
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Adding intelligence to a smartphone
application prototype for exchanging
public transport information among

travelers

Luís Carlos Moreira Dias

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Teresa Galvão

Second Supervisor: António Nunes

January 20, 2014





Adding intelligence to a smartphone application
prototype for exchanging public transport information2

among travelers

Luís Carlos Moreira Dias4

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:6

Chair: Doctor Rui Camacho
External Examiner: Penousal Machado
Supervisor: Doctor Teresa Galvão
January 20, 2014





Abstract2

The increasing number of private owned cars in urban areas is contributing to the increase of urban
mobility problems. Thus, the need for expanding of the public transport utilization is imminent,4

and one of the main decisions to be made centres in improving the traveller’s experience.
At the same time, the massification of the social networks’ use and the increase on the number6

of smartphones available is changing the way we share information and everyday the mobility of
the user is less of a problem.8

The increase of users in public transports connected to social networks in their journey allows
them to share in real time information regarding their travel. This information can be useful to10

other users, giving relevant knowledge that can influence behaviour, and to the transport company
managers, providing reliable data to be used on decision making.12

With a better understanding of the travellers’ travel patterns and the similarities with other
travellers’ routines, the relevance and efficiency of the information shared in a public transport14

can be largely improved. At the same time, the behaviour of the user can be understood with this
information, providing the identification of an unique user profile.16

In the context of this problem, this dissertation aims to propose the implementation of algo-
rithms that identifies travel patterns of public transport users, which allows the sharing of infor-18

mation with improved efficiency and relevance. These goals are achieved by inferring travellers’
destinations and predicting future travels, modelling travel patterns and creating networks of users20

who share similar travel routines.
The results of this work will improve an existing prototype of a smartphone application for22

the exchange of public transport related information between travellers that was developed in the
context of the same project. It will allow users to automatically connect with travellers with similar24

routines to get and share relevant information to their current or predicted future travel.
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Resumo2

O crescente número de carros privados em áreas urbanas está a contribuir para o o crescimento
de problemas de mobilidade urbana. Assim, a necessidade de expandir a utilização de transportes4

públicos é iminente, e uma das principais decisões a ser feita centra-se em melhorar a experiência
de viagem do utilizador.6

Ao mesmo tempo, a massificação do uso das redes sociais e o crescimento do número de
smartphones utilizados está a mudar a forma como trocamos informação e a cada dia a mobilidade8

da comunicação é menos um problema.
O aumentar de utilizadores ligados a redes sociais dentro dos transportes públicos durante a sua10

viagem permite-lhes partilhar em tempo real informação acerca da sua viagem. Esta informação
pode ser útil para outros utilizadores, dando conhecimento relevante que pode influenciar o seu12

comportamento, e para os administradores de empresas de transportes, providenciando informação
fiável que pode ser útil para tomadas de decisão.14

Percebendo melhor os padrões de viagem dos viajantes e as semelhanças com as rotinas de
outros, a relevância e eficiência da informação partilhada em transportes públicos pode ser alta-16

mente melhorada. Ao mesmo tempo, o comportamento do utilizador pode ser percebido com esta
informação, permitindo a identificação de um perfil de viagem.18

No contexto deste problema, esta dissertação tem como alvo propor a implementação de al-
goritmos que identifiquem padrões de viagem em utilizadores de transportes públicos, permitindo20

assim a partilha de informação com melhor de eficiência e relevância. Estes objectivos são atingi-
dos inferindo destinos de viagens dos utilizadores e prevendo futuras viagens com base nestas22

inferências, utilizando os seus dados de viagem, modelando assim padrões de viagem e criando
redes de utilizadores cujas rotinas são semelhantes.24

Estes resultados levarão ao melhoramento de um protótipo existente duma aplicação para
smartphones existente para troca de informação relacionada com transportes publicos entre uti-26

lizadores, que foi desenvolvida previamente no contexto do mesmo projecto. Irá permitir aos
utilizadores conectar-se automaticamente com outros viajantes com rotinas semelhantes, obtendo28

e partilhando informação relevante à sua rota actual ou prevista futura viagem.
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“A ship in port is safe...2

but that is not what ships are made for.”
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Chapter 12

Introduction

4

1.1 Context

The massification of social networking is undoubtedly one of the main reasons for the actual6

evolution on communication between people. Just in the USA, 81% of adults (ages 30-49) go

on-line, and 47% use social networks [LPSZ10]. At the same time, the evolution of comunication8

technology and devices has allowed this communication to be made anywhere. 81% of adults

(ages 30-49) are wireless Internet users, and 93% of that age class have a cell phone [LPSZ10].10

While we communicate easier, the mobility of people in urban areas keeps getting harder

due to the number of private owned vehicles in these areas. This along the escalation in CO212

emissions, that suggests that a 50% reduction is needed by 2050 "to avoid a 2 degrees increase in

global temperatures and sea level rise" [GB13], have been one of the main reasons of the growing14

importance of public transports. This ultimately calls for actions to be made regarding the use

of these vehicles and improving the travellers’ experience should be one of the main focus to16

successfully promote the expansion of their use.

Communication through social networks can improve the user experience while travelling on18

public transports. Major transport companies are already on-line, offering information regarding

events or vehicle schedules and are present on the main social networks providing a way for their20

users to exchange information on their travels. However, this information is highly scattered and in

big quantities [NGCP11], and consequently finding relevant information for one specific traveller22

riding on one specific route in real-time is extremely difficult as users need to search for what is

relevant to them.24

This work appeared in the the context of a current PhD project concerning the co-creation

of value in urban public transport between travellers [Nun12], and following an MSc thesis that26

consisted of the implementation of a prototype of a smartphone application for the exchange of

public transport related information between travellers [Gon12], extending it to improve network28

creation intelligence and exchanged information relevance.

1
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The data used came from Porto’s public bus transport network, gently provided by STCP 2

and OPT for investigation purposes, and its attributes quality regarding vehicle, time and location

information benefit this thesis final results quality. 4

1.2 Motivation and Goals

Travellers who use public transports on their lives tend to develop some routines in their daily 6

journeys. Using the potential of easy communication, public transport companies try to help their

travellers providing information in social platforms like Twitter and Facebook that helps them in 8

their travels. This kind of procedure works both ways, since company managers can use data

shared by travellers in these social networks to improve their service. 10

During the travels, a big portion of users are connected to the Internet [Gon12] and use it,

among others, to share information regarding their current travel. This information is usually 12

sparse and hard to deliver to friends to whom that information could be valuable if delivered

timely and efficiently. 14

Information capture regarding passenger transit information on an open system has been his-

torically associated to an expensive task [Gor12]. Individual information regarding origin-destination 16

pairing for one travel on a bus route could be gathered through the combination of boarding counts

and traveller surveys samples [BAMH85]. However, survey response rates are shown to be de- 18

clining, thus increasing the cost and losing reliability [Sto08][Sim10] and it has been studied that

public transports’ card systems can "provide similar OD [Origin-Destination] information at larger 20

scales and at lower cost [PYKL08] [Gor12].

Origin-destination pairing for riders’ travels can provide enough data to predict future travels 22

from the passengers given a time interval of the day. Information about regular public transport

users can thus, through this information, be clustered though similarity among historical travels or 24

travel paths in a way that allows merging the most similar travels in networks which provide a mean

to find passengers with similar travel patterns and to interchange valuable real-time information 26

among them.

This dissertation aims to use the previously dissertation work on a smartphone application to 28

share public transport information among travellers [Gon12] and improve it so that the application

uses travel data to detect user travel patterns, infer previous destinations and predict future travels. 30

Through this adaptation, it is expected that, in the future, this smartphone application will be

able to integrate the algorithms developed in this work and be tested in the real world, with real 32

passengers.

The scientific objectives of this work are the creation of a framework that efficiently deter- 34

mines users’ travel destinations, allowing inference of users’ travel patterns and the identification

of users’ travel profiles recurring to users’ travel data mining, using different techniques and al- 36

gorithms to infer the best solution to the problem. These techniques, along with the concept of

2
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relevance among user travels, will allow the creation of networks of users with similar and rele-2

vant travel routines, providing automatic insertion on these networks and feeding them with more

relevant and efficient information.4

1.3 Document Structure

Along with this introduction, this dissertation has 4 more chapters and is organized as follows:6

In chapter 2, the state of the art for the fields related to this work is defined. Contains a detailed

explanation of the previous work on which this thesis is based alongside with literature about8

destination inference, relevance searching and major clustering algorithms and their attributes.

In chapter 3, the problem of inferring the passengers’ destinations is presented, along with10

the methods proposed to solve it. It contains the implementation and explanation of several main

decisions to estimate travel destinations, along with a proposed evaluation method based on the12

inference of a simulated dataset.

Chapter 4 details the implementation of the second phase of this work, the creation of tem-14

porary networks. In this chapter the concept of relevance among travellers and its measurement

methods are deeply explained, and from it the creation of temporary networks is detailed and the16

results analysed, along with the conclusions obtained from them.

Chapter 5 presents the conclusions and the future work to be done on the context of the18

project [Nun12] this work relates to.
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Chapter 22

State of The Art

4

2.1 Introduction

In the last years, due to the evolution in communication and social interaction, some work related6

to social networking for travellers has appeared. The application on which this work revolves is

one of those works, and will be detailed in the following section 2.2.1.8

The amount of Geo-tagged data existent on networks like Flickr or Twitter [FS10] provides

also the possibility of detection of user patterns in multiple areas. Studies to detect patterns on10

travels, mobility or even points-of-interest visit in some regions have been made, and this work

will present its main concepts and the possibilities of improvement to provide a good background.12

Public transports that run on open systems, in which users only validate their travel when

boarding, exist in many cities on the world and thus transport companies have with them big sets14

of information regarding those travels. Using this data, studies have been made in order to obtain

passenger flows, travel behaviour or peaks of travel in certain areas. Work related to the inference16

of origin-destination matrices exists, providing ways to obtain destinations from data on which

only boarding is described, and is analysed on this section.18

This chapter presents the most relevant concepts to this thesis and the related work performed

in this area.20

2.2 Social networks for travelers

2.2.1 A smartphone application prototype for exchanging public transport infor-22

mation among travelers

To respond to the needs of improvement of user experience in public transports, a platform was cre-24

ated and implemented [Gon12] in the context of a PhD work by António Nunes [Nun12] [NGCP11].

This prototype service "enables collaborative exchanges on information in real-time among public26

transport travellers and operators" [NGG13].
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Being a social network a set of "connections between groups of people" [Mit69], with the 2

massification of Internet it became defined as a platform in which users are allowed to communi-

cate and share information [Dic14]. These networks are, therefore, formed by groups of people 4

who know each other in some way, or that have some kind of personal connection or even mu-

tual interests. Hereupon, to travellers who ride public transports, this kind of connections are 6

rarely found, since in their journeys they share the different vehicles with different people every

day. Regarding this foundation, the implemented application uses the concept of temporary net- 8

work [NGCP11][NGC12], being this network one with temporary connections, in which for each

travel a user may have different sets of "friends", i.e, connections. This temporary attribute is 10

defined by the current location of each user, by grouping all users currently in a given route and

direction in the same network, dissimilar from users in different routes at the same time. The im- 12

provements proposed by this thesis work are directly related with this component, aiming to add

intelligence to this process of temporary networks creation. 14

With this application the traveller can rate aspects of his current journey. After the manual

check-in in the vehicle, where the user indicates the route in which the vehicle operates, he can 16

"rate aspects of the current journey, rate recent comments provided by others in the same route,

read spatially referenced comments that match his or her travel profile and intentions, check points 18

and available rewards, see which users are in the same temporary network, and plan a journey

according to his or her recorded travel profile and intentions" [NGCP11]. This information may 20

be of different types such as seating availability, crowding, progress, punctuality, temperature,

noise or driver skills. 22

Furthermore, there are two kinds of information: (i)structured by type and restricted to the

options on the application or (ii) free content input, with the possibility of writing comments, 24

referenced by route and type [NGCP11]. The access to this data is only available to travellers in the

same network, providing effective information in a way that only users to whom that information 26

is relevant can see it and rate it as good or bad. The effectiveness of this information is improved

by a rating system, which consists in that, for a given information being shared, it must be rated 28

by a small random set of users and validated before being shared with the remaining network

elements, improving its reliability. 30

Travellers are encouraged to share relevant data and rate other travellers’ information through

a rewards model [NGCP11]. This system would "enhance the game-like nature of the proposed 32

model of social network interaction, making it more appealing as as serious real-life game" [NGCP11].

Users that provide good information and rate others accordingly are rewarded with virtual points, 34

based on parameters defined by transport network managers. Thus, good information and rating

earns points, whereas irrelevant input incurs in a penalty. With enough points, transport managers 36

could reward the users that provide best information with discounts or other kinds of gain for

the traveller. On the other side, from a business model perspective, this information can help the 38

same managers to improve service quality, possibly increasing revenue. With the gathered data,

transport companies can cut off in satisfaction surveys, since with the rewarding system they are 40

already "buying" relevant data from their customers.
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2.3 Origin-Destination Inference2

Inference represents the process of deriving conclusions based on premises assumed true. In the

context of this work, these assumptions allow the inference of origins and/or destinations, when4

only one or none of them is previously known, for each trip segment of one user’s day in the public

transport system. Inferring the trip segment origin and destination becomes mandatory to reveal6

each user’s full travel path, allowing future work on the detection of patterns among travels.

Regarding related work, Barry et al. [BNRS02] use New York metro data (MetroCard1) with8

the objective of infer destinations for each travel, since New York’s is, as in Porto, an open sys-

tem, i.e, one system in which the passengers are only required to register their entry on the sys-10

tem through their card, being allowed to navigate freely until the final destination. The main

application of this work is "to describe travel patterns for service planning and to create Origin-12

Destination trip tables" [BNRS02] to determine volume of crowdedness on trains at peak load

points, using the MetroCard’s gathered data. This dataset has information regarding time and14

location of the sequence of trips’ origins performed by each user in the system, and a set of algo-

rithms is applied to this data to estimate each trip segment destination. As an inference, this work16

follows two premisses: first, "a high percentage of travellers return to the destination station of

their previous trip to begin their next trip" [BNRS02] and second, "a high percentage of travellers18

end their last trip of the day at the station where they began their first trip of the day" [BNRS02].

Gordon [Gor12] uses London Oyster2 farecard validations and iBus3 automatic vehicle loca-20

tion (AVL) system to infer origin and interchange locations between trips of various public modes,

constructing full origin-interchange-destination matrices. The dataset is composed of spatial co-22

ordinates relative to the travellers path. Using this data, this work calculates distances between

travellers coordinates and stop locations. Gordon’s [Gor12] goal is to estimate passengers’ flows24

in the London’s public transport network for each time period (early morning, morning peak,

evening peak), and based on the assumption that the sample’s time spans for the travels are a26

proxy for those of the population.

The automatic fare collection (AFC) system of the Chicago Transit Authority4 is used by Zhao28

et al. [ZRW07] to develop a method to infer passengers’ origin-destination for each trip. Its tick-

eting system runs, as in Barry et al. [BNRS02], on an open system, which means that the data30

gathered also provides only the boarding location for each trip. The dataset contains spatial and

temporal information for each boarding validation on each card, as the route and sequence number32

of the boarding stop on that route. To infer the origin-destination matrix, this work follows the

premise that "a high percentage of users stay at, or return to, the destination station of their pre-34

vious trip segment to begin their next trip segment" [ZRW07], taking advantage of each person’s

consecutive trip segments. For that, three assumptions are made: there is no private transportation

1http://web.mta.info/metrocard/
2http://www.tfl.gov.uk/tickets/14836.aspx
3http://www.tfl.gov.uk/static/corporate/media/newscentre/archive/11573.html
4http://www.transitchicago.com/
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mode between each consecutive trip, passengers don’t walk long distances (assuming the accept- 2

able walking distance as 1320 feet [400 meters]) and passengers end their last trip of the day at

the station where they began their first trip of that day. This works tries to obtain results with the 4

objective of demonstrate the potential of this study to replace expensive origin-destination surveys

and help improving decision making. 6

Summarizing, there’s some work done on the inference of origin-destination matrices, provid-

ing some reliable and useful information to this document’s work. However, none of the literature 8

contains zonal validation for the inferred origin and/or destination, and as detailed in chapter 3

this component provides an useful improvement on the inference final quality assurance. 10

2.4 Knowledge discovery from data

Regarding this work, a big set of validations data was provided by STCP public transport system 12

for research purposes. This consisted in nearly 30 million records for the months of January, April

and May of 2010, from which we could extract information regarding the vehicle internal identi- 14

fier, journey start time, location and time of boarding from the passenger, among other important

data. 16

Hereupon, since we were dealing with such amounts of data, work around discovering the

relevant information from data was studied for this thesis, and the next sections present the state 18

of the art regarding these concepts.

2.4.1 Data Pre-Processing 20

Data analysis is considered to be the base of investigation in many fields of knowledge [FS97].

Through this analysis, researchers can get a better understanding of the problems and improve de- 22

cision making to solve them. Thus, perfecting data quality is of major importance to its reliability,

and in most cases [FS97] imperfections in data are not noticed until the analysis begins. 24

Considering this problem, the main objectives of data pre-processing are to improve data qual-

ity and solve problems such as missing attributes, duplicates, corrupt data or data structure modi- 26

fication. Furthermore, this phase’s results are indispensable to the final success of the work, as can

be found in some work described below. 28

In Prasad et al. [PRA10], data pre-processing is shown to be critical to successfully extract

useful and reliable information in large volumes of data from web-based organizations. The impact 30

of data pre-processing on the analysis and optimization of web-based educational systems and its

learning content is analysed in Sato et al. [SMS+11], comparing the extracted results. Alcalá- 32

Fdez et al. [AFSG+08] presents KEEL, a software tool specialized in Data Mining problems along

with the integration of different pre-processing techniques. The importance of this preparation is 34

discussed as one of the main contributions to the algorithms results and it is shown as a complex

component of knowledge discovery from data. Gordon [Gor12] works on the the estimation of 36

origin and destination of user travels based on spatial data from the users’ cards. This data is

referred as propitious to invalid information such as unfinished entries, duplicate transactions and

8
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corrupt travel segments, and requires special handling of data, making data pre-processing one of2

the major factor of success for the inference.

Summarizing, when facing large datasets the impact of data quality is severe. Thus, pre-4

processing and elimination/transformation of corrupt, incomplete or unstructured data reveals it-

self as one of the most important components to ensure good results. Because this work uses6

large volumes of data from travellers’ validations, pre-processing this information is the first step

towards the proposed solution.8

2.4.2 Data Mining

Data mining is "the entire process of applying computer-based methodologies", through either au-10

tomatic or manual methods, with the main goal of "knowledge discovery" from "large collections

of data" [Kan11]. This knowledge if often hidden in the data, and "to act on that knowledge is12

becoming increasingly important in today’s competitive world" [Kan11], as we live in data-driven

times, in which data mining" is a fast growing application area in business" [BM01].14

The process of data mining tends to have two main objectives:

• Prediction: used to predict unknown of future values of variables of interest. Predictive16

mining produces a model for the system based on the given data set, and this model can be

used to classification, prediction or estimation, among other tasks.18

• Description: used to find patterns described in the data, in a way that can be interpreted by

humans. Descriptive mining produces new, non-trivial information based on the given set.20

This information uncovers patterns and relationships in the data set, with the goal of deeply

understand the system.22

The goals mentioned above are achieved using different data mining techniques. These are

applied, as showed in [Kan11], [Jia06], [MH09], for the following tasks:24

• Classification and Regression: Given a range of predefined classes, discovers a predictive

function classifying data into on of the classes (classification) or mapping the data to a26

real-value prediction variable (regression).

• Clustering: Technique that groups similar objects in the same sub-group. Different objects28

belong to different sub-groups.

• Summarization: Finds and discriminates a compact description for characteristics or fea-30

tures of subsets of data.

• Dependency Modelling: Models dependencies between features in a data set, predicting32

values of some attributes based on another.

• Change and Deviation Detection: Discovers items that exhibit unexpected changes and de-34

viations in a data set.

9
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2.4.3 Clustering 2

Clustering is "the process of grouping a set of physical or abstract objects into classes of similar

objects" [Jia06]. This groups of data have the name of cluster, and a single cluster is formed by 4

objects "that are similar to one another" and at the same time "are dissimilar to the objects in other

clusters" [Jia06]. 6

Regarding the proposed problem, with the need to find patterns from unlabelled data such as

the location of the travellers’ journeys, clustering becomes one approach to analyse. Grouping 8

of similar patterns among travellers could answer the need of creating networks of similar trav-

els, provided a data set of travel intentions. Furthermore, the techniques of spatial and temporal 10

clustering, as described ahead in this document, could provide algorithms capable of geo-spatial

aggregations. 12

There is some work that can be analysed regarding the finding of travel patterns using cluster-

ing methods. Xiaolei et al.[MWW+13] uses density-based clustering to identify travel patterns, 14

along with partition based clustering to classify travel regularities. Travellers’ information is ob-

tained from smart card data collected, which contains spatio-temporal characteristics of each trip 16

chain. Based on these chains, this work applies clustering algorithms along with rough-set theory

to cluster and classify travel pattern regularities. 18

A density-based approach is also used by Zheng et al.[ZLZC11] to discover tourist regions

of attraction based on photography location patterns. Photos from Flickr have temporal and ge- 20

ographical meta-data, and so this geo-tagged data is used to find photographers’ spatio-temporal

paths. Using a dataset with geo-tagged photos, with the aim to find people’s travel patterns within 22

a local tour destination, results in a statistical dataset of peoples’ trails to identify regions of at-

traction. 24

Lee [LCL13] also uses geo-tagged photographs from Flickr and its spatio-temporal charac-

teristics to investigate association between points-of-interest(PoI) through the analysis of peoples’ 26

travel paths from one PoI to another, resulting in a study that reveals PoI that are frequently visited

along with other PoI. This work is also based on the use of a density based method. 28

Summarizing, the literature suggests that the main approach to find spatio-temporal pattens

is related to partitioning and density based algorithms. Thus, in the following section we will 30

describe the most relevant types of cluster analysis used in the literature regarding travel patterns

and travel prediction, along with a detailed examination and description of the most relevant algo- 32

rithms.

34

Partitioning Clustering

Partitioning algorithms organize a given data set into a previously chosen number of uniform 36

clusters. The partitioning method creates an initial partitioning, and then iteratively "attempts

to improve this partition by moving objects from one group to another" [Jia06]. After the last 38

iteration, each one of these clusters is circular and its data is similar inside the cluster and dissimilar
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to another clusters. This similarity is calculated based on a distance function and the cluster is2

formed to optimize a partition criteria.

The most commonly used and well-known algorithm for this method is k-means. [Jia06]. "The4

k-means algorithm takes the input parameter, k, and partitions a set of n objects into k clusters so

that the resulting intra-cluster similarity is high but the inter-cluster similarity is low" [Jia06]. This6

method defines a centroid or center of gravity as a mean value of the objects in a cluster, and thus

comparing the distance of each point to the centroid, assigns it to the most similar cluster based on8

that distance. This process iterates until the criterion function converges, and the calculus of the

variation inside the cluster to calculate cluster quality in each iteration is defined by a square-error10

criterion, defined as

E =
k

∑
i=1

k

∑
p∈Ci

|p−mi|2 (2.1)

Above, E is the sum of the square error for the whole data set; p is an object of cluster Ci. mi12

is the mean of the cluster, therefore "for each object in each cluster, the distance from the object

to its cluster center is squared, and the distances are summed" [Jia06]. This results in k clusters,14

each as inner compact and separated from each other as possible.

16

Density-Based Clustering

Clustering methods based on density are those that search areas of higher density, and define a18

cluster as being the objects on those areas. To separate clusters, these methods search for regions

of low density. Thus, the algorithms that follow these methods can be used to filter noise (outliers),20

allowing the modelling of clusters of arbitrary shape, being suitable to problems where the limit

to circular clusters can be a constraint.22

DBSCAN [SjRkG13] is the most well-known and used density-based methods "that grow

clusters according to a density-based connectivity analysis" [Jia06]. This method is based on data24

intensity. It searches for areas of high density, and makes clusters of objects of those areas. This

search is done with two parameters, a given area (Eps) of a ε-neighborhood and the minimum of26

points contained in the ε-neighborhood (MinPts) [LCL13]. If the ε-neighborhood of an object

contains at least MinPts, then this object is named core object [Jia06] and it’s part of the cluster.28

A point p1 is directly density-reachable from a point p2 if it is within the Eps area of the ε-

neighborhood and if Eps has at least MinPts. If there is a sequence p1, p2... pn, where p1=p and30

pn=q, and each pi+1 is directly density-reachable from pi, then p is density-reachable. A set of

density-reachable object forms a cluster.32

If the input Eps and MinPts are appropriately defined, this algorithm is effective finding clus-

ters of arbitrary-shape. The computational complexity of DBSCAN is O(n2), where n is the num-34

ber of database objects. Best results are achieved with the use of a spatial index, where it performs

11
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with O(n log n). 2

2.5 Relevance in information retrieval

Information retrieval (IR) is an interdisciplinary research field that includes, among others, rele- 4

vance rankings, search engines and evaluation measures. IR systems are the "predecessors of Web

and search engines" [ZN14], designed to retrieve documents and digital collections. In IR, similar- 6

ity is used to measure semantic and syntactic similarity, comparing meanings or syntax [JRK13],

and its ranking algorithms are used to obtain "high-recall documents" [ZN14]. These measures 8

constitute a classical approach [JRK13] to information retrieval, being applied for the course of

many years with increase in the spatial information (geographic) domain [SCH08]. 10

Information retrieval is "about computing the degree of relevance between a set of objects and

the search parameters" [JRK13], and its major appliance is related to web search engines [ZN14] 12

using user-specified keywords and returning lists of web pages sorted by relevance to the user

query [ZN14]. This information can be entered directly, through keywords, or inferred from im- 14

plicit data and used for the relevance rankings [SCH08].

These concepts can be aligned with this work’s problem. The degree of relevance could be 16

measured between travel validations provided from STCP for this research, given that the full

travel path could be inferred to be able to match against the ones from the remaining travellers. 18

Through the bus network data collected in the context of this project [Nun12], with data from bus

routes and bus stops present on the bus network, and taking advantage of the attributes on the 20

validations data, like boarding location and number of zones allowed to travel with that card, the

full journey of the passenger can be estimated and an algorithm to measure the relevance between 22

the travels can thus be created. This way, the concept of relevance could rank each travel path,

matching against the others and score through relevance measures, resulting in a list of high-recall 24

passenger travels for each computed travel path, i.e, the "input-query" of the relevance scoring.

The adaptation of the information retrieval relevance ranking concept to our work and the 26

detailing of its main features and attributes are presented further on this document, on chapter 4.

2.6 Summary and Conclusions 28

Data Pre-Processing is of major importance to the final efficiency of the results obtained, and its

methods application needs to be carefully studied according to the work’s dataset. 30

Trip Inference is the subject of inferring, for each trip segment of one traveller, its origin

or destination (or both if both needed). This process, as an inference, often relies on premisses 32

assumed true to obtain effective results. This work’s data is entry-only, thus to estimate trip des-

tinations, some assumptions had to be made based on the literature. This process will be detailed 34

further down on this document in chapter 3.
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The process of clustering, i.e, grouping of similar data within the same cluster, and at the2

same time dissimilar from data in the other clusters has wide applications, and can be used as a

stand-alone data mining tool or to pre-process data for other algorithms.4

Clustering methods used to travel patterning found in literature can be classified as partitioning

or density-base. Some may belong to more than of of these categories.6

Partitioning methods divide a set in k partitions, and iterates to improve partitioning moving

objects among groups.8

Density-based methods groups data based on density, and creates clusters according to the

density of its neighborhood.10

The problem of pattern identification and the need to find similarities between the patterns of

travellers was studied and considered as one where clustering techniques would be used. To use12

these techniques, a distance function is used in order to define the similarity between the different

objects in the dataset, to result in the final clusters. In particular, to cluster based on geographical14

distance - through DBSCAN - this distance signified the distance between the location of two

points.16

Furthermore, using this clustering technique for the two columns "origin location" and "des-

tination location" would answer the question "Which travellers board and arrive in similar loca-18

tions?", and would need two distance functions, one for each column (origin and destination).

This approach involves two main issues. First, the answer to the previous question does not20

provide the wanted relation between travellers full paths, but only clusters from each passenger

boarding and destination locations. This happens mainly because through clustering the main goal22

is to group a set of points, whereas in our problem we have a sequence of points that result in a

path for each traveller.24

Second, each distance function results in the calculation of a dissimilarity matrix, that consists

on the set of distances between the observations on the dataset that is used to find the most similar26

(less distant) objects to create one cluster. The size of these matrices is the number of records

being clustered, and in our work we have sets of millions of records, with thousands for each day28

of the month. Computational and memory wise, computing this matrices would result in huge

amounts of memory being used and thus not realistically possible for our dataset.30

These two main problems resulted in an approach to the problem that would not be directly

related with the clustering algorithms. Along with the similarities found in the concept of relevance32

ranking on the Web search engines, a new concept was decided as the way to solve our problem:

relevance among user travels. This concept is detailed in chapter 4.
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Chapter 32

Travel path inference

4

This chapter presents in detail the first stage of development on this thesis, the inference of travel

paths from riders validations in an open system.6

The next sections provide deeper analysis on the needed data and its essential attributes, data

pre-processing and transformation needed to guarantee data quality and the proposed solution8

along with its main decisions.

In the last section, the obtained results are analysed and a evaluation solution is proposed,10

based on a simulated dataset with previously known real destinations and a comparison with the

ones obtained through the destination inference procedure provided.12

3.1 Introduction

Being an open system, Porto public transport system Andante requires validation only at entrance14

on the system, meaning that riders board vehicles through the validation of their cards and then

leave at their desired destination. Consequently, information regarding passengers travel path is16

found incomplete, since we don’t have the destination, and thus obtaining similar travel patterns

becomes a task not doable in these conditions.18

Regarding this problem, a solution is proposed on the next sections. Given a day, the data

from Andante system for bus riders validations is able to provide all the travels for each traveller,20

for that day. Knowing this, the goal is to obtain an origin-destination matrix that will provide, for

each travel validation found in the training dataset, its estimated destination.22

To achieve this, an algorithm is proposed based on [BNRS02], with some innovative steps

developed in the context of the project this work relates to [Nun12], and implemented as part of this24

thesis, such as zonal verification, and other additional work not found in the literature [NDGC14a].

Through the proposed solution the goal of obtaining riders’ travel paths is achieved and therefore26

the possibility of finding similar travel paths, not doable before, becomes a possible task.
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The next section provides detailed explanation on the architecture of the proposed solution to 2

the travel path inference.

3.2 Architecture 4

Three major components are part of the travel path inference, seen in figure 3.1: the datasets

with validations and Andante network data, data pre-processing and the origin-destination matrix 6

inference algorithm.

Validations 

Andante 

network data 

Pre-processing Origin-destination 

matrix inference 

Origin-

Destination 

paths 

Figure 3.1: Travel inference architecture

The datasets of validations and Andante network are part of a MySQL1 local server, used in 8

this work to feed the algorithms. The database used was MySQL since, in addition to being an

open source technology, has great scaling capabilities and is able to support stored procedures. 10

To pre-process the data MySQL procedures were created, allowing transformation of the

datasets. Using SQL allowed working with the database in a more efficient way in order to improve 12

the following implementation of the origin-destination inference algorithm. This algorithm, de-

veloped to infer each travel destination, was implemented using the Java programming language. 14

This choice was mainly influenced by its class-based and object-oriented structure and since it runs

in any Java Virtual Machine (JVM), it is cross-platform and it compiles regardless of the computer 16

architecture, making it very flexible. Using Java, the algorithm can use its capabilities to collect

and store in memory all the data from the database as objects, speeding the process comparing to 18

the execution time it would take using a procedure language through SQL.

1http://www.mysql.com/
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The final result is a new dataset with mandatory validation attributes and the inferred desti-2

nation as a new one. To store the inferred set of travels the same local MySQL database was

used.4

The next two sections provides detailed description for the datasets used and each of its essen-

tial attributes in order to allow the reader to be able to have a better understanding of the proposed6

methods, along with the necessary data transformation procedures to guarantee incorruptions on

the identified attributes.8

3.3 Data description

Each time one traveller validates his card, a series of data is registered and recorded in the STCP10

system’s database. This is data containing information regarding a set of components, many of

them needed in the context of this work. In order to use this data for research purposes, STCP12

gently provided a dataset of nearly 30 million ticketing validations, each record obtained in real-

life travels with the needed attributes.14

Below are listed the main attributes extracted from each of the dataset’s records, from vehicle

data to card information, along with a succinct explanation of its role in our work:16

• Vehicle number: serial number of the vehicle, one of the attributes necessary to identify one

full journey along with journey start time;18

• Journey start time: starting time of the vehicle’s current journey, one of the attributes neces-

sary to identify one full journey along with the vehicle’s number;20

• Serial Number: card’s unique serial number, responsible to identify anonymously each pas-

senger in the system;22

• Ticketing type: defines what kind of ticketing this card follows. At the time when these val-

idations were registered in the system, there was more than one ticketing system in service.24

In this work, only the Andante zonal system was analysed.

• Number of zones: gives how many zones this card’s current travel is allowed to run. As26

described in appendix A, the number of zones can be 2 (Z2), 3 (Z3), until a maximum of 9

(Z9) zones [STC14];28

• Route: vehicle’s current route, composed by the current line and direction, necessary to

identify the current travel;30

• Start stop: stop where the traveller validated his card, composing the current travel along

with route;32

• Validation time: time of validation at the start stop, provides data necessary to infer destina-

tion time;
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• Zone: zone of the current validation, i.e, zone where the start stop belongs. Used to validate 2

the destination stop zone;

All this data concerns users’ validations and is of critical importance for this work. Further- 4

more, information on the routes and stops of the Andante network has already been collected in

the scope of this project [Nun12] and was used to map with the validations’ data, namely: 6

• Lines: Contains the total of 85 lines of the Andante network and its unique identifiers;

• Stops: Set of 2534 stops in the Andante network, including bus, metro and train, with 8

information regarding its name, location, unique code and Andante zone.

• Route stops: Mapping of all the stops with the lines to which they belong, with the sequence 10

of each stop, allowing to obtain the ordered path of bus stops for each route. One route is

defined by the line name and its direction, with at most two directions per line. Contains 12

5664 records, including bus, metro and train.

The above data is mandatory to get results from the implemented algorithms. Furthermore, 14

data with corruption in any of these attributes or irrelevant information like data regarding metro

and train systems, provided imperfections on future stages of work. The following section analyses 16

deeper this constraints.

3.4 Data pre-processing 18

From the nearly 30 million records provided by STCP for this research, from this stage onwards

we will only consider data from January, mainly due to the high amount of data. 20

At the time the data was collected, Andante was not the only mandatory card system at STCP.

Because the proposed algorithm points towards the system running nowadays, early data analysis 22

and comparison was mandatory - data from other systems couldn’t be verified by the proposed

zoning verification step on the inference algorithm, and so imperfect data would lead to imperfect 24

results. This way, a study was made for the validations of January - seen in appendix A - in order

to be able to assure that using only the Andante records would still provide enough quality data to 26

feed the algorithms. From this study, the conclusion was that 35% of January’s travels belonged

to bus riders using the Andante ticketing system and those validations provided good quality data. 28

Thus, validations from other ticketing systems were discarded as they were not relevant to this

study. 30

The Andante sample needed proper examination and pre-processing to find any possible flaws

in the validations that could lead to incorrect results and conclusions. One of the factors of greatest 32

concern was related with the volatility of the routes and stops at the STCP system, since routes

paths and/or stops from those lines are subject to frequent changes. This impacts our work because 34

the collected data dates from 2010, while the sets of routes and stops were gathered at the time of

this work, in 2013, resulting in possible inconsistencies among the data.
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Therefore, a pre-processing procedure was implemented, as seen on the diagram on figure 3.2,2

aiming to efficiently process the data in a way that, in the end, the resulting validations would be

the most correct for the algorithm training. The entire process is now described and its result on4

the validations dataset can be seen on figure 3.3.

Figure 3.2: Pre-processing procedure flowchart

The first step of the dataset processing passed by the verification of missing attributes. After6

reviewing the dataset, the key fields were defined - as seen on 3.3 - and so records with any of

those attributes missing or corrupted were discarded from further processing. At the end of this8

step, 3% of January’s validations were discarded.

After these verifications the datasets were cleaned of imperfect and missing data. Afterwards,10

two more situations were identified on the validations set: unmapped bus stops and routes. This

could happen because, as explained before, the STCP system is quite volatile, meaning that on a12

short time interval routes could change its course, bus stops could be added to another route or

removed from previous ones or even bus lines or stops set aside from the network. This happens14

due to network updates or because of temporary occurrences like road construction/maintenance or
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other short/medium-time impediments on the roads that happen frequently in a city. This results 2

in outdated datasets from one year to another (or even in shorter spans), and in this work the

difference is of major importance - from 2010 to 2013. To achieve this verification, a cross search 4

between the 2010 validations set from January and the 2013 data for bus lines and bus stops

was performed. Validations whose stop or line were no longer found in the network were thus 6

discarded. This stage cleaned 18% of incorrect records relatively to the original dataset.

Finally, when all the verifications defined to clean the data were performed, the last data need- 8

ing filtering was related to duplicate validations. Duplicates are cases in which users validate

more than once while in the same vehicle in the same journey. One of these situations is related 10

to the time of travel, since when validating the card the machine presents the time left, and so

the passengers sometimes validate more than one time to check on the remaining time. This way, 12

was decided to previously remove that data in the pre-processing stage since these records were

providing incorrect results. Although the result was a total of only 0,3% removal on the January 14

set, this records provided unnecessary complications for the origin-destination algorithm.

2,9%

21,0%

0,3%

75,7%

Missing attributes

Mapping failure

Travel duplicates

Valid records

Figure 3.3: Pre-processing results for the validations dataset

Now that the data was pre-processed and cleaned of record imperfections and potential misin- 16

terpretations, the final result was a total of around 2.4 million validations on the January month,

supported by 74 bus lines and its 2120 bus stops. 18

3.5 Origin-Destination matrix inference

3.5.1 Class diagram 20

To implement the algorithm to infer travellers’ destinations, a set of necessary classes were im-

plemented in order to follow the object-oriented programming defined as the approach to this 22

problem. Using Java’s class-based and object-oriented capabilities, and recurring to the data from

the datasets to create the objects, the classes seen on 3.4 formed the main part of the program.
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Figure 3.4: Origin-Destination inference class diagram

Four major classes were created: Validation, Line, Stop and StopLine. Follows a brief descrip-2

tion for each of them:

• Validation: A Validation object was created for each traveller, with its mandatory members4

and the respective getters. An array of validations is created to hold all the validations in

memory, and through getStopLine() we obtain the respective StopLine from the linhaPub-6

lico, sentido and paragem fields originally on the validation dataset.

• StopLine: Because each line may have multiple stops and each stop is assigned to multiple8

lines, this class helps to map them to one another and define the sequence of the stop on that

route. An HashMap is used to hold all the "StopLines" in memory, mapping for each line10

its respective array of stops.

• Stop: Each stop from the bus network is loaded to memory creating an object with its12

ticketingCode, that maps to the code system present on the Validation, its visibleCode which

defines the "known" code on the Andante network, the zone in which it is present and its14

location coordinates.

• Line: Each line object contains the line name and direction, being that each line may have16

at most two directions (some have only one as they are circular).

Furthermore, to help in some methods two other classes were created, MySQLConnection and18

GenerateCSV. The first one was responsible for reading data from the database and write it to the
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several Arrays in memory. Recurring to the MySQL packages from Java, this class executed all 2

the SQL queries and thus was essential to create the all the objects for the validations, lines and

stops. 4

The second one was needed to write the final set of inferred validations to a CSV file to

import later to an MySQL table. This decision was made due to the high number of transactions 6

that would be made while computing the algorithm if the travels were immediately inserted in

the database as soon as computed, slowing the process. Writing to an CSV in the hard drive 8

beforehand became a more efficient way to handle the high amount of data.

3.5.2 Nested loop structure 10

To run through all the validations in the dataset, this nested loop structure was adapted from a study

by Zhao et al. [ZRW07] in the context of this project, and was used to aid the implementation of 12

the algorithm. For each serial number (SN), for each day, the algorithm should be able to infer

all its validations, one at a time. To that purpose, three nested loops were determined: the outer 14

loop cycles through each SN, the middle loop through each day and the inner loop through each

validation (flowchart in figure 3.5). In other words, for each SN, for each day, we can infer all its 16

validations, one at a time.

For this principle, the entire validations dataset was sorted with two main keys: using the SN 18

as primary key and the day as secondary key. Furthermore, all the validations were sorted by date

of validation, resulting in a dataset of validations in which for each serial number, and for each 20

day, the validations are sorted from the beginning to the end of the day, providing the needed daily

travel history. This sorting became mandatory because of the consecutive trip segments method 22

used in the algorithm. This method has as base idea that "a high percentage stay at, or return to,

the destination station of their previous trip segment to begin their next trip segment" [ZRW07]. 24

Following this, four assumptions were established, adapted from [BNRS02], in order to take

into account the specificities of this work: 26

• There no other transport type (public or private), except bus, between trip segments;

• There is a limited amount of distance that can be made by passengers on foot, i.e, after 28

leaving one bus, the passenger will not walk a too long distance to the next station (trip

segment). In this work, it was assumed as 640 meters, or 8 minutes on foot at 4,8 km/h, 30

speed used to calculate the public transport accessibility level (PTAL) [fL10]. This distance

is considered as the maximum walking distance for bus stops in the Great London and is 32

used as a reference for this work;

• The best estimate destination for one trip segment is the stop closest to that passenger’s next 34

origin (if within walking distance);

• The last trip of the day has as destination the origin of the first trip of the day. In other 36

words, the assumption is that at the end of the passenger’s day, his last trip is the return to

where his day began.
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Figure 3.5: Nested loop structure adapted from Zhao et al. [ZRW07]

3.5.3 Distance-to-Stop matrix pre-calculation2

The destination inference procedure studied in this work requires knowledge of the closest stop to

some identified target location. Each stop is identified mainly by its unique network identifier and4

from the geo-spatial coordinates (latitude and longitude). Calculating this closest stop for each of

the validations can become costly, and if this distance calculation would be computed for each of6

these validations the computation would not be nearly efficient [Gor12].

Rather than doing this for each validation, distance between stops are calculated only once -8

from each stop to all stops. If the calculated distance is superior to the maximum on-foot distance

(640 meters), it is discarded. This way, previously identified non-selectable stops won’t delay the10

algorithm computation. The valid distances are then sorted in ascending order, optimizing the
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1 preComputeDistanceBetweenStops(ArrayList<Stops> stops):
2 // stops: stops read from the database
3 for each stop s1 in stops:
4

5 for each stop s2 in stops:
6

7 if s1 == s2 continue;
8

9 distance = GetDistance(s1.latitude, s1.longitude ,s2.latitude, s2.longitude)
10 // distance gets the geographic distance between the two stops coordinates
11

12 if distance < MAX_DISTANCE_ON_FOOT
13 // MAX_DISTANCE_ON_FOOT: distance walkable on foot = 640
14

15 if distanceBetweenStops.contains(s2, (s1, distance) //distanceBetweenStops: matrix
with all the walkable distances between all the stops

16 continue; //do nothing because the map already has the distance between the two
of them

17 else
18 distanceBetweenStops.put(s1, (s2, distance));
19

20 distanceBetweenStops.sort();
21 //after inserting all the distances, for each one it is sorted in ascending order

to provide the closer ones on top of the list

Listing 3.1: Function that creates the map of distances between stops

future search for the closest stop. Since the distance between A and B is the same between B and 2

A, only one distance between one pair of stops is stored in memory, creating a matrix stored in

memory for later reference. The pseudo-code can be seen on Listing 3.1. 4

3.5.4 Destination inference

Once all the validations, stops, lines and zones are loaded to each respective map in memory, 6

the algorithm follows the pattern described before: for each SN and for each day, cycles through

all its validations. The flowchart in figure 3.6 below describes the flow of the entire process. The 8

architecture of the algorithm depicted in the flowchart was adapted from Gordon [Gor12], to which

some validation steps were designed and added in the context of this project [Nun12][NDGC14a], 10

and implemented as part this thesis. The aim of the aforementioned additional validation steps

is to take advantage of the rich set of attributes of the dataset to give greater confidence to the 12

destination inference results.

If one passenger has only one validation in a day, then the algorithm has no reference to the 14

possible location where he may have left the bus. This way, every validation that is the unique one

for that person for that day is immediately discarded. Here, it is important to clarify that one day 16

in the bus network circulation is the time interval between 05:30 of the current day and 1:30 of the

next day.
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Figure 3.6: Destination Inference algorithm flowchart adapted from Gordon [Gor12]

When this is not the case, the consecutive trip segments [ZRW07] method is followed, joined2

with the the assumption that the last travel of the day has as destination the first origin of the day.

Thus, if the current validation is the last of its day, the target location is assumed to be the origin4

of the first computed validation of that day. Otherwise, there are more trip segments before the

last one, and so the target location is assigned as the origin of the next validation.
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Following, the validation has a target location assigned, working as a temporary destination. 2

However, when a passenger leaves a bus, one of two scenarios is considered: leaves and in the

next validation re-enters in the same route or changes to a different one (figure 3.7). This means 4

that the target location currently assigned to a trip segment is not certain to be the real destination

on the current route. 6

1
2

Route 2

Route 1

Figure 3.7: Passenger changes route between two (1 and 2) consecutive travels

Therefore, the next step in the algorithm is to find the closest stop to the current target location

that is in the same route of the trip segment. The previously computed distance-to-stop matrix is 8

now referenced by the target location, finding the closest stop belonging to the current route. If

it is not possible to find the closest stop, meaning that there is not a stop closer to 640 meters, 10

the algorithm cannot progress and so the validation is discarded. This may be the final inferred

destination if it was correctly assumed. Following, the next steps validate this still temporary 12

inference to be able to assume it as correctly inferred.

First, it is verified if the inferred destination is downstream from the origin. In other words, 14

checking if in the current route, in the current direction, the destination’s sequence is higher than

the origin’s. This prevents possible errors when finding the closest distance to the target location. If 16

it is not downstream, the algorithm backtracks to the previous step, referencing again the distance-

to-stop matrix, finding the next closer stop. If found, verifies if this new stop is downstream from 18

origin. This step repeats until a downstream location is found or until there’s no more stops closer

than the minimum distance on foot. 20

Finally, it remains to check if the number of zones in the card allows the current predicted

origin-destination segment. Assuming that the passenger only travels to a valid destination, this 22

step assures that the current inference is not outside of the card’s range. As seen in the study of the

Andante system in the appendix A, for each card there’s a maximum number of zones in which the 24

passenger is allowed to travel. These zones, referred in A, have n number of zones between each

other, being n => 2, n <= 9. If the n distance between the origin and destination stops exceeds 26

the distance allowed in the card, the validation is taken as a bad inference and is discarded.
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Concluding, after the validation passes through all the algorithm’s steps, it is added to the2

currently inferred set of validations. When all the nested loops are passed over, all the now not

necessary maps in memory are cleared and the new map of successfully inferred validations is4

written to a CSV file for later use.

3.5.5 Time of arrival inference6

Along with the inference of destination, the arrival time was also estimated. Here again, the archi-

tecture of the algorithm depicted in the flowchart of figure 3.8 was adapted from Gordon [Gor12]8

in the context of this project, and implemented as part this thesis, and adds to the previous infer-

ence steps on the flowchart on 3.6.10

Figure 3.8: Time of arrival inference steps adapted from Gordon [Gor12]

The first step for time of arrival inference is checking if there are any boardings at the currently

inferred destination in the current trip. In other words, the algorithm identifies the trip of the12

validation whose destination is being inferred through its vehicle identification and time of journey
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start and then looks for any validation made in that vehicle, in that journey, in that selected stop. In 2

case it finds any, the time of validation of its first boarding is accepted as the estimation of arrival

time at the inferred stop, as 4

ETA(Selected) = TimeO f FirstBoarding(Selected) (4.1.5.1)

since it’s assumed that the passenger left that vehicle at that stop at roughly the same time that the

first person entered it. 6

If it can’t find any, the next step is to do the same procedure but to the previous and next stops

in that journey’s route. This means that, with this information, the algorithm can find times of 8

boarding at these stops in a way that, in the end, it gets first passenger boarding times for them. If

it can find those times, then an interpolation is made in order to get the estimated time of arrival 10

(ETA). The interpolation procedure was added in the scope of this project since it was not found

in the literature. 12

ETA(Selected) =
|ETA(Prev)−ETA(Next)|

2
(4.1.5.2)

The ETA for the inferred destination is, thus, roughly calculated as the absolute mean value be-

tween the time of arrival of the vehicle at the stops that are positioned before and after in the

current route, given by:

ETA(Prev) = TimeO f FirstBoarding(Prev) (4.1.5.3)

ETA(Next) = TimeO f FirstBoarding(Next) (4.1.5.4)

If any of the previous methods is able to identify the time of arrival, the result is a complete

inference with location and time. Otherwise, although the time is discarded, the destination is still 14

inferred and returned as successfully inferred.

3.6 Results 16

Using the dataset prepared for this case study, the previous algorithm was computed and its re-

sults analysed. First, it is important to refer the weight of the validations computational-wise. In 18

total, after all the pre-processing, there were around 2,4 million validations to compute in January.

Knowing this, and because the set of validations contained too much information to run in mem- 20

ory, it was divided in two sets: the first contains the first two weeks (days 1-15) and the second

contains the last ones (days 16-31).
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Table 3.1 shows the inference rates for the main stages of verification, along with the total time2

spent computing them for the destination inference experience both for the first two weeks and the

last ones.4

Step Valid Total Percentage (%) Total time (s)
One-validation days 1853452 2400682 77% 0,463 s
Selecting closest stop 1130620 2400682 47% (61% from previous) 893,2 s
Zoning verification 1123197 2400682 46,7% (99,3% from previous) 0,391 s
Time inference 302019 2400682 12,5% (26,8% from previous) 22,3 s

Table 3.1: Results for running the inference algorithm on the case study data for January

Analysing the results, it is possible to verify that the first step has serious consequences on the

inference, since 23% of the passengers only validate once in one day . The next stage relatively6

to destination inference is getting the closest stop to the one the passenger has boarded to find the

destination of the previous trip segment. This step had the most critical impact, resulting in 47% of8

the total dataset with 61% "survival" from the previous one-day-validations stage. This happens

because for that particular bus stop there were not stops in a walking distance(640 meters) that10

belong to the same route of the boarding stop and are downstream from it.

Although this may occur because of the passengers’ behaviour, one of the other possible rea-12

sons why this happens is related to the difference between the dates of the validations and the date

when network data was gathered. Table 3.2 demonstrates that, of the total of non-inferred vali-14

dations, 11% of them occurred directly because nowadays the connection between the validation

boarding stop and bus route does not exist (and thus also not present in the current network data).16

The full indirect impact of these problem can only be seen through a future different study with

validations and network data with the same timespan, since failures in one validation may impact18

the inference of the following ones of the same traveller.

Total non-inferences Due to change in network (%)
1277485 138172 (11%)

Table 3.2: Non-inferences due to network changes

Further analysing the results on 3.1, the zonal verification proposed by this work results in a20

drop of only 0,3% relatively to the complete set of validations and a 99,3% "survival" from the

previous step of closest stop inference. This result, representing a small change in the outcome,22

adds the verification that the estimated destination is at a zone reachable from the passenger’s

Andante card, and thus confirms the good results on the previous stage of destination inference.24

Finally, the time of arrival computation results were not promising, with a total of 12,5% of

stops with estimated arrival time. Giving the low results on the time of arrival estimation, this26

estimate was not included in the subsequent work of creating the networks of passengers. Future
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work should be carried out in order to provide a better algorithm to estimate time of arrival at the 2

inferred destination.

Figure 3.9 shows the path inferred from all the validations from one of the passengers on the 4

6th of January, with the inferred data shown on table 3.3. The different colors define the different

paths taken on the course of the day, with two significant time intervals: morning, most possibly 6

being the journey for work (or other) and evening with the return to the first boarding location. The

number of zones travelled is legal according to the zone system, and thus is assumed correct for 8

the zonal verification. The times are relative to the boarding validation time as this only provides

a destination estimate.

Figure 3.9: Inferred travels for one passenger on the course of the day

Route Origin Destination Time of Validation # Zones authorized # Zones travelled
704 GIT2 ARS5 09:29:49 3 2
701 ARS3 PLIM2 09:43:21 3 2
701 PLIM1 ARS2 17:48:57 3 2
706 ARSM1 TNG1 18:10:43 3 2

Table 3.3: Journeys made by one random passenger on January 6th
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3.7 Evaluation2

In order to evaluate the proposed algorithm and its results, it became mandatory to be able to create

our own travels with already foreseen destinations, since the main goal is to infer the correct one4

to each travel. To achieve this we propose evaluation through the use of one simulated sample that

contains, for one unique user, a group of a maximum of 10 trip segments from the beginning of6

the day until the end of it. The number 10 was chosen only as a base value to ease calculations.

As seen in figure 3.10, the proposed sample is built assuming a controlled random behaviour8

of one passenger. This means that, for that hypothetical person, a maximum of 10 validations were

generated based on the following assumptions:10

1. A random stop is selected to be the passenger’s first boarding location. This follows the

premise that we don’t know each passenger’s behaviour in a given day. The selected stop12

must have at least one route for which it isn’t the last stop to guarantee that the traveller has

any vehicle to enter;14

2. In that random stop, the passenger enters one vehicle in one of the random routes that still

has stops ahead;16

3. In that route, the passenger leaves the bus at a random stop provided that it is downstream

from the origin bus stop, meaning that the virtual traveller is controlled to only leave at a18

stop in which the vehicle hasn’t passed before the passenger has boarded. This stop is kept

as the foreseen destination for this trip segment, if there is one, otherwise is the last of the20

day;

4. After leaving the bus, the traveller can board a new vehicle in any of the surrounding bus22

stops, provided that it isn’t farther than 640 meters away. This distance is based on the

assumption that the maximum distance on foot that one person travels between two stops is,24

at most, 640 meters (or 8 minutes). If there isn’t any selectable stop for this passenger, the

algorithm cannot generate any more destinations and stops generating journeys;26

5. In that selected new boarding stop, the passenger enters a new vehicle following one of the

routes of which that stop is part of. The selected route is also randomly chosen, following28

the same premise that the traveller’s behaviour is not known;

6. The process repeats from 2 for each of the remaining trip segments, until a maximum of 10.30

Following this method, a dataset was generated to test the efficiency of the destination infer-

ence algorithm proposed. Each one of the travellers would contain a max of 10 travels, with the32

possibility of being less in cases where, when following our assumptions, the algorithm couldn’t

generate any more validations for that user. A total of 250000 travellers were generated, resulting34

in around 2 million validations created. It is important to note that these validations are completely

simulated based on the methods aforementioned, and thus created on a controlled environment,
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Figure 3.10: Simulation of trip segments for one the traveller T during one day

with the needed randomness in the travellers since we were simulating the worst case scenario on 2

which we have no idea of the next journey for each traveller.

Figure 3.11 below provides the average final results after applying the destination inference 4

algorithm to the simulated dataset. The criteria for evaluation was how distant was the predicted
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destination stop compared to the foreseen one, where the distance is measured as the number of2

stops between them on that route. "Correct" means it was the right prediction and "> 3" stops

refers to cases where the prediction exceeded the distance of 3 stops.4

37,4%

35,9%

17,3%

5,2%
4,3%

Correct

1 stop

2 stops

3 stops

> 3 stops

Figure 3.11: Results from the inference algorithm on the simulated dataset

With the inference of the simulated sample of nearly 2 million validations, and matching the

inference with the foreseen destination for each record, we obtain a average of 37,4% of right6

predictions, 73,3% right if considering a tolerance of one stop away from the inferred destina-

tion, and over 90% if considering a tolerance of two stops. Only 4,3% of predictions exceed a8

distance of three stops from the expected destination. Following the assumptions described, these

results show that our proposed algorithm has a significant probability of, at least, give an accurate10

prediction for the destination of one travel.

Through these observations, we concluded that this part of the work provided good results that12

can be explored in the final stage of implementation, which is the creation of networks of travellers

based on their travels and on its relevance among each other.14

3.8 Summary and Conclusions

Public transport open systems require journey validation only at entrance, and consequently datasets16

which gather these validations aren’t able to provide full travel paths. Regarding this problem, an

origin-destination inference algorithm was proposed with main objective of estimate full travel18

paths for each passenger on the dataset, identified by his card serial number.

In order to prematurely discard all the corrupt records, a data pre-processing procedure was20

studied and implemented, manipulating data with the goal being the improve of results efficiency.

Thus, records with missing key-information, with irrelevant information or with incomplete map-22

ping were discarded.

The results obtained, checked against a simulated dataset created with base on controlled ran-24

dom passenger behaviour, show accurate estimations with an average of around 90% inferences at

least than 2 stops from distance, with prevalence of right inferences.
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Concluding, the computed dataset with inferred travel paths gives way to the creation of tem- 2

porary networks, the second stage of development in this work, that follows on the next chapter.
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Temporary networks

4

This chapter details the second and last stage of development on this thesis, the creation of tempo-

rary networks based on the travel paths inferred on the previous section. This is the implementation6

of a concept described in section 2.2 of the state of the art [NGCP11][NGC12].

The next sections provide deeper explanation on the interconnection between the two stages8

of work. The concept of relevance of journeys that was developed in the context of the project this

work relates to [Nun12] will be described. Measurement of such relevance between journeys is10

used to obtain the aforementioned temporary networks [NDGC14a].

Finally, the temporary networks created are analysed through two different experiences that12

show promising results for future development on the area.

4.1 Introduction14

Public transport users, during the course of their day, can have multiple travels through different

paths and have those paths in common with other passengers, either in the same vehicle or others,16

sharing the same bus route or similar ones. Transports networks have multiple routes that share

different road segments and bus stops, resulting in riders travelling in the same path of others at18

the same time, at previous journeys or other passengers who still are going to begin their journey.

Resulting from the inference of bus travels from boarding stop to ending destination, travellers’20

full paths for each trip segment are estimated. This allows comparison between their travels and

the clustering of the most similar ones through its relevance among each other.22

One travel can be similar to another in different ways: their paths can have a great distance in

common, their routes can have a large number of stops in common or they can be complimentary24

routes, i.e, have alternative paths that share start and ending points.

Passengers whose travels are significantly relevant to each other must, thus, be clustered in26

the same networks. The implementation of such methods on the smartphone application devel-

oped to exchange information among public transport travellers [Gon12], described in 2.2, allows
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users to exchange real-time and relevant information among each other, receiving through their 2

own temporary network and sending to those for whom they are relevant in a similar way to the

one represented below in figure 4.1. Here, "User 4" has relevance to "User 1", and, this way, is 4

connected to his temporary network in order to feed information to it, along with "User 2", "User

3" and "User 5". At the same, "User 1" and "User 3" are relevant to "User 4", and are connected 6

to his own temporary network. This is an example of how one user feeds the others’ temporary

networks, at the same time that his own receives information from its relevant connections. 8

Figure 4.1: Temporary network basic architecture

These concepts of travel relevance and grouping passengers are detailed in the next sections,

starting with an architecture description to understand how these processes interconnect to create 10

the aforementioned networks.

4.2 Architecture 12

Starting from the origin destination matrix inference, the creation of the temporary networks fol-

lows the architecture seen in figure 4.2 below. Along with the dataset with the inferred journeys, 14

the data from Andante network collected in the context of the project [Nun12] is used as support

to compute the full travel paths. Since the origin-destination inference data provides route and bus 16

stops of boarding and destination, this data is an essential asset to obtain the full travel paths for

each traveller. 18

Similarly to the approach to the travel inference algorithm, the network creation was also

implemented in the Java programming language. 20

In this phase the relevance between the different travels, at a given time, is computed. This

concept is detailed on the section 4.4 that follows on this document. This computation results 22

in a set of connections between passengers that originates temporary networks centred in each of

the passengers, i.e, each of the computed travellers at a given time has his own set of temporary 24

connections.
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Figure 4.2: Temporary network creation architecture

The created sets of connections are finally stored in the local database in order to visualize and2

evaluate the results for the intended instant of the day. Concluding, in order to better understand

how the architectures from the travel inference and temporary network creation interconnect, the4

following section provides one overview on the full process of this mechanisms when integrated

with a smartphone application to exchange information among public transport travellers [Gon12].6

4.3 Full-process overview

As detailed previously on chapter 2, this work follows a previous prototype application developed8

to allow passengers on public transports to exchange travel information such as external events

(accidents, interferences on the bus route) or bus-relative information such as vehicle conditions,10

fullness or driver skills [Gon12][NGG13].

The full process can be followed in figure 4.3 [NDGC14b]. The first stage comes with the12

passenger notifying the application of the journey start. This can be made through checking-in on

the application, notification from an identified travel pattern or from the journey planner present14

on the application. Conceptually, in the future there is a real possibility of interconnection with

a smartphone ticketing validation system, using its advantages to automatically check-in on the16

application when validating via smartphone [NDGC14a][NGG13][FND13].

Once identified the check-in boarding location, the destination is estimated from the passen-18

ger’s travel history. This history is created as the passenger checks in the application and the

destination of the previous journey is estimated using the proposed inference method. In case the20

passenger uses the journey planner and checks in through the application notification, the travel is

automatically added to his history.
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Starting from the path estimated for the traveller’s current trip segment, a temporary network 2

is created based on its relevance with other passengers’ journeys at that specific time. Each time

one user checks in or checks out, a new user-centred network cloud is created, meaning that 4

passengers’ connections to travellers relevant to them in one specific time may differ after other

passengers join or previous ones leave. 6

As soon as the journey ends, the temporary network created for that user is destroyed - re-

sulting on a updated network cloud for all the other passengers. One journey may end through 8

several ways: passenger checks out directly on the application or his GPS position matches either

the foreseen destination location or the previously established journey ending on the application 10

journey planner [NGG13].

Figure 4.3: Real-time full process overview for the passenger process when using the applica-
tion [NDGC14b]

Knowing how the processes are connected, it is mandatory to conceptualize and define rele- 12

vance. The following section describes what is relevance in the context of this project [NDGC14a]

and how it can be measured in order to create the passengers’ temporary networks.
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4.4 Relevance among travels2

In information retrieval, relevance measures how well the information matches the one the user

needs. In the context of this project [NDGC14a], relevance represents how well one passenger’s4

travel path meets another passenger’s journey on a specific time, meaning that this relevance de-

pends on the travellers checked in on the application at every time. This results on temporary6

and highly dynamic scores for relevance among the travellers, and thus this relevance has to be

measured each time one passenger enters the system, does another boarding or checks out from8

the network.

Knowing this, relevance among travellers has to be measured in a way that its score defines10

how much one traveller’s path information can impact another’s behaviour and, consequently,

users must be connected with those travellers with the most important real-time information for12

them at that specific time.

A 
B 

C 

D 

E 
Route 2 

Route 1 

Figure 4.4: Comparison between relevant and non-relevant travels for one passenger [NDGC14b]

In figure 4.4 [NDGC14b] we can see several simple different travel paths and compare how14

much they have in common to the passenger A. In the example, the travel path of B has nothing

in common with the first one (A), since he travels on a completely different route. That passenger16

journey information, thus, should not be relevant enough to the passenger A’s current travel.

Case C represents another case where relevance is not considered significant. Although their18

vehicles share the same path, the direction is not the same. Consequently, there could be little

information significant to the first passenger, with the exclusion of possible events which resulted20

in road blocks, occupying the entire road. Giving the low frequency of these events, connecting

these travellers in the same network would lead to great quantities of possibly irrelevant informa-22

tion exchange among them, and thus relevance in this context is not considered.
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Example D contains a path that overlaps the first one over some distance. This case represents, 2

in this context, the basic type of relevance between two travels: the number of bus stops or distance

between them that those travel paths have in common. The relevance among them, thus, must be 4

considered taking into account that path similarity.

Case E contains a path that has little relevance when looking for path similarity. However, 6

this path contains both origin and destination from the first one, and thus can be seen as an alter-

native route. Hereupon, if there is information on the passenger from A’s network that informs 8

of incidents, delays or another situation like fullness of the vehicle, this passenger might want to

receive information from users currently on vehicles on the alternative route represented by case 10

E, eventually changing his planned behaviour.

Finally, through this analysis we concluded that the following detailed main types of relevance 12

provide significant results and are those considered for this context. The minimum relevance

defined for one passenger’s travel to another’s, in a specific time, was 50%, being positive if equal 14

or above this value or negative if below. If one passenger is relevant through both types, the largest

one is considered the true value. 16

Journey similarity
The most basic case of relevance between two passengers’ paths. This case considers the 18

similarity between the estimated paths for each of the passengers’ journeys, defined in one

of two criteria: distance and number of bus stops in common. 20

First, distance is defined as the distance in meters between two bus stops, given that both

of those stops are common to both paths in consecutive locations. In other words, distance 22

considers the total distance from all the road segments between two or more stops that are

shared by the two passengers’ paths. 24

The formula to obtain the score the relevance from the passenger A’s path to passenger B’s

in an instant t, through this criterion, is the following: 26

Rt(A,B) =

n
∑

i=1
si,t(A,B)

d(B)
(4.2.2.1)

n is the total number of road segments in common between both paths and si,t(A,B) is the

total distance of the i−est shared road segment among them in the instant t. Function d(B) 28

returns the total distance for the estimated path of the passenger B.

The number of stops criterion, as the name indicates, stands for the number of bus stops 30

the two paths have in common. In this case road segments between consecutive bus stops

are not mandatory and only the total number of stops has relevance. Assuming that for two 32

vehicles need to cross the same location for some distance to pass through the same bus

stops, this criteria makes sense and results in a total of locations (and its roads segments) 34

that the different passengers cross in common at a specific time.
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Similarly to the first case, the calculation of the relevance for passengers A and B paths, in2

an instant t, is given by:

Rt(A,B) =
nt(A,B)

q(B)
(4.2.2.2)

nt(A,B) is the total number of bus stops in common between the paths of A and B in an4

instant t and q(B) is the total number of stops for the passenger B’s path.

In both criteria for this relevance type the indicator is a score from 0% to 100% of relevance6

among the passengers’ journey paths, being 100% fully relevant and 0% not relevant at all.

Furthermore, relevance is not symmetric between two passengers. Figure 4.5 [NDGC14b]8

helps to understand why this happen. Using the function (4.2.2.2), and knowing that the path

of passenger A fully overlaps the path of passenger B, the result is that B is 100% relevant to10

him, whereas the inverse doesn’t happen since B’s path only covers a portion of A’s, in this

case 70%. This reinforces the choice of user-centred temporary networks, since each user12

has his own set of temporary connections at a given time whereas those users may not have

him on their most relevant connections.14

BA

Figure 4.5: Asymmetry between travel relevance for two passengers [NDGC14b]

Journey complementarity
This type of relevance considers two complementary travel paths in case they share both16

boarding and destination locations. In other words, passengers’ journeys that do not share

any intermediate bus stops but have the same boarding and estimated destination are con-18

sidered complementary, and are relevant to each other since they provide alternative infor-

mation to their journey. If the passenger receives information that his predicted journey has20

any impediment or delays he must receive information for the alternative routes and change

his behaviour if it reveals a better decision.
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However, this scenario does not apply only when the journeys share exactly the same board- 2

ing and ending locations. Another situation might occur: the passengers do not share both

boarding and ending location, but one of them or both are close to the other passenger’s, in a 4

way that allows the rider travel the distance between them on foot, i.e, the distance between

them is inferior to the assumed maximum distance on foot, 640 meters. 6

Three possible cases are shown on the below figure 4.6. In example 1, passenger A’s journey

matches B’s on the boarding location but not in the destination, yet both destinations are 8

300 meters away. Following the same assumption made to the inference method, this is a

walkable distance (since it is inferior to 640 meters) and thus the B’s travel path is semi- 10

complementary to A’s. The same goes for example 2, with the difference that now it’s the

destination that is the same and the boarding stop the one close enough and the same rule as 12

the previous example applies. Example 3 shows another situation that might happen, with

both boarding and destination stops are only close for each passenger. Provided that both 14

distances are small enough to walk on foot, this still represents a semi-complementary route

and it may also be relevant enough because the travel on foot can be advantageous in case 16

of reported problems on the other alternative routes.

Boarding for A

A

B

Boarding for B

300m

A

B

Destination for B

3
0
0
m

Destination for A

A

B

Boarding for B

3
0
0
m

Boarding for A

Destination for B
Destination for A

300m

Example 1 Example 2 Example 3

Figure 4.6: Different levels of complementarity between two passengers’ travel paths

The complementarity property can be complete or semi-complete: one journey is fully com- 18

plementary if it shares both boarding and ending locations and thus the complementary

passengers are 100% relevant for each other; if the journey is semi-complementary, with 20

boarding and/or destination stops being different but within a walkable radius, then a calcu-

lation must be made to score the relevance among them. Since a fully complementary route 22

is 100% relevant, the function to obtain relevance for the semi-complementary must return

a score never equal to 100, and must be lower as higher the distance between them.

In order to make the closest semi-complementary journeys more relevant, the relevance had

to decrease as the distance was bigger. Through

d(|Astop,Bstop)|
K

, (4.2.2.3)
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being d(Astop,Bstop) the distance between the close stops Astop and Bstop and K the con-2

stant maximum distance on foot (640 meters), we obtain the ratio between both distances,

provided that d(Astop,Bstop)< K,K > 0.4

Furthermore, this ratio can then be used to decrease relevance as the distance is bigger, for

two complementary paths A and B in an instant t, through

Rt(A,B) = 100(1−
|d(Astop,Bstop)|

K
) (4.2.2.4)

Because the minimum score for two paths being relevant was defined as 50% and the pre-

vious function lead to values below the minimum relevance, there was the need to adjust

the distance ratio function to ensure minimum relevance. Thus, since the farthest walking

distance on foot, 639 meters, returned a ratio of 99,8% and a relevance of 100(1−0,998) =

0,2%, the distance ratio function was adjusted by finding a c multiplier that ensured the

minimum 50% relevance:

100(1− (639)
640

c) = 50⇔ c≈ 1
2

(4.2.2.6)

Finally, once defined a distance ratio function that ensured minimum of 50% distance, the

following formula was defined to return this score for the passengers A and B’s travel paths

in an instant t, when having one of the locations at walking distance on foot:

Rt(A,B) = 100(1−
|d(Astop,Bstop)|

2K
) (4.2.2.8)

Concluding, to define the relevance when both boarding and destination locations are com-

plementary within walking distance, the mean value for boarding and destination relevance

was calculated and through this an average relevance was obtained considering both dis-

tances. This way, relevance score is define by:

Rt(A,B) = 100(1− |d(Aboard ,Bboard)|+ |d(Adest ,Bdest)|
4K

) (4.2.2.8)

where d(Aboard ,Bboard) and d(Adest ,Bdest), respectively, define the boarding and destination

locations distances between both passengers. In case they share boarding, d(Aboard ,Bboard)=6

0 and if they only share destination, d(Adest ,Bdest) = 0.

Summarizing, through this calculations the relevance among riders with similar, complemen-8

tary or semi-complementary travel paths is calculated, and only the ones with positive relevance

(i.e relevance >= 50%) are accepted to connect to the passenger for whom they are relevant. Be-10

tween both similarity and complementarity relevance, the largest one is attributed to the relevant

passenger, since it indicates the real score of importance from him to the traveller to whom he is12

relevant.
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The next sections detail the network creation process through travel relevance and analyse 2

the results using a case study for different times, evaluating them through different experiences

regarding the behaviour of one passenger’s temporary network at the course of the day and at the 4

course of the week.

4.5 Network creation structure 6

Following the structure seen in figure 4.7, to train the network creation process the first step was

to obtain a sample of validations which provided travellers behaviour on a given time. 8

Thus, a sample from one-hour time interval was obtained from the full inferred dataset, sim-

ulating the Andante network at the end of that hour. The chosen interval of one hour is due to 10

the legal travelling time with one validation (described in A.1): because the validations from the

Andante dataset do not provide detail regarding how much time that passenger still has to travel, 12

and because one hour is the minimum total available time for one validation, this was the assump-

tion for the network creation. Furthermore, even with the inference of the arrival time, it’s only 14

possible to infer time of destination when the next travel begins. Thus, by choosing one-hour

time interval we get all the travellers that could still be on their vehicles and the end of that hour, 16

following the maximum total available travel time of one hour.

Regarding the journey path of each traveller’s validation on the sample, we had only boarding 18

and ending locations, and in latter stages it became mandatory to pre-compute the full journeys

before further advance. Thus, the computation of the full journey paths followed, recurring to the 20

gathered Andante network information for route stops, resulting on a set of bus stops estimated for

each traveller’s journey path. From this choice two scenarios may appear for each user: finding 22

one unique validation performed by that user or more than one. This could happen due to trans-

shipments made by the passenger on the available one-hour interval. Because we were considering 24

the passengers on the network at the end of that hour, the last validation made by the user was the

travel to be considered, since he no longer was on the other one(s)’s path. 26

The next step, thus, was to select randomly one of the users that is part of the sample. From

this user, it was chosen the last (or unique) validated travel, followed by obtaining the full travel 28

path relative to that validation. Here, the decision of pre-calculating the full path was important,

since it provided optimal search behaviour for the latter network computing. 30

Finally, the last stage was to create the user-centred temporary network based on relevance.

After this step, the algorithm was repeated as long as there was still "new" users to process, ending 32

when all of them were processed and their temporary networks obtained.

4.6 User-centred temporary networks 34

At a given time, the behaviour of each traveller riding in a public transport is seconded or preceded

by many others also on that path. Furthermore, each passenger travelling at a given time has his
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Figure 4.7: Structure overview for the network creation process

own set of "seconders" and "preceders". Based on this premise, we conclude that each traveller has2

his own set of connections during the day, or, in other words, has multiple temporary connections.

This leads to the definition of user-centred temporary networks: sets of connections that a4

given traveller has at a given time. Centring each temporary network on the passenger to whom

the connections are relevant results in dynamic behaviour and depends on the travellers riding at6

that exact time.

From the passenger’s full path provided by the one-hour sample we could obtain the needed8

journey route and boarding and destination locations, that would match against the other users

paths.10

Once the full path for one passenger is obtained, the next step was to match it against the other

travellers’ paths circulating at the same time. The process can be seen below, in figure 4.8. The
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algorithm runs that single passenger’s path for all the other travellers, and the decision of pre- 2

calculating the full paths for each traveller became important for the speed of the process. In this

work, the similarity type of a journey path was based on common bus stops, while the distance 4

between them was not considered relevant. Thus, the full set of travels is enough to score each

traveller relevance for the others. 6

Using the two main types of relevance described previously on this chapter - journey similarity

and complementarity - the next step was to calculate the relevance score using the appropriate 8

defined functions and matching the full sets of bus stops on each traveller’s path with the others’.

The score obtained for each candidate user can be negative (less than 50%), or positive (equal 10

or more than 50%). If the result is positive, that passenger is added to the current passenger’s

temporary connections, otherwise he would be discarded. 12

Concluding, done all the calculations for each passenger the result was a cloud network of

travellers’ temporary connections, each one connected to his most relevant users on that specific 14

time as seen below in figure 4.1. The next section analyses the results obtained for several different

time instants and evaluates the relevance of those results for this thesis work. 16

4.7 Results and Evaluation

4.7.1 Single-day experience 18

In the study performed for January validations, presented on Appendix A, it was identified that

a weekday (from Monday to Friday) has on average more than 200000 validations. Due to this 20

scenario, to help the reader to visualize the results of the temporary networks creation we chose

to use, to the first experience, one day from the weekend, in which the number of travellers has a 22

significant drop, to around 20000 validations.

Knowing this, and using the set of inferred destinations, five samples from January 10th of 24

2010 were collected to use on the temporary network creation algorithm: 07:00-08:00, 07:15-

08:15, 07:30-08:30, 07:45-08:45 and 08:00-09:00. The selected intervals were between 08:00 and 26

09:00 since it was identified in the study on the Appendix A (in figure A.9) as one of the peak

hours in number of passengers on the network, which increases the variety in number of different 28

routes being travelled at a given moment.

Each sample was fed to the algorithm in order to obtain, for each passenger circulating at that 30

time, the ones that could provide the most relevant information considering their travel path. The

result was a total of 2395 connections between 332 unique travellers (average of 7 connections per 32

passenger).

The full computed temporary network cloud and the score of relevance between its passengers 34

can be seen in the Appendix B. In order to visualize and cluster the resulting connections it was

used the open source software Gephi 1, a flexible tool for graph and network analysis with main

1https://gephi.org/
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Figure 4.8: Temporary network creation process for one passenger

features to allow exploration and manipulation of large networks [BH09]. Through this frame-2

work, the visualization of either the temporary networks or the large temporary network cloud was

easy, and its clustering functionalities allowed the distinction between the main different clouds of4

temporary networks.

Figure 4.9 shows the full cloud existent at 08:00. This is composed by several temporary6

networks that connect to each other through its passengers’ own user-centred temporary networks.

Two important attributes must be detailed:8

• The different colors represent the clustering of the networks by its modularity, i.e, measuring
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the structure of the network by the degree in which its elements inter-connect, with dense 2

connections belonging to the same modules (groups or clusters).

• Each network is represented by a directed graph, meaning that each connection is from one 4

passenger to another with some bi-directional connections when both travellers are relevant

to each other. The width of the connection (edge) is related to the weight of the relevance: 6

higher relevance gets a wider edge, and vice-versa.

Figure 4.9: Cloud of inter-connected temporary clusters at 08:00

Through this example we can see that different passenger temporary networks can inter- 8

connect, creating bigger cluster of temporary networks. To examine with greater detail the be-

haviour of one passenger’s temporary network from 08:00 to 09:00 from here on we will look to 10

one of them in particular, here named traveller 1 - figure 4.10 in darker blue. Each number only

represents the traveller as a way to properly identify them.
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Figure 4.10: Initial temporary network for
traveller 1 at 08:00
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Figure 4.11: Traveller 1’s temporary net-
work with member relevance at 08:15
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Figure 4.12: Traveller 1’s temporary net-
work with member relevance at 08:30
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Figure 4.13: Traveller 1’s temporary net-
work with member relevance at 08:45

The network of passenger 1, at 08:00, is composed by 5 travellers, numbered randomly on2

the inferred travels dataset. It’s important to refer that, although we are only examining passenger

1’s network, each other passenger has his own temporary network with its temporary connections.4

This way, we also represent in the figure the connections among the traveller 1’s relevant passen-

gers at each sample. For example, figures 4.14, 4.15 and 4.16 show, respectively, the temporary6

networks at this time for travellers 91, 88 and 43. We can see that each one of these travellers is

connected to other passengers relevant to them, who can be, or not, also relevant to traveller 1.8

Table 4.1 shows the members’ travels of passenger 1’s temporary network, with their respective

relevance.10

Figure 4.17 represents the paths of the members of Passenger 1 network at 8:00. As it can

be visually observed, the estimated travel paths are according to the values obtained and all the12

travellers are either relevant through path similarity or complementarity and the type of relevance
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Figure 4.14: Traveller 91’s
temporary network at 08:00
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Figure 4.15: Traveller 88’s
temporary network at 08:00
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Figure 4.16: Traveller 43’s
temporary network at 08:00

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)
91 502 BCM1 FTM4 0% 82,1%
42 202 TRD1 FTM2 100% 0%
88 202 BCM3 BRP1 88,89% 0%
7918 203 BCM1 SRV1 0% 72,94%
43 202 BCM3 BRV3 100% 0%

Table 4.1: Traveller 1’s temporary network with member relevance at 08:00

is easily distinguishable. 2

Figure 4.17: Map representation of traveller 1’s temporary network connections at 08:00

Considering the sample for 15 minutes later, we find that the network suffered some changes.

Analysing figure 4.11, we can notice that some new travellers joined the cluster (in gray) and that
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traveller 42 has left. This happens because traveller 42 expired the maximum travel time (1 hour),2

so it is assumed that he left the transportation system. Table 4.2 presents the members of the

temporary network for Passenger 1 at 8:15, and, as in the previous sample, it is represented on a4

map in figure 4.18.

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)
91 502 BCM1 FTM4 0% 82,1%
88 202 BCM3 BRP1 88,89% 0%
7918 203 BCM1 SRV1 0% 72,94%
43 202 BCM3 BRV3 100% 0%
113 502 BCM1 FTM4 0% 82,1%
5489 201 BS1 LDD1 0% 73,1%

Table 4.2: Traveller 1’s temporary network with member relevance at 08:15

Figure 4.18: Map representation of traveller 1’s temporary network connections at 08:15

At 08:30 the scenario has changed again, with travellers 7918 and 43 leaving the network6

(figure 4.12). At this time there is no new connection to passenger 1. Table 4.3 presents all the

relevant connections at this time, visually represented in figure 4.19.8

At 08:45 we encounter the scenario shown in figure 4.13. Here, some major changes can be

seen, with another traveller leaving and six new travellers checking in on the network. At this10

moment we can see, supported by table 4.4, the current network is very different from the initial

one.12

In this temporary network we can observe that almost all the relevant passengers are on alterna-

tive routes, which shows the importance of the relevance type based on journey complementarity,14

providing alternative information to passenger 1. This can be easily observed in figure 4.20, as
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Traveller Route Origin Destination Relevance (similar) Relevance (complementar)
91 502 BCM1 CART 0% 82,1%
88 202 BCM3 BRP1 88,89% 0%
113 502 BCM1 FTM4 0% 82,1%
5489 201 BS1 LDD1 0% 73,1%

Table 4.3: Traveller 1’s temporary network with member relevance at 08:30

Figure 4.19: Map representation of traveller 1’s temporary network connections at 08:30

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)
88 202 BCM3 BRP1 88,89% 0%
113 502 BCM1 FTM4 0% 82,1%
5489 201 BS1 LDD1 0% 73,1%
5477 502 BCM1 FTM4 0% 82,1%
45 202 BCM3 SJB1 66,67% 0%
4575 502 BCM1 FTM4 0% 82,1%
4578 502 GJQ3 LGO2 0% 51,5%
4576 502 BCM1 FTM4 0% 82,1%
44 202 GCRT1 SJB1 66,67% 0%

Table 4.4: Traveller 1’s temporary network with member relevance at 08:45

only three of the total 9 connections share road segments with traveller 1 and all the others are 2

divided in different routes.

Finally, at 09:00, the final sample on this analysis, traveller 1 is already out of circulation, and 4

so his temporary network is discarded and his connections destroyed. The travellers relevant to

him, who remained in circulation, still have their own temporary networks with their connections,
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Figure 4.20: Map representation of traveller 1’s temporary network connections at 08:45

since this only destroys 1’s connections to them.2

Concluding, from this analysis we can show that the user-centred temporary networks are

highly dynamic and time dependent, since through the course of 15 minutes time stamps we could4

see some travellers connected to different ones in circulation at that time, with detailed demon-

stration for all the connections for "traveller 1".6

From 08:00 to 09:00, for the analysed cluster almost the entire initial network was replaces by

the new travellers, with a total of 14 travellers having similar travel paths, either by path similarity8

or route complementarity, until passenger 1 leaves the transportation network and his temporary

network connections are discarded.10

4.7.2 Five-day experience

In addition to the experience performed for one day on the weekend, which was focused on the12

visualization of the results, another experience was made. Starting on the day that followed the

first experience - January 11th - the objective was to identify if, during one weekday (from Monday14

to Friday), the same travellers can be found on "traveller 1"’s temporary network, in order identify

patterns on temporary networks. The final results of the observation can be seen on table 4.5, at16

the end of this section.

Using the same set of inferred travels, one of them was arbitrarily chosen to feed to the al-18

gorithm in order to obtain, for each of the passengers circulating at that time, the ones that could

provide the most relevant information considering their travel paths. The result was a total of20

146440 connections between 3430 unique travellers (average of 42 connections per passenger).

As in the previous experience, we selected arbitrarily one passenger (passenger 1) in order to22

illustrate the results for the temporary networks.
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From the five days used, 3 different routes were identified from this passenger’s travels, which 2

can be visualized on the map in figure 4.21. We can see that, although running on different routes

and/or destination stops, all the travels can be considered similar through the week, since the 4

boarding and destination locations are always very close.

Figure 4.21: Map with travels performed by passenger 1 before 8:00 during the five days

Regarding day 1(out of 5), in this network, seen in figure 4.22, we have a set of 103 relevant 6

travellers. As previously, each one of this connections has his own temporary network with its

temporary connections. However, in this case due to the high number of interconnections we will 8

only present the connections to traveller 1.

Advancing for the next day, 2 out of 5, we find that the network is composed by some travellers 10

of the previous day, with addition of several new ones. Although the path travelled by passenger

1 is different from that of the previous day, some similarity can be found in it, since the new path 12

is still complementary to the previous one. 31% of the passenger 1 network connections are the

same of previous days, as seen in figure 4.23. 14

Figure 4.24 shows the temporary network on the 3rd day, in which we find that, although

several of the connections present in previous days no longer exist, a big part of them are still 16

included in passenger 1 temporary network, which also contains several new connections. In total,

around 56% of the network is composed by the travellers of the previous two days. 18

The day 4, Thursday, we can find several new passengers, along with a significant percentage

of the same travellers from the three previous days - figure 4.25. On this day, 77% of passenger 1 20

temporary network is composed of passengers from the previous three days.

On the fifth and last day of this analysis, similarly to the previous observations, new users are 22

found on the temporary network together with a large number of passengers from the previous

days. From this day, 72% of the total connections were also present on the previous days. Fig- 24

ure 4.26 summarizes these results for the temporary networks of passenger 1, during 5 consecutive

days at 8:00.
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Day 1

Figure 4.22: Temporary temporary network for traveller 1 at 08:00 on January 11st

Day 1 Day 2

Figure 4.23: Temporary temporary network for traveller 1 at 08:00 on January 12nd

Concluding, through this analysis we were able to see that, during the course of five consecu-2

tive days, passenger 1 temporary networks at 08:00 were composed in a great part by connections

that were also present in previous days. This suggests that finding travel patterns using temporary4

networks is a promising idea, that will allow that people who usually share the same travel paths
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Day 1 Day 2 Day 3

Figure 4.24: Temporary temporary network for traveller 1 at 08:00 on January 13rd

Day 1 Day 2 Day 3 Day 4

Figure 4.25: Temporary temporary network for traveller 1 at 08:00 on January 14th

on the same network at the course of time, could be sharing information through the smartphone 2

application prototype created for this project [Gon12].
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Day 1 Day 2 Day 3 Day 4 Day 5

Figure 4.26: Temporary temporary network for traveller 1 at 08:00 on January 15th

% same passen-
gers of day 1

% same passen-
gers of day 2

% same passen-
gers of day 3

% same passen-
gers of day 4

Total % from
previous days

Day 2 17,5% - - - 31%
Day 3 45% 17,5% - - 56%
Day 4 45% 15% 50% - 77%
Day 5 29% 42,5% 12% 14,3% 72%

Table 4.5: Temporary network patterns for the five-days experience

4.8 Summary and Conclusions2

During each travel in public transports, several different passengers are using the same routes, at

the same time, before or after. This way, bus riders can be, at a given time, having similar journeys,4

travelling in the same bus routes or in alternative ones.

These travellers can have important information related to these routes, and this knowledge6

may be shared with other travellers whose journeys are considered similar. This network of trav-

ellers must, thus, be composed by travellers relevant to each other.8

The relevance among two travellers’ journeys is measured through its similarity to each other,

either because both bus routes have bus stops in common or because the two passengers are riding10

in alternative paths. When sharing bus stops or road segments, the relevance is measured through

the number of stops (or total road segment distance) in comparison to the total number of stops12

(or total road distance) in the passenger’s route. If the route is an alternative one, the relevance is

measured on the boarding and destination bus stops. If the two passengers have both in common,
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the journey is 100% relevant, otherwise the relevance is calculated proportionally to the distance 2

between the stops - giving that they are at a walking distance, defined in this work as 640 meters

or 8 minutes [fL10]. 4

Knowing that each passenger has his own individual group of relevant passengers at a given

time, each one’s temporary network of connections must be unique to him. From here, the con- 6

cept of user-centred temporary network is defined. Using the measurement of relevance, these

networks are created, resulting in a set of temporary networks belonging to its respective trav- 8

ellers, connected to his most relevant users.

In the end, two different experiences were studied. First, analysing one passenger’s tempo- 10

rary network at the course of one hour, in 15 minutes time spans, the conclusion was that his

network was highly dynamic, with with new passengers joining the network and/or older ones 12

leaving at every new 15 minute sample analysed. These results provide good perspectives for

the future integration in a smartphone application to share public transport information among 14

travellers [Gon12](described on section 2.2 on the state of the art).

Through the second experience, the behaviour of the same passenger’s network at the course 16

of one week, from Monday to Friday, was analysed. The results obtained lead to conclude that

through the course of the five days a large amount of connections are preserved, and thus, through 18

future work in this project [Nun12], travellers that usually share the same path could be automati-

cally connected to the temporary networks in order to share information.

58



Chapter 52

Conclusions and Future Work

4

Mobility and the rising concept of always on-line social networking allow many possibilities in

areas like public transports, since the travellers spend most of their travel time with their smart-6

phones, connected to one or more social networks.

As urban areas increase in population, improving user’s experience gains more importance,8

providing them easiness of use of public transports. At the same time, public transport companies

must be encouraged to maintain and increase transport quality and quantity, and also rewarded for10

providing good services to the travellers.

In the context of a on going project [Nun12][NGCP11], a smartphone application was devel-12

oped to allow sharing information on public transports [Gon12], which presents a change in the

public transport information system, providing to travellers data that is fed to the system by the14

ones who know it better: themselves. The time and space efficiency of this information must be

one of the main concerns, and so this work develops mechanisms that pretend to improve both time16

and space relevance of the information shared on the application through the creation of temporary

networks composed by the most relevant passengers at a given time.18

Using bus riders travel validations data provided by STCP for this research purpose, in a first

phase this work aims to infer the travellers destinations in order to be able to create the passenger’s20

travel history. To achieve this, an algorithm to infer the traveller path was implemented, with base

on the work from Barry et al. [BNRS02], with innovative steps developed the context of this22

project [Nun12], and implemented as part of this thesis, such as zonal verification [NDGC14a].

Through the inference of a simulated dataset with foreseen destinations, the results show that,24

considering the assumptions made for the algorithm implementation, the travellers’ destinations

can be inferred with good accuracy.26

From the inferred travels, passengers journeys could be extracted to begin the second phase of

this work. Using the travellers boarding and destination locations, the goal was to create temporary28

networks [NGCP11] of travellers with similar travel paths. To this effect, the concept of relevance

among travellers was studied and was decided as the measurement of how much one traveller
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journey was similar to another. Based on these ideas, temporary networks were created for each 2

of the travellers, since each of them has his own set of most relevant connections, distinct from the

other travellers both in number and relevance score. 4

The final results were analysed and the conclusion was that temporary networks are highly

dynamic, adapting to the travellers circulating at a given time and their journeys. In addition, the 6

networks observed for one passenger at the course of one week are composed in a great part by the

same travellers from previous days, giving good perspectives for future work of joining travellers 8

on the same network with base on their usual patterns.

Finally, due to the identification of two types of relevance, based on similarity and comple- 10

mentarity, the networks created are enriched with travellers both from the same route and from

alternative ones. Considering the future of this project [Nun12], this feature may be interesting, as 12

way for the users to obtain information regarding alternative routes, in the event of problems that

may happen, like high traffic, vehicle delays, among others. 14

To conclude, there is still a long way to work following this thesis results. The destination

inference algorithm is featured to build the user travel history, only being able to estimate the 16

destination of one journey from the previous travel data, and thus when checking in on a bus stop

the application must infer the most likely destination from that user travel history. 18

Furthermore, the resulting temporary networks were created assuming that each passenger

travelled for a maximum of one hour, but it could be less if another validation was made in the 20

meanwhile. However, in the future, mechanisms that allow checking in and checking out on the

application can be used to know if the passenger is still on the network, and thus the problem of 22

not knowing if the traveller is still riding his vehicle can be solved.

Concerning the estimation of the passenger destination, another of the purposes of this work 24

was to infer the arrival, in order to have the time each passenger left the system to improve the

creation of the temporary networks. However, the results showed that only a small percentage 26

of the inferred destinations had also the time of arrival, and so this stage was discarded from the

algorithm. In the future, other possibilities must be studied to improve this work and accurately 28

estimate, not only the destination, arrival time to it.

At the same time, integrating the temporary network creation mechanism with the application’s 30

journey planner may allow the passenger to receive relevant and real-time information before even

checking in on the boarding stop, improving the traveller’s final decision of going on the predicted 32

journey or taking another route in case that the information received is recommends that change.

Finally, in the context of this project [Nun12], fully integrate these concepts with the public 34

transport systems is one of the goals. Taking advantage of technologies like NFC 1, the check-in

procedures on the application could be done automatically with the validation [FND13], providing 36

immediate information regarding the boarding location and vehicle. This would allow integration

1Near Field Communication
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of the zonal verification proposed on chapter 3, since only through this integration the passenger2

check-in can provide the number of zones allowed to travel.
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Appendix A2

Data analysis - Porto public transport
system4

Porto’s bus transport system is operated by STCP 1, servicing a total of 74 bus lines with two

routes for each of them (one for each direction), excluding the circular ones (same station for6

start and end of journey). This service is one available public transport modes, with trains, metro

and bus being the main ones, with bus sustaining a total of 41,2 millions of travellers in the first8

semester of 2013 [Jor14]. Porto’s metropolitan area ticketing system is Andante 2, managed by

TIP-Transportes Intermodais do Porto, being an entry-only system in which travellers only validate10

their journey at the start of the trip.

This work’s validations data for the periods of January, April and May of 2010 was provided12

by STCP and OPT for research purposes, with nearly 30 million records. The first one, January,

was prepared and used for the implemented algorithms, with around 8,3 million validations during14

this month. The Andante network data, including bus stops and routes, was collected in the project

to which this thesis work relates to [Nun12].16

A.1 Zonal system

Andante is designed on top of a zonal system, meaning that the entire area of use of this system is18

divided in smaller areas called zones. The entire Andante network is composed by 46 zones, and

the STCP bus network works in 17 of them - seen in A.1.20

Each traveller has one Andante card, occasional or signature, and to begin their trip travellers

start with one validation of their card at the entry point, with a minimum time of travel available of22

one hour. This minimum travel is denominated Z2, corresponding to a restriction of a maximum

of two zones of travel. The needed travel type is calculated with base on the entry zone, forming a24

ring of zones around it A.2, being a Z2 the needed title for the ring adjacent to the entry zone, Z3

for the next adjacent ring, etc.

1STCP
2http://www.linhandante.com/

67



Data analysis - Porto public transport system

Figure A.1: Andante zones worked by STCP [STC14]

Figure A.2: Andante zoning rings from zone C1 [STC14]

A.1.1 Statistics and data analysis 2

Before deeper analysis on January’s data, it’s important to understand the real impact of the non-

Andante validations on the set. Only 35% of January’s validations are Andante - meaning that 4

65% of validations are from ticketing systems that are no longer run on the STCP bus system

(figure A.3). Looking at real numbers, on figure A.4 we can see that the Andante zone C1 has 6

predominance on validations over all the other Andante zones. However, if non-Andante data

was present it would overshadow this statistic, since it contains almost 3.5 million validations 8

(opposing nearly 800000 validations from C1).
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Andante
35%

Other
65%

Figure A.3: Validations with Andante cards versus other cards on January
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Figure A.4: Validations per zone on January

Figure A.5 shows how many validations occurred per day on January, both for all the dataset2

and Andante-only. As expected, the amount of validations has little variation during the week,

except on weekends, where a big drop of usage occurs, specially on Sunday. It’s also noteworthy4

that the first three days of the month, after the new years eve, have a considerably low amount of

travellers. Through this comparison it’s visible that behaviour is approximately the same, showing
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that from this perspective we can rely on the subset of Andante validations to use on this thesis 2

work.
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Figure A.5: Validations from January

Regarding user variety, a similar experience was made. Comparing the results of the number 4

of users per day on all the dataset with Andante only users (figure A.6), we concluded that the

behaviour throughout the month is similar between the two, with a natural decrease regarding 6

the number of users, from an average of 56217 users per day on all validations, to 21946 on the

Andante system. 8
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Figure A.6: Unique users per day on January

Furthermore, to present the variety necessary to provide good data for our algorithms, another

necessary analysis was concerning the number of different lines and stops covered by January’s
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data. As seen on figures A.7 and A.8, there’s similarity both in terms of bus lines and bus stops2

when comparing between all the validations and Andante cards only, with a slight decrease in

number of stops in general.4
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Figure A.7: Travelled routes on January
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Figure A.8: Bus stops with validations on January

Hereupon, and because our final goal is to create networks of users with similar travel routines,

the amount of users connected through the different stages of the day can impact the creation of6

those networks - poorly crowded time intervals suggested a reduction in the range and diversity

of the networks. Therefore, further analysis on this behaviour was one of the major concerns.8

In this case, presented in figure A.9, the behaviour changes on some of the hour intervals, with

reduced significance on the afternoon (14h-17h). However, the significance in as nearly all the
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other time intervals remains proportional, suggesting that the impact of the significance reduction 2

on the afternoon wouldn’t have serious consequences on the inference quality.
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Figure A.9: Average validations per hour on January

Summarizing, through several analysis and comparison it was concluded that the usage of 4

only Andante validations in this work was the most reliable option. The passengers’ behaviour

was found similar to the full set, and the zoning verification would become severely less reliable 6

when using the full dataset. Thus, 65% of the collected data was considered was discarded from

further processing. The result was a subset of Andante-only validations, used on this thesis work.
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Appendix B2

Temporary networks

In order to visually evaluate the travellers networks in this document one temporary network was4

studied with more detail in chapter 4.

The first experience, detailed in section 4.7.1, presents the case of one travellers temporary6

network and its set of connections. Since all the connections to the traveller analysed have also

their own temporary connections, the behaviour of those travellers own temporary networks and8

its own connections was also studied.

The five-days experience, in section 4.7.2, the behaviour of the same traveller’s temporary10

network was also analysed, but this time to the same hour instante (08:00) in five different days,

from Monday to Friday. In that experience we only present a visualization of the data, due to12

the long set of connections, but detailed results on those connections relevance score were also

obtained, and are here presented.14

Concluding, this appendix provides deeper analysis on each of the previously seen travellers

own networks and, for each of them, its connections’ relevance scores, both for similarity and16

complementarity, with travel paths and route indications. Following the same behaviour from the

previous analysis, this will compose details for samples 08:00, 08:15, 08:30, 08:45 and 09:0018

on the single-day experience and samples from 08:00 for the five days 11, 12, 13, 14 and 15 of

January.
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B.1 Single-day temporary networks 2

B.1.1 Temporary networks at 08:00

Traveller 1 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

91 502 BCM1 FTM4 0% 82,1%

42 202 TRD1 FTM2 100% 0%

88 202 BCM3 BRP1 88,89% 0%

7918 203 BCM1 SRV1 0% 72,94%

43 202 BCM3 BRV3 100% 0%
Table B.1: Traveller 1’s temporary network with member relevance at 08:00

Traveller 43 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 100.0% 0.0%

42 202 TRD1 FTM2 100.0% 0.0%

91 502 BCM1 FTM4 0.0% 82.1%

7918 203 BCM1 SRV1 0.0% 72.94%

88 202 BCM3 BRP1 88.89% 0.0%
Table B.2: Traveller 43’s temporary network with member relevance at 08:00

Traveller 91 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 82.1%

43 202 BCM3 BRV3 0.0% 82.1%

7918 203 BCM1 SRV1 70.0% 81.53%

4396 203 MPL3 PRI1 70.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.3: Traveller 91’s temporary network with member relevance at 08:00
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Traveller 42 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 52.94% 0.0%

43 202 BCM3 BRV3 52.94% 0.0%
Table B.4: Traveller 42’s temporary network with member relevance at 08:00

Traveller 7918 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 72.94%

43 202 BCM3 BRV3 0.0% 72.94%

91 502 BCM1 FTM4 77.78% 81.53%

4396 203 MPL3 PRI1 100.0% 0.0%

88 202 BCM3 BRP1 0.0% 75.52%
Table B.5: Traveller 7918’s temporary network with member relevance at 08:00

Traveller 88 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

511 507 BCM3 FMAI 50.0% 0.0%

1 202 BCM3 BRV3 100.0% 0.0%

510 507 BCM3 EXP6 50.0% 0.0%

509 507 BCM3 EXP2 50.0% 0.0%

43 202 BCM3 BRV3 100.0% 0.0%

42 202 TRD1 FTM2 100.0% 0.0%

91 502 BCM1 FTM4 0.0% 78.06%

7918 203 BCM1 SRV1 0.0% 75.52%
Table B.6: Traveller 88’s temporary network with member relevance at 08:00
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B.1.2 Temporary networks at 08:15

Traveller 1 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

43 202 BCM3 BRV3 100.0% 0.0%

113 502 BCM1 FTM4 0.0% 82.1%

91 502 BCM1 FTM4 0.0% 82.1%

5489 201 BS1 LDD1 0.0% 73.11%

7918 203 BCM1 SRV1 0.0% 72.94%

88 202 BCM3 BRP1 88.89% 0.0%
Table B.7: Traveller 1’s temporary network with member relevance at 08:15

Traveller 43 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 100.0% 0.0%

113 502 BCM1 FTM4 0.0% 82.1%

91 502 BCM1 FTM4 0.0% 82.1%

5489 201 BS1 LDD1 0.0% 73.11%

7918 203 BCM1 SRV1 0.0% 72.94%

88 202 BCM3 BRP1 88.89% 0.0%
Table B.8: Traveller 43’s temporary network with member relevance at 08:15

Traveller 113 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

43 202 BCM3 BRV3 0.0% 82.1%

91 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

7918 203 BCM1 SRV1 70.0% 81.53%

4396 203 MPL3 PRI1 70.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.9: Traveller 113’s temporary network with member relevance at 08:15
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Traveller 91 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

43 202 BCM3 BRV3 0.0% 82.1%

113 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

7918 203 BCM1 SRV1 70.0% 81.53%

4396 203 MPL3 PRI1 70.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.10: Traveller 91’s temporary network with member relevance at 08:15

Traveller 5489 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 73.11%

112 502 BCM1 PRCD3 64.29% 0.0%

43 202 BCM3 BRV3 0.0% 73.11%

113 502 BCM1 FTM4 64.29% 0.0%

91 502 BCM1 FTM4 64.29% 0.0%

7918 203 BCM1 SRV1 50.0% 0.0%

4396 203 MPL3 PRI1 50.0% 0.0%

88 202 BCM3 BRP1 0.0% 72.11%
Table B.11: Traveller 5489’s temporary network with member relevance at 08:15
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Traveller 7918 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 72.94%

112 502 BCM1 PRCD3 77.78% 0.0%

43 202 BCM3 BRV3 0.0% 72.94%

113 502 BCM1 FTM4 77.78% 81.53%

91 502 BCM1 FTM4 77.78% 81.53%

5489 201 BS1 LDD1 77.78% 0.0%

4396 203 MPL3 PRI1 100.0% 0.0%

88 202 BCM3 BRP1 0.0% 75.52%
Table B.12: Traveller 7918’s temporary network with member relevance at 08:15

Traveller 88 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

511 507 BCM3 FMAI 50.0% 0.0%

1 202 BCM3 BRV3 100.0% 0.0%

510 507 BCM3 EXP6 50.0% 0.0%

509 507 BCM3 EXP2 50.0% 0.0%

43 202 BCM3 BRV3 100.0% 0.0%

113 502 BCM1 FTM4 0.0% 78.06%

91 502 BCM1 FTM4 0.0% 78.06%

5489 201 BS1 LDD1 0.0% 72.11%

7918 203 BCM1 SRV1 0.0% 75.52%
Table B.13: Traveller 88’s temporary network with member relevance at 08:15

B.1.3 Temporary networks at 08:30

Traveller 1 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

113 502 BCM1 FTM4 0.0% 82.1%

91 502 BCM1 FTM4 0.0% 82.1%

5489 201 BS1 LDD1 0.0% 73.11%

88 202 BCM3 BRP1 88.89% 0.0%
Table B.14: Traveller 1’s temporary network with member relevance at 08:30

78



Temporary networks

Traveller 113 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

91 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

4396 203 MPL3 PRI1 70.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.15: Traveller 113’s temporary network with member relevance at 08:30

Traveller 91 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

113 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

4396 203 MPL3 PRI1 70.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.16: Traveller 91’s temporary network with member relevance at 08:30

Traveller 5489 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 0.0% 73.11%

112 502 BCM1 PRCD3 64.29% 0.0%

113 502 BCM1 FTM4 64.29% 0.0%

91 502 BCM1 FTM4 64.29% 0.0%

4396 203 MPL3 PRI1 50.0% 0.0%

88 202 BCM3 BRP1 0.0% 72.11%
Table B.17: Traveller 5489’s temporary network with member relevance at 08:30
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Traveller 88 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

511 507 BCM3 FMAI 50.0% 0.0%

1 202 BCM3 BRV3 100.0% 0.0%

510 507 BCM3 EXP6 50.0% 0.0%

509 507 BCM3 EXP2 50.0% 0.0%

113 502 BCM1 FTM4 0.0% 78.06%

91 502 BCM1 FTM4 0.0% 78.06%

5489 201 BS1 LDD1 0.0% 72.11%
Table B.18: Traveller 88’s temporary network with member relevance at 08:30

B.1.4 Temporary networks at 08:45

Traveller 1 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 0.0% 82.1%

3279 502 GJQ3 LGO2 0.0% 51.5%

45 202 BCM3 SJB1 66.67% 0.0%

113 502 BCM1 FTM4 0.0% 82.1%

44 202 GCRT1 SJB1 66.67% 0.0%

5489 201 BS1 LDD1 0.0% 73.11%

4577 502 BCM1 FTM4 0.0% 82.1%

4576 502 BCM1 FTM4 0.0% 82.1%

88 202 BCM3 BRP1 88.89% 0.0%
Table B.19: Traveller 1’s temporary network with member relevance at 08:45
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Traveller 4575 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

3279 502 GJQ3 LGO2 80.0% 0.0%

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

113 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

4577 502 BCM1 FTM4 100.0% 0.0%

4576 502 BCM1 FTM4 100.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.20: Traveller 4575’s temporary network with member relevance at 08:45

Traveller 3279 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 88.89% 0.0%

1 202 BCM3 BRV3 0.0% 51.5%

112 502 BCM1 PRCD3 100.0% 0.0%

113 502 BCM1 FTM4 88.89% 0.0%

5489 201 BS1 LDD1 77.78% 0.0%

4577 502 BCM1 FTM4 88.89% 0.0%

4576 502 BCM1 FTM4 88.89% 0.0%
Table B.21: Traveller 3279’s temporary network with member relevance at 08:45

Traveller 45 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 100.0% 0.0%

44 202 GCRT1 SJB1 100.0% 0.0%

88 202 BCM3 BRP1 100.0% 0.0%
Table B.22: Traveller 45’s temporary network with member relevance at 08:45
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Traveller 113 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 100.0% 0.0%

3279 502 GJQ3 LGO2 80.0% 0.0%

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

4577 502 BCM1 FTM4 100.0% 0.0%

4576 502 BCM1 FTM4 100.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.23: Traveller 113’s temporary network with member relevance at 08:45

Traveller 44 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

1 202 BCM3 BRV3 50.0% 0.0%

45 202 BCM3 SJB1 50.0% 0.0%

88 202 BCM3 BRP1 50.0% 0.0%
Table B.24: Traveller 44’s temporary network with member relevance at 08:45

Traveller 5489 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 64.29% 0.0%

3279 502 GJQ3 LGO2 50.0% 0.0%

1 202 BCM3 BRV3 0.0% 73.11%

112 502 BCM1 PRCD3 64.29% 0.0%

113 502 BCM1 FTM4 64.29% 0.0%

4577 502 BCM1 FTM4 64.29% 0.0%

4576 502 BCM1 FTM4 64.29% 0.0%

88 202 BCM3 BRP1 0.0% 72.11%
Table B.25: Traveller 5489’s temporary network with member relevance at 08:45

82



Temporary networks

Traveller 4577 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 100.0% 0.0%

3279 502 GJQ3 LGO2 80.0% 0.0%

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

113 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

4576 502 BCM1 FTM4 100.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.26: Traveller 4577’s temporary network with member relevance at 08:45

Traveller 4576 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 100.0% 0.0%

3279 502 GJQ3 LGO2 80.0% 0.0%

1 202 BCM3 BRV3 0.0% 82.1%

112 502 BCM1 PRCD3 100.0% 0.0%

113 502 BCM1 FTM4 100.0% 0.0%

5489 201 BS1 LDD1 90.0% 0.0%

4577 502 BCM1 FTM4 100.0% 0.0%

88 202 BCM3 BRP1 0.0% 78.06%
Table B.27: Traveller 4576’s temporary network with member relevance at 08:45
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Traveller 88 network

Traveller Route Origin Destination Relevance (similar) Relevance (complementar)

4575 502 BCM1 FTM4 0.0% 78.06%

1 202 BCM3 BRV3 100.0% 0.0%

45 202 BCM3 SJB1 75.0% 0.0%

113 502 BCM1 FTM4 0.0% 78.06%

44 202 GCRT1 SJB1 75.0% 0.0%

5489 201 BS1 LDD1 0.0% 72.11%

4577 502 BCM1 FTM4 0.0% 78.06%

4576 502 BCM1 FTM4 0.0% 78.06%
Table B.28: Traveller 88’s temporary network with member relevance at 08:45

B.2 Five-day temporary networks 2

B.2.1 Traveller 1 temporary network on 11/01/2010

Table B.29: Traveller 1’s temporary network with member relevance on 11/01/2010

Table B.29 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
2090 203 BCM1 PRI1 70.0% 0.0%

1106 202 BCM3 FTM2 0.0% 88.78%

3540 502 BCM1 MAL2 90.0% 0.0%

1107 202 BCM3 FTM2 0.0% 88.78%

3541 502 BCM1 PRCD3 90.0% 0.0%

7349 201 PAL3 PRO1 100.0% 0.0%

7351 201 ACRD1 EZC1 60.0% 0.0%

608 502 BLFZ1 MAL2 90.0% 0.0%

607 502 BLFZ1 MAL2 90.0% 0.0%

7350 201 BCM1 ACRD1 50.0% 0.0%

1481 201 CMO GC1 90.0% 0.0%

1482 201 BS1 LDD1 100.0% 0.0%

1483 201 BS1 LDD1 100.0% 0.0%

1484 201 BCM1 PNV2 100.0% 0.0%

3539 502 JN3 LGO2 90.0% 0.0%

1486 201 BCM1 ACRD1 50.0% 0.0%

7280 203 GJQ3 GC11 50.0% 67.15%

1485 201 BCM1 FOCO1 70.0% 0.0%

Continued on next page
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Table B.29: Traveller 1’s temporary network with member relevance on 11/01/2010

Table B.29 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
4214 203 BCM1 GC11 70.0% 88.1%

3542 502 BCM1 FTM4 90.0% 89.81%

5653 201 BS1 GC1 90.0% 0.0%

471 502 PNV2 FTM4 10.0% 89.81%

1434 502 BCM1 FTM4 90.0% 89.81%

7633 203 BCM1 GC11 70.0% 88.1%

91 502 BCM1 FTM4 90.0% 89.81%

5626 502 PRR1 FTM4 90.0% 0.0%

5625 502 BLFZ1 FTM4 90.0% 0.0%

6667 203 BCM1 SGS1 70.0% 0.0%

6666 203 BCM1 PRI1 70.0% 0.0%

6669 203 BCM1 GC11 70.0% 88.1%

6668 203 BCM1 GC11 70.0% 88.1%

6673 203 BCM1 GC11 70.0% 88.1%

6670 203 BCM1 GC11 70.0% 88.1%

6671 203 BCM1 GC11 70.0% 88.1%

6672 203 BCM1 GC11 70.0% 88.1%

7056 201 AGM1 FTM1 80.0% 0.0%

5260 201 GGF GC1 90.0% 0.0%

5263 201 BCM1 FTM1 100.0% 0.0%

5264 201 BCM1 ACRD1 50.0% 0.0%

5261 201 BS1 FOCO1 70.0% 0.0%

5262 201 BCM1 FOCO1 70.0% 0.0%

5324 502 AGM1 MAL2 80.0% 0.0%

5267 201 ACRD1 FTM1 60.0% 0.0%

6665 203 BCM1 PRI1 70.0% 0.0%

5265 201 BCM1 FTM1 100.0% 0.0%

5266 201 ACRD1 FTM1 60.0% 0.0%

2120 502 FIG FTM4 90.0% 0.0%

5320 502 PRR1 PRCD3 90.0% 0.0%

5321 502 BCM1 LGO2 90.0% 76.19%

2122 502 BCM1 FTM4 90.0% 89.81%

5322 502 BCM1 FTM4 90.0% 89.81%

2121 502 CVA1 MAL2 90.0% 0.0%

5323 502 BCM1 FTM4 90.0% 89.81%

Continued on next page
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Table B.29: Traveller 1’s temporary network with member relevance on 11/01/2010

Table B.29 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
7635 203 BCM1 GC11 70.0% 88.1%

7387 201 CMO PRO1 100.0% 0.0%

2987 202 BCM3 ABM1 0.0% 72.97%

5318 502 BLRB2 FTM4 90.0% 0.0%

2985 202 BCM3 BRP1 0.0% 84.47%

2119 502 PRR1 LGO2 90.0% 0.0%

2986 202 BCM3 BRP1 0.0% 84.47%

7147 203 MPL3 PRI1 70.0% 0.0%

7148 203 MPL3 SGS1 70.0% 0.0%

7279 203 BCM1 SGS1 70.0% 0.0%

7278 203 BCM1 SGS1 70.0% 0.0%

457 502 BLFZ1 NEV2 90.0% 0.0%

7275 203 BSB PRI1 70.0% 0.0%

458 502 CVA1 MAL2 90.0% 0.0%

5654 201 BCM1 GC1 90.0% 0.0%

7277 203 BSB GC11 70.0% 0.0%

5655 201 BCM1 PNV2 100.0% 0.0%

7276 203 BSB SGS1 70.0% 0.0%

2129 502 AGM1 FTM4 80.0% 76.83%

7271 203 MPL3 PRI1 70.0% 0.0%

7270 203 MPL3 SGS1 70.0% 0.0%

2127 502 BCM1 PRCD3 90.0% 0.0%

459 502 BCM1 LGO2 90.0% 76.19%

2128 502 BCM1 LGO2 90.0% 76.19%

2125 502 BCM1 FTM4 90.0% 89.81%

2126 502 BCM1 FTM4 90.0% 89.81%

2123 502 BCM1 FTM4 90.0% 89.81%

2124 502 BCM1 LGO2 90.0% 76.19%

1159 201 BSS1 LDD1 50.0% 0.0%

2690 202 BCM3 FTM2 0.0% 88.78%

2691 202 BCM3 LGO4 0.0% 75.58%

2694 202 BCM3 LGO4 0.0% 75.58%

461 502 BCM1 PRCD3 90.0% 0.0%

2739 203 MPL3 GC11 70.0% 0.0%

2693 202 BCM3 LGO4 0.0% 75.58%

Continued on next page

86



Temporary networks

Table B.29: Traveller 1’s temporary network with member relevance on 11/01/2010

Table B.29 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
460 502 BCM1 FTM4 90.0% 89.81%

462 502 BCM1 PRCD3 90.0% 0.0%

463 502 BCM1 LGO2 90.0% 76.19%

7269 203 MPL3 SRV1 70.0% 0.0%

464 502 BCM1 MAL2 90.0% 0.0%

7268 203 MPL3 PRI1 70.0% 0.0%

2687 202 BCM3 LGO4 0.0% 75.58%

465 502 BCM1 FTM4 90.0% 89.81%

7267 203 MPL3 PRI1 70.0% 0.0%

2688 202 BCM3 LGO4 0.0% 75.58%

466 502 BCM1 PRCD3 90.0% 0.0%

467 502 BCM1 LGO2 90.0% 76.19%

468 502 BCM1 LGO2 90.0% 76.19%

469 502 BCM1 LGO2 90.0% 76.19%

1354 502 BCM1 PRCD3 90.0% 0.0%

2

B.2.2 Traveller 1 temporary network on 12/01/2010

Table B.30: Traveller 1’s temporary network with member relevance on 12/01/2010

Table B.30 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
9287 501 BCM3 BFTM1 60.0% 0.0%

4454 202 BCM3 RCRT2 100.0% 0.0%

5994 201 BCM1 GC1 0.0% 80.28%

1104 202 TRD1 LNEV2 100.0% 0.0%

5911 202 BCM3 FTM2 100.0% 0.0%

5992 202 TRD1 SJB1 60.0% 0.0%

1105 202 BCM3 NEVG 100.0% 0.0%

5991 202 BCM3 FTM2 100.0% 0.0%

7349 501 PAL3 BFTM1 60.0% 0.0%

9492 502 BCM1 LGO2 0.0% 81.48%

1480 502 GJQ3 LGO2 0.0% 60.69%

5889 201 PRG1 FTM1 0.0% 73.81%

Continued on next page
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Table B.30: Traveller 1’s temporary network with member relevance on 12/01/2010

Table B.30 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
9657 501 BCM3 BFTM1 60.0% 0.0%

1484 201 BCM1 PNV2 0.0% 88.78%

5321 502 BCM1 LGO2 0.0% 81.48%

11492 203 BCM1 GC11 0.0% 76.91%

11491 203 BCM1 GC11 0.0% 76.91%

6255 202 TRD1 ABSS1 50.0% 0.0%

4748 201 BCM1 GC1 0.0% 80.28%

6840 202 TRD1 RCRT2 100.0% 0.0%

5653 201 BS1 GC1 0.0% 71.61%

471 202 BCM3 RCRT2 100.0% 0.0%

13243 203 BCM1 GC11 0.0% 76.91%

5934 201 BCM1 PNV2 0.0% 88.78%

2981 202 TRD1 LGO4 100.0% 0.0%

7635 203 BCM1 GC11 0.0% 76.91%

2987 202 BCM3 ABM1 70.0% 0.0%

3587 201 BS1 BRV1 0.0% 74.29%

5717 202 BCM3 ABM1 70.0% 0.0%

5718 202 SDP1 LGO4 70.0% 0.0%

5719 202 SJB1 FTM2 50.0% 0.0%

7104 501 BS1 PDVD4 60.0% 0.0%

12171 201 BCM1 GC1 0.0% 80.28%

2980 202 TRD1 LGO4 100.0% 0.0%

7633 203 BCM1 GC11 0.0% 76.91%

3700 502 GJQ3 LGO2 0.0% 60.69%

2976 202 TRD1 MSLD 100.0% 0.0%

5654 203 BCM1 GC11 0.0% 76.91%

721 501 BS1 IGAL2 60.0% 0.0%

2125 202 BCM3 FTM2 100.0% 0.0%

2978 202 TRD1 LNEV2 100.0% 0.0%

4093 203 BCM1 GC11 0.0% 76.91%

2123 201 BCM1 GC1 0.0% 80.28%

1261 202 BCM3 RCRT2 100.0% 0.0%

1262 202 SJB1 LGO4 50.0% 0.0%

5908 202 TRD1 LNEV2 100.0% 0.0%

5909 202 PRR1 ABM1 70.0% 0.0%
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Table B.30: Traveller 1’s temporary network with member relevance on 12/01/2010

Table B.30 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
1260 202 CSBV LNEV2 80.0% 0.0%

1299 202 SDP1 FTM2 70.0% 0.0%

2690 202 BCM3 FTM2 100.0% 0.0%

461 502 BCM1 LGO2 0.0% 81.48%

756 501 BCM3 PDVD4 60.0% 0.0%

6669 203 BCM1 GC11 0.0% 76.91%

6668 203 BCM1 GC11 0.0% 76.91%

2686 202 TRD1 SJB1 60.0% 0.0%

2687 202 BCM3 LGO4 100.0% 0.0%

6671 203 BCM1 GC11 0.0% 76.91%

469 502 BCM1 LGO2 0.0% 81.48%

1354 502 BCM1 LGO2 0.0% 81.48%

2

B.2.3 Traveller 1 temporary network on 13/01/2010

Table B.31: Traveller 1’s temporary network with member relevance on 13/01/2010

Table B.31 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
1477 502 BCM1 FTM4 90.0% 89.81%

112 201 AGM1 FTM1 80.0% 0.0%

12210 201 BCM1 GC1 90.0% 0.0%

3540 502 BCM1 MAL2 90.0% 0.0%

5994 502 BCM1 FTM4 90.0% 89.81%

12211 201 BCM1 GC1 90.0% 0.0%

3541 502 BCM1 PRCD3 90.0% 0.0%

12212 201 BCM1 ACRD1 50.0% 0.0%

5911 202 BCM3 FTM2 0.0% 88.78%

12213 201 BCM1 FTM1 100.0% 0.0%

7349 201 PAL3 PRO1 100.0% 0.0%

12420 201 BCM1 FTM1 100.0% 0.0%

1582 502 BCM1 MAL2 90.0% 0.0%

12209 502 AGM1 PRCD3 80.0% 0.0%

11489 203 BCM1 SGS1 70.0% 0.0%
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Table B.31: Traveller 1’s temporary network with member relevance on 13/01/2010

Table B.31 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
9492 502 BCM1 LGO2 90.0% 76.19%

5263 502 BCM1 PRCD3 90.0% 0.0%

5261 201 BS1 LDD1 100.0% 0.0%

5262 201 BCM1 FOCO1 70.0% 0.0%

1483 201 BS1 LDD1 100.0% 0.0%

5889 201 PRG1 FTM1 100.0% 0.0%

1484 201 BCM1 PNV2 100.0% 0.0%

3539 502 JN3 PRCD3 90.0% 0.0%

16200 201 BCM1 FTM1 100.0% 0.0%

11238 502 BCM1 LGO2 90.0% 76.19%

4749 201 BCM1 GC1 90.0% 0.0%

11235 502 BLRB2 PRCD3 90.0% 0.0%

1485 201 BCM1 FOCO1 70.0% 0.0%

6151 502 BCM1 FTM4 90.0% 89.81%

5320 502 PRR1 PRCD3 90.0% 0.0%

6112 502 GJQ3 LGO2 70.0% 55.23%

8979 201 BCM1 FOCO1 70.0% 0.0%

5323 502 BCM1 FTM4 90.0% 89.81%

473 502 PNV2 FTM4 10.0% 89.81%

11490 203 BCM1 SGS1 70.0% 0.0%

11239 502 ACRD1 LGO2 60.0% 0.0%

1380 201 AGM1 FTM1 80.0% 0.0%

4748 201 BCM1 GC1 90.0% 0.0%

4887 201 BCM1 FTM1 100.0% 0.0%

15962 201 BCM1 GC1 90.0% 0.0%

9152 203 BCG PRI1 70.0% 0.0%

3542 502 BCM1 FTM4 90.0% 89.81%

5653 201 BS1 GC1 90.0% 0.0%

6249 502 BLFZ1 LGO2 90.0% 0.0%

471 201 BCM1 FTM1 100.0% 0.0%

4750 201 BCM1 GC1 90.0% 0.0%

13242 203 MPL3 PRI1 70.0% 0.0%

233 203 MPL3 GC11 70.0% 0.0%

7635 203 BCM1 GC11 70.0% 88.1%

2987 202 BCM3 ABM1 0.0% 72.97%
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Table B.31: Traveller 1’s temporary network with member relevance on 13/01/2010

Table B.31 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
3587 201 BS1 BRV1 100.0% 0.0%

2985 202 BCM3 BRP1 0.0% 84.47%

13971 502 BCM1 FTM4 90.0% 89.81%

12170 201 BCM1 ACRD1 50.0% 0.0%

7633 203 BCM1 GC11 70.0% 88.1%

7278 203 BCM1 SGS1 70.0% 0.0%

11968 201 BS1 PRO1 100.0% 0.0%

11969 201 BCM1 ACRD1 50.0% 0.0%

7275 203 BSB PRI1 70.0% 0.0%

457 502 BLFZ1 LGO2 90.0% 0.0%

458 502 CVA1 MAL2 90.0% 0.0%

7277 203 BSB GC11 70.0% 0.0%

5654 201 BCM1 GC1 90.0% 0.0%

5655 201 BCM1 FTM1 100.0% 0.0%

7271 203 MPL3 PRI1 70.0% 0.0%

10040 502 BCM1 FTM4 90.0% 89.81%

7270 203 MPL3 SGS1 70.0% 0.0%

2127 502 BCM1 FTM4 90.0% 89.81%

4093 502 BCM1 FTM4 90.0% 89.81%

7873 201 BCM1 FTM1 100.0% 0.0%

2123 502 BLFZ1 FTM4 90.0% 0.0%

7152 203 BCM1 PRI1 70.0% 0.0%

13265 203 BCM1 SGS1 70.0% 0.0%

91 201 BCM1 PNV2 100.0% 0.0%

3157 203 BCM1 SGS1 70.0% 0.0%

6667 203 BCM1 GC11 70.0% 88.1%

17737 201 BCM1 ACRD1 50.0% 0.0%

6666 203 BCM1 PRI1 70.0% 0.0%

2691 502 BCM1 LGO2 90.0% 76.19%

17738 201 ACRD1 VIS5 60.0% 0.0%

2694 502 BCM1 LGO2 90.0% 76.19%

6668 201 BCM1 GC1 90.0% 0.0%

460 502 BCM1 LGO2 90.0% 76.19%

757 201 BCM1 BSS1 60.0% 0.0%

7268 203 MPL3 PRI1 70.0% 0.0%
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Table B.31: Traveller 1’s temporary network with member relevance on 13/01/2010

Table B.31 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
7267 203 MPL3 PRI1 70.0% 0.0%

2688 502 BCM1 LGO2 90.0% 76.19%

6670 203 BCM1 GC11 70.0% 88.1%

467 201 BCM1 FTM1 100.0% 0.0%

6671 203 BCM1 GC11 70.0% 88.1%

468 502 BCM1 PRCD3 90.0% 0.0%

6672 201 BCM1 GC1 90.0% 0.0%

11970 201 BCM1 ACRD1 50.0% 0.0%

1354 502 BCM1 FTM4 90.0% 89.81%

3423 201 BCM1 GC1 90.0% 0.0%

2

B.2.4 Traveller 1 temporary network on 14/01/2010

Table B.32: Traveller 1’s temporary network with member relevance on 14/01/2010

Table B.32 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
13812 201 PAL3 BSS1 50.0% 0.0%

2090 203 BCM1 PRI1 70.0% 0.0%

1477 201 BCM1 GC1 80.0% 81.15%

112 502 BCM1 PRCD3 100.0% 0.0%

1108 502 BCM1 FTM4 100.0% 0.0%

12210 201 BCM1 PINM1 70.0% 0.0%

3540 502 BCM1 MAL2 100.0% 0.0%

5994 201 BCM1 GC1 80.0% 81.15%

12211 201 BCM1 GC1 80.0% 81.15%

5993 203 BCM1 PRI1 70.0% 0.0%

2251 502 BCM1 LGO2 100.0% 0.0%

5912 203 MPL3 JBR1 70.0% 0.0%

7349 201 PAL3 PRO1 90.0% 0.0%

4396 203 MPL3 PRI1 70.0% 0.0%

13898 502 PRR1 FTM4 100.0% 0.0%

11630 203 MPL3 SRV1 70.0% 0.0%

9492 502 BCM1 LGO2 100.0% 0.0%
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Table B.32: Traveller 1’s temporary network with member relevance on 14/01/2010

Table B.32 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
5263 502 BCM1 PRCD3 100.0% 0.0%

17340 203 MPL3 PRI1 70.0% 0.0%

5261 201 BS1 FOCO1 60.0% 0.0%

6665 203 BCM1 SGS1 70.0% 0.0%

1481 502 BCM1 FTM4 100.0% 0.0%

6923 201 BS1 BSS1 50.0% 0.0%

1483 201 BS1 EZC1 90.0% 0.0%

5265 201 PRG1 FTM1 90.0% 70.68%

1484 502 BCM1 FTM4 100.0% 0.0%

3539 502 JN3 PRCD3 100.0% 0.0%

5266 502 ACRD1 LGO2 70.0% 0.0%

16200 502 BCM1 LGO2 100.0% 0.0%

4749 201 BCM1 GC1 80.0% 81.15%

16201 502 GJQ3 FTM4 80.0% 0.0%

11235 502 BLRB2 PRCD3 100.0% 0.0%

2120 502 FIG FTM4 100.0% 0.0%

5320 502 PRR1 PRCD3 100.0% 0.0%

4214 203 MPL3 GC11 70.0% 0.0%

5321 502 BCM1 MAL2 100.0% 0.0%

11492 201 BCM1 BSS1 50.0% 0.0%

15960 502 HML1 LGO2 100.0% 0.0%

15962 502 BCM1 FTM4 100.0% 0.0%

2884 502 HML1 MAL2 100.0% 0.0%

3542 502 BCM1 FTM4 100.0% 0.0%

4750 201 BCM1 GC1 80.0% 81.15%

13242 203 MPL3 PRI1 70.0% 0.0%

7635 203 MPL3 GC11 70.0% 0.0%

15064 502 BCM1 LGO2 100.0% 0.0%

13971 201 BCM1 PNV2 90.0% 89.81%

13602 201 BS1 BSS1 50.0% 0.0%

10876 502 BCM1 LGO2 100.0% 0.0%

2072 502 GJQ3 LGO2 80.0% 0.0%

12171 201 BCM1 GC1 80.0% 81.15%

7633 203 MPL3 GC11 70.0% 0.0%

7147 203 MPL3 PRI1 70.0% 0.0%
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Table B.32: Traveller 1’s temporary network with member relevance on 14/01/2010

Table B.32 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
7148 203 MPL3 SGS1 70.0% 0.0%

3700 502 GJQ3 FTM4 80.0% 0.0%

11968 201 BS1 EZC1 90.0% 0.0%

7275 203 BSB PRI1 70.0% 0.0%

457 502 BLRB2 NEV2 100.0% 0.0%

458 502 CVA1 MAL2 100.0% 0.0%

13935 203 BCM1 PRI1 70.0% 0.0%

7277 203 BSB GC11 70.0% 0.0%

5654 203 MPL3 GC11 70.0% 0.0%

12503 202 BCM3 BRV3 0.0% 82.1%

5655 201 BCM1 PNV2 90.0% 89.81%

17339 203 MPL3 GC11 70.0% 0.0%

10040 502 BCM1 PRCD3 100.0% 0.0%

459 502 BCM1 LGO2 100.0% 0.0%

2125 502 BCM1 FTM4 100.0% 0.0%

4093 502 BCM1 FTM4 100.0% 0.0%

7873 201 BCM1 FTM1 90.0% 94.97%

2123 502 BCM1 FTM4 100.0% 0.0%

7152 203 BCM1 PRI1 70.0% 0.0%

1159 502 BSS1 LGO2 60.0% 0.0%

91 201 BCM1 PNV2 90.0% 89.81%

3157 203 BCM1 SGS1 70.0% 0.0%

5625 502 BLFZ1 FTM4 100.0% 0.0%

1115 502 GJQ3 PRCD3 80.0% 0.0%

6666 203 BCM1 PRI1 70.0% 0.0%

2691 502 BCM1 LGO2 100.0% 0.0%

6669 203 BCM1 GC11 70.0% 78.29%

2694 502 BCM1 LGO2 100.0% 0.0%

461 502 BCM1 LGO2 100.0% 0.0%

2693 502 BCM1 LGO2 100.0% 0.0%

2739 203 MPL3 PRI1 70.0% 0.0%

6670 201 BCM1 GC1 80.0% 81.15%

467 502 BCM1 LGO2 100.0% 0.0%

6671 502 BCM1 FTM4 100.0% 0.0%

468 502 BCM1 PRCD3 100.0% 0.0%
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Table B.32: Traveller 1’s temporary network with member relevance on 14/01/2010

Table B.32 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
6672 502 BCM1 FTM4 100.0% 0.0%

7056 201 AGM1 FTM1 80.0% 81.99%

2

B.2.5 Traveller 1 temporary network on 15/01/2010

Table B.33: Traveller 1’s temporary network with member relevance on 15/01/2010

Table B.33 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
9287 501 BCM3 BFTM1 60.0% 0.0%

113 201 BCM1 PNV2 0.0% 88.78%

17887 201 BCM1 FTM1 0.0% 95.26%

4454 202 BCM3 RCRT2 100.0% 0.0%

1107 202 BCM3 MSLD 100.0% 0.0%

3541 502 BCM1 LGO2 0.0% 81.48%

7349 501 PAL3 BFTM1 60.0% 0.0%

9492 502 BCM1 LGO2 0.0% 81.48%

18548 502 BCM1 FTM4 0.0% 94.24%

16790 202 TRD1 LGO4 100.0% 0.0%

16791 202 BCM3 SJB1 60.0% 0.0%

4310 201 BCM1 GC1 0.0% 80.28%

5889 201 PRG1 FTM1 0.0% 73.81%

9657 501 BCM3 BFTM1 60.0% 0.0%

5601 502 AGM1 LGO2 0.0% 68.58%

16200 201 BCM1 FTM1 0.0% 95.26%

11238 502 BCM1 LGO2 0.0% 81.48%

4214 203 BCM1 GC11 0.0% 76.91%

10865 202 BCM3 LGO4 100.0% 0.0%

5489 501 BCM3 BFTM1 60.0% 0.0%

1380 201 GJQ3 FTM1 0.0% 74.48%

17291 501 BCM3 IGAL2 60.0% 0.0%

3542 502 BCM1 FTM4 0.0% 94.24%

5653 201 BS1 GC1 0.0% 71.61%

471 502 BCM1 LGO2 0.0% 81.48%
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Table B.33: Traveller 1’s temporary network with member relevance on 15/01/2010

Table B.33 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
13243 203 BCM1 GC11 0.0% 76.91%

7635 203 BCM1 GC11 0.0% 76.91%

7387 501 GGF BFTM1 60.0% 0.0%

15572 202 SDP1 LGO4 70.0% 0.0%

2985 202 BCM3 BRP1 80.0% 0.0%

15573 202 SJB1 MSLD 50.0% 0.0%

5719 202 SJB1 FTM2 50.0% 0.0%

13971 502 BCM1 FTM4 0.0% 94.24%

7104 501 CMO PDVD4 60.0% 0.0%

10876 502 BCM1 LGO2 0.0% 81.48%

2072 502 GJQ3 LGO2 0.0% 60.69%

12171 201 BCM1 GC1 0.0% 80.28%

2980 202 TRD1 LGO4 100.0% 0.0%

7633 203 BCM1 GC11 0.0% 76.91%

2976 202 TRD1 MSLD 100.0% 0.0%

5654 203 BCM1 GC11 0.0% 76.91%

12503 202 BCM3 BRV3 90.0% 0.0%

5655 201 BCM1 FTM1 0.0% 95.26%

10040 502 BCM1 FTM4 0.0% 94.24%

2127 502 BCM1 LGO2 0.0% 81.48%

459 502 BCM1 FTM4 0.0% 94.24%

2125 502 BCM1 FTM4 0.0% 94.24%

2978 202 TRD1 LNEV2 100.0% 0.0%

4093 203 BCM1 GC11 0.0% 76.91%

1261 202 SDP1 LGO4 70.0% 0.0%

1262 202 SJB1 LGO4 50.0% 0.0%

18511 201 BCM1 GC1 0.0% 80.28%

599 501 BCM3 BFTM1 60.0% 0.0%

10218 501 PRG1 BFTM1 60.0% 0.0%

10219 501 BCM3 BFTM1 60.0% 0.0%

2345 502 BCM1 FTM4 0.0% 94.24%

1260 202 CSBV LNEV2 80.0% 0.0%

91 502 BCM1 FTM4 0.0% 94.24%

758 501 BCM3 PDVD4 60.0% 0.0%

2691 502 BCM1 LGO2 0.0% 81.48%
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Table B.33: Traveller 1’s temporary network with member relevance on 15/01/2010

Table B.33 – continued from previous page
Traveller Route Origin Destinonion Relevance (similar) Relevance (complementar)
461 502 BCM1 LGO2 0.0% 81.48%

756 501 BCM3 PDVD4 60.0% 0.0%

6669 201 BCM1 GC1 0.0% 80.28%

460 502 BCM1 FTM4 0.0% 94.24%

6668 203 BCM1 GC11 0.0% 76.91%

463 201 BCM1 FTM1 0.0% 95.26%

5631 502 BCM1 LGO2 0.0% 81.48%

467 201 BCM1 FTM1 0.0% 95.26%

6670 203 BCM1 GC11 0.0% 76.91%

6671 201 BCM1 GC1 0.0% 80.28%

8170 501 BCM3 BFTM1 60.0% 0.0%

469 502 BCM1 LGO2 0.0% 81.48%

1354 502 BCM1 LGO2 0.0% 81.48%

11261 501 BCM3 BFTM1 60.0% 0.0%

7056 201 AGM1 FTM1 0.0% 82.37%
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