such as k-means, we are

grouping the determined visual words and describing the image with more meaningful words.

These new words are called the visual terms. By counting the frequency of the visual words

where the visual terms serve as bins, we can build a histogram that describes the image.

This histogram is called visual vocabulary.

K-means: K-means consists of a simple unsupervised approach, meaning that the labels or

the classes of each image are never present in this stage. As a brief description lets suppose

we have a set of data points {xn} ∈ Rd, collected from all the images and where d is the

dimension of the feature space, in this case d = 128. K-means will search for K cluster

centres, the vectors {ck} ∈ Rd and will also assign the data points to this centres, through a

function A : {xn} → {ck}. The goal is to �nd an assignment of data points to clusters and

a set of vectors {ck} such that the sum of the squares of the distances to each data point to

its closest vector ck is minimum (Vedaldi & Fulkerson, 2008).

The Vocabulary: For each image individually the extracted data points will be assigned

to the calculated centres, or visual terms. By counting how many points of each image we

have near the visual term we build a histogram which is our visual vocabulary for each image

of the form Hn = [hn1 , h
n
2 , h

n
3 , ..., h

n
k ], as illustrated in Algorithm 6.2, where n is the image

number, K is the number of clusters and h are the counts for each visual term.

6.2.3 Training the classi�er

The training of the classi�er is done using an SVM, see Chapter 5, using only the training

dataset. In order to assess the overall performance, we now used the test dataset, trying to

place these never seen images into one side of the decision hyperplane. It is important to

refer that the input vectors for our SVM will be the vocabulary calculated by the k-means
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Algorithm 6.2 Calculating the visual terms with k-means.

Initialize {ck};
for i=1 to K do

Assign each point to nearest ck according to:‖xn − ci‖2

recompute ci

repeat the assignments to nearest center

until
∑ ‖xn − ci‖2 is minimum

return {c1, c2, ..., ck}

Algorithm 6.3 Building the vocabulary for each image

for n=1 to N do

�nd An : {xn} → {ck}
count number of points associated to each cluster

compute Hn = {hnk}

method. The dimensionality of the space is now equal to the number of visual terms we

use. A sub-gradient solver for a SVM was used to compute the penalty factor, de�ned in

Equation 5.12, the so called hinge loss function used for maximum-margin classi�ers (Vedaldi

& Fulkerson, 2008).

6.3 Validating the parameters

In order to evaluate the best regularization parameter, λ = 1
C , we performed a three-fold

cross validation on the training data. We created three subsets of the training data by taking

approximately 1
3 of the images from each of the two classes. Two of them are grouped and

they are responsible for the training stage and the other is used as a validation set. The best

λ is chosen by considering the combination that o�ers the minimum error which is calculated

by:

errorfold =
1

Nval

Nval∑

i=1

I(y∗i ; yi) with I(y∗i ; yi) =





1 if y∗i 6= yi

0 otherwise

(6.1)

where Nval is the number of validation images, yi are the labels with ∗ denoting the predicted
labels. Ten possible values for λ were tried ranging from 0.1 to 1. For each λ the error is
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calculated and once the best λ is determined a mean error is also calculated considering the

mean value of the errors obtained in the three possible combinations for the corresponding

value of λ.

Algorithm 6.4 3-fold Cross-Validation

for λ= 0.1:0.1:1 do

for fold=1:3 do

foldtrain = [1, 2, 3]\fold
Build Vocabulary for the training and test folds

Create Labels for the training and test folds according to:

{C1} → −1 {C2, C3, C4} → 1

Build Model by training the classi�er

Test The classi�er with the validation set

Determine Minimum error given by Equation 6.1 and the corresponding λ

For that λ:

return Mean value for the three combinations

6.4 Assessing the Classi�er Performance

For the assessment of the classi�er performance we used the Mean Average Precision (MAP)

as a parameter. The MAP is calculated taking the mean value of the precision which in turn

can be calculated by the error given in Equation 6.1. The advantage of using the MAP lies

on the fact that we have a very unbalanced test set and the MAP allows to penalize more

representative classes. It is given by:

MAP =
1

K




K∑

j=1

1

Nj
I(y∗i ; yi,K)


 (6.2)

where K in the number of classes, N is the number of images and yi are the labels with ∗
denoting the predicted labels. The fact that the MAP performs this division by the number

of classes, in this case two, will penalize the most representative class, in this case class C2.

The methodology presented in Algorithm 6.5 was repeated 10 times in order to obtain more

stable MAP values. To save computational time the extraction of the features can be
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done only at the �rst run. The results of this experiments and others as to determine the

best regularization parameter, the number of words to use for our vocabulary and the more

adequate kernel to use in our classi�er, are presented and discussed in detail in Chapter 7.

Algorithm 6.5 The Classi�er

Extract Features ∀n according to Algorithm 6.1

Build Vocabulary ∀n according to Algorithm 6.2

Create Training set according to Section 6.1

Label according to

{C1} → −1 {C2, C3, C4} → 1

Determine Regularization parameter λ performing a 3-fold cross-validation according to

Algorithm 6.4

Build Model with the training set

Test Classi�er performance with the test set

Return MAP



Chapter 7

Results and Discussion

There are several parameters that need to be determined before assessing the impact of the

colour descriptors on the performance of the classi�er. One of them is the type of kernel to

use in our SVM. For this purpose we performed a few quick tests considering the Linear,

Intersection and the χ2 kernel, presented in Section 5.3. The tests consisted in analysing the

mean error obtained in the cross-validation procedure given by Equation 6.1, for vocabulary

sizes of 200, 500 and 1000. The results are presented in Table 7.1. The tests are merely

qualitative and so they do not intend to be a justi�cation on the type of kernel to use for

NBI images. For a more detailed study on this subject see Sousa et al. (2013) and Maji et al.

(2008).

Linear Kernel Intersection Kernel χ2 Kernel

# clusters error λ error λ error λ

200 0.2143 0.2 0.2123 0.2 0.1667 0.2

500 0.2326 0.4 0.2093 0.1 0.3256 0.6

1000 0.2193 0.3 0.0932 0.7 0.2326 0.4

ē 0.2237 0.1716 0.2416

Table 7.1: Mean errors obtained for the Linear, Intersection and χ2 kernels.

Considering the mean value of the error, (ē), for the three vocabulary sizes we can see that

the Intersection kernel was the one that gave the least error. For this reason we used in our

experiments an Intersection kernel for the SVM.

51



52 CHAPTER 7. RESULTS AND DISCUSSION

Another parameter of extreme importance is the size of the visual vocabulary. With the

intersection kernel, we performed some tests trying to assess the best number of visual words

to use. It seems reasonable that increasing the vocabulary size will increase the classi�er

performance but that will also increase the computational time of the experiments. So a

compromise between performance and computational cost has to be achieved.

# of visual words MAP ∆t(s)

100 0.7328 493

200 0.7716 906

400 0.7944 1437

800 0.7842 1636

1600 0.7980 2342

Table 7.2: MAP vs # of visual words vs ∆t.

The qualitative tests in Table 7.2, that result from a medium value of the MAP and the

∆t(s) for three runs, indicate that the MAP seems to converge to an optimal value after 400

clusters. For bigger values the computational cost is not justi�ed. We therefore used for our

tests 400 visual words in order to build our visual vocabulary.

To perform our tests, each run will consist of extracting the SIFT features from the images,

build the vocabulary with 400 visual words and evaluate the classi�er performance with an

intersection kernel. In order to obtain a stable MAP result we repeated our experiment 10

times for each set of descriptors, that are described in Section 6.2. Table 7.3 shows the

obtained results.

Descriptors

Run #
1 2 3 4 5 6 7 8 9 10

{gray} 0.726 0.814 0.863 0.777 0.819 0.796 0.756 0.808 0.774 0.811

{gray; rgb} 0.883 0.753 0.899 0.770 0.757 0.881 0.845 0.901 0.721 0.783

{gray; rgb; ratio} 0.729 0.776 0.818 0.799 0.872 0.863 0.759 0.857 0.808 0.871

{gray; rgb; ratio; log} 0.820 0.838 0.857 0.808 0.780 0.859 0.836 0.753 0.708 0.767

{gray; rgb; ratio; log; opp} 0.794 0.879 0.823 0.865 0.771 0.857 0.843 0.808 0.843 0.914

{gray; rgb; ratio; log; opp; chroma;hue} 0.797 0.788 0.848 0.707 0.775 0.842 0.823 0.815 0.819 0.892

{opp} 0.547 0.787 0.727 0.752 0.811 0.794 0.836 0.798 0.685 0.744

Table 7.3: The results of the ten simulations for each descriptor set.
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It can be seen that the combination of {gray; rgb; ratio; log; opp} attains almost always

the best results. The set {gray; rgb} seems to have also good results, in some of the

runs was actually the best, the �uctuations around the mean value are greater then the

set {gray; rgb; ratio; log; opp}, as it can be observed by Table 7.4 analysing the standard

deviations between both sets. The high �uctuations of these results in each run is mostly

due to stochastic behaviour of the K-Means algorithm.

Descriptors MAP

{gray} 0.794 ± 0.038

{gray; rgb} 0.819 ± 0.069

{gray; rgb; ratio} 0.815 ± 0.050

{gray; rgb; ratio; log} 0.805 ± 0.049

{gray; rgb; ratio; log; opp} 0.840 ± 0.042

{gray; rgb; ratio; log; opp; chroma;hue} 0.811 ± 0.049

{opp} 0.748 ± 0.083

Table 7.4: The impact of colour on the classi�er performance.

We can also observe from Table 7.4 that the addition of colour information and photometric

invariant combinations of the colour channels also improves the results. This improvement

could be explained by the adding of discriminative power to our classi�er, this is, we are

adding more dimensions, so it seems reasonable to say that the classi�er performance would

naturally increase by this increase in dimensionality. But as we can observe the addition of

the logarithmic transformation of the ratio of the channels, the set {gray; rgb; ratio; log},
performs actually worse then with the set {gray; rgb; ratio}. Although the ratio of the

channels o�ers photometric invariances to the surface orientation and illumination direction

and intensity, the adding of non-linear transformations, as the logarithm tends to intensify

the amount of noise so a small perturbation of the RGB values causes a large jump in the

transformed values. When we add the chroma and the hue to the previous set with the

opponent colours the performance also decreases. Again, recall that both the chroma and

the hue are computed by ratios of the opponent colours and this may introduce noise. So the

increase in performance is not due to the addition of more dimensions by taking more SIFT

features but is mostly due to the addition of useful photometric invariant colour information.
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From Table 7.4 we also observe that the set {gray; rgb; ratio; log; opp} gives the highest MAP.

This improvement in the results is mainly due to the fact that the opponent channels highly

decorrelate the RGB channels. For example, the O1 channel performs the di�erence of the R

and G channels, Equation 4.6. By doing so we are reducing possible redundant information

in the R and G channel. We have also studied the performance of the classi�er by considering

just the descriptors extracted independently from each opponent channel, the set {opp}. The
results were actually worse then with the set {gray}. This fact could be due to the lack of

photometric invariances in the set of descriptors of just the opponent colours. Recall that

the O3 channel is simply the intensity and it reveals no invariance properties at all as for

the gray-scale image that possesses the constancy of the RGB colours. We can also observe

from Table 7.4 that the results for the set {opp} is the one that reveals the highest standard
deviation value for all experiments. Once again the lack of some photometric invariant

properties could explain these high standard deviations allied to the k-means process.

In order to correctly visualize the performance of the classi�er with each set of descriptors it

is usually used in machine learning a confusion matrix. Each column represents the instances

in a predicted class and each row represents the instances in an actual class thus representing

a visual analysis if the classi�er is confusing the two classes. For our binary problem we

assigned class C1 as a negative and class C2 as positive.

Predicted

C2 C1

Real
C2 TP FN

C1 FP TN

Table 7.5: A typical confusion matrix for a binary problem.

A true positive (TP ) is an image predicted as C2 and is in fact C2. A false positive (FP ) is

an image predicted as C2 but is actually C1. A false negative (FN) is an image assigned to

class C1 but is of class C2 and �nally a true negative is a class C1 correctly classi�ed. With

the separation of our dataset as indicated in Section 6.1, we then have 150 images to test our

classi�er. The tests were performed following Algorithm 6.5 presented in Section 6.4. The

results in Table 7.6 show the confusion matrices for each set of descriptors tested, considering

the mean values of TP , FP , FN and TN for the ten runs.
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105 34

2 9

(a) {gray}

109 30

2 9

(b) {...; rgb}

107 32

2 10

(c) {...; ratio}

109 30

2 9

(d) {...; log}

110 29

1 10

(e) {...; opp}

109 30

2 9

(f) {...; chroma;hue}

102 37

3 8

(g) {opp}

Table 7.6: Confusion matrices for each set of descriptors in average for the 10 simulations.

In order to analyse and interpret the information from these confusion matrices there are

a few parameters that are usually used. These parameters allow a better evaluation of our

classi�er performance.

First we have have the accuracy (AC) of the classi�er which is de�ned as the proportion of

the total number of correct predictions (TP + TN):

AC =
TP + TN

TP + TN + FP + FN
(7.1)

The recall or true positive rate (TPR) is the proportion of positive images correctly classi�ed:

TPR(sensitivity) =
TP

TP + FN
(7.2)

This rate is also know as the sensitivity of the classi�er.

Next we have the false positive rate (FPR) de�ned as the proportion of the negatives

incorrectly classi�ed:

FPR =
FP

FP + TN
(7.3)

The true negative rate (TNR), or speci�city, is de�ned as the proportion of negative classes

correctly classi�ed:

TNR(speci�city) =
TN

FP + TN
(7.4)

The false negative rate (FNR) is the proportion of positive classes incorrectly classi�ed:

FNR =
FN

TP + FN
(7.5)

And �nally the precision (PR), de�ned as the proportion of correctly predicted classes:

PR =
TP

TP + FP
(7.6)
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In Table 7.7 we present all of these rates calculated for each set of descriptors.

Descriptors

Parameters
AC TPR FPR TNR FNR PR MAP

{gray} 0.759 0.753 0.164 0.836 0.247 0.983 0.794±0.038
{gray; rgb} 0.789 0.784 0.145 0.855 0.216 0.986 0.819±0.069
{gray; rgb; ratio} 0.774 0.767 0.136 0.864 0.233 0.986 0.815±0.050
{gray; rgb; ratio; log} 0.785 0.782 0.173 0.827 0.218 0.983 0.805±0.049
{gray; rgb; ratio; log; opp} 0.796 0.788 0.109 0.891 0.212 0.989 0.840±0.042
{gray; rgb; ratio; log; opp; chroma;hue} 0.789 0.785 0.164 0.836 0.215 0.984 0.811±0.049
{opp} 0.735 0.732 0.236 0.764 0.268 0.975 0.748 ± 0.083

Table 7.7: Evaluation of several parameters for each set of descriptors.

We observe that the set of descriptors that attained the best results for all the parameters

was the set {gray; rgb; ratio; log; opp}. It attained the highest accuracy which means it had

the highest number of correct predictions. It also attained the highest sensitivity value so

the proportion of positive images correctly classi�ed was also the highest. It also attained

the lowest FPR and FNR. In this case lower is better because these rates actually measure

the proportion of miss-classi�cations. The highest speci�city of this set of descriptors tells

us that it was the best in classifying the negative images. Finally the highest values for the

precision and for the MAP were also for this set of descriptors thus attaining the highest

proportion of correctly predicted classes. The precision was actually high for all the sets

of descriptors but is due to the fact that our test set is quite unbalanced. We have more

positive then negative images. This is a parameter that is actually biased to the data and

for this matter the MAP is a more trusty measure because it weights the set according to

the number of images per class.

Probabilistically speaking the sensitivity or the TPR can be viewed as the probability of a

certain image to be of class C2, this is positive, knowing that it is of class C2. In other words

it means that if we have an image that was classi�ed as a positive we have sensitivity% shore

that it was well classi�ed. If a classi�er is highly sensitive, this is the TPR is close to 1, the

number of images of class C2 that go undetected decreases. For the speci�city, or the TNR,

it can be viewed as the probability that an image is of class C1 given it is of class C1. If an

image is classi�ed as negative, this is, no cancer, we have speci�city% shore it is a correct
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classi�cation. The higher the speci�city, fewer images of class C1 will be miss-classi�ed as

class C2.

For a binary classi�er as is ours the sensitivity and speci�city are usually su�cient parameters

to assess the classi�er performance, plus the MAP. So for the set that shows the best

results, the set {gray; rgb; ratio; log; opp}, we present these parameters in Table 7.8 in order

to enhance the classi�er performance build with this set.

Descriptor set sensitivity speci�city MAP

{gray; rgb; ratio; log; opp} 0.788 0.891 0.840±0.042

Table 7.8: Binary classi�er performance assessment

The use of the set {gray; rgb; ratio; log; opp} for the SIFT feature extraction process, the

use of the Bag of Words method to cluster the features and the use of the SVM with

an Intersection Kernel thus constitutes our proposal for a robust framework to perform

classi�cation on NBI images of the oesophagus.
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Chapter 8

Conclusions and Future Works

In this thesis we proposed to develop a robust framework for the classi�cation of NBI images

of the oesophagus. We used a local descriptor densely sampled, DSIFT, to describe these

new images, performed the quanti�cation of these descriptors using the Bag of Words method

and used a SVM with an intersection kernel for the classi�cation.

The main goal was to study the impact of colour information to the base SIFT descriptor.

Adding this information was performed by following some physical properties of the images

itself and modulating them with the Dichromatic Re�ection Model that considers the tissue

as being composed by two layers. This modulation allows to rebuild the information on the

RGB channels and in turn obtain special photometric invariants. To the invariance of the

SIFT descriptor to scale, rotation and translation, we were able to add information invariant

to viewpoint, lighting geometry, specularities, surface orientation, illumination direction and

intensity and shading.

The obtained results show that to add information from the RGB channels independently,

the ratio of the RGB channels, the logarithmic of these ratios and the information from the

opponent colour gives the best results. With this set of local descriptors we attained a MAP

of 84.0%, a sensitivity of 78.8% and a speci�city of 89.1%. Its invariance properties allied to

the very special conditions that these images are acquired allow these descriptors to perform

very well. The addition of colour information improved the classi�er performance in about

5% comparing of course the referred set of local descriptors with the opponent colours to our

59



60 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

base gray descriptor. The fact that the opponent colour system highly decorrelates the RGB

channels explains this gain in the performance.

The work presented in this thesis can actually be extended and improved. Some of the

performed tests were merely qualitative as the tests performed to assess the more adequate

kernel to use in our SVM. The intersection kernel was chosen among the χ2 kernel and the

linear kernel performing only three experiments comparing the mean error for three possible

vocabulary sizes. With this is mind a more detailed study maybe performed in order to

attain the best kernel method to use. Another qualitative test performed was the size of the

vocabulary although the results do seem to justify the use of 400 visual terms to describe

these images for the sake of computational cost. Again maybe a more detailed study on this

subject may allow to determine a more e�ective size of the vocabulary. The use of these

qualitative tests is justi�ed by the main goal of this thesis that was to assess the classi�er

performance by adding colour information and so some parameters had to be �xed in order

to perform the tests.

Another topic worthy of interest is the process of the image formation in the NBI system

itself. A deeper knowledge of some of the characteristics of the NBI �lters that are used and

the process of rebuilding the image in the RGB monitor could provide valuable information

on the degree of correlation of the channels and possibly one could modulate the images

taking this information in consideration and obtain better results.
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Abbreviations

CCD Charged-Coupled Device

NBI Narrow-band Imaging

RGB Red Green Blue

RORENO Registo Oncológico Regional do Norte

IPO-Porto Instituto Português de Oncologia do Porto Francisco Gentil

GERD Gastroesophageal Re�ux Disease

SCC Squamous Cell Carcinoma

BE Barrett's Oesophagus

SIFT Scale Invariant Feature Transform

DSIFT Dense SIFT

DoG Di�erence-of-Gaussian

SVM Support Vector Machine

MAP Mean Average Precision

CAD Computer Aided Diagnosis

DRM Dichromatic Re�ection Model
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Abstract

In this work we developed a Computer-Aided Decision (CAD) system by
making use of some physical properties in the image acquisition process
and rebuilding the R, G and B channels achieving special photometric in-
variances. This is performed using a local descriptor such as the Scale
Invariant Feature Transform (SIFT) and we assess the classifier perfor-
mance by studying the impact of colour information to the descriptor. We
achieved a performance of 79% with a regular gray conversion and 84%
by making use of the opponent colours. The proposed set of descriptors
achieved a sensitivity of 79% and a specificity of 89%.

Narrow-Band Imaging (NBI) is a promising tool in the diagnosis of
cancer in gastroenterological images. It illuminates the mucosa with blue
and green light and the fact that green penetrates deeper in the tissue will
increase the contrast of superficial and deeper vessels and the visualiza-
tion of certain structures that were unseen with conventional white light
illumination. This brings new patterns that need to interpreted and anal-
ysed correctly to perform an accurate diagnostic. In this context a CAD
Support System specialized for these images is crucial.

1 Introduction

NBI consists in narrowing the light output, illuminating the mucosa with
blue and green with the use of special filters. Due to the different penetra-
tion depths of light (green penetrates deeper) and the fact that they match
the absorption peaks of haemoglobin, blue will be absorbed by superficial
vessels while green will be absorbed by deeper vessels thus enhancing
the contrast between superficial and deeper vessels. Narrowing the band-
width of the illumination also reduces scattering effects on the mucosal
surface and thus the resulting image reveals structures and patterns that
where unseen with a conventional white light illumination [3]. Blue light
is the input for the B and G channels and so the superficial vessels and
structures will appear brownish while green is the input for the R channel
and so deeper vessels will appear with a cyan colour [3].

These new patterns have a high correlation with histology as shown
by Singh et al. [6]. They proposed a grading system for these images
based on the vascular and structural pattern observed at the oesophageal
mucosal surface:

• Type A: Round pits with regular microvasculature;

• Type B: Villous/ridge pits with regular microvasculature;

• Type C: Absent pits with regular microvasculature;

• Type D: Distorted pits with irregular microvasculature;

Figure 1 shows example images from our data set. We reduced the prob-

Type A Type B Type C Type D
Figure 1: Example images from our dataset.

lem to a binary classification system by assigning Type A to class C1, the
normal cases, and Types B, C and D to class C2, the cases that show an
evolution to cancer. The main idea is to build a CAD system capable of
separating normal from abnormal cases with the use of local descriptors.

2 Colour Invariant Features

2.1 Local Descriptor

In this work we propose to extract features using a local descriptor that
shows invariance to scale, rotation and translation, the SIFT descriptor
[2]. Patterns are spread over a wide region and for this reason the best way
of sampling these images is to perform a dense sampling, as shown by
Nowak et al. [4], placing a regular grid on top of the image and extracting
the descriptors. The SIFT descriptor consists in computing the gradients
in 8 possible orientations on an image patch of 4×4. The resulting vector
is thus in a 128 dimensional feature space. The base descriptor is extracted
with a regular conversion to gray-scale. In this work we intend to study
the addition of colour information to this base descriptor and attend the
possible improvements in the classification performance.

2.2 Adding Colour Information

The addition of colour to the base gray descriptor is performed by modu-
lating the images according to the Dichromatic Reflection Model (DRM).

The Dichromatic Reflection Model The recorded image by a camera
is the the sum of the incoming light at pixel position ρ , L(λ ,ρ), into the
sensor, weighted by the spectral transmittance of the filter, τ(λ ) and the
spectral responsivity of the camera, s(λ ), over all wavelengths:

C =
∫

λ
L(λ ,ρ)τ(λ )s(λ )dλ (1)

This process of spectral integration is a linear transformation [5]. The
DRM considers, for an inhomogeneous material and neutral interface re-
flection, that the formed image of an object can be seen as a combination
of two terms: body and surface reflection, for more information see [5],
and we can then consider the incoming beam as colour triple C = [R,G,B].
The DRM states that:

C = miCi +mbCb (2)

where the indices i and b denote interface and body respectively, mi and
mb are the magnitudes of the corresponding reflections, Ci and Cb are the
corresponding colours and are also colour triples.

Photometric Invariants To obtain photometric invariants we rebuilt the
R, G and B channels according to the DRM. For simplicity we assume a
matte surface, where the term mi responsible for the specular reflections is
negligible. In doing so we obtain the Lambertian model for diffuse body
reflection:

C = mbCb (3)

A zero-order invariant can be obtained by normalizing the R, G, and B
colours (rgb):

r =
R

R+G+B
=

mbCR
b

mb(CR
b +CG

b +CB
b )

=
CR

b

CR
b +CG

b +CB
b

(4)

Similar equations can be obtained for the normalized G and B channels.
By doing so we are obtaining invariance to lighting geometry and view-
point [1]. A set of first-order invariants can be obtained by taking the
ratio of the channels (ratio). They have the same invariant properties as
the normalized RGB colours.

{
R
G
,

R
B
,

G
B
, · · ·
}

(5)



In order to consider the quick density variations that cannot be captured
linearly, we introduce the proportion under the logarithm (log) :

{
log
(

R
G

)
, log

(
R
B

)
, log

(
G
B

)
, · · ·
}

(6)

Human perception of colours relies on the opponent process theory. For
this matter we consider the opponent colour space (opp):




O1
O2
O3


=




R−G√
2

R+G−2B√
6

R+G+B√
3


=




mb(ρ)CR
b−mb(ρ)CG

b√
2

mb(ρ)CR
b +mb(ρ)CG

b −2mb(ρ)CB
b√

6
mb(ρ)CR

b +mb(ρ)CG
b +mb(ρ)CB

b√
3


 (7)

The O1 and O2 channels are independent to highlights but are still sen-
sitive to geometry, shading and the intensity of the light source. The O3
channel is the intensity and contains no invariance properties. We can also
take the hue for the opponent colours (hue):

hue = arctan
(

O1

O3

)
= arctan

(√
3(CR

b −CG
b )

CR
b +CG

b +CB
b

)
(8)

The chromatic opponent colours (chroma) can also be computed.

(
Ca
Cb

)
=

(
O1
O3
O2
O3

)
=




√
3
2

(
CR

b−CG
b

CR
b +CG

b +CB
b

)
√

1
2

(
CR

b +CG
b −2CB

b
CR

b +CG
b +CB

b

)

 (9)

Both the hue and the chromatic opponent colours are invariant to lighting
geometry and specularities [1].

3 Image Representation and Pathology Recognition

For the recognition of pathologies through local information, k-means
method shows to be the most robust for the image description. This
method is also known as the Bag of Words. As a brief description lets
suppose we have a set of data points {xn} ∈Rd , where d is the dimension
of the feature space. K-means consist in searching for K cluster centres,
the vectors {ck} ∈ Rd and finds an assignment function A : {xn} → {ck}
until the sum of the squares of the distances to each data point to its clos-
est vector ck is minimum. We estimated an optimal value of 400 clusters.
For bigger values the computational cost is not justified.

Learning the Patterns This is performed with a Support Vector Ma-
chine (SVM). They rely on the Support Vectors to determine a maximum
margin hyperplane that separates the classes. Let us assume we have N in-
put vectors x1,xn, ...,xN with the corresponding labels y1,yn, ...,yN where
yn ∈ {−1,1}. The data points are transformed into a higher dimensional
space by means of a linear mapping, φ(x). The maximum-margin hyper-
plane is defined by g(x) = wT φ(x)+b, where w is the weight vector and
b is a bias parameter. To find the maximum margin is equivalent to find:

min
1
2
‖w‖2 +C

N

∑
n=1

ξn (10)

subject to the constraints:

yn(wT φ(xn)+b)−1+ξn ≥ 0 ∀ n ∈ {1, ...,N} (11)

where the parameter C controls the trade-off between the slack variable
penalty (ξn) and the size of the margin. In this work we estimated that,
between the Intersection, the χ2 and the Linear Kernel, the best results
were attained with the Intersection Kernel.

4 Results

The image set is composed of endoscopic images from the Barrett’s oe-
sophagus with a total of 250 images classified according to Singh’s pro-
posal and they were also annotated. From those, 61 are from Type A
(normal), and the remaining 189 are from Types B, C and D (pathologic),
reducing the problem to a binary classification system. For the train-
ing stage we considered 50 normal and 50 pathologic images in order

to balance the dataset. To attain the best regularization parameter, we per-
formed a three-fold cross-validation scheme. We began by analysing the
performance with the gray descriptor. Each step consist in adding con-
secutively colour information to this descriptor according to Section 2.2.
In order to attain stable results we repeated each experiment 10 times and
calculated the mean values of the Mean Average Precision (MAP) and the
corresponding standard deviations.

Descriptors MAP
{gray} 0.794 ± 0.038
{opp} 0.748 ± 0.083
{gray;rgb} 0.819 ± 0.069
{gray;rgb;ratio} 0.815 ± 0.050
{gray;rgb;ratio; log} 0.805 ± 0.049
{gray;rgb;ratio; log;opp} 0.840 ± 0.042
{gray;rgb;ratio; log;opp;chroma;hue} 0.811 ± 0.049

Table 1: MAP for the tested sets of descriptors.

From Table 1 we observe that the set {gray;rgb;ratio; log;opp} gives
the highest MAP. For the referred set of descriptors we present the sensi-
tivity and specificity in Table 2.

Descriptor set sensitivity specificity
{gray;rgb;ratio; log;opp} 0.788 0.891

Table 2: Sensitivity and Specificity for the best set of descriptors.

5 Conclusions

The obtained results show that adding information from the RGB chan-
nels independently, the ratio of the RGB channels, the logarithmic of these
ratios and the information from the opponent colours gives the best re-
sults. With this set of local descriptors we attained a MAP of 84.0%, a
sensitivity of 78.8% and a specificity of 89.1%. These high values ob-
tained allow to conclude that the use of local descriptors such as SIFT
actually give very good results mainly due to its invariance properties and
to the very special conditions that these images are acquired. The addi-
tion of colour information improved the classifier performance in about
5% comparing to the gray descriptor. The fact that the opponent colour
system highly decorrelates the RGB channels explains this gain in perfor-
mance.
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