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Abstract

Airline companies, as any other company, look forward to maximize their profits. One way of
doing it is by minimizing costs. Some of these costs are easier to manage; some others are unpre-
dictable and if they are not solved in a short time window, the ripple effect will increase even more
those costs.

In the context of airline companies, when an operational plan gets affected by a disruption,
flights tend to get delayed, giving origin to an Irregular Operation (IROP). Operational plans are
not only affected by large scale disruptions, such as the interruption of airspace and bad weather,
but also and most commonly by minor scale disruptions, like crew sickness and aircraft malfunc-
tions.

Typically, IROPs affect three main dimensions of the operational plan, two related with re-
sources (aircraft and crew), and one other with passengers.

Disruption Management is the process of solving a disruption which is affecting an operational
plan, by minimizing the impact and cost that disruption may cause in the original plan.

Solving disruptions is no easy task for the Airline Operations Control Center (AOCC). To ease
this task, AOCCs use tools which are able to assist them in managing disruptions. MASDIMA
(Multi-Agent System for Disruption Management) is one of those tools that help AOCCs in both
analysing the impact of the disruption and solving it. It uses a Multi Agent System paradigm
to distribute the expertise related to the three dimensions and automated negotiation as a way of
integrate these three perspectives.

In this thesis, three evolutionary computation algorithms (Particle Swarm Optimisation, Ant
Colony Optimisation and Genetic Algorithm) will be studied and two of them implemented in
MASDIMA on the aircraft dimension of the problem. The goal and main contribution of our
work is to provide a comparison regarding both computing time and quality of solutions, with two
already implemented algorithms (Hill Climbing and Simulated Annealing).
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Resumo

As companhias aéreas, assim como qualquer outra empresa, tentam sempre maximizar os seus
lucros. Uma maneira de isso ser feito é minimizando os custos. Alguns desses custos são facil-
mente controláveis mas, outros, são imprevisíveis e se não forem solucionados num curto espaço
de tempo, tendem a aumentar devido ao efeito dominó existente.

No contexto das companhias aéreas, quando um plano operacional é afetado por uma rutura, os
voos tendem a atrasar-se, dando origem a uma Operação Irregular (IROP). Os planos operacionais
não são somente afetados pelas ruturas de larga escala, tais como interrupção do espaço aéreo
e más condições atmosféricas, mas também, pelas mais comuns e de menor escala, tais como
absentismo da tripulação ou avaria de aviões.

Tipicamente, as IROPs afetam as três dimensões principais de um plano operacional. Duas
relacionados com recursos (avião e tripulação), e a outra com o impacto nos passageiros.

A Gestão de Ruturas é o processo de resolução de uma rutura que afeta o plano operacional,
minimizando o impacto e o custos que essa rutura pode causar no plano original.

A resolução de ruturas não é uma tarefa fácil para os Centros de Controlo Operacionais das
companhias Aéreas (AOCC). Para facilitar esta tarefa, os AOCCs usam ferramentas que os possam
assistir. O MASDIMA (Multi-Agent System for Disruption Management) é uma dessas ferramen-
tas que ajudam os AOCCs a analisar impacto das ruturas e a resolver os problemas causados pelas
mesmas. O MASDIMA usa o paradigma dos Sistemas Multi-Agente para distribuir a competên-
cia relacionada com as três dimensões, e negociação automática como uma forma de integrar estas
três perspectivas.

Nesta tese, três algoritmos de computação evolutiva (Particle Swarm Optimisation, Ant Colony
Optimisation e Genetic Algorithm) vão ser estudados e dois deles implementados no MASDIMA.
O objetivo e a contribuição principal do nosso trabalho é providenciar uma comparação relati-
vamente ao tempo de execução dos algoritmos e qualidade de soluções, com dois algoritmos já
implementados no MASDIMA (Hill Climbing e Simulated Annealing).
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Chapter 1

Introduction

This chapter will present the context on which the work is going to be performed including the

motivation and objectives of the work. The chapter ends with a summary on each of the chapters

presented further on this document.

1.1 Context

Airline companies are doing a great effort in order to maximize their revenues while keeping their

costs at a minimum. This is no easy task, and due to that, they are investing in tools that opti-

mize their operational schedules. In spite of having an optimal plan, even this one has a strong

probability of being affected during the operation, by disruptions as weather changes, aircraft mal-

functions or extra maintenance and crew absenteeism, which may lead into delayed flights causing

an irregular operation (IROP). In order to manage disruptions the Airline Operations Control Cen-

ter (AOCC) try to find a solution that will result in a minimum impact either for the flight schedule

as well as for the cost. Usually AOCC solve disruptions using a sequential approach, i.e., the

process used to solve the disruption is executed in a specific order, in which the three dimensions

of the problem - aircraft, crew and passenger - are present in this same order. [CRO13]

While using this sequential approach, different importances are given to the dimensions of the

problem that will restrict too much the last dimensions to be solved, making it harder to obtain a

good integrated solution.

“MASDIMA (Multi-Agent System for Disruption Management) is capable of monitoring the

operational plan and deciding if an event requires or not an action. It is autonomous with decision

making capabilities and automates the repetitive tasks; it is adaptive to changes on the environ-

ment (includes learning capabilities); it is dynamic and provides solutions in almost real-time and

allows the inclusion of a human-in-the-loop to improve the user acceptance of the solutions found

automatically by reacting and learning the preferences of this user.” [CRO13]
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MASDIMA is a Multi-Agent System developed at LIACC that provides the environment

where the approached proposal in this thesis will be implemented and tested.

1.2 Motivation and Objectives

One of the problems that the airline industry is facing happens during the day of operations and

refers to unexpected events which can disrupt and jeopardise the operational plan, leading to

IROPs. Examples of these events can be an adverse change in the weather conditions, unex-

pected aircraft breakdown leading to a longer maintenance or sick crew, among others. If a proper

recovery plan is not taken in a short time, the disruptions can propagate in a large scale over time,

yielding new disruptions. One example of this can be if the crew is meant to do another flight and

it is stuck at the previous airport, delaying the flight where it was supposed to be, or imposing the

need to assign a new crew to that flight. Airlines try to minimize the impact of these events by, for

example, using the same crew to perform a set of flights instead of a different crew for each flight.

Since the use of expensive recovery actions like ferrying an aircraft, rebook passengers on other

airlines and hire a new crew for another flight, increases the operational cost of the recovery plan

and reduces the expected revenues the airline company has with the flight, a proper plan must be

taken into account. [AENA04]

Figure 1.1: European Canceled and Delayed Flights - 2015

[CDF15]

According to the data on the figure 1.1, during a period of thirty days there was a total of 6.861

flights canceled and 88.399 flights delayed only in Europe. The y-axis represents the number of

flights, the left y-axis presents the number of canceled flights and the right y-axis the number of

delayed flights (this last is using K to infer a scale of 1 to 1.000).

To get some awareness about the dimension of this problem, consider for instance the Amer-

ican Airlines company, which schedules about 510 aircraft of 14 types to 140 cities covering a

total of 2.700 flights and assigns 25.000 crew members to these 2.700 flights. In order to operate

a system with such a magnitude and complexity, airlines rely on optimisation techniques for their

planning, attempting to get optimal operational plan, making an efficient use of resources, leading

to better revenues. [CCZ10]
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Figure 1.2: Major Airlines from Europe - Arrival Performance, December 2014

[AFS15]

Figure 1.2 represents the percentage of delayed flights in relation to the number of scheduled

flights by the major airlines in Europe, during the month of December 2014.

Despite of the average delay among the major Airlines from Europe being 42.05 minutes, only

16% of the flights arrive with delay. According to a study from [CTA04] for each minute of delay

at-gate after the first 15 minutes, there is a value of e 72 per minute of delay.

Studies have been made through several airline companies and they indicate that the cost with

IROPs can cost up to 3% of the airline annual revenue, [CCZ10]. It was estimated that a better

recovery process could result in cost reductions with IROPs of at least 20%, [Irr96]. According

to experiments made with TAP Portugal data, authors of [CRO13] show that in the worst case

scenario, with a better recovery process it is possible to improve the cost reduction of IROPs

between 13% to 17%.

Since there is a way to reduce the costs with IROPs, by improving the recovery process, in this
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dissertation it will be presented a study regarding the implementation of methods of evolutionary

computation for the Aircraft Recovery (ARO) process in Operation Control Centers (OCCs). The

methods will be implemented on MASDIMA and a benchmarking between our methods and the

ones previously implemented on the system will be performed.

1.3 Thesis Structure

This dissertation is divided into four more chapters. Chapter 2 reviews the state of the art on the

field of Disruption Management (DM) and gives the minimum theoretical information to under-

stand Evolutionary Computation methods used on our approach. Chapter 3 presents the approach

taken in the implementation of each method used on the Aircraft Recovery Problem. Chapter 4

presents the results and the benchmarking of all methods. Chapter 5 closes the dissertation, pre-

senting a conclusion and some additional ideas to be taken into account regarding future work.

4



Chapter 2

Background

This chapter presents background information, related with Disruption Management (DM) in Air-

line Operational Control Centers (AOCC) as well as with Evolutionary Algorithms (EAs).

2.1 Introduction

This chapter aims to provide some background information regarding DM shortly before or at the

day of operations as well as about evolutionary algorithms, a subset of evolutionary computation

that we will use in our approach.

During the operational plan, the schedule often has to be revised due to disruptions with dis-

tinct sources, such as; nature related, technical problems or crew related. In order to provide some

details regarding DM, the following section presents an introduction to DM in airline industry and

a description of the planning process, as well as some methods that airlines use in order to create

a more flexible schedule.

Since we are going to use evolutionary algorithms during the DM task, a study of Particle

Swarm Optimisation (PSO), Ant Colony Optimisation (ACO) and Genetic Algorithm (GA) is

presented in section 2.3.

2.2 Disruption Management

Throughout a given plan, it is normal the existence of disruptions, caused by internal and external

factors, leading to a certain deviation from the original plan and potentially affecting its execution.

For example, the addition of new restrictions and unpredictable events such as weather changes

and terrorist attacks. Thus, any change made in the original plan is called a disruption.

DM according to [YQ04] can be defined as “after a plan (lying close to an optimal solution

for the plan, or even being the optimal solution) have been created, either by optimisation models

or using schemes, and during its execution a disruptions occurs. It is possible that the plan moves

5
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away from the optimal or even became unfeasible. Leading to a need to revise the original plan,

reflecting on changes and restrictions implemented by the subsequent disruption, thus minimising

the overall impact originated.”

The definition of DM goals passes through three essential points, being these to carry out

the operational plan, minimize costs and return to the plan as soon as possible. In spite of the

first two objectives being part of the DM goals, they are also clearly present in the construction

of the original plan, in an attempt to create an optimal plan. Although airlines must manage to

balance two types of dimensions (crew and aircraft), it is also imperative that when in the presence

of a disruption, it is considered a global view - now considering also the passengers’ dimension

-, and to fulfilled the operational plan leading them to their final destination at the agreed time,

also paying attention to aircraft and tail assignment reducing travel costs. The third objective is

common in problem solving and also somehow connected to the other two goals and to all airline

resources (as it may compromise the plan outlined for each). [KLL+07]

Figure 2.1: Plan creating schema

DM systems face a number of challenges, namely:

• Timing, solutions must be generated in a short time when comparing to the time spent at

the planning stage.

• Data, it is often spread over several databases.

• Feasibility, for a solution to be considered as a feasible solution, this one must obey a set

of rules, sometimes quite complex.

Alongside with benefits that can be summarized as:

• Quality of Service, improvement of quality of service offered to customers.
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• Resource utilisation, better use of resources.

Airlines companies, as they are already aware of possible disruptions, try to anticipate these.

This is done by adding some flexibility in the early stages of the plan creation, as shown in fig-

ure 2.1, so it is easier to handle disruptions during the day of operations. The following methods

can be incorporated in this process:

• Add slack in the plans, instead of planning everything with close limits of the ideal, there

is added extra time to the actions.

• Crew follow each other and the aircraft, this method preserves some of the various prop-

erties of the original plan resulting in an easier recovery and making monitoring an easier

operation.

• Out and back, If an aircraft does the flight from a hub to a spoke and back to the same hub,

these two flights can be canceled without affecting the rest of the aircraft schedule, the same

would happen to the crew if they would do both flights.

• Stand by crew and aircraft, an extra airplane and its crew can be valuable but are quite

expensive resources that can be used in case of disruption.

• Increase cruise speed, airplanes have several cruise speeds depending on the altitude at

which they travel. Since cruise travel is defined by the speed at which the aircraft has the best

efficiency concerning fuel consumption. Usually planes travel at cruise speed, but this one

can be increased, since it is usually lower than the top speed from the same plane, thereby

saving time that can lead into higher cost brought by disruptions in the three dimensions

planes, crew and passengers.

2.3 Evolutionary Algorithms

Evolutionary algorithms are part of a subset of Artificial Intelligence (AI), evolutionary compu-

tation, where there is a demand for an optimisation of a problem. An evolutionary algorithm can

be defined according to the dictionary as “an algorithm which incorporates aspects of natural se-

lection or survival of the fittest. An evolutionary algorithm maintains a population of structures

(usually randomly generated initially), that evolves according to rules of selection, recombination,

mutation and survival (...)”. [ead15]

Fogel, that introduced the concept of evolutionary computation, defined intelligence as “the

capability of a system to adapt its behaviour to meet its goals in a range of environment”. [Fog06]

The following sections present three classes of evolutionary algorithms, namely Particle Swarm

Optimisation (PSO), Ant Colony Optimisation (ACO) and Genetic Algorithm (GA).
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2.3.1 Particle Swarm Optimisation

PSO is an evolutionary computing technique introduced by Kennedy (Social Psychologist) and

Eberhart (Electrical Engineer) for the first time in 1995 based on a metaphor of social behaviour,

[PKB07]. The main objective is to create AI through the study of social interaction, instead of

observing the individual skills. The first simulations performed by Kennedy and Eberhart were

influenced by the work of Heppner and Grenander, [ES01].

The PSO was developed by observing shoals and flocks of birds in search of food. It is a search

algorithm, which aims to find the global solution of the system and not just the local maximum,

despite of recording all the local maxima of each and every of its particles, also the algorithm

registers the global maximum. Each particle moves in a certain direction based on their own

experience, as well as the experience of the entire group. Comparing to other evolutionary al-

gorithms, the main advantages of PSO are its robustness towards the control parameters and its

computational efficiency, [Che09].

PSO can be used across a wide area of problems and the applications are numerous and di-

verse. Examples of applications are video analysis and image, restructuring and design of electri-

cal networks and cargo shipping; electronics and electromagnetism; power generation systems and

power; scheduling; architecture and optimisation of communication networks; biological, medical

and pharmaceutical; signal processing; robotics; neural networks; military and security. [PKB07]

PSO is based on a number of particles named entities, which are on the search space of the

problem, and each entity is responsible for evaluating its own fitness value and knows its current

position. Through the analysis of some data, such as its best and current fitness, the positions it

occupied in each of the previous iterations, as well as facts of other particles and some random

perturbations, the particle then calculates the speed with which will go through the search space.

With this data, the algorithm proceeds to the next iteration after all the particles have been moved to

their next position. It is expected that in the next iteration, the set of particles - swarm - approaches

the optimal solution according to the defined fitness function.

Each individual particle is composed of three N-dimensional vectors, where N is the size of the

search space of the problem. The three vectors are the current position, the best previous position

and the current speed. The current position is defined by a set of coordinates which represent

specific details of the problem, over which the search is based on, and in each iteration the set of

coordinates makes a solution which is evaluated as a whole. If the new position is better than any

found so far, its coordinates and the value generated by the fitness function are stored, in order to

compare with future iterations.

The algorithm does not depend on only one particle, in particular but on a set of particles.

A particle alone would not bring any advantages in solving the problem, since the interaction

between particles would not exist and thus there was no cooperation among particles. Solving the

problem happens with the interaction between the swarm and the analysis of the various individual

behaviours, introducing the advantages of group/team work to the problem, mostly known as

cooperation, [PKB07].

8
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The interaction between particles follows a particular organisation, which is designated by

neighbourhood, that defines the way that two or more particles communicate among themselves.

The neighbourhood helps in most cases the algorithm not to get stuck in a local minimum of the fit-

ness function. Examples of neighbourhoods are: single-sighted where each particle communicates

only with the following one, ring topology where particles can communicate with the previous and

the following one, fully connected topology where each particle has the possibility to communicate

with any other particle of the problem and in isolated environments where only a specific number

of particles communicates with each other but following the ring topology, [pso15]. Every particle

communicates with other particles and they get affected by the best position of a particle that is in

its neighbourhood [PKB07].

Listing 2.1 presents the pseudocode for the Particle Swarm Optimisation algorithm, as de-

scribed in [pso15].

1 For each particle {

2 Initialise particle

3 }

4

5 While stopping condition is not met {

6 For each particle {

7 Calculate particle fitness value

8 If the new fitness value is better than the personal Best {

9 Update personal Best with the new fitness value

10 }

11 If the personal Best is better than the global Best {

12 Update global Best with the personal Best

13 }

14 }

15

16 For each particle {

17 Evaluate particle Velocity

18 Use global Best and Velocity to update the particle Data

19 }

20 }

Listing 2.1: Particle Swarm Optimisation Pseudocode (Adapted from [pso15])

In the pseudocode listing 2.1, some parameters that are important to its development have

not been mentioned. One of them is the swarm size that can vary greatly with the context of a

problem, or even with the complexity of its particles. Another parameter with its own importance

is the maximum speed that a particle can get, preventing that particles change a high number of

parameters in a single iteration, [pso15]. The opposite can also co-exist, i.e., the minimum speed

that a particle can get, which can help the problem, forcing the particles to change their parameters

on each iteration.
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2.3.2 Ant Colony Optimisation

ACO is a metaheuristic nature inspired, with the main objective of solving Combinatorial Opti-

misation Problems with a high degree of difficulty. This algorithm was introduced in 1990 by

M. Dorigo (Research Director for the FNRS and co-director of IRIDIA) [DB05]. The source of

inspiration of ACO was the colonies of ants found in nature, specifically by their foraging, i.e., the

search and exploration undertaken by animals in search of food resources, [Blu05].

Ants have a very specific way of performing this foraging, leaving a pheromone trail on the

ground through which other ants can know what track they must follow in a certain way, this

track is a way of communication between them. In analogy with what has been presented so far,

the ACO algorithm is therefore based on indirect communication within a colony of agents (ants)

simple motivated by the pheromone trails. Thus ants use the pheromone trails to build probabilistic

solutions of the problem and they adapt it, while the algorithm is running, into something that

reflects their experience in finding a solution, [DS10].

The ACO algorithm has many possible applications in a lot of areas and can even be considered

the top algorithm for various applications. Examples of areas where applications of ACO algo-

rithm have good results are: sequential ordering, planning, probabilistic Travel Salesman Problem,

DNA sequencing, [DS10].

There are two different methods used to get solutions, one is based on creating the solution

itself, starting from a partial solution and constructing it in the best way possible in order to create

the final solution; the other is a typical local search algorithm, moving through the search space

and working on solutions already completed, [DS10].

The construction algorithm defines the solution of the problem, step by step as in an incremen-

tal way starting from an initial solution (empty) and going through an iterative process by adding

components to the solution without using backtracking until a complete solution is made. As a

first case, quite simple, the components to be added to the solution are created using a stochas-

tic process. However, there is a way to find better solutions if a heuristic (greedy construction

heuristic) is used to estimate the benefit of adding a specific component to the current incomplete

solution.

Greedy construction heuristic goes through a step by step algorithm which adds components

in order to benefit incomplete solution. It basically starts from an empty solution, and until it is

not complete, adds components calculated using the heuristic. In the end, the complete solution is

returned. To calculate the component to be added to the solution, is used a heuristic which returns

the component with the best heuristic according to the solution which was, at least until then, a

partially solution.

A disadvantage of a heuristic running in a greedy basis, is that often the component which is

selected is one out of a relatively small and closed set, belonging to the state of the solution at the

time the heuristic was performed. Thus, and at an early stage, the solution search space starts to

be restricted, as other possible results are taken off from the search space, leading to a reduced

number of possibilities when the solution is considered to be close to a complete solution.
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Moreover, there are local search based algorithms, which depart from the initial (complete)

solution, and try to find a better solution in a neighbourhood of the current solution. The algorithm

follows an iterative process and demands for a better solution in the neighbourhood. In the event

that a better solution is found, the current solution is replaced by the newly found, and the search

continues. This process goes on until no new solution is found and thus the algorithm ends at a

local maximum (or perhaps the global maximum) [DS10].

The neighbourhood must be defined based on problem structure and what is desired of it. It

is also through the defined structure of the neighbourhood that we can access a given set of other

solutions when the problem lies over a particular solution through one step in the algorithm. This

is an important issue in the search for local solutions, it is crucial to define a good neighbourhood

since the neighbouring solution will replace the current one.

Listing 2.2 presents the pseudocode for the Ant Colony Optimisation, as described in [aco15].

1 Create the heuristic solution

2 Evaluate cost of the solution

3 Initiate pheromones

4

5 While stopping condition is not met {

6 For each ant {

7 Construct the solution

8 Calculate ant fitness value

9 If the new cost value is better than the personal Best {

10 Update personal Best with the new cost value

11 }

12 Update local solution and the pheromones trail

13 }

14 Update global solution and the pheromones trail

15 }

Listing 2.2: Ant Colony Optimisation Pseudocode (Adapted from [aco15])

One other option which can be included in the listing 2.2, are the Deamon Actions. These are

centralized actions which cannot be implemented and performed by ants themselves. Examples

of these are the deposit of additional pheromone in paths, either by adding it to the path of an ant

(when in local search) or to another path of the problem which can somehow benefit the solution

(when in global solution), [dea15].

The update of pheromones is meant to share the good solutions components so that they serve

as a possible model for future iterations. In order to do this, we can use two mechanisms. The

first one involves increasing the level of pheromone of a certain component of a solution, which is

associated with a set of good solutions, where the goal is to convert a certain component in a choice

that will be given as more certain for ants to choose (it is not imperative that ants will follow, since

the algorithm continues to follow stochastic patterns). The second mechanism prevents an overly

conversion to a sub-region of the search space, so the mechanism is implemented in a region where

11



Background

a certain amount of pheromone will be decreasing in the course of time (iterations) the pheromone

deposits left by other ants.

2.3.3 Genetic Algorithms

GAs were formally introduced by John Holland in the 70s in the University of Michigan, United

States, [gai15]. These are considered meta-heuristic algorithm, a top-level general strategy which

guides other heuristics to search for a solution, which are used efficiently in problems of optimisa-

tion and search (Goldberg, 1989; Gen and Cheng, 1997; Parmee, 1999), it is also based in nature,

specifically with the process of natural selection, involving concepts such as mutation, recom-

bination and selection. Examples of areas of application of the GAs are: benchmark problems,

magnetically leviltated vehicles, optimisation of object shaping and circuit layout [MTK96].

In the original Holland’s algorithm, a parent is selected according to the fitness of each actual

being (these are selected through a stochastic decision, and the better the fitness for each being, the

greater the chance of being chosen), and in case of recombination, the other parent will be chosen

randomly.

However, there are some variations of the algorithm, such as both parents can be chosen based

on the fitness value, different probabilities for the existence of mutation or recombination or pop-

ulation size, since the way the initial population is chosen can have a significant impact on results,

[Ree95].

In order to find the optimal solution in the context of a large Combinatorial Optimisation

Problem, GAs work on a population of N solutions.

Listing 2.3 presents the pseudocode for the Genetic Algorithm, as described in [gap15].

1 Initiate the first generation

2 Evaluate the population of the first generation

3

4 While stopping condition is not met {

5 Create the next generation

6 Selection of individuals

7 Crossover

8 Mutation

9 Evaluate the population

10 }

Listing 2.3: Genetic Algorithms Pseudocode (Adapted from [gap15])

The phases contained in the pseudocode of listing 2.3 are explained in next paragraphs, par-

ticularly the selection of individuals, crossover and mutation.

Selection of individuals, is based on selecting certain chromosomes, through the fitness value

assigned by the fitness function and then these will be part of creating the offspring for the next

generation. The connection between the algorithm and natural selection takes place here, since the

best are the ones who are more likely to participate in this process. There are several methods of
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selection of chromosomes, but the most popular is the "roulette-wheel", which is the analogy of

the game itself. Once the chromosomes who will take part in the creation of a new generation are

chosen, the process can be repeated.

Regarding the use of genetic operations, in classical GAs usually two are commonly used:

crossover and mutation operators, wherein each has a different probability of occurrence, as in

nature, in which the probability of each operator is different.

Crossover, the first stage involves selecting pairs of chromosomes that will be the parents of

the next generation. This process is done stochastically according to a probability set to crossover.

Then, for each pair of parents, it is necessary to decide the crossover point, i.e., the point at which

discontinuity exists from the parents information and passes to the other parent to provide the

remaining information. To complete this process, two new sprouts must be created, representing

the two possible combinations: the first part of the first parent, and the second part of the second

parent, leaving with the first part of the second parent and the second portion of the first parent.

Mutation, there is a probability that one or more genes (part of the same chromosome) change

its value.

2.4 Summary

Looking into the classical, unorthodox and stochastic ways of both search and optimisation al-

gorithms, there are two different methodologies. In one hand, the classical way which goes as a

point-by-point approach through the problem and in each iteration the solution is modified into a

different one, hopefully better. In the other hand, using both the unorthodox and stochastic ways,

particularly the evolutionary algorithms as stated above are motivated by nature evolutionary prin-

ciples, which leads the search towards an optimal solution. The difference here is that evolutionary

algorithms make use of a population of solutions, and not just one single solution like in the clas-

sical algorithms. If there is just one solution, then it is expected to the rest to converge into that

solution. If there are multiple solutions, then the algorithm can use multiple optimal solutions as

its final solution [Deb01].

In the next chapter, for both PSO and ACO, an approach to the Aircraft Recovery problem will

be described.
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Chapter 3

Aircraft Recovery Problem

In this chapter the Aircraft Recovery (ARO) Problem will be described as well as our approach

used to solve the problem.

3.1 Problem Description

Originally, upon the creation of an initial plan, an aircraft is scheduled to fly a set of routes. A

route is a sequence of pairs of airports which are served by an airline, with both departure and

arrival times. During the operational plan, disruptions may occur, leading to infeasible routes with

a potential increased cost related to that route. To produce recovery plans is a complex task, since

more than one dimension must be taken into account, and be re-planned, typically, aircraft, crew

and passenger dimensions. The ARO process, responsible to solve the aircraft dimension of the

disruption problem, cooperates with the remaining dimensions so that a feasible solution is found

and able to be implemented. Additionally the quality of this solution must be estimated so it can

be compared to other possible solution and also to the disrupted situation.

ARO needs to provide a solution for this disruption, either by providing a new aircraft to

perform the route or by delaying the flight until the disruption is settled, [RJN03]. The ARO arises

when a disruption occurs and its main goal is set to restore or recover the initial plan as much as

possible in order to minimize the cost and the delay of both the disrupted flight and the operation

plan, [LSLC05].

3.2 Approach

In this section, the architecture of MASDIMA will be presented and for both PSO and ACO

algorithms a description of the approach used in the Aircraft Recovery problem is provided. For

each method or algorithm, the details on how they were implemented and nature metaphors will

be complemented with information from the problem itself.
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Figure 3.1: MASDIMA Architecture

[CRO13]
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Figure 3.1 represents the architecture of MASDIMA. Solid and round cornered boxes repre-

sent respectively agents which are implemented and user interface agents. Solid lines represent

interactions between agents and the dashed lines actions in the environment. The cylinders inside

the ellipse represent the data sources which are part of the environment for agents to consult and

to act upon the data.

MASDIMA includes three Manager agents: the Crew Manager, responsible to achieve a solu-

tion regarding the crew dimension; the A/C Manager, responsible to achieve a solution regarding

the aircraft dimension; and the Pax Manager, responsible to achieve a solution regarding the pas-

senger dimension. Each one of these Manager agents has the help of Specialist agents. A Specialist

agent is the expert agent that know effectively how to solve problems concerning their expertise

(dimension). Manager agents do not have the knowledge necessary to present an integrated pro-

posal. For that to happen they need to engage into a negotiation protocol with other Managers in

order to prepare a proposal to be sent to the Supervisor agent. The Supervisor Agent is the agent

who knows the preferences of the user and will select, among the solutions sent by the three Man-

agers, the best one. Again, this selection is the result of a negotiation process. [CRO13] Circles

represent Specialist agents, continuous perimeters represent previously implemented agents and

dashed perimeters represent the agents implemented on this thesis.

Specialist agents support solving algorithms for the dimension of the Manager they are defined

under, and all the partial 1 solutions gathered are sent to this one.

A partial solution is defined by a set of parameters that help Managers in their negotiation and

to organise integrated solutions. To define a solution firstly there is the need to identify it, usually

by giving the current round number of the method, then there is the need to specify the dimension

on which the solution will be built upon and the action it intends to perform (as to exchange

resources in order to perform different flights), therefore there is also the needed to identify the

resource being proposed to perform the action and both the time it needs before executing (also

referred as delay) that flight and the cost associated.

The HC Specialist agent implements the Hill Climbing algorithm and the SA Specialist agent

implements the Simulated Annealing algorithm [KGV83]. These agents are the ones that will be

compared with the evolutionary algorithms (Particle Swarm Optimisation and Ant Colony Opti-

misation) implemented in this work.

The optimisation that all Aircraft Specialists pursue, is based on the same objective function

(Function 3.5) that evaluates the cost of exchanging the current resource with a different and suit-

able resource. The cost evaluation used in the objective function passes through a process which

extends from getting the readiness of the resource to calculating the cost of resource exchange and

the respective penalisation of the exchange.

Function 3.1 presents the penalization for an Aircraft Solution Sac.

Sac→ℜ,Penalization(Sac) :=
n

∑
1
(γ× f leetpen +ρ× cappen +µ× paxpen) (3.1)

1A possible solution to a dimension of the problem.
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with

n ∈ N, 1 ≤ n ≤ |Sac|,

γ ∈ℜ, 0≤ γ ≤ 1,

ρ ∈ℜ, 0≤ ρ ≤ 1,

µ ∈ℜ,0≤ µ ≤ 1,

f leetpen =

0 if f leetn = f leet f d

1 if f leetn 6= f leet f d

cappen =

0 if sseatsn < tseats f d

1 if sseatsn ≥ tseats f d

paxpen =

0 if tseatsn ≥ sseats f d

1 if tseatsn < sseats f d

where:

• fleet is the aircraft fleet;

• sseats are the sold seats on the flight;

• tseats are the total available seats in the flight.

The intention of the penalization function is to penalize solutions if they breach certain con-

ditions. The objective of fleetpen is to penalize solutions that use an aircraft which belongs to a

different fleet. As for the the cappen is to penalize the solutions that use aircraft assign to flights

that have more passengers (sseats) than available seats (tseats). And paxpen is used to penalize

the solutions that use aircraft assigned to flights that do not have enough available seats for the

passengers.

Function 3.2 presents the delay for an Aircraft Solution Sac.

Sac→ℜ,Delay(Sac) :=
n

∑
1

(etdn− stdn)

δ
(3.2)

with

δ ∈ℜ,1 ≤ n ≤ |Sac|, δ is max(etdn− stdn)

where:

• etd is the expected time of departure of flight;

• std is the scheduled time of departure of flight.
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Function 3.3 presents the cost for an Aircraft Solution Sac, according to function 3.4.

Sac→ℜ,Cost(Sac) :=
n

∑
1

accost(sacn)

θ
(3.3)

with

θ ∈ℜ,1 ≤ n ≤ |Sac|, θ is max(accost(sacn))

Function 3.4 presents the flight cost for all flights included in a solution sac.

sac =
|Fl|

∑
i=1

(T kO f fi +Landi +Parki +Handi +Mainti +Atci +Fueli) (3.4)

where:

• TkOff (Takeoff charges) are applied by airports for each aircraft that takeoff;

• Land (Landing charges) identical to TkOff but applied for each aircraft landing;

• Park (Parking charges) are applied by airports for parking an aircraft, and it takes into ac-

count the time the aircraft is parked as well as the parking place;

• Hand (Handling charges) which includes the many service requirements an airline need

between the time it arrives at a terminal gate and the time it departs on its next flight;

• Maint (Maintenance costs) which includes the maintenance that might be needed to perform

during the turn-around of the aircraft at the airport as the aircraft period checks;

• Atc (Air Traffic Control charges) it is a charge related to air traffic services during the route

of an aircraft;

• Fuel (Fuel costs) which includes the cost of fuel needed to go from the origin to the desti-

nation, plus any extra fuel required.

Function 3.5 presents the objective function for the solution, according to functions 3.1, 3.2

and 3.3.

Sac→ℜ,OF(Sac) := α1×Penalization(Sac)+α2×Delay(Sac)+α3×Cost(Sac) (3.5)

with
3

∑
i=1

(αi) = 1

3.2.1 Particle Swarm Optimisation

As mentioned above in the subsection 2.3.1, PSO is a metaphor to shoals and flocks of birds when

in search of food. Through the reading and interpretation of the subsection 2.3.1 and the listing 2.1,
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four points are detected which require some explanation on how they will be inserted in the actual

context namely the particle, swarm, velocity and neighbourhood.

Particle, it represents a full instance of the actual problem and a pseudocode is shown in

listing 3.1. All states of the problem are cloned and instanced on the particle, and so, each particle

moves from the beginning of the problem, this is from the aircraft which suffered the disruption,

and will make changes accordingly. It also has full access to flight and plan costs, being this

last one mostly known as the particle fitness, as to possible replacements to the disrupted aircraft.

Since it is an instance of the problem, all the solution generated by this are stored until the end of

the global algorithm, where it will share them with its manager.

1 class Particle{

2 pBEST, currentBEST //both represent the total cost of the solution. One for the

previous round and another for the current round

3 velocity //how many changes they particle may suffer per round

4 tailNumber, referenceTailNumber //TN of possible exchange aircraft AND TN of

disrupted flight aircraft

5 solutions //a set of solutions to send to its Manager

6 operational plan //to be Initialised

7 cost of operational plan //to be Initialised

8 possible exchanges to the disrupted flight //to be Initialised

9

10 Initialise{

11 Set current operational plan //a Map of all flights with an aircraft assigned

to them

12 Set current costs of operational plan //a Map of all aircrafts with a cost

associated

13 Set possible exchanges to the disrupted flight //a List of aircrafts suitable

to replace the disrupted flight aircraft

14 }

15

16 Objective Function{

17 Return Get aircraft delay + Get aircraft exchange costs + Get penalization

18 }

19 }

Listing 3.1: Particle Swarm Optimisation - Particle

Swarm, is a set of particles. So it is building different plans as it keeps comparing them with

each other and therefore selecting the best solution to be sent to the aircraft manager.

Velocity, defines the ratio on how fast a particles will move through the solution space. Specifi-

cally, it is the number of changes a particle will do. A higher velocity means that the particle fitness

is low comparing to the swarm best particle. However, for this particular problem, all particles ve-

locity will be set to one, since a higher value would lead to a higher number of solution to be sent

to its manager, and the quality of solutions sent would decrease.

Neighbourhood, although particles operate without interaction with each other, it is necessary
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for comparing particles and to set new velocities to each round. For this problem the neighbour-

hood is set as single-sighted, where particles are only able to compare themselves to a better one.

In order to obtain solutions, and according to the listing 2.1, PSO starts by initiating all par-

ticles and for every iteration of the algorithm, particles are updated and their fitness value is cal-

culated according to the specified objective function. The update made consists on keep changing

the current aircraft chosen to perform the flight, with another aircraft from the suitable resources

list, since all the resources present on the list are suitable to replace each others.

3.2.2 Ant Colony Optimisation

ACO in the same way as PSO is based on the foraging of species, but in particularly by ants

since they use a pheromones trail so other ants can follow the right path. Through the reading

and interpretation of the subsection 2.3.2 and the listing 2.2, there are three points which deserve

some explanation on how they will be inserted in the actual context namely the ants, colony and

pheromones.

Ant, it is representing an instance of the actual problem as shown in listing 3.2. Similar to a

particle, it holds all states of the problem and its own solutions. However, it also saves the trails of

visited vertexes, so it is able to apply pheromones after all ants reached their final vertex.

1 class Ant{

2 pBEST //represents the total cost of the solution

3 trail //represents all the changes made by the Ant during the current round

4 solutions //a set of solutions to send to its Manager

5 operational plan //to be Initialised

6 costs of operational plan //to be Initialised

7 possible exchanges to the disrupted flight //to be Initialised

8

9 Initialise{

10 Set current operational plan //a Map of all flights with an aircraft assigned

to them

11 Set current costs of operational plan //a Map of all aircrafts with a cost

associated

12 Set possible exchanges to the disrupted flight //a List of aircrafts suitable

to replace the disrupted flight aircraft

13 }

14

15 Objective Function{

16 Return Get aircraft delay + Get aircraft exchange costs + Get penalization

17 }

18 }

Listing 3.2: Ant Colony Optimisation - Ant
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Pheromones, are the way of ants expressing that a certain path in the colony is a better or

worse choice. However, in order to avoid getting stuck in a local maxima, pheromone trails tend

to evaporate over the time by a certain ratio.

Colony, defines the search space of the problem, it also references a graph based structure

where vertexes are the representation of an aircraft, and each edge is a link between aircrafts

suitable for replace one another.

The process that ACO uses to generate solutions, and according to the listing 2.3.2, consists on

initiating the pheromones trail and then keep on updating it through the creation of new solutions

using ants to travel through the colony and leaving pheromone trails which are proportional to the

quality of the solution provided by the ant. As the times goes by and more iterations are made,

pheromone trails start to be more trustworthy and provide better solutions.

3.3 Summary

To sum up with, both methods are flexible and adapt well enough to the needs of ARP. Neverthe-

less, both algorithms have their flaws. PSO when in presence of a fairly short sized search space,

works worse if a very low velocity maximum is not set, leading PSO to basically lose one of its

main characteristics. The ACO running time starts to increase dramatically when the search space

exceeds a certain limit.

In the next chapter, the results and analysis of each implemented method will be presented and

conclusions will be taken.
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Chapter 4

Experiments and Result

In this chapter we present the results from the experiments done with the methods implemented

and described on the previous chapter. A comparison between the methods is also presented.

4.1 Experimentation Scenarios

This section describes the environment on which the tests were performed, as well as the genera-

tion of test scenarios and how data was handled.

The system used to host the tests was MASDIMA, which according to [CRO13] is holding data

from an operational plan from September 2009 of TAP Portugal, since it has properties similar to

the average of one year of operation. Data is related to the activity presented on the operational

schedule as well as with operational costs. Furthermore, data used contains 49 disruption events,

which were randomly selected from the operation plan, including, 49 flights, 31 aircrafts, 286

crew members and 4.760 passengers affected by the 49 disruption events.

For the experimentation scenarios, only five static events were used, since all of these five

events represent a disruption in every dimension (aircraft, crew and passenger).

Regarding the metrics to measure the results, they take into account three main indicators:

• Algorithm running time, it is a measure of the algorithm efficiency. Also it is based on

computing the average time of algorithms.

• Number of solutions, it represents the number of solutions a specialist sends to its manager.

• Cost of the solution, it is a measure of the solution quality.

Additionally Utility is also used as an indicator. It defines the utility of the integrated solution,

taking into account the solution plans of all dimensions. However, it is not considered a main

indicator, since other dimensions (crew and passenger) were using an automated process during

the tests, which returns only randomly generated values.
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4.2 Results

The tests as stated above, are based on only five events, since they all represent at least one disrup-

tion in every dimension, and all of them are certain to occur. The flights affected by these events

have the corresponding flight numbers: 928, 1917, 864, 1614 and 839. All values presented below

are an average of twenty test values, which may be consulted in Appendix A, received from each

of the flights, which are by their own, and in particular for algorithm running time and number

of solutions sent, an average of the first five rounds of negotiation that MASDIMA implements,

the remaining aircraft cost and problem utility are just the average of the twenty test final values

presented by the supervisor on the final integrated solution.

Figure 4.1: MASDIMA User Interface

Figure 4.1 presents the MASDIMA User Interface. Although it is also representing the mo-

ment after the fifth event was solved. The center section on the left side of the figure, is the area

representing the Problem Resolution Status, where every time an event causes a disruption on a

flight, information regarding that flight will appear as the flight number, estimated time of depar-

ture, expected delay, the number of violations occurred and the current status, and as the event on

flight 839 was the last to appear, it is possible to observe all five events in that area. Also, in the

bottom left side section of the figure, is the area representing the Solution Information, where ac-

cess to more detailed information regarding the solution of the selected flight (for this case flight

839 was selected) like the specific occurred violations through tab violations, solution plan and

specific values of the solution are provided [CRO13].

Table 4.1 presents the running time for the algorithms: HC, SA, PSO and ACO.
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Table 4.1: Algorithms Running Time

Average Algorithm Running Time (ms)

928 1917 864 1614 839 Total Average Average SD

HC 770,8 532,1 865,2 87,9 38,5 2294,4 458,9 65,0

SA 77,8 69,8 76,7 72,8 69,9 366,8 73,4 7,6

PSO 168,9 151,7 157,6 87,7 59,7 625,6 125,1 17,1

ACO 1555,4 884,4 1883,0 227,0 327,3 4877,0 975,4 80,5

Table 4.1 Total column shows right at the start that either ACO and Hill Climbing (HC) running

times are way over the ones of Simulated Annealing (SA) or PSO. Comparing SA and PSO, we

can deduce that SA performs 71% better than PSO in matter of running time.

For a better understanding of the time consumed by these methods, the number of alternative

solutions to the disruption flight must be taken into account. In this case, for the affected flights

928, 1917, 864, 1614 and 839, the number of alternatives given are 37, 27, 44, 3 and 2 respectively.

Table 4.2 presents the number of solutions sent by the algorithms: HC, SA, PSO and ACO.

Table 4.2: Number of Solutions sent to Manager

Average Number of Solutions

928 1917 864 1614 839 Total Average Average SD

HC 111,0 81,0 133,3 12,6 6,0 343,8 68,8 0,9

SA 10,0 10,0 10,1 10,2 10,0 50,2 10,0 0,1

PSO 7,7 7,0 7,9 4,4 3,6 30,5 6,1 0,9

ACO 4,3 4,0 4,6 2,8 4,0 19,7 3,9 0,3

The number of solutions are somehow more relative to compare. But, as stated before, all these

events have at least one disruption of each dimension, so if specialists are sending a low amount

of solutions to their managers, even if they are sending the top solutions of their dimension, it will

result in discarding possible sets of better solutions, since the final solution will be an integrated

solution will all dimensions. If a huge amount of solutions are sent, then managers will also need

more time to came up with a solution. Table 4.2 shows that either HC and ACO fall into the

characteristics provided before, leading SA and PSO to be the ones sending a more reasonable

amount of solutions.

Table 4.3 presents the aircraft cost of the solution obtained by the algorithms: HC, SA, PSO

and ACO.
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Table 4.3: Aircraft Cost presented in Integrated Solution

Average Solution Aircraft Cost

928 1917 864 1614 839 Total Average Average SD

HC 3160,2 3151,0 3122,7 6612,0 9127,3 25173,2 5034,6 1,5

SA 3728,8 3650,8 4052,6 8235,0 9127,2 28794,3 5758,9 990,2

PSO 3437,7 3696,7 3778,6 7771,3 9126,0 27810,2 5562,0 853,9

ACO 3560,8 3792,5 4054,8 9627,8 9130,0 30165,8 6033,2 1156,1

Table 4.3 shows that HC provides the lowest cost to handle all five events and considering

the universe of all aircraft cost values given by every solution generated with HC, the Standard

Deviation (SD) is only 1,5. Following HC, we also have PSO, SA and ACO for this same order

providing the best solutions and lowest SD.

To be noted that PSO provides solutions with a total cost of only 10% more than HC, while

HC takes 267% more than PSO running time.

Table 4.4 presents the utility of the solution obtained by the algorithms: HC, SA, PSO and

ACO.

Table 4.4: Solution Utility in Integrated Solution

Average Solution Utility

928 1917 864 1614 839 Total Average Average SD

HC 0,911 0,861 0,913 0,846 0,866 4,397 0,879 0,020

SA 0,907 0,848 0,914 0,840 0,869 4,378 0,876 0,022

PSO 0,913 0,844 0,907 0,840 0,865 4,368 0,874 0,022

ACO 0,907 0,842 0,905 0,825 0,872 4,350 0,870 0,027

None of the previous tables have shown the interaction and the importance of other dimensions

on the integrated solution. Table 4.4 shows the utility of every single integrated solution. Having

the best solution from the aircraft dimension does not mean it will be the best solution to fit in the

integrated solution.

Also during the execution of these tests, Crew and Passengers dimension where using an auto-

mated process, which was just generating random values of delay and cost, without any knowledge

of their search space or even comparing solution values. Therefore, the data from table 4.4 was

only meant to endure the process of creating an integrated solution.

4.3 Summary

To sum up with, both EAs managed to adapt well enough to the ARO problem, and they even

produce some interesting results, specially PSO, which is sending a reasonable amount of solutions

to its manager so it has enough flexibility to interact with other manager’s solutions. Within all

four methods it stands in the second best place for both algorithm running time and aircraft cost.
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Chapter 5

Conclusion

In this chapter conclusions on the work done will be taken and some ideas for future work will be

presented.

5.1 Objective Fulfilment

From the three originally proposed methods to be implemented (Particle Swarm Optimisation,

Ant Colony Optimisation and Genetic Algorithm), only two of them were successfully developed

(Particle Swarm Optimisation and Ant Colony Optimisation). Either of the two implemented

methods showed a quite good adaptability to the Aircraft Recovery problem, in spite of losing

some of their characteristics.

Ant Colony Optimisation did not show promising results or even better performance on any

of the three main test indicators: running time, number of solutions and aircraft cost. Particle

Swarm Optimisation presented a median performance on those same results. Performing better

than Hill Climbing regarding the algorithm running time indicator, but worse than Simulated An-

nealing. Regarding the aircraft cost indicator, Particle Swarm Optimisation performed better than

Simulated Annealing but worse than Hill Climbing.

The space state (or search space) of this problem considering the data used on the experi-

ments is also relatively low. Therefore, a local search algorithm (particularly Hill Climbing) will

most likely get access to good solutions and probabilistic meta-heuristic algorithms (as Simulated

Annealing) will soon find their final solution, due to the low offer on new and better solution.

However, this behaviour will be quite different if the search space gets expanded. Hill Climbing

will often get stuck in a local maximum not being able to find any other solutions and Simulated

Annealing will consume more time to explore the search space considering that better solutions

will, eventually, be found. In this case, Particle Swarm Optimisation will become a better candi-

date to be used as the main method to get better solutions. It will not get stuck in a local maximum

and the way it explores the search space (by means of multiple particles) will be an advantage.
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Conclusion

5.2 Future Work

Although the results provided by both implemented EAs have demonstrated the effectiveness as

well as the adaptability, these can still be further developed in certain ways.

For both, stop conditions may be optimised, and a wider study should be made in order to

study the behaviour and influence of changes in the global parameters, which may lead to better

performance on future tests.

Particularly for Ant Colony Optimisation, and regarding the structure for the "colony", changes

should be thought, since it represents a significant part of the algorithm running time. Currently the

"colony" is built on its whole at start, it has one starting and one ending vertex, between both the

graph expands by providing alternatives to each of the previous vertexes. This provides a better

understanding of the sequence of solutions, but its quite time consuming. A simpler structure

might contain several ending vertexes instead of just one, which would lead to fewer edges and

consequently less running time. Or by not building the "colony" entirely at start.
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Appendix A

Aircraft Specialist Statistics

In this appendix all data gathered from tests is available in the following tables which are sorted by

the active method. It should be noted that every value under columns Time and Solution is already

the average value from the first five negotiating rounds of each flight.
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