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Abstract: This work provides an account of recently proposed methods to address the Unit Commitment (UC)
problem. In the UC problem, the goal is to schedule a subset of a given group of electrical power generating units
and also to determine their production output in order to meet energy demands at minimum cost. In addition, the
solution must satisfy a set of technological and operational constraints. Here, computational results are reported
for the most effective methodologies. Amongst the problems chosen to report the computational results are the
most frequently used benchmark problems, due to Kazarlis, Bakirtzis and Petridis. In the problems considered, the
units, which can be up to 100, have to be scheduled for 24-hour period.
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1 Introduction
The study and operation of power systems involves
solving many different optimization problems and is
critical since the commodity involved is essential to
everyday life [15]. Amongst power systems related
problems, the Unit Commitment (UC) problem is a
key problem since it involves planning and operating
the generating units.

The UC problem is an optimization problem
where one wishes to determine the on/off status of the
generating units at minimum operating costs. In ad-
dition, the production of the committed units, which
also has to be determined, must be such that it meets
demand and spinning reserve requirements. Further-
more, a large set of technological constraints are also
imposed on generating units.

The UC problem is a combinatorial optimization
problem that has multi-period characteristics and in-
volves nonlinearities thus, solving it is a hard opti-
mization task. Therefore, the solution of real sized
systems is highly computational demanding. Most
methodologies proposed to address it look for an ap-
proximated solution. Optimal solutions can only be
obtained for small sized problem instances by solving
the corresponding Mixed Integer Quadratic Program-
ming (MIQP) model. However, computational time

requirements are enormous and, usually, increase ex-
ponentially with the problem size, even for efficient
software packages (such as the CPLEX), as will be
seen in the results section. Some authors have tried
to improve the performance of the MIQP model by
reformulating the UC problem as a mixed integer lin-
ear programming model by means of piece-wise linear
approximations of the cost function (see, e.g., [9, 28]).

Several heuristic methodologies, based on exact
and on approximate algorithms have been reported.
In the past, several traditional heuristic approaches
have been proposed, based on exact methods such as
Dynamic Programming, Branch and Bound, and La-
grangian Relaxation. Most of the recently developed
approaches are based on approximations and meta-
heuristics (see, e.g., [29, 25, 4, 13, 17, 21, 12]). In
general, these latter algorithms have led to better re-
sults, particularly the metaheuristics.

Lagrangian Relaxation (LR) is capable of solving
large scale UC problems in a fast manner, however
the solutions obtained are, usually, suboptimal. Based
on the LR approach, the UC problem can be approxi-
mated by joining the coupling constraints and the cost
function using Lagrange multipliers. The resulting re-
laxed problem is to minimize the so-called Lagrangian
subject to the unit constraints. LR was first applied to
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solve the UC problem without considering ramp con-
straints [18]. Recently, in [9] an effective Lagrangian
relaxation approach for the UC problem has been pro-
posed. This approach relies on an exact algorithm for
solving the single-unit commitment problem proposed
in [8]. More recently, in [5] two lagrangian relaxation
methods are proposed: one based on subgradient opti-
mization and the other based on cutting planes. They
were tested on several problem instances generated by
the authors with a simpler and linear cost function,
but not on the usual benchmark ones. Therefore, no
comparisons with alternative methods were possible.
From the tests performed, it was concluded that the
subgradient method yields better results.

For methods based on metaheuristics there is re-
cent literature reporting results on evolutionary pro-
gramming [14], particle swarm optimization [29],
quantum evolutionary algorithms [13, 17], memetic
algorithms [27], and genetic algorithms [16, 1, 25, 4,
21, 22]. Just et al. [14] employ evolutionary program-
ming in which populations of individuals are evolved
through random changes, competition, and selection.
The UC schedule is coded as a string of symbols and
viewed as a candidate for reproduction. Initial pop-
ulations of such candidates are randomly produced
to form the basis of subsequent generations. An
improved particle swarm optimization (IPSO) with
adoption of the orthogonal design for generating the
initial population scattered uniformly over a feasible
solution space is introduced in [29]. The good re-
sults produced were recently outperformed [13, 17].
In these latter works, Quantum-inspired Evolutionary
Algorithms (QEAs) are proposed. The QEA is based
on the concept and principles of quantum comput-
ing, such as quantum bits, quantum gates and super-
position of states. QEA employs quantum bit repre-
sentation, which has better population diversity com-
pared to other representations used in evolutionary al-
gorithms, and uses quantum gates to drive the popu-
lation towards the best solution. The mechanism of
QEA can inherently treat the balance between explo-
ration and exploitation, thus incorporating a sort of
local search. In [13, 17] the UC problem is divided
into two subproblems: 1) unit status schedule and 2)
units power production. In both works, repair mecha-
nisms are used to accelerate the solution quality and to
ensure that unit schedules generated by QEA are fea-
sible. In [13] the conventional QEA is improved by
introducing a simplified rotation gate for updating Q-
bits and a decreasing rotation angle approach for de-
termining the magnitude of the rotation angle. At the
The results obtained were at the time the best known
results, which have been improved in [22]. A very
recent type of evolutionary algorithm, the Imperialist
Competition Algorithm (ICA), has been applied to the

UC problem in [12]. In it a population consists of a
set of countries, all divided between imperialist coun-
tries and colonies, based on the imperialistic power,
which is inversely proportional to its cost function for
a minimization problem. Then the colonies move to-
ward their relevant imperialist country and the posi-
tion of the imperialists is updated if necessary. In
the next stage, the imperialistic competition among
the empires begins, and through this competition, the
weak empires are eliminated. The imperialistic com-
petition will gradually lead to an increase in the power
of dominant empires and a decrease in the power of
weakest ones, until only one empire remains. The
authors were able to improve upon literature results,
but only for the problem instance with 10 generating
units. Very recently, Hybrid Biased Random Key Ge-
netic Algorithm (HBRKGA) has been proposed to ad-
dress the UC problem [22]. This approach is based on
the framework provided by [10], which has been used
in other important applications in an effective and ef-
ficient way (see e.g. [6, 11, 7]). Biased Random Keys
GAs (BRKGAs) are a variation of the random key ge-
netic algorithms, first introduced by [3]. A BRKGA
differs from a random key GA in the way parents are
selected for mating and also in the probability of in-
heriting chromosomes from the best parent. Repair
mechanisms are also included therefore, all the indi-
viduals considered for evaluation are feasible. The
BRKGA is hybridized with a local search procedure
in order to intensify the search close to good solutions.
The resulting HBRKGA was capable of improving the
best known solution for most of the benchmark prob-
lems commonly use in the literature.

More details on these methods and other devel-
oped applications for the UC problem can be found
in the extensive and comprehensive bibliographic sur-
veys published over the years ([24, 19, 20, 23]), the
most recent one being form 2007. In this paper, we
concentrate on reporting the results for the most re-
cent and effective methods.

2 The UC Problem Formulation
A solution to the Unit Commitment problem must
provide the status of each generating unit (on-line and
off-line), as well as the the output level for the on-line
units for a given time horizon. The decisions must be
such that the operational and technological constraints
are satisfied at minimum cost.

Consider the following parameters and decision
variables:

Indexes:
t: Time period index;
j: Generating unit index;



Decision Variables:
yt,j: Power generation of unit j at time t, in [MW ];
ut,j: Status of unit j at time t (1 if it is on; 0 otherwise);

Auxiliary Variables
Ton/off

j (t): Number of time periods for which unit j has
been continuously on/off-line until time t, in [hours];

Parameters:
T: Number of time periods (hours) of the horizon;
N: Number of generating units;
Rt: System spinning reserve requirements at time t, in
[MW ];
Dt: Load demand at time period t, in [MW ];
Yminj: Minimum generation limit of unit j, in [MW ];
Ymaxj: Maximum generation limit of unit j, in [MW ];
Tc,j: Cold start time of unit j, in [hours];
Ton/off

min,j : Minimum uptime/downtime of unit j, in [hours];
SH/C,j: Hot/Cold start-up cost of unit j, in [$];

∆
dn/up
j : Maximum allowed output level decrease/increase

in consecutive periods of unit j, in [MW ];

The model has two types of decision variables. Binary
decision variables ut, j, which are either set to 1, meaning
that unit j is committed at time period t; or otherwise are
set to zero. Real valued variables yt, j, which indicate the
amount of energy produced by unit j at time period t. Such
decisions are limited by two types of constraints: load con-
straints, consisting of demand and spinning reserve con-
straints; and technological constraints. The objective of the
UC problem is the minimization of the total operating costs
over the scheduling horizon.

The objective function has three cost components:
generation costs, start-up costs, and shut-down costs. The
generation costs, also known as the fuel costs, are conven-
tionally given by the following quadratic cost function.

Fj(yt, j) = a j · (yt, j)
2 +b j · yt, j + c j, (1)

where a j,b j,c j are the cost coefficients of unit j.
The start-up costs, that depend on the number of time

periods during which the unit has been off, are given by

St, j =

{
SH, j, if T o f f

min, j ≤ T o f f
j (t)≤ T o f f

min, j +Tc, j,

SC, j, if T o f f
j (t)> T o f f

min, j +Tc, j,
(2)

where SH, j and SC, j are the hot and cold start-up costs of
unit j, respectively. The shut-down costs are here not con-
sidered since they typically are disregarded in the literature.

Therefore, the cost incurred with an optimal schedul-
ing is given by the minimization of the total costs for the
whole planning period,

Min
T

∑
t=1

N

∑
j=1

{
Fj(yt, j) ·ut, j +St, j · (1−ut−1, j) ·ut, j

}
. (3)

The constraints are divided into two sets: the demand
constraints and the technical constraints. The first set of
constraints can be further divided into load requirements
and spinning reserve requirements.
1) Load Requirement Constraints: The total power gen-
erated must meet the load demand, for each time period.

N

∑
j=1

yt, j ·ut, j ≥ Dt , t ∈ {1, ...,T} . (4)

2) Spinning Reserve Constraints: The spinning reserve
is the total amount of real power generation available from
on-line units net of their current production level.

N

∑
j=1

Y max j ·ut, j ≥ Rt +Dt , t ∈ {1, ...,T} . (5)

The second set of constrains includes limits on the unit
output range, on the maximum output variation allowed
for each unit (ramp rate constraints), and on the minimum
number of time periods that the unit must be continuously
in each status (on-line or off-line).
3) Unit Output Range Constraints: Each unit has a max-
imum and minimum production capacity.

Y min j ·ut, j ≤ yt, j ≤ Y max j ·ut, j,

for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (6)

4) Ramp rate Constraints: Due to the thermal stress lim-
itations and mechanical characteristics the output variation
levels of each on-line unit for consecutive periods are re-
stricted by ramp rate limits.

−∆dn
j ≤ yt, j− yt−1, j ≤ ∆

up
j ,

for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (7)

5) Minimum Uptime/Downtime Constraints: The unit
cannot be turned on or turned off instantaneously once
it is committed or decommitted. The minimum up-
time/downtime constraints impose a minimum number of
time periods that must elapse before the unit can change its
status.

T on
j (t)≥ T on

min, j and T o f f
j (t)≥ T o f f

min, j,

for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (8)

3 Mixed integer quadratic program-
ming

The UC problem can be casted as a mixed-integer nonlinear
program (MINLP) with real and binary variables. Despite
the ever-increasing availability of cheap computing power
and the advances in off-the-shelf software for MINLP, solv-
ing (UC) by general-purpose software, even using the most
advanced approaches available, is not feasible when the
number of units and/or the length of the time horizon be-
comes large [9].



Here we formulate the UC problem as a MIQP model,
which is then solved by the commercial software CPLEX.
In order to so new auxiliary binary variables need to be
defined:

lt, j: indicates wether unit j has been started-up or not
at time period t (1 if it has been started-up; 0 otherwise);

ht, j: indicates the cold status of the off-line unit j at
time t (1 if the unit is cold; 0 otherwise);

vt, j: indicates wether unit j has had a cold start-up or
not at time period t(1 if it had; 0 otherwise).

The objective function is now rewritten as

Min
T

∑
t=1

N

∑
j=1
{a j · (yt, j)

2 +b j · yt, j + c j ·ut, j+

SH, j · lt, j +(SC, j−SH, j) · vt, j}.

The power balance, the spinning reserve, the minimum
and maximum production capacity and the ramp rate con-
straints are express as before, see equations (4) to (7) in
Section 2.

The minimum up time constraints are nonlinear and
thus are reformulated as

∑
ton
max(t, j)

k=t uk, j ≥ (ut, j−ut−1, j) ton
s (t, j), (9)

for t ∈ {1, ...,T}and j ∈ {1,2, ...,N} ,

where ton
s (t, j), the minimum number of time periods that

unit j must be on given that it was switched on at time t, is
given by

ton
s (t, j)=


min

{
T on

min, j,T − t +1
}
, if t > 1 or

(t = 1 and I0( j)< 0),

max
{

0,T on
min, j− I0( j)

}
, if t = 1 and

I0( j)> 0,

and ton
max(t, j) is the last time period that unit j must be on

given that it was switched on at time t and it is given as

ton
max(t, j)=

{
min{t + ton

s (t, j)−1,T} , if ton
s (t, j)> 0,

T, otherwise.

The minimum down time constraints are also nonlinear and
thus are reformulated as given in equation

∑
to f f
max(t, j)

k=t

(
1−uk, j

)
≥ (ut, j−ut−1, j) to f f

s (t, j), (10)
for t ∈ {1, ...,T}and j ∈ {1,2, ...,N} , .

where to f f
s (t, j) and to f f

max(t, j) are as follows

to f f
s (t, j)=


min

{
T o f f

min, j,T − t +1
}
, if t > 1 or

(t = 1 and I0( j)> 0),

max
{

0,T o f f
min, j + I0( j)

}
, if t = 1 and

I0( j)< 0,

to f f
max(t, j)=

{
min

{
t + to f f

s (t, j)−1,T
}
, if tso f f (t, j) > 0,

T, otherwise.

Given the newly defined variables, we need to define the
following coupling constrains for t ∈ {1,2, ...,T}and j ∈
{1,2, ...,N} .

lt, j ≥ ut, j−ut−1, j, (11)
lt, j +ht, j−1≤ vt, j, (12)

ht, j ≥ 1−∑
t
k=tmin

(
uk, j
)
, (13)

where tl j = T o f f
min, j + Tc, j + 1 is the least time interval for

which unit j has to be off-line for a cold start cost to be
paid and tmin(t, j) is the last time instant that unit j can be
on-line for a cold start cost is to be paid.

tmin =


t− tl , if I0( j)> 0 or t > tl
1, if I0( j)< 0 and t ≤ tl

and t− tl−1− I0( j)≥ 0,

with tl = T o f f
min, j +Tc, j +1.

Constraints (11) guarantee that unit j has been started
at time t only if it is on at time t and has been off at time
t−1. In equation (12) it is ensured that the cold start costs
are only paid if unit j is cold and has been just started.
Finally, constraints (13) state that unit j is cold at time t
if and only if it has not been started for at least T o f f time
periods.

CPLEX can be attractive in many situations since in
addition to its robustness, it also allows for the incorpora-
tion of other constraints [9]. Nevertheless, even small sized
problems require significant amounts of time and physical
memory to be solved. Furthermore, the CPLEX cannot
cope with more general cost functions, such as exponen-
tial start-up costs, as is the case of the problems proposed
by [26] and [2].

4 Numerical Results
This section provides an account of the best results reported
in the literature for the most commonly used benchmark in-
stances of the UC problem. Furthermore, the CPLEX (ver-
sion 12.1) was used to solve the MIQP model presented
in Section 3. This way, optimal solutions are obtained for
some small problem instances, which allows to find out
how close the reported results are to the optimum. Never-
theless, such comparisons are only possible for small sized
problems, since the CPLEX is unable to solve larger prob-
lems due to the huge memory requirements.

This study comprises problems involving systems with
10 up to 100 generating units and considering, in each
case, a scheduling horizon of 24 hours. The 10 generat-
ing unit system, the base case, was originally proposed in
[16]. Problem instances involving 20, 40, 60, 80 and 100
units are obtained by replicating the base case system and
the load demands are adjusted in proportion to the system
size. In all cases the spinning reserve is kept at 10% of the
hourly demand. The start up costs have one of two pos-
sible values depending on the number of time periods the



Table 1: Best results reported in literature.

CPLEX

Size IPSO IQEA QEA ICA HBRKGA MIQP

10 563954 563977 563938 563938 563938 563938

20 1125279 1123890 1123607 1124274 1123955 1123297

40 2248163 2245151 2245557 2247078 2244345 2242634*

60 3370979 3365003 3366676 3371722 3363804 –

80 4495032 4486963 4488470 4497919 4485197 –

100 5619284 5606022 5609550 5617913 5605933 –
* Recall that this is the best known solution, although it may not be opti-

mal.

Table 2: Computational time.

Size IPSO IQEA QEA ICA HBRKGA CPLEX

10 142 15 19 48 2 45

20 357 42 28 63 14 401

40 1100 132 43 151 90 1489

60 2020 273 54 366 301 –

80 3600 453 66 994 712 –

100 5800 710 80 1376 1503 –

unit has been off, as given in equation (2). These values
are different for each generating unit. The shut down costs
are disregarded. Details of how these benchmark problems
were constructed and on the system and demand data can
be found in [16].

For the problems in this study, the CPLEX was able
to find an optimal solution to systems involving 10 and
20 units. For problems with 40 units, we report on the
best solution found by the CPLEX before it crashed due
to the excessive memory requirements. However, although
the solution is not optimal, it is the best solution found so
far. In Table 1 we compare the results obtained by the best
performing methods in the literature (IPSO - [29]; IQEA -
[13]; QEA - [17]; ICA - [12]; BRKGA - [22]). The best
current solution, excluding the one by the CPLEX, is given
in bold, for each of the problems. As it can be seen in Table
1, for all problem instances, except one of small dimension,
the best results are due to [22]. Moreover, for the problem
instances for which an optimal solution has been found by
the CPLEX, it can be seen that the HBRKGA has been able
to find an optimal solution in one case, while in the other
case the solution found is within 0.06% of optimality.

Regarding the computational time, no exact compar-
isons may be done since, the values are obtained on dif-
ferent hardware. In addition, the results for the IPSO and
for the IQEA may not be accurate, since the authors have
reported them graphically. Nevertheless, they are shown in
Table 2. It should be noticed that The IPSO has computa-
tional time requirements much larger than the other meth-
ods, while the QEA is the fastest method. The other three
methods have similar computational requirements. The
CPLEX computational time grows faster than the aother
methods analysed.

5 Final remarks
The Unit Commitment Problem (UCP) is an important area
of research which has attracted increasing interest from the
scientific community due to the fact that even small sav-
ings in the operation costs for each hour can lead to ma-
jor overall economic savings. In addition, the problem has
been addressed by several approximate optimization meth-
ods, making it a good benchmark optimization problem.

In this paper, the performance of the best optimiza-
tion algorithms have been tested on a set of UC benchmark
problems commonly used in the literature.

From the results reported, we can see that, apart from
very small dimension problems, meta-heuristic methods,
mainly based on genetic algorithms, are the most compet-
itive state-of-the-art methods for the UCP problem. From
these, the genetic algorithm using biased random keys has,
in general, shown to be able to obtain the best solutions,
while using modest computational times. On the other
hand, commercial off-the-shelf general-purpose optimiz-
ers, such as CPLEX, despite its large improvement in the
recent years, are still unable to solve problems with more
general cost functions or larger dimension on a PC plat-
form.

Regarding future development in the field. Since very
good quality solutions can already be obtained in reason-
able time for instances in the order of 100 units, we foresee
the development opportunities in variations of the original
UCP problem, by including additional constraints, consid-
ering multi-objective performance criteria, including de-
mand uncertainty, or including production uncertainty in
renewable units.
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