
Mobile and Web
Recommender
System for Shopping
Luís Miguel Couto Moreira
Dissertação de Mestrado apresentada à
Faculdade de Ciências da Universidade do Porto em

Ciência de Computadores

2015

M
o

b
ile

 a
n

d
W

e
b

 R
e
c
o

m
m

e
n

d
e
r

S
y
s
te

m
fo

r
S

h
o

p
p

in
g

L
u

ís
 M

ig
u

e
l C

o
u

to
 M

o
re

ira
M

S
c

FCUP
2015

2.º
CICLO

Mobile and Web

Recommender System

for Shopping
Luís Miguel Couto Moreira
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciência de Computadores

2015

Orientador
David Moura Ribeiro, MSc., Fraunhofer

Coorientador
João Pedro Pedroso, Prof. Doutor, FCUP

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Dedicated to my grandfather Manuel Couto Luiz and my dear friend Hugo Gouveia, although
you both left you will always be with me

4

Acknowledgements

This work wouldn’t be possible without the tremendous help of both of my advisors David Moura
Ribeiro, Fraunhofer Portugal and João Pedro Pedroso, FCUP I want to thank them for their always
helpful insights, patience and understanding.
I would also like to thank Nino Rocha from Fraunhofer Portugal for all is help with this thesis
template and formatting.
I would also like to thank my parents José and Arminda, my brother José Luís and my girlfriend
Catarina, I couldn’t do this without all of you.
I couldn’t end without thanking my friends Carlos Ferreira, Cristiano Monteiro, Mafalda Freitas,
Mário Pinto, Miguel Lobo, Pedro Ramalho and Pedro Oliveira for all their support and for always
being there.

5

Abstract

Since the advent of digital point-of-sale systems in the early 90’s, there has been an ever increasing
interest in using the recorded transactions to obtain valuable information and relationships
contained in the data. Today this field is incorporated in the broad research fields of data mining
and machine learning.
With the transition from traditional brick and mortar retailers to e-commerce, this information
has become easier to collect and explore.
At the same time, a typical online store contains thousands of products in its catalog, with this
huge inventory it is impossible for a customer to known every single product and from there make
the best purchasing decisions according to his/hers tastes. Recommendation systems were created
to solve this problem.
They help customers by providing sensible product recommendations that the customer will
appreciate, while providing to the stores potentially higher sales and lower costs related to product
marketing.
In this thesis, recommendation systems will be explored with an emphasis on aided product
replacement and periodically bought products recommendations, a prototype recommendation
system that provides these features was developed and the system was tested on real transaction
data provided by a large retail chain.
The system achieves encouraging results on traditional recommendations (used on aided product
replacement) but the results of periodically bought products recommendations need further
analysis.

Resumo

Desde o aparecimento das caixas registadoras digitais no início dos anos 90, tem existido um
interesse crescente em analisar a informação recolhida por estes sistemas, por forma a obter
informações e relacionamentos importantes contidos nos dados. Esta área de estudo faz hoje em
dia parte de dois grandes campos de investigação que são a prospeção de dados (do Inglês data
mining) e aprendizagem automática (do Inglês machine learning).
Com a transição crescente das lojas de venda a retalho tradicionais para o comércio online, este
tipo de informação tornou-se mais acessível e a sua posterior utilização mais facilitada.
Ao mesmo tempo, hoje em dia, o catálogo de uma loja online é composto por milhares de produtos
diferentes, e com tanta escolha, torna-se impossível ao comum dos mortais conhecer todas as
diferentes alternativas e daí escolher os produtos que melhor se adaptam às suas necessidades e
gostos. Os sistemas de recomendação foram criados por forma a colmatar este problema.
Os sistemas de recomendação auxiliam os consumidores ao mostrar-lhes produtos pelos quais
estes terão interesse, proporcionando ao mesmo tempo às lojas, maiores vendas potencias, bem
como menos custos no marketing dos produtos.
Nesta tese, os sistemas de recomendação são explorados ao pormenor com ênfase no auxílio
à recomendação de produtos substitutos, bem como à recomendação de produtos comprados
periodicamente. Um protótipo foi desenvolvido que inclui estas funcionalidades e este foi testado
em dados reais fornecidos por um grande retalhista.
O sistema demonstrou resultados encorajadores em recomendações tradicionais (substituição de
produtos), enquanto que os resultados de produtos comprados periodicamente necessitam de ser
melhor explorados.

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Project Objectives . 10

1.3 Document Structure . 10

2 State of the Art 11

2.1 Recommendation Systems . 11

2.1.1 Similarity Measures . 11

2.1.1.1 Cosine Similarity . 12

2.1.1.2 Pearson Correlation Coefficient and Distance 13

2.1.2 Collaborative Filtering Based Recommenders 15

2.1.2.1 User-to-User Collaborative Filtering 15

2.1.2.2 Item-to-Item Collaborative Filtering 16

2.1.2.3 Matrix Factorization Model Based Collaborative Filtering . . 17

2.1.2.4 Other Model Based Collaborative Filtering 18

2.1.2.5 Problems With Collaborative Filtering Based Recommenders 19

2.1.3 Content Based Recommenders . 19

2.1.3.1 Problems With Content Based Recommenders 22

2.1.4 Hybrid Recommenders . 22

2.2 Data Mining . 23

2

CONTENTS 3

2.2.1 Association Rules . 23

2.2.1.1 Algorithms . 23

2.2.1.2 Using Association Rules To Generate Recommendations . . 26

2.2.2 Statistics . 26

2.2.2.1 Z-test . 26

2.2.2.2 Normality Tests . 27

2.2.2.3 Pearson Chi-Square Normality Test 27

2.3 Technologies . 28

2.3.1 Big Data . 28

2.3.2 Parallel Computing . 29

2.3.2.1 Apache Hadoop . 29

2.3.2.2 Apache Spark . 31

2.3.3 Distributed Databases . 32

2.3.3.1 Apache HBase . 32

2.3.4 Web Services . 33

2.3.4.1 RESTful Web Service . 34

3 Recommendation System Development 35

3.1 Dataset . 35

3.1.1 Database preparation . 36

3.2 Product Recommendations . 38

3.2.1 Model Building . 38

3.2.2 Generating Recommendations . 39

3.2.3 Own Brand Products . 40

3.2.3.1 Shopping cart replacement 41

3.2.4 Association Rules . 41

3.3 Periodically Bought Products . 42

4 CONTENTS

3.3.1 Motivation and Objectives . 42

3.3.2 Analytical Tools . 43

3.3.3 Concept . 45

3.3.4 Solution . 46

3.3.5 Generating Frequent Products . 47

3.3.6 Web Services . 48

3.4 Graphical User Interface . 49

4 Tests and Results 52

4.1 Product Recommendations . 52

4.2 Periodically Bought Products . 54

4.2.1 Results with 4 months of training and 2 months of testing data 55

4.2.2 Results with 5 months of training and 1 month of testing data 56

4.2.3 Results Discussion . 57

5 Conclusion 59

5.1 Future Work . 59

List of Tables

2.1 Film ratings by customers on a scale of 0-5 12

2.2 Film ratings normalized . 13

2.3 N*M User-to-Item Matrix with ratings given to Movies by the Customers . . . 17

2.4 M*M Item-to-Item Matrix with affinity on a scale [-1,1] 17

2.5 Movies depicted by gender as characteristics on a scale of [0-5] 20

2.6 Movies watched by Customer, on a binary scale, 1 if watched 0 if not 21

2.7 Customer profile based on watched movies characteristics 21

2.8 HBase table architecture . 33

2.9 Demographic HBase table example . 33

3.1 Transactions table . 37

3.2 Categories table . 37

3.3 Map table . 37

3.4 Example of period calculation . 42

4.1 Average rank recommendation results . 53

4.2 1st Formula results with 4months/2months, threshold = 85% 55

4.3 2nd Formula results with 4months/2months, threshold = 85% 56

4.4 3rd Formula results with 4months/2months, threshold = 85% 56

4.5 Periodically Bought Products Results, 4months/2months, threshold = 60% . . . 56

4.6 Periodically Bought Products Results, 5months/1month, threshold = 60% . . . 57

5

List of Figures

2.1 User-to-User recommendation example . 15

2.2 Item-to-Item recommendation example . 16

2.3 Item-to-Item recommendations at Amazon . 16

2.4 Caption for LOF . 20

2.5 Candidate formation phases without cut from lack of support 24

2.6 MapReduce data flow with multiple reducers - Image from [52, page 30] 31

3.1 Extract of an entire transaction . 36

3.2 Product range database sample . 36

3.3 Buying Quantities Visualization . 43

3.4 Buying Periods Visualization . 44

3.5 Normalized Periods Visualization . 45

3.6 Example of a global periods graphic with 40 bins 46

3.7 Index . 49

3.8 Recommendations index with users listed . 50

3.9 Transaction details example with one bought product per row 50

3.10 Frequency index . 51

3.11 Graphical User Interface (GUI) Flowchart . 51

4.1 Rank percentile results . 54

6

Glossary

ALS Alternating Least Squares. 17, 37

API Application Programming Interface. 35

CSV A comma-separated values (CSV) is a file type that allows the storage of tabular data
(strings/numbers) in plaint text. 35

Fraunhofer AICOS Fraunhofer Portugal Research Center for Assistive Information and Com-
munication Solutions. 6

GUI Graphical User Interface. 6, 44, 50, 52, 53

HDFS Hadoop Distributed Filesystem. 28, 31

HTTP Hypertext Transfer Protocol. 33

JDBC Java Database Connectivity. 31

JSON JavaScript Object Notation. 33, 48

JSP JavaServer Pages. 50

JVM Java Virtual Machine. 41

LDA Latent Dirichlet Allocation. 20

MBA Market Basket Analysis. 6

MLLib Machine Learning Library. 37, 38

MP Marca Própria. 40

POJO Plain Old Java Object. 38

PP Primeiro Preço. 40

7

8 Glossary

RDBMS Relational Database Management System. 31

RDD Resilient Distributed Datasets. 30, 38

REST Representational State Transfer. 33

RMSE Root Mean Squared Error. 39

SKU Stock Keeping Unit. 35, 36

SOAP Simple Object Access Protocol. 33

SQL Structured Query Language. 32

URI Uniform Resource Identifier. 33

VOD Video On Demand. 14

WSDL (Web Services Description Language. 33

WWW World Wide Web. 33

XML Extensible Markup Language. 33

Chapter 1

Introduction

1.1 Motivation

Currently customers are increasingly transitioning from shopping in traditional brick-and-mortar
retail businesses in favour of e-commerce alternatives. With this transition comes the associated
long tail phenomenon [9] where the number of products that are carried by a store is no longer
limited by the physical space on the store’s shelves, and thus the number of products carried can
grow. Also, in the e-commerce world the cost of adding another product to the mix, or even ten
more, is practically negligible.

Today’s biggest online stores have a catalog size with an order of magnitude of hundreds of
millions of products [44], with such an extensive catalog it is humanly impossible for customers
to know every single product and from there make the best purchasing decisions according to
their needs.

The long tail phenomenon concerns the fact that due to the increased product choice, the
majority of sales cease to be concentrated on a small percentage of high selling products, to be
more spread-out to a higher number of products with fewer sales each. These fewer sales of a
higher number of items produces the so called long tail of the distribution.

Because of this, the need for recommendation systems is ever increasing and they are becoming
an essential part of every user’s online shopping experience.

From another perspective, recommendations have been proven to be a very effective way of
increasing a stores’ overall revenue [26].

From these two needs, recommendation systems were born. Recommendation systems aim to,
through an assortment of techniques like data mining between others, provide to the user, at the
right time, items that will be of his/hers interest.

9

10 CHAPTER 1. INTRODUCTION

This research area also has connections to Market Basket Analysis (MBA), a sub-area of
affinity analysis in which one wishes to find co-occurrence of items, or putting it simply, items
frequently bought together. This co-occurrence then allows for the implementation of various
sales strategies like cross-selling or up-selling [51], building of loyalty programs, and even serves
to influence brick-and-mortar store design.

1.2 Project Objectives

This master thesis was written in the context of a 6 months internship at Fraunhofer AICOS [4] in
the months of March through September of 2015. The project was possible with the support of a
major retail store chain company in Portugal, which provided customer retail transaction data for
analysis and testing of the developed solutions. The project aimed to test different recommendation
techniques using the retail chain data’s and build a working recommendation system.

Two main objectives were first set. The first was to provide product recommendations specifi-
cally tailored for each user needs derived from his/her buying profile; these recommendations
could also be limited to a product, subset such as a product category, or own brand/white label
products. The second objective aimed to analyze each user’s buying history to find periodic
products (products that are recurrently bought within a well defined periodic interval) and then
recommend these products at the right time (when the customer is most likely to accept the
recommendation and buy the product).

The recommendation system should provide various web services that would allow product
recommendations to be integrated into all sorts of clients, like an application on a smartphone
device or a website.

Another objective was the development of a GUI prototype, for demonstration purposes.

1.3 Document Structure

The rest of this document is structured in the following way: In the next chapter, chapter 2 a review
on the state of the art in the area of recommendation systems as well as some technologies used
during the project development is made. In chapter 3, the developed work is described in detail
and in chapter 4 some test results are shown. Finally, chapter 5 presents the conclusion and some
future research directions.

Throughout this thesis, the terms product and item, and user and customer are used inter-
changeably.

Chapter 2

State of the Art

Every time we express/take an opinion about a product, being it an explicit opinion, like the one of
fondness when we recurrently buy the same product, or an implicit opinion, when we constantly
browse through the same product page without ever finalizing a buy, we build a preference profile
that contains valuable information.

Recommendation systems try to harness the power of these opinions about products, being
them positive or negative opinions, in order to present to the user other items that he/she may also
like but hasn’t yet discovered.

2.1 Recommendation Systems

Although every one of us has unique tastes, our tastes do follow patterns, if I like meat for a
barbecue, with a high likelihood I will also like sausages and beer. Even more, with 7 billion
people in the World [39], even the ones of us with the most obscure tastes are likely to find a very
large group of peers that shares most of their preferences.

Recommendation systems seek to predict the opinion or the rating that a user would give to a
product he/she isn’t familiar with, through the power of aggregating the opinions of other users
with similar tastes.

In this section a review on the state-of-the-art of recommendation systems and some technolo-
gies used in the project is presented.

2.1.1 Similarity Measures

To find these similar users to power the recommendations, recommendation systems need to use
a measure of similarity. A measure of similarity seeks to quantify the similarity between two

11

12 CHAPTER 2. STATE OF THE ART

objects.

Before proceeding with a recommendation systems review, some similarity measures used in
all of these systems need to be presented.

Example of a ratings matrix, in this case, of user’s ratings of films:

Table 2.1: Film ratings by customers on a scale of 0-5

Films
Customers

Fight Club Mad Max The Hunger Games The Godfather

John 4.8 2.2
Mary 4.5 4.0 3.9 4.3
Oliver 5.0
Silvia 3.0 3.2 4.5 5.0
Sofia 2.0 2.5 4.5 2.8

(Missing values indicate no rating)

2.1.1.1 Cosine Similarity

The cosine similarity measures the difference in orientation between two vectors in the same inner
product space, it can be calculated through the following formula:

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

Ai ×Bi√
n∑
i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2

It is not a measure of magnitude because two vectors with very different magnitudes but the
same orientation will have a cosine similarity of 1. Two vectors with opposing directions will
have a cosine similarity of -1 and two perpendicular vectors will have a cosine similarity of 0.

Take for example the ratings present in table 2.1, lets calculate the cosine similarity between
Mary and Sofia:

similarity(Mary, Sofia) =
(4.5× 2.0 + 4.0× 2.5 + 3.9× 4.5 + 4.3× 2.8)√

(4.52 + 4.02 + 3.92 + 4.32)×
√

(2.02 + 2.52 + 4.52 + 2.82)

≈ 0.938

Instead of using the observed ratings directly, it is very common in recommendations systems
to normalize the ratings first, this is done in order to account for rater bias.

CHAPTER 2. STATE OF THE ART 13

Two types of rater bias can be considered, raters which consistently rate bellow average (called
harsh/hard raters) and raters which tend to consistently rate above the average (called soft raters).

A popular normalization technique is to subtract each rating by the average rating given by the
user. Using this technique, and starting from table 2.1, a new table, 2.2, can be calculated.

Table 2.2: Film ratings normalized

Films
Customers

Fight Club Mad Max The Hunger Games The Godfather

John 1.300 -1.300
Mary 0.325 -0.175 -0.275 0.125
Oliver 0
Silvia -0.925 -0.725 0.575 1.075
Sofia -0.950 -0.450 1.550 -0.150

(Missing values indicate no rating)

By normalizing by the mean, the results are called mean-centered and just by looking at the
rating’s signal one knowns if the user has a special preference for the item (rated above average)
or not (rating equal or less than zero). Take note that by normalizing by the average value, the
user ratings end up with a mean of zero.

Using the ratings on table 2.2 we get the following cosine similarity:

similarity(Mary, Sofia) ≈ −0.753

2.1.1.2 Pearson Correlation Coefficient and Distance

The Pearson product-moment correlation coefficient will give a value between [-1,1] of the
correlation between two variables. It gives the linear dependence between the two variables, 1
signifies total positive correlation, 0 no correlation and -1 total negative correlation.

It can be calculated through the following formula:

ρX,Y =
cov(X,Y)

σXσY

where:

• cov is the covariance

• σX is the standard deviation of X

14 CHAPTER 2. STATE OF THE ART

The Pearson’s distance can be calculated by the following formula:

dX,Y = 1− ρX,Y

Because ρX,Y varies between [-1,1] the Pearson’s distance varies from [0,2].

Again, using table 2.1 we get the following Pearson’s distance:

ρMary,Sofia =
cov(Mary, Sofia)

σMaryσSofia

≈ −0.16875

0.238× 0.939

≈ −0.753

dMary,Sofia = 1− ρMary,Sofia

≈ 1− (−0.753)

≈ 1.753

And if we use table 2.2 we get the following result:

ρMary,Sofia =
cov(Mary, Sofia)

σMaryσSofia

≈ −0.16875

0.238× 0.939

≈ −0.753

dMary,Sofia = 1− ρMary,Sofia

≈ 1− (−0.753)

≈ 1.753

So, from these results we can see that contrary to cosine similarity, the Pearson’s distance is
not susceptible to the domain of the variables being used.

We can also verify that if the values are mean-centred, as in table 2.2, the cosine similarity
(called in this case centred cosine similarity) is equivalent to the Pearson Correlation Coefficient.

CHAPTER 2. STATE OF THE ART 15

2.1.2 Collaborative Filtering Based Recommenders

Collaborative filtering based as the name entails is a product recommendation technique that filters
the candidate products (products that are available to be recommended) through some criteria,
one can think of this criteria as the "Wisdom of the crowd".

Collaborative filtering explores similarities between customer’s tastes or between the buying
patterns of different products to generate recommendations.

There are two main collaborative filtering variants, the first being heuristic-style neighborhood
based systems and model based systems.

2.1.2.1 User-to-User Collaborative Filtering

User-to-User collaborative filtering (also called user-based collaborative filtering) is a neighbor-
hood based collaborative filtering technique, where as the name entails, similarity between users
is used in order to generate recommendations.

To generate recommendations to a target user, a group of N most similar users is found, and
to predict the rating of a new product (to the target user) an aggregation function of the ratings
given by the similar users to that product is took. In the end, the item(s) that score the highest
is(are) the recommendation(s).

Take the following example:

Figure 2.1: User-to-User recommendation example

Take the example given in figure 2.1, where the buying profile of both users is very similar,
both have bought potato chips and a soda.

From this, when the user on the right buys an hamburger, since the two customers have very
similar tastes, the recommendation system can act, and recommend the hamburger to the user on

16 CHAPTER 2. STATE OF THE ART

the left with a good assumption that the left user will appreciate the recommendation.

In general, the aggregation function of the ratings of the N most similar users for an item can
be as simple as averaging all the ratings or be more advanced by calculating giving weights to
each rating (weighted average).

To calculate these weights two popular measures are for the weight to be the inverse of the
distance between the target user ratings and the other user ratings, or, use another measure like
tf-idf [42], [8] on the ratings of the two users in question.

2.1.2.2 Item-to-Item Collaborative Filtering

Another neighborhood technique is Item-to-Item collaborative filtering (also called item-based
collaborative filtering), where the similarity between items is used in order to generate recom-
mendations.

Figure 2.2: Item-to-Item recommendation example

Figure 2.3: Item-to-Item recommendations at Amazon

Starting from an item, lets call it I0, to generate a recommendation for I0, the algorithm first
finds all the cases where a customer has bought I0 and another item Ii and registers these cases
in an Item-to-Item affinity matrix. The next step is taking the corresponding column/row for
I0 and calculate the similarity between it and all the products that were bought with it with for
example the previously described cosine similarity. The most similar items are the algorithm’s

CHAPTER 2. STATE OF THE ART 17

recommendations [36].

Algorithm 1 Pseudocode for an Item-to-Item similarity computation algorithm
1: for each item I1 in product catalog
2: for each customer c who purchased I1
3: for each item I2 purchased by customer c
4: Record that customer c purchased both item I1 and item I2
5: for each item I2
6: Compute the similarity between I1 and I2

Example of a User-to-Item Matrix that could be used in a Video On Demand (VOD) movie
rental website:

Table 2.3: N*M User-to-Item Matrix with ratings given to Movies by the Customers

Films
Customers

Fight Club Mad Max The Hunger Games The Godfather

Paul 2.3 -0.3
Mercy 2.0 1.5 1.4 1.8
Daniel 2.5
Jane 0.5 0.7 -0.5 2.5

(Missing values indicate no rating)
Ratings have been normalized to the scale [-2.5,+2.5]

By using algorithm 1 with cosine similarity measure, one would get the following Item-to-Item
similarity matrix:

Table 2.4: M*M Item-to-Item Matrix with affinity on a scale [-1,1]

Films
Films

Fight Club Mad Max The Hunger Games The Godfather

Fight Club 1.0 0.5 0.3 0.4
Mad Max 0.5 1.0 0.7 0.9

The Hunger Games 0.3 0.7 1.0 0.3
The Godfather 0.4 0.9 0.3 1.0

2.1.2.3 Matrix Factorization Model Based Collaborative Filtering

Matrix factorization [35] methods are in the class of latent factor models, they infer both user and
items characteristics through item rating history (for example customers’ buys).

These latent factors (also called model features, and typically in the order of 20-100) are what
describes an object in the model. For a product, factors could be color, smell, packaging, price,
brand, etc, etc, and for customers the factors would equate to the affinity that the customer has to

18 CHAPTER 2. STATE OF THE ART

each of these product factors.

The model infers these factors automatically without explicit input and some of these factors
could even be some uninterpretable dimension.

A matrix factorization model builds for each customer and for each product vectors with
affinity factors.

The products affinity for user u named pu is a vector of equal size to the number of items and
measures u′s affinity to each product.
The item’s i affinity to each user corresponds to the vector qi of equal size to the number of users.
Aggregation these vectors for all the items and users generates one matrix of factors for users
{∀pu|u ∈ Users} and another for items {∀qi|i ∈ Items}.

The matrix multiplication on column x row gives an approximation of the true rating (and
equals the dot product of the two vectors):

řui = qTi pu ≈ rui

A matrix factorization model tries to reduce this difference between the true rating and the
approximated rating for all products and users, this can be formulated as:

min
q∗,p∗

∑
(u,i)∈K

(rui − qTi pu)2 + λ(||qi||2 + ||pu||2)

The previous equation can be optimized through Alternating Least Squares (ALS), since both
qi and pu are not know, ALS alternates between fixing one and then the other in order to optimize
the approximation until it converges or there are very small changes to the matrices [18].

2.1.2.4 Other Model Based Collaborative Filtering

The main difference between model based and neighborhood based recommendations systems is
that model based recommenders build an actual model based on statistics or data mining techniques
instead of an ad-hoc heuristic as the neighborhood based models. One of their advantages over
heuristic-based collaborative filtering recommenders is that they can detect implicit user feedback
instead of only explicit actions, model based recommenders have also been show to perform
significantly better in some types of domains and because the computational-intensive part is the
model creation, which can be done offline, they provide better online recommendation performance
[43].

Unlike heuristic-based recommenders, model based techniques require a training and validation
phase so as to construct the model that fits the best with the dataset at hand.

CHAPTER 2. STATE OF THE ART 19

Some typical model based techniques include:

• Bayesian Networks [8], [12]
In a Bayesian Network model, a conditional probabilistic model is built where each state
corresponds to an item and each path leads to a choice of voting (purchasing/watching/re-
viewing) for an item or not. The model builds a decision tree based on the user’s history
and completes missing items based on other similar trees, attaching the right conditional
probability to each state.

• Clustering
An alternative model formulation is to cluster users and items with an algorithm like k-means
or k-nearest neighbors.

One common approach is to cluster users based on which movies they have watched and then
cluster the movies based on who watched them. On the next step, the users are re-clustered
based on the number of movies of each cluster that they have watched and the movies are
also re-clustered based on the number of people in each cluster that as watched them [50].

Then it is trivial calculating the probability of a user in class k liking a movies in class l,
expressed as pkl and recommending the movies with higher probability.

2.1.2.5 Problems With Collaborative Filtering Based Recommenders

One problem with collaborative filtering recommenders is the so called "Cold Start Problem" that
occurs anytime a new user or product is added to the system, because the user hasn’t given any
ratings, nor has the product received any ratings, neighborhood based methods cannot recommend
because they cannot calculate any similarity/distance.

Another problem is data sparsity, in a typical N ∗M user-to-item matrix with thousands of
rows and columns, and because a user usually only knows a small subset of the all catalog, the
matrix is going to be very sparse with lots of combinations with no rating at all, this can be a
challenge in algorithm design for recommendation correctness with less data and speed.

A third problem is data they tend to be biased towards recommending already popular items
[17].

2.1.3 Content Based Recommenders

A content based recommendation system, recommends new products based on the products’
characteristics/features.

To generate a recommendation, the customer’s preferences are matched to the characteristics of
the candidate products, the product(s) that most suit the customer preferences are recommended.

20 CHAPTER 2. STATE OF THE ART

Figure 2.4: Content-based recommendation example 1

The recommender builds for each customer a personalized preferences profile based on the
features of the products that he/she has bought in the past [1].

Take the example first presented in the previous section of a VOD movie rental website.

A table that depicts each movie characteristics could be:

Table 2.5: Movies depicted by gender as characteristics on a scale of [0-5]

Genres
Films

Drama Crime Thriller Adventure Sci-Fi

Fight Club 5.0 0.0 0.0 3.0 0.0
Mad Max 0.0 0.0 4.0 4.0 4.0

The Hunger Games 0.0 0.0 0.0 4.0 4.5
The Godfather 5.0 4.5 0.0 0.0 0.0

A transaction like table of who watched what could look like:

1Car Images from the following Flickr users (in top down, left to right order) : 55391407@N03, 126433814@N04,
pelice, nrmadriversseat, janitors, 55391407@N03. No changes were made to the images. CreativeCommons Attribution
2.0 Generic license.

CHAPTER 2. STATE OF THE ART 21

Table 2.6: Movies watched by Customer, on a binary scale, 1 if watched 0 if not

Films
Customers

Fight Club Mad Max The Hunger Games The Godfather

Paul 1 0 1 0
Mercy 1 1 1 1
Daniel 1 0 0 0
Jane 1 1 1 1

The customer profile preference for each genre could be calculated with the following formula:

P (g, c) =

k∑
i=1

w(c, i) ∗ a(g, i)

k∑
i=1

w(c, i)

where:

• g is the movie genre

• c is the customer id

• w(c, i) is a boolean function that returns 1 if customer c watched movie i and 0 if not

• a(i) is a function that returns the movie i affinity to the genre g.

The result would be:
Table 2.7: Customer profile based on watched movies characteristics

Genres
Customers

Drama Crime Thriller Adventure Sci-Fi

Paul 2.50 0.00 0.00 3.50 2.25
Mercy 2.50 1.13 1.00 2.75 2.13
Daniel 5.0 0.00 0.00 3.00 0.00
Jane 2.50 1.13 1.00 2.75 2.13

In our example, the feature aggregation function is very simple, some systems use a weighted
average with an item presentation algorithm like tf-idf (term frequency/inverse document fre-
quency) representation to abstract item features, by giving weights to features when building a
user profile [42], [8].

22 CHAPTER 2. STATE OF THE ART

2.1.3.1 Problems With Content Based Recommenders

A problem with content based recommenders is that because of the way they recommend based
on the products’ characteristics, to work effectively they require a detailed product database (with
detailed descriptions for each product) and a solid hierarchical product categorization, this requires
many man-hours to achieve which is not feasible for most organizations. An exception is that
for recommenders in domains that deal with text based products (websites, books, newspapers,
etc), a technique like Latent Dirichlet Allocation (LDA) can be used to automatically categorize
products [7].

Another problem is that content based recommenders tend to recommend similar products to
those that customer has already bought, this process is called overspecialization [1] and happens
because products are only ranked highly if their characteristics approach the ones of the customer
profile that was built with his/hers purchase history.

2.1.4 Hybrid Recommenders

Hybrid recommenders were developed because each recommender type suffer’s from some type of
problem/drawback. Hybrid recommenders combine the results of two or more recommendations
systems into the final result.

When building a Hybrid recommender the most critical task is to find the best way combine
the recommendations of the several recommenders integrated into the system. There are several
variants of hybrid recommenders, of which the most important are:

• Cascade-Hybrid Recommenders
In Cascade-Hybrid recommenders, the output of a first recommender serves as the input to
the next one successively until reaching the last one. We can model the recommenders at
each type as a filter where some candidate products are dropped following some criteria
until the surviving ones reach the end of the system and become the recommendations [33,
Chapter 5].

• Weighted-Hybrid Recommenders
In Weighted-Hybrid recommenders, the recommendations of each included recommender
are weighted and combined together to form a final list of recommendations. The simplest
example could be a system that performs a linear combination of all the recommenders’
output. A more advanced system could adjust the weights in training/validation phases
to better adapt to the dataset at hand [10]. Another variant could be a voting hybrid
recommender where all the recommenders reach a consensus on the recommendations to
give [38].

Lately some more exotic Hybrid recommenders have been proposed like [46], [22] and [19],

CHAPTER 2. STATE OF THE ART 23

they apply more advanced methods to combine the recommendations from multiple sources.

2.2 Data Mining

2.2.1 Association Rules

In the early 90’s, the first generation of recommendation systems used association rule learning
to generate recommendations. Association rule learning scans the transaction history to find
meaningful associations between items (products), it finds items frequently bought together.

These frequently bought together items are grouped into itemsets, each group of one or more
items that are bought at the same time produce an itemset.

For example, for the transaction T with 2 items such that T = {X,Y } the following itemsets
can be generated {(X), (Y), (X,Y)}, from this single transaction two 1-itemsets and one 2-
itemsets can be derived.

2.2.1.1 Algorithms

The first step of finding association rules consists of finding large itemsets (itemsets that exceed the
predefined minimum support threshold, as opposed to the so called small itemsets which don’t).
Suppose that D is a set of transactions, the support for the itemset (X,Y) can be calculated by
the following formula:

Supp(X ∪ Y) =
|{T |X ∪ Y ⊆ T}|

|D|

A visualization of the itemset formation phase is presented in figure 2.5.

The second step is, for each large itemset Y = I1I2...Ik, k ≥ 2, generate all the possible
association rules, which are at the most k [2]. An association rule takes the form of an implication
where the antecedent is a set of size k − 1 and the consequent is the remaining item in Y that is
not in the antecedent. Suppose that two itemsX,Y occur in transaction T , such thatX ∪ Y ⊆ T ,
an association rule in the form of X ⇒ Y can be derived, it means that when X occurs in a
transaction, Y also occurs. Suppose now that the transaction T = {milk, butter, bread} because
|T | = 3 the following three association rules can be derived:

• {milk, butter} ⇒ bread

• {milk, bread} ⇒ butter

• {butter, bread} ⇒ milk

24 CHAPTER 2. STATE OF THE ART

Figure 2.5: Candidate formation phases without cut from lack of support

The final step is to calculate the confidence of the derived association rules and see which ones
equal or exceed the desired confidence threshold. The confidence of an association rule is the
number of transactions where both the antecedent and the consequent appear together divided by
the number of transactions that contain the antecedent. For the association rule {X,Y } ⇒ Z the
confidence can be calculated by the following formula:

Conf({X,Y } ⇒ Z) =
Supp(X ∪ Y ∪ Z)

Supp(X ∪ Y)

The most common algorithm for mining association rules is the Apriori algorithm, it was
created by Rakesh Agrawal and Ramakrishnan Srikant [3]. The Apriori algorithm, presented in
pseudo-code form in algorithm 2, operates in two phases.

In the first phase, which is the most computationally costly, it calculates the large itemsets
present in the transactions database. The first phase is a bottom-up search algorithm that starts
with the large 1-itemsets as the candidates, at each loop the candidates are expanded by one
element, if these new itemsets present a support that equals or exceeds the support threshold they
are added to the result list and advance to the next loop as candidates.

The search space is cut by taking advantage of the fact that if an itemset is small (it’s support is
bellow the desired threshold) any other set that is constructed by expanding this itemset will also
be small [3], as so, this itemset will not be expanded and added to the candidates list to analyze at
the next loop run.

The second phase of Apriori just takes the result list of confirmed large itemsets, generates all
the association rules based on them and outputs the rules whith confidence equal or greater than

CHAPTER 2. STATE OF THE ART 25

the predefined confidence threshold.

Algorithm 2 Apriori algorithm taken from [3]
1: L1 = {large 1-itemsets}
2: for (k = 2;Lk−1 6= ∅; k + +) do
3: Ck = apriori− gen(Lk−1) . Candidates Generation
4: for all transactions t ∈ D do
5: Ct = subset(Ck, t) . Candidates contained in t
6: for all candidates c ∈ Ct do
7: c.count++
8: end for
9: Lk = {c ∈ Ck|c.count ≥ minsup}
10: end for
11: end for
12: Answer = ∪kLk

The apriori-gen function, presented in pseudo-code in algorithm 3, is a helper function that
generates the candidate itemsets by expanding by one item the previously found large itemsets.

Algorithm 3 apriori-gen taken from [3]
1: function apriori-gen(Lk−1)
2: insert into Ck . Candidates List
3: select p.item1, p.item2, ..., p.itemk−1, q.itemk−1
4: from Lk−1p, Lk−1q
5: where p.item1 = q.item1, ..., p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1
6:
7: Next, in the prune step, we delete all itemsets c ∈ Ck such that some (k − 1)-subset of c

is not in Lk−1:
8: for all itemsets c ∈ Ck do
9: for all (k − 1)-subsets s of c do
10: if s /∈ Lk−1 then
11: delete c from Ck
12: end if
13: end for
14: end for
15: end function
16: Answer = Ck

The Apriori algorithm has since been superseded by faster algorithms such as Max-Miner [6]
and FP-Growth [23] that achieve the same results but are more efficient with candidate generation.

26 CHAPTER 2. STATE OF THE ART

2.2.1.2 Using Association Rules To Generate Recommendations

In the context of recommendation systems, association rules can provide next-item recommenda-
tion, that is, they can answer the question "Taking into account the previous items bought by the
customer, what is the item that he/she buys next?".

To recommend to a specific customer, a recommendation system can match the customer’s
current shopping cart (or sub-sets of it) with previously generated association rules, derived
from the transactions of all the users, and chose the item to recommend as the consequent of the
association rule with the higher confidence.

2.2.2 Statistics

Each customer can have hundreds of bought products in dozens of shopping visits, a product can
have hundreds or even thousands of distinct buys, to further analyze the dataset at hand and during
the recommendation system development some statistical tools were used.

2.2.2.1 Z-test

The Z-test is used to verify if a test statistic (population sample) can be approximated by a normal
distribution. It compares the samples’ mean against the mean of the distribution.

First, the standard error of the mean is calculated:

SE =
σ√
n

Where σ is the standard deviation of the general population and n is the population size.

Then, the Z-score is calculated:

z =
M − µ

SE

Where:
µ is the population mean
M the sample mean.

Then, using a Z-score table for the normal distribution we find the probability of observing a
normal value bellow our Z-score. If the result is statistically significant, we can reject with the
previously calculated probability the null hypothesis H0 that our sample is equal to a random
sample of the population [47].

CHAPTER 2. STATE OF THE ART 27

2.2.2.2 Normality Tests

The normal distribution N(µ, σ2) is used in many scientific fields to represent random variables
whose underlying distribution is not known. The normal distribution has been shown to model
well real world phenomena.

A standard practice is to compare the results of an experiment (our sample) to the values of a
normal distribution and verify if our sample could be taken from a normal distribution or if it
deviates from it significantly, to achieve this normality tests were developed. A normality test
is used to determine if a dataset is well-modeled by a normal distribution or not, to determine
this one tries to disprove with statistical significance the null hypothesis H0 that the sample came
from a normal distribution.

Three widely used normality tests are the Pearson chi-square normality test, for discrete
variables, and the Kolmogorov–Smirnov test and the Cramér–von Mises criterion for continuous
variables.

2.2.2.3 Pearson Chi-Square Normality Test

The Chi-Square goodness-of-fit test can be used to find if a sample came from a population with a
specific distribution, for example, it can be used to find the normality of a set of values, in that
case it is called the Pearson chi-square normality test [13].

To calculate the test statistic, first, the sample is divided into k bins and then the values
distribution is compared to the cumulative distribution function for the normal distribution.

The test value is calculated by the following formula:

χ2 =

k∑
i=1

(Oi − Ei)2

Ei

where:

• χ2 is the Pearson’s cumulative test statistic, which asymptotically approaches a χ2 distribu-
tion

• k is the number of bins

• Oi is the observed frequency for bin i

• Ei is the expected frequency for bin i

The expected frequency is calculated by the following formula:

28 CHAPTER 2. STATE OF THE ART

Ei = N(F (Yu)− F (Yl))

where:

• F is the cumulative distribution function for the distribution being tested

• Yu is the upper limit for class i

• Yl is the lower limit for class i

• N is the sample size.

There is no optimal value for k, the number of bins, but for the chi-square approximation to be
valid the expected frequency should be at least 5.

The null hypothesis is rejected, and therefore the sample doesn’t follow a normal distribution,
if the test value χ2 follows the following criteria:

χ2 > χ2
1−α,k−c

where:

• α is the significance level

• k − c are the degrees of freedom (c for the normal distribution is 3)

2.3 Technologies

The provided dataset was only a sample of the overall available data, this sample was in itself
already of a large size and on the limit to what the called traditional technologies can handle.
Because of this and the expected use case of the recommendation system, serving hundreds of
recommendations a minute it was decided that big data technologies should be used on the project
implementation.

2.3.1 Big Data

The term big data is used to refer to a myriad of things, the common denominator is that it applies to
situations where huge amounts of data is generated, data that is so big that common applications/PC
hardware cannot handle. Big data is mostly employed when talking about predictive analysis,
the discipline that gathers meaningful information from past data and tries to extrapolate that
knowledge into predicting future events. This predictive capacity is very useful and predictive

CHAPTER 2. STATE OF THE ART 29

analysis has become an indispensable tool in the areas of management, science, financial services
between many others.

2.3.2 Parallel Computing

Parallel computing refers to the technique of splitting the computations between various proces-
sors/computers in order to obtain the final results faster. When building a parallel computing
systems taxonomy there exist two separate classification models, systems differentiated by compu-
tation models and differentiated by communication model.

There are three distinct distributed systems communication paradigms: shared memory systems,
distributed memory systems and hybrid systems called distributed-hared memory [24, page 7].
Distributed memory systems must communicative via message passing only, because, the various
computing processes do not share the same physical computer and thereof cannot have access to
the same memory space. Shared memory systems as the name entails communicate via shared
memory space, this allows for lower parallelism costs but also has the cons of limiting the parallel
processes to the same computer, Distributed-shared memory is a hybrid model where memory
address space is provided via a logical overlay over the physical memory space, so all the processes
can address the entire memory space in the cluster even if it resides in another computer.

In the realm of computation models, two alternative models exist: functional parallel and data
parallel [24, page 7]. The first achieves parallelism by spawning multiple processes with different
instructions (code) that relate to doing different tasks, whereas in the second model, data parallel,
all the nodes run the same code and parallelization is achieved by chunking the input data into
smaller pieces and sending each chuck of the data to a different node of the cluster.

2.3.2.1 Apache Hadoop

Apache Hadoop was inspired by Google’s advances on big data technologies, namely the computa-
tion model MapReduce [15] and the distributed filesystem Bigtable [11]. Hadoop was developed
from the ground up to be run on commodity desktop hardware [52, page 42] because of it’s relative
cheapness while still providing a full fault-tolerant distributed filesystem and a parallel computing
framework.

Hadoop Distributed Filesystem (HDFS) was designed with the intent of providing a unified
filesystem for all the machines in a cluster to access. HDFS was designed to be tolerant to
node failures without losing data and can be used to share very large files, files with sizes of
megabytes, gigabytes and even terabytes, there are active Hadoop cluster which store petabytes
of data [48]. The HDFS architecture is composed of typically one namenode (there can be two
in certain configurations) and severall datanodes working as master and workers respectively.
The namenode manages the filesystem namespace maintaining the filesystem tree and all the

30 CHAPTER 2. STATE OF THE ART

associated metadata whereas the datanodes keep the actual data stored in blocks like in a typical
filesystem, the namenode knows the location of all the blocks for each file in the filesystem.

HDFS is built for a streaming like data access pattern, where a file is wrote once and read
multiple times, so it focus on overall throughput sacrificing latency. HDFS is not appropriate for
an application where lots of small files need to be write/read due to the above mentioned higher
access/write latency and because all the filesystem metadata (names, etc) is kept in memory at all
times by the namenode, with several thousand/millions of files the memory usage is significantly
high.

MapReduce is a parallelization technique that happens in two phases, first the map phase and
then the reduce phase. The two phases have key-value pairs as input and output and the user must
provide suitable map and reduce functions. In the map phase the relevant input data is split into
key-value pairs for better processing latter, here bad records are also dropped, at the end the record
are grouped by key. Take for example the student’s grades in several courses at a faculty, the goal
is to find the highest grade for each course:

Input for map phase
(student number, course number, grade) . format

(1234, 101, 17)
(1235, 101, 15)
(1234, 102, 16)

Ouput from map phase
(course number, grades) . format

(101, [17, 15])
(102, [16])

From the map phase, data is passed to the reduce phase which has to iterate through the grades
for each course and find the higher value, here each course’s grades can be analyzed in parallel.
Taking the example above, the final result would look like:

Output from reduce phase (final result)
(course number, highest grade) . format

(101, 17)
(102, 16)

On Hadoop a MapReduce job is a unit of work, it consists of the program itself, any input
data and a suitable configuration file. This job is run by splitting it into tasks that are tracked by a
number of tasktrackers whereas all the jobs are tracked by the jobtracker.

The flow of a typical MapReduce job is presented in figure 2.6, in the input phase the data
is split into multiple bins that are mapped and sorted by mappers into key-value pairs. On the

CHAPTER 2. STATE OF THE ART 31

next phase, the values are then reduced on the reducers using the keys. The final result is then
produced by merging the results of the various reducers.

Figure 2.6: MapReduce data flow with multiple reducers - Image from [52, page 30]

2.3.2.2 Apache Spark

Apache Spark was initially developed at the University of California, Berkley and is a cluster
computing framework that provides primitives for fast on-memory data manipulation, which
contrasts with Hadoop’s MapReduce two stage disk based model. In some workloads Apache
Spark as shown to be significantly faster than Hadoop’s MapReduce [37].

At the heart of Spark’s parallelism capabilities resides the notion of Resilient Distributed
Datasets (RDD) which allow for fault-tolerant in-memory cluster computing [54]. RDD can be
though of a database table that resides in memory, and can be operated on in parallel. They can
hold any data type but are immutable, so any transformation on a RDD returns a new RDD [41].

There are two types of operations that can be done on a RDD, transformations and actions.

Some of the available transformations on RDD are map (returns a new RDD with a function
applied to all elements of this RDD), groupByKey and filter (returns a new RDD with some
elements of this RDD filtered by some criteria) between others. Some of the available actions are
count (count the number of entries in this RDD), first (returns the first RDD element) and collect
(returns RDD as a list object).

Spark also includes some useful libraries:

• Spark Streaming for processing real-time streaming data.

32 CHAPTER 2. STATE OF THE ART

• MLLib a machine learning library, which includes recommendation systems implementation.

• Spark SQL which exposes Spark’s datasets via Java Database Connectivity (JDBC) and
lets the programmer query structured data inside Spark programs.

• GraphX which allows for graph representation and graph-parallel computation and includes
some common algorithms.

Unlike Hadoop, Spark doesn’t provide it’s own distributed filesystem or security model so in a
typical configuration it uses Hadoop’s facilities like HDFS and YARN, a resource manager [14].

2.3.3 Distributed Databases

A distributed database is a type of database where the storage units are not directly connected to
a single central machine but scattered on multiple machines that communicate over a network.
These distributed machines can share the same physical location or not.

Depending on design a distributed database can achieve better performance and fault-tolerance
than a single database system.

2.3.3.1 Apache HBase

Apache HBase is a non-relational distributed database based on Google’s BigTable [11], and has
been adopted by the Apache Software Foundation. It runs on top of Hadoop’s HDFS and provides
fault-tolerant storing, querying and retrieval of data, it also uses Hadoop’s MapReduce to process
jobs in parallel.

HBase architecture was designed from the ground up to be distributed and linearly scalable
by simply adding more nodes to the database cluster, and as Hadoop, it was designed to run
on commodity hardware. HBase is specialized in efficiently querying huge amounts of sparse
data, an instance where traditional Relational Database Management System (RDBMS) show
weaknesses or in some cases don’t work at all [32].

Data is stored in rows (identified by a primary key) within tables with labelled columns,
columns are called column families and must be stated on the table schema during the table
creation, then, each column family can cell can have multiple values, added during routine
data insertion, the different values are identified by a column family qualifiers. General table
architecture:

CHAPTER 2. STATE OF THE ART 33

Table 2.8: HBase table architecture

Column Family Column Family
Column Family:Qualifier Column Family:Qualifier

Row Key Value Value Value

Take for example a geographic information database, on a row with primary key ’Porto’, we
could have in column family ’Population’ two values identified by two different qualifiers, for
example ’2011’ and ’2012’, these two values would be identified by a string with the column
family name as prefix, followed by a colon and with the qualifier as suffix.

Taking the above architecture image, a visual example is:

Table 2.9: Demographic HBase table example

Population Number of Neighbouring Municipalities
Population:2011 Population:2012

Porto 237,591 230,298 4

Some other interesting features of HBase are:

• Every field in HBase is a byte array (except column family names), so there is extreme
flexibility in what can be stored, from strings to ints, to longs and even serialized data
structures.

• Naturally as a non-relational database, HBase does not support the common Structured
Query Language (SQL) language but it does provide a shell, and shell commands can be
scripted using Ruby [21].

• Rows are stored in sorted order and this sorting is made by the primary key byte value.

2.3.4 Web Services

AWeb Service is a always-on, software function intended for machine-to-machine interaction,
provided at a specific address via the Web [20]. A web service is typically described via the
Extensible Markup Language (XML) based (Web Services Description Language (WSDL) a
machine-readable file which specifies how to call the service and what data structures to expect to
be returned. After accessing the WSDL file, the client calls the web service sending requests via
Simple Object Access Protocol (SOAP) and after processing the request, the service responds again
via SOAP. Some examples of common possible web services include a unit/currency converter, a
weather reporting service or a Yellow Pages like service.

In today’s World Wide Web (WWW) web services are ubiquitous.

34 CHAPTER 2. STATE OF THE ART

2.3.4.1 RESTful Web Service

Because of the complexity and performance overhead of traditional web services, much because
of XML based protocols like SOAP, a back-to-basics movement surged in the early 2000’s to
simplify web services [16]. From this need, arised the definition of RESTful Web Service.

Representational State Transfer (REST) is the software architectural style of the WWW where
actions, like those in Hypertext Transfer Protocol (HTTP) GET, POST, PUT, DELETE are applied
to resources, for example GET /person/catarina/number.

A so called RESTful Web Service, adheres to the style represented by REST and also needs to
meet some specific requirements like adhering to the Client-Server architecture, being stateless
(no information about the client can be stored on the server) [49], cacheable (responses should
identify themselves as cacheable when possible for performance improvement), be a layered
system to improve scalability (the client should not be able to differentiate between the main server
or a relay of it) and have a uniform interface. Contrary to SOAP based web services, RESTful
web services don’t have an official standard (because REST is an architectural style instead of
a protcol like SOAP) but most web services use standards such as HTTP, Uniform Resource
Identifier (URI), JavaScript Object Notation (JSON) and XML.

Chapter 3

Recommendation System Development

The first step during the development phase of the project was to compile some statistics from the
dataset in use, and from there get a global picture of it’s unique characteristics.

Certain characteristics like the number of unique products or unique customers could prevent
some computation intensive recommendation techniques from being used.

For example, during this assessment, usage of association rules with the Apriori algorithm for
next item recommendations generation was ruled out, because it’s high memory requirements
during the itemset creation step could not be accommodated with the available hardware.

3.1 Dataset

The dataset, provided by the project partner, consists of 6 months of real transaction data of the
5000 best customers (the ones with the higher number of transactions).

The period of the dataset is the months of December 2014 to June 2015, and apart from
transaction data it also included, in a separate database table, product catalog information.

Some compiled dataset statistics are:

• 5,000 Customers

• 2,843 Product Categories

• 30,027 Products

• 73,030 Transactions

• Average of 14.61 Transactions/Customer

• Average of 25.27 Items/Transaction

35

36 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

• Average of 10.56 Products/Category

• Average of 206 Unique Bought Products/Customer

The dataset included two tables, onewith the transactions and the other with catalog information
(product categories and descriptions).

In the transactions table, each transaction was described by one or more lines, one line
corresponding to each product bought. In figure 3.1 an example transaction taken from the dataset,
in this case with 8 products, is presented.

Figure 3.1: Extract of an entire transaction

The second table which stores information about the product range, has a line for each product
(identified by its Stock Keeping Unit (SKU)) and typical information includes the product name
and category information.

Figure 3.2: Product range database sample

3.1.1 Database preparation

The next step was to import the two tables into an HBase server, the database was received in
Excel’s .xlsx format from a database dump, the data was then exported to CSV format files and a
Java application was written to take care of inserting the data into HBase.

This developed application named pt.fraunhofer.recommender.spark uses the library hbase-
client [25] to interact with the HBase server using a client Application Programming Interface
(API).

The program first creates three tables, one for holding the actual transactions, another to hold
the category data and a third one that maps the customer ID hash string present in the dataset into
an integer ID that is suitable for internal Apache Spark usage.

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 37

The first created table holds the transactions, one transaction per row and its structure is
presented in table 3.1.

Table 3.1: Transactions table

customer
ID

dateTime order
num Of
Products

sku quantity amount

Qualifier 1 2 1 2 1 2

e1fe9f... 1
2014-12-01
00:00:26.540

2790485 2
30293 2.0 18.73

22569 1.0 0.99

(The row key is a SHA-1 hash of the string
2790485_2014-12-01 00:00:26.540 as in order_dateTime)

Please note that for each row of the table, the column families: sku, quantity and amount, each
have column qualifiers from the range [1..numOfProducts] in order to store the different items
bought in the transaction, as well as the quantity and the sub-total in Euros of that product.

The category table structure is presented in table 3.2.

Table 3.2: Categories table

name brandID brandName brandCategory categoryID categoryName

2000022

Molho
Base para
Engrossar
Express
Maizena
emb. 250 gr

22688 Maizena MF 1020202 Mercearia

(The row key is the product’s SKU)

The map table structure is presented in table 3.3.

Table 3.3: Map table

customerID

1 ZF48EEZ5-FB8F-44ZB-99B2-4E21Z783414E

(The row key is the customer id has an integer)

38 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

3.2 Product Recommendations

The most important design choice when building a product recommendation system is the
algorithm that powers the recommendations.

From the state of the art review it was decided that a collaborative filtering matrix factorization
model (reviewed in 2.1.2.3) would bring the best recommendation results. This is due to the fact
that each user is only familiar with a small portion of the total 30,027 products (in fact less than
0.7%, see 3.1) and from there follows that the user-to-item affinity matrix is very sparse.

Any neighbourhood-based model would have difficulties in finding users with approximate
tastes due to the sparseness of the affinity matrix.

As it stands, Apache Spark’s Machine Learning Library (MLLib) already comes with an
implementation of a collaborative filtering matrix factorization model with optimization through
ALS. Using this library allowed for a fast implementation of the recommender system with the
advantage that since Spark is open-source software, if need be, small changes could be made for
it to meet specific needs.

As Apache Spark is a parallel computing framework, this matrix factorization model is already
parallel computing capable.

The followed approach was to prepare the input data for the model according to our needs,
train and test various models with different parameters to find the parameters that allowed for the
best recommendation performance and from there generate the product recommendations.

A matrix factorization model predicts a rating for each product not yet known to a customer,
and doesn’t generate a recommendation directly. So, after predicting the rating for the desired
products, to generate a recommendation, the products with the highest predicted rating for that
customer are recommended.

3.2.1 Model Building

The first step in building the model was to create a user-to-item affinity matrix, this matrix was
then stored in an HBase table for future usage.

This type of affinity matrix has a row for each user and a column for each item. Since our
analysis is solely based on the customer’s purchase history, if a customer has never purchased a
particular product there is no available information about the customer’s affinity to that product.

In the used dataset, with as much as 30,027 SKUs any customer has only purchased a small
portion of the entire product catalog, what this means is that in practice this matrix is very, very
sparse. In this case the maximum matrix size is 30, 027SKUs ∗ 5000users = 150, 135, 000 but

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 39

in reality from the purchase history only 1, 016, 732 affinity values can be deduced, obviously
with so much empty cells, this matrix was stored as sparse .

Two methodologies were tested when building this user-to-item matrix, the first was with
boolean values TRUE (1) if the customer had bought at least one time that particular product or
FALSE (0) if not, as the matrix is stored sparsely only the TRUE values are actually stored.

The second strategy was to calculate the following ratio on a continuous scale from 0 to 1:

Affinity(c, i) =
NumBuys(c, i)

TotalNumBuys(c)

This affinity is the ratio of purchases by the client c that included the item i, it can be 1 if in all
of his purchases customer c has always bought product i.

The next step was to train the actual models in Apache Spark using MLLib, for this, all the
affinity values needed to be loaded into Spark’s internal data structures. Spark provides a Plain
Old Java Object (POJO) to store this affinity value Rating which underneath is a Scala tuple of the
form (user, product, rating). These Rating objects were then stored in Spark’s RDD structures.

The parameters to train the MatrixFactorizationModel are rank, numUserBlocks and numItem-
Blocks [5].

A total of twelve different models were trained and validated. The RDD with rating data was
separated into train and validation RDDs on 80% / 20% percentages and a matrix factorization
model was trained for each combination of the training parameters:

Code 3.1: Training MatrixFactorizationModel

MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(training),
rank, numIter, lambda);

double currRMSE = computeRMSE(model, validation);

For each actual rating present in the validation dataset, an approximated rating was generated
by the model and the two were then compared and the Root Mean Squared Error(RMSE) was
calculated, the actual RMSE results varied with the parameters used but were between 0.07 and
0.14 with ratings on a scale of 0-1.

The model which achieved the lowest aggregated RMSE was chosen.

3.2.2 Generating Recommendations

With a MatrixFactorizationModel created, generating recommendations is fairly simple as demon-
strated on code 3.2.

40 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

Code 3.2: Generating Ratings

int user = 1;
int sku = 2000022;
double predictedRating = model.predict(user, sku);

The predicted rating was then pre-computed for all user/product pairs and then stored with
indexation by product category in an HBase table.

By doing this all the recommendations are generated offline, to then give a recommendation
to a user, the system gets the recommendations from a certain product category from HBase and
ranks them by descending predicted rating, then the top-k recommendations are given to the user.

This solution provides great online recommendation performance, recommendations are just
a database query away, but is very taxing when the recommendations are first being generated
for every user and every product category 5000 users ×2843 product categories = 14, 215, 000

different recommendations.

Another alternative would be to generate the recommendations online, i.e. when the system is
requested K number of recommendation from a certain category, it calls the MatrixFactoriza-
tionModel to predict the rating of all the products of that category and returns the top-K ranked
ones.

This may not be viable due to the time taken to predict these ratings.

3.2.3 Own Brand Products

Nowadays, own brand products (also named white label products) are less and less of a novelty
and are becoming an established alternative in the groceries market, with their market share in
each product category increasing year over year. Our project partner wanted to have a solution
where the customers affinity for only own brand products was predicted and then the most liked
products were recommended to the customers.

Own brand products normally provide a lower cost alternative to brand products but product
quality has a high variation.

In order to generate recommendations of only own brand products, these products need to be
filtered from the rest of the product catalog, this filtering can be made in two stages, the products
can be filtered before predicting the rating with the MatrixFactorizationModel or they can be
filtered when retrieving the generated recommendations from HBase. The first solution was
chosen.

To filter only own brand products it is as simple as only choosing the products with the column
brandCategory, as in table 3.2 , with values either Marca Própria(MP) or Primeiro Preço(PP).

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 41

3.2.3.1 Shopping cart replacement

A feature that was envisioned as being able to demonstrate the power of recommendations was
that of shopping cart replacement.

Starting from a complete shopping cart, each product is replaced (where an alternative exists)
with the alternative highest rated own brand product of the same category. In the end a, hopefully
cheaper, replacement cart is presented to the costumer.

A use case for this feature, would be that at checkout the customer would be recommended
alternative products, that he/she could accept for added savings.

The major challenged in producing this demonstration feature is that certain product categories
encapsulate different products that are not a suitable replacement to each other, take for example
cookies, there exist a myriad of different chocolate cookies and in the used dataset very different
chocolate cookies can belong to the same product category. Two other problems are those
of product quantity, for example a juices product category has products that come in 1x1L or
3x200mL packages, these are not suitable replacements for each other, and the same is true for
other product characteristics like flavour or aroma, a clothes detergent with an aroma of oceanic
breeze can be in the same product category as a detergent with orange aroma.

These challenges require major work to overcome and don’t belong on the context of this thesis
so they were not tackled and are proposed as future work.

Even then a working interface was produced that provides suitable alternatives in most of the
cases.

3.2.4 Association Rules

Since association rules are still today used in some areas of recommendation systems [53], [45],
it was decided to test how well they would fare in the used dataset.

For this, the first step was to implement the Apriori algorithm in Java, this proved to be quite a
difficult task because of the dataset size. Particularly, due to the high number of products, at each
iteration, the number of candidate itemsets tends to grow a lot and fill all the available heap space
of the Java Virtual Machine(JVM).

Taking into account the statistics presented in 3.1 the first run of the algorithm will start with
30,027 1-itemset candidates and with the same statistics it is possible to calculate that there are
approximately 30,027C2 ≈ 4.5 ∗ 108 possible unique 2-itemsets, assuming the optimum case
where each item can be stored using 15 bits (215 − 1 > 30, 027), a 2-itemset would occupy 30
bits, and so, all the possible 2-itemsets would take 4.5 ∗ 108 ∗ 30bits ≈ 1.7 gigabytes, assuming
that no itemsets are dropped due to lack of support, the next phase (3-itemsets) would need 25

42 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

terabytes of memory.

Even thought candidate itemsets will be dropped due to lack of support and consequently won’t
pass to the next iteration, the presented memory consumption is the lowest possible, a typical
implementation in Java would probably require 30% to 40% more memory than the numbers
given above.

For this reason, no further advances could be made with association rules.

3.3 Periodically Bought Products

Periodically bought products for a certain user can be described as those products which the
customer buys on a regular basis and within a well defined period between successive buys.

The number of days between each successive buy of the same product by a customer is called
the buying period. The periods are assumed to be discrete, so, even if a period accounts for N
days plus some hours, it is rounded to the nearest integer number of days N .

Table 3.4: Example of period calculation

Buying Dates Period

2 April, 2015
12 April, 2015 10 days
22 April, 2015 10 days
2 May, 2015 10 days
6 May, 2015 4 days

Due to different tastes, socio-economic conditions, between others factors, a product can be
periodic for a certain user and not for another, also it can be assumed that globally some products
are periodic (bread, detergent) while others certainly are not (cutlery, tableware).

3.3.1 Motivation and Objectives

Imagine that the recurrently bought common wear products of a particular customer could be
recommended to him/her at the right time, and he/she could easily add them to the shopping cart,
this feature tries to achieve just that, and this could save the customer a lot of time and sometimes
even frustration (who hasn’t arrived home to only there realize that he/she forgot to buy X, Y
product at the store?).

The objective of this feature is to obtain a list of periodically bought products for each customer
as well as finding a possible future buying date. The use-case for this service could be the following,

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 43

a customer opens a mobile application/website, and before starting his shopping experience, he is
presented with his periodically bought products that he might be interested in buying in the near
future and from right there he can easily add them to this shopping cart.

The first step in developing this feature was to analyze the periodicity of the buys of certain
key products, those which were suspected to bought periodically and trying to find some insights
from there.

3.3.2 Analytical Tools

Analytical tools allow through visualization for a better understanding of the data at hand,
particularly like in this case when the dataset is very large, that could not be achieved otherwise.

In the frequently bought products case some important properties to be analyzed included the
product quantities bought in each sale and the period of days between successive buys of the same
product.

To aid in this visualization, some charts were constructed as part of the general GUI using the
Javascript libraries Chart.js [28] and D3.js [29].

A web page was developed which for every customer bought products allowed the visualization
of the buying dates and respective amount of product bought at each of the dates, visualization of
the buying periods and the normalized buying periods that will be explained latter.

The first chart draws the quantity of each product that a customer has bought during the dataset
time frame. This chart has on the x-axis each buy (identified by the buying date) that the customer
has made of the product, and on the y-axis the quantity of product that was bought on each of
these buys. An example of this chart is presented in figure 3.3.

Figure 3.3: Buying Quantities Visualization

44 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

The chart in figure 3.3 serves as an indication on the regularity of the quantities bought by the
customer. A chart with more spikes indicates lower regularity, a straight line indicates perfect
regularity.

The second chart shows the variation of periods between consecutive buys of the same product
by the customer. On the x-axis each point indicates a period serving the number as a merely
temporal indication (e.g. period 0 encapsulates the period in days between buys 1 and 2, and
period 10 encapsulates the period in days between buys 11 and 12), the y-axis represents the
number of days in each period.

Since the periods are the number of days between successive buys, the number of periods (and
hence data points in this chart) is numBuys− 1. An example of this chart is presented in figure
3.4.

Figure 3.4: Buying Periods Visualization

Visualizing the previous two charts, it becomes clear that the period between buys depends on
the quantity of product that is bought on the first visit of the period.

A third chart was produced which combines the results of the previous two charts to give a
normalized view of the buying periods, this normalization actually gives the product consumption
ratio with the formula:

Product Consumption Ratio =
Bought Quantity

Period

This chart has on the x-axis the periods identified by their number (as in the previous chart)
and on the y-axis the quantity bought in the first visit of the period divided by the number of days
in the period. An example of this chart is presented on figure 3.5.

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 45

Figure 3.5: Normalized Periods Visualization

Analyzing the chart present in figure 3.5, one can assess that in this case, during the period of
the first to the second buy, the product consumption ratio was approximately 2.3 cartons of milk
per day.

3.3.3 Concept

Getting back to the initial proposition that products can be periodic for certain users while not
being for others, the first step to finding periodically bought products was to analyze all the periods
between buys for all products in order to assess if globally the product could be considered to be
bought periodically.

For this global analysis the distribution function of all the periods was drawn via an histogram
and the periodically bought products were expected to have a high concentration of values in a
few buckets.

All the buying periods for a certain product were retrieved from HBase and collected to draw
the histogram:

46 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

Figure 3.6: Example of a global periods graphic with 40 bins

Through evaluation of dozens of distributions of several products’ periods it was discovered that
the distribution tends to follow the pattern present in the above chart 3.6 . Another characteristic
is that the distribution of this variable tends to be positively skewed (right-skewed/right-tailed),
this means that the mass of the distribution is to the left of the mean.

The periods’ distribution was tested for normality for all the products using the previously
referenced Pearson Chi-Square Normality Test (see 2.2.2.3) but it was found that with exception
to products with very few periods (products with only 2 periods) the distribution did not follow a
normal distribution.

3.3.4 Solution

Taking into account the observed line of the distribution function of the periods between buys
for several products, periodically bought products were defined as those with a big mass of the
distribution around the mean.

This means finding products which have lots of periods in and around the average of all the
periods.

The logic for this definition is that if the mass of the distribution function of the periods around
the mean is very high it follows that these products are bought within a well defined interval.

The Three Sigma Rule [40] is an empirically observed rule that states that for a normal
distribution, assuming that µ is the distribution mean and σ is the distribution standard deviation,

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 47

any value x, sampled from that distribution, follows the following rules:

• P (µ− σ ≤ x ≤ µ+ σ) ≈ 0.6827

• P (µ− 2σ ≤ x ≤ µ+ 2σ) ≈ 0.9545

• P (µ− 3σ ≤ x ≤ µ+ 3σ) ≈ 0.9973

The Three-sigma rule of thumb says that even for non-normal distributions 98% of the values
should be within [µ− 3σ, µ+ 3σ] [40].

Even though it was observed that most product periods distributions did not follow a normal
distribution, we defined a product as periodic if the observed value of the mass around µ± σ was
above a certain threshold (instead of it being above 68.27% if it was tje case that it followed a
normal distribution).

3.3.5 Generating Frequent Products

A web service was developed that when invoked with a customer ID and a set of products to
analyze, returns the products from the set (given as an argument) that are periodic as well as the
expected next buying interval start and end dates. Note that this service could hypothetically be
called with a set composed of all the products in the catalog for it to analyze all the products, and
return only the relevant ones to the given customer.

The web service implementation relies on the previously mentioned Jersey [30] library.

The implementation receives a request passed as an object of the class FrequentProductRequest
encoded as a JSON object, this request includes the customer ID, the products tp analyze and the
desired threshold.

The service then for each product retrieves the periods mean µ, standard deviation σ and the
number of periods that fall within µ ± σ for the customer ID purchases. If the percentage of
periods that fall within µ± σ is above the threshold present in the request, then, the product is
considered to be purchase periodically, the next purchase interval is calculated and it is added to
the result list to be returned.

Code 3.3: Calculating the number of periods within the specified interval

periods = (double[]) oisPeriods.readObject();
int count = 0;
double minValue = periodsMean - periodsStdDev;
double maxValue = periodsMean + periodsStdDev;

for(double period : periods) {
if(period >= minValue && period <= maxValue)

48 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

count++;
}
userPercentage = ((double)count/(double)periods.length)*100;

To estimate the next purchase interval for the customer, the last buy date of the product is
retrieved from HBase and the next purchase interval is estimated as follows:

[(lastBuyDate+ µ days)− σ days, (lastBuyDate+ µ days) + σ days]

Another option to estimate the next buying interval would be to use the last buy date and the
mode instead of the mean:

[(lastBuyDate+mode days)− σ days, (lastBuyDate+mode days) + σ days]

3.3.6 Web Services

Several web services were needed during the development of this solution and thus were developed
as part of the main server program, the services include the following:

Path HTTP Method Receives Description
getUserBoughtSKUs GET userID, minNumBuys Service returns a list of

products bought at least
minNumBuys times by
user identified by userID

getUserFrequentProducts POST FrequentProductRequest Service scans the buys of
the products contained in
FrequentProductRequest
by user also contained in
FrequentProductRequest
and returns those found to
be bought periodically as
a list of FrequentProducts

getAllSKUs GET - Service returns a JSONAr-
ray with a JSONObject
with name and sku prop-
erties for each product in
the catalog

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 49

Path HTTP Method Receives Description
getGlobalProductStatistics POST JSON Array Service returns a list with

a ProductStatistic object
with several product statis-
tics for each product in-
cluded in the request as an
object

3.4 Graphical User Interface

During the project development a GUI was developed in order to aid in data analysis, given the
size of the dataset, and for solution demonstration purposes.

All development was made using Web technologies. The main web pages were developed
using JavaServer Pages (JSP) which is a technology that all ows for dynamic web pages creation
using a mix of Java language and HTML code in the same file, Javascript was also used for web
service calls through jQuery [34] and chart drawing with the libraries Chart.js [28] and D3.js
[29].

All the code ran on Apache Tomcat [27] which is a web server and servlet container, a Java
servlet is a Java program that allows for the implementation of a request-response methodology
via extending the server capabilities.

The index web page has the following look:

Figure 3.7: Index

Choosing Recommendations leads to the next page, with various customers identified by
respective ID and number of transactions (an entire purchase made in the online store):

50 CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT

Figure 3.8: Recommendations index with users listed

Clicking on a row leads to the next web page with details about each transaction, one row for
each product:

Figure 3.9: Transaction details example with one bought product per row

If in the index page, one chooses to click on Frequency it is lead to the following page:

CHAPTER 3. RECOMMENDATION SYSTEM DEVELOPMENT 51

Figure 3.10: Frequency index

Apart from the pages shown in this section, the rest of the interface was shown on the previous
sections, a flowchart of the entire GUI is:

Figure 3.11: GUI Flowchart

Chapter 4

Tests and Results

To find the validity of the proposed solutions, some tests were run in order to measure the obtained
accuracy.

4.1 Product Recommendations

After much thought a conclusion was reached that without assessing how much recommendations
were helpful to users with some type of survey, it would be very difficult to measure the true
usefulness of the recommendations in the user’s overall shopping experience.

This survey could be made with a questionnaire that the users would be asked to fill after using
the system.

Another alternative would be to use A/B testing, i.e. use a control group, and measure the rate
of acceptance of the recommendations as the users make their shopping. Or as alternative, also use
A/B testing but measure if on average the group that was presented with recommendations spent
more when compared to the control group (which would not be presented with recommendations).

As both of these tests would take more time than was available in the context of this internship,
another route had to be taken. A way to measure the effectiveness of the recommendations would
be to measure the rank percentile of the recommendations, this idea was taken from [31].

The recommendations average rank percentile can be calculated by averaging the rank per-
centile calculation for every user that is tested.

To test a user, one proceeds in the following way, the rating that the user would give to every
product is predicted, and then the products are sorted by descending predicted rating. The average
rank percentile for the user of the observed buys in the test dataset (these are the products actually
bought by the customer) is then taken, accumulating the multiplication of each observed product

52

CHAPTER 4. TESTS AND RESULTS 53

buy rank percentile in the recommendations list by the predicted rating and diving in the end this
result by the summation of all the predicted ratings used.

The average rank percentile formula can be more clearly presented using mathematical notation
as:

rank =

∑
u,i

(rtu,i ∗ ranku,i)∑
u,i
rtu,i

The objective is to have the products bought at the top of the recommendation list, so as to
lower their rank percentile, and thus the final result. So, by following the same logic, a lower final
result is better than a higher one.

A random recommender (one that picks products at random) has an expected average rank
percentile of 50%. This can serve has a simple baseline that the recommender has to beat.

The dataset was split between 4 months of training data and 2 months of test data. The model
was then trained with various number of features (latent factors), and the average results of 3 runs,
each with 10 users, are presented in table 4.1.

Table 4.1: Average rank recommendation results

Number of Model Features Average Recommendation Rank

12 12.50%
20 12.00%
25 11.50%

54 CHAPTER 4. TESTS AND RESULTS

Figure 4.1: Rank percentile results

The results are encouraging, being almost on par with the results presented in [31]. It can be
argued that if the models could be constructed with a higher number of features, the results would
be even better.

The number of model features influences heavily the computation times (in model creation
and recommendations calculation). Because of this models with a higher number of features
could not be tested in a timely manner.

4.2 Periodically Bought Products

In the case of periodically bought products, a perfect solution would be able to pinpoint the next
exact date of when a customer would buy each of his/hers periodically bought products. This
would allow the recommendation system to, near that date, show the recommendation to the
customer in order to facilitate the customer’s buying experience while still adding overall value to
the store by assuring that the customer is given the choice to purchase a product that he/she is
very receptive to.

So, the most important metric is the deviation of the predicted date to the actual next buying
date, if the deviation from the real date is too wide the system looses it’s usefulness by not being
able to recommend the products at the right time.

To test the usefulness of the predictions, a Java program was written that for N randomly
sampled users, requests their frequent products and respective next predicted buying dates and
compares these dates with the real buying dates.

CHAPTER 4. TESTS AND RESULTS 55

The tester program first retrieves for each customer the products bought at least three times,
and then, for each of these products, finds if it’s bought periodically and the next predicted buying
date.

As previously said, the time frame of this internship didn’t allow for a live test of the
predictions/recommendations.

4.2.1 Results with 4 months of training and 2 months of testing data

The test methodology consisted of splitting the original dataset into four months of training data
and two months of test data and then analyze the prediction accuracy by measuring the global
deviation of the predicted next buying date and the observed date on the test part of the dataset.
This splitting was chosen in order to have enough data for the predictor to work from but to also
give it a fair chance of guessing the next buying date by having a large enough possible interval.

The first test was run with a threshold of 85% to consider a product as being bought frequently,
what this means is that for the specific customer, 85% of his/hers buying periods for this product
are withinmean± standard deviation.

The next predicted buying date was calculated by adding to the last recorded buying date, the
mode of the periods, i.e. the most frequent buying period for that particular customer/product
pair:

NextBuyDate = LastBuyDate+mode(customer, product)

With a dataset division of 4 months of training and 2 months of testing. The results were:

Table 4.2: 1st Formula results with 4months/2months, threshold = 85%

Num. of Customers Avg. Num. of Products Average Deviation (Days) % of exact hits

200 4.4 27.99 1.88
500 4.4 28.05 2.59
1000 4.6 27.66 2.45

(Average of 5 runs for each number of customers)

The following test was run with another formula to predict the next buying date:

NextBuyDate = LastBuyDate+mean(customer, product)

The results were:

56 CHAPTER 4. TESTS AND RESULTS

Table 4.3: 2nd Formula results with 4months/2months, threshold = 85%

Num. of Customers Avg. Num. of Products Avg. Deviation (Days) % of exact hits

200 4.2 23.86 2.33
500 4.2 23.95 2.74
1000 4.8 23.70 2.31

(Average of 5 runs for each number of customers)

The next test was also run with a threshold of 85% but the next predicted buying date was
calculated by adding to the last recorded buying date, the mean of the buying periods of that
particular customer/product combo minus half of the standard deviation, i.e.:

NextBuyDate = LastBuyDate+mean(customer, product)− stdDev/2

Halving the standard deviation was somewhat of a naive choice, but the idea behind it was to
encapsulate the deviations below and above the mean but not to introduce a number that would
disrupt the calculated next buying date. The results are presented in table 4.4.

Table 4.4: 3rd Formula results with 4months/2months, threshold = 85%

Num. of Customers Avg. Num. of Products Avg. Deviation (Days) % of exact hits

200 4.6 25.24 2.62
500 4.4 24.99 2.48
1000 4.4 24.80 2.58

(Average of 5 runs for each number of customers)

A third test was run where the required threshold was lowered to 60% and the predicted next
buying date was also calculated using the previous formula. The results are presented in table 4.5.

Table 4.5: Periodically Bought Products Results, 4months/2months, threshold = 60%

Num. of Customers Avg. Num. of Products Avg. Deviation (Days) % of exact hits

200 9.2 21.00 3.70

(Average of 5 runs for each number of customers)

4.2.2 Results with 5 months of training and 1 month of testing data

A final test was run with the required threshold still set at 60% and the same formula for next
buying date prediction:

CHAPTER 4. TESTS AND RESULTS 57

NextBuyDate = LastBuyDate+mean(customer, product)− stdDev/2

But this time with 5 months of training and 1 month of testing data. The results are presented
in table 4.6.

Table 4.6: Periodically Bought Products Results, 5months/1month, threshold = 60%

Num. of Customers Avg. Num. of Products Avg. Deviation (Days) % of exact hits

200 8.6 17.09 4.34
500 8.2 17.27 4.22
1000 8.4 17.07 4.56

(Average of 5 runs for each number of customers)

4.2.3 Results Discussion

Overall, the developed recommendation system shows promising results, based on the good
percentage of exact next buying date hits, which is a metric that is very difficult to predict.

Two formulas obtain good results on next buying date predicting, being them:

NextBuyDate = LastBuyDate+mean(customer, product)

NextBuyDate = LastBuyDate+mean(customer, product)− stdDev/2

The second formula trades a higher average rate of exact hits (0.16%) for a lower overall
accuracy, with an average rise of 1.2 days on the next buying date prediction.

Comparing the results on table 4.5, to the results on table 4.4, the average number of found
periodically bought products doubles because of the lowered threshold required to consider a
product as periodically bought.

The average deviation is lower and the percentage of exact hits rises, which are both good
results, but it’s conjectured that this happens because of the previously referenced doubling of the
number of products and not because the products that fit on this lower threshold allow for a better
next date prediction.

Because of the fact that some of the predicted next buying dates fall beyond the scope of
the used dataset, thus making our data right censored, the fact that the system returns more

58 CHAPTER 4. TESTS AND RESULTS

recommended products leads to better prediction results simply because some products will
always be discarded, in both cases, with this taking a higher impact on the case where less
products are retrieved already.

But even with this assumption, these results warrant further testing to see if it holds true.

Compared to the results on table 4.5, the results on table 4.6 are very promising because it
seems to show that the recommendation system behaves better with more training data.

Some trends observed in the test results warrant further testing, if possible with a larger
dataset with more months of transactions, to see the actual effect on some parameters used in the
prediction.

Chapter 5

Conclusion

This thesis details the work performed during the internship, from the state-of-the-art review, to
the actual system development to the performed tests and results.

When the project ended the following objectives had been achieved:

• Product recommendations

• Product recommendations of only own brand/white label products

• Complete cart replacement with own brand/white label alternative products

• Product statistics and data visualization

• Periodically bought products discovery with next buying date prediction

Recommendations are a powerful tool for both the customer and the retailer, when correctly
used they can help the customer discover new products that he/she will love but otherwise wouldn’t
have known about, from the retailer side, recommendations and their associated data can provide
great insights into the inner workings of consumers taste, as well as helping the retailer focusing
his sale effort on the products that really matter to the consumer. In our tests, the developed
solution seems to provide meaningful recommendations but further testing is needed to correctly
assess its effectiveness.

5.1 Future Work

Some things need to be tested more thoroughly:

• The time taken to generate recommendations on more powerful hardware

• Testing different metrics for user-to-item affinity

59

60 CHAPTER 5. CONCLUSION

• Validate the recommendations results

As future work, apart from an A/B field test to validate the results, the following features could
also be added:

• Recommender that learns the effectiveness of the recommendations, so as to not repeat
unwanted recommendations

• When generating recommendations, also take into account the customer behavior in the
online store instead of only focusing on the buying history.

• Employ data mining techniques like linear regression, ANNs, etc to more accurately predict
the next buying date

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between
sets of items in large databases. ACM SIGMOD Record, 22(2):207–216, 1993.

[3] Rakesh Agrawal and Ramakrishnan Skikant. Fast Algorithms for Mining Association Rules.
Sdm, pp:478–489, 2010.

[4] Fraunhofer AICOS. http://www.fraunhofer.pt/en/fraunhofer_aicos/home.

html/, September 2015.

[5] ALS.train(). https://spark.apache.org/docs/latest/api/java/org/

apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.

rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,

%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.

spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,

%20scala.math.Ordering%29, September 2015.

[6] Roberto J. Bayardo. Efficiently mining long patterns from databases. ACM SIGMOD Record,
27(2):85–93, 1998.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993–1022, 2012.

[8] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. Proceedings of the 14th conference on Uncertainty in
Artificial Intelligence, 461(8):43–52, 1998.

[9] Erik Brynjolfsson, Yu Jeffrey Hu, and Michael D Smith. From Niches to Riches : Anatomy
of the Long Tail From Niches to Riches : Anatomy of the Long Tail. MIT Sloan Management
Review, 47:67, 2006.

61

http://www.fraunhofer.pt/en/fraunhofer_aicos/home.html/
http://www.fraunhofer.pt/en/fraunhofer_aicos/home.html/
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,%20scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,%20scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,%20scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,%20scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,%20scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/ml/recommendation/ALS.html#train%28org.apache.spark.rdd.RDD,%20int,%20int,%20int,%20int,%20double,%20boolean,%20double,%20boolean,%20org.apache.spark.storage.StorageLevel,%20org.apache.spark.storage.StorageLevel,%20int,%20long,%20scala.reflect.ClassTag,%20scala.math.Ordering%29

62 BIBLIOGRAPHY

[10] Robin Burke. Hybrid Recommender Systems: Survey and Experiments. The adaptive web,
pages 377–408, 2007.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah a. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable. ACM Transactions
on Computer Systems, 26(2):1–26, 2008.

[12] Yung-hsin Chen and Edward I George. A bayesian model for collaborative filtering. Direct,
(1), 1999.

[13] Pearson chi-square normality test. http://www.itl.nist.gov/div898/handbook/eda/
section3/eda35f.htm, September 2015.

[14] Is Hadoop dead and is it time to move to Spark? https://www.quora.com/

Is-Hadoop-dead-and-is-it-time-to-move-to-Spark/answer/Sean-Owen,
September 2015.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplied Data Processing on Large
Clusters. Proceedings of 6th Symposium on Operating Systems Design and Implementation,
pages 137–149, 2004.

[16] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, 2000.

[17] Daniel M Fleder and Kartik Hosanagar. Recommender systems and their impact on sales
diversity. Proceedings of the 8th ACM conference on Electronic commerce EC 07, 55:192,
2007.

[18] Alternating Least Squares Method for Collaborative Filter-
ing. http://bugra.github.io/work/notes/2014-04-19/

alternating-least-squares-method-for-collaborative-filtering/,
September 2015.

[19] Anna Gatzioura and Miquel Sànchez-Marrè. A Case-Based Recommendation Approach for
Market Basket Data. IEEE Intelligent Systems, 2015.

[20] Web Services Glossary. http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

#webservice, September 2015.

[21] Apache HBase Reference Guide. http://hbase.apache.org/book.html#scripting,
September 2015.

[22] Asela Gunawardana and Christopher Meek. A unified approach to building hybrid
recommender systems. Proceedings of the third ACM conference on Recommender systems
RecSys 09, 27(5):117, 2009.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
https://www.quora.com/Is-Hadoop-dead-and-is-it-time-to-move-to-Spark/answer/Sean-Owen
https://www.quora.com/Is-Hadoop-dead-and-is-it-time-to-move-to-Spark/answer/Sean-Owen
http://bugra.github.io/work/notes/2014-04-19/alternating-least-squares-method-for-collaborative-filtering/
http://bugra.github.io/work/notes/2014-04-19/alternating-least-squares-method-for-collaborative-filtering/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://hbase.apache.org/book.html#scripting

BIBLIOGRAPHY 63

[23] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.
ACM SIGMOD Record, 29(2):1–12, 2000.

[24] Salim Hariri. Tools and environments for parallel and distributed computing. J. Wiley,
Hoboken, N.J, 2004.

[25] hbase-client Library. https://hbase.apache.org/apidocs/org/apache/hadoop/

hbase/client/package-summary.html, September 2015.

[26] Andres Hervas-drane. Word of Mouth and Recommender Systems : A Theory of the Long
Tail. Business, pages 1–48, 2008.

[27] Apache Tomcat Homepage. http://tomcat.apache.org/, September 2015.

[28] Chart.js Homepage. http://www.chartjs.org/, September 2015.

[29] D3.js Homepage. http://d3js.org/, September 2015.

[30] Jersey Homepage. https://jersey.java.net/, September 2015.

[31] Yifan Hu, Chris Volinsky, and Yehuda Koren. Collaborative filtering for implicit feedback
datasets. Proceedings - IEEE International Conference on Data Mining, ICDM, (July):263–
272, 2008.

[32] Adam Jacobs. The Pathologies of Big Data. Queue, 7(6):10, 2009.

[33] Dietmar Jannach. Recommender systems : an introduction. Cambridge University Press,
New York, 2011.

[34] jQuery Homepage. https://jquery.com/, September 2015.

[35] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender
Systems. Computer, 42(8):42–49, 2009.

[36] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[37] Spark officially sets a new record in large-scale sorting. https://databricks.com/blog/
2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.

html, September 2015.

[38] Michael J Pazzani. A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review, 13(5):393–408, 1999.

[39] Current World Population. http://www.worldometers.info/world-population/,
September 2015.

[40] Friedrich Pukelsheim. The three sigma rule. The American Statistician, 48(2):pp. 88–91,
1994.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/package-summary.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/package-summary.html
http://tomcat.apache.org/
http://www.chartjs.org/
http://d3js.org/
https://jersey.java.net/
https://jquery.com/
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
http://www.worldometers.info/world-population/

64 BIBLIOGRAPHY

[41] Resilient Distributed Datasets RDDs. http://spark.apache.org/docs/latest/

programming-guide.html#resilient-distributed-datasets-rdds, September
2015.

[42] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

[43] B Sarwar, G Karypis, J Konstan, and J Riedl. Item-Based Collaborative Filtering
Recommendation Algorithms. Proceedings of the 10th international conference on World
Wide Web. ACM, 2001.

[44] Paul Cole (SellerEngine). Amazon.com catalog blows past 200m items. http://

sellerengine.com/amazon-com-catalog-blows-past-200m-items/, April 2015.

[45] Djoni Haryadi Setiabudi, Gregorius Satia Budhi, I. W J Purnama, and Agustinus Noert-
jahyana. Data mining market basket analysis’ using hybrid-dimension association rules,
case study in Minimarket X. Proceedings of the International Conference on Uncertainty
Reasoning and Knowledge Engineering, URKE 2011, 1:196–199, 2011.

[46] Ya-Yueh Shih Ya-Yueh Shih and Duen-Ren Liu Duen-Ren Liu. Hybrid Recommendation
Approaches: Collaborative Filtering via Valuable Content Information. Proceedings of the
38th Annual Hawaii International Conference on System Sciences, 00(C):1–7, 2005.

[47] Richard Sprinthall. Basic statistical analysis. Pearson Allyn & Bacon, Boston, 2012.

[48] Scaling Hadoop to 4000 nodes at Yahoo! https://developer.yahoo.com/blogs/

hadoop/scaling-hadoop-4000-nodes-yahoo-410.html, September 2015.

[49] Relationship to the World Wide Web and REST Architectures. http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/#relwwwrest, September 2015.

[50] L H Ungar and D P Foster. Clustering Methods For Collaborative Filtering. Proceedings of
the Workshop on Recommendation Systems, pages 1–16, 1998.

[51] A Beginner’s Guide To Upselling and Cross-Selling.
http://www.forbes.com/sites/chuckcohn/2015/05/15/

a-beginners-guide-to-upselling-and-cross-selling/, September 2015.

[52] Tom White. Hadoop : the definitive guide. O’Reilly, Farnham, 2010.

[53] Show-jane Yen, Chia-ching Chen, and Yue-shi Lee. A Fast Algorithm for Mining High
Utility Itemsets. pages 90–99, 2012.

[54] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur Dave. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. NSDI’12 Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation, pages
2–2, 2012.

http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
http://sellerengine.com/amazon-com-catalog-blows-past-200m-items/
http://sellerengine.com/amazon-com-catalog-blows-past-200m-items/
https://developer.yahoo.com/blogs/hadoop/scaling-hadoop-4000-nodes-yahoo-410.html
https://developer.yahoo.com/blogs/hadoop/scaling-hadoop-4000-nodes-yahoo-410.html
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
http://www.forbes.com/sites/chuckcohn/2015/05/15/a-beginners-guide-to-upselling-and-cross-selling/
http://www.forbes.com/sites/chuckcohn/2015/05/15/a-beginners-guide-to-upselling-and-cross-selling/

	Introduction
	Motivation
	Project Objectives
	Document Structure

	State of the Art
	Recommendation Systems
	Similarity Measures
	Cosine Similarity
	Pearson Correlation Coefficient and Distance

	Collaborative Filtering Based Recommenders
	User-to-User Collaborative Filtering
	Item-to-Item Collaborative Filtering
	Matrix Factorization Model Based Collaborative Filtering
	Other Model Based Collaborative Filtering
	Problems With Collaborative Filtering Based Recommenders

	Content Based Recommenders
	Problems With Content Based Recommenders

	Hybrid Recommenders

	Data Mining
	Association Rules
	Algorithms
	Using Association Rules To Generate Recommendations

	Statistics
	Z-test
	Normality Tests
	Pearson Chi-Square Normality Test

	Technologies
	Big Data
	Parallel Computing
	Apache Hadoop
	Apache Spark

	Distributed Databases
	Apache HBase

	Web Services
	RESTful Web Service

	Recommendation System Development
	Dataset
	Database preparation

	Product Recommendations
	Model Building
	Generating Recommendations
	Own Brand Products
	Shopping cart replacement

	Association Rules

	Periodically Bought Products
	Motivation and Objectives
	Analytical Tools
	Concept
	Solution
	Generating Frequent Products
	Web Services

	Graphical User Interface

	Tests and Results
	Product Recommendations
	Periodically Bought Products
	Results with 4 months of training and 2 months of testing data
	Results with 5 months of training and 1 month of testing data
	Results Discussion

	Conclusion
	Future Work

