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O objecto principal desta dissertação consiste no desenvolvimento de uma abordagem probabilística 

integrada para a previsão da vida à fadiga de componentes mecânicos ou estruturais sujeitos a campos de 

tensões/deformações não uniformes, tendo em consideração as fases de iniciação e de propagação de 

fendas fadiga. O modelo probabilístico desenvolvido por Castillo e Fernández-Canteli para descrição dos 

campos p-S-N e p-ɛ-N, foi usado como base nos desenvolvimentos originais propostos. 

As falhas por fadiga são um dos motivos de preocupação para as pontes metálicas, devido à probabilidade 

de o aço deteriorar-se sob tensões variáveis. Esta tese apresenta uma caracterização do comportamento à 

fadiga de diferentes materiais representativos de um grupo de pontes metálicas rebitadas antigas 

Portuguesas, nomeadamente as pontes Eiffel, Luiz I, Fão, Pinhão e Trezói. A partir da análise dos resultados 

é claro que os materiais mais velhos são ferros pudelados, um precursor dos aços de construção modernos, 

sendo este último utilizado em pontes mais recentes como é o caso da ponte de Trezói. Os dados gerados e 

compilados da literatura são essenciais para as estimativas da vida residual, considerando ambas as fases 

de iniciação e de propagação de fendas, no âmbito de abordagens locais de fadiga e da Mecânica da 

Fractura, respectivamente. 

As previsões de rotura, o projecto de engenharia e a análise de risco em fadiga não são possíveis sem o 

apoio de modelos de fadiga probabilísticos. Nesta dissertação propõe-se uma generalização do modelo 

probabilístico de base, proposto por Castillo e Fernández-Canteli para descrever os campos S-N e εa-N. 

Vários parâmetros usados na descrição do dano de fadiga, tendo em conta diversos aspectos do fenómeno 

de fadiga, são testados no contexto da generalização proposta. Em particular, é demonstrada a 

adequabilidade do modelo probabilístico para correlacionar parâmetros energéticos propostos quer para 

fadiga uniaxial quer para fadiga multiaxial. 

Têm sido propostos na literatura modelos de propagação de fendas de fadiga baseados nas histórias de 

tensões/deformações elastoplásticas na extremidade da fenda recorrendo a relações deformação-vida, 

sendo o processo de propagação de fendas entendido como um processo de sucessivas reinicializações 

abrangendo elementos representativos do material. O modelo UniGrow encaixa-se nessa classe particular 

de modelos de propagação de fendas por fadiga, sendo um modelo baseado em tensões residuais. Nesta 
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investigação é proposta uma extensão do modelo UniGrow é proposto para a determinação de campos 

probabilísticos de propagação de fendas de fadiga, em particular os campos p−da/dN−ΔK−R. O aspecto 

chave na modelação proposta é a substituição do modelo de deformação-vida determinístico por um 

campo de deformação-vida probabilístico baseado na distribuição de Weibull. A utilização de um parâmetro 

de dano por fadiga sensível à tensão média permite a formulação de um modelo de propagação 

representando os efeitos da tensão média. O modelo de propagação de fendas por fadiga probabilístico 

resultante é demonstrado para dois materiais representativos de pontes metálicas rebitadas Portuguesas 

antigas (pontes Eiffel e Fão), e para aços correntes, nomeadamente o aço de construção S355 e o aço 

P355NL1, cobrindo distintas razões de tensões, R. 

Propõe-se também uma abordagem local unificada para modelação quer da fase de iniciação quer da fase 

de propagação de fendas por fadiga. Neste trabalho, dois detalhes, um feito de aço P355NL1 e o outro feito 

de ferro pudelado da ponte Eiffel, são modelados de modo a gerar curvas S-N para diferentes razões de 

tensões, R. As previsões são comparadas com resultados experimentais disponíveis obtendo-se uma boa 

correlação. 

Esta investigação finaliza com algumas interpretações probabilísticas do dano acumulado por fadiga sob 

carregamentos de amplitude variável, apoiado pelo campo probabilístico de Weibull e da sua variável 

normalizada V, sendo esta última adoptada como uma medida de dano. Em particular, é proposto um 

método para associar uma função de distribuição acumulada para o número de Miner clássico, sem a 

necessidade de se realizar programas experimentais de amplitude variável intensivos. Esta abordagem é 

discutida e aplicada a provetes lisos feitos de aço P355NL1 e a uma ligação rebitada construída em ferro 

pudelado original da ponte Fão. 
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This thesis aims at developing an integral probabilistic approach for fatigue lifetime prediction of 

mechanical or structural components with non-uniform stress/strain fields taking into account both the 

fatigue crack initiation and fatigue crack propagation phases. The base probabilistic model developed by 

Castillo and Fernández-Canteli for the p-ɛ-N and the p-S-N fields were explored to this end in several 

original contributions.  

Fatigue failures are of concern for steel bridges due to the likelihood of the steel to deteriorate under 

variable stresses. Therefore, besides the modelling activities, this thesis presents the characterization of the 

fatigue behaviour of different materials from a representative group of Portuguese old metallic riveted 

bridges, namely the Eiffel, Luiz I, Fão, Pinhão and Trezói bridges. Some of these results are generated by the 

author, others are collected from literature. The older materials are puddle iron, precursor of the modern 

construction steels, the latter being used in the Trezói bridge. The generated data are essential for residual 

fatigue life estimations, considering both crack initiation and propagation phases, respectively, in the 

framework of Local Approaches to fatigue and Linear Elastic Fracture Mechanics. 

Failure prediction, engineering design and risk analysis in fatigue are not possible without the support of 

probabilistic fatigue models. Therefore, a generalization of the basic probabilistic model proposed by 

Castillo and Fernández-Canteli to describe the S-N and εa-N fields is proposed in order to cover several 

fatigue damage parameters often associated in the literature to the fatigue phenomenon. Energetic 

parameters for uniaxial and multiaxial fatigue are satisfactory correlated with the base probabilistic model 

by Castillo and Fernández-Canteli. 

A class of fatigue crack growth models based on elastoplastic stress–strain histories at the crack tip region 

and strain-life fatigue damage models have been proposed, the fatigue crack propagation being understood 

as a process of continuous crack initializations, over elementary material blocks, which may be governed by 

strain-life data of the plain (smooth) material. The UniGrow model fits this particular class of fatigue crack 

propagation models, being a residual stress based model. An extension of the UniGrow model is proposed 

to derive probabilistic fatigue crack propagation data, in particular the p−da/dN−ΔK−R fields. The key issue 
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in the proposed modelling is the replacement of the deterministic strain-life model by an existing 

probabilistic strain-life field based on Weibull distribution. The use of a fatigue damage parameter sensitive 

to mean stress allowed the formulation of the propagation model accounting for mean stress effects. The 

resulting probabilistic fatigue crack propagation model is demonstrated for two materials representative of 

old Portuguese metallic riveted bridges (Eiffel and Fão bridges), and for current steels, namely the S355 

construction steel and the P355NL1 steel, covering distinct stress R−ratios. 

It is also proposed a unified local approach in order to model both crack initiation and crack propagation. In 

this thesis, two notched details, one made of P355NL1 steel and another made of puddle iron from the 

Eiffel bridge, are modelled in order to generate S-N curves for distinct stress R-ratios. The predictions are 

compared with available experimental data. The probabilistic S-N field is proposed for the notched details 

and a good correlation of the available experimental data is observed. 

This research finalizes with some probabilistic interpretations of fatigue damage accumulation under 

variable amplitude data, supported by the probabilistic Weibull field and its normalized variable V that is 

adopted as a damage measure. In particular, an approach is proposed to associate a cumulative distribution 

function to the classical Miner number without the need of performing extensive variable amplitude testing 

aiming. This approach is discussed and applied to smooth specimens made of P355NL1 steel and to a 

riveted joint made of a puddle iron original from the Fão bridge. 
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INTRODUCTION 

 

 

1.1. MOTIVATION 

Deterministic fatigue approaches have deserved a major attention of researchers despite 

the well-known probabilistic nature of fatigue damage. Probabilistic based approaches 

are mandatory alternatives since they account for scatter of fatigue results and allow us 

the establishment of safety margins in fatigue life predictions, constituting an important 

tool to assist design activities. Despite the relevance of the probabilistic approaches for 

fatigue, most important current design codes are still based on deterministic approaches 

[1]. 

The simplest way to account for scatter in fatigue is to characterize the variability of 

individual fatigue properties (e.g. fatigue limit), using probabilistic distributions. However, 

the formulation of probabilistic models is a more attractive idea. For example, it is 

preferable to have a general probabilistic model to describe the complete S-N field than 

dispose of a S-N field defined by the distribution of the fatigue limit plus a set of 

individual distributions for the fatigue lives under singly specific stress levels. 

Probabilistic models are not dissociated from probabilistic distributions, the most 

common in fatigue being the LogNormal and the extreme distributions of Weibull and 

Gumbel. Recent contributions by Castillo and Fernández-Canteli [2] resulted in an 

innovative use of the referred extreme distributions for the description of the whole 
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probabilistic S-N and -N fields. With this approach, new possibilities for the derivation of 

probabilistic models emerge, taking into account this basic model. This thesis furnishes 

some contributions in this respect.  

Probabilistic fatigue models have been essentially directed to S-N based fatigue 

approaches while strain based and Fracture Mechanics based fatigue approaches have 

deserved less attention with respect to their probabilistic modelling. Therefore, 

contributions in this domain are welcome. The S-N fatigue approach may be used to 

characterize the fatigue behaviour of plain material being also applied directly on to the 

design of mechanical/structural components. Many design codes follows this approach 

typically to correlate existing experimental data, the details being categorised by classes 

(e.g. EC3 [3] and AASTHO [4]). This type of approach requires intensive testing of a variety 

of details in order to account for the several sources of scatter in materials and 

geometric/mechanical characteristics. The idea of using basic S-N data from plain material 

to generate S-N curves for mechanical/structural components by resorting to a 

convenient model is very appellative for engineers since it allows testing times to be 

shorten with consequent costs reduction. Contributions on probabilistic fatigue modelling 

of mechanical/structural components are presented in this thesis.  

Old metallic bridges are more prone to fatigue failures than modern metallic bridges since 

the former have suffered very long operational lives and are made of materials precursors 

of structural steels, characterized by higher heterogeneity of fatigue properties. Since this 

abundance of heterogeneities leads to increasing scatter of the fatigue properties the 

application of probabilistic approaches are even more justified for materials and 

structural components from this type of constructions. Reliability analysis of bridges is 

becoming a very common approach, in which the structural resistance, including fatigue, 

needs to be properly accounted for in a probabilistic form. 
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1.2. OBJECTIVES 

The main objective of this study is the development of procedures for probabilistic 

modeling and assessment of mechanical or structural components, characterized by 

stress concentrations. The prediction of probabilistic S-N fields (p-S-N fields) is pursued, 

resorting to basic fatigue data of the materials, obtained from smooth specimens as 

reference information.  

It is intended the proposition of new advances for the probabilistic models developed by 

Castillo and Fernández-Canteli [2] for the p-ɛ-N and the p-S-N fields. These models have 

successfully being applied to correlate stress-life and strain-life data of smooth specimens 

or components [5,6]. The objective in this case is to develop a set of procedures allowing 

an extension of these models to the structural or mechanical components to be achieved, 

which generally exhibit stress concentrations being responsible of non-uniform 

stress/strains distributions. Both crack initiation and crack propagation phases should be 

accounted for in the proposed models. 

Besides the probabilistic models developments, the execution of experimental fatigue 

studies on materials from old ancient bridges is also envisaged. These test results will 

complement existing database of fatigue test results being developed at Institute of 

Mechanical Engineering (IDMEC). This experimental data, together with other literature 

data available for steels, will be used as the basis for models identification and validation 

in this document. 

1.3. ORGANISATION OF THE THESIS 

The thesis begins with an introduction (Chapter I), in which the motivation, objectives and 

structure of the thesis are presented.  

The introduction is followed by a literature review on fatigue (Chapter II) that comprises 

the following topics: a historic perspective on fatigue, stages of fatigue damage, review of 

the main factors influencing fatigue damage, distinct approaches to fatigue modelling 

including global S-N approaches, local approaches and Fracture Mechanics based 

approaches. Also local approaches for fatigue crack propagation modelling are reviewed 



CHAPTER I 

 I.4 

since they will be the basis for further developments presented in this thesis. A global 

overview of probabilistic models for fatigue are presented with special emphasis given to 

the probabilistic models by Castillo and Fernández-Canteli [2]. 

In the Chapter III, entitled fatigue behaviour of materials and connections from ancient 

Portuguese riveted steel bridges, fatigue data from materials of old riveted bridges will 

be presented. In particular strain-life, cyclic elastoplastic and fatigue crack propagation 

behaviours are characterized for several materials from ancient bridges. In addition to the 

material characterization, S-N fatigue data from riveted joints are also presented in this 

chapter. Both data, obtained from fatigue testing by the author and data disseminated in 

the literature, are gathered and compiled in this chapter to yield a reference compilation 

of fatigue data representative of Portuguese bridges. 

Chapter IV proposes a generalization of the basic probabilistic model (p––N or p––N) 

proposed by Castillo and Fernández-Canteli [2] for complex fatigue damage parameters.  

Several fatigue damage parameters covering many aspects of the fatigue phenomenon 

are proposed as reference parameters for the model and tested. Damage parameters 

able to reproduce mean stress effects, several alternatives of energetic parameters as 

well as multiaxial fatigue damage parameters are correlated using the probabilistic 

model. 

In Chapter V, entitled procedure to derive probabilistic fatigue crack propagation fields, 

p-da/dN-ΔK-R fields are aimed at. To this purpose, local approaches for fatigue crack 

modelling are used. Resorting to a probabilistic representation of the basic fatigue data 

(smooth specimen data) of the material, probabilistic fatigue crack growth fields are 

derived taking into account stress ratio effects. In this chapter, an assessment and 

extension of the model proposed by Noroozi et al. [7,8,9] is proposed to predict the 

fatigue crack propagation rates. This model is applied to derive probabilistic fatigue crack 

propagation fields for two materials, namely S355 construction steel, and P355NL1 

pressure vessel steel, both representative from old Portuguese metallic riveted bridges 

(Eiffel and Fão bridges) covering distinct stress R-ratios. 
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The Chapter VI entitled procedure to derive probabilistic S-N fields for structural details  

present an extension of the model proposed by Noroozi et al. [7,8] in order to model 

fatigue crack propagation based on the local strain approach to fatigue. It aims at the 

determination of the fatigue crack propagation life for structural details taking into 

account both crack initiation and crack propagation phases. In this chapter, the local 

approaches to fatigue are also applied to two details to derive both probabilistic fatigue 

crack propagation fields (p–S–Np–R fields) and fatigue crack initiation fields (p–S–Ni–R 

fields). The global prediction of the probabilistic S–Nf field is presented in a unified 

approach. Fatigue crack initiation is understood as the failure of the first elementary 

material block at notch root, and fatigue crack propagation is understood as the failure of 

successive elementary material blocks along the crack path. 

Chapter VII is entitled a probabilistic interpretation of fatigue damage under variable 

amplitude loading. In this chapter the probabilistic field of Castillo and Fernández-Canteli 

[2] is explored for situations of variable amplitude loading, where damage accumulation 

theories are required.  Alternative damage measures, such as the classical Miner and 

logarithmic Miner, are used allowing a comparison between theoretical lifetime 

prediction and experimental results to be made using the normalized V variable of the 

probabilistic model.  In this study, variable amplitude fatigue data available for the 

P355NL1 steel (smooth specimens) and for a riveted joint made of a puddle iron original 

from the Fão bridge are used. 

The thesis finishes with Chapter VIII, where the main conclusions of the work performed 

and the proposals for further work are presented. 

The Annex contains a relation of the scientific articles published by the author of the 

thesis during its preparation. 
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A LITERATURE REVIEW ON FATIGUE  

 

 

2.1. INTRODUCTION 

Nowadays scientists, engineers and skilled technicians are fully aware of fatigue damage 

phenomenon. A proof of this collective consciousness is the definition of fatigue given in 

ASTM E1823 standard that defines fatigue as “The process of progressive localized 

permanent structural change occurring in a material subjected to conditions that produce 

fluctuating stresses and strains at some point or points and that may culminate in cracks 

or complete fracture after a sufficient number of fluctuations”. The inclusion of fatigue 

design procedures in design codes of current practice is also another significant indication 

of this collective awareness about the fatigue phenomenon and its consequences on 

safety of structures and mechanical components. Despite significant advance and 

maturity in fatigue phenomenon understanding, various specialized scientific journals 

focused on this topic reveal that fatigue phenomenon is not yet fully understood and 

progress for its better understanding is still possible.   

This chapter presents an overview of the fatigue approaches being followed in the 

literature. Firstly, a brief overview of the fatigue history is introduced. Thereafter, a 

summary of the main fatigue approaches being currently followed in the literature is 

presented. Then the chapter focuses on probabilistic fatigue approaches available in the 

literature. 
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2.2. AN OVERVIEW OF FATIGUE HISTORY 

The current state-of-the-art of fatigue is only possible due the uncountable contributions 

about along the last 177 years. It is impossible to refer to all these contributions in this 

document, but some of them deserve to be highlighted since they became milestones of 

the fatigue history. 

Fatigue history alleged started with the pioneer works by the German Mines Engineer 

Albert who conducted the first fatigue experiments on conveyor chains and published the 

first known fatigue results, in 1837. In 1842 Rankine discussed the fatigue strength of 

railway axles. In 1853, Morin in his book on Strength of Materials presented a discussion 

about safe life design to be applied to axles of horse-drawn mail coaches. Maintenance 

plans were referred to including cracks reparation and sections transitions being 

identified as main location for those cracks. The term “fatigue” was first attributed to 

Braithwaite in 1854, who described in a paper fatigue failures in several machinery 

equipment. A discussion about allowable stresses for fatigue-loaded components was 

also presented. In the period of 1837-1958 many accidents due to fatigue failure of 

railway cars axles were reported, which resulted in numerous victims [1]. 

The period between 1858 and 1870 was definitively marked by the contributions of 

Wöhler who became a milestone in Fatigue. Wöhler conducted experiments on railway 

axles. He was responsible for the design and construction of the earliest testing machines. 

He was the first to note the role of the stress amplitude and mean stress on fatigue 

damage. He also performed important work on service loads measurement and design for 

finite life. It is interesting to note that his fatigue results were presented in a tabular form 

and only his successor, Spangenberg, introduced the graphical representation of the 

fatigue data in the form of curves, named as S-N curves, using linear abscissas and 

ordinates. Since 1936, these S-N curves started to be called Wöhler curves as a 

recognition to Wöhler’s contributions to fatigue. The representation of the S-N curves in 

the finite life region using bi-logarithmic axes was due to Basquin who first suggested the 

use of the power relation to correlate fatigue data [1]. 

Between 1870 and 1905, the contributions of Bauschinger were fundamental to 
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understand the cyclic plasticity of metals, which was the basis of the Low-Cycle-Fatigue, 

developed about 50 years later by Coffin and Manson. Kirsch, in 1898, was the first to 

calculate the stress concentration factor of 3.0 for a cylindrical hole in an infinite plate. 

Stress concentration factors have been revealed intrinsically linked to fatigue, due to local 

nature of the fatigue damage. Ewing and Humfrey, in 1903, observed slip bands on the 

surface of rotating-bending specimens, which consisted the first metallurgical description 

of the fatigue process [1]. 

In the 1905-1920 period the first full-scale fatigue test on large aircraft component was 

carried out. Fatigue tests on components were performed to improve its fatigue strength.  

The term notch effect appeared in the literature. The names of Smith, Haigh, Gough, 

Griffith, Inglis, Kommers, Moore, among others, appear in the literature [1]. 

In the period of 1920-1945, the main research lines on fatigue were established and/or 

developed, many of them are still currently being investigated. For example [1]: 

- Investigations on variable amplitude loading. For this topic, contributions by 

Gassner were important. Also damage accumulation theories were developed, 

with emphasis on works by Palmgren (1937) and Miner (1945) who proposed the 

linear damage accumulation theory known as Miner rule [2]. 

- Foundations of Fracture Mechanics by Griffith (1920). 

- First crack propagation tests, in 1936, by Forest. 

- Statistical methods in strength of materials by Weibull (1939). 

- Statistical evaluation of large number of fatigue experiments by Müller-Stock. 

- Mechanical methods to improve fatigue strength by compressive residual stresses 

were developed. 

- In this period books and conferences on fatigue started to appear. 

In the period 1945-1960 the foundations of the Low-Cycle-Fatigue were established due 

to the contributions of Coffin and Manson (1955) [3,4]. Motivated by the aircraft industry, 

the “fail safe” and “safe life” design approaches were discussed. Miner’s rule was 

intensively investigated to verify its validity and alternative rules were proposed to 

overcome the limitations of the linear damage rule.  Irwin in 1958, following the previous 
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works by Griffith, realized that the stress intensity factor was the leading parameter to 

control the static strength of cracked bodies. This contribution led to the Linear Elastic 

Fracture Mechanics [1]. 

After 1960 we assist to the development of the Fracture Mechanics and its application to 

fatigue. One inevitable contribution is the one proposed by Paris (1962) who first 

recognized the relation between fatigue and Fracture Mechanics [5]. The so-called Paris 

relation was a pioneer contribution in this field. After this relation, an uncountable 

number of crack propagation relations have been proposed to overcome known 

limitations of the Paris relation [6]. Elber (1963) gave also an important contribution for 

the understanding of fatigue crack growth under variable amplitude loading, introducing 

the “crack closure” concept [7,8]. With the development of fracture mechanics, “damage 

tolerance” design was adopted in some structures, particularly in Aeronautics. 

The development of testing machines, namely single axis and multiaxial servohydraulic 

testing machines a promoted the development of fatigue studies in the field of variable 

amplitude loading and multiaxial fatigue.  More recently, the development of resonance 

testing machines permitted studies in the very-high-cycle fatigue regime. 

Despite the very significant advances in fatigue understanding and the current fatigue 

design practice for structures and mechanical components under dynamic loads, many 

topics require more research, such as [1]: 

- Prediction of fatigue life under variable amplitude loading not fully solved, 

including fatigue crack propagation. 

- The transferability to actual components of fatigue data obtained with specimens 

has not been sufficiently investigated. 

- Corrosion fatigue is another complex and unsolved problem. 

- The combination of high temperature and fatigue needs further investigation. 

- Multiaxial fatigue, mainly for non-proportional loading and variable amplitude 

loading. 

Real problems combine very often various sources of complications which makes them 

very challenging. This is the case of large structures like bridges, which are subjected to 
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multiaxial, variable amplitude loading, whereby the old ones, may also exhibit corrosion. 

Concerning the old materials from these bridges, they show unusual high scatter on its 

fatigue properties, which demands the use of probabilistic approaches.   

2.3. GENERAL CONSIDERATIONS 

 2.3.1. Stages of fatigue damage 

Microscopic investigations in the beginning of the 20th century have shown that fatigue 

crack nuclei start as invisible micro-cracks in slip bands. Later on, more microscopic 

information on the growth of small cracks became available. Indications pointed out that 

it may take place almost immediately if a cyclic stress above the fatigue limit is applied. 

The fatigue limit is the cyclic stress level below which a fatigue failure does not occur. In 

spite of early crack nucleation, micro-cracks remain invisible for a considerable part of the 

total fatigue life. Once cracks become visible, the remaining fatigue life of a laboratory 

specimen is usually a small percentage of the total life [9]. The latter percentage may be 

much larger for real structures such as ships, aircraft, bridges, etc. 

After a micro-crack has nucleated, crack growth can still be a slow and erratic process, 

due to effects of the micro structure, e.g. grain boundaries. However, after some micro-

crack growth has occurred away from the nucleation site, a more regular is observed. This 

is the beginning of the real crack growth period. Various steps in the fatigue life are 

indicated in Figure 2.1. The important point is that the fatigue life until failure consists of 

two periods: the crack initiation period and the crack growth period. Differentiating 

between the two periods is of great importance because several surface conditions do 

affect the initiation period, but have a negligible influence on the crack growth period. It 

should already be noted that fatigue prediction methods are different for the two periods 

[9]. The stress concentration factor, Kt, is the important parameter for predictions on 

crack initiation. The stress intensity factor, K, is used for predictions on crack growth. 
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Figure 2.1 – Different phases of the fatigue life and relevant factors. 

2.3.1.1. Fatigue Crack initiation 

Fatigue crack initiation and crack growth are a consequence of cyclic slip bands. It implies 

cyclic plastic deformation as a result of moving dislocations. Fatigue occurs at stress 

amplitudes below the yield stress. At such a low stress level, plastic deformation is limited 

to a small number of grains of the material. This micro-plasticity can occur more easily in 

grains at the material surface because the surrounding material is present at one side 

only. 

Cyclic slip requires a cyclic shear stress. On a micro scale the shear stress is not 

homogeneously distributed through the material. The shear stress on crystallographic slip 

planes differs from grain to grain, depending on the size and shape of the grains, 

crystallographic orientation of the grains, and elastic anisotropy of the material. In some 

grains at the material surface, these conditions are more favourable for cyclic slip than in 

other surface grains. Another significant aspect is that slip during the increase of the load 

also implies some strain hardening in the slip band. As a consequence, upon unloading a 

larger shear stress will be present on the same slip band, but now in the reversed 

direction. Reversed slip will thus preferably occur in the same slip band. As a 

consequence, reversed slip, although occurring in the same slip band, will occur on 

adjacent parallel slip planes. 

The lower restraint on cyclic slip at the material surface has been mentioned as a 

favourable condition for crack initiation at the free surface. However, more arguments for 

crack initiation at the material surface are present. A very practical reason is the 

inhomogeneous stress distribution due to a notch effect of a hole or some other 

geometric discontinuity. Because of an inhomogeneous stress distribution, a peak stress 
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occurs at the surface (stress concentration). Furthermore, surface roughness also 

promotes crack initiation at the material surface. It is concluded that, the crack initiation 

period fatigue is a material surface phenomenon. 

2.3.1.2. Fatigue crack growth 

As long as the size of the micro-crack is still in the order of a single grain, the micro-crack 

is obviously present in an elastically anisotropic material with a crystalline structure and a 

number of different slip systems. The micro-crack contributes to an inhomogeneous 

stress distribution on a micro level, with a stress concentration at the tip of the micro-

crack. As a result, more than one slip system may be activated. Moreover, if the crack is 

growing into the material in some adjacent grains, the constraint on slip displacements 

will increase due to the presence of the neighbouring grains. Similarly, it will become 

increasingly difficult to accommodate the slip displacements by a single slip system only, 

i.e. on parallel crystallographic planes. It should occur on slip planes in different 

directions. The micro-crack growth direction will then deviate from the initial slip band 

orientation. In general, there is a tendency to grow perpendicular to the loading direction 

(Figure 2.2) [9]. 

  

Figure 2.2 – Cross section of micro-crack. 

The micro-crack growth is dependent on cyclic plasticity; barriers to slip can imply a 

threshold for crack growth. In the literature, several observations are reported on initially 
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inhomogeneous microcrack growth, which starts with a relatively high crack growth rate 

and then slows down or even stops due to material structural barriers. Two important 

surface aspects are no longer relevant. The lower restraint on cyclic slip at the surface is 

not applicable at the interior of the material, where inclusions or other kind of 

irregularities may act as trigger for crack initiation. Secondly, surface roughness and other 

surface conditions do not affect crack growth [9]. 

Crack growth resistance, when the crack penetrates into the material, depends on the 

material as a bulk property. 

2.3.2. Review of main factors influencing fatigue damage 

Since the pioneer research of Wöhler in metals, fatigue damage is unquestionably 

associated to stresses or strains varying in time. The increase in the amplitude of variation 

of the stresses/strains will result in accelerated fatigue damage. The typical way to 

express fatigue damage for materials, mechanical components or structural details is to 

use S-N curves, which are proposed based on constant amplitude (or range) loading. 

Figure 2.3 shows typical S-N curves for constant amplitude (or range) loading, which 

relates the stress amplitude (or range) with the number of cycles to failure. Some S-N 

curves may exhibit a clear horizontal plateau for high fatigue lives, representing a fatigue 

limit; however, some S-N curves may show a continuous reduction of fatigue strength for 

high fatigue lives, representing the case of a material/component not exhibiting a fatigue 

limit. The latter case corresponds to aluminium alloys and some high strength steels. For 

these materials, the fatigue limit is established as the stress range for a predefined high 

number of cycles. 
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b) 

Figure 2.3 – S-N representation: a) Constant amplitude loading definition; b) S-N diagram. 

The S-N curves are typically established using the amplitude of stresses, the stress range 

or the maximum stress of the cycle as the leading damage parameter. Each S-N curve is 

generally derived for a fixed parameter related to the stress level of the cycle, such as the 

mean stress itself, the maximum or minimum stress or the stress ratio. In general, the 

fatigue strength decreases with increasing stress level. Figure 2.4a shows an example of a 

family of S-N curves, with the stress amplitude as a leading damage parameter. This figure 

illustrates the influence of the stress level on the S-N curves. It is clear that the fatigue 

limit depends on the applied stress level. The influence of the stress level on the fatigue 

strength, in particular of the mean stress, may be described using constant amplitude 

diagrams such as the ones proposed by Gerber, Soderberg and Goodman, illustrated in 

Figure 2.4b. These diagrams are used to express the influence of the mean stress on the 

fatigue limit, as well as the fatigue strength for a prescribed fatigue life. Besides these 

diagrams, stress level effects may be accounted in many other different ways, which are 

dependent on fatigue models being used [10]. 
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Figure 2.4 – Stress level effect on fatigue resistance: 
a) influence of mean stress on S-N curves; b) constant life diagrams. 

Besides the stress range or amplitude, as the main fatigue parameter,  and mean stresses 

stress level, as the secondary fatigue parameter, which are two consensual factors 

influencing fatigue damage in any type of materials, other factors may influence fatigue 

damage, depending on the nature of material. Considering the case of the carbon and 

low-alloy steels, the following factors may have an impact on fatigue damage [11]: i) 

static strength level; ii) ductility; iii) cleanliness of the steel; iv) residual stresses; v) surface 

finish conditions; vi) aggressive environments. 

Generally, mechanical components and structural details show stress concentrations due 

to surface discontinuities. This stress concentration is responsible for the fatigue strength 

reduction. However the fatigue strength reduction is not generally proportional to the 

stress concentration factor, Kt, associated to the geometric discontinuity. In general, a 

lower fatigue strength reduction is found, which is accounted by a fatigue notch factor, Kf. 

This fatigue notch factor corresponds to the ratio of the fatigue strength of a smooth 

specimen to the fatigue strength of a notched specimen, at the same number of cycles to 

failure. In general the fatigue notch factor depends on fatigue life and stress level. This 

factor decreases with increasing stress levels and decreasing fatigue lives, due to plastic 

deformation at notch root. The fatigue notch factor, Kf, tends to the stress concentration 

factor, Kt, fatigue notch sensitivity of the material increases. 

Methodologies for the fatigue design of notched components under elastic dominant 

conditions (high-cycle fatigue), were introduced by Neuber [12,13] and Peterson [14]. 
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More recently, the theory of critical distances bring new impulse to this topic [15,16]. 

2.4. FATIGUE LIFE PREDICTION METHODS 

2.4.1. Global S-N approaches 

Numerous studies have been conducted to understand the cyclic behaviour of steel 

bridge members and to formulate reliable fatigue-resistant design proposals. Fatigue 

problems are complex in nature and not easily understandable or feasible to be precisely 

modelled since a multitude of factors, which are not always independent, control the 

structural response to cyclic loading. Consequently, design and evaluation procedures are 

typically empirical in nature. Because no unified theory can reliably predict fatigue 

response, experimental testing is usually performed to describe the fatigue strength of 

structural members. Small-scale specimens, as well as full-scale specimens, have both 

been used to understand the fatigue behaviour of structural members [17]. 

Depending on the specific research program undertaken and the S-N field region covered 

by the experimentation, different intuitive models (parabolic, hyperbolic, linear, 

piecewise linear, etc.) have been proposed in the literature to fit experimental data 

[17,18,19]. Some of these models are shown in Table 2.1. However, unfortunately, not all 

are physically valid models. 

Fatigue curves, plotted as straight lines when stress range, σ, and fatigue life, Nf, are 

expressed in logarithmic scale, as illustrated in Figure 2.5, are traditionally used to 

describe the cyclic response of a given structural detail. 

Constant amplitude σa , or stress range Δσ, will result in a value of the cyclic life, N. A 

number of specimens must be tested to establish the representative S-N strength of a 

particular structural detail. Discrepancies between the predicted mean strength and the 

test results often occurs because so many factors influence the strength [17,19]. 
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Table 2.1 – Models proposed in the literature for S-N curves [18]. 

Model Function Form 

Wöhler (1870) 0;log   BAN  

Basquin (1910) 0;loglog   BAN  

Strohmeyer (1914)  0loglog   BAN  

Palmgren (1924)    0loglog   BADN  

Palmgren (1924)  0loglog   BAN  

Weibull (1949)       00 /loglog   stBADN  

Stüssi (1955)       stBAN /loglog 0  

Bastenaire (1972)       00 explog   CABN  
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Figure 2.5 – Stress range versus number of cycles to failure. 

Practice design codes [20] adopt the following form for the S-N curve, proposed by 

Basquin: 

CN f
m    (2.1) 

Failure cycles, Log N 

 St
re

ss
 r

a
n

g
e,

 L
o

g
 Δ
σ

 

N1 

Δσ1 



A literature review on fatigue 

II.13 
 

where C and m are material constants. Alternatively, the mean or median S-N curves may 

be represented using the following linear model [21,22], which is more suitable for 

parameters identification using linear regression analysis: 

XBAY    (2.2) 

where Y is the dependent variable defined as Log(Nf), X is the independent variable 

defined as Log(σ), A and B are linear regression parameters. Consequently it is possible 

to rewrite the S-N curve in the following forms [21,22]: 

   

   










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f

NLog
B

1
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A
Log

LogBANLog
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  (2.3) 

where A and B are linear regression parameters which are related to the C and m 

constants: 









Bm

10C A

  (2.4) 

To carry out an assessment of the remaining fatigue life of old steel bridges and crane 

structures, critical structural details have to be identified and categorised. The treatment 

of fatigue life in structural details are described by design rules of several European and 

North American standards [19,23], such as, Eurocode 3 [24], BS 5400 [25] and AASHTO 

[26] standards. 

The fatigue resistance of riveted shear splices of old metallic riveted bridges are not 

mentioned in Eurocode 3 [24,27]. A reasonable assumption is that a riveted shear splice is 

the same as a splice that uses non-preloaded high-strength bolts. In this case, Eurocode 3 

prescribes the use of Detail Category 112 [19]. The Eurocode rule is plotted in Fig. 2.6. 

Both Åkesson & Edlund [19,28] and Helmerich et a [19,29] have suggested Eurocode 

Detail Category 71 for riveted shear splices. This is a better choice than Detail Category 

112, though it is substantially conservative for stress ranges less than about 60 MPa. 

Taras and Greiner [30] have performed a statistical analysis of a significant amount of 

experimental fatigue data available in literature for riveted joints from old bridges. These 

authors suggest the categorization of the riveted joints into five categories, using a slope, 

m=5 for the design curve, instead of the m=3 given in the design codes for the joints, 
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EC3‐1‐9 [24]. Two of the categories are the single and double shear splices under tensile 

loading. For double shear riveted joints, Taras and Greiner [30] proposed a design S‐N 

curve with a slope, m=5 and a fatigue strength of 90MPa at 2×106 cycles whereas for 

single shear riveted joints, a design S‐N curve with a slope, m=5 and a fatigue strength of 

71MPa at 2×106 cycles is suggested. In addition, they refer that mean stress effects must 

be accounted for riveted joints and suggested the use of a normalized stress range to 

allow comparison between experimental fatigue lifetimes to be made. 

With the advent of the Eurocodes, development of national standards in Europe has 

ceased. However, riveted shear splices are specifically mentioned in BS 5400, so that they 

can be further handled in this frame. The riveted shear splice detail is described in BS 

5400 as their Class D. This standard does distinguish between riveted shear splices and 

bolted shear splices, in contrast to Eurocode 3. However, the fatigue life rule provided by 

this standard for riveted shear splices is neither satisfactory [19]. 

The AASHTO standard also provides a fatigue life rule specifically for riveted shear splices 

(AASHTO Category D). This standard is widely used by railroads in North America. Among 

the standards reviewed, it is the one that most closely reflects the recent test data [19]. 
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Figure 2.6 –Fatigue strength curve for nominal stress range EN 1993-1-9 [24]. 
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2.4.2. Local approaches 

Fatigue design philosophy has evolved from fatigue limit and infinite life criteria to 

approaches based on finite life behaviour [31,32]. The local approaches use fatigue 

damage parameters to correlate fatigue test results, especially for crack initiation life. 

In order to predict the fatigue life under a specified condition, different fatigue damage 

parameters have been proposed to correlate fatigue life. The local approaches are 

generally divided into three categories, i.e., stress-based, strain-based and energy-based 

methods, when stress, strain or energy are respectively used as the fatigue damage 

parameter. 

Models to account for the stress level effect referring to the stress-based, strain-based 

and energy-based methods have been proposed. These models are presented in the 

following. 

2.4.2.1. Stress-based method  

The stress-life method uses the alternating stress amplitude to predict the number of 

cycles to failure. This method is based on comparing the stress amplitude to a stress 

amplitude versus fatigue life curve (S-N diagram). The S-N curves are based on empirical 

formulas derived from experimental data. The stress-life method is generally only used 

for high cycle fatigue, because under low cycle fatigue the stress-strain relationship 

becomes nonlinear [31]. Similar to S-N curves, the relation between stress amplitude, 

Δσ/2, and the number of cycles to failure, Nf, can be approximated by a straight line when 

the stress amplitude and the fatigue life are both expressed on a logarithmic scale, thus 

resulting in: 

 b

ff N


'
2




 (2.5) 

where  f'  is the fatigue strength coefficient, and b is the fatigue strength exponent. 

For many loading cases, the mean stress is not zero. Although the stress level effect is 

often neglected in fatigue life calculations for welded details, the high residual stresses in 

such details tend to obliterate any possible effect of applied stress level. However, in non-
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welded details, the effect of stress level must be accounted for in the fatigue life 

calculations. 

Morrow [33,34] proposed a correction to account for the mean stress effect as follows: 

   b

fmf N





'
2

 (2.6) 

where  m  is the mean stress and the other variables are the same as for Equation (2.5). 

The effect of the tensile mean stress is thus equivalent to a reduction of the fatigue 

strength coefficient. The model assumes that a given combination of stress amplitude, 

Δσ/2, and mean stress, σm, is expected to have the same fatigue life as a fully reversed 

stress amplitude of (Δσ/2)-1, where: 
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 (2.7) 

The Morrow correction for stress-based method was found to work reasonably well for 

structural grades of steels [35]. 

2.4.2.2. Strain-based method  

The strain-based method has found wide applications in fatigue analysis, especially for 

calculation of fatigue crack initiation. In contrast to the stress-based method, the strains-

based method considers the plastic deformation that may occur in localized regions 

where fatigue cracks initiate. The strain-based method assumes the material in highly 

strained areas, such as at a notch root, behaves similarly to material in a smooth 

specimen under cyclic strain controlled loading with the same strain [34]. 

The strain-based method uses a strain versus life curve along with the cyclic stress versus 

strain curve of the material instead of the S-N curve used in the stress-based method. The 

coefficients and exponents that define these curves are treated as fatigue properties of 

the material. At the early developmental stages for the technique, there were insufficient 

fatigue data to quantify the fatigue properties of many engineering metals and various 

equations were proposed to correlate the fatigue properties to the tensile properties 

[34]. The generalized adoption of closed-loop mechanical testing systems and the 
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development of the strain-based method have largely eliminated the need for these 

empirical equations, and there is abundance of data defining the fatigue properties of 

numerous engineering metals [36]. 

For engineering materials at room temperature, cyclic hardening or softening usually 

takes place rapidly at first and then approaches to a stable condition. The stable cyclic 

stress versus strain curve is often defined using the Ramberg-Osgood equation [35-37]. 

The curve can be determined from several companion specimens cycled at various 

constant strain amplitudes or from a single specimen in conformity with the incremental 

step test method [34]. 

For Equation (2.8), the elastic component of the strain amplitude, ΔɛE/2, can be obtained 

as follows: 

 b

f

fE N
E


'

2


  (2.8) 

where E is the modulus of elasticity. The plastic strain amplitude, ΔɛP/2, versus fatigue life 

can also be linearized on a logarithmic scale for low cycle fatigue. The relationship 

between the plastic strain amplitude and fatigue crack initiation life can be expressed in 

the following form: 

 c

ff
P N '2   (2.9) 

where ɛ’f is the fatigue ductility coefficient, and c is the fatigue ductility exponent, both 

determined experimentally. 

By adding the elastic and plastic components of strain amplitude, given respectively by 

Equations (2.8) and (2.9), the relationship between the total strain amplitude, Δɛ/2, and 

fatigue life can be expressed as (see Figure 2.7): 
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Figure 2.7 – Schematic plot of elastic, plastic and total strain amplitudes versus reversals to failure. 

On its turn, the cyclic stress versus strain curve can be modelled by the Ramberg-Osgood 

equation as follows: 
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where K’ is the cyclic strength coefficient and n’ is the cyclic strain-hardening exponent. 

For the strain-based method, the mean stress effect can be corrected by the Smith, 

Watson and Topper (SWT) model [38]. The model appears to provide good results for a 

wide range of materials and is a good choice for general use [35]. The SWT model 

assumes that the fatigue life for any level of mean stress is a function of the product of 

the maximum stress and strain amplitude, σmax.Δɛ/2. The model can be expressed as: 
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where the intervening parameters are defined as earlier. 

2.4.2.3. Energy-based method  

Experimental observations have confirmed the significant role that plastic deformation 

plays in the fatigue damage process. As cyclic plastic deformation is related to slip along 

crystallographic planes and dislocation movement, cyclic stress is related to the resistance 
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to such movement at the microscopic level and strain energy is dissipated during such 

irreversible deformations [31,32]. The energy-based method uses energy as a damage 

parameter to characterize fatigue, emphasizing the interrelation between stress, strain, 

and the fatigue damage process. It unifies high and low cycle fatigue, and has the 

potential to bridge fatigue data obtained in different laboratories using specimens of 

different geometry and size and tested under different controls [39,40]. As a relatively 

new method (mainly developed in the last two decades), it has not been widely used but 

the method seems promising. 

Commonly, the total absorbed energy to the point of fatigue failure is assumed to depend 

on the total number of cycles sustained whereas the fatigue damage arising in each cycle 

is assumed to relate directly to the area under the hysteresis loops of the stress versus 

strain curve obtained during cyclic loading [31]. Various measures of energy have been 

proposed depending on the stress level, as for instance, the plastic strain energy density 

per cycle (ΔWP). The ΔWP criterion is more appropriate when the plastic strains are large, 

and while it is believed to be less suitable for small strain magnitude because during high 

cycle fatigue the plastic strain energy is very small and difficult to be measured 

accurately. The plastic plus elastic tensile strain energy density per cycle, ΔWt, was 

proposed to predict the mean stress effect [41] and is believed to be more 

recommendable for deformation controlled situations. 

Energy approaches are based on the assumption that fatigue damage is directly related to 

the area under the hysteresis loops resulting during cyclic loading the latter being related 

to the plastic deformation taking place during a load cycle, which on its turn relates to the 

fatigue damage sustained. 

Ellyin and Kujawski [42] suggested the use of the total strain energy range per reversal, 

ΔW, can be written as: 

 2
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where Δσ is the stress range,  Δɛ is the strain range and σmax is the maximum stress. 
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The Wt criterion is believed to be more appropriate to predict the mean stress effect, 

defined by the following expression: 

  t
ft

t WNW t

02 


  (2.15) 

where αt<0 and t>0 are constants, Nf is the number of cycles to failure and t
0W  is the 

total strain energy range, tW , corresponding to fatigue limit. Ellyin [31] developed a 

more general expression that explicitly includes the mean stress in the formulation as 

follows: 
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where the coefficient η is a material property, which varying from 0 to 1, characterizes 

the material sensitivity with respect to mean stress. It can be evaluated from a few 

fatigue tests conducted at different mean stress levels in the high cycle region. 

2.4.3. Fracture Mechanics based approaches 

2.4.3.1. An overview of fatigue crack propagation laws 

With the development of the Fracture Mechanics, new opportunities for fatigue 

modelling emerged in the literature. The key contribution in this field is attributed to Paris 

and his co-authors [5] who first recognized the relation between the stress intensity 

factor at an existing crack tip and the crack advance under cyclic loading: 

 Kf
dN

da
   (2.18) 

where da/dN is the fatigue crack growth rate; ∆K is the stress intensity factor range and f 

is a function of the stress intensity factor range to be defined. A simple power function 

was proposed by Paris, between the fatigue crack growth rate and the stress intensity 

factor range, at a given crack tip [5]: 

mKC
dN

da
   (2.19) 

where C and m are material constants. This crack propagation relation was verified to be 
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valid for a specific fatigue crack propagation regime, particularly in the fatigue crack 

propagation regime II, which lies in between the near threshold fatigue crack propagation 

regime (regime I) and the near unstable crack propagation regime (regime III), as 

illustrated in Figure 2.8. 
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Figure 2.8 – Fatigue crack propagation regimes. 

Despite its significant contribution, the Paris relation shows important limitations that 

were overcome by proposals of alternative and more complex fatigue crack propagation 

relations. An extensive review of numerous fatigue crack propagation relations was given 

by Beden et al. [6], either for constant and variable amplitude loading. The stress ratio 

effect is an important load parameter influencing the fatigue crack propagation rate, 

which is not accounted by the simple Paris model. Walker [43] proposed an alternative 

relation to overcome this limitation of the Paris model: 
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This model introduces a third curve fitting parameter, , besides the C and m parameters 

already existing in the Paris model. For R=0, this relation coincides with the Paris relation. 

The  parameter can be computed as the value that best consolidates the data along a 

single straight line on the log-log plot of da/dN versus K , with K defined as: 



CHAPTER II 

II.22 
 

  








1R1

K
K   (2.21) 

With his proposal, Walker introduced the two-parameter approaches for fatigue crack 

propagation. The Walker fatigue crack propagation relation can be rewritten in the 

following form: 

   mp
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max KKCKKC
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Dinda and Kujawski [44] proposed a variation of the previous equation, excluding the 

compressive part of the stress intensity factor range: 
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This type of fatigue crack propagation formulation, based on two-parameter crack driving 

force, was also followed by other authors. This is the case of the proposal by Donald and 

Paris [45] and Vasudevan et al. [46]. The latter authors considered that crack propagation 

may occur only if two thresholds are exceeded, namely, both K  and maxK . 

Both Paris and Walker models are valid for the crack propagation in regime II whereas 

Forman proposed an extension of Walker model to the propagation regime III [47]: 
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Hartman and Schijve [48] extended Forman equation to cover the three crack 

propagation regimes: 
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This relation results in a sigmoidal shaped curve with vertical asymptotes at Kmax=Kc and 

K=Kth. This relation suffers a limitation related to the stress ratio dependency of the 

Kth, which is not directly contemplated in the relation. Many other fatigue crack 

propagation relations have been proposed in the literature, which are not accounted for 

in this review. Only some of the more relevant historical ones are being referred to. The 
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above relations make use of the K parameter which is a Linear Elastic Fracture 

Mechanics parameter. Therefore, those relations are only applicable for cracks with 

limited plasticity ahead of the crack tip. For generalized elastoplastic conditions, some 

authors have proposed the use of Elastoplastic Fracture Mechanics parameters to 

correlate the fatigue crack growth, as is the case of the J-Integral, as proposed by Dowling 

and Begley [49]: 

mJC
dN

da
   (2.26) 

This equation is similar to the Paris relation (fits data in region II), but can be 

advantageously applied in situations of large scale yielding. 

The previous referred relations have being suggested for constant amplitude loading 

conditions. For variable amplitude loading conditions they may be considered 

inappropriate due to load interactions that may significantly alter the growth behavior of 

a crack. For example, it is well know that an overload may induce retardation effects on 

crack propagation. Wheeler [50] proposed a model to simulate the retardation effects 

induced by single overloads, introducing a retardation parameter in the propagation law. 

The retardation parameter accounts for the interference between the crack tip plasticity 

zone induced by the overload and the steady state plasticity zone. This model does not 

account for underloads and interactions of multiple underloads and overloads. The 

Wheeler model was further advanced by Willenborg [51] to allow for underloads. One 

fatigue crack propagation model worldwide reputable is the NASGRO model, which is 

based on the Willenborg model. NASGRO model extends the Willenborg model in order 

to account for the reduction of retardation due to underloads. 

Elber [7,8] furnished an important contribution in the fatigue crack growth study by 

introducing the crack closure concept to explain the crack growth under variable 

amplitude loading. Elber argued that a load cycle is only effective in driving the growth of 

a fatigue crack if the crack tip is fully open. He introduced the effective stress intensity 

ratio, U, defined as:  
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where maxK , minK  and opK  are respectively the maximum, minimum and opening stress 

intensity factors. Any fatigue crack propagation relation above referred may be rewritten 

using the effective stress intensity factor range, effK . For example, the Paris relation 

may be rewritten as: 

   mm

eff KUCKC
dN

da
    (2.28) 

Crack closure is assumed in this approach to be responsible for the load interaction 

effects. The application of the crack closure model requires the accurate definition of the 

U and opK  parameters for specific materials, loading types and region on the fatigue rate 

curve. The crack closure approach is an alternative approach, competing with the residual 

stress approach induced by plasticity around the crack tip approach, the first becoming 

very popular. 

For variable amplitude loading characterized by approximate random stress spectra, 

sequential effects are not relevant and for these conditions previously referred models 

that not account for load interaction effects are sufficient to make life predictions. Those 

models may be integrated cycle-by-cycle. Alternatively some authors [52] proposed the 

use of the Miner model to define an effective stress intensity factor according to the 

following relation: 
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where effK  is the effective stress intensity factor; TN  is the total number of cycles; iN  is 

the number of cycles with a stress intensity factor range of iK  and m is a constant.  

Hudson [53] proposed the use of the root mean square (RMS) of the minimum and 

maximum stresses, which will be used to compute RMSK  and RMSR  required for the 

fatigue crack propagation model, such as the Forman relation. This model will provide the 

average crack propagation for the analysed spectrum loading. 

The models proposed by Castillo and Fernández-Canteli [54] represent a new solution for 

the fatigue crack propagation based on the assumption of the crack growth curve 
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becoming a cumulative distribution function. The inconvenience of dimensional 

parameters in existing crack propagation models is overcome in this new proposal by 

means of dimensional analysis, carried out on influent variables leading to adimensional 

normalized parameters. One additional alternative explored by authors is the Gumbel 

cumulative distribution function. The proposed model (see details at reference [54]) is 

defined by: 
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This model depends on four parameters,  ,  , *
thK  and *

upK  which may be computed 

by least-square techniques [54]. The ‘*’ in the variables of the model means normalized 

variables. For example, they can be normalized, as suggested by the authors, using the 

following relations: 

c

th*
th

c

up*
up

c

minmax*

0

**

K

K
K;

K

K
K;

K

KK
K;

N

N
N;

W

a
a





 


   (2.31) 

with the intervening parameters defined as: 

a= crack length; 

W=characteristic length (e.g. specimen length) 

N=Number of cycles; 

N0= reference number of cycles; 

Kmax, Kmin=maximum and minimum stress intensity factors; 

Kth=threshold intensity factor range; 

Kup=limit stress intensity factor range; 

Kc=material characteristic fracture toughness. 

2.4.3.2. Fatigue modelling of structural details or mechanical components based on 

Fracture Mechanics 

In the preceding section, a review of fatigue crack propagation laws was presented. The 

availability of accurate fatigue crack propagation laws is the key for reliable fatigue life 
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predictions of mechanical components or structural details. The most common use of the 

fracture mechanics based on fatigue crack propagation relations, consists in residual 

fatigue life assessment of mechanical components or structural details containing initial 

known defects acting like cracks. This can be accomplished integrating the crack 

propagation law, according to the following expression: 
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where ai is the initial crack size and af the critical crack size, which is defined by the 

unstable crack propagation, dictated by the material toughness, or plastic failure at the 

net section. 

Besides residual fatigue life calculations, which is the basis of a damage tolerance 

analysis, the integration of fatigue crack growth relations can be used to compute the 

total fatigue life of components. In these cases, the crack initiation is disregarded and the 

fatigue life is understood as a process of fatigue crack propagation. The main difficulty 

implied in this approach is the determination of the initial crack size for the crack growth 

analysis. One practical solution in using an empirically assumed crack length, such as 

0.25–1 mm for metals [55-57] whereby the assumption of such macro-crack could 

underestimate the fatigue life of the component. Some authors complement this 

approach with a local approach based on strain-life relations to compute the number of 

cycles to initiate such macro-crack [32,58]. This approach shows a drawback related to 

the definition of the precise size of the initial crack within the range above referred. In 

many cases, a calibration process is required. 

An alternative way is to use an initial defect measured from nondestructive inspection 

[59]. However, this technique fails if the initial defect size is below the detection 

capability of the NDI technique. A conservative assumption corresponds to the 

consideration of an initial defect coinciding with the size of the NDI detection limit [60].  A 

common approach is to postulate an equivalent initial flaw size (EIFS) in an attempt to 

determine the initial crack size for fracture mechanics-based life prediction. The EIFS 

accounts for the initial quality, both from manufacturing and bulk material properties of 

structural details. The calculation of EIFS is usually performed using a trial and error back-
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extrapolation (inverse) methodology. This procedure uses fatigue crack growth analysis 

with an assumed initial crack geometry and size to match the material failure data (stress-

life) [61]. Yang and Manning [62] used this back-extrapolation technique to obtain the 

EIFS distribution of Al 2024-T351. White et al. [63] resort to a probabilistic fracture 

approach to derive the equivalent pre-crack size, which is also based on the back-

extrapolation method. Molent et al. [64] used a back projection of the experimental crack 

growth curve to time zero to derive the EPS for Al 7050. The major problem using the 

back-extrapolation method is that the obtained EIFS seems to be dependent on the stress 

level [65]. It is desirable to view EIFS as a material property indicating the initial quality of 

the material and not connected to the applied stress level; this would make the EIFS 

applicable to a wide range of stress levels. However, it should be noted that EIFS is not a 

physical quantity. It is a quantity extrapolated from experimental data simply to facilitate 

life prediction by using only long crack growth analysis and avoiding the difficulties of 

short crack growth modeling. Widespread use of EIFS concept has not been realized due 

to the large amount of test data required to develop a reliable EIFS distribution [66].  

When the uncertainties associated with EIFS need to be included, the problem becomes 

more involved. Due to the inherent variability of fatigue crack growth data, failure data, 

and also the modeling approximations in the fatigue crack growth analysis, the 

uncertainties of EIFS need to be carefully considered in a probabilistic life prediction. The 

back-extrapolation method makes the computation of probabilistic EIFS distribution very 

expensive, because Monte Carlo simulation is usually coupled with iterative fatigue crack 

growth analysis [67,68]. To overcome such inconveniences associated to the application 

of the EIFS concept above referred, reference [61] presents a new probabilistic EIFS 

calculation methodology based on the Kitagawa–Takahashi diagram. The EIFS is 

determined by matching the infinite life of a component with and without an assumed 

initial crack. The proposed methodology only uses the fatigue limit data and the fatigue 

crack threshold stress intensity factor. The statistics of EIFS are directly calculated without 

solving inverse fatigue crack growth analysis. 

The Fracture Mechanics based fatigue approach has also been used to simulate technical 

crack initiation which, according Savaidis et al. [69], corresponds to a crack size of 1 mm. 



CHAPTER II 

II.28 
 

These authors applied the Elastoplastic Fracture Mechanics (J-integral based crack growth 

law) to simulate the propagation of incipient postulated micro-cracks, which are obtained 

by back extrapolation. They applied the model to predict technical crack formation at 

notched details. Besides the Elastoplastic Fracture Mechanics framework, they 

considered crack closure effects. 

2.4.4. Local approaches for fatigue crack propagation modelling 

A link between the local approaches to fatigue, typically used to simulate fatigue crack 

initiation, and fatigue crack propagation has been demonstrated and explored by some 

authors [31,70-76]. These approaches recognize fatigue crack propagation as a process of 

continuous crack re-initializations. The local approaches to fatigue are applied to the 

plastic process zone ahead of the crack tip to simulate the fatigue crack growth. Basically, 

to predict fatigue crack growth, it is necessary to predict the stress/strain fields ahead of 

the crack tip and to apply a failure criterion to model the crack separation. An averaging 

process over a characteristic length is required due to the singularity introduced by the 

crack tip. The various approaches differ among each other in the way the geometry of the 

crack is defined, the expressions used to compute the local stresses and strains, the 

damage model and the characteristic length along which the damage model parameters 

are computed. 

Glinka published a study in 1985, where a notch stress-strain analysis approach was 

applied to model fatigue crack growth. The crack was assumed to have a notch with a tip 

radius, * and the material ahead of the crack tip was assumed to be divided into 

elemental blocks of finite linear dimension, * (see Figure 2.9). The crack growth was 

assumed as the failure of successive elemental blocks, the fatigue crack growth rate being 

defined by the following relation: 

 
fNdN

da *
   (2.33) 

where fN  represents the number of cycles to fail the elemental block of dimension, *. 

To simulate the elemental block failure, the Coffin-Manson relation, later modified by 
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Morrow, to account for mean stress effects, was applied using the elastoplastic 

stress/strains computed using the basis elastic solution for a blunt crack and the density 

energy criterion by the same author. The basis elastic solution was derived using the 

effective stress intensity range, which takes into account the crack closure effects. The 

author was able to correlate fatigue crack propagation data in the region I and II of 

fatigue crack propagation. This early work by Glinka was resumed twenty years later by 

Glinka and his collaborators, namely Noroozi, Lambert and Mikheevskiy [72-75]. The basic 

premises of the early work by Glinka were followed, but a more sophisticated procedure 

to compute the elastoplastic stress/strains at the representative material element was 

adopted. Instead of the crack closure correction, compressive residual stresses were 

computed due to the cyclic elastoplastic action. These compressive residual stresses are 

used to correct the stress intensity factor range leading to a net stress intensity range, 

which is used to correct the elastoplastic stress/strain field. This approach was 

demonstrated to work well for both constant and variable amplitude loading [72-75].   

 

Figure 2.9 - The discrete material model and the crack tip geometry at the maximum and minimum load: (a) 

crack and the discrete elementary material blocks. (b) The crack model at the tensile maximum and 

compressive minimum loads used for the linear elastic stress analysis [72-74]. 

Ellyin and Kujawshi [31] proposed a low-cycle fatigue-based crack propagation model. 

This model is based on the assumption of three important plastic regions ahead of the 

crack tip for a propagating crack (see Figure 2.10). The region I is the process zone, 

denoted by *. The behaviour of this process zone is modelled with an energetic damage 

parameter, P  , proposed by Ellyin. The damage parameter is evaluated using 
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analytical solutions for the plastic field ahead of a crack with a critical blunt tip radius c. 

Two analytical plastic fields were explored, namely the HRR (Hutchinson-Rice-Rosengren) 

and RKE (Rice-Kujawski-Ellyin) fields [31]. The crack tip blunting is responsible for finite 

damage parameters as the distance to the crack tip approaches to zero.  
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Figure 2.10 – Three regions in the front of the fatigue crack according to the Ellyin model [31]. 

The fatigue crack growth model uses the hysteretic energy in front of the crack as a 

criterion for the crack advance. This energy can be computed using the following 

relations: 
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where  n  is the cyclic strain hardening exponent, E is the Young modulus, K  is the 

stress intensity factor range, r and  are the polar coordinates associated to a crack tip 

origin and   is a plastic function which depends on the analytical method used to assess 

the plastic field ahead of the crack tip. Two possibilities were proposed by Ellyin, namely 

for HRR and RKE fields. Assuming that crack propagates along the plane y=0, what implies 

that =0 and r=x, the blunt crack tip will be attained in the computation of the damage 
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parameter, resulting: 
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The damage parameter will be related to the number of cycles to failure using both 

Basquin [77] and Coffin-Manson [3,4] relations: 
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From previous two equations, one may relate the crack advance distance * with the 

increment on cycles, N: 

 
 

NN

N2

nE4

K

NdN

da c
)cb(

f

2*























  (2.37) 

The critical blunting radius, c may be computed for threshold fatigue crack propagation 

conditions, resulting the final expression for the fatigue crack growth rate as: 
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where thK  is the threshold stress intensity factor range. The * is assumed as a material 

constant to be identified by experimental data analysis. This parameter is assumed to be 

related to the microstructure and /or microfailure mechanisms. This parameter is in 

general higher than grain size. To account for the stress ratio effects on the crack 

propagation model, the authors introduced the mean stress influence on the model as 

well as an effective stress intensity range. 

Peeker and Niemi [71] also proposed a model for fatigue crack propagation based on the 

local strain approach to fatigue. Besides the fatigue crack propagation modelling, their 

proposition also included the fatigue crack initiation modelling from notches (see a 

schematic representation in Figure 2.11). Therefore, an integrated approach was 

proposed by these authors, innovative with respect to the proposals by Ellyin and Glinka. 

These authors used the Morrow strain-life equation [33,34]  with a mean stress 

correction to compute the damage of each element, with size , used to discretize the 
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crack path. Elastoplastic stress and strains are computed at each element using Ramberg-

Osgood [37] relation together with the Glinka’s equivalent strain energy density approach 

[78]. To apply the elastoplastic approach, the average elastic stresses at each element 

were computed from elastic solutions based on stress concentration factors (elements at 

crack initiators) and stress intensity factor/Fracture Mechanics solutions (elements at 

crack front). These authors also considered the possibility of simultaneous damaging of 

elements, using the linear summation damage rule. In order to unify the procedure for 

both crack initiation and crack propagation, the authors introduced the concept of a 

fictitious stress intensity factor range for notches in order to result the same stress field 

as resulting from the stress concentration factor. In order to extend the proposed 

methodology to variable amplitude loading, the authors adopted the crack closure 

concept to define effective stress intensity factor ranges that will be used to compute the 

elastic stress fields in the elements ahead of the crack tip. 

The model proposed by Peeker and Niemi [71] allowed the description of the near 

threshold fatigue crack propagation data and the stable crack growth. For the near 

threshold fatigue crack propagation, the authors derived the following analytical relation: 
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For the stable crack growth, the authors derived the following relations: 
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The superposition of the previous two relations led to the following analytical expression 

for the fatigue crack propagation law: 
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Figure 2.11 – Crack discretization with elements according to the model proposed by Peeker and Niemi [71]. 

The size of the elements used to discretize the crack path is determined taking into 

account two criteria: a) the size must be large enough to represent the local material 

properties by their mean value using continuous variables, and b) its size should be 

related to material micro-structural parameters, such as the material grain-size. For 

structural steels, the criteria result in an average element size of 0.1 mm=100m [71]. 

Hurley and Evans [76] also proposed a local strain approach to the fatigue crack 

propagation modelling of a Ti 6246 alloy. These authors proposed the process damage 

zone being equal to the cyclic plastic zone ahead of the crack tip. The elastoplastic 

stress/strains at crack tip were computed by means of a non-linear finite element analysis 

and allowing the damage state of the cyclic plastic zone to be determined.  The fatigue 

life of the process zone was computed using the Walker strain that was correlated 

directly with the fatigue life, from the experimental data using a power relation. This 

Walker strain is defined according to the following relation: 
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where max  is the maximum stress, E is the Young modulus,   is the strain range and w  

is a constant varying between 0 and 1. These authors applied the following definition of 
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the cyclic plastic zone, which is assumed to equal the process damage zone under plane 

strain conditions: 
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where 0  is the cyclic yield stress and K  the stress intensity factor range computed 

from the numerical model. The approach proposed by these authors was much simpler 

than those proposed by the previous authors. It was supported by numerical models 

disregarding analytical aspects that allowed other authors to demonstrate the relation 

between these local approaches to fatigue crack modelling and the fracture mechanics 

approaches for fatigue crack propagation modelling. 

2.5. PROBABILISTIC APPROACHES TO FATIGUE 

Neglecting the probabilistic nature of the fatigue process by using a deterministic 

approach when lifetime predictions are intended contradicts the principles of structural 

integrity criteria and would have devastating consequences for the metallic bridges, 

aeronautic and machines industry, among others. Such limiting deterministic approaches 

can only be justified as long as the state of knowledge does not allow the development 

and proposition of more suitable probabilistic models for practical use.  

Many sources of scatter may affect fatigue results (e.g. material variability, production 

variables). In order to allow the establishment of adequate safety levels on mechanical 

components/structural details, the several sources of scatter must be conveniently 

accounted for, the probabilistic approaches to fatigue appearing as an answer to this 

concern. 

2.5.1 Global overview of probabilistic models for fatigue 

One concern of the probabilistic approaches to fatigue is to account for the scatter in the 

S-N curves, and make possible the definition of appropriate reliability levels when they 

are applied in fatigue assessments. In reference [79], a discussion about the typical 

scatter in the S-N curve was presented. This scatter raises as the fatigue life increases and 
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stress amplitude decreases (see Figure 2.12). 

 
Figure 2.12 – Typical scatter band in a S-N curve [79]. 

In the engineering practice, the scatter of the S-N curves is accounted for by a very simple 

practical approach: performing a linear regression analysis on log(Nf) vs. Log (a) data and 

determining a mean S-N curve with the respective standard deviation, assuming a 

LogNormal distribution for the number of cycles given the stress range. Afterwards, safety 

margins are established using the lower two-sigma or three-sigma design curve method. 

This means that the design curve can be derived by shifting the median strain–life curve 

in log coordinates to the left by two or three times the sample standard deviation. This is 

the case of the majority of existing design codes (e.g. EC3, BS5400, AASHTO). This fails to 

account for the statistical distribution of the results with respect to the sample size and 

the possible reliability/confidence levels required. Also it does not account for the 

variable scatter along the fatigue domain and may be not adequate for very high cycle 

fatigue lives.  This process is already established in materials standards such as the ASTM 

E739 [80]. 

Zhao et al. [81] proposed a probabilistic fatigue S–N field including the super-long life 

regime for a railway axle steel. The curves and the fatigue limits, which are connected 

together in concurrent probability levels, are estimated by the test data in the mid-long 

life regime. The proposed field seek the improvement of existing code S-N curves which is 

commented by the authors to be very conservative for long-term fatigue lives. In this 
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study the LogNormal distribution was assumed for the fatigue lives given the stress 

amplitude. 

Schijve [79] presented a discussion about statistical distribution functions that are 

popular on fatigue assessment of structures. According to this author, the statistical 

distributions for fatigue problems cannot be derived from a physical description of the 

fatigue phenomenon, in spite of the fact that the knowledge about fatigue damage of a 

material is fairly well developed in a qualitative way. As a consequence, a statistical 

distribution function must be assumed. In reference [79] an analysis of the log(N) normal, 

the 3-parameter Weibull and the 3-parameter log(N-N0) normal distributions were 

discussed using experimental fatigue data relative to series of similar fatigue tests 

(imposing stress ranges and measuring fatigue lives). A good fit of test results in the range 

of the test data was verified using the log(N-N0)-normal and the 3-parameter Weibull 

distribution functions. This is not fulfilled by the log(N)-normal distribution function if the 

test data indicate a skew distribution. Secondly, extrapolation of the distribution function 

to very low probabilities of failure remains an uncertain procedure. It means that the 

distribution function is actually unknown. This type of investigation tries to investigate 

the suitability of existing statistical distributions to describe specific locations of the S-N 

field, but does not answer the question of the complete P-S-N field. 

In the literature one may find relevant work trying to model the complete probabilistic S-

N field. This is the case of the works by Basternaire [82], Spindel and Haibach [83] and 

Pascual and Meeker [84]. More recently the works by Castillo and Fernández-Canteli, 

gave new momentum to the analytical probabilistic models for the description of the 

complete Wohler field, using both physical and statistical conditions. The latter approach 

will be described in more detail in the next section due to the relevance it represents for 

the current investigation. 

One of the most popular probabilistic approaches adopted in the literature for fatigue 

analysis in existing deterministic models, consists in incorporating the variability of their 

individual parameters/properties through adequate probabilistic distributions. The 

parameters/properties are assumed random variables following specific probabilistic 
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distributions. The output of the model may be computed using sampling techniques such 

as Monte Carlo and could be for example the complete p-S-N field of a mechanical 

component or structural detail. This approach allows complex fatigue models to be used, 

previously validated using deterministic approaches, and permits the derivation of 

probabilistic outputs of these models to be performed, otherwise impossible to achieve in 

an analytical explicit form. This has been accomplished for both fatigue crack initiation 

and fatigue crack propagation problems. For example, Correia et al. [85] and Sanches et 

al. [86] have proposed this approach for the probabilistic modelling of the fatigue 

strength of riveted joints from old bridges. These authors adopted the local fatigue 

approaches for fatigue crack initiation modelling and the fracture mechanics approaches 

to model the fatigue crack propagation. Uncertainty in the parameters of the models was 

accounted for assuming random variables following specific statistical distributions and 

Monte Carlo sampling was used to derive the P-S-N field for the riveted joints. In this 

approach, besides the fatigue parameters uncertainty, uncertainty in mechanical 

parameters influencing the behaviour of the joint such as friction and clamping stresses 

was included in the approach. The macroscopic crack definition was also considered as a 

random variable. 

Kandarpa et al. [87] applied the strain-life relation by Morrow to assess the fatigue 

behaviour of notched specimens. The material constants characterizing the strain-life 

equation are assumed random variables. It is interesting to note that they adopted 

LogNormal distributions for the ductility and strength fatigue coefficients and normal 

distributions for the respective exponents and for the stress concentration factor of the 

notched details. Importance factors for the material constants characterizing the problem 

are analysed to determine which uncertainties are most significant. The failure probability 

was computed using a first-order reliability method (FORM), second-order reliability 

method (SORM) and Monte-Carlo simulation (MCS). Comparison of the results indicated 

that SORM and MCS provided similar results, whereas the FORM results have over-

predicted the failure probabilities. 

Concerning the formulation of local strain based probabilistic approaches based on 

Morrow strain-life relations, Meggiolaro and Castro [88] performed a statistical 
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assessment of the parameters from the -N Coffin-Manson and - Ramberg-Osgood 

relation, taking into account a significant database of materials (steels and aluminium 

alloys).  Statistical distributions were tested for each one of the involved parameters. 

Ni and Mahadevan [89] proposed a probabilistic approach for fatigue life prediction of 

spot-welded joints used in automotive industry. They adopted a local approach based on 

a strain-life relation based on Morrow’s equation. This strain-life relation was converted 

into a probabilistic one, assuming a random nature to the four strength and ductility 

fatigue constants implied, following statistical distributions based on available 

experimental data. In this way, they were able to derive the p--N field. In addition, the 

authors proposed the use of a probabilistic Miner approach to deal with variable 

amplitude loading data. The following relation was proposed: 

 1
N

n

i fpi

pi
   (2.44) 

where fpiN  is obtained from the family of p--N curves. 

Zhao et al. [90] proposed a framework for a strain-based fatigue reliability analysis. The 

analysis-related experimental methods and test data are worked out first. The random 

models, considering the entire material constants as dependent random variables using 

the Morrow law and the modified Ramberg–Osgood equation, respectively, for random 

cyclic strain–life and stress–strain relations are then successively proposed with 

considerations of survival probability and sampling size related confidence. Reliability 

methods are established on a basic consideration of the random cyclic straining applied 

and capacity interference. Some deficiencies have been overcome from the assumption 

of incomplete independent random variables, the lack of consideration of the random 

cyclic stress–stress relations, and the empirical selections of partial statistical parameters 

in existent methods. 

Williams et al. [91] proposed a method for the development of statistical strain–life 

curves from strain controlled fatigue test data. The method establishes i) a series of 

selection criteria ensuring that the data used in the statistical analysis are significant and 

truly representative of the material behaviour; ii) a procedure for the statistical analysis 



A literature review on fatigue 

II.39 
 

that ensures that each domain of material behaviour is accurately represented; iii) a 

method based on the approximate Owen tolerance limit to account for the nature of 

scatter fatigue data. The approximate Owen Tolerance limit method allows the 

establishment of reliability/confidence levels as a function of the sample size. 

Probabilistic fatigue life prediction based on fracture mechanics approach is a topic that 

requires a significant development, particularly due to the absence of fully probabilistic 

analytical models for fatigue crack propagation. However it is recognized that fatigue 

crack propagation is a stochastic process. The approach to reach probabilistic life 

predictions, using a fracture mechanics approach consists in adopting a deterministic 

fatigue crack propagation approach and assuming that its parameters are random 

variables following specific statistical distributions based on both experimental data and 

empirical assumptions. This approach was followed by Liu and Mahadevan [92] to derive 

probabilistic S-N fields. They adopted the theory of the equivalent initial flaw size (EIFS) 

and deterministic fatigue crack propagation. Afterwards, they proposed a distribution for 

the EIFS (lognormal) while for the crack propagation law they fixed the exponent and 

assumed the coefficient as well as the threshold stress intensity factor as being random 

variables. Using the Monte Carlo sampling and integrating the crack propagation law, the 

authors were able to predict the probabilistic S-N field.  

The analysis of variability on parameters of existing deterministic crack propagation laws 

was performed by various authors. Virkler et al. [93] analysed the statistical distribution 

of crack propagation in 2024-T3 aluminium centre cracked plates. Tests were conducted 

on sixty-eight identical specimens with constant amplitude loading. Experimental results 

showed large amounts of variability in the crack growth rates. They conclude that the 

fatigue life to reach a certain crack length was best described by the 3 parameter 

lognormal distribution. Annis [94] performed a Monte Carlo analysis and compared 

results to experimental data presented by Virkler et al. [93]. If random variables are 

selected for both C and m constants in the Paris equation, the Monte Carlo simulation 

results in a variation more than seven times greater than the variation in the 

experimental data. He proposed that C cannot be picked independently of m so that a 

bivariate normal distribution must be used. Multivariate normal distributions could be 
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considered if more than two constants are correlated. Applying this concept, Annis 

reduced the error to approximately 1% [95]. Some authors, knowing this conclusion 

decide to fix one parameter of the Paris relation and assume random the other 

parameter. 

Ellyin and Fakinlede [96] proposed a probabilistic fatigue crack growth model based on a 

nonlinear damage accumulation criterion. The damage criterion takes awareness of the 

effect of the loading sequence, and is an energy-based function. This model founds some 

support on deterministic model proposed by Ellyin and Kujawshi [31]. However, in this 

case the model considers simultaneous damage on several material elements distributed 

along the full reversed plastic zone and not only on one element with the size of the 

process zone (see Figure 2.10). The loading history in each element is accounted for by a 

non-linear damage accumulation rule supported by an energetic-life relation. The failure 

of one discretization element positioned at the cyclic plastic zone is dictated by a 

probabilistic Miner rule, where a unit random variable replaces the deterministic unit 

value. 

2.5.2. Overview of probabilistic models by Castillo and Fernández-Canteli 

Castillo and Fernández-Canteli proposed a set of probabilistic models for fatigue damage 

modelling, based on the Weibull distribution and its limiting Gumbel distribution for 

β→∞. These models are supported by both physical and statistical assumptions leading 

to a basic probabilistic S-N field as well as a basic probabilistic -N field. Such fields may 

be applied to describe the fatigue behaviour of both smooth and sharp notched 

specimens corresponding to mechanical details and structural components including the 

consideration of run-outs.     

2.5.2.1. Probabilistic S–N field for fixed stress level 

Castillo and Fernández-Canteli [18] derived a Weibull regression model for variable stress 

range and fixed stress level (e.g. stress ratio, mean stress). This model, being formulated 

in the stress space, is recommended for medium to high or even very high cycle fatigue. 

The derivation of the model is based on satisfaction of physical conditions (identification 
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of involved variables, dimensionless analysis) and statistical requirements (weakest link 

principle, stability, limited range, limit behavior). In addition, a fulfilling of the necessary 

compatibility condition between lifetime distribution for a give stress range and stress 

range distribution for a given lifetime leads to a functional equation, the solution of which 

provides the following distribution, defining the probabilistic S-N field [18]:  
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where: N is the lifetime; ∆ is the stress level; F() is the cumulative probability distribution 

function (cfd) of N for given ∆; B=log(N0), N0 being a threshold value of lifetime; 

C=log(∆0), ∆0 being the endurance fatigue limit; and ,  and  are nondimensional 

model parameters (: Weibull shape parameter; : Weibull scale parameter; : Weibull 

location parameter defining the position of the zero-percentile curve). The model defined 

by Equation (2.45) has been studied and successfully applied to different lifetime 

assessments [18,97-99]. Equation (2.45) may be rewritten for normalized number of 

cycles (N*) and normalized stress range (∆*): 
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where: 0
* N/NN   is the normalized number of cycles and *

m
*
M

*    is the 

normalized stress range; 0M
*
M /    is the normalized maximum stress and 

0m
*
m /    is the normalized minimum stress; M  and m  are respectively the 

maximum and minimum stresses of a cycle; 0N and 0  can be identified, respectively, as 

exp(C) and exp(B) converting the formulas dimensionless. Figure 2.13 represents the 

Weibull p-S-N field, with some representative percentile curves illustrated. The percentile 

curves are hyperbolas sharing the asymptotes logN=B, representing the fatigue limit 

(horizontal asymptote) and log Δσ=C, representing the lifetime threshold (vertical 

asymptote). The zero percentile curve displays the minimum possible required number of 

cycles to achieve failure for different values of Δσ. 
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Both asymptotes of the S-N field limit its domain of applicability to specific subdomains of 

the field. The vertical asymptote is more controversial account given of the plastic effects 

that appear in the region of low cycle fatigue making the real percentile curves to inflect 

downwards at this region.  The horizontal asymptote is not controversial even for those 

materials that do not exhibit a clear fatigue limit as is the case of some aluminum alloys, 

since the model encompasses the case C=0. 
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Figure 2.13 – Probabilistic S-N field according to the Weibull model proposed by Castillo and 

Fernández-Canteli. 

An alternative for the relations (2.45) and (2.46) were also proposed by authors, using the 

Gumbel distribution as a limiting case of the Weibull distribution when β→∞, or even for 

β>8: 
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or for non-dimensional variables: 
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with the same meaning of the symbols as before. Concerning the parameter 

identification, the process includes two steps: a) estimation of the threshold parameters 

B and C using the constrained least square method, and b) estimation of the Weibull 

parameters, ,  and  by the maximum likelihood method [18] once the threshold 

parameter are known. 
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In order to illustrate the procedure, let (i,Ni)|i=1,2,…,n} be a set of pairs, where i is 

the deterministic stress range of the specimen i, and Ni is the resulting experimental 

random lifetime. The procedure to estimate the threshold parameters is based on a 

constrained least squares method, from which result the following equation and 

constraints: 
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where wi are the weights. The constraints listed by (2.50) are included to guarantee that 

the values B and C are valid threshold values for all data points. If the sample contains 

run-outs, that is, right censored data points, associated with a certain given limit number 

of cycles, their lifetimes are not known; thus, an iterative process may be used to assign 

them to the expected final number of cycles [18].  

Once B and C have been estimated, the Weibull constants may be evaluated using a 

constrained maximum likelihood method. All the data points can be pooled together, in 

sets of equal lengths, by calculating:  
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The log-likelihood for broken specimens i.e. run-outs that without loss of generality can 

be assumed to be the first n1<n specimens, becomes  
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and for the run-outs 
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Finally, an optimization problem is solved, 
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subjected to, 
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where α can be taken as 0.01. The constraint defined by Equation (2.55) is imposed to 

avoid data below the threshold value of lifetime, i.e. 


i

ivmin  (2.56) 

The solution of the maximization problem leads to an unbounded likelihood value. It 

states that the minimum value must be greater than its corresponding α 100 percentile 

value, that is,  
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More details about the parameters identification procedure can be found in reference 

[18]. 

2.5.2.2. Probabilistic S–N field for varying stress level 

The model parameters B, C, ,  and  described by Equations (2.45) and (2.46) may be 

identified using experimental data from fatigue tests run according to one of the 

following test conditions: i) fixed M  and varying m ; ii) fixed m  and varying M , and 

iii) fixed m / M  and varying m  and M . Each test condition leads to distinct model 

parameters. Therefore, the parameters are a function of M  for test conditions i) ,and a 

function of m  for test conditions ii) and a function of m / M  for test conditions iii). The 

three test conditions must be compatible (see illustration in Fig. 2.14), which means that 

parameters identified for the three test conditions are not independent. This 

compatibility condition is the basis for a more general Weibull probabilistic model that 

accounts for variable stress range and stress level [18, 97, 99-102]: 
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*
m10 Nlog)CCCC(CCCCexp1p    (2.58) 

The graphs (log N, Δσ) of the percentiles (Equation (2.48)) for constant σM or σm are 

hyperbolas. C0, C1, C2, C3, C4, C5, C6 and C7 are dimensionless parameters subject to a 

number of restrictions [103]: 

0C4    (2.59) 

0CC 45    (2.60) 

0CC 45    (2.61) 

0CCCC 7654    (2.62) 

0CCCC 7654    (2.63) 

0CCCC 7263    (2.64) 

0CCCC 7153    (2.65) 

0)CC)C(C(C 42066    (2.66) 

0)CC)C(C(C 41055    (2.67) 

where  =0.57772 is the Euler-Mascheroni number. Constraints (2.59)-(2.67) emerge 

from the following physical conditions: 

i) The asymptotic value of Δσ for large N and constant m must be non-negative, 

and, due to physical reasons, must be non-increasing with σm; the asymptotic 

value of Δσ for large N and constant M must be non-negative, and, due to 

physical reasons, must be non-increasing with σM.  

ii) The percentile curves defined in Equation (2.58) must be non-decreasing in log 

N, non-increasing in σm and non-decreasing in σM. 

iii) The curvature of the zero-percentile of (log N, Δσ) for constant σm must be non-

negative, and, in the case of constant σM must be non-negative. 
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Figure 2.14 – Schematic P-S-N fields for constant *
1M  and *

2M , and constant *
1m  and *

2m , illustrating 

the compatibility condition. Dashed lines refer to S-N curves for constant *
m , and continuous lines refer to 

S-N curves for constant *
M [18]. 

2.5.2.3. Probabilistic –N field  

Since the proposed probabilistic fields formulated in stress space are applicable to 

medium to high or even very high cycle fatigue, Castillo and Fernández-Canteli also 

proposed the extension of the p-S-N field, developed for varying stress range and fixed 

stress level, to a strain space formulation. The mathematical structure of the model is 

kept, and only a change of variables is proposed leading to the following relations based 

on a Weibull distribution: 
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or using normalized variables 
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where B=log(N0), C=log(εa0) and  ,  ,   are the Weibull parameters. The percentile 
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curves are defined as: 
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When considering the Gumbel distribution, the following relations result for the p--N 

field: 
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Figure 2.15 illustrates the Weibull field, which maintains the same characteristics of the 

previous referred p-S-N fields.  
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Figure 2.15 – Percentile curves representing the relationship between dimension lifetime, Nf, and the strain 

amplitude, a , accordingly the p-εa-N Weibull field. 

The model proposed by Castillo and Fernández-Canteli for the p--N field model provides 

a complete analytical description of the statistical properties of the physical problem 

being dealt with, including the quantile curves without the need of separating the total 

strain in its elastic and plastic components but dealing with the total strains directly [18]. 

This model may be considered a probabilistic counterpart to the Coffin-Manson relation. 

However, with respect to the classical Coffin-Manson relation, the new probabilistic 
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model shows some advantages. It arises from sound statistical and physical assumptions 

and not from an empirical arbitrary assumption; it provides a probabilistic definition of 

the whole strain-life field; does not need to consider separately the elastic and the plastic 

strains; the run-outs are also included in the analysis [18], and facilitates the cumulative 

damage analysis. Nevertheless, one weakness of the proposed p--N field is the vertical 

asymptote which does not find physical support. This issue limits the applicability of the 

probabilistic field to a subdomain excluding the region at the vicinity to this asymptote 

unless the Gumbel distribution is assumed. Consequently, extrapolations carried out with 

this model for values out of the domain of experimental data and for a subdomain 

approaching the vertical asymptote should be performed with care. 

The p--N field opens new opportunities for the local approaches to fatigue, which was 

not guaranteed by the Coffin-Manson or Morrow relations. In particular, due to its 

probabilistic formulation it accounts in a convenient way for the scatter in the strain-life 

data. In fact, the p--N field has been successfully applied to model fatigue crack initiation 

in joints [104]. 

The p--N field may be transformed into the p--N field applying a direct replacement of 

the strains by stresses [105]. This transformation may be explicitly performed for smooth 

specimens under uniaxial stress states. The strains are related to the stresses using the 

Ramberg-Osgood relation of the material for cyclic loading. Introducing the Ramberg-

Osgood relation for cyclic loading into the Equation (2.69) results the following relation: 
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 (2.73) 

which represents a p-S-N field. The proposed transformation for the p--N field leads to a 

p--N showing a sigmoidal shape, which result from the Ramberg-Osgood relation that 

predicts bounded stresses for higher strain amplitudes (see Figure 2.16). 
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Figure 2.16 – Transformation of the p--N field into the p--N field for the SAE 1137 material [18]. 

2.5.2.4. Relation between damage and probability of failure  

Castilo and Fernández-Canteli [18] suggested the use of the percentile curves of the 

proposed probabilistic fields to represent a damage state. Since the percentile curves of 

the probabilistic fields represent the number of cycles to failure to be conducted at 

different stress or strain ranges yielding the same probability of failure, it was suggested 

that the percentile curves could rather be contemplated as curves representing a 

determined damage state. Figure 2.17a) shows four different stress histories leading to 

the same damage (p value). In this case the consideration of p is equivalent to use V as 

the normalization variable. This normalization variable, for the p-S-N field proposed for 

fixed stress level (see Equation (2.46)), is defined as: 

     CBNNV   loglogloglog **   (2.74) 

The normalization variable follows a Weibull distribution, increasing monotonically with 

the probability of failure:  
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a) b) 

 
Figure 2.17 – Interpretation of the damage concept using the probabilistic field: a) illustration of four 

different load histories leading to the same damage (p or V values); b) schematic representation of the 

conversion process for three load histories to a reference constant amplitude level leading to the same 

damage [18]. 

Using the normalizing concept, the case of multi-step loading, i.e., block loading, can be 

regarded as a simple extension of the one-step or constant load case, provided the 

number of cycles at a certain stress range can be replaced by an equivalent number of 

cycles at the onset of the subsequent stress range (see Figure 2.17b)). The four step load 

produces the same damage as the constant amplitude loads represented. In the 

representation of the block loading, the evolution in the number of cycles could be 

interpreted as having apparent sudden decreases, when the stress ranges change to 

higher levels, but the correct interpretation is that the damage state is kept constant 

during the stress range changes, and increases continuously during the loading process. 

This figure only explains how to obtain an equivalent number of cycles, in terms of 

damage, for two different stress ranges (the larger the stress range, the smaller the 

lifetime). This is accomplished as long as the damage measure, identified with the 

normalized variable p or V∗ is maintained in each conversion. 

The above damage considerations, based on p-S-N fields, are also extendable to the p--N 

fields. 

In order to predict the number of cycles to failure, one must specify a target probability to 

predict the fatigue failure for the component and follow the procedure depicted in Figure 
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2.17b) for the variable amplitude loading. The target probability should represent the 

quality level of the component, a higher damage value should correspond to high quality 

and a lower damage value should correspond to low quality of the specimens. 
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FATIGUE BEHAVIOUR OF MATERIALS AND CONNECTIONS 

FROM ANCIENT PORTUGUESE RIVETED STEEL BRIDGES 

Experimental Characterization 

 

3.1. INTRODUCTION 

The maintenance and safety of existing bridges is a major concern of governmental 

agencies. In particular, the safety of old metallic riveted road and railway bridges 

fabricated and put into service at the end of the 19th century and beginning of 20th 

century deserve particular attention, since they were designed taking into account traffic 

conditions, both in terms of vehicle gross weight and frequency, completely different 

from those arising nowadays. Also, the current design procedures were not yet fully 

developed or even did not exist in the 19th century and design engineers were not aware 

of some important phenomena, such as fatigue. Nevertheless, fatigue was only 

intensively studied in the 20th century. Fatigue failures are a concern for steel bridges 

due to the likelihood of the steel to deteriorate under variable stresses [1–3], being 

recognised as the major cause of failure in metallic bridges [4]. In order to assure high 

safety levels in old riveted metallic bridges, road and railway authorities have to invest 

heavily in their maintenance and retrofitting. 

Residual life calculations of existing bridges in operation should take into account fatigue 

as a progressive damaging mechanism. A consistent residual life prediction should be 

based on actual fatigue data from bridge members being assessed. 
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The S–N approach is widely used to assess the fatigue damage of riveted connections, 

which is included in design codes of practice (ex: EC3-1-9 [5], AASHTO [6]). This approach 

is based on detail category S–N curves and relates the total number of cycles to failure to 

the applied stress range. Alternatively, Fracture Mechanics has been applied to assess the 

residual fatigue life of damaged riveted connections [7]. This approach requires the 

knowledge of the initial defect, which may be assessed by inspection. In order to turn the 

Fracture Mechanics in a more versatile design alternative than the S–N approach, if 

should be complemented by another approach to assess the crack initiation [8,9]. Local 

approaches to fatigue, based on local or notch stresses or strains, are frequently used to 

assess the fatigue crack initiation [10]. The application of the local approaches to fatigue 

as well as the Fracture Mechanics requires the knowledge of experimental fatigue data of 

the plain material, such as strain-life fatigue data as well as fatigue crack propagation 

data. This data is generally available in the literature for modern construction steels. 

However, there is a lack of experimental fatigue data for materials used in old metallic 

riveted bridges. Many of these materials are puddle irons, precursors of modern 

construction steels, which are not sufficiently studied. 

This chapter aims at the characterization of the fatigue behaviour of different materials 

from a representative group of Portuguese old metallic riveted bridges, namely the Eiffel, 

Luiz I, Fão, Pinhão and Trezói bridges. Besides the strain-life and the fatigue crack 

propagation behaviour, the monotonic and cyclic elastoplastic behaviours, the 

microstructures and the chemical composition of the materials are also characterized [11-

18]. In addition to the material characterization, S-N fatigue data from riveted joints is 

also presented in this chapter. A review of data derived by the author and other data 

dispersed in the literature is gathered and compiled in this chapter.  

A brief description of the riveted bridges from which materials have been characterized, is 

presented in the next paragraphs. The oldest bridge is the Eiffel bridge that was designed 

by Gustave Eiffel and inaugurated on 30th of June 1878 (see Fig. 3.1). This 573 m long and 

6 m wide bridge, made of a continuous deck composed by nine spans, crosses the Lima 

river, between Darque and Viana do Castelo, and serves both road and railway traffic. The 

material used in the experimental program was extracted from a beam of the railway 
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Darque viaduct, which was removed during the last rehabilitation, occurred between 1st 

February 2006 and 30st October 2007 [11,18]. 

The second oldest bridge is the Luiz I bridge (see Fig. 3.2) that was also designed by 

Gustave Eiffel and commissioned in 31st October 1886. This bridge crosses the Douro river 

and links the Porto and Gaia cities. The main features of the Luiz I bridge are: double deck 

supported by an arch; span of 172 meters; arch radius of 45 meters; length of upper deck 

is 391.25 meters; length of lower deck is 174 meters and width is 8 meters (original 

design was 6 meters). A diagonal member 1600 mm in length was removed from the Luiz 

I bridge, that was also rehabilitated some years ago [12,18]. 

The third oldest bridge included in this study is the Fão road bridge. It was designed by 

Abel Maria Mota, under the supervision of Reynau, at the end of 19th century and was 

inaugurated on 7th of August 1892. This bridge, made of a continuous deck with eight 

spans of 33.5 m each, supported on masonry piers, crosses the Cávado river at 

Esposende, as illustrated in Fig. 3.3, it was recently rehabilitated and 7 diagonals were 

replaced. The removed diagonals were used in the fatigue experimental program 

[13,14,18]. 

 

Figure 3.1 – Riveted metallic Eiffel bridge in Viana do Castelo. 
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Figure 3.2 – Riveted metallic Luiz I bridge in Porto. 

 

 

Figure 3.3 – Riveted metallic Fão bridge in Esposende. 

The fourth oldest bridge considered in this research, illustrated in Fig. 3.4, is the Pinhão 

road bridge, also designed by Gustave Eiffel at the end of 19th century and built between 

1903 and 1906. This bridge crosses the Douro river at Pinhão. Consisting in three spans of 

68.8 m each and one span of 10 m; there is only one deck 6 m wide, divided into one 

traffic lane 4.60 m wide and two sidewalks 0.675 m wide each. A diagonal 1500 mm in 

length and a bracing 1400 mm in length were removed and replaced by new material 

[15,18]. The bridge was also rehabilitated few years ago. 
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Finally, the youngest bridge included in this study is the Trezói railway bridge, illustrated 

in Fig. 3.5. This bridge makes part of the Beira Alta railway line and was inaugurated on 

20th of August 1956. The deck is composed of three continuous spans of 39, 48 and 39 m, 

totalizing a bridge length of 126 m. The deck width is 4.40 m throughout the bridge 

length. The Trezói bridge has about half old as the above four referred bridges, which in 

turn are more than 100 years old. A 3000 mm long bracing was removed from the Trezói 

bridge only for research purposes, since this bridge was not recently subject to any 

rehabilitation work [16,18]. While the material used in the Trezói bridge is a construction 

steel, the materials used in the older bridges are very likely puddle irons. At the end of 

the XIX century and beginning of the XX century, the qualities of the puddle irons changed 

appreciably. 

 

 
 

Figure 3.4 – Riveted metallic Pinhão bridge. 
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Figure 3.5 – Riveted metallic Trezói bridge. 

 

3.2. MONOTONIC TENSILE STRENGTH PROPERTIES CHARACTERIZATION 

All materials from the referred structures were characterized using monotonic tensile 

tests. According to the Portuguese NP 10002-1 Standard [19], round specimens machined 

from original members removed from the five bridges under investigation, exhibiting the 

dimensions listed in the Table 3.1, were subjected to monotonic increasing loading. 

Distinct diameters were selected since the materials samples extracted from the bridges 

showed distinct sizes. Besides the strength properties, the elastic properties of the 

materials were estimated, in particular the Young modulus and Poisson ratio. 

Eight specimens were extracted from a south viaduct girder of the Eiffel bridge, in 

particular from the angle connecting the web and the flange (CT specimens) and from the 

web (TA specimens); five specimens were extracted from a diagonal of the Luiz I bridge; 

twenty two specimens were extracted from side diagonals of the Fão bridge; fourteen 

specimens were machined from a diagonal (CT specimens) and a bracing (BT specimens) 

from the Pinhão bridge; finally, three specimens of material from Trezói bridge were 

prepared from the removed upper bracing. Figure 3.6 presents a photo of a typical tensile 

specimen. 
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Table 3.1 – Cross-sections of the specimens used in the monotonic tensile  

tests of the materials from the bridges. 

 

Bridge Diameter Cross-section

Material mm mm 2

Viaduct 4 12.57

Viaduct 5 19.63

Viaduct 6 28.27

Diagonal 6 28.27

Diagonal 8 50.27

Fão Diagonal 6 28.27

Diagonal 5 19.63

Bracing 8 50.27

Trezói Bracing 8 50.27

Pinhão

Luiz I

Eiffel

 

 

 

Figure 3.6 – Typical specimen used in monotonic tensile tests [16]. 

 

Table 3.2 – Summary of results from the monotonic tensile tests for the material from Eiffel bridge [11]. 

Specimen f u f y A Z

- MPa MPa % %

TA1 387.0 345.0 6.80 4.70

TA2 376.0 309.0 13.20 14.70

TA3 285.0 282.0 2.00 0.80

TA4 276.0 275.0 0.80 1.60

TC1 424.0 297.0 14.30 35.30

TC2 428.0 295.0 22.00 31.70

TC3 286.0 269.0 3.20 2.00

TC4 272.0 267.0 2.80 2.00  

The results from the monotonic tensile tests, for the materials under consideration of the 

Eiffel, Luiz I, Fão, Pinhão and Trezói bridges are presented in Tables 3.2 to 3.6, 

respectively, where fu is the ultimate tensile strength, fy is the higher yield stress, A is the 

elongation at fracture and Z is the reduction in cross-section at failure. 

Tables 3.7 to 3.11 show the mean values, standard deviation and coefficient of variation 

(COV) of the various properties evaluated with the monotonic tensile tests for the 

materials of the Eiffel, Luiz I, Fão and Trezói bridges, respectively. 
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Table 3.3 – Summary of results from the monotonic tensile tests for the material from Luiz I bridge [12]. 

Specimen f u f y A Z

- MPa MPa % %

S1T1 435.0 336.0 14.00 11.00

S2T1 374.0 275.0 13.60 9.70

S3T1 395.0 302.0 29.30 39.20

S3T2 383.0 287.0 25.30 37.70

S3T3 396.0 313.0 23.80 38.30  

 

Table 3.4 – Summary of results from the monotonic tensile tests for the material from Fão bridge [13]. 

Specimen f u f y A Z

- MPa MPa % %

1 345.5 209.4 23.43 8.31

2 337.2 198.5 - 12.06

3

4 423.9 288.8 21.60 13.07

5 317.8 208.0 12.77 7.64

6 425.0 276.8 25.87 13.87

7 371.3 249.0 - 12.81

8

9 333.8 225.6 - 8.79

10 355.5 216.1 27.00 14.86

11 342.7 195.2 21.47 13.26

12 348.6 223.8 12.97 7.78

13 354.8 210.7 19.03 14.52

14 357.8 239.3 24.07 12.66

15 378.3 237.3 21.67 20.77

16 337.3 200.7 - 15.05

17 396.7 245.6 22.23 17.91

18 352.7 210.2 23.27 16.07

19 369.0 226.4 24.77 18.07

20 343.0 196.2 21.43 9.81

21 361.9 232.7 - 14.23

22 333.8 107.7 45.33 9.58  
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Table 3.5 – Summary of results from the monotonic tensile tests for the material from Pinhão bridge [15]. 

Specimen f u f y A Z

- MPa MPa % %

CT1 372.0 297.0 31.30 69.40

CT2 373.0 274.0 - 69.40

CT3 365.0 289.0 - 72.00

CT4 365.0 275.0 36.00 71.40

CT5 367.3 278.8 34.00 69.80

CT6 365.8 302.1 34.80 69.80

CT7 364.2 274.1 29.00 68.40

BT1 377.0 377.0 - 77.00

BT2 361.0 361.0 - 71.00

BT3 348.0 344.0 - 73.00

BT4 354.0 352.0 - 71.00

BT5 345.0 263.7 33.20 75.00

BT6 348.7 300.7 33.60 68.00

BT7 348.9 294.1 33.60 68.40  

 

Table 3.6 – Summary of results from the monotonic tensile tests for the material from Trezói bridge [16,17]. 

Specimen f u f y A Z

- MPa MPa % %

T1 455.0 392.0 22.00 66.00

T2 501.0 401.0 23.00 71.00

T3 464.0 402.0 24.00 62.00  

Table 3.7 shows the mean values, standard deviation and COV of the properties for the 

materials extracted from the angle and web of the south viaduct girder of the Eiffel 

bridge, respectively the TA and TC specimens. The table also presents global mean, 

standard deviation and COV of the properties for all specimens taken from the web and 

the upper angle of the south viaduct girder of the Eiffel bridge. 

The mean tensile, standard deviation and COV of the properties of the material extracted 

from the diagonal and bracing of the Pinhão bridge, referred as CT and BT specimens, 

respectively, are shown in Table 3.10. Global mean, standard deviation and COV of the 

properties for all specimens, analysed together, taken from the diagonal and bracing of 

the Pinhão bridge, are also included in Table 3.10. 
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Table 3.7 – Mean, standard deviation and COV of the monotonic tensile properties for the material from 

Eiffel bridge. 

Specimen Statistical data f u f y A Z

- MPa MPa % %

Mean 331.0 302.8 5.70 5.45

Standard Deviation 58.6 31.8 5.63 6.39

COV [%] 17.7 10.5 98.81 117.28

Mean 352.5 282.0 10.58 17.75

Standard Deviation 85.1 16.2 9.30 18.25

COV [%] 24.1 5.7 87.91 102.79

Mean 341.8 292.4 8.14 11.60

Standard Deviation 68.6 25.8 7.58 14.26

COV [%] 20.1 8.8 93.12 122.95

TA/TC

TA

TC

 

 

Table 3.8 – Mean, standard deviation and COV of the monotonic tensile properties for the material from 

Luiz I bridge. 

Statistical data f u f y A Z

MPa MPa % %

Mean 396.6 302.6 21.20 27.18

Standard Deviation 23.3 23.6 7.05 15.38

COV [%] 5.9 7.8 33.25 56.58  

 

Table 3.9 – Mean, standard deviation and COV of the monotonic tensile properties for the material from 

Fão bridge [13]. 

Statistical data f u f y A Z

MPa MPa % %

Mean 359.3 219.9 23.13 13.06

Standard Deviation 28.5 36.6 7.35 3.63

COV [%] 7.9 16.6 31.80 27.81  

Clearly the material from Trezói bridge exhibits the highest strength properties associated 

with high ductility. The material from the Eiffel bridge – the oldest one – shows the 

lowest ductility properties. The material from the Pinhão bridge shows the highest 

ductility properties. When compared with the materials from the other centenary 

bridges, the material from the Pinhão bridge shows a very good strength/ductility ratio 

[17]. It is worthwhile mentioning that the Pinhão bridge is the youngest of the centenary 

bridges and at that time the steel  production  processes  evolved  quickly  in  quality.  The 

material from the Pinhão bridge shows characteristics very similar to the modern 

construction steels. 
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Table 3.10 – Mean, standard deviation and COV of the monotonic tensile properties for the material from 

Pinhão bridge. 

Specimen Statistical data f u f y A Z

- MPa MPa % %

Mean 367.5 284.3 33.02 70.03

Standard Deviation 3.6 11.7 2.83 1.25

COV [%] 1.0 4.1 8.58 1.78

Mean 354.7 327.5 33.47 71.91

Standard Deviation 11.2 41.5 0.23 3.31

COV [%] 3.1 12.7 0.69 4.61

Mean 361.1 305.9 33.19 70.97

Standard Deviation 10.4 36.9 2.16 2.60

COV [%] 2.9 12.1 6.50 3.66

CT

BT

CT/BT

 

 

 

Table 3.11 – Mean, standard deviation and COV of the monotonic tensile properties for the material from 

Trezói bridge. 

Statistical data f u f y A Z

MPa MPa % %

Mean 473.3 398.3 23.00 66.33

Standard Deviation 24.4 5.5 1.00 4.51

COV [%] 5.2 1.4 4.35 6.80  

 

 

The monotonic stress-strain curves were further correlated each other using the 

Ramberg-Osgood relation: 

n1

KE











   (3.1) 

where: ε and σ are, respectively, the strain and stress, E is the Young modulus, K and n are 

the strain hardening coefficient and exponent. The resulting monotonic properties (K and 

n) are summarized in Table 3.12 for all materials under consideration. 
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Table 3.12 – Strain hardening coefficients and exponents for the materials from the bridges. 

Bridge K n

Material MPa -

Eiffel 411.07 0.0585

Luiz I 506.20 0.0902

Fão 477.53 0.1300

Pinhão 444.29 0.1166

Trezói 586.86 0.0957  

 

   
a) b) c) 

Figure 3.7 – Specimens used in the assessment of the elasticity modulus and Poisson ratio for the material 

from the Fão bridge: a) specimens series; b) longitudinal strain gauge and c) transverse strain gauge [13]. 

 

Table 3.13 – Elastic properties of the materials from the bridges. 

Bridge

Material

Eiffelb

Luiz Ia

Fãoa

Pinhãoc

Trezóib

a Computed directly from strain gauge measurements.
b Computed indirectly from cyclic elastoplastic analysis.
c Computed indirectly from monotonic tensile data.

GPa

193.10

192.70

198.70

E ν

-

0.300

0.255

0.260

-210.68

198.49 0.320

 

The elastic properties, represented by the Young modulus, E, and Poisson ratio, , of the 

materials from the Luiz I and Fão bridges were computed directly from strain gauge 

measurements (see Fig. 3.7). The elastic properties of the materials from the Eiffel and 

Trezói bridges were computed indirectly from cyclic elastoplastic analysis. For the 

material of the Trezói bridge, the elastic properties were computed indirectly from 

analysis of the monotonic tensile tests. Table 3.13 summarizes the estimates of the elastic 

properties for all materials. 
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3.3. METALLOGRAPHIC ANALYSIS OF THE MATERIALS 

3.3.1. Optical microscope observations 

Figure 3.8 illustrates typical microstructures of the materials under investigation. In 

general, the microstructures strengthen the conclusion that materials are mainly 

composed of a ferrite matrix. For some cases, namely the material from Pinhão and 

Trezói bridges, perlite is observed. These latter materials show a more homogeneous 

microstructure of regular grains than the other materials. All materials exhibit lined-up 

inclusions induced by deformation, the density of them being however is higher in the 

centenary materials, thus limiting the material ductility and increasing the scatter of 

mechanical properties [11-13,15-18]. 

3.3.2. Chemical composition 

Table 3.14 summarizes the chemical composition of some material samples from the 

bridges under investigation [18]. The chemical compositions were assessed using the 

spark emission spectrometry technique. The material from the Trezói bridge exhibits the 

lowest sulphur and phosphorus contents, which is consistent with the age of the material. 

The Trezói material is a ferritic structural steel, since it has a very small amount of carbon. 

The materials from the centenary bridges show significant variable chemical 

compositions, due to the typical heterogeneous microstructures of these materials. Due 

to the low carbon content they should exhibit a ferrite matrix. The samples from Luiz I 

bridge show higher carbon, silicon and manganese contents than the other materials. This 

material revealed a significant heterogeneous chemical composition which is consistent 

with the heterogeneous microstructure of the puddle irons. The higher carbon content 

measured is due to local segregations. The higher silicon content may be probably due to 

the use of Si in the metal desoxidation/desulphurization process. 
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a) Eiffel bridge. b) Luiz I bridge. 

  

c) Fão bridge. d) Pinhão bridge. 

 

e) Trezói bridge. 

Figure 3.8 – Microstructures of the materials from the bridges. 
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Table 3.14 – Chemical composition for each material of the bridges (wt.%) [18]. 

Brigde Material %C %Si %Mn %P %S

Darque Viaduct 0.23 0.39 1.78 >0.15 >0.15

bridge* 0.81 0.24 2.71 >0.15 >0.15

Luiz I Diagonal 0.72 0.34 2.09 >0.15 >0.15

Fão Diagonal 0.09 0.06 0.13 0.14 0.007

Diagonal 0.06 <0.01 0.04 0.04 0.03

Bracing 0.05 <0.01 0.34 0.04 0.04

Trezói Bracing 0.06 0.03 0.34 0.02 0.02
* determined with a portable emission spectrometry.

Eiffel

Pinhão

 

3.4. FATIGUE BEHAVIOUR CHARACTERIZATION OF THE MATERIALS 

This section presents the strain-life fatigue data obtained for the materials from the 

bridge under consideration. Besides the fatigue behaviour characterization, the cyclic 

elastoplastic behaviour of the materials are also presented. Strain-life fatigue data from 

tests performed on smooth specimens may be used to assess the crack initiation, in the 

framework of local approaches to fatigue [20]. 

Smooth specimens with rectangular cross section were machined from material samples 

from the Eiffel, Luiz I, Fão and Trezói bridges (see Fig. 3.9). These specimens were used to 

carry out fatigue tests under strain-controlled conditions, according to the ASTM E606 

Standard [21]. The specimens were machined according to the rolling (longitudinal) 

direction of the members removed from the bridges. The dimensions of the specimens 

were not the same for each material, since the available material thicknesses were not 

constant. The faces of the specimens were grinded and additionally polished in the 

central gauge zone. 

The tests were performed in an Instron close-loop servo hydraulic machine, model 8801, 

rated to 100 KN. The deformation was measured using an Instron clip gauge, model 2620-

602 with displacement range of ± 2.5 mm. A base gauge length of 12.5 mm was used with 

specimens from the Luiz I and Eiffel bridges; for materials from Eiffel, Fão and Trezói 

bridges, a base gauge length of 25 mm was chosen. A sinusoidal waveform was taken as 

command signal. The fatigue tests, in all series, were conducted at room-temperature in 

air under constant strain amplitudes at a frequency adjusted to result an average strain 

rate of 0.008/s. However, that average strain rate was not followed in the tests that 
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resulting in a very high number of cycles (high cycle fatigue). In these cases, a higher 

frequency was selected in order to reduce the testing times. 

The choice of specimens with rectangular cross-section instead of a circular one was 

justified by the fact that the structural elements removed from the bridges have reduced 

thickness to prepare round specimens. Table 3.15 summarizes the nominal dimensions of 

the smooth dog-bone specimens used in the fatigue tests of the materials from the 

bridges [13,17,18]. 

 

Figure 3.9 – Geometry of the specimens used in fatigue tests under strain-control conditions. 

 

Table 3.15 – Nominal dimensions of the smooth dog-bone specimens used in fatigue tests. 

Bridge No. of W T L L1 R H

Material specimens mm mm mm mm mm mm

12 22.0 6.0 20.0 150.0 15.0 7.0

15 20.0 5.0 15.0 150.0 10.0 6.0

Luiz I 15 20.0 5.0 15.0 150.0 10.0 6.0

Fão 35 30.0 7.5 26.0 200.0 12.5 8.0

Trezói 10 30.0 7.5 26.0 200.0 12.5 8.0

Eiffel

 

The average gauge cross sections were 6.4 × 5.2 mm2, 4.9 × 6.8 mm2 and 7.5 × 8.1 mm2, 

respectively for the Eiffel (27 specimens), Luiz I (15 specimens) and Trezói (10 specimens) 

bridges. Regarding the Fão bridge, two test series were prepared with average cross 

sections of 5.4 × 7.3 mm2 and 5.3 × 7.5 mm2, which were tested under strain ratios equal 

to -1 (14 specimens) and 0 (18 specimens), respectively. For the other bridge materials, 

only one test series was tested, namely under strain ratio equal to -1. Figures 3.10, 3.11 

and 3.12 illustrate some specimens tested respectively for the materials from Eiffel, Fão 

and Trezói bridges. 
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Tables 3.16, 3.17, 3.18 and 3.19 summarize the program of strain-controlled fatigue tests 

performed on smooth specimens of materials from Eiffel, Luiz I, Trezói and Fão bridges, 

respectively. In the referred tables, L1 and L2 represent the length of the central section of 

the smooth specimens, St is the cross-section, Rε the strain ratio, ε the strain range, 

dε/dt the average strain rate and f the frequency used for each test.  

 

Figure 3.10 – Some smooth specimens of material from Eiffel bridge used in fatigue tests. 

 

  

Figure 3.11 – Some smooth specimens of material from Fão bridge used in fatigue tests [13]. 
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Figure 3.12 – Some smooth specimens of material from Trezói bridge used in fatigue tests. 

 

Table 3.16 – Plan of fatigue tests with smooth specimens of material from the Eiffel bridge. 

Specimens L 1 L 2 S t R ε Δε dε/dt f

mm mm mm
2 % %/s Hz

LCF-viana-050-01 6.77 5.59 37.84 0.500 0.80 0.800

LCF-viana-050-02 6.79 5.59 37.96 0.500 0.80 0.800

LCF-viana-050-03 6.83 5.64 38.52 0.500 0.80 0.800

LCF-viana-040-01 6.80 5.60 38.08 0.400 0.80 1.000

LCF-viana-040-02 6.81 5.63 38.34 0.400 0.80 1.000

LCF-viana-040-03 6.87 5.63 38.68 0.400 0.80 1.000

LCF-viana-030-01 6.82 5.60 38.19 0.300 0.80 1.333

LCF-viana-030-02 6.76 5.60 37.86 0.300 0.80 1.333

LCF-viana-020-01 6.76 5.61 37.92 0.200 0.80 2.000

LCF-viana-020-02 6.78 5.61 38.04 0.200 0.80 2.000

LCF-viana-075-01 6.82 5.63 38.40 0.750 0.80 0.533

LCF-viana-075-02 6.86 5.61 38.48 0.750 0.80 0.533

LCF_050_01 6.16 4.88 30.0608 0.500 0.80 0.800

LCF_040_01 6.18 5.02 31.0236 0.400 0.80 1.000

LCF_030_01 6.11 4.86 29.6946 0.300 0.80 1.333

LCF_030_02 6.23 4.91 30.5893 0.300 0.80 1.333

LCF_025_01 6.18 4.89 30.2202 0.250 0.80 1.600

LCF_007_01 6.12 4.9 29.988 0.256 - 15.000

LCF_006_01 6.21 5.01 31.1121 0.195 - 15.000

LCF_005_01 6.29 4.93 31.0097 0.166 - 15.000

LCF_0055_01 6.06 4.93 29.8758 0.188 - 15.000

LCF_006_02 5.87 4.9 28.763 0.203 - 15.000

LCF_0055_02 6.05 4.92 29.766 0.188 - 15.000

LCF_060_01 5.95 4.97 29.5715 0.600 0.80 0.667

LCF_070_01 6.09 4.9 29.841 0.700 0.80 0.571

LCF_080_01 6.12 4.98 30.4776 0.800 0.80 0.500

LCF_100_01 5.85 4.92 28.782 1.000 0.80 0.400

-1
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Table 3.17 – Plan of fatigue tests with smooth specimens of material from the Luiz I bridge. 

Specimens L 1 L 2 S t R ε Δε dε/dt f

mm mm mm
2 % %/s Hz

LCF1 8.00 7.38 59.04 1.000 0.80 0.400

LCF2 7.95 7.48 59.47 0.750 0.80 0.533

LCF3 7.96 7.50 59.70 0.500 0.80 0.800

LCF4 8.08 7.49 60.52 0.300 0.80 1.333

LCF5 8.11 7.53 61.07 0.200 0.80 2.000

LCF6 8.08 7.48 60.44 0.300 0.80 1.333

LCF7 8.04 7.40 59.50 0.500 0.80 0.800

LCF8 8.17 7.44 60.78 1.500 0.80 0.267

LCF9 8.13 7.42 60.32 2.000 0.80 0.200

LCF10 8.29 7.48 62.01 2.500 0.80 0.160

-1

 

 

Table 3.18 – Plan of fatigue tests with smooth specimens of material from the Trezói bridge [17]. 

Specimens L 1 L 2 S t R ε Δε dε/dt f

mm mm mm2 % %/s Hz

LCF1 8.00 7.38 59.04 1.000 0.80 0.400

LCF2 7.95 7.48 59.47 0.750 0.80 0.533

LCF3 7.96 7.50 59.70 0.500 0.80 0.800

LCF4 8.08 7.49 60.52 0.300 0.80 1.333

LCF5 8.11 7.53 61.07 0.200 0.80 2.000

LCF6 8.08 7.48 60.44 0.300 0.80 1.333

LCF7 8.04 7.40 59.50 0.500 0.80 0.800

LCF8 8.17 7.44 60.78 1.500 0.80 0.267

LCF9 8.13 7.42 60.32 2.000 0.80 0.200

LCF10 8.29 7.48 62.01 2.500 0.80 0.160

-1

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER III 

 III.20 

Table 3.19 – Plan of fatigue tests of smooth specimens of material from the Fão bridge [13]. 

Specimens L 1 L 2 S t R ε Δε dε/dt f

mm mm mm
2 % %/s Hz

LCF-e020-01 5.88 7.46 43.86 0.400 0.80 1.000

LCF-e020-02 6.01 7.42 44.59 0.400 0.80 1.000

LCF-e020-03 4.72 7.41 34.98 0.400 0.80 1.000

LCF-e015-01 5.09 7.33 37.31 0.300 0.80 1.333

LCF-e015-02 5.31 7.27 38.60 0.300 0.80 1.333

LCF-e015-03 5.70 7.32 41.72 0.300 0.80 1.333

LCF-e040-01 4.72 7.37 34.79 0.800 0.80 0.500

LCF-e040-02 5.12 7.41 37.94 0.800 0.80 0.500

LCF_e025-01 5.87 7.39 43.38 0.500 0.80 0.800

LCF-e025-02 5.37 7.22 38.77 0.500 0.80 0.800

LCF-e025-03 5.38 7.23 38.90 0.500 0.80 0.800

LCF-e010-01 5.90 7.35 43.37 0.200 0.80 2.000

LCF-e010-02 5.93 7.29 43.23 0.200 0.80 2.000

LCF-e010-03 5.23 7.35 38.44 0.200 0.80 2.000

LCF-150-01 5.22 7.38 38.52 1.500 0.80 0.267

LCF-100-01 5.24 7.47 39.14 1.000 0.80 0.400

LCF-100-02 5.20 7.79 40.51 1.000 0.80 0.400

LCF-100-03 5.65 7.41 41.87 1.000 0.80 0.400

LCF-075-01 4.99 7.41 36.98 0.750 0.80 0.533

LCF-075-02 5.08 7.44 37.80 0.750 0.80 0.533

LCF-075-03 5.84 7.35 42.92 0.750 0.80 0.533

LCF-050-01 5.76 7.41 42.68 0.500 0.80 0.800

LCF-050-02 5.15 7.44 38.32 0.500 0.80 0.800

LCF-050-03 4.99 7.36 36.73 0.500 0.80 0.800

LCF-030-01 5.02 7.41 37.20 0.300 0.80 1.333

LCF-030-02 5.47 7.50 41.03 0.300 0.80 1.333

LCF-030-03 5.37 7.51 40.33 0.300 0.80 1.333

LCF-025-01 5.45 7.40 40.33 0.250 0.80 1.600

LCF-025-02 5.43 7.38 40.07 0.250 0.80 1.600

LCF-025-03 5.63 7.35 41.38 0.250 0.80 1.600

LCF-020-01 5.16 7.48 38.60 0.200 0.80 5.000

LCF-020-02 5.47 7.49 40.97 0.200 0.80 5.000

LCF-020-03 4.49 7.50 33.68 0.200 0.80 5.000

LCF-020-04 6.02 7.34 44.19 0.200 0.80 5.000

LCF-015-01 4.70 7.46 35.06 0.150 0.80 5.000

-1

0

 

Tables 3.20, 3.21, 3.22 and 3.23 summarize the results of the test program of smooth 

specimens for the materials from the Eiffel, Trezói, Luiz I and Fão bridges, respectively. 

The tables include the total strain range applied to the specimens, Δε, the resulting elastic 

strain ranges, ΔεE , the plastic strain ranges, ΔεP, the stress range, Δσ, the number of 
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cycles to failure, Nf, and the number of reversals to failure, 2Nf. The plastic strain ranges 

and the stress ranges were determined based on the stabilized hysteresis loops. The 

range of the fully-reversed strains (Rε=-1) varied, respectively, from 0.166% to 1.00%, 

0.20% to 1.00% and 0.20% to 2.50%, for the materials from Eiffel, Luiz I and Trezói 

bridges. Regarding the material from Fão bridge, the range of applied strains varied, 

respectively, from 0.20% to 0.80% and 0.15% to 1.50%, for Rε=-1 and Rε=0. 

The presented results will be used in the definition of strain-life relations for the fatigue 

resistance of the materials of the bridges. 

Table 3.20 – Results of fatigue tests performed under strain-control conditions (Rε = -1) for the material 

from the Eiffel bridge. 

Specimens Δε Δε P Δε E Δσ σ max N f 2N f

% % % MPa MPa cycles reversals

LCF-viana-050-01 0.500 0.141 0.359 660.37 318.28 2845 5690

LCF-viana-050-02 0.500 0.143 0.357 691.09 344.61 922 1844

LCF-viana-050-03 0.500 0.140 0.360 690.36 338.89 537 1074

LCF-viana-040-01 0.400 0.059 0.341 656.79 324.20 2684 5368

LCF-viana-040-02 0.400 0.073 0.327 632.79 303.50 581 1162

LCF-viana-040-03 0.400 0.065 0.335 637.38 309.97 5697 11394

LCF-viana-030-01 0.300 0.017 0.283 562.65 270.79 80281 160562

LCF-viana-030-02 0.300 0.014 0.286 578.36 293.41 49460 98920

LCF-viana-020-01 0.200 0.002 0.198 408.38 230.90 854096 1708192

LCF-viana-020-02 0.200 0.003 0.197 399.58 269.69 1000000* 2000000*

LCF-viana-075-01 0.750 0.374 0.376 700.35 346.18 164 328

LCF-viana-075-02 0.750 0.362 0.388 726.31 358.49 153 306

LCF_050_01 0.500 0.160 0.340 646.98 309.42 3012 6024

LCF_040_01 0.400 0.060 0.340 639.10 321.99 4154 8308

LCF_030_01 0.300 0.010 0.290 535.88 255.78 80120 160240

LCF_030_02 0.300 0.019 0.281 548.05 275.06 20010 40020

LCF_025_01 0.250 0.007 0.243 463.72 231.61 68911 137822

LCF_007_01 0.256 0.006 0.249 466.70 233.05 68502 137004

LCF_006_01 0.195 0.002 0.194 385.58 193.22 192794 385588

LCF_005_01 0.166 0.00002 0.166 322.59 161.13 5000000* 10000000*

LCF_0055_01 0.188 0.001 0.187 367.51 183.72 984799 1969598

LCF_006_02 0.203 0.00037 0.202 417.24 208.48 684114 1368228

LCF_0055_02 0.188 0.002 0.186 369.31 184.70 914896 1829792

LCF_060_01 0.600 0.236 0.364 700.21 340.76 407 814

LCF_070_01 0.700 0.335 0.365 649.86 305.55 759 1518

LCF_080_01 0.800 0.432 0.368 661.91 316.92 145 290

LCF_100_01 1.000 0.623 0.377 716.16 333.56 50 100

*Run-out  
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Table 3.21 – Results of fatigue tests performed under strain-control conditions (Rε = -1) for the material 

from the Trezói bridge [17]. 

Specimens Δε Δε
P

Δε
E Δσ σ max N f 2N f

% % % MPa MPa cycles reversals

LCF1 1.000 0.694 0.306 574.60 287.20 716 1432

LCF2 0.750 0.470 0.280 555.80 277.47 1626 3252

LCF3 0.500 0.251 0.249 485.80 244.46 5749 11498

LCF4 0.300 0.091 0.209 438.20 219.66 20596 41192

LCF5 0.200 0.001 0.199 436.80 167.79 1031126* 2062252*

LCF6 0.300 0.108 0.192 412.00 204.22 15852 31704

LCF7 0.500 0.241 0.259 542.80 271.93 2586 5172

LCF8 1.500 1.141 0.359 667.40 331.89 414 828

LCF9 2.000 1.623 0.377 715.40 356.16 153 306

LCF10 2.500 2.080 0.420 733.00 369.00 199 398

*Run-out  

 

Table 3.22 – Results of fatigue tests performed under strain-control conditions (Rε = -1) for the material 

from the Luiz I bridge. 

Specimens Δε Δε P Δε E Δσ σ max N f 2N f

% % % MPa MPa cycles reversals

LCF-Luiz1A-050-01 1.000 0.637 0.363 718.98 356.34 17 34

LCF-Luiz1B-050-02 1.000 0.635 0.365 726.64 356.15 28 56

LCF-Luiz1C-0375-01 0.750 0.386 0.364 695.47 340.85 55 110

LCF-Luiz1D-0375-02 0.750 0.367 0.383 720.63 350.28 94 188

LCF-Luiz1E-025-01 0.500 0.161 0.339 675.60 332.83 325 650

LCF-Luiz1F-025-02 0.500 0.165 0.335 662.99 328.87 465 930

LCF-Luiz1G-020-01 0.400 0.077 0.323 659.87 322.89 888 1776

LCF-Luiz1H-020-02 0.400 0.067 0.333 660.51 342.82 987 1974

LCF-Luiz1I-015-01 0.300 0.012 0.288 583.58 288.03 4950 9900

LCF-Luiz1J-015-02 0.300 0.021 0.279 562.44 288.60 97775 195550

LCF-Luiz1K-015-03 0.300 0.023 0.277 548.43 284.42 8551 17102

LCF-Luiz1L-015-04 0.300 0.013 0.287 575.90 279.77 19332 38664

LCF-Luiz1M-010-01 0.200 0.00029 0.19971 411.24 201.86 788684 1577368

LCF-Luiz1N-010-02 0.200 0.00147 0.19853 414.69 201.52 191591 383182

LCF-Luiz1O-010-03 0.200 0.00128 0.19872 415.58 174.75 567651 1135302  
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Table 3.23 – Results of fatigue tests performed under strain-control conditions (Rε=-1 and Rε=0) for the 

material from the Fão bridge [13]. 

Specimens R ε Δε Δε P Δε E Δσ σ max N f 2N f

% % % MPa MPa cycles reversals

LCF-e020-01 0.400 0.101 0.299 561.79 277.43 4416 8832

LCF-e020-02 0.400 0.091 0.309 591.80 287.77 5433 10866

LCF-e020-03 0.400 0.077 0.323 736.84 356.74 8420 16840

LCF-e015-01 0.300 0.027 0.273 507.97 225.52 49300 98600

LCF-e015-02 0.300 0.027 0.273 522.47 230.89 16788 33576

LCF-e015-03 0.300 0.027 0.273 550.33 259.05 27731 55462

LCF-e040-01 0.800 0.441 0.359 657.58 315.05 374 748

LCF-e040-02 0.800 0.355 0.445 730.47 347.96 452 904

LCF_e025-01 0.500 0.192 0.308 631.26 305.33 290 580

LCF-e025-02 0.500 0.171 0.329 623.48 303.19 2108 4216

LCF-e025-03 0.500 0.197 0.303 617.30 297.89 2254 4508

LCF-e010-01 0.200 0.006 0.194 381.34 166.97 530604 1061208

LCF-e010-02 0.200 0.005 0.195 391.23 134.27 663962 1327924

LCF-e010-03 0.200 0.009 0.191 375.88 155.97 74549 149098

LCF-150-01 1.500 1.079 0.421 616.59 372.47 143 286

LCF-100-01 1.000 0.554 0.446 824.48 406.74 92 184

LCF-100-02 1.000 0.612 0.388 616.37 305.24 955 1910

LCF-100-03 1.000 0.620 0.380 654.92 324.96 528 1056

LCF-075-01 0.750 0.319 0.431 755.61 361.40 384 768

LCF-075-02 0.750 0.334 0.416 779.19 385.97 250 500

LCF-075-03 0.750 0.373 0.377 699.42 345.92 507 1014

LCF-050-01 0.500 0.169 0.331 572.95 282.58 1106 2212

LCF-050-02 0.500 0.121 0.379 715.77 351.51 3454 6908

LCF-050-03 0.500 0.158 0.342 636.91 331.55 1195 2390

LCF-030-01 0.300 0.074 0.226 531.51 300.39 25560 51120

LCF-030-02 0.300 0.026 0.274 526.50 278.63 22618 45236

LCF-030-03 0.300 0.025 0.275 494.96 272.04 15517 31034

LCF-025-01 0.250 0.069 0.181 467.02 262.92 23878 47756

LCF-025-02 0.250 0.061 0.189 464.76 202.33 76677 153354

LCF-025-03 0.250 0.007 0.243 483.21 237.01 39998 79996

LCF-020-01 0.200 0.050 0.150 372.07 217.32 692177 1384354

LCF-020-02 0.200 0.016 0.184 376.46 214.90 357127 714254

LCF-020-03 0.200 0.019 0.181 385.79 213.07 54116 108232

LCF-020-04 0.200 0.025 0.175 398.56 247.24 306129 612258

LCF-015-01 0.150 0.004 0.146 296.46 158.81 1000000* 2000000*

*Run-out

-1

0

 

3.4.1. Cyclic elastoplastic behaviour 

Metals when subjected to reversible plastic strains, exhibit a cyclic elastoplastic behaviour 

which is distinct from its monotonic plastic behaviour. The cyclic elastoplastic behaviour 

may be characterized by several phenomena, namely: i) cyclic hardening or cyclic 

softening; ii) cyclic mean stress relaxation; iii) cyclic creep or progressive plastic 

deformation. In addition to these cyclic behaviours, memory effect and dependency on 

the strain rate may occur for some materials. 
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The cyclic curve of the material can be determined connecting the tips of several 

stabilized hysteresis loops, obtained for different strain amplitudes. The technique for the 

evaluation of the cyclic curve may be based on a single specimen test for each point of 

the cyclic curve, which was the case followed to analyse the data available for the bridge 

materials. The cyclic curve can be described by the relation proposed by Morrow [22]: 
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where K’ and n’ are the cyclic strain hardening coefficient and exponent, respectively; εP 

is plastic strain range; and Δσ is the stress range. In metals, the cyclic strain hardening 

exponent, n’, varies usually in range of 0.05 to 0.25. 

Since for some materials and certain strain rates, the stabilized behaviour was not 

achieved during the cyclic loading, the stabilized hysteresis loops were extracted using 

the half-life criterion. Therefore, the stabilized behaviour may correspond, for some cases 

to a pseudo-stabilized behaviour. 

Alternatively, the Ramberg–Osgood mathematical representation of the cyclic curve may 

be presented in the following form, using the total strain amplitude instead of the plastic 

strain [23]: 
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where E is the Young modulus; σ and ε are, respectively, the stress and strain ranges; 

εE and εP are, respectively, the elastic and plastic strain ranges and K’ and n’ are the 

same constants of Equation (3.2). 

3.4.1.1. Eiffel bridge 

Figure 3.13 presents the stabilized hysteresis loops together with the cyclic for the sample 

curve of the material from the Eiffel bridge, obtained for a strain ratio equal to -1 while 

Figure 3.14 shows, for the sample material, the superposition of several stabilized 

hysteresis loops, with the lower tips coinciding at the origin of the graph. Besides the 

cyclic curve, a cyclic curve scaled by a factor of two is plotted in the figure. The analysis of 

the figure shows some deviation from the Masing behaviour; however, that deviation 
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may be partly attributed to the scatter in material behaviour due to the high level of 

heterogeneities found in the microstructures of the material. Taking into account the 

scatter effects one may conclude that this material fairly follows the Masing behaviour 

[18]. 

Figure 3.15 illustrates the evolution of the cyclic stress amplitude with the number of 

cycles for the tested strain ranges. The analysis of the data reveals that the material from 

the Eiffel bridge shows some cyclic hardening for higher strain ranges. This hardening 

reduces progressively with diminishing applied strain range until it stabilizes when elastic 

behaviour is achieved. 

 

Figure 3.13 – Stabilized hysteresis loops together with the cyclic curve of the Eiffel bridge material, Rε=-1. 

 

Figure 3.14 – Stabilized hysteresis loops together with the cyclic curve of the Eiffel bridge material, with the 

lower tips coinciding at the origin, Rε=-1. 
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Figure 3.16 shows the cyclic curve of the material in the form of the stress amplitude 

versus plastic strain amplitude (Equation (3.2)). From the analysis of Figure 3.16 results 

directly the cyclic strain hardening coefficient (K’) and exponent (n’) of the material. 
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Figure 3.15 – Stress amplitude versus number of cycles for fully-reversed strain-controlled tests, Rε=-1, of 

the Eiffel bridge material 
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Figure 3.16 – Cyclic curve, σ/2 versus ε
P
/2 (Rε=-1), for the Eiffel bridge material. 
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3.4.1.2. Luiz I bridge 

Figure 3.17 presents the stabilized hysteresis loops together with the cyclic curve for the 

sample of the material from the Luiz I bridge, obtained for a strain ratio equal to -1 [18] 

while Figure 3.18 shows, for the same material, the superposition of several stabilized 

hysteresis loops, with the lower tips coinciding at the origin of the graph. This material 

from the Luiz I bridge shows some deviation from the Masing behaviour; this deviation 

may be also partially attributed to the scatter in material behaviour. Therefore, the 

material from the Luiz I bridge shows a cyclic behaviour that fairly follows the Masing 

behaviour, similarly to the material of the Eiffel bridge. Figure 3.19 illustrates the 

evolution of the cyclic stress amplitude with the number of cycles for the tested strain 

ranges. The analysis of the data reveals that the material from the Luiz I bridge shows 

some slight cyclic hardening for higher strain ranges. However, this hardening fades with 

the decrease in the applied strain range, until stabilization is achieved, when the elastic 

behaviour is attained. 
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Figure 3.17 – Stabilized hysteresis loops together with the cyclic curve of the Luiz I bridge material, Rε=-1. 
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Figure 3.18 – Stabilized hysteresis loops together with the cyclic curve of the Luiz I bridge material, with the 

lower tips coinciding at the origin, Rε=-1. 
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Figure 3.19 – Stress amplitude versus number of cycles for fully-reversed strain-controlled tests , Rε=-1, of 

the Luiz I bridge material. 
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Figure 3.20 – Cyclic curve, σ/2 versus ε
P
/2 (Rε=-1), for the Luiz I bridge material. 

Figure 3.20 shows the cyclic curve of the material from the Luiz I bridge in the form of a 

stress amplitude versus plastic strain amplitude plot, for direct assessment of the 

hardening constants, namely the cyclic strain hardening coefficient (K’) and exponent (n’). 

Taking into account the type of materials under investigation, the determination 

coefficient is considered very satisfactory. 

3.4.1.3. Fão bridge 

Figure 3.21 presents the stabilized hysteresis loops together with the cyclic curve for the 

sample of the material from the Fão bridge, obtained for strain ratios equal to -1 [13,18] 

while Figures 3.22 and 3.23 show, for the same material, the superposition of several 

stabilized hysteresis loops, with the lower tips coinciding at the origin of the graph, 

obtained for strain ratios equal to -1 and 0, respectively. The significant scatter observed 

in the hysteresis loops hinders the assessment of the Masing behaviour of the material. 

This scatter is noticeable in the material from the Fão bridge showing two anomalous 

hysteresis loops, for strain ratio equal -1. Neglecting these two hysteresis loops the 

material shows Masing behaviour for strain ratio equal -1.  For null strain ratio, the 

material from Fão bridge shows a clear non-Masing behaviour. It seems that hysteresis 

loops of the material from Fão bridge are sensitive to the strain. 
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Figure 3.21 – Stabilized hysteresis loops together with the cyclic curve of the Fão bridge material, Rε=-1. 
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Figure 3.22 – Stabilized hysteresis loops together with the cyclic curve of the Fão bridge material, with the 

lower tips coinciding at the origin, Rε=-1. 
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Figure 3.23 – Stabilized hysteresis loops together with the cyclic curve of the Fão bridge material, with the 

lower tips coinciding at the origin, Rε=0. 
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Figure 3.24 – Stress amplitude versus number of cycles for fully-reversed strain-controlled tests, Rε=-1, of 

the Fão bridge material. 
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Figure 3.25 – Stress amplitude versus number of cycles for alternate strain-controlled tests, Rε=0, of the Fão 

bridge material. 

Figures 3.24 and 3.25 illustrate the evolution of the cyclic stress amplitude with the 

number of cycles for the tested strain ranges, for strain ratios equal to -1 and 0, 

respectively. The analysis of the data reveals that material from the Fão bridge displays 

cyclic hardening for higher strain ranges, but this cyclic hardening reduces progressively 

with decreasing applied strain range until it stabilizes for fully elastic behaviour. This 

behaviour is similar to the behaviour observed for the materials from the Eiffel and Luiz I 

bridges. It is interesting to note that the material from the Fão bridge shows higher 

hardening for null strain ratios than for fully-reverse strain loading conditions. 

Figures 3.26, 3.27 and 3.28 show the cyclic curves of the material from the Fão bridge. 

The stress amplitude is plotted versus plastic strain amplitude, for Rε=-1, Rε=0 and Rε=-1 + 

Rε=0, respectively. From the analysis of these figures results directly the cyclic strain 

hardening constants of the material from the Fão bridge. Comparing with the previous 

materials, lower determination coefficients in the cyclic curve assessment were observed 

for this material, which is consistent with the higher scatter observed in hysteresis loops 

depicted in the Figures 3.22 and 3.23. 
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Figure 3.26 – Cyclic curve, σ/2 versus ε
P
/2 (Rε=-1), for the Fão bridge material. 
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Figure 3.27 – Cyclic curve, σ/2 versus ε
P
/2 (Rε=0), for the Fão bridge material. 
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Figure 3.28 – Cyclic curve, σ/2 versus ε
P
/2 (Rε=-1 + Rε=0), for the Fão bridge material. 
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3.4.1.4. Trezói bridge 

Figure 3.29 presents the stabilized hysteresis loops superimposed with the cyclic curve of 

the material from the Trezoi bridge [17,18], obtained for a strain ratio equal to -1 while 

Figure 3.30 shows the superposition of several stabilized hysteresis loops, with the lower 

tips coinciding at the origin of the graph of the material, together with the cyclic curve 

magnified by a factor of two. The analysis of this figure shows clearly that the material 

from the Trezói bridge does not follow the Masing behaviour. 

Figure 3.31 illustrates the evolution of the cyclic stress amplitude with the number of 

cycles for the tested strain ranges and for a strain ratio equal to -1. The material from the 

Trezói bridge shows a clear cyclic softening for strain ranges below 1.5%. For strain ranges 

above 1.5%, the cyclic behaviour is not clearly defined since for a strain range of 2.5% a 

cyclic softening is observed whereas for strain ranges of 2% and 1.5%, a cyclic hardening 

is verified, after some stabilization. If a comparison between all materials is made only for 

strain ranges below 1%, but involving plasticity, it is clear that the material from the 

Trezói bridge shows a cyclic softening while the other materials show cyclic hardening. 

The material from the Trezói bridge shows higher cyclic hardening values. 

Figure 3.32 shows the cyclic curve of the material from the Trezói bridge for a strain ratio 

equal to -1. From the analysis of Figure 3.32 results directly the cyclic strain hardening 

coefficient and exponent. Figure 3.33 compares the cyclic curves of the four materials 

from the Eiffel, Luiz I, Fão and Trezói bridges. The material from the Trezói bridge shows 

the lowest cyclic yield stress, which means that this material experiences a significant 

cyclic softening with respect to the others. The other materials show higher cyclic yield 

stresses. The materials from Eiffel and Fão bridge show similar cyclic behaviours, mainly 

for lower strain amplitudes. The materials from the Trezói and Luiz I bridges also show 

similar cyclic behaviours, but in this case for high strain amplitudes.  
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Figure 3.29 – Stabilized hysteresis loops together with the cyclic curve of the Trezói bridge material, Rε=-1. 
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Figure 3.30 – Stabilized hysteresis loops together with the cyclic curve of the Trezói bridge material, with 

the lower tips coinciding at the origin, Rε=-1. 
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Figure 3.31 – Stress amplitude versus number of cycles for fully-reversed strain-controlled tests, Rε=-1, of 

the Trezói bridge material. 
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Figure 3.32 – Cyclic curve, σ/2 versus ε
P
/2 (Rε=-1), for the Trezói bridge material. 
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Figure 3.33 – Comparison of the cyclic curves for the materials studied. 

3.4.2. Evaluation of fatigue behaviour based on strain-life relations 

Low-cycle fatigue results are very often represented using the relation between the strain 

amplitude and the number of reversals to failure, 2Nf, usually assumed to correspond to 

the initiation of a macroscopic crack. The classical way to express the strain-life data is to 

use the superposition of Coffin [24] and Manson [25] equation with the Basquin [26] 

equation, usually known as Morrow relation [22]. The Coffin and Manson equation 

relates the plastic strain amplitude, εP/2, to the number of reversals at crack initiation, 

2Nf: 

 c
ff

p

N2'
2

 


 (3.4) 

where f'  and c are, respectively, the fatigue ductility coefficient and fatigue ductility 

exponent. The Coffin-Manson relation is well suited for the low-cycle fatigue domain 

whereas the Basquin relation [26] that relates the elastic strain amplitude, εE/2, to the 

number of reversals to failure 2Nf, is best suited for high cycle fatigue: 

  b
f

f
E

N2
E

'

E22



 (3.5) 

where  f'  is the fatigue strength coefficient, b is the fatigue strength exponent and E is 

the Young modulus. The number of reversals corresponding to the transition between 
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low and high cycle fatigue regimes is characterized by total strain amplitude composed by 

equal components of elastic and plastic strain amplitudes. Lives below this transition 

value are dictated by ductility properties while lives above this transition value are 

dictated by strength properties. Morrow [22] suggested the superposition of Equations 

(3.4) and (3.5), resulting in a more general equation, valid for low and high-cycle fatigue 

regimes: 

   c
ff

b
f

f
pE

N2'N2
E

'

222
 


 (3.6) 

Alternatively to the Morrow relation, the Smith-Watson-Topper fatigue damage 

parameter [27] can be used, which shows the following form: 

      cb
fff

b2
f

2
fmax N2''EN2'SWT2 

   (3.7) 

where σmax is the maximum stress of the cycle and SWT is the damage parameter. Both 

Morrow and Smith-Watson-Topper models are deterministic models and are used to 

represent the average fatigue behaviour of the bridge materials based on the available 

experimental data. 

3.4.2.1. Strain-life results and discussion for materials from ancient Portuguese riveted 

steel bridges 

Figures 3.34 to 3.39 present the strain-life data for the materials from the Eiffel, Luiz I, 

Fão and Trezói bridges. The total strain, i.e. elastic strain plus plastic strain, versus life 

relations is considered. The data are correlated based on the Coffin-Manson, Basquin and 

Morrow models. The materials from the centenary bridges shows very low transition lives 

(2Nt), which are bellow the 1×103 reversals. The material from the Trezói bridge exhibits a 

number of transition reversals one order of magnitude higher possibly because the 

fatigue ductility coefficient is significantly higher in the material from the Trezói bridge 

than in the materials from the other centenary bridges. The fatigue ductility coefficient 

increases for younger materials, according to better techniques achieved in the steel 

production. Regarding the material from the Fão bridge, higher fatigue ductility was 

verified for the strain ratio equal to -1. For the material from the Fão bridge, two distinct 

strain-ratios were tested, namely a null-strain ratio and a fully reversible strain history. 

Besides the individual treatment of the test data for each strain ratio, Figure 3.36 
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presents the stain-life data for the material from the Fão bridge resulting from the 

conjunction of both strain ratios, Rε=-1+Rε=0 [13]. 

 

Figure 3.34 – Strain-life curves according to Morrow’s model for the material from the Eiffel bridge, Rε=-1. 
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Figure 3.35 – Strain-life curves according to Morrow’s model for the material from the Luiz I bridge, Rε=-1. 
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Reversals to failure, 2N f
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Figure 3.36 – Strain-life curves according to Morrow’s model for the material from Fão bridge, Rε=-1. 

 

 

Figure 3.37 – Strain-life curves according to Morrow’s model for the material from Fão bridge, Rε=0. 

Tables 3.24 to 3.29 summarize the main parameters derived from the low-cycle fatigue 

tests, including the constants from the strain-life equation and the cyclic curve of the 

materials from the Eiffel, Luiz I, Fão and Trezói bridges [13,17,18]. The number of 

reversals corresponding to the transition from an elastic dominant behaviour to a plastic 

dominant behaviour is also pointed out in the referred tables. 
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Figure 3.38 – Strain-life curves according to Morrow’s model for the material from Fão bridge, Rε=-1+ Rε=0. 
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Figure 3.39 – Strain-life curves according to Morrow’s model for the material from the Trezói bridge, Rε=-1. 
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Table 3.24 – Low-cycle fatigue constants for the material from the Eiffel bridge, Rε=-1. 

602.5 -0.0778 0.8985

475 0.3104 0.00312

0.1595 -0.7972 0.9002

Transition Number of Reversals, 2N f Transition Total Strain Amplitude, Δε t /2 σ' f / E

[-] [%] [-]

Fatigue Ductility Coefficient, ε' f Fatigue Ductility Exponent, c Determination Coefficient, R 2

[-] [-] [-]

Fatigue Strength Coefficient, σ' f Fatigue Strength Exponent, b Determination Coefficient, R 2

[MPa] [-] [-]

 

 

Table 3.25 – Low-cycle fatigue constants for the material from the Luiz I bridge, Rε=-1. 

[-] [%] [-]

150 0.3631 0.00243

0.0461 -0.6437 0.9157

Transition Number of Reversals, 2N f Transition Total Strain Amplitude, Δε t /2 σ' f / E

Fatigue Ductility Coefficient, ε' f Fatigue Ductility Exponent, c Determination Coefficient, R 2

[-] [-] [-]

[MPa] [-] [-]

481.7 -0.0600 0.8864

Fatigue Strength Coefficient, σ' f Fatigue Strength Exponent, b Determination Coefficient, R 2

 

 

Table 3.26 – Low-cycle fatigue constants for the material from the Fão bridge, Rε=-1. 

[-] [%] [-]

695 0.3762 0.00332

0.0809 -0.5747 0.9411

Transition Number of Reversals, 2N f Transition Total Strain Amplitude, Δε t /2 σ' f / E

Fatigue Ductility Coefficient, ε' f Fatigue Ductility Exponent, c Determination Coefficient, R
2

[-] [-] [-]

[-] [-]

659.0 -0.0867 0.7836

Fatigue Strength Coefficient, σ' f Fatigue Strength Exponent, b Determination Coefficient, R 2

[MPa]

 

 

Table 3.27 – Low-cycle fatigue constants for the material from the Fão bridge, Rε=0. 

609 0.4109 0.00462

Transition Number of Reversals, 2N f Transition Total Strain Amplitude, Δε t /2 σ' f / E

[-] [%] [-]

[-] [-] [-]

0.0443 -0.4790 0.7809

917.3 -0.1263 0.9226

Fatigue Ductility Coefficient, ε' f Fatigue Ductility Exponent, c Determination Coefficient, R
2

Fatigue Strength Coefficient, σ' f Fatigue Strength Exponent, b Determination Coefficient, R 2

[MPa] [-] [-]
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Table 3.28 – Low-cycle fatigue constants for the material from the Fão bridge, Rε=-1+ Rε=0. 

[-] [-]

[MPa] [-] [-]

828.3 -0.1134 0.8645

334 0.4874 0.00417

0.0530 -0.5113 0.8233

Transition Number of Reversals, 2N f Transition Total Strain Amplitude, Δε t /2 σ' f / E

Fatigue Strength Coefficient, σ' f Fatigue Strength Exponent, b Determination Coefficient, R 2

[-] [%] [-]

Fatigue Ductility Coefficient, ε' f Fatigue Ductility Exponent, c Determination Coefficient, R
2

[-]

 

 

Table 3.29 – Low-cycle fatigue constants for the material from the Trezói bridge, Rε=-1. 

[-] [%] [-]

5184 0.2797 0.00307

1.4733 -0.8137 0.9582

Transition Number of Reversals, 2N f Transition Total Strain Amplitude, Δε t /2 σ' f / E

Fatigue Ductility Coefficient, ε' f Fatigue Ductility Exponent, c Determination Coefficient, R 2

[-] [-] [-]

[MPa] [-] [-]

609.7 -0.0920 0.7870

Fatigue Strength Coefficient, σ' f Fatigue Strength Exponent, b Determination Coefficient, R 2

 

Figures 3.40 to 3.45 present the fitting of the fatigue data using the Smith-Watson-Topper 

damage parameter (=σmax.εa) resulting in a good correlation with the experimental data. 

This damage parameter accounts for the mean stress effects, since it depends on the 

maximum stress of the cycle. The referred figures also include the representation of 

Equation (3.7). 

Figures 3.46 to 3.48 compare the Morrow equation between the materials from the 

bridges. The analysis of the results confirms that the material from the Trezói bridge 

shows the highest fatigue resistance for low to high-cycle fatigue regimes. This higher 

fatigue resistance is mainly due to the higher ductility as illustrates Figure 3.46. All 

materials show very similar elastic strain-life relations.  

Figure 3.49 shows that total strain-life curves for the material from the Fão bridge are not 

sensitive to the strain ratio. This is the result of the well know behaviour in cyclic plasticity 

of metals that corresponds to the cyclic mean stress relaxation occuring for non-

symmetric strain local conditions. 

 

 



CHAPTER III 

 III.44 

 

 

Figure 3.40 – Fitting of the SWT model to the lifetime for the material data from Eiffel bridge, Rε=-1. 
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Figure 3.41 – Fitting of the SWT model to the lifetime for the material data from Luiz I bridge, Rε=-1. 
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Figure 3.42 – Fitting of the SWT model to the lifetime for the material data from Fão bridge, Rε=-1. 

 

 

Figure 3.43 – Fitting of the SWT model to the lifetime for the material data from Fão bridge, Rε=0. 
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Figure 3.44 – Fitting of the SWT model to the lifetime for the material data from the Fão bridge, Rε=-1+Rε=0. 
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Figure 3.45 – Fitting of the SWT model to the lifetime for the material data from the Trezói bridge, Rε=-1. 
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Figure 3.46 – Comparison of the total strain-life using Morrow curves for all materials, Rε=-1. 
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Figure 3.47 – Comparison of the plastic strain-life using Coffin-Manson curves for all materials, Rε=-1. 
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Figure 3.48 – Comparison of the strain-life using Basquin curves for all materials, Rε=-1. 
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Figure 3.49 – Comparison of the total strain-life using Morrow curves for the material from the Fão bridge. 
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Figure 3.50 – Typical fracture surfaces of the smooth specimens tested under strain control: a) Eiffel; b) Luiz 

I; c) Fão; d) Trezói bridges [18]. 

Figure 3.50 exhibits typical fracture surfaces from the smooth specimens used to assess 

the strain-life fatigue data and the cyclic elastoplastic behaviours of the bridge materials 

[18]. The fracture surfaces of the material from Luiz I bridge shows clearly a lamellar 

structure corresponding to lined-up inclusions. Fracture surface of the specimen from the 

material from the Eiffel bridge also shows some lamellar structure. The fatigue crack 

propagation surfaces are clearly identified in the specimens from the Fão and Trezói 

bridges.  The fracture surface of the specimen made of material from Trezói bridge shows 

lower levels of roughness, which is consistent with finer microstructure of the material 

and higher ductility. 
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3.5. FATIGUE CRACK PROPAGATION RATES OF THE MATERIALS 

3.5.1. Experimental details 

Fatigue crack growth tests were conducted on old bridge materials, according to the 

ASTM 647-99 standard [28], in order to assess the fatigue crack propagation rates for 

these materials. An experimental program was carried out using samples of the materials 

from the five bridges [11-13, 15, 17, 18]. Compact tension specimens (CT specimens), see 

Figure 3.51, were prepared with materials from Eiffel, Fão, Pinhão and Trezói bridges. 

Middle tension specimens were used for the material from Luiz I bridge (W= 40 mm; t = 

10 mm). Due to limitations in material availability, distinct dimensions were adopted for 

the specimens. Table 3.30 shows the dimensions for the compact tension specimens and 

the total number of specimens tested for each material. All tests were performed in air, 

at room temperature, under a sinusoidal waveform with a frequency of 20 Hz for all 

materials with the exception of the material from Luiz I bridge, which was tested under a 

frequency of 10 Hz. The crack growth was measured on both faces of the specimens by 

direct visual inspection using two travelling microscopes with accuracy of 0.001 mm (see 

Figure 3.52). The tests were performed in load control conditions in a Instron close-loop 

servo hydraulic machine, model 8801, rated to 100 KN (see Figure 3.52). 

A total of 42 specimens were tested: five from the Eiffel bridge (one according to the 

longitudinal direction and four according to the transverse direction); four from the Luiz I 

bridge; 12 specimens from the Fão bridge; 13 specimens from the Pinhão bridge (six from 

the diagonal and seven from the bracing) and eight specimens from the Trezói bridge. 
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Figure 3.51 – CT specimens geometry used in fatigue crack growth tests for materials from Eiffel, Fão, 

Pinhão and Trezói bridges. 

 

   
a) b) c) 

Figure 3.52 – Experimental fatigue crack growth tests: a) overview of the CT specimen test; b) two xy 

traveling microscopes measuring the crack advance on both faces; c) two magnification microscopes on 

both faces of the CT specimen [17]. 

 

Table 3.30 – Nominal dimensions (see Figure 3.51 for reference dimensions) of the compact tension 

specimens and total number of the specimens used in fatigue tests for each material of the bridges. 

Bridge No. of W L H/2 h/2 B D h e a n

Material specimens mm mm mm mm mm mm mm mm

Eiffel 5 40.0 50.0 24.0 11.00 4.35 10.0 1.6 8.0

Fão 12 50.0 62.5 30.0 13.75 8.00 12.5 3.0 10.0

Pinhão 13 40.0 50.0 24.0 11.00 4.35 10.0 1.6 8.0

Trezói 8 50.0 62.5 30.0 13.75 8.00 12.5 3.0 10.0  

The following stress ratios were investigated for each material: 

- Eiffel bridge: Rσ=0.1 and Rσ =0.5; 

- Luiz I bridge: Rσ =0.1; 

- Fão bridge: Rσ =0.0, Rσ =0.25, Rσ =0.5 and Rσ =0.75; 
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- Pinhão bridge: Rσ =0.0, Rσ =0.1 and Rσ =0.5; 

- Trezói bridge: Rσ =0.0, Rσ =0.25 and Rσ =0.5. 

The experimental crack propagation data obtained for each material related the crack 

propagation rate to the stress intensity factor range, using the power law as proposed by 

Paris and Erdogan [29]: 

mKC
dN

da
   (3.8) 

where da/dN is the fatigue crack propagation rate, K represents the stress intensity 

factor range and C and m are material constants. The Paris’s law can be modified to take 

into account the stress ratio effect using the Walker’s modification [30]: 

 

1m

11
R1

K
C

dN

da
















  (3.9) 

where C1, m1 and γ are constants to be determined from crack propagation data 

evaluated at distinct stress ratios. Using the equivalent stress intensity range defined as 

follows: 

  









1

___

1 R

K
K   (3.10) 

a higher correlation will result for the fatigue crack propagation rates for distinct stress 

ratios. 

The formulation to determine the stress intensity factor range, K, for the CT geometry is 

included in ASTM 647-99 standard [28], according to the following form: 

 

 
 432

23
6.572.1432.1364.4886.0

1

2

WB

F
K 




 







   (3.11) 

where: α=a/W; a is the corresponding crack size, measured from the line of application of 

the load; ΔF is the force range; B and W are the thickness and nominal width of the CT 

specimens, respectively. The relation (3.11) is valid for a/W0.2. 

For the MT geometry, the value of stress intensity factor range, K, is obtained using the 

following expression: 
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2
sec

2

 









WB

F
K   (3.12) 

where: α=2a/W. The expression is valid for 2a/W<0.95. 

The main result of the fatigue crack propagation tests, documented in this section, 

corresponds to the fatigue crack propagation rates as a function of the stress intensity 

factor ranges. The fatigue crack propagation rates were determined using the incremental 

polynomial method, as stated in ASTM E647-99 standard [28]. This method is based on 

the adjustment of 2nd degree polynomials to successive sets of experimental data points 

which define successive lengths of the crack as a function of the stress intensity factor 

range. The fatigue crack propagation rate results from the derivative of these 2nd degree 

polynomials, which are expressed as a function of the stress intensity factor range. 

3.5.2. Experimental fatigue crack propagation results 

In this section, a series of graphs are presented for various stress ratios [11-

13,15,17,18,31], showing the evolution of the fatigue crack propagation rates as a 

function of the stress intensity factor range, for the materials extracted from the Eiffel, 

Luiz I, Fão, Pinhão and Tezói bridges. All fatigue crack propagation data was correlated 

with the Paris’s law. Consequently, each graph includes the Paris constants as well as the 

respective determination coefficient. 

3.5.2.1. Material from Eiffel bridge 

Figures 3.53 and 3.54 present the fatigue crack propagation rates of the material from the 

Eiffel bridge, for the two stress ratios tested, namely, Rσ=0.1 and Rσ=0.5 [11,18]. For this 

bridge, crack propagation rates were measured in the girder longitudinal (L) direction, 

whereas only one test was carried out in the transverse direction (T). The crack 

propagation rates in the transverse direction showed a very irregular pattern. Figure 3.55 

presents all fatigue crack propagation rates together, for both stress ratios 

(Rσ=0.1+Rσ=0.5) form the material from the Eiffel bridge. Figure 3.56 compares the Paris 

mean regression lines for each stress ratio and that resulting from the aggregation of all 

stress ratios [11,18]. The analysis of the figure reveals a clear stress ratio dependency of 
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the fatigue crack propagation rate of the material. A significant increase in the fatigue 

crack growth rate is observed for increasing stress ratio from 0.1 to 0.5.   
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Figure 3.53 – Fatigue crack growth data of the material from the Eiffel bridge, Rσ=0.1. 
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Figure 3.54 – Fatigue crack growth data of the material from the Eiffel bridge, Rσ=0.5. 
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Figure 3.55 – Fatigue crack growth data of the material from the Eiffel bridge, Rσ=0.1+Rσ=0.5. 
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Figure 3.56 – Comparison between the regression lines of the fatigue crack propagation rates for different 

stress ratios obtained from the material of the Eiffel bridge. 
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3.5.2.2. Material from Luiz I bridge 

Figure 3.57 exhibits the fatigue crack propagation rates of the material from the Luiz I 

bridge, for the tested stress ratio, Rσ=0.1 [12]. Data for only one stress ratio is available 

for this material. The scatter level is significant as pointed out by the relative low 

determination coefficient. 
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Figure 3.57 – Fatigue crack growth data for the material from the Luiz I bridge, Rσ=0.1. 

 

3.5.2.3. Material from Fão bridge 

Figures 3.58 to 3.61 show the fatigue crack propagation rates of the material from the 

Fão bridge, for the four stress ratios tested, namely, Rσ=0.0, Rσ=0.25, Rσ=0.5 and Rσ=0.75 

[13]. Figure 3.62 presents together the fatigue crack propagation rates of the material 

from the Fão bridge for all stress ratios tested (Rσ=0.0+Rσ=0.25+Rσ=0.5+Rσ=0.75). 

Comparing the determination coefficient from the global fitting of the Paris law with the 

determination coefficient of the individual fitting for each stress ratio, we realize a 

reduction in the determination coefficient, which is attributed to the stress ratio effects 

not being captured by the Paris relation. Figure 3.63 compares the average fatigue crack 

propagation rates, given by the Paris relation, for several stress ratios tested. The analysis 

of the graph reveals that the stress ratio influences the fatigue crack propagation rates. In 
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general, an increase in the fatigue crack propagation rates is observed for increasing 

stress ratios [13,18]. This phenomenon may be explained by the crack closure 

phenomenon occurring for lower stress ratios. 
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Figure 3.58 – Fatigue crack growth data for the material from the Fão bridge, Rσ=0.0. 
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Figure 3.59 – Fatigue crack growth data for the material from the Fão bridge, Rσ=0.25. 
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Figure 3.60 – Fatigue crack growth data for the material from the Fão bridge, Rσ=0.5. 
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Figure 3.61 – Fatigue crack growth data for the material from the Fão bridge, Rσ=0.75. 
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Figure 3.62 – Fatigue crack growth data for the material from the Fão bridge, Rσ=0+Rσ=0.25+Rσ=0.5+Rσ=0.75. 
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 Figure 3.63 – Comparison among the regression lines of the fatigue crack propagation rates for different 

stress ratios obtained from the material of the Fão bridge. 
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3.5.2.4. Material from Pinhão bridge 

Figures 3.64 to 3.66 present the fatigue crack propagation rates for the material from the 

Pinhão bridge, for three stress ratios, namely, Rσ=0.0, Rσ=0.1 and Rσ=0.5 [15,18]. Figure 

3.67 shows the fatigue crack propagation data for all the stress ratios considered 

(Rσ=0.0+Rσ=0.1+Rσ=0.5). Figure 3.68 compares the trend lines of the fatigue crack 

propagation rates for each stress ratio. The analysis of the figure proves an increase of 

the fatigue crack propagation rates for increasing stress ratio, mainly for lower stress 

intensity factor ranges while for higher stress intensity factor ranges, the fatigue crack 

propagation rates tend to be less sensitive to the stress ratio.  

The two samples from the material of the Pinhão bridge, namely those from the bracing 

(B) and the diagonal (C), exhibit slightly distinct crack growth rates for Rσ=0.0; however, 

for the other stress ratios no differences for the crack growth rates have been found 

between these two material samples. 
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Figure 3.64 – Fatigue crack growth data for the material from the Pinhão bridge, Rσ=0.0. 
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Figure 3.65 – Fatigue crack growth data for the material from the Pinhão bridge, Rσ=0.1. 
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Figure 3.66 – Fatigue crack growth data for the material from the Pinhão bridge, Rσ=0.5.  
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Figure 3.67 – Fatigue crack growth data for the material from the Pinhão bridge, Rσ=0+Rσ=0.1+Rσ=0.5. 
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Figure 3.68 – Comparison between the regression lines of the fatigue crack propagation rates for different 

stress ratios obtained from the material of the Pinhão bridge. 
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3.5.2.5. Material from Trezói bridge 

Figures 3.69 to 3.71 present the fatigue crack propagation rates of the material from the 

Trezói bridge, for three tested stress ratios, namely Rσ=0.0, Rσ=0.25 and Rσ=0.5 [17,18]. 

Figure 3.72 illustrates the fatigue crack propagation rates for the material from the Trezói 

bridge for all stress ratios joined together. This material shows clearly a reduced scatter in 

the crack propagation rates. This material is a modern construction steel and therefore, 

shows less scatter in mechanical properties than old puddle irons. Figure 3.73 compares 

the trends in the fatigue crack propagation rates of the material for the stress ratios 

tested. It is visible that this material also shows some dependency with the stress ratio, 

mainly when stress ratio changes between Rσ=0.0 and Rσ=0.25 on the contrary, for stress 

ratios changing between Rσ=0.25 and Rσ=0.5, no significant variation of the fatigue crack 

growth rates are observed. This means that any possible crack closure that may occur will 

vanish above Rσ=0.25. 
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Figure 3.69 – Fatigue crack growth data for the material from the Trezói bridge, Rσ=0.0. 
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Figure 3.70 – Fatigue crack growth data for the material from the Trezói bridge, Rσ=0.25. 
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Figure 3.71 – Fatigue crack growth data for the material from the Trezói bridge, Rσ=0.5. 
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Figure 3.72 – Fatigue crack growth data for the material from the Trezói bridge, Rσ=0+Rσ=0.25+Rσ=0.5. 
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Figure 3.73 – Comparison between fatigue crack propagation rate trends for different stress ratios obtained 

for the material of the Trezói bridge. 

 

 

 



CHAPTER III 

 III.66 

3.5.2.6. Discussion of the results 

The greatest scatter in fatigue crack propagation data was found for the materials from 

Eiffel, Luiz I and Fão bridges which is consistent with the fact that these bridges are the 

oldest ones and the respective materials present important heterogeneities. The data 

from Pinhão bridge reveals a relative low scatter; this material being about 25 years 

younger than the previous, one revealing good homogeneity, similar to modern steels. 

Finally, the material from the Trezoi bridge exhibits very low scatter, as expected, due to 

the relative low age of the material. However, there is one exception with the material 

from the Trezói bridge, which shows lower determination coefficient than that from the 

Pinhão bridge. This apparent exception may be justified by the fact that data from the 

Trezói bridge for Rσ=0 covers the near threshold crack propagation, which is not 

reproduced by the Paris’s law. 

For the material from the Eiffel bridge (Figures 3.53 to 3.56), it is clear that crack 

propagation increases for increasing stress ratio effect, which may be justified by the 

reduction of the crack closure effect. The crack propagation rate of the material from the 

Eiffel bridge was the most sensitive to the stress ratio. Regarding the material from the 

Luiz I bridge (Figure 3.57), only one stress ratio was tested (Rσ=0.1), so that it was not 

possible to assess the stress ratio effects on the fatigue crack propagation for this 

material. Four stress ratios were tested for the sample of material from the Fão bridge 

(Figures 3.58 to 3.63), namely Rσ=0, Rσ=0.25, Rσ=0.5 and Rσ=0.75. For this material a slight 

increase of the fatigue crack propagation rate is also observed for increasing stress ratio. 

Finally, the materials from the Pinhão (Figures 3.64 to 3.68) and Trezói (Figures 3.69 to 

3.73) bridges showed a slight acceleration in the crack propagation for increasing stress 

ratio. 

It is interesting to note that the exponent of the Paris’s law [29], m, is always higher than 

3 (value adopted in design codes) and falls in the range 3.6–5.5. The coefficient C is within 

the range 2.9x10-15–2.9x10-20 (da/dN in mm/cycle and K in Nmm-1.5). Table 3.31 

summarizes the material constants, C and m, of the Paris´s model for each bridge 

material. 
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Table 3.31 – Constants of the Paris´s model for each material of the bridges. 

Material R σ Specimens C m R 2

- n.º * - -

0.1 3 1.5627E-19 5.0585 0.8644

0.50 2 3.0907E-20 5.5347 0.9604

0.1; 0.5 5 2.4329E-18 4.6899 0.7197

Luiz I 0.1 4 2.8595E-20 5.5033 0.7233

0.0 4 4.2047E-18 4.8038 0.7907

0.25 2 3.0544E-19 5.2506 0.9002

0.5 4 6.8089E-19 5.1991 0.9249

0.75 2 1.8400E-16 4.3809 0.8561

0.0; 0.25; 0.5; 0.75 12 7.4821E-16 4.0333 0.8493

0.0 6 2.7874E-16 3.9684 0.9694

0.1 3 2.0840E-16 3.9998 0.9726

0.5 4 2.4849E-14 3.3085 0.9896

0.0; 0.1; 0.5 13 2.8792E-15 3.6236 0.9606

0.0 3 1.1054E-15 4.0944 0.9539

0.25 2 1.6479E-14 3.3929 0.9938

0.5 3 9.5469E-15 3.4896 0.9944

0.0; 0.25; 0.5 8 4.5273E-15 3.5750 0.9307

*da/dN [mm/cycle] and  K [N.mm -1.5 ]
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Figure 3.74 – Correlation among all fatigue crack propagation data using the Paris model. 
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A tentative is done to derive a unique relation for the fatigue crack propagation data from 

all bridge materials, joined together. Figure 3.74 plots the fatigue crack propagation data 

obtained for all materials. The best fit of the Paris relation provides a determination 

coefficient, R2=0.75, which is relatively high, taking into account the different origins of 

the materials investigated. It can be verified that fatigue data of the materials from Fão 

and Luiz I bridges diverge from the mean values, presenting higher fatigue crack 

propagation values. One specimen from Eiffel bridge exhibits markedly lower fatigue 

crack propagation rates for intermediate stress intensity factor ranges. The constant m 

from the Paris’s law obtained for all data together, is higher than 3.0, this being the latter 

value usually adopted in current design codes of practice [5,32], indirectly defined as the 

slope of the S–N curves of structural details. The constant C is significantly lower than the 

usual values recommended in the literature for modern steels [32]: 1.2x10-13
C5x10-13. 

Figure 3.74 also includes an upper bound, parallel to the linear regression line, which can 

be used for design purposes. Another upper bound was established based on a slope of 3. 

For this latter case, the C constant happens to be higher than the values referred in 

literature for modern steels [32]. 

Figures 3.75 to 3.78 plot again the fatigue crack propagation data for the materials from 

the bridges investigated, but in these graphs the data is plotted by considering the 

effective stress intensity factor range, as proposed by Walker [18]. The material from the 

Luiz I bridge is excluded from this analysis since only data for Rσ=0.1 is available. The 

application of the Walker model to correlate the fatigue crack propagation data resulted 

in higher determination coefficients, when compared with those resulting when applying 

the Paris law. Figure 3.79 plots all data together, using the transformation proposed by 

Equation (3.10). The data is correlated using a power relation, and an increase of the 

determination coefficient is again verified [18].  

 

 



Fatigue behaviour of materials from ancient Portuguese riveted steel bridges 

 III.69 

 K  [N.mm-1.5]

d
a

/d
N

 [
m

m
/c

yc
le

]

R=0.1

R=0.5

da/dN =8.9964E-20× K 5.1414

γ=0.6054

R 2 =0.8878

1.0E-6

1.0E-4

300 1200

1.0E-5

1.0E-3

500 1000

1.0E-2

R σ =0.1

R σ =0.5

 

Figure 3.75 – Correlation between the fatigue crack propagation data from the material of the Eiffel bridge 

using Walker’s model. 
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Figure 3.76 – Correlation between the fatigue crack propagation data from the material of the Fão bridge 

using Walker’s model. 
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Figure 3.77 – Correlation for the fatigue crack propagation data from the material of the Pinhão bridge 

using Walker’s model. 
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Figure 3.78 – Correlation between the fatigue crack propagation data from the material of the Trezói bridge 

using Walker’s model. 
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Figure 3.79 – Correlation between the fatigue crack propagation rates for all bridge materials using Walker’s 

model. 

3.6. FATIGUE STRENGTH OF RIVETED CONNECTIONS 

The fatigue resistance of riveted joints made of original materials from the Portuguese 

bridges has been evaluated by means of fatigue tests [12,14,15,16,17]. Riveted joints with 

original rivets were extracted from the Eiffel, Luiz I, Pinhão and Trezói bridges. In addition, 

riveted joints were manufactured using original material from the Fão bridge, but 

applying new rivets. In this section, a summary of available S-N fatigue data, from riveted 

connections representative of old metallic riveted Portuguese bridges, is presented. 

The results of the fatigue tests of riveted joints are presented in the form of S-N or 

Wöhler curves, which shows a power relationship between the applied stress range (σ) 

and the corresponding number of cycles to failure (Nf) for the finite life domain and 

excluding low-cycle fatigue regimes. Design codes of practice [33] adopt the following 

form for the S-N curves: 

CN f
m    (3.13) 

where C and m are constants. Alternatively, the mean S-N curves may be represented 

using the following linear model [34,35], which is more suitable for parameter 

identification using linear regression analysis: 
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XBAY    (3.14) 

where Y is the dependent variable defined as Log(Nf), X is the independent variable 

defined as Log(σ), A and B are linear regression parameters. Consequently, it is possible 

to rewrite the S-N curve in the following forms [34,35]: 
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  (3.15) 

where A and B parameters are related to the C and m constants: 
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Bm

10C A

  (3.16) 

The S-N results presented in this section, were obtained using fatigue tests of specimens, 

performed on servo-hydraulic machines rated to 100kN or 250kN and subjected to load 

control conditions. The results of the fatigue tests of riveted connections for the materials 

under consideration from the Eiffel, Luiz I, Fão, Pinhão and Trezói bridges are 

summarized, respectively in Tables 3.32, 3.33, 3.34, 3.35 and 3.36, where Sgross is the 

gross cross-section, Snet is the net cross-section, Rσ is the stress ratio, Fmax is the maximum 

testing force, F is the test load range, f is the test frequency, σgross is the stress range 

computed on the gross cross-section, σnet is the stress range calculated in the net cross-

section and Nf is the number of cycles to failure [12,14-17,31]. The gross cross-section 

corresponds to the remote section of the joint, while the net cross-section corresponds to 

the section excluding the rivet hole. 

3.6.1. Riveted connections from the Eiffel bridge 

Double shear riveted connections were cut out from the web of a girder from the Darque 

south viaduct of the Eiffel bridge. The specimens were cut along the longitudinal direction 

and the respective mid plates showed an average thickness of 6.7mm. Figure 3.80 

illustrates the complete test series of the riveted specimens extracted from the Eiffel 

bridge. A total of 14 specimens were tested under a stress R-ratio equal to 0.1 and 

frequencies, f, ranged between 5 and 7.5Hz. Each specimen exhibits a single row of four 

rivets, aligned in the loading direction. The results of these fatigue tests are summarized 

in Table 3.32. 
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a) b) 

  
c) d) 

Figure 3.80 – Riveted specimens extracted from the Eiffel bridge: a) complete test series; b), c) and d) 

illustration of the specimen, before and after fatigue failure. 

 

Table 3.32 – Results of the fatigue tests of the riveted joints from the Eiffel bridge. 

Specimen S gross S net Rσ F max  F f  σ gross  σ net N f

- mm2 mm2 - N N Hz MPa MPa cycles
V1 430.1 296.8 55533 49980 5.0 116.2 168.4 1513265

V2 427.3 293.5 54939 49445 7.5 115.7 168.4 1500331

V3 445.3 278.7 57538 51784 7.5 116.3 185.8 240383

V4 432.0 299.6 55640 50076 7.5 115.9 167.1 149378

V5 433.7 303.3 67551 60796 5.0 140.2 200.5 61456

V6 442.2 301.2 69239 62315 5.0 140.9 206.9 149879

V7 427.9 280.4 66115 59504 5.0 139.1 212.2 19768

V8 437.8 308.1 68511 61660 5.0 140.8 200.2 12195

V9 431.2 304.3 61121 55009 5.0 127.6 180.8 31954

V10 438.1 306.9 62122 55910 5.0 127.6 182.1 53638

V11 441.4 285.9 63062 56756 5.0 128.6 198.5 114510

V12 452.8 311.2 64352 57917 5.0 127.9 186.1 23196

V13 428.5 259.0 54480 49032 5.0 114.4 189.3 91069

V14 431.1 309.3 66909 60218 5.0 139.7 194.7 12950

0.1

 

 

3.6.2. Riveted connections from the Luiz I bridge 

Original single shear riveted specimens with single rivets were tested from the Luiz I 

bridge, the geometry of which is illustrated in Figure 3.80 [12]. Due to limitations imposed 

by the available material, only single lap joints were tested. A total of 7 specimens were 

tested under Rσ=0.1 and test frequencies, f, ranged between 6 and 8Hz. The respective 

results are summarized in Table 3.33 [12]. 
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** Maximum dimension allowing equal dimension of side plates. 

Figure 3.81 – Nominal geometry of the riveted joint from the Luiz I bridge [12].  

 

Table 3.33 – Results of the fatigue tests of the riveted joints from the Luiz I bridge [12]. 

Specimen S gross S net Rσ F max  F f  σ gross  σ net N f

- mm2 mm2 - N N Hz MPa MPa cycles
S5R1 350.0 210.0 31500 28350 8.0 81.0 135.0 164985

S5R2 350.0 210.0 31500 28350 6.0 81.0 135.0 426259

S5R3 350.0 210.0 26600 23940 7.0 68.4 114.0 161801

S5R4 350.0 210.0 22600 20340 7.0 58.1 96.9 999453

S5R5 350.0 210.0 19200 17280 7.0 49.4 82.3 514569

S5R6 350.0 210.0 16330 14697 8.0 42.0 70.0 1586560

S5R7 350.0 210.0 14000 12600 8.0 36.0 60.0 904586

0.1

 

3.6.3. Riveted connections from the Fão bridge 

Specimens manufactured with the original material from the Fão bridge were also of 

double shear type, as shown in Figure 3.82. In this case, only two rivets were applied and 

the plate thickness ranged between 5 and 8 mm. New holes were drilled with a diameter 

of 24mm and rivets with a diameter of 22mm were used to assemble the plates. The 

clearance between rivets and holes were filled due to the expansion of the rivets. A total 

of 15 specimens were tested under stress ratio Rσ=0.0 and test frequencies, f, ranging 

between 2.5 and 12Hz. Table 3.34 summarizes the results of the fatigue tests [14] 

obtained for these riveted specimens. 
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Figure 3.82 – Riveted joint prepared with the material from the Fão bridge: a) geometry of the riveted joint 

(dimensions in mm); b) views of the riveted specimens [14]. 

 

Table 3.34 – Results of the fatigue tests for riveted joints from the Fão bridge [14]. 

Specimen S gross S net Rσ F max  F f  σ gross  σ net N f

- mm2 mm2 - N N Hz MPa MPa cycles
FA1 342.2 160.2 56940 56370.6 2.5 164.7 351.9 9744

FA2 345.7 163.8 58210 57627.9 2.5 166.7 351.9 5285

FA3 342.9 162.3 57690 57113.1 2.5 166.5 351.9 24357

FA4 340.9 160.3 56960 56390.4 5.0 165.4 351.9 3458

FA5 333.6 157.8 49300 48807 2.5 146.3 309.3 141330

FA6 329.4 155.5 48570 48084.3 5.0 146.0 309.3 52879

FA7 349.2 165.6 51730 51212.7 5.0 146.6 309.3 6644

FA8 345.6 163.8 51160 50648.4 5.0 146.5 309.2 21050

FA9 344.3 163.1 47430 46955.7 5.0 136.4 287.9 38242

FA10 344.0 163.4 47530 47054.7 5.0 136.8 287.9 103809

FA11 345.9 163.1 47430 46955.7 5.0 135.8 287.9 75749

FA12 343.7 163.0 35120 34768.8 5.0 101.2 213.3 210995

FA13 327.7 155.3 26770 26502.3 5.0 80.9 170.7 699161

FA14 347.2 160.8 27700 27423 10.0 79.0 170.6 4000000→

FA15 338.7 159.7 27520 27244.8 5.0 80.5 170.6 1439414

0.01
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3.6.4. Riveted connections from the Pinhão bridge 

Figure 3.83 illustrates the geometry of the original riveted specimens extracted from the 

Pinhão bridge, which was similar to that of the specimens extracted from the Luiz I 

bridge. An approximate thickness of the plates between 10 and 11mm was measured for 

those specimens. The observation of a macrograph of the rivet longitudinal section allow 

us the estimation of the hole diameter (Ø21mm) and the rivet diameter (Ø20mm). A total 

of seven specimens were tested under load control, with stress R-ratio, Rσ=0.1. The 

number of specimens was limited by the amount of available material. The results of the 

fatigue tests are summarized in Table 3.35 [15]. The fracture surfaces of specimens CF1, 

CF4 and CF5 show that the fatigue cracks initiated at existing flaws as illustrated in Figure 

3.84 [15]. 

 

 
**Maximum dimension allowing equal length of side plates. 

a) 

 
b) 

Figure 3.83 – Riveted joint specimens prepared with the material from the Pinhão bridge: a) geometry of 

the riveted joint (dimensions in mm); b) view of the riveted specimens [15]. 
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Table 3.35 – Results of the fatigue tests of riveted joints from the Pinhão bridge [15]. 

Specimen S gross S net Rσ F max  F f  σ gross  σ net N f

- mm2 mm2 - N N Hz MPa MPa cycles

CF1 460.3 269.3 25000 22500 6.0 48.9 83.5 1922024

CF2 458.4 267.4 50000 45000 6.0 98.2 168.3 86140

CF3 459.4 268.4 37000 33300 6.0 72.5 124.1 635172

CF4 460.3 269.3 31000 27900 6.0 60.6 103.6 574452

CF5 460.3 269.3 18500 16650 6.0 36.2 61.8 1450789

CF6 460.3 269.3 25000 22500 6.0 48.9 83.5 2243676

CF7 460.3 269.3 18500 16650 6.0 36.2 61.8 10000000→

0.1

 

 

 

Figure 3.84 – Initial crack-like flaws observed in some tested riveted specimens from the Pinhão bridge [15]. 

3.6.5. Riveted connections from the Trezói bridge 

Riveted joints, with a single rivet and one shear plane, were machined from an original 

bracing member removed from the Trezói bridge. The final dimensions of the riveted 

joints are illustrated in Figure 3.85 [16]. The original rivets of the connections were 

preserved. The riveted joints were fatigue tested under a stress R-ratio equal to 0.1 and 

test frequencies, f, ranging between 4 and 10Hz. The S–N data is summarized in Table 

3.36 [16,17]. Some failures were generated at cracks that initiated at the rivet hole and 

propagated through the net cross section; other failures were due to cracks initiated and 

propagated outside the net cross section, motivated by important clamping forces on the 

rivets. The true value of the clamping forces in the rivets is, in general, difficult to assess 

and in this particular case were not measured. 

3.6.6. Results and discussion  

A linear regression analysis was performed on the S-N experimental data available for the 

riveted joints from the old Portuguese metallic bridges. Figures 3.86 and 3.87 show the 

experimental S-N data and the respective S-N curves. The riveted joints were categorized 
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into single and double shear joints. Relatively low coefficients resulted from the 

regression analysis, the lowest determination coefficient being obtained for the riveted 

joints from the Eiffel bridge. The parameters of the mean S-N curves are presented in 

Table 3.37, together with the stress range, c, for a number of cycles to failure of 2×106 

cycles. Besides the parameters of the individual S-N curves, corresponding to each tested 

riveted joint, the parameters for the single and double shear joints are also proposed for 

the S-N data analysed.  Clearly, the single shear joints show lower fatigue strength than 

the double shear joints, which may be in part attributed to bending effects acting on the 

specimen. The slope of the double shear joints is also significantly higher than the slope 

of the single shear joints. 

 
** Maximum dimension allowing equal length of side plates. 

a)  

 
b) 

Figure 3.85 – Riveted joint prepared with material from the Trezói bridge: a) geometry of the riveted joint 
(dimensions in mm); b) view of the riveted specimens [16]. 
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Table 3.36 – Results of the fatigue tests for riveted joints from the Trezói bridge [16,17]. 

Specimen S gross S net R σ F max  F f  σ gross  σ net N f

- mm2 mm2
- N N Hz MPa MPa cylces

F1 591.3 328.5 71000 63900 4.0 108.1 194.5 50771

F2 580.5 322.5 47500 42750 6.0 73.6 132.6 605387

F3 585.9 325.5 47500 42750 6.0 73.0 131.3 566477

F4 495.8 235.4 30000 27000 10.0 54.5 114.7 2518224

F5 540.0 280.8 33000 29700 10.0 55.0 105.8 1202674
F6 498.1 236.5 36200 32580 8.0 65.4 137.8 846982
F7 499.1 239.7 29000 26100 10.0 52.3 108.9 4901965
F8 540.0 280.8 33000 29700 10.0 55.0 105.8 3473620

0.1
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Figure 3.86 – S-N fatigue data for single shear riveted connections from Portuguese metallic bridges. 

 
 

Table 3.37 – S-N curve parameters resulting from the experimental data. 

Bridge Riveted C m  σ c

- joints MPa - MPa

Trezói 8.4570E+21 7.5815 115.1

Pinhão 1.6527E+15 4.6620 81.8

Luiz I 2.0279E+13 3.7908 70.5

Fão 1.6401E+25 8.3612 182.9

Eiffel 6.6637E+77 32.0513 170.4

Single shear

Double Shear

Trezói, Pinhão 

and Luiz I
Single Shear 1.2770E+17 5.5310 89.9

Fão and Eiffel Double Shear 9.4512E+28 10.2145 165.9
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Figure 3.87 – S-N fatigue data for double shear riveted connections from Portuguese metallic bridges. 

Taras and Greiner [36] have performed a statistical analysis of a significant amount of 

experimental fatigue data available in literature for riveted joints from old bridges. These 

authors suggested the categorization of the riveted joints into five categories. Two of the 

categories are the single and double shear splices under tensile loading. They also 

suggested the use of a slope, m=5 for the design curve, instead of the m=3 proposed in 

the design codes for the joints, EC3-1-9 [5]. In addition, they refer that mean stress effects 

must be accounted for riveted joints and suggested the use of a normalized stress range 

to allow the comparison of experimental fatigue data for distinct mean stresses to be 

made [36]: 

 
 




Rf
norm    (3.17) 

where σnorm is the normalized stress range, σ is the tested stress range, f(Rσ) is a 

normalization function to account for stress ratio effects, defined as a function of the 

material. 

For wrought iron and mild steel manufactured before 1900,  f(Rσ) is defined as [36]: 
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For mild steel after 1900 (St37, St48, St52, etc.) the following normalization function is 

proposed [36]: 
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  (3.19) 

Figures 3.88 and 3.89 compare the S-N data from riveted joints of Portuguese bridges 

with S-N data from Taras and Greiner investigation [36], with details categorization, 

respectively, into single and double joints. Also, the Eurocode 3, class 71 S-N curve is 

presented [5]. The S-N data is represented using the normalized stress function, as 

defined in Equation (3.17). For double shear riveted joints, Taras and Greiner [36] 

proposed a design S-N curve with a slope, m=5 and a fatigue strength of 90MPa at 2×106 

cycles, while for single shear riveted joints, a design S-N curve with a slope, m=5 and a 

fatigue strength of 71MPa at 2×106 cycles was proposed by these authors. Only very few 

points from Portuguese riveted bridges fall below these design S-N curves, namely 

corresponding to riveted connections from Eiffel (double shear), Luiz I and Pinhão bridges 

(single shear). This result may be justified by the high damage levels experienced by the 

riveted joints, due to the long bridge operation time. A higher slope, m, of the S-N curve 

( CN f
m  ) is suggested by the experimental data, when a comparison is made with 

the class 71 S-N curve of the Eurocode EC3-1-9 [5]. Therefore, the proposition of new S-N 

curves based on a slope m=5 seems to be an appropriate decision for riveted joints. 

3.7. CONCLUDING REMARKS 

In this chapter, strain-life and fatigue crack propagation data for samples of original 

materials removed from five Portuguese ancient riveted metallic bridges, namely from 

the Eiffel, Luiz I, Fão, Pinhão and Trezói bridges was compiled. Also, S-N fatigue resistance 

data from riveted joints made of original materials from the Portuguese bridges was 

gathered. The strain-life fatigue data was correlated using deterministic models. The 

fatigue crack propagation data was correlated using both the Paris model and the Walker 

model, the latter allowing the description of stress ratio effects. 
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Figure 3.88 – Comparison of S-N data between Portuguese and international bridges details and proposal of 
a design S-N curve for single shear joints. 
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Figure 3.89 – Comparison of S-N data between Portuguese and international bridges details and proposal of 
a design S-N curve for double shear joints. 

Materials from the Eiffel, Luiz I, Fão and Pinhão bridges are very likely puddle irons 

account give of their age, the high microstructural heterogeneities and the low ductility 

properties. The material from the Trezói bridge is a low carbon structural steel. In general, 
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there is a significant correlation between the mechanical performance, including fatigue, 

and the age of the materials. 

Regarding the cyclic elastoplastic behaviour, the material from Trezói bridge does not 

follow the Masing behaviour while the materials from Eiffel and Luiz I bridge may be 

satisfactorily described by the Masing model, since some apparent deviation from the 

Masing behaviour may be justified by scatter in material properties. The material from 

Fão bridge shows a cyclic elastoplastic behaviour dependent on strain ratio, while the 

material from the Trezói bridge shows cyclic softening for strain ranges below 1%, the 

older materials show cyclic hardening. 

Regarding the strain-life behaviour of the materials investigated, the number of transition 

reversals decreases with increasing age of the materials. The older materials show a 

transition life between low- and high-cycle fatigue regimes that is considered very low. 

Only the material from the Trezói bridge shows a transition life in the usual range for low 

carbon steels. Therefore, fatigue strength properties should play an important role on 

fatigue assessment of these old metallic bridges. 

The fatigue crack propagation tests showed that the Paris law gives a good description of 

the fatigue crack growth data, for each stress ratio. The exponent of the Paris law 

resulted always greater than the value suggested by codes of practice (m=3). The C 

coefficient was in order of magnitude lower than that recommended in literature for 

modern construction steels. A fatigue crack propagation design curve was proposed 

taking into account 42 fatigue crack propagation tests on original samples of the material 

from five distinct bridges. The Walker model improved the correlation of the fatigue crack 

propagation rates with the stress ratio effects.  

 S-N fatigue data from original riveted joints was compared with existing design curves. 

This comparison shows some data falling below the design S-N curves that corroborates 

the presence of cracks originated by the prior operation of the bridge or material 

degradation. The comparison performed with literature S-N data suggests the need of a 

riveted joint categorization, in particular the consideration of single and symmetric 

double shear splices. Also, a slope m=5 seems to be more appropriate for riveted joints, 
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rather than m=3, as suggested by the current design codes. The influence of the stress R-

ratio on S-N data for riveted joints has also to be accounted for in a convenient way. 

Fracture mechanics and S-N based fatigue approaches have been used to assess riveted 

details, consisting on more classical approaches. Recent research suggests the use of local 

approaches to fatigue, supported on detailed finite element models [37,38,39]. The 

availability of adequate material properties is crucial. This issue is a limitation of the local 

approaches when materials under consideration are not fully investigated, and their 

fatigue properties are, consequently, not available. 
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A PROPOSAL FOR GENERALIZATION OF EXISTING 

PROBABILISTIC FATIGUE DAMAGE MODELS 

 

4.1. INTRODUCTION 

Probabilistic fatigue models are required to account conveniently for the different 

sources of uncertainty arising in the prediction procedures, such as the scatter inherent to 

material behaviour. Most of the fatigue models currently used has essentially a 

deterministic basis. However, their application for design purposes requires subsequently 

additional statistical arguments in order to establish appropriate safety margins, not 

always based on sound criteria, and consequent assumptions of the statistical 

distributions implied. Also, to carry out reliability analyses the fatigue resistance must be 

established in an appropriate probabilistic form. As a consequence, failure prediction, 

engineering design and risk analysis in fatigue are not possible without the support of 

probabilistic fatigue models. 

A generalization of the basic probabilistic model proposed by Castillo and Fernández-

Canteli [1] to describe the S–N and εa–N fields is proposed in this chapter. In the 

development of the original model, the referred authors assumed simple variables, 

namely the stress and strain amplitudes (or ranges) as governing fatigue damage 

variables. With this original model, it is possible to correlate the stress or strain based 

fatigue data obtained for simple loading conditions (e.g. uniaxial stress/strain states) 

using a hyperbolic field derived from Weibull or Gumbel distributions (see Figure 4.1).  
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Figure 4.1 – Relation between the hyperbolic probabilistic fatigue and the Weibull/Gumbel distributions. 

However, the use of the referred simple variables to model the fatigue phenomena 

proves to be an apparent limitation of the proposed basic model. On effect, literature 

demonstrates that fatigue damage is very often governed by more complex damage 

parameters in order to cover many aspects concerning the fatigue phenomenon. In 

particular, the mean stress effects on S-N fields may be accounted by a convenient 

change of damage variables, such as that proposed by the empirical model of Smith-

Watson-Topper [2].  For this particular case of mean stress effects, Castillo and 

Fernández-Canteli [1] also proposed a analytical, probabilistic model to describe the mean 

stress effects on S-N fields, but the resulting model, despite very accurate representation 

of experimental data [1], implies a significant number of constants that requires a 
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complex identification procedure. The availability of a model with a simpler structure is 

attractive, for it to be used for the design of structural components. 

Despite not formal, the Smith-Watson-Topper damage parameter may be assumed as an 

energetic parameter. A number of energetic parameters are suggested in the literature, 

some of which are considered in this chapter to demonstrate the capability, of the 

proposed generalization concept based on the basic probabilistic model [3]. 

Another possible generalization of the basic probabilistic model consists in its application 

to multiaxial fatigue damage parameters. Many of the existing works on multiaxial fatigue 

deal with deterministic models [3]. Therefore, this generalization proposal will open new 

possibilities for experimental data analysis in multiaxial fatigue. 

In this chapter, the basic probabilistic model is introduced and its generalization 

described. Thereafter, the fatigue damage parameters are introduced, most of them 

based on literature. Finally, the capability, of the new fatigue damage parameters 

combined with the basic probabilistic model is demonstrated based on existing 

experimental data. 

4.2. PROPOSAL FOR THE GENERALIZATION OF AN EXISTING PROBABILISTIC 

MODEL 

In the original contributions of Castillo and Fernández-Canteli [1], a probabilistic field for 

the stress amplitude versus life is proposed based on Weibull or Gumbel distributions as 

represented in Equations (4.1) and (4.2):  

   

    





























 


00

00**

loglog

loglog
exp1);(

aaf

aaf

af

NN

NN
NFp

 (4.1) 

   
















 





 00** loglog

expexp1);( aaf

af

NN
NFp  (4.2) 

 



CHAPTER IV 

 IV.4 

Similar fields but referred to strain amplitude are also proposed by the those authors as 

given in Equations (4.3) and (4.4): 
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The Gumbel field is a limiting case of the Weibull field, when  or even for values of  

higher than, say, 6. It is interesting to note that authors by applying the same model to 

describe the probabilistic stress and strain fields, implicitly assumed the possibility of 

generalization of the model. In any case, they propose the use of two simple damage 

variables: the uniaxial stress or strain amplitudes. 

Figure 4.2 illustrates the p-a-N Weibull field, which is characterized by percentile curves 

showing hyperbolic shape with two asymptotes: the horizontal one, having a clear 

physical meaning, represents the fatigue limit; the vertical one, denoted threshold value 

of lifetime, has a more controversial meaning as a limiting number of cycles.  
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Figure 4.2- Probabilistic a -N field. 

Some authors [3] proposing deterministic fatigue models have shown that a power 

function between the damage parameter and the fatigue life gives a good description of 
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the fatigue data in the assessment of many practical cases. Figure 4.3 illustrates such 

generic damage power relation, which has the following mathematical form: 

  0

 t  (4.5) 

where  represents a fatigue damage parameter, 0 is a fatigue damage threshold,  and 

 are material constants.  A comparison between the generic power damage relation and 

the hyperbolic percentile curves shows that the power damage relation may be 

approached by a subdomain of the hyperbolic curves. The main differences resides in the 

lower part of the fatigue lives, where the hyperbolic field fails to represent adequately 

the material behaviour. Therefore, the hyperbolic field should be used with precaution to 

perform extrapolations of the fatigue behaviour to lower fatigue lives than covered by the 

existing experimental data. Also, the referred power relation is clearly not appropriate to 

represent fatigue data in very low fatigue life regimes, where a sigmoidal function 

between the damage parameter and the number of cycles would be required, in general, 

required to cover experimental results. 
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Figure 4.3 - Schematic representation of the power relation between the fatigue life and a generic damage 

parameter,  , showing a damage threshold. 

Taking into account the aforementioned arguments, it is proposed a generalization of the 

probabilistic models developed by Castillo and Fernández-Canteli [1] by considering other 

damage parameters. The selection of the damage variables involved in the derivation of 

the original model needs therefore to be updated accordingly: 
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  0,,,, 00 pNNr f   (4.6) 

where , 0 are, respectively, generalized fatigue damage and threshold fatigue damage 

parameters. The same mathematical representation of the probabilistic fields as 

previously referred in Equations (4.1)-(4.4) arise by performing dimensional analysis and 

applying the statistical assumptions proposed by those authors. If only the Weibull 

distribution is considered hereafter, the generalized damage probabilistic field is defined 

as: 
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where p is the probability of failure, N0 and 0  are normalizing values and   ,   and   

are the non-dimensional Weibull model parameters. The physical meaning of the 

parameters involved in Equation (4.7) is (see illustration in Figure 4.4): 

N0: Threshold value of lifetime; 

0 : Damage threshold expressed in terms of the general damage parameter; 

 : Parameter defining the position of the corresponding zero-percentile curve; 

 :  Scale parameter; 

 : Shape parameter. 

Equation (4.7) has a dimensionless form and reveals that the probability of failure p 

depends only on the product **fN , according to a Weibull distribution: 
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* log NNN ff   and  0

* log   . 
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Figure 4.4- Generalized probabilistic  -N field. 

4.3. SELECTION AND ANALYSIS OF SOME REPRESENTATIVE DAMAGE 

PARAMETERS  

In this section, a selection of fatigue damage parameters that could be considered as the 

reference driving force by the Weibull probabilistic representation, will be presented thus 

covering distinct aspects of the fatigue modelling. The proposed damage parameters will 

be selected from existing deterministic fatigue damage approaches that may be 

represented with the following functional forms: 

   fNgf 0,  (4.9) 

or 

     021  fNgf f   (4.10) 

where f , 1f  and 2f  are not functions of the number of cycles to failure and g  is not a 

function of the damage parameters what implies the separation of the variables, damage 

and cycles to failure, in Equations (4.9) and (4.10).  For example, the Morrow equation 

with mean stress correction (see Equation (2.6)) does not fulfill the requirements of 

equations (4.9) or (4.10). 
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4.3.1. Smith-Watson-Topper damage parameter and counterpart parameter for uniaxial 

loading conditions 

Smith et al. [2] proposed a damage parameter, known as SWT parameter, to account for 

mean stress effects updating existing strain-based fatigue models. This parameter is 

defined as: 

aSWT   max  (4.11) 

where max  is the maximum stress during the cycle and 2 a  is the strain amplitude. 

According to Smith et al. [2], a specimen subjected to any loading condition representing 

different combinations of max  and a  but resulting in the same SWT damage parameter, 

i.e. the same product a max  should exhibit the same fatigue life. Also, for any fixed 

strain amplitude, an increase of the maximum stress (which also implies an increase of 

the mean stress) leads, obviously, to an increment of the SWT damage parameter, which 

entails a reduction of the fatigue life. The SWT damage parameter was originally related 

to the fatigue life by means of the following equation that results from the combination 

of the Morrow [4] and Basquin [5] relations: 

      cb

fff

b

ff NENSWT 
 2''2'2 22

max   (4.12) 

where σmax is the maximum stress and SWT is the fatigue damage parameter.  In Figure 

4.5, the SWT parameter is plotted against fatigue life obtained for the material from Eiffel 

bridge using data from smooth specimens tested under strain-controlled conditions (R=–

1). The figure also includes the deterministic line fitted by Equation (4.12), which shows a 

good correlation with the experimental data. From the analysis of the data one can 

realize that the experimental data can be approximated by an hyperbolic field as will be 

demonstrated later in this chapter. 
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Figure 4.5 - Fitting of fatigue data for material available from Eiffel bridge (Rε=-1) using the SWT damage 
parameter and a deterministic relation (Eq. (4.12)). 

The SWT parameter may be considered an informal energetic damage parameter. A 

counterpart of the SWT damage parameter can be stated as the product 2max    as 

suggested in reference [6].  For fully-elastic conditions both parameters are coincident: 
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Even for elastoplastic conditions, the 2max    and the 2max    damage parameters 

also coincide, if fully-reversible elastoplastic conditions are ensured. For fully-reversible 

elastoplastic conditions the following conditions are met: 
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 (4.14) 

For general non-symmetrical elastoplastic conditions, the referred damage parameters 

differ from each other. Depending on plastic conditions, the maximum cyclic elastoplastic 
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stress and strain may not be constant throughout the loading history. For non-

symmetrical stress controlled data, the maximum plastic strains may increase 

progressively due to progressive plastic deformation (ratcheting). In this condition, the 

maximum plastic strain may not achieve a stable state, and so that the identification of 

the 2max    parameter is not apparent, and the 2max    parameter happens to be 

more adequate as a reference. On the other hand, for non-symmetrical strain controlled 

elastoplastic conditions, the material experiences mean stress relaxation, with a 

relaxation rate depending on the amount of cyclic plasticity. In this case, the identification 

of the SWT parameter is not straightforward, since the maximum stress is not stable, and 

the 2max    parameter becomes now the suitable one. 

In general, the stress and strain amplitudes under cyclic elastoplastic conditions may be 

related using the cyclic σ-ɛ curve of the material, which may be expressed by the non-

linear Ramberg-Osgood relation [7] as: 
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Accordingly, for non-symmetrical stress-controlled elastoplastic conditions, the SWT 

damage parameter may be transformed into the following stress based-damage 

parameter: 
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Using the previous stress-based damage parameter, one can describe the S-N-R field of 

the material. 

On its turn, for non-symmetrical strain-controlled elastoplastic conditions, the 2max    

damage parameter may be transformed into the following stress based-damage 

parameter: 








































n

KERR

/1

max
2212

.
1

2





 (4.17) 



A proposal for generalization of existing probabilistic fatigue damage models 

 IV.11 

Equations (4.16) and (4.17) only differ in the stress and strain ratio parameters whereas 

these parameters coincide only for elastic conditions and fully-reversible elastoplastic 

conditions. Under other elastoplastic conditions, they differ from each other and does not 

exist a simple analytical relation between them. 

Since the aforementioned damage parameters are coincident for elastic conditions they 

are both adequate to fit fatigue data in the high cycle region where elastic stresses are 

dominant. The shape of the cyclic σ–ε curve suggests the consideration of 2max    as 

the new parameter representing the driving force. Instead of being considered a simple 

opportunistic variant to the SWT parameter, it tries to take allowance of the markedly 

increasing values for εmax compared to those of σmax, when the elastic limit stress is 

exceeded, maintaining the energy character of any product of stress and strain in the 

search of a general fatigue parameter capable to reproduce elastic-plastic effects, just like 

does the SWT parameter. 

Figure 4.6 represents again the experimental fatigue data obtained for the material of the 

Eiffel bridge, this time using 2max    as damage parameter. Since the fatigue data 

were derived from fatigue tests performed under strain controlled conditions with Rε=-1, 

it is expected both parameter to be coincident and thus leading to the same 

representation. However, both strains and stresses were independently measured during 

tests, thus leading to small variations between the two damage parameters due to results 

scatter. In Figure 4.6 it was decided to fit the data using a simple power relation, since no 

explicit relation was found between the damage parameter 2max    and the number 

of cycles. Again, those experimental data will be correlated later in this chapter using the 

proposed generalized probabilistic model. 
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Figure 4.6 – Deterministic fitting of fatigue data for material available from Eiffel bridge (Rε=-1) using the 

σ·εmax damage parameter and power relation. 

4.3.2. Energetic parameters for uniaxial fatigue loading conditions 

In the previous section, two damage parameters were described, which may be 

considered energetic type damage parameters. However, some more formal energetic 

damage parameter formulations are found in the literature [3], which may be tested in 

the proposed generalization of the probabilistic model. These energetic damage 

formulations are developed for elastoplastic stress-strain conditions, using the strain 

energy associated to stress-strain hysteresis loops. Energy-based criteria can be classified 

into two categories depending upon which one of the following hypotheses is used: 

- The total absorbed energy to fracture is constant and independent of the 

number of cycles to failure; 

- The total absorbed energy to fracture depends on the number of cycles to 

failure. 

Halford [8] observed for a wide variety of materials that the total absorbed energy at the 

moment of fracture was dependent on the numbers of cycles. Assuming the hypothesis of 

a total energy of fracture being dependent of the total number of cycles, the energy-life 

relationships can be presented under the generic deterministic form given by Equation 
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(4.5) or using the hyperbolic generalised probabilistic Weibull field given by Equation 

(4.7). 

 
a) b) c) 

Figure 4.7 - Cyclic energetic parameters: a) plastic strain energy range; b) total strain energy range; c) 

modified total strain energy range taking into account the mean stress effects. 

Different energetic parameters have been proposed, among which the plastic strain 

energy range, WP deserves to be stated as a reference magnitude. The plastic strain 

energy range, WP, associated to a load cycle, is given by the area of the stress-strain 

hysteresis loop (see Figure 4.7a)) and, for a Masing type material may be defined by the 

following relation: 
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where εP is the plastic strain range, σ is the stress range and n’ is the cyclic strain-

hardening exponent. For a non-Masing material, the Equation (4.18) may not be accurate. 

The procedure for calculating the plastic strain energy range for a non-Masing material is 

outlined in references [9,10], using the master curve concept, and is given by: 
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where 0 is the increase of the proportional limit stress. 

Using the plastic strain energy range, WP, as a damage energetic parameter, Equation 

(4.5) can be rewritten as follows: 

  P
0fP

P WN2W P  
  (4.20) 



CHAPTER IV 

 IV.14 

where αP<0 and P>0 are constants and P
0W  is the plastic strain energy range 

corresponding to the fatigue limit. For most materials the plastic strain energy range at 

the fatigue limit, P
0W , is very small and, therefore, can be neglected. Equation (4.20) is 

more adequate to describe the behaviour for the low-cycle fatigue region. 

Ellyin and Kujawski [11] suggested the use of the total strain energy range per reversal, 

W, which includes both the elastic and plastic strain energy components (see Figure 

4.7b)), to unify the description of the low- and high-cycle fatigue behaviours. The strain 

energy range per reversal, i.e. the area of Figure 4.7 b), can be written as: 

 2
1

2
1 PWW  (4.21) 

where Wp is the hysteresis energy given by Equation (4.18). Substituting W in Equation 

(4.5), the fatigue failure criterion in terms of the total strain energy range for low- and 

high-cycle fatigue is given by the following expression: 

  02 WNW f 


  (4.22) 

where α<0 and >0 are constants of materials and 0W  is the plastic strain energy range 

corresponding to the fatigue limit, which is defined by the following equation: 

EE
WW ffP

22

22

00

 














 
  (4.23) 

where σf is the stress range fatigue limit. The energy-life relations defined by Equations 

(4.20) and (4.22) have certain limitations regarding their range of applicability because 

they are not sensitive to the mean stress. Thus, these relationships are generally 

adequate to describe the fatigue behaviour for alternating or almost alternating loads 

(Rσ≈-1). Golos and Ellyin [12,13] suggested an alternative energetic parameter sensitive to 

the mean stress. These authors proposed another version of the total strain energy range, 

Wt, resulting from the superposition of the plastic strain energy range, WP, with the 

elastic strain energy range associated with the tensile stress, WE+ (see Figure 4.7c)): 

 EPt WWW  (4.24) 
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The plastic strain energy range, WP, is defined by Equation (4.18) whereas the elastic 

strain energy range associated with the tensile stress, WE+ is determined by: 

0
222

1
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2
max

2












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
for

EE
W m

E  (4.25) 

Substituting Wt in Equation (4.5) results in the following energy-life relation, sensitive to 

the mean stress: 

  t
ft

t WNW t

02 


  (4.26) 

where αt<0 and t>0 are constants and t
0W  is the total strain energy range, tW , 

corresponding to fatigue limit, defined by the following expression: 

0
2

min

2
max

0  


for
E

W t  (4.27) 

Figure 4.8 plots the fatigue data obtained for the material from Eiffel bridge using the 

relation given by Equation (4.26). A high determination coefficient was achieved for the 

resulting fitting using Equation (4.26). Inspired in Morrow relation, it is also possible to 

use a superposition of two power relations to correlate the tW  according to: 

    E

fE

P

fp
EPt NNWWW 

 22    (4.28) 

Figure 4.9 represents the previous equation for the material from the Eiffel bridge. Lower 

determination coefficients were observed in this regression analysis, but global fitting is 

still very satisfactory. In a later Section the performance of the proposed generalized 

probabilistic fatigue model will be assessed using this particular damage parameter. 
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Figure 4.8 – Fitting of fatigue data for material available from Eiffel bridge (Rε=-1) using the energetic 

damage parameter, tW ,  and a power relation. 
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Figure 4.9 – Fitting of fatigue data for material available from Eiffel bridge (Rε=-1) using the energetic 

damage parameter, tW ,  and a superposition of two power functions. 
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4.3.3. Fatigue damage parameters for multiaxial loading conditions 

The proposed generalization of the probabilistic Weibull model of Castillo and Fernández-

Canteli could represent also an important advantage to correlate multiaxial fatigue data. 

This model could be a valuable probabilistic tool to account for the scatter of multiaxial 

fatigue results. There are a number of multiaxial damage parameters being proposed in 

the literature covering low-cycle fatigue, high-cycle fatigue, proportional and non-

proportional loading conditions [3,14]. Many of these damage parameters are 

approximately correlated with the number of cycles to failure, by means of a power 

relation with the general form illustrated in Figure 4.3. Depending on the fatigue regime, 

a trend to a horizontal asymptote representing the damage threshold could also be 

noticeable. This type of representation could be properly approximated by a subdomain 

of a hyperbolic function as given by the proposed probabilistic model. In the next 

subsections, some multiaxial damage parameters are presented that will illustrate a 

proper generalization of the Weibull field to correlate multiaxial fatigue. It is not the aim 

of this thesis to describe all possible damage parameters for multiaxial fatigue but instead 

to present some representative ones, for which experimental data has been found in the 

literature. 

4.3.3.1. Energetic damage parameters 

Energetic approaches constitute an important means to derive multiaxial fatigue models. 

Ellyin [3] proposed a model based on the energy density associated to each cycle, tW , 

which is composed by two parts: plastic strain energy, PW , and the positive elastic 

strain energy,  EW . These two quantities were illustrated in Figure 4.7 for uniaxial 

loading conditions.  The  EW  term allows the inclusion of mean stress effects into the 

energy-based criterion. In the case of proportional or biaxial non-proportional loading, 

the total energy density associated to a cycle may be computed as: 

   


 

Tt

t

e
ii

e
ii

Tt

t

P
ijij

EPt ddHHdWWW   (4.29) 
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where ij  and P
ij  are the stress and plastic strain tensors, i  and e

i  are the principal 

stresses and the principal elastic strains, T  is the period of one cycle and  xH  is the 

Heaviside function (   1xH  for 0x  and   0xH  for 0x ). 

The fatigue failure criterion is defined according to the following expression: 

  CNW
W

W f
E

P
t 


  




 2  (4.30) 

where  , α and C  are material parameters to be determined from appropriate tests and 

2Nf is the number of reversals to failure. The multiaxial constraint ratio,  , can be 

determined using the following expression: 

 
max

max

ˆ

ˆ
1




   (4.31) 

with 

 ta  ,maxm̂ax   (4.32) 

 rtra   ,maxˆ
max  (4.33) 

where  is an effective Poisson’s ratio calculated from: 
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 (4.34) 

where a  and t  are principal in-plane strain (axial and transversal) parallel to the free 

surface, and r  is the radial strain (perpendicular to the free surface), given by the 

following expression: 

 
 tar 




 






1
 (4.35) 

The multiaxial constraint ratio,  , defined by Equation (4.21), demonstrates the 

importance of the orientation of the free surface with respect to the imposed principal 

strains, and has an important physical interpretation regarding the fatigue damage 

process: 
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Figure 4.10 represents a correlation between the energetic multiaxial fatigue parameter 

proposed by Ellyin [3] (see Equation 4.29) and the number of cycles obtained for 

proportional multiaxial fatigue data covering several multiaxial constraint factors, for the 

ASTM A-516 Gr. 70 steel. The plotted line was fitted to uniaxial tensile data. The good 

agreement of the multiaxial fatigue data to this line shows the suitability of the proposed 

multiaxial damage parameter. 

The application of the energetic parameter proposed by Ellyin to non-proportional 

loading requires a modification in the multiaxial constraint factor,   [3]. The multiaxial 

constraint factor proposed for multiaxial loading does not work conveniently for non-

proportional loading since it is not constant during the cycle. The following alternative 

form was proposed for non-proportional loading: 

 
 
 

maxˆˆ
ˆ

ˆ
1













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




t

t
 (4.37) 

This means that the   parameter is evaluated using a ratio  ˆ/ˆ  taken at the instant 

when the shear strain in the direction 45 to the surface reaches its maximum value. 

Figure 4.11 represents a correlation between the energetic multiaxial fatigue parameter 

proposed for proportional and non-proportional multiaxial fatigue data, where  

represents the phase angle between a  and t , obtained for ASTM A516 Gr. 70 steel. The 

proportional fatigue data is the same as Figure 4.10. 
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Figure 4.10 – Fitting of multiaxial proportional data to lifetime using the energetic parameter by Ellyin [3]. 
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Figure 4.11 – Correlation between multiaxial proportional and non-proportional data using the energetic 

parameter by Ellyin [3]. 

4.3.3.2. Critical plane based damage parameters 

Another group of damage parameters for multiaxial fatigue is represented by the critical 

plane based damage parameters, among which those of Fatemi and Socie [15] and Fatemi 

and Kurath [16], improved by Jiang et al. [17] are presented in this Section. Fatemi and 
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Socie [15] and Fatemi and Kurath [16] proposed a shear-strain based multiaxial fatigue 

criterion that can be expressed by the following mathematical form:  



















y

nKFP


 max,1
2

 (4.38) 

where FP  is the fatigue parameter,  2/  is the shear strain amplitude,  m ax,n  is the 

maximum normal stress on the critical plane, y  is the yield stress of the material and K  

is a material constant. The original fatigue criterion proposed by Fatemi and Socie [15] 

and Fatemi and Kurath [16] defined the critical plane as the plane associated with the 

maximum shear strain amplitude. However Jiang et al. [17] defined the critical plane as 

the material plane where the fatigue parameter ( FP ) expressed by Eq. (4.38) reaches a 

maximum. Using data available from tubular specimens made of S460 steel tested under 

pure tension-compression and pure torsion Jiang et al. [17] were able to identify the K  

constant and to correlate the fatigue parameter with the number of cycles to failure using 

a power relation. Figure 4.12 illustrates such correlation, which was obtained by a trial 

and error procedure for parameters estimation ( 98.0K , MPay 500 ). The resulting 

power relation has the following form: 
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f

FP

NFP

  (4.39) 

Jiang et al. [17] demonstrated the suitability of relation (4.39) to predict multiaxial 

proportional and non-proportional multiaxial loading paths.  

The analysis of Figure 4.12 reveals that the referred fatigue parameter is a good candidate 

to be correlated with the number of cycles to failure using the Weibull probabilistic 

model.  
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Figure 4.12 – Fitting of multiaxial proportional data to lifetime using a critical plane parameter [17]. 

4.4. APPLICATION OF THE PROBABILISTIC FATIGUE DAMAGE MODEL TO 

DIFFERENT FATIGUE DAMAGE PARAMETERS 

In this section the probabilistic fatigue model originally proposed by Castillo and 

Fernández-Canteli [1] will be applied to a diversity of fatigue damage models selected and 

described in the previous section. The aim of this section is to demonstrate the suitability 

of the probabilistic model to correlate distinct types of fatigue parameters with lifetime, 

covering uniaxial and multiaxial fatigue loading. 

The parameters of the probabilistic −N fields (B,C, , , ) are estimated using the 

procedures proposed by Castillo and Fernández-Canteli [1], namely the constrained least 

square method (B,C) and the maximum likelihood method (, , )  (see chapter II for 

more details). 

The quality of the fitted model is assessed through P-P plots, where the resulting 

goodness of fit of the 45° line gives a measure of the difference between the test data set 

(sample) and the theoretical proposed field. 
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For each damage parameter, the respective probabilistic field is presented using the 

percentile curves corresponding to probability of failures of 1%, 5%, 50%, 95% and 99%. 

In addition to these percentile curves, the deterministic fitting curves given in the 

previous Section are included for comparison purposes with the 50% percentile curve. 

4.4.1. Smith-Watson-Topper damage parameter and counterpart parameter for uniaxial 

loading conditions  

Figures 4.13 and 4.14 illustrate the probabilistic fields correlating, respectively, the 

2max    and 2max    parameters with the number of cycles to failure, using the 

experimental data obtained from the Eiffel bridge material. Figures 4.15 and 4.16 

illustrate the goodness of the fittings using P-P plots. In general, the correlation of the 

experimental data using the probabilistic field is satisfactory. The comparison between 

the 50% percentile curve and the deterministic lines referred in Section 4.2 show the 

major deviations for the extrapolation in the very-low cycle fatigue region. Nevertheless, 

concerning the 2max    parameter, a very good agreement between the regression 

line and the 50% percentile is observed. For the 2max    parameter, the main 

deviation between the 50% percentile and the deterministic fitted line occurs for an 

extrapolated domain, where no experimental data is found. Therefore, a comparison in 

this region should be not overvalued.   
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Figure 4.13 – p-SWT-N field for the puddle iron from the Eiffel bridge. 
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Figure 4.14 – p-max./2-N field for the puddle iron from the Eiffel bridge. 
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Figure 4.15 – P-P plot showing the quality of the fitted probabilistic fatigue model based on the  SWT 

parameter, proposed for the material from Eiffel bridge. 
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Figure 4.16 – P-P plot showing the quality of the fitted probabilistic fatigue model based on the max./2 

parameter, proposed for the material from Eiffel bridge. 

4.4.2. Energetic parameters for uniaxial loading conditions 

Figure 4.17 shows the probabilistic field correlating the tW  energetic fatigue damage 

parameter with the number of cycles to failure, using the experimental data obtained for 

the Eiffel bridge material. The P-P plot shown in Figure 4.18 illustrates the good fitting 

given by the proposed probabilistic field. The comparison between the 50% percentile 

curve and the two deterministic lines referred in Section 4.2 for this data show better 

agreement for the deterministic combined power relation. The original deterministic 

relation proposed by Ellyin [3] underestimates the fatigue lives in the medium region and 

overestimates fatigue lives for the low and high cycle regimes. It is interesting to note 

that the 50% percentile curve fits in between the two deterministic lines for very-low 

cycle fatigue.  For very high cycle fatigue the 50% percentile curve falls below the two 

deterministic fitted lines, apparently suggesting a lower fatigue limit. However, this 

probabilistic model is able to correlate this fatigue limit region if adequate data is 

available for this region, including run-outs. In addition the probabilistic model gives the 

complete probabilistic field and one can realize that all experimental data fall inside the 

98% failure probability. Only one data points falls outside this band, giving a high 

indication of the accuracy of the probabilistic model. 



CHAPTER IV 

 IV.26 

0.01

0.1

1

10

1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

[M
Pa

]

Cycles to failure, Nf

p=1%

p=5%

p=50%

p=95%

p=99%

Experimental Data

Simple Power Relation

Combination of two Power Relation

B = -24.4471
C = -13.5552
β = 5.4
λ = 377.5102

 = 55.4373

 
]

/
[

3
m

M
J

W
t



 

Figure 4.17 – p-W
t
 -N field for the puddle iron from the Eiffel bridge. 
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Figure 4.18 – P-P plot showing the quality of the fitted probabilistic fatigue model based on the W
t
 

parameter, proposed for the material from Eiffel bridge. 

4.4.3. Energetic fatigue damage parameters for multiaxial loading conditions 

Figures 4.19 and 4.20 represent the probabilistic fields correlating the  EP WW   

energetic fatigue damage parameter and the number of cycles to failure, using the 
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multiaxial experimental data available from the ASTM A516 Gr. 70. According to the 

respective P-P plots, shown in Figures 4.21 and 4.22, an excellent fitting of the 

experimental data was obtained using the proposed probabilistic field. The comparison 

between the 50% percentile curve and the deterministic lines referred in Section 4.2 for 

this data show some agreement below 1x106 cycles. However, a major deviation is 

observed above this fatigue life, with the 50% percentile curve falling below the 

deterministic line. In the identification process of the probabilistic field, no run-outs were 

assumed, so that the model was not able to define this domain. Apparently, the 

deterministic regression line is suggesting a fatigue limit plateau no supported by the 

experimental data since the available experimental data for lives above 1x106 cycles are 

not highlighted as run-outs. 
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Figure 4.19 – p-
 EP WW  -N field proposed for the A516 Gr. 70. 
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Figure 4.20 – p-
 EP WW  -N field proposed for the A516 Gr. 70 (including non-proportional 

loading data). 
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Figure 4.21 – P-P plot showing the quality of the fitted probabilistic fatigue model based on the 

 EP WW  parameter, proposed for the A516 Gr. 70. 
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Figure 4.22 – P-P plot showing the quality of the fitted probabilistic fatigue model based on 

the
 EP WW  parameter, proposed for the A516 Gr. 70 (including non-proportional loafing data). 

4.4.4. Critical plane based fatigue damage parameter for multiaxial loading conditions 

Figure 4.23 represents the probabilistic field correlating the critical plane fatigue 

parameter proposed by Fatemi et al. [15,16] for multiaxial fatigue and the number of 

cycles to failure obtained for the S460N structural steel grade. Despite the global 

satisfactory agreement between the probabilistic field and the experimental fatigue data, 

the respective P-P plots, shown in Figure 4.24, points out some deviation for low 

probabilities of failure. This is mainly justified by a very narrow scatter band of the 

experimental data with one exception point corresponding to the lowest fatigue life. The 

experimental data fitting below the 50% percentile is very close to this line with the 

referred data point. Censoring the lowest lifetime data point, the probabilistic field of 

Figure 4.25 is obtained for which the P-P plot (see Figure 4.26) becomes very satisfactory. 

The comparison between the 50% percentile line and the deterministic simple power 

relation only shows significant deviation for lives below 1x103 cycles that would be even 

more amplified if eventual extrapolations should be performed for lower fatigue lives. It is 

important to note that due to the asymptotic behaviour of the probabilistic field for very 
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low number of cycles to failure, its use for extrapolations in this fatigue regime should be 

performed with care. 
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Figure 4.23 – p-FP-N field proposed for the S460N. 
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Figure 4.24 – P-P plot showing the quality of the fitted probabilistic fatigue model based on the FP 

parameter, proposed for the S460N. 
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Figure 4.25 – p-FP-N field proposed for the S460N (one experimental data point censored). 
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Figure 4.26 – P-P plot showing the quality of the fitted probabilistic fatigue model based on the FP 

parameter, proposed for the S460N (one experimental data point censored). 

The comparison between the 50% percentile curve and the deterministic lines referred to 

in Section 4.2 for this data show good agreement below 1x106 cycles. 
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4.5. CONCLUSIONS 

A generalization of the probabilistic model originally proposed by Castillo and Fernández-

Canteli is proposed in this chapter by introducing conventional and new fatigue damage 

variables. This proposal opens new perspectives for the application of the probabilistic 

model to a number of very general problems of lifetime involving fatigue modelling. In 

particular, the proposed probabilistic model can be used as an suitable alternative to 

replace existing deterministic approaches to fatigue relating explicitly a damage 

parameter with the number of cycles. 

Energetic parameters as reference for fatigue damage for both uniaxial and multiaxial 

fatigue are considered and adequately estimated using the probabilistic model. 

Concerning multiaxial fatigue, both proportional and non-proportional fatigue data are 

satisfactory related to probabilistic using the approach proposed. 
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PROCEDURE TO DERIVE PROBABILISTIC FATIGUE CRACK 

PROPAGATION FIELDS (p-da/dN-K-R) 

 

5.1. INTRODUCTION 

The research on fatigue of materials and structures has deserved great interest both by 

academia and industry. Fatigue has been investigated for more than 150 years and still is 

a hot topic in research [1]. In particular, the investigation on fatigue crack propagation is 

not fully accomplished, despite the great achievements of the last decades. 

Paris et al. [2] were the first ones to establish a direct correlation between the fatigue 

crack propagation and a Fracture Mechanics parameter – the stress intensity factor, 

leading to the so-called Paris’s law. Since then, the Paris’s law has been used extensively 

to model fatigue crack growth under constant amplitude loading. However, Paris’ law 

shows several limitations, namely it only models the stable crack propagation, excluding 

near threshold and near unstable fatigue crack propagation regimes. Also, the stress ratio 

effects are not accounted for by the Paris’ law. Many other fatigue crack propagation laws 

have been proposed to overcome the limitations of the Paris’ law and also to deal with 

variable amplitude loading [3]. The proposed fatigue models differ on the number of 

variables and parameters involved. 

Local strain-based approaches to fatigue [4-7] represents an alternative to Fracture 

Mechanics based fatigue crack propagation models. Local strain-based approaches to 

fatigue are often applied to model the crack initiation on notched components [8]. 

CHAPTER V 
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Some authors, such as Glinka [9], Peeker and Niemi [10], Noroozi et al. [11,13,14], Hurley 

and Evans [12] have developed relations between the local strain-based approaches to 

fatigue and the Fracture Mechanics based fatigue crack propagation models. Glinka was 

one of the first researchers to propose the application of the local strain-based 

approaches to model fatigue crack propagation [9]. 

The original idea of Glinka was latter followed and developed by his collaborators, such as 

Noroozi et al. [11,13,14], using residual stress concepts. Peeker and Niemi [10], based on 

the original idea of Glinka, made also independent contributions, using crack closure 

concepts to explain stress R-ratio and load interaction effects. In general, elastoplastic 

stress analysis at the crack vicinity is performed using analytical approaches though 

Hurley and Evans [12] proposed the use of elastoplastic finite element analysis. 

The fatigue crack propagation is assumed a process of continuous crack re-initializations 

(failure of consecutive representative materials elements). The resulting crack 

propagation models have demonstrated to correlate fatigue crack propagation data from 

several sources, including the stress ratio effects. The crack tip stress-strain fields are 

computed using elastoplastic analysis, which are applied together with a fatigue damage 

law to predict the failure of the representative material elements. The simplified method 

of Neuber [15] or Moftakhar et al. [16] may be used to compute the elastoplastic stress 

field at the crack tip vicinity using the elastic stress distribution given by the Linear Elastic 

Fracture Mechanics [11,16,17]. 

This chapter proposes an evaluation and extension of the model proposed by Noroozi et 

al. [11,13,14] to predict the fatigue crack propagation rates, based on a local strain-based 

approach to fatigue. This model has been denoted UniGrow model and classed as a 

residual stress-based crack propagation model [18]. The model is applied in this chapter 

to derive probabilistic fatigue crack propagation fields (p−da/dN−K−R fields) for two 

materials representative of old Portuguese metallic riveted bridges (Eiffel and Fão 

bridges), and for a current steel, the S355 construction steel, covering distinct stress 

R−ratios. In addition, the modified UniGrow model is applied to compute the fatigue crack 

propagation rates for the P355NL1 steel (a pressure vessel steel), for distinct stress R-

ratios. Results are compared with available experimental data [19,20,21]. The required 
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strain-life data was experimentally evaluated and can be found in the literature 

[19,20,21]. The material representative element size, ρ*, a central parameter in the 

UniGrow model, is assessed by means of a try and error procedure. Also, the residual 

stress field is analyzed for distinct crack sizes and stress R−ratios. The elastoplastic 

stresses at the vicinity of the crack tip, computed using simplified formulae, are compared 

with the stresses calculated using an elastoplastic finite element analyses of the 

specimens considered in the experimental program to derive the fatigue crack 

propagation data. 

The deterministic strain-life relations proposed in the UniGrow model are replaced by the 

probabilistic strain-life fields (p−εa−N) proposed by Castillo and Fernández-Canteli [22]. 

This probabilistic model is also extended by considering a damage parameter able to 

account for mean stress effects. In particular, a probabilistic Smith-Watson-Topper field 

(p−SWT−N) is proposed alternatively to the p−εa−N and applied to derive the probabilistic 

crack propagation fields. 

5.2. THEORETICAL BACKGROUND 

In this section, an overview of the UniGrow model, which has been proposed to predict 

the fatigue crack growth by means of a local approach to fatigue, is presented. An 

isotropic elastoplastic constitutive model based on von Mises yield criterion, was adopted 

to obtain the residual stress field ahead of the crack tip. Afterwards, a recently proposed 

probabilistic strain-life model is presented. An extension of the probabilistic strain-life 

approach, to account for mean stress effects, is proposed which will be applied latter in 

this chapter to predict probabilistic fatigue crack propagation data. 

5.2.1. Overview of the deterministic UniGrow model 

The UniGrow model was proposed by Noroozi et al. [11] supported on the following 

assumptions: 

- The material is composed of elementary particles of a finite dimension *. It 

represents a material representative element, below which the material cannot be 

regarded as a continuum, Figure 5.1.a). 
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- The fatigue crack tip is considered equivalent to a notch with radius equal to *, 

Figure 5.1.b). 

- The fatigue crack growth is considered a process of successive crack increments 

due to crack re-initializations over the distance *. 

- The fatigue crack growth rate can be determined as: 

fN

*

dN

da 
  (5.1) 

where Nf is the number of cycles required to fail the material representative 

element, which can be computed using a strain-life relation. 

 

Figure 5.1 – Crack configuration according to the UniGrow model: a) crack and the discrete elementary 

material blocks; b) crack shape at the tensile maximum and compressive minimum loads [11]. 

Noroozi et al. [11] suggested the use of a strain-life relation based on the Smith, Watson 

and Topper fatigue damage parameter (SWT damage parameter) [7]: 

      cb
fff

b2
f

2
fmax N2''EN2'SWT2 

   (5.2) 

Peeker and Niemi *10+ suggested, alternatively, the use of the Morrow’s equation *6] to 

compute the failure of the material representative element: 
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ff

b
f

mf
N2'N2

E

'

2



 


 (5.3) 

The Morrow’s equation was derived from the following Coffin-Manson relation [4,5] of 

the material, in order to include mean stress effects: 
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 (5.4) 

In particular, Equation (5.2) was derived as multiplication of the Coffin-Manson Equation 

(5.4) by the Basquin relation [23], for a stress R-ratio equal to −1: 

 b
ffmax N2'

2
 


 (5.5) 

In the previous two equations, f'  and b represents, respectively, the fatigue strength 

coefficient and exponent; f'  and c represents, respectively, the fatigue ductility 

coefficient and exponent and E is the Young modulus. The maximum stress, σmax, mean 

stress, σm, and the strain range, ε, have to be evaluated as the average values at the 

elementary material block size, *, taking into account an elastoplastic analysis. 

To compute the elastoplastic stresses and strains at the elementary material blocks ahead 

of the crack tip, Noroozi et al. [11,13] proposed the following procedure: 

i) The elastic stresses are computed ahead of the crack tip, using the Creager-Paris 

solution [24] for a crack with a tip radius *, using the applied stress intensity 

factors: 
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 (5.6) 

In the previous equation, r and  are crack tip polar coordinates. The elastic stress 

distribution along the crack line (=0 and r=x) is given by: 
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 (5.7) 

Average stresses have to be computed over each material elementary block using 

the following equations: 
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 (5.8) 

where 
e

i,x
~  and 

e
i,y

~  are the average elastic stresses at the elementary block i. 

ii) The actual elastoplastic stresses and strains, ahead of the crack tip, are 

computed using the Neuber’s *15+ or Glinka’s approaches [25]. Multiaxial 

approaches may be adopted using the procedures presented by Moftakhar et al. 

[16] and Reinhard et al. [17]. This multiaxial approach together with Neuber’s 

approach, result in the following set of simultaneous equations: 
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where 
ep

i,x
~  and 

ep
i,y

~  are the average elastoplastic stresses at the elementary 

material block i, 
ep

i,x
~ and 

ep
i,y

~  are the average elastoplastic strains at the 

elementary material block i, 
ep

i,eq
~  is the average equivalent elastoplastic stress at 

the elementary material block i,  is the Poisson’s ratio, E is the Young’s modulus, 

K  and n  are, respectively, the cyclic strain hardening coefficient and exponent. 

iii) The residual stress distribution, ahead of the crack tip, along the y direction is 

computed using the actual elastoplastic stresses computed at the end of the first 

load reversal and subsequent cyclic elastoplastic stress range: 

  maxr  (5.10) 

iv) The residual stress distribution computed ahead of the crack tip is assumed to 

be applied on the crack faces, behind the crack tip, in a symmetric way with 

respect to the crack tip. The loading process generates a plastic zone at the crack 

tip that does not vanish completely during unloading, leading to a cyclic plastic 

zone, which is controlled by compressive stresses ahead of the crack tip, and to 

some amount of crack opening displacement just behind the crack tip (crack faces 

does not close completely just behind the crack tip). One possibility to model crack 

opening is assuming that the compressive residual stress field acting ahead of the 

crack tip is applied in a symmetrical way, behind the crack tip, directly on crack 

faces. This compressive stress distribution, acting on crack faces, is equivalent to a 

residual stress intensity factor which is used to correct the applied stress intensity 

factor range leading to a total (effective) stress intensity factor range, which 

excludes the effects of the compressive stresses. The residual stress intensity 

factor, Kr, is computed using the weight function method [26]: 

   
a

0
rr dxa,xmxK   (5.11) 

where  a,xm  is the weight function. 

v) The applied stress intensity factors (maximum and range values) are corrected 

using the residual stress intensity value, resulting the total Kmax,tot and Ktot values 
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[11,13]. For positive stress R-ratios, which is the range covered by the 

experimental data used in this research, Kmax,tot and Ktot may be computed as 

follows: 

rappliedtot

rappliedmax,totmax,

KKK

KKK






 (5.12) 

where Kr takes a negative value corresponding to the compressive stress field. For 

high stress R-ratios, the compressive stresses ahead of the crack tip may be 

neglected and the applied stress intensity factor range is assumed fully effective; 

for low stress R-ratios the compressive stresses increases and the effectiveness of 

the applied stress intensity factor range decreases. 

vi) Using the total values of the stress intensity factors, the first and second steps 

before (i, ii) are repeated to determine the corrected values for the maximum 

actual stress and actual strain range at the material representative elements. 

Then, Equation (5.2) is applied together with Equation (5.1) to compute the fatigue 

crack growth rates, in the original UniGrow model proposition. 

The described methodology does not allow close-form solutions for the crack propagation 

rates. However, introducing some simplified assumptions on elastoplastic conditions, 

such as predominantly elastic behaviour of the material at the crack tip or predominantly 

plastic behaviour of the material at the crack tip, it is possible to derive close-form 

solutions for the stress-strain histories at the crack tip and for the number of cycles to 

failure of the material representative element. Consequently, close-form solutions for the 

fatigue crack propagation rates are possible, leading to two-parameters crack driving 

force relations [11,13]: 

     q
tot

p
totmax, KKC

dN

da
  (5.13) 

where C, p, q and γ are constants to be correlated with the cyclic constants of the 

material in a form depending on the elastoplastic conditions at the crack tip. The 

dependency of the crack propagation rates with both Kmax and K allows mean stress 

effects on fatigue crack propagation rates to be properly modelled. The crack propagation 
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models based on a two parameters crack driving force has been proposed recently by 

several authors [27,28]. 

In this chapter, the full solution of the methodology proposed by Noroozi et al. [11] is 

followed. Besides the cyclic elastoplastic and fatigue properties of the material, the 

UniGrow model requires the definition of the elementary material block size, ρ*. An 

iterative process is used to compute ρ *. This parameter is computed using a try and error 

procedure in order a good correlation of the experimental fatigue crack growth data to be 

obtained. The simplified elastoplastic analysis, based on Creager-Paris [24] and multiaxial 

Neuber’s approach *15,16,17+ is exclusively applied to compute the elastoplastic stress-

strain field in the first elementary material block size ahead of the crack tip. The residual 

stress distribution ahead of the crack tip is computed using an elastoplastic finite element 

analysis, since inconsistencies were found in the analytical residual stress distributions, as 

will be demonstrated latter. 

5.2.2. Cyclic elastoplastic constitutive modelling 

In this section, an elastoplastic constitutive model based on von Mises yield criterion, 

with associative flow rule and multilinear kinematic hardening was adopted to model the 

residual stress field ahead of the crack tip. According to the von Mises yield criterion, the 

yield function, f, is defined as follows: 

   0
2

3 2

1







 kijijijij XSXSf   (5.14) 

where ijS  is the deviatoric stress tensor defined as: 

ijhijijS    (5.15) 

ijX is the back stress tensor defining the centre of the yield surface, k  is the material 

yield parameter, ij  is the stress tensor, h  is the hydrostatic stress and ij  is the 

Kronecker delta. The associative flow rule defines the plastic strain increment according 

to the following relation: 

 
ij

P
ij

f







  (5.16) 
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where   is the plastic multiplier which determines the amount of plastic straining. The 

hardening rule adopted was of kinematic type, which is adequate for cyclic plasticity 

description, in particular for the Bauschinger effect description. The kinematic hardening 

describes the translation of the yield surface. The Besseling model, also called sublayer or 

overlay model [29] was used to characterize the material behaviour. The material 

behaviour is assumed to be composed of various portions (or subvolumes), all subjected 

to the same total strain, but each subvolume having a different yield strength. Each 

subvolume has a simple stress-strain response but when combined, the model can 

represent multilinear stress-strain curves, representation that exhibits the Bauschinger 

(kinematic hardening) effect. The following steps are performed in the plasticity 

calculations [30]: 

i) The portion of total volume (the weighting factor) for each subvolume and its 

corresponding yield strength are determined. 

ii) The increment in plastic strain is determined for each subvolume assuming each 

subvolume is subjected to the same total strain. 

iii) The individual increments in plastic strain are summed using the weighting 

factors determined in step i) to compute the overall or apparent increment in 

plastic strain. 

iv) The plastic strain is updated and the elastic strain is computed. 

The weighting factor and yield stress for each subvolume are determined by matching the 

material response to the uniaxial stress-strain curve. A perfectly plastic von Mises 

material is assumed, with a weighting factor for subvolume k given by: 













1k

1i
i

Tk

Tk
k w

E
3

21
E

EE
w

  (5.17) 

where kw  is the weighting factor for subvolume k and is evaluated sequentially from 1 to 

the number of subvolumes, Nsv; TkE  is the slope of the kth segment of the uniaxial cyclic 

stress-strain curve. The yield stress for each subvolume is given by: 

 

  kkyk 21E3
)1(2

1



 


  (5.18) 
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where ( k , k ) is the breakpoint in the uniaxial cyclic stress-strain curve. The number of 

subvolumes corresponds to the number of breakpoints specified. Each subvolume follows 

the von Mises yield criterion with the associative flow rule. The plastic strain increment 

for the entire volume is computed as follows: 

p
kij

N

k
k

p
ij

sv

w ,
1

  


 (5.19) 

If the equivalent stress computed using elastic properties exceeds the material yield, then 

plastic straining occurs. Plastic strains reduce the stress state so that it satisfies the yield 

criterion. The integration of the constitutive equations may be performed following the 

elastic trial and return mapping procedures as proposed by Simo and Taylor [31]. The 

proposed cyclic elastoplastic model is available in ANSYS commercial code [30]. The 

model parameters were identified using the stabilized cyclic stress-strain curves of the 

materials under consideration in this study. 

5.2.3. Probabilistic εa–N and SWT–N fields 

The UniGrow model requires a fatigue damage relation to compute the number of cycles 

to fail the elementary material blocks. In this chapter, probabilistic fatigue damage 

models are proposed rather than the deterministic SWT–N, Coffin-Manson or Morrow 

models. In particular the probabilistic εa–N model proposed by Castillo and Fernández-

Canteli [22] is used. This model is described in Section 2.5.2.3. of Chapter II. However, and 

since the probabilistic εa–N model does not account for mean stress effects, a new 

probabilistic SWT–N field is also proposed, as an extension of the p–εa–N field suggested 

by Castillo and Fernández-Canteli [22], to account for mean stress effects. This new 

probabilistic field using the SWT damage parameter is based on the proposal for 

generalization of existing probabilistic fatigue damage model, as found in the Section 4.2. 

of Chapter IV. 

The threshold and Weibull parameters of the p-SWT-N model can be estimated by 

constrained least square or maximum likelihood methods, respectively, present in the 

Section 2.5.2.1. of Chapter II. 
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5.3. PROCEDURE TO GENERATE PROBABILISTIC FATIGUE CRACK 

PROPAGATION FIELDS 

The procedure proposed to derive probabilistic fatigue crack propagation fields may be 

summarized into three steps, as follows: 

1) Estimation of the Weibull parameters for the pSWTN or pεaN models, 

described in section 2.5.2.3. of Chapter II, using experimental εaN or SWTN data 

from smooth specimens; 

2) Application of the UniGrow model with probabilistic fatigue damage models; 

3) Computation of the pda/dNKR field. 

The UniGrow model was implemented in a worksheet, supported on VBA programming, 

specifically developed for the CT geometry. The input data are the material properties, 

loads, dimensions of the CT specimen, including the initial and final crack size to be 

simulated. Additionally, the elementary material block size, *, is required. This 

parameter may be evaluated by a try and error procedure in order the numerical results 

to fit satisfactorily the experimental data. Figure 5.2 gives a general overview of the 

procedure. 

Two possibilities for the elastoplastic analysis at the crack vicinity are envisaged, namely 

based, respectively, on the Neuber and Glinka’s approaches [15,25]. The multiaxial 

elastoplastic approach as proposed by Moftakhar et al. [16] and Reinhard et al. [17] were 

considered. This approach is based on Hencky’s total deformation equations, and has 

been demonstrated to provide accurate predictions for the stress-strain field at notch 

roots, under proportional loading. However, the UniGrow model requires not only the 

evaluation of the elastoplastic stress-strain response at the crack tip but the assessment 

of the elastoplastic stress-strain response along the crack path, in order to allow the 

residual stress to be computed. Since the analytical multiaxial elastoplastic approach does 

not model the stress redistribution due to yielding, this approach may lead to inconsistent 

predictions of the residual stress distribution. Therefore, in this research the residual 

stress distribution is computed using a finite element approach, whereby the results are 

compared with those from the analytical approach. Since the UniGrow model is a residual 
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stress based crack propagation model, the accuracy of the residual stress distribution 

plays a significant role on predictions. 

The probabilistic fatigue crack propagation fields were evaluated using, alternatively, the 

probabilistic εaN and SWTN fields. For each fatigue damage modelling approach, an 

independent elementary material block size, *, identification is performed. 
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Figure 5.2 – Procedure to generate probabilistic fatigue crack propagation fields. 
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5.4. BASIC FATIGUE DATA OF THE INVESTIGATED MATERIALS 

Four materials are considered in this research, namely two puddle irons from the 

Portuguese Fão and Eiffel bridges, the S355 construction steel and P355NL1 pressure 

vessel steel. The fatigue behaviours of these materials were evaluated, based on 

experimental fatigue tests of smooth specimens as well fatigue crack propagation tests 

[19,20,21]. In this section, the probabilistic SWT-N and εa-N fields for the materials under 

consideration are evaluated. In addition, the deterministic models – SWT-N, Coffin-

Manson and Morrow’s relation are also illustrated. 

5.4.1. Strain-life behaviour 

The strain-life behaviours of the materials were evaluated through fatigue tests of 

smooth specimens, carried out under strain control conditions, according to the ASTM 

E606 standard [33]. The strain-life data was firstly correlated using the Morrow’s equation 

(Equation (3.2), Chapter III). The Ramberg and Osgood [34] relation, Equation (5.20), was 

fitted to the stabilized cyclic stress–strain data: 

'n/1PE

'K2E2222











 (5.20) 

where K’ and n’ are the cyclic strain hardening coefficient and exponent, respectively; εP 

is plastic strain range; and Δσ is the stress range. 

The cyclic Ramberg-Osgood and Morrow strain-life parameters of these four materials are 

summarized in Table 5.1 whereas Table 5.2 presents the elastic and monotonic tensile 

properties of these materials under investigation. 

Table 5.1 – Cyclic elastoplastic and strain-life properties of the materials. 

σ' f b ε' f c K' n'

MPa - - - MPa -
Eiffel bridge* 602.50 -0.0778 0.1595 -0.7972 645.95 0.0946
Fão bridge** 828.30 -0.1134 0.0530 -0.5113 818.50 0.1400

S355* 952.20 -0.0890 0.7371 -0.6640 595.85 0.0757
P355NL1** 1005.50 -0.1033 0.3678 -0.5475 948.35 0.1533

* R ε =-1; **R ε =-1+R ε =0

Material
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More details about the fatigue and monotonic properties evaluation, concerning the 

materials from the Eiffel and Fão bridges, can be found in Chapter III. Figures 5.3 and 5.4 

illustrate the deterministic strain-life curves according to the Morrow model, for the 

materials from the Eiffel and Fão bridges, respectively. 

The results of the strain-life fatigue tests, for the S355 mid structural steel, were 

presented in reference [20]. One series of 10 smooth specimens were tested under a 

strain ratio, Rε, equal to -1. Figure 5.5 illustrates the resulting experimental strain-life 

fatigue data. 

Table 5.2 – Elastic and tensile properties of the materials. 

E ν f u f y A Z

GPa - MPa MPa % %
Eiffel bridge 193.10 0.300 341.80 292.40 8.14 11.60
Fão bridge 198.70 0.260 359.30 219.90 23.13 13.06

S355 211.60 0.300 744.80 422.00 - -
P355NL1 205.20 0.275 568.11 418.06 - -

Material

 

 

 

Figure 5.3 – Strain‐life curves for the material from the Eiffel bridge, Rε=‐1. 
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Figure 5.4 – Strain‐life curves for the material from the Fão bridge, Rε=‐1+Rε=0. 
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Figure 5.5 – Strain‐life curves for the S355 steel, Rε=‐1. 

The P355NL1 steel, which is a low carbon pressure vessel steel, has been investigated 

regarding its fatigue characterization [21]. Two series of specimens were tested under 

distinct strain ratios (Rε=0: 19 specimens; Rε=-1: 24 specimens). Figure 5.6 shows a plot of 

the experimental strain-life fatigue data, for the two strain ratios. Figure 5.6 also plots the 

Morrow relation, for each strain ratio and the conjunction of both strain ratios, Rε=-

1+Rε=0 [21]. Table 5.1 summarizes the resulting properties that were obtained for the 

conjunction of both strain ratios [21]. This research adopted the values obtained by 

combining the results of the two test series together. 
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Figure 5.6 – Strain‐life curves for the P355Nl1 steel, Rε=‐1+Rε=0. 

5.4.2. Fatigue crack propagation rates 

Fatigue crack growth rates of the investigated materials were also evaluated, for several 

stress R-ratios, using compact tension (CT) specimens, following the recommendations of 

the ASTM E647 standard [35]. The CT specimens of material from the Fão bridge and of 

S355 steel were defined with a width, W=50mm, and a thickness, B=8mm; specimens 

from material of the Eiffel bridge and of P355NL1 steel were defined with a width, 

W=40mm and a thickness, B=4.5mm [19,20,21]. All tests were performed in air, at room 

temperature, under a sinusoidal waveform at a maximum frequency of 20 Hz. The crack 

growth was measured on both faces of the specimens by visual inspection, using two 

travelling microscopes with an accuracy of 0.001mm. 

Figures 5.7 to 5.10 exhibit the fatigue crack propagation data for the four materials under 

consideration. With respect to the material from the Eiffel bridge, crack propagation data 

for the stress R-ratios, Rσ=0.1 and Rσ=0.5 was included in Figure 5.7.  Regarding the 

material from the Fão bridge, crack propagation data for the stress R-ratios, Rσ=0.0, 

Rσ=0.25, Rσ=0.5 and Rσ=0.75 was included in Figure 5.8. Figure 5.9 presents the fatigue 

crack propagation rates of the S355 steel, for the three tested stress ratios, Rσ=0.0, 

Rσ=0.25 and Rσ=0.5. Figure 5.10 illustrates the crack growth data derived for the P355NL1 

steel, for the three tested stress ratios, Rσ=0.0, Rσ=0.5 and Rσ=0.7. 
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b) 

Figure 5.7 – Fatigue crack propagation data obtained for the material from the Eiffel bridge: 

a) Experimental data; b) Paris correlations for each stress Rσ-ratio. 

Besides the experimental data, Figures 5.7 to 5.10 also present regression lines, for each 

stress R-ratio, which were defined according to the Paris law [2]: 

 mKC
dN

da
  (5.21) 

where C and m are constants resulting from the linear regression analysis. 
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b) 

Figure 5.8 – Fatigue crack propagation data obtained for the material from the Fão bridge: 

a) Experimental data; b) Paris correlations for each stress Rσ-ratio. 

The fatigue crack propagation data of the materials from Fão and Eiffel bridges shows 

important scatter due to the significant amount of heterogeneities that characterizes the 

puddle irons. 
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More details about the fatigue properties evaluation, concerning materials from the Eiffel 

and Fão bridges, are given in Chapter III and reference [19]. 
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b) 

Figure 5.9 – Fatigue crack propagation data obtained for the S355 steel: 

a) Experimental data; b) Paris correlations for each stress Rσ-ratio. 

Figure 5.9 illustrates the effects of the stress ratio on fatigue crack propagation rates, for 

the S355 steel grade. An increase in fatigue crack propagation rates is clear, when the 

stress ratio changes from 0 to any of the positive stress ratios considered in the 

experimental program. Also, it is clear that all the positive stress ratios resulted in similar 
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crack propagation rates. This behaviour is consistent with a crack closure effect that 

occurs in between Rσ=0.0 and Rσ=0.25. For Rσ=0.0 there is some crack closure, so that the 

applied stress intensity factor range is not fully effective. On the contrary, for Rσ=0.25 and 

higher, no crack closure occurs and the applied stress intensity factor range is fully 

effective. Details about the properties evaluation can be found in reference [20]. 
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b) 

Figure 5.10 – Fatigue crack propagation data obtained for the P355NL1 steel: 

a) Experimental data; b) Paris correlations for each stress Rσ-ratio. 
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Figures 5.10a) and 5.10b) represent the experimental data and the Paris law correlations 

for each stress ratio of the P355NL1 steel, respectively. The crack propagation rates are 

only slightly influenced by the stress ratio. Higher stress ratios result in higher crack 

growth rates. The lines representing the Paris law, for Rσ=0.0 and Rσ=0.5, are 

approximately parallel to each other. 

On the other hand, the line representing the Paris law for Rσ=0.7 converges to the other 

lines as the stress intensity ranges increases. However, the crack propagation rates for 

Rσ=0.7 could never be considered lower than the crack propagation rates for the other 

stress ratios, as suggested by Fig. 5.10b), since the failure of the CT specimen will occur 

before that can happen [21]. In general, the stress ratio effects are more noticeable for 

lower ranges of the stress intensity factors. For higher stress intensity factor ranges, the 

stress ratio effect tends to vanish. 

5.4.3. p-SWT-N and p-εa-N fields 

The probabilistic SWT-N and p-εa-N models [22,37] are presented in section 5.2.3 to 

describe the strain-life field of the materials, based on Weibull distribution. 

Figures 5.11 to 5.14 show the p-SWT-N and p-εa-N fields that are identified for the 

materials from Fão and Eiffel bridges, the S355 construction steel and the P355NL1 

pressure vessel steel, using the experimental data from the fatigue tests of smooth 

specimens. These tests were performed for strain ratios, Rε=-1, for the S355 steel and the 

material from the Eiffel bridge, and for the strain ratios Rε=0 and Rε=-1, for the P355NL1 

steel and the material from the Fão bridge. The constants of the Weibull fields are also 

included in the figures, in particular the threshold constants (B and C) and the Weibull 

parameters (β, λ and δ). The Weibull fields show a hyperbolic behaviour with vertical and 

horizontal asymptotes. Although the horizontal asymptote has a physical background as 

fatigue limit, the meaning of the vertical asymptote may be questionable, which requires 

care for extrapolations to lives lower than those of the experimental data used in the 

identification process. 

Both p-SWT-N and p-εa-N fields produce a good fitting of the experimental data. The SWT 

experimental parameter was identified through the analysis of the stabilized or half-life 
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pseudo-stabilized hysteresis loops of the materials, for each performed test. The 

maximum stress and strain ranges of the hysteresis cycles were used to compute the SWT 

parameter. The statistical confidence intervals of the input parameters of the probabilistic 

model are not possible to be estimated analytically due to the complexity of the Weibull 

description of the complete εa-N field. However, and despite not included in this chapter, 

there is the possibility of using the bootstrap technique to compute estimates of the 

confidence intervals for the input parameters [36]. 

The number of cycles to failure, Nf, reported in Figures 5.11 to 5.14, corresponds to the 

macroscopic crack initiation in tested specimens. The fatigue crack propagation was 

excluded through the analysis of the changes verified in the cyclic stress-strain histories, 

which are not likely due to cyclic strain hardening/softening. This concern in the analysis 

of the experimental strain–life data seeks the increasing of the representativeness of the 

p-SWT-N and p-εa-N fields for the fatigue behaviour of crack tip elements, with smaller 

size than specimens used in the testing program. 

The p-εa-N and p-SWT-N fields of the material from the Eiffel and Fão bridges are 

presented in the Figures 5.11 and 5.12, respectively, and the constants of the Weibull 

fields included. 

Consequently, both p-εa-N and p-SWT-N fields of the S355 and P355NL1 steels are 

presented in Figures 5.13 and 5.14. The extrapolations using the Weibull field should be 

avoided for high and essentially low fatigue lives. Since the number of cycles to fail the 

representative volume element, in the crack propagation regime, may be low, it was 

decided to postulate some fatigue data at the low to very low-cycle fatigue domain, using 

the deterministic Morrow equation of the material for that purpose. The Morrow 

equation may be considered more reliable to perform extrapolations for very low number 

of cycles than the Weibull field. In this way, the Weibull fields presented in the Figures 

5.13 and 5.14 may be used for a wider range of fatigue lives, for the S355 steel and 

P355NL1, respectively [38]. The constants of the Weibull fields are also pointed out in 

these figures. 
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b) 

 

Figure 5.11 – Probabilistic fatigue field of the material from the Eiffel bridge: 

a) p-SWT-N field; b) p-εa-N field. 
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Figure 5.12 – Probabilistic fatigue field of the material from the Fão bridge: 

a) p-SWT-N field; b) p-εa-N field. 
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Figure 5.13 – Probabilistic fatigue field for the S355 steel: a) p-SWT-N field; b) p-εa-N field. 
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Figure 5.14 – Probabilistic fatigue field for the P355NL1 steel: a) p-SWT-N field; b) p-εa-N field. 
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5.5. PROBABILISTIC FATIGUE CRACK PROPAGATION RATE PREDICTIONS 

The prediction of the probabilistic fatigue crack propagation fields is performed through 

the application of the UniGrow model for the CT geometry. Additionally, the elementary 

material block size, ρ*, is required, and was evaluated by a trial and error procedure in 

order to result a good agreement between the predicted and experimental da/dN vs. K 

data, for the materials under consideration. The probabilistic fatigue crack propagation 

fields are evaluated using, alternatively, the probabilistic material εaN and SWTN fields. 

The procedure to generate probabilistic fatigue crack propagation fields was described in 

section 5.3. 

5.5.1. Finite element analysis of the CT geometry 

In order to assess the accuracy of the simplified elastoplastic analysis, for the residual 

stress estimation, a bi-dimensional finite element model of the CT specimen was built and 

used in an elastoplastic finite analysis. A very refined mesh at the crack tip region is 

required, in order to model the crack tip notch radius, ρ* (refer to Figure 5.1b) for 

geometric details). Figure 5.17 illustrates the typical finite element mesh of the CT 

geometry with the respective boundary conditions. Only the half of the geometry is 

modelled, taking into account the existing plane of symmetry. Plane stress conditions 

were assumed since the thickness of specimens is relatively reduced (B=4.5mm for the 

material from Eiffel bridge and the 355NL1 steel and B=8mm for the material from the 

Fão bridge and the S355 steel). Plane stress quadratic triangular elements (6-noded 

elements) were used in the analysis with full integration. In order to simulate the pin 

loading, rigid-to-flexible frictionless contact was selected. The pin was modelled as a rigid 

circle controlled by a pilot node. 

All numerical simulations were carried out using the ANSYS® 12.0 code [30]. The 6-noded 

plane element adopted in the FE analyses was the PLANE181 element available in the 

ANSYS® library. The contact and target elements used in the pin-loading simulation were, 

respectively, the CONTA172 and TARGE169 elements available in ANSYS® [30]. A 

parametric model was built using the APDL language. The surface of the holes was 

modelled as flexible, using CONTA172 elements. The Augmented Lagrange contact 
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algorithm was used. The associative Von Mises (J2) yield criterion with multilinear 

kinematic hardening was used to model the plastic behaviour. The multilinear kinematic 

hardening uses the Besseling model, also called the sublayer or overlay model, so that the 

Bauschinger effect is included. The plasticity model was fitted to the stabilized or half-life 

pseudo stabilized cyclic curve of the materials. The von Mises yield criterion with 

multilinear kinematic hardening was adopted to model the plastic behaviour. The 

plasticity model was fitted to the cyclic curve of the material. 

The finite element model allowed the variation of the crack length, the crack tip radius 

and the mesh density, for the various case studies. A very refined mesh was created at 

crack tip region, with average element sizes about one order of magnitude below the 

crack tip radius, in order to allow a good representation of the crack tip radius. The mesh 

size was progressively coarsened with increasing distance to the crack tip. More refined 

meshes at the crack vicinity region and very long time consuming elastoplastic 

simulations were tested but they did not result in significant changes in elastic stress, 

being consequently avoided. 

The residual stresses were computed from the stress field at the end of the unloading 

step, in case of the finite element analysis, and from the subtraction of the cyclic stress 

range to the maximum stress, in case of the analytical analysis. The multiaxial Neuber’s 

approach [15] was implemented in the analytical one. 

The finite element model was initially applied to perform elastic and elastoplastic stress 

analyses in order to allow the comparison of the elastic and elastoplastic stress 

distributions by the Creager-Paris solution [24] and multiaxial Neuber approach [15], 

respectively. 

According to the UniGrow model, the compressive residual stresses computed ahead of 

the crack tip are assumed to be applied symmetrically, in the crack faces. Using the 

weight function method [26], the residual stress intensity factor, Kr, was computed for the 

stress R-ratios considered in the experimental program. 
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5.5.1.1. Material from Eiffel bridge 

Figure 5.15 shows the CT geometry of the material from the Eiffel bridge adopted in the 

finite element analysis [37,39]. Figure 5.16 shows the superposition of the Ramberg-

Osgood relation [34] with the response of a elastoplastic finite element model 

reproducing a uniaxial stress state, for the material from the Eiffel bridge. Table 5.3 

presents the maximum elastic stresses (σx and σy) ahead of the crack tip, resulting from 

distinct mesh densities, for the material from the Eiffel bridge. The mesh densities are 

illustrated in Figure 5.17. Mesh 1 was adopted in this investigation. Table 5.3 also 

compares the maximum stress values obtained with distinct meshes. 

 

 

Figure 5.15 – Finite element meshes of a CT specimen, consisting in six-noded quadratic triangular plane 

stress elements, used to model the material from the Eiffel bridge. 
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Figure 5.16 – Cyclic stress-strain relation obtained for the material from the Eiffel bridge: Ramberg-Osgood 

representation vs. finite element response based on multilinear kinematic hardening [37,39]. 
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Figure 5.17 – Finite element meshes used in the convergence study performed for the CT specimen made of 

material from the Eiffel bridge. 
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Table 5.3 – Maximum elastic stresses for distinct finite element mesh densities for the material from the 

Eiffel bridge (Fmax=2882.7N, a=8mm, ρ*=1200µm). 

Maximum stresses mesh 5 mesh 4 mesh 3 mesh 1 mesh 2

σ y  [MPa] 457.7 458.4 459.4 459.4 459.4

Dev.  [%] -0.37 -0.22 0.00 - 0.00

σ x  [MPa] 97.7 97.5 97.6 97.5 97.5

Dev.  [%] 0.14 0.00 0.01 - 0.00  
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b) 

Figure 5.18 – Comparison between analytical and numerical results of the elastic stress distribution ahead 

of the crack tip and along the crack line (y=0) for CT specimens made of material from the Eiffel bridge: 

a) σy stress distribution (Fmax=2882.7N, ρ*=1200µm); b) σx stress distribution (Fmax=2882.7N, ρ*=1200µm). 

Figure 5.18 compares the elastic stress distributions from the numerical and analytical 

solutions for the CT specimens made of material from the Eiffel bridge. The results were 

computed for a crack tip radius, ρ*=12×10-4m=1200µm, which was found to be the best 
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value for the material from the Eiffel bridge – it gives the best predictions for the crack 

growth rates, based on SWT damage parameter, as will be verified hereafter. 

Figure 5.19 represents the elastoplastic stress distribution ahead of the crack tip, along 

the line aligned with the crack faces (y=0). The same conditions of Figure 5.18 were used. 

The residual stress distributions were computed by means of the analytical and numerical 

solutions and are compared in Figure 5.20, for distinct crack sizes and stress R-ratios, for 

the material from the Eiffel bridge. An elementary material block size, ρ*=12×10-4m was 

selected. 
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b) 

Figure 5.19 – Comparison between analytical and numerical results of the elastoplastic stress distribution 

ahead of the crack tip in the crack line (y=0) for CT specimens made of material from the Eiffel bridge: 

a) σy stress distribution (Fmax=2882.7N, ρ*=1200µm); b) σx stress distribution (Fmax=2882.7N, ρ*=1200µm). 
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b) 

Figure 5.20 – Comparison between analytical and numerical results of the residual stress distribution ahead 

of the crack tip in the crack line (y=0) for CT specimens made of material from the Eiffel bridge: 

a) Rσ=0.1 (Fmax=2882.7N, ρ*=1200µm); b) Rσ=0.5 (Fmax=4815.2N, ρ*=1200µm). 

Figure 5.21 illustrates the stress and strain fields along the y (load) direction, obtained for 

the CT specimens using the elastoplastic finite element analysis. The results were 

obtained using the properties of the material from the Eiffel bridge and assuming a 

material representative element of ρ*=1200µm, a crack size a=14mm, a maximum load 

Fmax=2882.7N, and a stress R-ratio, Rσ=0.1. The stress and strain fields are shown at the 

end of the first loading reversal and at the end of the unloading reversal. In Figure 5.21, 

the compressive stress field at the crack tip vicinity and also at some extension of the 

crack wake can be clearly distinguished. 
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a) Stress field, in MPa, at the end of the loading reversal. 

 
b) Stress field, in MPa, at the end of the first unloading reversal. 

 
c) Strain field at the end of the loading reversal. 

 
d) Strain field at the end of the first unloading reversal. 

Figure 5.21 – Stress and strain fields, along the load direction, obtained for the CT specimens of the material 

from the Eiffel bridge, resulting from elastoplastic finite element analysis (Fmax=2882.7N, ρ*=1200µm, 

a=14mm, Rσ=0.1). 

The compressive residual stress distributions from the numerical analysis were used to 

compute the residual stress intensity factor. The resulting stress intensity factors are 

presented in terms of the applied stress intensity factor range, instead of the crack size, 

as presented in Figure 5.22, for two distinct elementary material block sizes, and stress 

ratios, for the material from the Eiffel bridge. 
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b) 

Figure 5.22 – Residual stress intensity factor as a function of the applied stress intensity factor range 

obtained for the material from the Eiffel bridge: a) ρ*=1200µm; b) ρ*=400µm. 

5.5.1.2. Material from Fão bridge 

Figure 5.23 shows the finite element mesh of the CT geometry of the material from the 

Fão bridge adopted in the finite elements analysis [37]. A plasticity model for the material 

from the Eiffel bridge was adopted and Figure 5.24 compares the Ramberg-Osgood 

relation [34] with the response of a finite element model, reproducing a uniaxial stress 

state. Table 5.4 presents the maximum elastic stresses (σx and σy) ahead of the crack tip, 

resulting from distinct mesh densities, for the material from the Fão bridge. The mesh 
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densities are illustrated in Figure 5.25 and the Mesh 1 was selected for the numerical 

analysis. The results of the maximum stress values are compared between the mesh 1 

and the other meshes, and given in Table 5.4. 

 
 

Figure 5.23 – Finite element meshes of a CT specimen, consisting in six-noded quadratic triangular plane 

stress elements, used to model the material from the Fão bridge. 

 

Figure 5.24 – Cyclic stress-strain relation obtained for the material from the Fão bridge: Ramberg-Osgood 

representation vs. finite element response based on multilinear kinematic hardening [37]. 
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Mesh 3 

Figure 5.25 – Finite element meshes used in the convergence study performed for the CT specimen made of 

material from the Fão bridge. 

 

Table 5.4 – Maximum elastic stresses for distinct finite element mesh densities for the material from the 

Fão bridge (Fmax=4972.2N, a=10mm, ρ*=400µm). 

Maximum stresses mesh 5 mesh 4 mesh 1 mesh 2 mesh 3

σ y  [MPa] 609.2 667.6 661.7 656.6 654.9

Dev.  [%] -7.94 0.88 - -0.77 -1.03

σ x  [MPa] 147.8 145.1 144.6 144.6 144.6

Dev.  [%] 2.17 0.34 - 0.01 -0.01  

Figures 5.26 and 5.27 compare the elastic and elastoplastic stress distributions from the 

numerical and analytical solutions for the CT specimens, made of material from the Fão 

bridge, respectively. The results were computed for a crack tip radius, ρ*=400 µm, which 

was found to be the best value for the material of the Fão bridge. This ρ* parameter gives 

the best predictions for the crack growth rates, based on the SWT damage parameter, as 

will be verified hereafter [37]. 
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b) 

Figure 5.26 – Comparison between analytical and numerical results of the elastic stress distribution ahead 

of the crack tip and along the crack line (y=0) for CT specimens made of material from the Fão bridge: a) σy 

stress distribution (Fmax=4972.2N, ρ*=400µm); b) σx stress distribution (Fmax=4972.2N, ρ*=400µm). 

Figure 5.28 shows the residual stress distributions for distinct crack sizes and stress R-

ratios, for the material from the Fão bridge, as computed by means of the analytical and 

numerical solutions, using an elementary material block size, ρ*=400 µm. 

Figure 5.29 illustrates the stress and strain fields along the y (load) direction and assuming 

a material representative element of ρ*=400 µm, a crack size a=15mm, a maximum load 

Fmax=4972.2N, and a stress R-ratio, Rσ=0.0, obtained for the CT specimens using the 

elastoplastic finite element analysis. The stress and strain fields are shown at the end of 

the first loading reversal and at the end of the first unloading reversal. In Figure 5.29, the 
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compressive stress field at the crack tip vicinity and also to some extension of the crack 

wake can be clearly distinguished. 

Using the results of the numerical analysis, particularly the compressive residual stress 

distribution, the residual stress intensity factor was computed and presented in Figure 

5.30 as a function of the applied intensity factor range. This figure presents the results for 

two distinct elementary material block sizes for the material from the Fão bridge [37], and 

for three distinct stress ratios. 
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b) 

Figure 5.27 – Comparison between analytical and numerical results of the elastoplastic stress distribution 

ahead of the crack tip in the crack line (y=0) for CT specimens made of material from the Fão bridge: a) σy 

stress distribution (Fmax=4972.2N, ρ*=400µm); b) σx stress distribution (Fmax=4972.2N, ρ*=400µm). 
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c) 

Figure 5.28 – Comparison between analytical and numerical results of the residual stress distribution ahead 

of the crack tip in the crack line (y=0) for CT specimens made of material from the Fão bridge: a) Rσ=0.0 

(Fmax=4972.2N, ρ*=400µm); b) Rσ=0.25 (Fmax=6031.7N, ρ*=400µm); c) Rσ=0.5 (Fmax=8455.2N, ρ*=400µm). 
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a) Stress field, in MPa, at the end of the loading reversal. 

 
b) Stress field, in MPa, at the end of the first unloading reversal. 

 
c) Strain field at the end of the loading reversal. 

 
d) Strain field at the end of the first unloading reversal. 

Figure 5.29 – Stress and strain fields, along the load direction, obtained for the CT specimens of the material 

from the Fão bridge, resulting from elastoplastic finite element analysis (Fmax=4972.2N, ρ*=400µm, 

a=15mm, Rσ=0.0). 
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b) 

Figure 5.30 – Residual stress intensity factor as a function of the applied stress intensity factor range 

obtained for the material from the Fão bridge: a) ρ*=400µm; b) ρ*=200µm. 

5.5.1.3. S355 structural steel 

The finite element mesh of the CT geometry made S355 steel adopted in the finite 

element analysis is presented in Figure 5.31 [40]. Figure 5.32 compares the Ramberg-

Osgood relation of the S355 steel with the elastoplastic response of a finite element 

model reproducing a uniaxial stress state. 

After some mesh densities were analysed, as illustrated in Figure 5.33 the Mesh 2 was 

adopted in this study. Table 5.4 presents the maximum elastic stresses (σx and σy) ahead 
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of the crack tip, resulting from distinct mesh densities, for the S355 steel. The maximum 

stress results are compared between the mesh 2 and other meshes. 

 

Figure 5.31 – Finite element meshes of a CT specimen, consisting in six-noded quadratic triangular plane 

stress elements, used to model the S355 steel. 

 

Figure 5.32 – Cyclic stress-strain relation obtained for the S355 steel: Ramberg-Osgood representation vs. 

finite element response based on multilinear kinematic hardening. 
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Mesh 5 Mesh 4 

  
Mesh 1 Mesh 2 

 
Mesh 3 

Figure 5.33 – Finite element meshes used in the convergence study performed for the CT specimen made of 

the S355 steel. 

 

Table 5.5 – Maximum elastic stresses for distinct finite element mesh densities for the S355 steel 

(Fmax=5443.5N, a=10mm, ρ*=55µm). 

Maximum stresses mesh 5 mesh 4 mesh 1 mesh 2 mesh 3

σ y  [MPa] 1637.0 1772.0 1797.6 1926.9 1928.8

Dev.  [%] -15.04 -8.04 -6.71 - 0.10

σ x  [MPa] 429.7 423.8 416.7 417.9 417.8

Dev.  [%] 2.83 1.42 -0.29 - -0.03  

The elastic stress distributions obtained from the numerical and analytical solutions for 

the CT specimens made of S355 steel are compared in Figure 5.34. Figure 5.35 compares 

the elastoplastic stress distributions between the numerical and analytical solutions, for 

the same CT specimens. The results were computed for a crack tip radius, ρ*=55µm, 

which was found to be the best value for the S355 steel; it gives the best predictions for 

the crack growth rates, based on the SWT damage parameter [40]. 
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b) 

Figure 5.34 – Comparison between analytical and numerical results of the elastic stress distribution ahead 

of the crack tip and along the crack line (y=0) for CT specimens made of the S355 steel: a) σy stress 

distribution (Fmax=5443.5N, ρ*=55µm); b) σx stress distribution (Fmax=5443.5N, ρ*=55µm). 

The residual stress distributions for the S355 steel, shown in Figure 5.36 for distinct crack 

sizes and stress R-ratios, were computed by means of the analytical and numerical 

solutions, using an elementary material block size, ρ*=55µm. 

The stress and strain fields along the y (load) direction, obtained for the CT specimens 

using the elastoplastic finite element analysis, are illustrated in Figure 5.37, assuming a 

material representative element of ρ*=55µm, a crack size a=15mm, a maximum load 

Fmax=5443.5N, and a stress R-ratio, Rσ=0.0. The results were obtained using the properties 

of the S355 steel. In this figure, the compressive stress field at the crack tip vicinity and at 



 
Procedure to derive probabilistic fatigue crack propagation fields 

 V.47 

some extension of the crack wake can be clearly distinguished. The stress and strain fields 

are shown at the end of the first loading reversal and at the end of the unloading reversal. 

Figure 5.38 presents the residual stress intensity factor as a function of the applied stress 

intensity factor range, obtained for the S355 steel, using the numerical elastoplastic 

compressive stress distribution and the weight function method. 
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b) 

Figure 5.35 – Comparison between analytical and numerical results of the elastoplastic stress distribution 

ahead of the crack tip in the crack line (y=0) for CT specimens made of the S355 steel: a) σy stress 

distribution (Fmax=5443.5N, ρ*=55µm); b) σx stress distribution (Fmax=5443.5N, ρ*=55µm). 
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c) 

Figure 5.36 – Comparison between analytical and numerical results of the residual stress distribution ahead 

of the crack tip in the crack line (y=0) for CT specimens made of the S355 steel: a) Rσ=0.0 (Fmax=5443.5N, 

ρ*=55µm); b) Rσ=0.25 (Fmax=7185.5N, ρ*=55µm); c) Rσ=0.5 (Fmax=10778.2N, ρ*=55µm). 
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a) Stress field, in MPa, at the end of the loading reversal. 

 
b) Stress field, in MPa, at the end of the first unloading reversal. 

 
c) Strain field at the end of the loading reversal. 

 
d) Strain field at the end of the first unloading reversal. 

Figure 5.37 – Stress and strain fields, along the load direction, obtained for the CT specimes of the S355 

steel, resulting from elastoplastic finite element analysis (Fmax=5443.5N, ρ*=55µm, a=15mm, Rσ=0.0). 
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Figure 5.38 – Residual stress intensity factor as a function of the applied stress intensity factor range, 

obtained for CT specimens made of S355 steel (ρ*=55µm). 

5.5.1.4. P355NL1 pressure vessel steel 

Figures 5.39 and 5.40 show the finite element mesh of the CT geometry and the cyclic 

stress-strain curves adopted in the plasticity model of the P355NL1 steel, respectively 

[41]. The Ramberg-Osgood relation [34] is compared with the response of the finite 

element model reproducing a uniaxial stress state in Figure 5.40. Table 5.6 presents the 

maximum elastic stresses (σx and σy) ahead of the crack tip, resulting from distinct mesh 

densities illustrated in Figure 5.41. The mesh 2 was adopted for residual stress 

computation. Results presented in Table 5.6 compare the mesh 2 with the other meshes. 

Figures 5.42 and 5.43 illustrate the elastic and elastoplastic stress distributions for the 

P355NL1 steel, respectively. In these figures, the numerical and analytical solutions for 

the CT specimens are computed for a crack tip radius, ρ*=30µm, which was found to be 

the best value for the P355NL1 steel. This ρ* parameter gives the best predictions of the 

fatigue crack growth rates, using the Morrow relation as referred in [6]. 
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Figure 5.39 – Finite element meshes of the CT specimen, consisting in six-noded quadratic triangular plane 

stress elements, for the P355NL1 steel. 

 

 

Figure 5.40 – Cyclic stress-strain relation obtained for the P355NL1 steel: Ramberg-Osgood representation 

vs. finite element response based on multilinear kinematic hardening [41]. 
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Figure 5.41 – Finite element meshes used in the convergence study performed for the CT specimen made 

for the P355NL1 steel. 

 

Table 5.6 – Maximum elastic stresses for distinct finite element mesh densities for the P355NL1 steel 

(Fmax=1634.1N, ρ*=30µm). 

Maximum stresses mesh 5 mesh 4 mesh 1 mesh 2 mesh 3

σ y  [MPa] 1367.9 1420.1 1495.8 1605.3 1606.7

Dev.  [%] -14.79 -11.54 -6.82 - 0.09

σ x  [MPa] 347.4 370.3 363.9 354.2 354.1

Dev.  [%] -1.93 4.57 2.74 - -0.03  

 

Figure 5.44 shows the residual stress distributions for the P355NL1 steel for distinct crack 

sizes and stress R-ratios. The residual stress distributions were computed by means of the 

analytical and numerical solutions using an elementary material block size, ρ*=30µm [41]. 

Figure 5.45 illustrates the stress and strain fields along the y (load) direction obtained for 

the CT specimens using the elastoplastic finite element analysis and the properties of the 

P355NL1 steel, for a material representative element, ρ*=30µm, a crack size a=14mm, a 

maximum load Fmax=1634.1N, and a stress R-ratio, Rσ=0.0. The stress and strain fields are 



 
Procedure to derive probabilistic fatigue crack propagation fields 

 V.53 

shown at the end of the first loading reversal and at the end of the first unloading 

reversal. 
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b) 

Figure 5.42 – Comparison between analytical and numerical results of the elastic stress distribution ahead 

of the crack tip and along the crack line (y=0) for CT specimens made of the P355NL1 steel: a) σy stress 

distribution (Fmax=1634.1N, ρ*=30µm); b) σx stress distribution (Fmax=1634.1N, ρ*=30µm). 
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b) 

Figure 5.43 – Comparison between analytical and numerical results of the elastoplastic stress distribution 

ahead of the crack tip and along the crack line (y=0) for CT specimens made of the P355NL1 steel: a) σy 

stress distribution (Fmax=1643.1N, ρ*=30µm); b) σx stress distribution (Fmax=1643.1N, ρ*=30µm). 

 

Figure 5.46 presents the residual stress intensity factor range for an elementary material 

blok size ρ*=30µm [41] as a function of the applied stress intensity factor range, obtained 

with the numerical analysis. 
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b) 

Figure 5.44 – Comparison between analytical and numerical results of the residual stress distribution ahead 

of the crack tip and along the crack line (y=0) for CT specimens made of the P355NL1 steel: a) Rσ=0.0 

(Fmax=1643.1N, ρ*=30µm); b) Rσ=0.5 (Fmax=3235.5N, ρ*=30µm). 

 
a) Stress field, in MPa, at the end of the loading reversal. 



CHAPTER V 

 V.56 

 
b) Stress field, in MPa, at the end of the first unloading reversal. 

 
c) Strain field at the end of the loading reversal. 

 
d) Strain field at the end of the first unloading reversal. 

Figure 5.45 – Stress and strain fields, along the load direction, obtained for the CT specimens of the 

P355NL1 steel, resulting from elastoplastic finite element analysis (Fmax=1634.1N, ρ*=30µm, a=14mm, 

Rσ=0.0). 
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Figure 5.46 – Residual stress intensity factor as a function of the applied stress intensity factor range 

obtained for the P355NL1 steel. 
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5.5.1.5. Analysis of the simulation results 

This sub-section presents the discussion of the results of the non-linear elastoplastic 

analysis for the materials and CT geometries under consideration. The discussion is 

extensible to all materials [37-41]. 

The elastic stress distribution presents a very good agreement between the analytical and 

numerical results, for several crack sizes, within a small distance from the crack tip. For 

higher distances, slight deviations are found for σy stresses. For σx stresses, the maximum 

deviation is found to be around the maximum absolute value. For small and high 

distances from the crack tip, the deviations on σx stresses are minimal. Additional 

simulations with further mesh refinements relative to the selected mesh did not produce 

noticeable changes in the elastic stress distributions, demonstrating a good mesh 

refinement. 

Besides the numerical solution of the elastoplastic analysis, results from the multiaxial 

Neuber analysis are also plotted. Despite the same global trends are observed for the σy 

and σx stress distributions, deviations in maximum absolute values are verified in the 

plastic stress distributions. In general, the analytical solutions lead to higher maximum 

absolute stresses than the elastoplastic FE analysis. σx stresses are more stepped than the 

corresponding numerical stresses near the crack tip. Also, the analytical solution shows 

some instability near the crack tip. The analysis of the σy stress distribution shows an 

inflection point which is related to the size of the plastic zone. The analytical solution 

does not show this behaviour, which is a clear limitation of the analytical approach. 

The compressive residual stresses decrease progressively with increasing stress ratio, 

making the applied stress intensity range more effective. The extension of the 

compressive residual stresses increases with the crack size. The numerical model always 

predicts a compressive stress region which is lower than that predicted using the 

analytical model. The comparison between the numerical and analytical results highlight 

some inconsistencies in the analytical results. The analytical procedure produces reliable 

results at the crack notch root, but the residual stress distribution along the crack front 

path (away from the crack notch root) seems to be inconsistent, which is in part justified 

by the incapacity of the analytical model to handle the stress redistribution due to 
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yielding. Therefore, the numerical solution, for the residual stresses, was adopted in the 

crack propagation prediction, based on the UniGrow model. 

A very high linear correlation between the residual stress intensity factor and the applied 

stress range is verified, for each stress R-ratio. This linear relation agrees with the 

proposition by Noroozi et al. [13], based on analytical analysis. 

5.5.2. p-da/dN-K-R: results and discussion 

The UniGrow model was applied to compute the fatigue crack propagation rates for the 

same conditions used to derive the experimental fatigue crack propagation data 

described previously (see section 5.4). The residual stress intensity factor was computed 

based on compressive residual stress distribution from the finite element analysis, and 

using the weight function method [26], as proposed in the UniGrow model. The strain 

range and maximum stress, required by the probabilistic strain-life or SWT-life models, 

were assessed using the analytical approach, applied to the first elementary material 

block, keeping the original structure of the UniGrow model. Average strain and stress 

values, along the first elementary material block, were used instead of peak values. The 

analytical solution produces reliable results at the crack tip notch root as verified in 

previous section. The original structure of the UniGrow model presents some advantages: 

i) provides a direct correspondence with fracture mechanics based analyses, which 

facilitates the physical understanding of the process; ii) allows close form solutions for 

fatigue crack propagation laws to be achieved in the same format as that of existing 

fracture mechanics approaches; iii) requires inexpensive computations. 

The probabilistic εaN and SWTN fields were used to derive the probabilistic fatigue 

crack propagation fields (p-da/dN-K-R fields). For each case, an independent 

identification of the elementary material block size, ρ*, was performed. 

Figures 5.47 to 5.50 show the probabilistic fatigue crack propagation fields obtained, 

respectively for the materials from Eiffel and Fão bridges, for the S355 steel and the 

P355NL1 steel, using the p-SWT-N material fields. Figures 5.51 and 5.54 illustrate the 

probabilistic fatigue crack propagation fields predicted, respectively for the materials 
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from Eiffel and Fão bridges, for the S355 steel and for the P355NL1 steel, resulting from 

the p- εa-N material fields.  
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b) 

Figure 5.47 – Probabilistic prediction of the fatigue crack propagation based on the p-SWT-N field, for the 

material from the Eiffel bridge (ρ*=12×10
-4

m): a) Rσ=0.1; b) Rσ=0.5. 

Elementary material block sizes of 12×10-4m and 4×10-4m were found suitable for the 

material from Eiffel bridge if the p-SWT-N or the p- εa-N fields are, respectively, applied. 

For the material from the Fão bridge, elementary material block sizes of 4×10-4m and 

2×10-4m were found suitable, if the p-SWT-N or the p- εa-N fields are, respectively, used. 

An elementary material block size of 5.5×10-5m was found adequate for the S355 steel, 

when both p-SWT-N or p-ε-N fields are used. Finally, for the P355NL1 steel, a ρ*=3×10-5m 

was found suitable, resulting from the application of the p-ε-N fields. 
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c) 

Figure 5.48 – Probabilistic prediction of the fatigue crack propagation based on the p-SWT-N field, for the 

material from the Fão bridge (ρ*=4×10
-4

m): a) Rσ=0.0; b) Rσ=0.25; c) Rσ=0.5. 
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c) 

Figure 5.49 – Probabilistic prediction of the fatigue crack propagation based on the p-SWT-N field, for the 

S355 steel (ρ*=5.5×10
-5

m): a) Rσ=0.0; b) Rσ=0.25; c) Rσ=0.5. 
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b) 

Figure 5.50 – Probabilistic prediction of the fatigue crack propagation based on the p-SWT-N field, for the 

P355NL1 steel (ρ*=3×10
-5

m): a) Rσ=0.0; b) Rσ=0.5. 

The elementary material block sizes found for materials from the Fão and Eiffel bridges 

are significantly higher than those proposed by Noroozi et al. [14] for the 4340 steel 

(ρ*=2×10-6m), the former being about one order of magnitude higher compared with the 

S355 and P355NL1 steels. The materials from the Fão and Eiffel bridges are puddle irons, 

exhibiting higher grain sizes than modern steels. They also show significant amount of 

heterogeneities which may influence the crack propagation behaviour. The values of ρ* 

are consistent for the S355 and P355NL1 steels, as these are modern steels. So far, there 

are no conclusive studies relating the microstructural grain sizes with the elementary 
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material block sizes. Nevertheless, it can be anticipated that ρ* can be indirectly 

dependent on the micro-structural features of the analysed material (e.g. grain size) but it 

cannot be uniquely associated with any specific micro-structural particle size. Therefore, 

the material grain size may be considered just one of the possible microstructural 

features affecting the definition of ρ*. 
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b) 

Figure 5.51 – Probabilistic prediction of the fatigue crack propagation based on the p-εa-N field, for the 

material from the Eiffel bridge (ρ*=4×10
-4

m): a) Rσ=0.1; b) Rσ=0.5. 
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c) 

Figure 5.52 – Probabilistic prediction of the fatigue crack propagation based on the p-εa-N field, for the 

material from the Fão bridge (ρ*=2×10
-4

m): a) Rσ=0.0; b) Rσ=0.25; c) Rσ=0.5. 
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c) 

Figure 5.53 – Probabilistic prediction of the fatigue crack propagation based on the p-εa-N field, for the S355 

steel (ρ*=5.5×10
-5

m): a) Rσ=0; b) Rσ=0.25; c) Rσ=0.5. 
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b) 

Figure 5.54 – Probabilistic prediction of the fatigue crack propagation based on the p-εa-N field, for the 

P355NL1 steel (ρ*=3×10
-5

m): a) Rσ=0.0; b) Rσ=0.5. 

The p-da/dN-K-R field predicted for the material of Fão bridge show a satisfactory 

agreement with the experimental data, using both p-SWT-N and p-εa-N fields. 

Nevertheless, the predictions based on p-εa-N fields seems better, which is justified by 

the fact that the material from the Fão bridge shows only a relative small influence of 

stress ratio on fatigue crack propagation rates. Also, the curvature of the p-da/dN-K-R 

field that resulted from the p-εa-N field is more consistent with the existence of the 

propagation threshold. Both fatigue crack propagation regimes, I and II, may be modelled 

using the strain-life approach. The crack propagation threshold, Kth, should correspond 
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to the fatigue limit given by the p- εa-N or the p-SWT-N fields. The correct description of 

the fatigue crack growth in the propagation regime I depends on a convenient 

characterization of the fatigue limit of the material. An inaccurate fatigue limit definition 

leads to an underestimation or overestimation of the Kth. The proposed model is not 

able to reproduce the acceleration of the crack propagation near unstable propagation, 

since this damage process (ductile damage) is not accounted for conveniently by the 

proposed p-SWT-N and p-εa-N fields. 

Concerning the p-da/dN-K-R fields predicted for the materials from the Eiffel bridge and 

of the S355 steel, only the field resulting from the p-SWT-N model produces satisfactory 

results. On effect, the material from the Fão bridge and the S355 steel show a markedly 

stress ratio influence, requiring a fatigue damage model that is able to account for the 

mean stress effects. 

Concerning the probabilistic fatigue crack propagation rates fields of the P355NL1 steel, it 

is clear that the use of the p-SWT-N model overestimates the effects of the stress R-ratio. 

Using the probabilistic SWT-N model, the stress ratio effect is accounted for twice 

through the residual stress intensity factor and through the mean stress of the cycle. 

However, the number of cycles to fail the elementary material block fits from the very 

low-cycle to low-cycle fatigue regimes (number of cycles lower than 5×104 cycles) at 

which the mean stress effects are generally negligible due to a rapid cyclic mean stress 

relaxation. The plasticity model with multilinear kinematic hardening, used in the current 

research, is not able to model the cyclic mean stress relaxation. The predictions based on 

the p-εa-N model are very satisfactory. Firstly, they define lower and upper bounds for the 

available experimental data. Secondly, the major influence of the stress ratio is verified 

when it changes from 0 to 0.5. 

In the damage computations presented in the chapter, the prior loading history on crack 

tip elements was not considered. Preliminary calculations performed considering the 

prior loading history on a set of elements ahead of the crack tip, forming a process zone, 

showed only a marginal influence on da/dN predictions, mainly in the propagation 

regimes I and II.  On the other hand, the computational costs associated to simultaneous 

damaged elements increases very significantly. 



CHAPTER V 

 V.68 

5.6. CONCLUSIONS 

An assessment of the UniGrow model was presented in this section, based on available 

experimental data for the materials under consideration. The UniGrow model was also 

extended to predict probabilistic fatigue crack propagation fields, replacing the 

deterministic SWT-N relation proposed in the original UniGrow model by the p-SWT-N or 

p-εa-N fields. The p-SWT-N field was firstly proposed in the present chapter, as a 

generalization of the p-εa-N field, in order to take into account the mean stress effects. 

Both p-SWT-N and p-εa-N fields led to satisfactory correlations of the experimental data 

available for the materials under investigation. Nevertheless, the percentile lines resulting 

from the p-SWT-N field show an approximate linear shape (for bi-logarithm 

representations); for the p-εa-N field, some curvature is observed in the respective 

percentile lines. 

The multiaxial analytical Neuber elastoplastic analysis proposed in the UniGrow model to 

compute the residual stress distribution was assessed using elastoplastic finite element 

analysis. Inconsistent compressive residual stress distributions, mainly for Rσ=0, were 

found using this approach. The multiaxial Neuber model does not account for stress 

redistribution due to yielding, and therefore does not provide the dimensions of the 

plastic zone. Consequently, the dimensions of the residual compressive stress zone, are 

not accurately evaluated. The residual compressive stress intensity factor, computed with 

the compressive residual stress field from the finite element analysis, exhibits a linear 

relation with the applied stress intensity factor range, which confirms the typical trend 

documented in literature of linear increase of the residual stress intensity factor with the 

applied stress intensity factor range, for a specific stress R-ratio. The Kr vs. Kapplied 

relation depends on stress R-ratio, the Kr being negligible for stress R-ratios higher than 

0.5 and the applied K, Kapplied, becoming fully effective. The knowledge of the Kr vs. 

Kapplied relation is important to avoid the necessity of time consuming elastoplastic 

analysis for every crack increments. 

The p-da/dN-K-R fields predicted for the investigated materials, based on the material p-

SWT-N field showed a satisfactory agreement with the experimental data available for 

both materials. The proposed p-da/dN-K-R fields were able to model conveniently the 
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stress R-ratio effects on crack propagation rates as well as to represent the scatter on 

these fatigue crack propagation rates, which are significant on this type of materials. 

Predictions based on material p-εa-N field also produced satisfactory results for the 

materials from the Fão bridge and the P355NL1 steel, since these materials show crack 

propagation rates with relative small sensitivity to the stress R-ratio. The p-da/dN-K-R 

fields, for the materials from the Eiffel bridge and the S355 steel, the use of the p-SWT-N 

model was justified since these material are clearly influenced by the mean stress effects. 

The elementary material block sizes found for the materials from the Eiffel and Fão 

bridges are within the same order of magnitude, which is consistent with the fact that 

they are puddle irons of about same age. However, these elementary material block sizes 

are two orders of magnitude higher than those proposed in the literature for the 4340 

steel, which is a material with smaller grain sizes and significant lower level of 

heterogeneities. This parameter, for the S355 and P355NL1 steels, was found to be about 

one order of magnitude higher than the value proposed by Noroozi et al. [12] for the 

4340 steel. The ρ* can be indirectly dependent on the micro-structural features of the 

analysed material (e.g. grain size) but it cannot be uniquely associated with any specific 

micro-structural particle size. 
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PROCEDURE TO DERIVE PROBABILISTIC 

S-N FIELDS FOR STRUCTURAL DETAILS (p-S-Nf-R) 

 

6.1. INTRODUCTION 

Probabilistic fatigue models are required to account conveniently for several sources of 

uncertainty arising in the prediction procedures for structural details, such as the scatter 

in material behaviour. In this chapter, an approach is proposed to generate probabilistic 

S–N fields for distinct stress R-ratios, based on the local approaches supported by the 

probabilistic εa–N or Smith–Watson–Topper (SWT)–N fields [1,2]. Both fatigue crack 

initiation and fatigue crack propagation mechanisms are accounted for in the proposed 

approach, which is applied to two notched geometries, one made of P355NL1 steel and 

the other made of puddle iron from the Eiffel bridge. 

This chapter suggests an extension of the fatigue crack propagation model proposed by 

Noroozi et al. [3,4] to structural details, in order to cover both the fatigue crack initiation 

and fatigue crack propagation, based on local strain approaches to fatigue. The model 

proposed by Noroozi et al. [3,4], commonly denoted UniGrow model, has been classed as 

a residual stress based crack propagation model [5]. This model is applied in this chapter 

to derive probabilistic fatigue crack propagation fields for notched details, for distinct 

stress R-ratios (p–S–Np–R fields). The material representative element size, ρ*, required 

by UniGrow model was previously introduced in the Chapter V using exclusively fatigue 

crack propagation data obtained from compact tension (CT) specimens. The same 

procedure was followed to compute the p–S–Np–R field for the notched component, 
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considering an initial crack of ρ* size. The probabilistic fatigue crack initiation field was 

evaluated using the material p–εa–N or p–SWT–N fields applied to calculate the fatigue 

damage of the first elementary material block, ahead of the notch root. Consequently, an 

unified approach for the global prediction (crack initiation and propagation) of the 

probabilistic S–Nf–R fields is proposed. The predictions are compared with available 

experimental S–N fatigue data available for two notched details under consideration 

[6,7]. 

6.2. GENERAL PROCEDURE TO GENERATE P–S–Nf–R FIELDS FOR 

STRUCUTRAL DETAILS 

6.2.1. Description of the procedure 

The procedure proposed to derive the probabilistic S–N–R fields for structural details or 

mechanical components is applied according to the following steps: 

1. Estimation of the parameters of the p–SWT–N or p–εa–N material fields, as described in 

Section 5.4.3. of Chapter V, using experimental fatigue data from smooth specimens. 

These probabilistic fields will be the basis for the probabilistic S–N fields of the structural 

details. They will be used to model both crack initiation and crack propagation. The 

selection of the damage parameter will depend on material/detail sensitivity to the stress 

ratio. 

2. Estimation of the elementary material block size, ρ*, using crack propagation data, 

following the procedure by Noroozi et al. [3,4]. The elementary material block size is 

estimated using a trial and error procedure in order the fatigue crack propagation field 

prediction to fit the experimental fatigue crack propagation data, for several stress ratios. 

This step should be performed using fatigue crack propagation data from cracked 

specimens in order to avoid the need to model the fatigue crack initiation. This step was 

implemented in the Chapter V, using fatigue crack propagation data from CT specimens. 

3. Fulfilment of elastoplastic analysis to the uncracked structural detail in order to 

evaluate the average local stresses and strains at the first element block size ahead of the 

notch root. This step was performed in this chapter, using the finite element method. 
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4. Application of the p–SWT–N or p–εa–N models to derive the p–S–Ni–R fields 

representative of the macroscopic crack initiation, in the structural detail/mechanical 

component. 

5. Application of the adapted UniGrow model to evaluate the fatigue crack propagation in 

the structural detail, using the elementary material block size computed previously on 

step 2. The residual stress field required in the UniGrow model is computed in this 

chapter using elastoplastic finite element analysis. 

6. Computation of the p–S–Np–R fields corresponding to the fatigue crack propagation in 

the structural detail/mechanical component. 

7. Combination of probabilistic fields from steps 4 and 6 to evaluate the global p–S–Nf–R 

field for the structural detail/mechanical component. 

Based on these arguments, the structural detail resisting section can be represented as a 

sum of elementary material blocks of length ρ*, placed along the crack propagation path 

(see Figure 6.1). The procedures adopted to compute the probabilistic S–Ni–R and S–Np–R 

fields, for structural details are illustrated in Figure 6.2 and Figure 6.3, respectively [8]. 

 

 

Figure 6.1 – Representative material blocks along the crack propagation path of a notched geometry. 
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Figure 6.2 – Procedure for the estimation of the probabilistic fatigue crack initiation field for notched 

geometries. 
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Figure 6.3 – Procedure for the estimation of the probabilistic fatigue crack propagation field for the notched 

geometries [8]. 
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6.2.2. Additional considerations on the application of the UniGrow model 

The UniGrow model was proposed by Noroozi et al. [3] based on the assumptions 

described in Section 5.2.1. of Chapter V. 

The procedure proposed by Noroozi et al. [3] to compute the elastoplastic stresses and 

strains at the elementary material blocks ahead of the crack tip, is developed in the 

current discussion, particularly in what concerns the determination of the number of 

cycles to failure of the elementary material blocks, in the fatigue crack propagation 

regime, according to the following procedure: 

i) The stress intensity factors are determined for the detail under investigation using 

linear elastic finite element analysis with the J-integral method. 

ii) The original procedure for the computations of the residual stress distribution 

consisted in the following actions: 

a) The elastic stress fields ahead of the crack tip are estimated using analytical 

solutions for a crack with a tip radius, ρ*, and determining the stress intensity 

factors. 

b) The actual elastoplastic stresses and strains, ahead of the crack tip, are 

computed using Neuber’s or Glinka’s approach [9,10]. 

c) The residual stress distribution ahead of the crack tip is computed using the 

maximum actual elastoplastic stresses resulting at the end of the first load reversal 

and, subsequently, the cyclic elastoplastic stress range, σr =σmax -σ. 

In this study, steps a), b) and c) were replaced by an elastoplastic finite element analysis 

in order to allow the direct computation of the residual stress fields to be performed. A 

loading-unloading load step sequence was simulated and the residual stresses resulted as 

the stresses at the end of the unloading step. 

iii) The residual stress distribution computed ahead of the crack tip is assumed to be 

applied on the crack faces, behind the crack tip, in a symmetric way with respect to the 

crack tip. The residual stress intensity factor, Kr, is computed using the weight function 

method according to the following general expression [11]: 
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    dxa,xmxK
a

0
rr     (6.1) 

To this purpose, the weight function m(x,a) was computed for the cracked detail under 

consideration using the following expression [11]: 

 
a

u

K

H
a,xm y

I 


  (6.2) 

where H=E (Young's modulus) for generalized plane stress, and H=E/(1-v2) for plane 

strain, v being the Poisson's ratio, KI is the stress intensity factor and uy is the 

corresponding crack opening displacement. In this research the weight functions were 

computed using a linear elastic finite element model for the cracked geometries. The 

displacements, uy and the stress intensity factors, KI, were computed as a function of the 

crack size, a, allowing the application of Equation (6.2). 

iv) The applied stress intensity factor (maximum and range values) is corrected using the 

residual stress intensity value, resulting in the total values, Kmax,tot and Ktot [3,4]. For 

positive applied stress ratios, Kmax,tot and Ktot may be computed as follows: 

rappliedtot

rappliedmax,totmax,

KKK

KKK






 (6.3) 

where Kr takes a negative value corresponding to the compressive stress field. This 

residual stress correction makes the crack propagation model sensitive to the stress ratio 

effects. In fact, the compressive stresses decrease with increasing stress ratio. 

Consequently, the total stress intensity factors tend to the corresponding applied stress 

intensity factor. For lower stress ratios, the total stress intensity factors will be lower than 

the applied ones. This step, corresponds to the original proposal of Noroozi et al. [3] that 

was followed in this study. 

v) Using the total values of the stress intensity factors, the above steps 2a) and 2b) are 

applied to determine the updated values of the actual maximum stress and actual strain 

range for the material representative elements. Then, Smith-Watson-Topper (SWT)-N [2] 

or Morrow’s relations *1+ are applied to compute the number of cycles required for the 

material representative element to fail. For materials with higher sensitivity of the stress 

propagation rates to the stress ratio, Smith-Watson-Topper (SWT)-N [2] should be used; 
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otherwise, Morrow’s relations *1+ may be adequate. The Morrow equation referred here 

corresponds to the superposition of Basquin [12] and Coffin-Manson relations [13,14] 

without any mean stress correction. 

The UniGrow crack propagation model will be applied to compute the number of cycles 

required to propagate an initial crack at the notch root of a component until its critical 

dimension, responsible for the collapse of the component, is achieved. In this research, it 

is postulated that the crack initiation corresponds to the development of a crack with a 

size equal to the elementary material block dimension, ρ*. In addition to the number of 

cycles required to propagate the crack, the number of cycles required to initiate a crack of 

a size, ρ*, equal to the elementary material block, will be also computed using a local 

approach. For this purpose, an elastoplastic stress/strain analysis will be carried out for 

the uncracked geometry to derive the average stress/strains at the first elementary 

material block ahead of the notch root. 

6.3. EXPERIMENTAL FATIGUE DATA OF THE NOTCHED GEOMETRIES UNDER 

CONSIDERATION  

In this section, the experimental fatigue data of the basic materials and notched details 

under consideration in this study are presented. Two materials are considered in this 

research, namely the puddle iron from the Portuguese Eiffel bridge and P355NL1 steel 

(pressure vessel steel). The experimental fatigue data of these materials are presented in 

detail in Chapter III and Section 5.4. of Chapter V. 

6.3.1. Notched detail made of P355NL1 steel 

The P355NL1 steel is used for pressure vessels manufacturing proposes. The monotonic, 

cyclic and strain-life properties of this material are obtained from the references [6] and 

[15] and summarized in Tables 6.1 and 6.2. 

Table 6.1 – Monotonic and cyclic elastoplastic properties of the P355NL1 steel [6,15]. 

E ν f u f y K' n'

GPa - MPa MPa MPa -

205.20 0.275 568.11 418.06 948.35 0.1533  
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Table 6.2 – Morrow constants of the P355NL1 steel [6,15]. 

σ' f b ε' f c

MPa - - -

1005.50 -0.1033 0.3678 -0.5475  

Fatigue crack propagation curves (da/dN versus K curves) were determined for the 

P355NL1 steel using compact tension (CT) specimens. A total of five specimens were 

tested under load control: two specimens under load stress R-ratio equal to 0 (MB02 & 

MB04); two specimens under Rσ=0.5 (MB03 & MB05) and one specimen under Rσ=0.7 

(MB06). The respective fatigue crack growth data can be found in sub-section 5.4.2 of 

Chapter V and is reproduced in Figure 6.4 [16]. 
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Figure 6.4 – Fatigue crack propagation data of the P355NL1 steel for distinct stress ratios. 

More details about the fatigue properties evaluation, concerning P355NL1 steel, are given 

in Section 5.4. of Chapter V and in reference [16]. 

A notched detail made of P355NL1 steel, consisting of a double side notched rectangular 

plate, as illustrated in Figure 6.5 (L1=L2=35mm, L=25mm), was considered in this 

investigation. This geometry was fatigue tested under remote stress controlled 

conditions, for three distinct stress ratios, namely Rσ=0, Rσ=0.15 and Rσ=0.3. The 

respective fatigue data can be found in literature [6] and is illustrated in Figure 6.6. The 

stress range plotted in Figure 6.6 corresponds to the nominal stress range applied to the 
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plate. The analysis of the results shows a significant sensitivity of the S-N data to the 

stress ratio. 

 

Figure 6.5 – Rectangular notched plate of P355NL1 steel (dimensions in mm). 
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Figure 6.6 – S-N data of the notched plate of P355NL1 steel. 

The probabilistic SWT-N and p-εa-N fields for the P355NL1 steel are presented in Section 

5.4.3. of Chapter V to describe the strain-life field of the material, based on the Weibull 

distribution. The p-εa-N field will be latter used in this chapter to model the fatigue crack 

propagation field for the notched detail; the p-SWT-N field will be used to model the 

fatigue crack initiation field for the notched detail. Both probabilistic fields will be used 

with adopted UniGrow model to obtain the probabilistic S-N-R field. 

6.3.2. Notched geometry made of puddle iron from the Eiffel bridge 

The puddle iron from the Portuguese Eiffel bridge was also considered in this study. The 

fatigue behaviour of this material was determined based on fatigue tests of smooth 
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specimens and fatigue crack propagation tests. The fatigue tests of smooth specimens 

were carried out according to the ASTME606 standard [17], under strain controlled 

conditions and the respective results are summarized in Tables 6.3 and 6.4 [18]. 

Table 6.3 – Monotonic and cyclic elastoplastic properties of the material from the Eiffel bridge [18]. 

E ν f u f y K' n'

GPa - MPa MPa MPa -

193.11 0.300 342 292 645.95 0.0946  

Table 6.4 – Morrow constants of the material from the Eiffel bridge [18]. 

σ' f b ε' f c

MPa - - -

602.50 -0.0778 0.1595 -0.7972  

The fatigue crack propagation tests were performed under load controlled conditions, 

using CT specimens, in accordance with the procedures of the ASTM E647 standard [19]. 

CT specimens from the Eiffel bridge were defined with a width, W=40mm, and a 

thickness, B=4.5mm. The fatigue crack propagation tests were performed for stress R-

ratios, Rσ=0.1 and Rσ=0.5, as illustrated in Figure 6.7 [18]. 
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Figure 6.7 – Fatigue crack propagation data of the material from the Eiffel bridge for distinct stress ratios. 

Due to the relatively high sensitivity of the fatigue propagation rates to the stress R-ratio, 

the fatigue crack propagation rates for this material were modelled using the UniGrow 

model based on the SWT damage parameter (see Section 5.5.1.1. of Chapter V). 
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More details about the fatigue properties evaluation, concerning material from Eiffel 

bridge, are given in Chapter III, and Section 5.4. of Chapter V and reference [18]. 

A plate with a circular hole, made of puddle iron from the Eiffel bridge, as illustrated in 

Figure 6.8, was considered in this investigation. The S‐N results presented in this sub-

section were obtained using fatigue tests of specimens subjected to load control 

conditions, for stress R-ratio equal to 0, and performed on a servo‐hydraulic machine 

rated to 100kN at test frequencies, f, ranging between 5 and 10Hz. A total of 15 

specimens were tested. Figure 6.9 illustrates the complete test series of the structural 

detail made of material extracted from Eiffel bridge. The results of these fatigue tests are 

summarized in Table 6.5. The respective fatigue data can be found in Figure 6.10 [7]. The 

stress range plotted in Figure 6.10 corresponds to the nominal/net stress range applied to 

the plate. 

 

Figure 6.8 – Plate made of puddle iron from the Eiffel bridge with a circular hole (dimensions in mm). 

Table 6.5 – Complete test series of the component detail made of material extracted from Eiffel bridge. 

Specimen S gross S net R σ F max  F f  σ gross  σ net N f

- mm2 mm2
- N N Hz MPa MPa cylces

C1 199.4 139.5 28173 27891 10.0 139.9 200.0 251736
C2 199.2 139.4 38031 37651 10.0 189.1 270.0 41000
C3 197.8 139.1 41162 40750 10.0 206.0 293.0 6002
C4 195.1 137.0 27687 27410 10.0 140.5 200.0 804145
C5 203.3 142.1 28705 28418 10.0 139.8 200.0 607464
C6 198.4 138.8 41069 40658 5.0 204.9 293.0 12650
C7 195.7 137.0 33905 33566 7.5 171.6 245.0 91668
C8 201.6 141.1 34929 34580 7.5 171.5 245.0 112741
C9 197.5 138.1 37652 37275 10.0 188.7 270.0 28730

C10 201.2 141.0 38444 38060 10.0 189.2 270.0 20922
C11 203.1 142.4 32357 32033 10.0 157.7 225.0 325192
C12 198.8 138.8 31556 31240 10.0 157.1 225.0 196119
C13 193.9 135.4 24610 24364 10.0 125.7 180.0 911186
C14 198.1 138.5 27987 27707 10.0 139.9 200.0 584230
C15 212.1 148.2 33683 33346 10.0 157.2 225.0 345328

0.01
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Figure 6.9 – Specimen plates made of puddle iron from the Eiffel bridge with a circular hole (dimensions in 

mm). 

 

Figure 6.10 – S-N data of the plate made of puddle iron from the Eiffel bridge with a circular hole. 

The probabilistic SWT-N and εa-N fields for the material from the Eiffel bridge are 

presented in Section 5.4.3. of Chapter V where the strain-life fields of several materials 

are presented based on the Weibull distribution. The p-SWT-N field will be used to model 

the fatigue crack initiation and propagation fields for the notched structural detail. 
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In this section the probabilistic S-N fields for the structural details are computed. These 

probabilistic fields will result from the superposition of the crack initiation and crack 
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propagation probabilistic fields. The number of cycles to failure is assumed to follow the 

relation: 

pif NNN   (6.4) 

The crack initiation corresponds to the initiation of a crack size equal to the elementary 

material block size, ρ*. The number of crack propagation cycles will correspond to the 

number of cycles required to propagate the initial crack size of the elementary material 

block size until failure, i.e., unstable crack propagation. 

6.4.1. Notched detail made of P355NL1 steel 

The crack initiation will be modelled using the p-SWT-N field, due to the sensitivity of the 

detail to the stress ratio, which is not visible on the fatigue crack propagation rates. 

Elastoplastic analysis is performed on the uncracked geometry to compute the 

local/notch stress-strain response needed to compute the SWT parameter. The crack 

propagation will be performed using the denoted UniGrow model, using probabilistic 

fatigue damage fields. 

The elementary material block size, ρ*, equal to 3×10-5m, was estimated in the Section 

5.5.1.4. of Chapter V, using fatigue crack propagation data from CT specimens. The value 

of this parameter will be used in the prediction of the probabilistic S-N field for the 

notched detail represented in Figure 6.5. 

6.4.1.1. Finite element analysis of notched detail 

In order to assess the accuracy of the simplified elastoplastic analysis, for the residual 

stress estimation, a bi-dimensional finite element model of the notched detail was 

proposed, using ANSYS® 12.0 commercial code [20]. Figure 6.11 illustrates a typical finite 

element mesh of the detail. This mesh exhibits a crack on the left notch. In the practice, 

cracks started at one side notch root and propagated asymmetrically in the plate.  Taking 

into account the existing symmetry plane, only half of the geometry is modelled. Plane 

stress 6-noded quadratic triangular elements (PLANE 181) were used in the analysis due 

to the limited specimen thickness. A parametric model was built using the APDL language. 
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Concerning the residual elastoplastic stress computation, a highly refined mesh at the 

crack tip region was used in order to model the crack tip notch radius, ρ* (see 

magnification in Figure 6.11). A von Mises yield model, with multilinear kinematic 

hardening, was used in the simulations with ANSYS® 12.0 code [20]. The plasticity model 

was fitted to the stabilized cyclic curve of the material (see Section 5.5.1.4. of Chapter V 

or references [6,15,16]). 

 
 

 

 
 

 

 

 

Figure 6.11 – Finite element mesh of the rectangular notched plate with a side crack. 

6.4.1.2. Prediction of the probabilistic S-Ni-R field 

The p-SWT-N model is used to predict the fatigue crack initiation (failure of the first 

elementary material block) at the notch root of the detail – the procedure is illustrated in 

the Figure 6.2. An elastoplastic finite element analysis was used to compute the 

stress/strain history at the notch root. The same material model as used for the CT 

specimen simulation was adopted for the detail. In order to allow the strain amplitude 
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computation, loading followed by unloading steps were simulated, using a plasticity 

model identified with the stabilised cyclic stress-strain curve of the material. 

Figures 6.12 and 6.13 show the elastoplastic stress distributions along the x and y 

directions for the notched detail made of P355NL1 steel, respectively, assuming applied 

nominal stress of 200MPa, 275MPa and 350MPa, and computed along the minimum 

cross section line. 

Figures 6.14 and 6.15 show the residual elastoplastic stress and strain range distributions 

for the notched detail made of P355NL1 steel, respectively, assuming nominal stress 

ranges of 200MPa, 275MPa and 350MPa (Rσ=0). 

Figures 6.16 and 6.17 show, respectively, the stress and strain fields from the left notch 

root obtained for the structural detail under consideration using the elastoplastic finite 

element analysis. The results were obtained using the properties of the P355NL1 steel 

and assuming a nominal stress of 275MPa. 
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Figure 6.12 – Elastoplastic stress distribution, σy, as a function of the distance to the left notch root. 
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Figure 6.13 – Elastoplastic stress distribution, σx, as a function of the distance to the left notch root. 
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Figure 6.14 – Residual elastoplastic stress distribution, σr, as a function of the distance to the left notch root. 
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Figure 6.15 – Strain range, ε, as a function of the distance to the left notch root (Rσ=0). 
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a) 

 
b) 

Figure 6.16 – Stress fields from the left notch root, obtained for the structural detail of the P355NL1 steel, 

resulting from elastoplastic finite element analysis (σ = 275MPa and Rσ=0.0): a) Stress field, σy, in MPa, at 

the end of the first loading reversal; b) Stress field, σy, in MPa, at the end of the first unloading reversal. 

 
a) 
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b) 

Figure 6.17 – Strain fields from the left notch root, obtained for the structural detail of the P355NL1 steel, 

resulting from elastoplastic finite element analysis (σ = 275MPa and Rσ=0.0): a) Strain field at the end of 

the first loading reversal; b) Strain field at the end of the first unloading reversal. 

Figure 6.18 shows the p-S-Ni fields corresponding to the fatigue crack initiation for the 

notched detail, for Rσ=0.0, Rσ=0.15 and Rσ=0.3. The analysis of the graphs demonstrates 

that fatigue crack initiation is dominant, since the proposed p-S-Ni fields already produces 

a good description of the S-N fatigue data of the detail [8]. 
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c) 

Figure 6.18 – p-S-Ni-R fields for the notched detail made of P355NL1 steel: a) Rσ=0.0; b) Rσ=0.15; c) Rσ=0.30. 

6.4.1.3. Prediction of the probabilistic S-Np-R field 

The procedure adopted to compute the probabilistic S-Np-R fields for the notched plate is 

illustrated in Fig. 6.3. The elementary material block size, ρ*, equal to 3×10-5m, was 

previously estimated using an independent identification based on pure fatigue crack 

propagation data (see Section 5.5.1.4. of Chapter V or reference [16]). Finite element 

models of the detail were used to perform elastoplastic stress analysis for the 

computation of the residual stresses. In addition, linear elastic finite element models 

were used to compute the weight functions required for the residual stress intensity 
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factor computation as well as the stress intensity factor solutions for the notched 

geometry. 

The stress intensity factors were determined based on a linear-elastic finite element 

analysis using the J-integral method. Figure 6.19 presents the stress intensity evolution 

with the crack length, for a unitary remote stress used to determine the Kapplied. 

The residual elastoplastic stress computation was based on a elastoplastic finite element 

analysis using the von Mises yield model, with multilinear kinematic hardening. Figure 

6.20 presents the residual stress distribution ahead of the crack tip, from the elastoplastic 

finite element analysis. These residual stresses were computed after loading/unloading 

steps. Very high compressive stresses are observed at the vicinity of the crack tip. 
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Figure 6.19 – Stress intensity factors as a function of the crack length, for a unit load. 
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Figure 6.20 – Residual stress distributions for the notched plate for several crack sizes. 

Figures 6.21 and 6.22 present the elastoplastic stress distribution in y and x directions, 

ahead of the crack tip for the first loading reversal, respectively, from the elastoplastic 

finite element analysis. 

Figures 6.23 and 6.24 show the residual and maximum elastoplastic stress fields along the 

y (load) direction from the left notch root, respectively, obtained for the structural detail 

under consideration using an elastoplastic finite element analysis. The results were 

obtained using the properties of the P355NL1 steel and assuming a nominal stress range 

σ = 275MPa, a = 2.5mm and a stress R-ratio, Rσ=0.0. 
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Figure 6.21 – Elastoplastic stress distributions in y direction for a notched plate with several crack sizes. 
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Figure 6.22 – Elastoplastic stress distributions in x direction for a notched plate with several crack sizes. 

 

 

[MPa] 

Figure 6.23 – Residual stress field along the y (load) direction around the left notch root, obtained for the 

structural detail made of P355NL1 steel, resulting from an elastoplastic finite element analysis 

(σ=275MPa, Rσ=0.0 and a=2.5mm). 
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 [MPa] 

Figure 6.24 – Maximum stress field along the y (load) direction around the left notch root, obtained for the 

structural detail made of P355NL1 steel, resulting from an elastoplastic finite element analysis 

(σ=275MPa, Rσ=0.0 and a=2.5mm). 

The residual stress intensity factor, Kr, was determined using the weight functions 

technique as proposed by Equation (6.1). The weight functions were evaluated using the 

Equation (6.2) and results from the linear elastic finite element analysis. Figure 6.25 

represents the weight functions used to determine the Kr of the notched detail, for 

distinct crack lengths. The weight functions were determined for specific crack sizes [8]. 

The following equations present the weight functions for three distinct crack sizes 

depicted in Figure 6.25, using six order polynomials: 

 
 

 a,xf
xa2

2
a,xm 





  (6.5) 

 

951.41047000 +23x3.47273075 + 164x31.8779779 - 273x98.7550466 

 8750x141.979669 - 858x95.4603270 + 4250x-24.23986325.1,xf

23

456




 (6.6) 
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 

691.53135834 +36x 1.79587206 + 71x8.47819485 - 667x13.4676159 

+ 86x9.98565190 - 6x3.47327331 + 613x-0.45744125.2,xf

23

456




 (6.7) 

 

632.15425018 03x0.80614122  73x2.29563888 - 81x1.89435834 

 77x0.72539251 - 41x0.12970154  453x-0.00874925,xf

23

456




 (6.8) 

Those weight functions allow the residual stress intensity factor, Kr, to be computed. In 

this case, Kr was calculated for Rσ=0, Rσ=0.15 and Rσ=0.3 [8]. Figure 6.26 shows the 

evolution of Kr with the applied stress intensity factor range. The resulting data shows 

good linear correlation. This result confirms the same conclusion pointed out in reference 

[4], which supports the use of the finite element model as an effective tool for residual 

stress evaluation. 
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Figure 6.25 – Weight functions of the notched detail, for different crack lengths. 
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Figure 6.26 – Residual stress intensity factor as a function of the applied stress intensity factor range for the 

notched plate. 
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The p-S-Np field of the notched plate was calculated for Rσ=0, Rσ=0.15 and Rσ=0.3 using 

the p-εa-N field of the P355NL1 steel together with the UniGrow model proposed by 

Noroozi et al. [3], and taking ρ*=3×10-5m (see Section 5.4.3. and 5.5.1.4. of Chapter V or 

reference [16]). The use of the p-εa-N field of the P355NL1 steel to model the fatigue 

crack propagation is justified by the fact that the material showed a crack propagation 

rate with low sensitivity to the stress ratio effects as argued in Section 5.5.1.4. of Chapter 

V. Figure 6.27 illustrates the p-S-Np fields obtained for the notched detail. Figure 6.27 also 

includes the experimental fatigue data, which represents the total fatigue life of the 

detail. The comparison of the experimental fatigue data with the crack propagation fields 

shows that the crack propagation, despite not negligible, is not the dominant damage 

process, at least for low stress ranges/ high fatigue lives. In general, the fatigue crack 

propagation becomes dominant for larger structural details [8]. 
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Figure 6.27 – p-S-Np fields for the notched detail made of P355NL1 steel: a) Rσ=0.0; b) Rσ=0.15; c) Rσ=0.30. 

6.4.1.4. Prediction of the probabilistic S-Nf-R field 

The combined crack initiation and crack propagation S-Nf fields were computed for the 

notched plate using Equation (6.4). Figure 6.28 presents the combined results. The 

analysis of the resulting S-Nf fields highlights the accuracy of the proposed methodology. 

The experimental fatigue data falls inside the 1%-99% failure probability band, with a 

unique exception for Rσ=0 and Rσ=0.3. The proposed unified approach seems to give fairly 

promising predictions [8]. 
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Figure 6.28 – p-S-Nf fields for the notched detail made of P355NL1 steel: a) Rσ=0.0; b) Rσ=0.15; c) Rσ=0.30. 

6.4.2. Structural detail made of puddle iron from the Eiffel bridge 

The crack initiation is modelled using the p-SWT-N field, due to the sensitivity of the detail 

to the stress ratio, which is not visible on the fatigue crack propagation rates. Elastoplastic 

analysis is performed on the uncracked geometry to compute the local/notch stress-

strain response needed to determine the SWT parameter. The crack propagation will be 

performed using the so-called UniGrow model, using probabilistic fatigue damage fields. 

The value of the elementary material block size, ρ*=12×10-4m, was estimated in the 

Section 5.5.1.1. of Chapter V, using fatigue crack propagation data from CT specimens. It 
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will be used in the prediction of the probabilistic S-N field for the structural detail made of 

material from the Eiffel bridge (see Figure 6.8). 

6.4.2.1. Finite element analysis of structural detail 

A bi-dimensional finite element model of the structural detail was proposed, using 

ANSYS® 12.0 commercial code [17]. Figure 6.29 illustrates a typical finite element mesh of 

the detail, with and without a side crack. This mesh exhibits a crack on the left side of the 

notch. In the practice, cracks started at both sides of the notch root and propagated 

symmetrically in the plate.  Taking into account the existing symmetry planes, only ¼ of 

the geometry is modelled. Plane stress quadratic triangular elements were used in the 

analysis due to the limited specimen thickness. The same PLANE 181 elements used in the 

analysis of the P355NL1 plate, were also applied to build this plate. 

A highly refined mesh at the crack tip region was used in order to model the crack tip 

notch radius, ρ* (see magnification in Figure 6.29). The von Mises yield criterion with 

multilinear kinematic hardening, was used in simulations aiming at an estimation of the 

residual stress. The plasticity model was fitted to the stabilized cyclic curve of the material 

(Section 5.5.1.1. of Chapter V). 

6.4.2.2. Prediction of the probabilistic S-Ni-R field 

The p-SWT-N model is used to predict the fatigue crack initiation (failure of the first 

elementary material block) at the notch root of the detail – according to the procedure 

illustrated in Figure 6.2. An elastoplastic finite element analysis was used to compute the 

stress/strain history at the notch root. The same material model as applied for the CT 

specimen simulation was adopted for the detail. In order to facilitate the strain amplitude 

computation, loading followed by unloading steps were simulated using a plasticity model 

identified with the stabilised cyclic stress-strain curve of the material. 

Figures 6.30 and 6.31 show the elastoplastic stress distributions in x and y directions, 

respectively, for the structural detail made of material from the Eiffel bridge, assuming 

applied nominal stresses of 175MPa, 250MPa and 325MPa. 
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Figures 6.32 and 6.33 show the residual elastoplastic stress distributions and strain range 

for the notched detail made of material from the Eiffel bridge, respectively, assuming 

applied nominal stress ranges of 175MPa, 250MPa and 325MPa (Rσ=0). 

 

 
a) ¼ of the finite element mesh of 
the structural retail. 

 

 

 
b) Without crack. 

 

 
c) With a side crack and tip notch radius of 

1200μm. 

Figure 6.29 – Finite element mesh of the plate with a circular hole. 
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Figure 6.30 – Elastoplastic stress distribution, σy, as a function of the distance to the left notch root. 
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Figure 6.31 – Elastoplastic stress distribution, σx, as a function of the distance to the left notch root. 
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Figure 6.32 – Residual elastoplastic stress distribution, σr, as a function of the distance to the left notch root. 
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Figure 6.33 – Strain range, ε, as a function of the distance to the left notch root (R=0). 
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a) 

 
b) 

Figure 6.34 – Stress fields from the left notch root, obtained for the structural detail made of material from 

the Eiffel bridge, resulting from an elastoplastic finite element analysis (σ = 275MPa and Rσ=0.0): a) Stress 

field, σy, in MPa, at the end of the first loading reversal; b) Stress field, σy, in MPa, at the end of the first 

unloading reversal. 

Figures 6.34 and 6.35 show, respectively, the stress and strain fields around the left notch 

root of the structural detail, using the elastoplastic finite element analysis. The results 

were obtained for a nominal stress range of σ=275MPa, and a stress R-ratio, Rσ=0.0 [7]. 

Figure 6.36 shows the p-S-Ni fields corresponding to the fatigue crack initiation for the 

structural detail, for Rσ=0.0, in which is possible to observe that fatigue crack initiation is 

dominant, since it gives already a good description of the S-N fatigue data of the detail. 
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a) 

 
b) 

Figure 6.35 – Strain fields around the left notch root, obtained for the structural detail made of material 

from the Eiffel bridge, resulting from an elastoplastic finite element analysis (σ = 275MPa and Rσ=0.0): a) 

Strain field at the end of the first loading reversal; b) Strain field at the end of the first unloading reversal. 
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Figure 6.36 – p-S-Ni field for the structural detail made of material from the Eiffel bridge. 

6.4.2.3. Prediction of the probabilistic S-Np-R field 

The procedure adopted to compute the probabilistic S-Np field for the notched plate is 

illustrated in the Figure 6.3 (see Section 6.2.). A value of the elementary material block 

size, ρ*=12×10-4m, was previously estimated using an independent identification based 

on pure fatigue crack propagation data (see Section 5.5.1.1.). Finite element models of 

the detail were used to perform elastoplastic stress analysis for the computation of the 

residual stresses. In addition, linear elastic finite element models were used to compute 

the weight functions required for the residual stress intensity factor computation as well 

as the stress intensity factor solutions for the notched geometry. 

The stress intensity factors were determined based on a linear-elastic finite element 

analysis using the J-integral method. Figure 6.37 presents the stress intensity evolution 

with the crack length for a unit remote stress, which was used to determine the Kapplied. 

Figure 6.38 presents the residual stress distribution along the y direction ahead of the 

crack tip, resulting from the elastoplastic finite element analysis. These residual stresses 

were computed after loading followed by unloading steps. High compressive stresses are 

observed at the vicinity of the crack tip. 
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Figure 6.37 – Stress intensity factors as a function of the crack length, for a unit load. 
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Figure 6.38 – Residual stress distributions for the notched plate for several crack sizes. 

 

Figures 6.39 and 6.40 present the elastoplastic stress distribution in y and x directions, 

respectively, ahead of the crack tip, and obtained at the end of the first load reversal 

using an elastoplastic finite element analysis. 
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Figure 6.39 – Elastoplastic stress distributions in y direction for the notched plate, for several crack sizes. 
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Figure 6.40 – Elastoplastic stress distributions in x direction for the notched plate, for several crack sizes. 

Figures 6.41 and 6.42 show, respectively, the maximum and residual elastoplastic stress 

fields along the y (load) direction around the left notch root obtained for the structural 
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detail under consideration, using the elastoplastic finite element analysis. The results 

were obtained with a nominal stress range σ=275MPa, a stress R-ratio, Rσ=0.0 and 

a=2.25mm. 

[MPa] 

Figure 6.41 – Residual stress field along the y (load) direction around the left notch root, obtained for the 

structural detail made of material from the Eiffel bridge, resulting from an elastoplastic finite element 

analysis (σ = 275MPa, Rσ=0.0 and a = 2.25mm). 

[MPa] 

Figure 6.42 – Maximum stress field along the y (load) direction around the left notch root, obtained for the 

structural detail made of material from the Eiffel bridge, resulting from an elastoplastic finite element 

analysis (σ = 275MPa, Rσ=0.0 and a = 2.25mm). 

The residual stress intensity factor, Kr, was determined using the weight functions 

technique as proposed by Equations (6.1) and Equation (6.2) and using results from linear 

elastic finite element analysis. Figure 6.43 represents the weight functions used to 

determine the Kr of the detail, for different crack lengths. The weight functions were 
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determined for specific crack sizes [7]. The following equations present the weight 

functions for three distinct crack sizes: 

 
 

 a,xf
xa2

2
a,xm 





  (6.9) 

 

51.29464929 +5x 3.49348873 + 11x27.0125555 - 76x73.9673423 +

 22x93.9653097 - 60x55.7093090 + 852x-12.4550505.1,xf

23

456
 (6.10) 
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23

456
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 

1.32861399 +77x 1.59462510 +88x6.28017107 - 40x8.69888509 +
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 23

456
 (6.12) 

Those weight functions allow the residual stress intensity factor, Kr, to be computed. In 

this case, Kr was computed for Rσ=0. Figure 6.44 shows the evolution of Kr with the 

applied stress intensity factor range. The resulting data shows a good linear correlation. 
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Figure 6.43 – Weight functions of the notched detail for different crack lengths. 
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Figure 6.44 – Residual stress intensity factor as a function of the applied stress intensity factor range for the 

notched plate. 

The p-S-Np field of the structural detail was calculated for R=0 using the p-SWT-N field of 

the material from the Eiffel bridge together with the UniGrow model proposed by Noroozi 

et al. [3], and assuming ρ*=12×10-4m (see Sections 5.4.3. and 5.5.1.1. of Chapter V). The 

use of the p-SWT-N field of the material from the Eiffel bridge to model the fatigue crack 

propagation is justified by the fact that the material showed a crack propagation rate 

sensitivity to stress ratio effects as argued in Section 5.5.1.1. of Chapter V. Figure 6.45 

illustrates the p-S-Np fields obtained for the structural detail under consideration. Figure 

6.45 also includes the experimental fatigue data, which represents the total fatigue life of 

the detail. The comparison of the experimental fatigue data with the crack propagation 

fields shows that the crack propagation, despite not negligible, is not the dominant 

damage process, at least for low stress ranges/ high fatigue lives. 

Cycles to failure, N p

Exp. data
p=0.01
p=0.05
p=0.50
p=0.95
p=0.99

1.0E4 1.0E5 1.0E6
100


σ

  
[M

P
a]

1.0E3

200

300

400

R=0.0

1.0E7

 

Figure 6.45 – p-S-Np field obtained for the notched plate made of material from the Eiffel bridge. 
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6.4.2.4. Prediction of the probabilistic S-Nf-R field 

The combined crack initiation and crack propagation S-N fields were computed for the 

notched plate, using Equation (6.4). Figure 6.46 presents the combined results. The 

analysis of the resulting S-N field highlights the accuracy of the proposed methodology. 

The experimental fatigue data falls inside the 5%-95% failure probability band. The 

proposed unified approach seems to give fairly promising predictions for notched 

components [7]. 
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Figure 6.46 – p-S-Nf field obtained for the notched plate made of material from Eiffel bridge. 

6.5. CONCLUSIONS 

A unified approach to derive probabilistic S-N fields for notched structural details taking 

into account both crack initiation and crack propagation was proposed. This approach 

combines finite element analyses with the UniGrow model and probabilistic fatigue 

damage fields of the base material. One key parameter in this approach is represented by 

the elementary material block size, which was identified using an independent procedure 

and pure fatigue crack propagation data. 

The predicted p-S-Ni field for the notched detail made of P355NL1 steel, based on the p-

SWT-N model and the elastoplastic finite element analysis provides a good agreement 

with the experimental results, respectively for Rσ=0, Rσ=0.15 and Rσ=0.3. The same 

occurred with structural detail made in puddle iron from the Eiffel bridge. The adaptation 
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of the UniGrow model allows us to reproduce satisfactorily crack propagation prediction 

using residual compressive stress estimation, based on elastoplastic finite element 

analysis of the structural details. This was demonstrated for two materials/components, 

one based on P355NL1 steel and another in puddle iron from the Eiffel bridge. The p-εa-N 

and p-SWT-N damage models were used respectively for the P355NL1 steel and puddle 

iron form the Eiffel bridge. The residual stress intensity factor, computed from the 

compressive residual stress field, using a finite element analysis, linearly related to the 

applied stress intensity factor range, thus confirming the typical trend documented in the 

literature. 

The global P-S-N field prediction for the structural details, one made of P355NL1 steel 

(Rσ=0, Rσ=0.15 and Rσ=0.3) and another made of puddle iron from the Eiffel bridge (R=0), 

taking into account the fatigue crack initiation and propagation, shows satisfactory 

results. In this study, crack initiation is the dominant fatigue damaging process, while the 

fatigue crack propagation exerts a small influence on global predictions of the P-S-N field, 

mainly in the high-cycle fatigue regime. The procedure proposed to derive the 

probabilistic S-N curves for structural details proved to be efficient, and can be used to 

reduce the need for extensive testing. 
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A PROBABILISTIC INTERPRETATION OF FATIGUE DAMAGE 

UNDER VARIABLE AMPLITUDE LOADING 

7.1. INTRODUCTION 

The cumulative concept proposed by Palmgren and Miner [1] maintains that the damage 

level can be expressed in terms of the number of cycles applied at a given stress range 

divided by the number of cycles needed to produce failure for the same stress range. 

Failure occurs when the summation of these damage increments at several stress ranges 

becomes unity. After this formulation, this rule is repeatedly tested for different materials 

under multi-step and variable amplitude loading programs [2-4]. Though its applicability 

has been often questioned, it has been practically adopted by all design codes related to 

structural and mechanical fatigue design [5-7]. 

While Birnbaum and Saunders [8] tried to find a relation of the probabilistic distribution 

of the Miner number to the crack growth, Van Leeuwen and Siemes [9,10] conducted 

series of tests on plain concrete and interpreted directly the scatter of the Miner number 

M by obtaining theoretical expressions for the mean and standard deviation values of M 

from the Wöhler curve. These formulae, initially derived for the simple case of constant 

amplitude cycling were then extended to the case of general loading. They showed that 

the Miner number (M) at failure is a stochastic variable with an approximate log-normal 

distribution and emphasized the importance of the study of the scatter of the Wöhler 

curve for constant amplitude cycling. Based on Holmen’s investigation on concrete [11], 

Fernández-Canteli [12] justified a generalization of the Van Leeuwen and Siemes work by 

considering a probabilistic S-N field providing a statistical distribution of the Miner 
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number although based on a log-normal distribution. Some theoretical advances were 

performed in [13] and [14]. 

From this, it follows that the Miner number can be used to ascertain the probability of 

failure, as a more suitable design criterion, rather than as a measure of a problematic and 

abstract “degree of damage”. It can then be taken as a basis for a consistent life 

prediction in fatigue design, in accordance with the consideration of fatigue failure as 

limit state. 

In this chapter, an approach for a probabilistic interpretation of fatigue damage under 

variable amplitude data, based on the probabilistic model by Castillo and Fernández-

Canteli [13] is discussed and applied to existing experimental data. One advantage of this 

approach is the possibility of associating a failure probability to the classical Miner 

number without the need of performing extensive variable amplitude testing aiming the 

identification of the cumulative distribution by direct ranking of data.   

In this chapter variable amplitude fatigue test data available for the P355NL1 steel 

(smooth specimens) [2-4] and for a riveted joint made of a puddle iron original from the 

Fão bridge [15-16] is explored.  

The following discussion will be limited to variable amplitude loading data, for which 

sequential effects are not determinant in fatigue damage accumulation. It is well-known 

that the classical Miner damage approach is not well suited to model sequential effects 

such as those arising from two-blocks loading (e.g. High-Low or Low-High sequences) or 

to consider single or periodic overloads superimposed to constant amplitude loading. In 

these cases, the variation of the Miner number from expected value (e.g. 1) may not only 

be attributed to the scatter in fatigue data but also to such sequential effects.  

The proposed approach, aiming at to associate a failure probability to the Miner number, 

only accounts for the scatter in fatigue data. 
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7.2. PROPOSAL TO ASSOCIATE FAILURE PROBABILITIES TO (LOG)MINER 

NUMBERS  

The proposed approach, relating to associate failure probabilities to the Miner number, is 

supported by the probabilistic model proposed by Castillo and Fernández-Canteli [13]. 

This model allows the definition of probabilistic S-N or -N fields (see Figures 2.13 and 

2.15 respectively), where percentile curves, representing constant probability of failure 

are established. This model proves that the normalized variable V=(logN-B)(log-C) 

follows Weibull (see Equation 2.75, see Figure 7.1) or Gumbel distributions. Therefore, 

the normalized variable resulting from the product of an applied stress or strain ranges 

with a load duration N, is directly related to the probability of failure. The probability of 

failure is a monotonic increasing function of the normalizing variable, V, and consequently 

of the number of cycles and stress/strain range/amplitudes. For a fixed stress/strain 

range/amplitude, the probability of failure increases with the number of cycles; in the 

same way, for a fixed number of cycles, the probability of failure increases the increasing 

stress/strain ranges/amplitudes. By considering this normalized variable, equivalent 

loading conditions are established, as those leading to the same probability of failure.  

Considering the S-N field of Figure 7.2, the loading conditions (A, NA) and (B, NB) are 

equivalent since they lead to the same failure as a result of showing the same normalizing 

variable, VA=VB: 

     ClogBNlogClogBNlogVV BBAABA     (7.1) 

For a given loading condition (A, NA) one can compute the equivalent start point given, 

respectively, by the stress range B and the number of cycles NB, representing the same 

damage state (same probability of failure) for proceeding to compute damage caused by 

the new loading step at the stress range B: 
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The equivalence between two loading conditions is established based on percentile 

(isoprobability) curves. These isoprobability curves may be interpreted as isodamage 
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curves, and the probability of failure, p, represented by the normalizing variable, V, may 

be understood as alternative damage measures [13]. The adoption of the probability of 

failure associated to the classical deterministic Miner number could be considered 

advantageous for design purposes, namely to establish safety margins. 
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Figure 7.1 – Cumulative Weibull distribution function of the normalized variable V. 
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Figure 7.2 – Probabilistic Weibull S-N field representation with two equivalent (same probability of failure 

and damage) loading conditions. 

Given a variable amplitude loading, it is possible to compute the evolution of the 

normalizing variable, cycle-by-cycle or, in case of blocks of constant amplitude loading, 

block-by-block. At the same time, the probability of failure may be computed using for 

example the Weibull distribution of the material or mechanical/structural component. 

With this process one can compute the failure probability associated to any variable 

amplitude loading history using exclusively the information of the probabilistic S-N field 

derived by constant amplitude fatigue data. These failure probabilities may be contrasted 

with the classical Miner numbers computed using, for example, the mean S-N curve of the 
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material or mechanical/structural component. This mean S-N curve can also be obtained 

from the probabilistic S-N field proposed by Castillo and Fernández-Canteli [13], 

considering a probability of failure of 50%. With this process one can derive the 

cumulative distribution function for the (Log)Miner number values proving that is possible 

to relate any value of the Miner number to the corresponding probability of failure. 

The process proposed to associate a failure probability to the Miner number can be 

summarized as follows: 

i) A probabilistic S-N or -N field must be derived for the material or 

mechanical/structural component under consideration from constant amplitude 

stress or strain-based fatigue data. For this purpose the probabilistic model by 

Castillo and Fernández-Canteli [13] is used. Both Weibull and Gumbel distributions 

are possible candidates. 

ii) For available variable amplitude data, the Miner number (M) is computed using 

the experimental observed lives and the mean S-N curve derived using constant 

amplitude data in the previous step i). Alternatively to the natural Miner number, 

a logarithmic Miner number (LM) can also be computed. Both numbers are 

respectively defined as follows: 





n

1i fi

i

N

N
M   (7.4) 





n

1i fi

i

Nlog

Nlog
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where Ni corresponds to the number of cycles applied with stress range, i and 

Nfi corresponds to the number of cycles to failure by application of the stress 

range i, computed using the 50% percentile of the P-S-N field evaluated in step 

i). In this step, the P-S-N field is presumed, but the process is similar for other 

probabilistic fields, such as the P--N fields. 

iii) For the same variable amplitude loading of previous step ii), the evolution of the 

normalized variable, V, along the referred loading history is computed. This 

process can be performed according the workflow given in Figure 7.3, for a block 

loading {(i, Ni), i=1,n}. 
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iv) A direct relation between the Miner or Logarithmic Miner numbers computed in 

step ii) and the probability of failures computed in step iii) is established. From this 

relation a cumulative distribution function for the Miner number can be 

accomplished. This step may be implemented in distinct phases, starting with the 

V vs. p relation, then the M vs. V, or LM vs. V, relations may be computed and 

finally M vs. p or LM vs. p relations may be evaluated. 

v) Finally, the experimental cumulative distribution functions of the Miner number 

may be computed assigning probabilities to the experimental data by a plotting 

point position rule. In this way, a comparison between the theoretical and the 

experimental distribution, derived in step iv), can be established. For limited 

amount of experimental data under variable amplitude loading, the referred 

experimental distribution could be far from the expected one.  

 

Figure 7.3 – Procedure to compute the failure probability for a block loading (stress based formulation and 

Weibull distribution assumption). 
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7.3. APPLICATIONS 

7.3.1 Strain controlled smooth test data available for the P355NL1 steel 

In this section, the process described above to associate a failure probability to Miner 

numbers will be applied to existing experimental data available in the literature [2-4] for 

smooth specimens made of P355NL1 steel tested under strain controlled conditions (see 

Figure 7.4). Both constant and variable amplitude fatigue data is available for this 

material. Figure 7.5 represents the P--N field obtained for the P355NL1 steel using 

constant amplitude data. This probabilistic field is defined using the Weibull distribution. 

Figure 7.6 represents the cumulative distribution function resulting for the normalized 

variable V, which was derived from the Weibull theoretical distribution, using constant 

amplitude fatigue data. 

The smooth specimens represented in Figure 7.4 were subjected to variable amplitude 

loading histories. Blocks of variable amplitude loading were repeatedly applied until 

failure. Four types of blocks were defined, each one composed of individual strain cycles, 

with null strain ratio, the same used for the constant amplitude tests. Figure 7.7 

represents the four block types. The H-L, L-H and random blocks were composed of 100 

individual cycles; the L-H-L block was composed of 200 cycles. Blocks of Figure 7.7 were 

applied with a maximum strain of 2.1%, but similar blocks with maximum strains of 1.05% 

were also applied. Table 7.1 summarizes the specimens that were tested under variable 

amplitude block loading with respective fatigue lives in terms of blocks or individual 

cycles to failure. 

 

Figure 7.4 – Smooth specimen of P355NL1 steel tested under constant and variable amplitude data 

(dimensions in mm) [2-4]. 

 



CHAPTER VII 

 VII.8 

 

0.1

1.0

10.0

1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Δ
ɛ 

[%
]

Cycles to Failure, Nf

p=1%

p=5%

p=50%

p=95%

p=99%

Experimental Data

B = 0
C = -2.66
β = 29.7
λ = 2.3
δ = 16.7

 

Figure 7.5 – P--N field obtained for the P355NL1 steel using constant amplitude data. 
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Figure 7.6 – Cumulative distribution function obtained for normalized variable V of the P355NL1 steel. 
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Figure 7.7 – Variable amplitude blocks applied to the smooth specimens made of P355NL1 steel [2-4]. 
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Table 7.1 – Experimental programme of variable amplitude tests performed on P355NL1 steel using smooth 

specimens [2-4]. 

Specimens
Block 

Type

Maximum 

Strain (%)

No. of Blocks 

to Failure

Cycles to 

Failure

D1001 H-L 2.1 6 614

D1002 H-L 2.1 11 1100

D1003 H-L 2.1 14 1400

D1601 L-H 2.1 11 1100

D1602 L-H 2.1 11 1100

D1603 L-H 2.1 8 819

D1701 L-H-L 2.1 6 1200

D1702 L-H-L 2.1 5 1100

D1703 L-H-L 2.1 4 900

D1401 Random 2.1 11 1100

D1402 Random 2.1 8 800

D1101 H-L 1.05 47 4719

D1102 H-L 1.05 42 4200

D1103 H-L 1.05 51 5100

D1501 L-H 1.05 88 8800

D1502 L-H 1.05 40 4000

D1503 L-H 1.05 70 7000

D1201 L-H-L 1.05 30 6100

D1202 L-H-L 1.05 32 6500

D1203 L-H-L 1.05 34 6800

D1301 Random 1.05 44 4400

D1302 Random 1.05 49 4900

D1303 Random 1.05 53 5300
 

Figure 7.8 represents the distribution of the normalized variable V for each specimen, 

computed from the experimental values of this parameter, taking into account the full 

loading history until failure (results of Table 7.1) and the theoretical cumulative 

distribution of Figure 7.6. This figure also compares the results from constant and variable 

amplitude fatigue data confirming the assumed correlation of both data sources.  
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b) 

Figure 7.8 – Cumulative distribution of the normalized variable V (smooth specimens made of P355NL1 

steel) computed using: a) variable amplitude loading histories; b) constant amplitude versus variable 

amplitude data. 

Miner numbers and LogMiner numbers are computed for the experimental data, using 

Equations (7.4) and (7.5). In order to apply these equations, the computation of the 

number of cycles to failure for given specific constant amplitude loading conditions is 

required. To this end, the ɛ-N field was used taking into account a failure probability of 
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50% (50% percentile). The experimental cumulative distributions of the resulting Miner 

and LogMiner numbers are plotted in Figure 7.9. These experimental distributions are 

obtained using the data ranking by Hazen (p=(i+0.5)/n)) [17,18]. We realize that the Miner 

numbers range between 0.8 and 1.8, with a non-symmetric distribution about the unity 

(p=0.5 M=1.25). Concerning the LogMiner numbers, they ranged between 0.90 and 

1.07. In this case an almost symmetrical distribution is obtained (p=0.5 LM1.0) with 

less scatter. 
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Figure 7.9 – Experimental distributions of Miner and LogMiner numbers obtained using data ranking 

according to Hazen (smooth specimens made of P355NL1 steel). 
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Figure 7.10 – Miner and LogMiner numbers versus normalized variable V (smooth specimens made of 

P355NL1 steel). 

In Figure 7.10, the Miner and LogMiner numbers are plotted against the normalized 

variable V, in order to assess the respective relation between these variables. In the case 

of the Miner number, a non-monotonic relation is verified between the variables while an 

almost monotonic relation is observed between the LogMiner numbers and the 

normalized variable V. Using these relations between the Miner and LogMiner numbers 

and the normalized variable V, and taking into account the distribution of the normalized 

variable of Figure 7.8 the resulting distribution for the Miner and LogMiner numbers are 
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found as represented in Figures 7.11 and 7.12, respectively for the Miner and LogMiner 

numbers.  The resulting distribution or the Miner number does not increase 

monotonically pointing out some inconsistencies in the computation of M and V for low 

failure probability data. On the contrary, the LogMiner distribution shows no 

contradictory trends resulting in a very reliable with a monotonic increasing “s shape”. 

Figure 7.12 compares the computed cumulative distribution for the LogMiner number 

with the one resulting from ranking experimental data according to the plotting point 

position rule of Hazen. Both distributions approximately give the same LogMiner number 

for the 50% failure probability.  However, assuming that both distributions could be fitted 

by a Weibull distribution, the experimentally-based distribution would exhibit a lower 

shape parameter, .  
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Figure 7.11 – Failure probability computed for the Miner number (smooth specimens made of P355NL1 

steel). 
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Figure 7.12 – Failure probability computed for the LogMiner number (smooth specimens made of P355NL1 

steel). 

 7.3.2 Stress controlled test data for structural component 

In this section, the experimental results of the fatigue tests performed under constant 

and variable amplitude stresses on riveted joints, available in the literature [15, 16] will be 

used to illustrate the proposed methodology to attribute a probability of failure to the 

Miner or LogMiner numbers. These experimental results were obtained for a simple 

riveted joint made of puddle iron extracted from the centenary Fão riveted bridge (refer 

to Figure 7.13 for geometry details). Fatigue tests were performed under stress control 

and null stress ratio (R=0). Using constant amplitude data, the P-S-N field for the riveted 

joint was generated. This probabilistic fatigue field is illustrated in Figure 7.14. A 

significant 1%-99% failure probability band is observed which may be justified by the 

inclusion of experimental fatigue in the plastic regime (two data points). Censoring these 

two data points would result in a narrowed probabilistic field. Figure 7.15 compares the 

experimental and theoretical distributions for the normalized variable, V. A very 

satisfactory agreement mostly for higher failure probabilities is observed. 

Figure 7.16 illustrates the variable amplitude stress applied to the riveted joints. Three 

distinct stress spectra were applied corresponding to a repetition of the blocks illustrated 

in Figure 7.16. The first block is composed of individual stress cycles with stress ranges in 
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the interval of 170 and 360 MPa. The second block is composed of individual stress cycles 

with stress ranges in the interval of 45 and 360MPa. The last block shows a central region 

with higher stresses. In this latter block, the stress ranges also vary between 170 and 360 

MPa. Each block is formed by 100 cycles with null stress ratio. A total of 8 specimens were 

tested: 2 specimens under spectrum 1; 3 specimens under spectrum 2 and 3 specimens 

under spectrum 3. Table 7.2 summarizes the experimental results for the tested riveted 

joints, in terms of both blocks to failure and cycles to failure. 

 

 

t2 = 5; 6; 7; 8
t1 = 5; 6; 7; 8

t2

t2
t1

250

50

150R25 R25

45

Ø24Ø24

600

150

10

 

Figure 7.13 – Riveted joints made of Puddle iron, tested under constant and variable amplitude fatigue 

loading (dimensions in mm) [15,16]. 
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Figure 7.14 – Probabilistic S-N field obtained for the riveted joints using the Weibull probabilistic model 

proposed by Castillo and Fernández-Canteli. 
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Figure 7.15 – Comparison of experimental and theoretical cumulative distribution function obtained for 

normalized variable V associated to the S-N data of the riveted joints. 
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Figure 7.16 – Variable amplitude blocks applied to the riveted joints made of puddle iron from the Fão 

bridge [15,16]. 
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Table 7.2 – Experimental programme of variable amplitude tests performed on riveted joints [15,16]. 

Specimens Block Type

Interval of 

stress ranges 

(MPa)

No. of Blocks 

to Failure

Cycles to 

Failure

57 Spectrum #1 170 - 360 601 60100

58 Spectrum #1 170 - 360 701 70100

59 Spectrum #2 45 - 360 1309 130900

60 Spectrum #2 45 - 360 574 57400

61 Spectrum #2 45 - 360 1301 130100

62 Spectrum #3 170 - 360 282 28200

63 Spectrum #3 170 - 360 894 89400

64 Spectrum #3 170 - 360 660 66000
 

Figure 7.17 illustrates the cumulative distribution function of the normalized variable V, 

computed for each variable amplitude fatigue test. Only a total of eight data points were 

available from specimens 57 to 64 given in Table 7.2. The probabilities of failure were 

computed using the Weibull field obtained for the riveted joints, represented in Figure 

7.14, using the procedure depicted in the workflow of Figure 7.3. The points of Figure 

7.17 fall within the failure probabilities of 30-65%, the cumulative distribution function 

being almost linear in this region. This linear trend of the cumulative distribution function 

was also observed for the smooth fatigue data of the P355NL1 steel, presented in the 

previous section (Figure 7.8) for the same range of failure probabilities. Extreme failure 

probabilities were not calculated which may be justified by the fact that only a very low 

number of experimental observations were available. 

Miner and LogMiner numbers were computed using, respectively, Equations (7.4) and 

(7.5). For this purpose the denominator of these equations were computed using the 50% 

percentile (median S-N curve) of the P-S-N field of the riveted joint. The results were 

plotted in Figures 7.18 and 7.19, respectively for Miner and LogMiner numbers, against 

the normalized variable, V. Both representations are approximately linear, but the 

linearity is higher in the case of the LogMiner number versus V relation. It is also worth 

mentioning that Miner numbers range from 0.97 to 3.11 with 6 points above 2; 

concerning the LogMiner numbers, they range between 0.93 and 1.05. The LogMiner 

number produces results that are much more close to the unity as suggested by the 

empirical failure condition. Replacing the normalized variable V in Figures 7.18 and 7.19 
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by the cumulative distribution function of Figure 7.17, results the representations of 

Figures 7.20 and 7.21. These figures also include an experimental cumulative distribution 

for the Miner and LogMiner numbers that were computed using the data ranking 

according to Hazen. The two distributions (theoretical and experimental) produced 

approximately the same Miner and LogMiner numbers for the 50% probability of failure. 

For other failure probabilities, distinct but consistent Miner and LogMiner numbers are 

predicted using distributions.   
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Figure 7.17 – Normalized variable V computed for the each loading history and corresponding failure 

probability computed using the Weibull distribution (riveted joints). 
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Figure 7.18 – Normalized variable V versus Miner number (riveted joints). 



 A probabilistic interpretation of fatigue damage under variable amplitude loading 

 VII.21 

 

0.80

0.90

1.00

1.10

13.0 14.0 15.0 16.0

Lo
g

M
in

er
 N

u
m

b
er

 , 
LM

Normalized variable, V  

Figure 7.19 – Normalized variable V versus Logarithmic Miner number (riveted joints). 
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Figure 7.20 – Failure probability computed for the Miner number (riveted joints). 
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Figure 7.21 – Failure probability computed for the LogMiner number (riveted joints). 

7.3.3 Results discussion 

The probabilistic model, as proposed by Castillo and Fernández-Canteli [13] allows a 

probabilistic interpretation for the fatigue damage even under variable amplitude loading 

histories to be made, taking the normalized variable, V, as a damage indicator. Using this 

normalized variable, both constant and variable amplitude data can be correlated with 

the same theoretical distribution, as illustrated for the P355NL1 steel (see Figure 7.8). 

The distribution of the normalized variable, V, obtained from the constant amplitude 

Weibull field, provides a failure probability that can be associated to classical damage 

parameters such as the Miner number or the Logarithmic Miner number, allowing the 

probability distributions for these parameters to be derived. This requires a monotonic 

relation between the normalized variable V and the damage parameter, which was 

observed for both Miner and LogMiner numbers computed for the riveted joints (see 

Figures 7.18 and 7.19) but only for the LogMiner number in the case of smooth specimens 

made of P355NL1 steel (see Figure 7.10) ). Considering the LogMiner distribution for the 

smooth specimens (see Figure 7.12), some degree of agreement was verified between the 

experimental based and the computed distribution, both distributions crossing each other 

at approximately 50% failure probability. For the riveted joints this level of agreement 

was not verified (see Figures 7.20 and 7.21), but distributions still cross each other at 
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approximately 50% failure probabilities. The major deviation in the case of the riveted 

joints may be attributed to the low number of experimental data points which results in 

lower confidence for the experimentally-based cumulative distribution.   

A detailed observation of the experimental data available for the smooth specimens, 

evidences that if the random block data is excluded from the analysis, a roughly linear 

relation between the Miner number and the normalized variable V results, as illustrated 

by Figure 7.22. Figure 7.23 compares the cumulative distributions of the Miner numbers 

for the smooth specimens, resulting from censoring experimental data from random 

blocks. In this case a better agreement was observed for the extreme failure probabilities. 

Several experimental tests yield the same fatigue lives, what provokes the sudden jump in 

the experimental based cumulative distribution.  
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Figure 7.22 – Normalized variable V versus Miner number (smooth specimens). 
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Figure 7.23 – Failure probability computed for the Miner number (smooth specimens). 

It is interesting to note that the experimental LogMiner numbers are distributed 

symmetrically in a narrow band around the unity, making this damage indicator to more 

coherent with the classical assumption for the failure condition. 

Taking advance of the use the probabilistic model proposed by Castillo and Fernández-

Canteli [13] to assess distribution functions for the classical Miner and LogMiner 

numbers, the distribution of the normalized variable can be used to compute the fatigue 

damage for variable amplitude loading directly with evident advantages over the classical 

approaches based on Miner or LogMiner numbers. The application of Miner number or 

LogMiner number accounts for fatigue scatter into separate steps. Firstly one need to 

compute the Miner or LogMiner numbers using available constant amplitude fatigue 

data. In this case, a failure probability needs to be specified to allow the definition of the 

appropriate constant amplitude S-N curve. Usually the 50% percentile curve is adopted, 

but other failure probabilities can also be specified. In a second step the computed Miner 

numbers of LogMiner numbers need to be correlated with an appropriate statistical 

distribution in order their scatter to be appropriately accounted for. Using the normalized 

variable, a unified approach is used to determine the scatter. It is assumed that variable 

amplitude and constant amplitude data are correlated by the same probabilistic field or 

by the same cumulative distribution for the normalized variable. The constant amplitude 
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probabilistic field can be used to compute failure probabilities for given variable 

amplitude data (extrapolation). Alternatively, constant and variable amplitude 

experimental fatigue data can be combined together in the identification of the 

probabilistic field, scatter from both sources being accounted in this process. 

In a recent paper [19], co-authored by the author of this thesis, a study similar to the one 

presented in this chapter was performed for concrete specimens. In this study a very 

significant number of tested specimens were considered. In this case the theoretical 

cumulative distributions for the Miner number and the experimental one from data 

ranking agreed satisfactorily if a scale effect type correction is applied to the theoretical 

distribution to compensate the non-conservative trend of the predicted results. 

7.4. CONCLUSIONS 

A statistical interpretation of the Miner is possible, without practically maintaining the 

simplicity of its calculation in the conventional approach allowing an increase of reliability 

in the lifetime prediction of structural and mechanical components. 

In order to proceed to an adequate probabilistic evaluation of the Miner number, a 

probabilistic definition of the S-N field is required. 

For the smooth specimens, some degree of agreement was achieved between the 

experimental based and the computed distribution. On the contrary, the low number of 

experimental data points in the case of riveted joints does not guarantee high confidence 

for the experimentally-based cumulative distribution. 

Higher scatter is found by the distribution obtained from the experimental data 

compared to that predicted from the theoretical model. 

Since the Miner rule is not able to reproduce interaction loading effects or shifting 

downwards of the fatigue limit, the latter being caused by crack growth due to loads 

overpassing the fatigue limit, inherent to any variable loading process, some non-

conservative result should be expected in the probabilistic prediction. Nevertheless, this 

is not the case in the present study, at least for 50% probability of failure, which can be 
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attributed to retardation effects due to overloads compensating the above mentioned 

limitation of the Miner rule.  

The probabilistic results are comparable when a LogMiner model is used. This proves that 

that the Miner rule does not respond to a “linear cumulative damage hypothesis” as 

general believed. 

Other fatigue programs under variable loading with other materials should be considered 

in order to confirm the properties of the Miner distribution as exposed here. 
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CONCLUSIONS 

 

 

This chapter concludes the study carried in this thesis about the topic “an integral 

probabilistic approach for fatigue lifetime prediction of mechanical and structural 

components”. It summarizes the main results of the conducted study. The contributions 

of this thesis and new lines for future research work are also presented. 

8.1. OVERVIEW OF MAIN RESULTS 

The main results of this study are presented in the following points: 

1. Fatigue behaviour of materials and connections from ancient Portuguese 

riveted steel bridges 

In general, materials from Portuguese riveted steel bridges tested or compiled in 

this study showed a significant correlation between their mechanical 

performance, including the fatigue properties, and the age of the materials. The 

materials from the Eiffel, Luiz I, Fão and Pinhão bridges are very likely puddle irons 

due to their age, the high microstructural heterogeneities and the low ductility 

properties. The material from the Trezói bridge is a low carbon structural steel. 

Regarding the cyclic elastoplastic behaviour, the materials from Eiffel and Luiz I 

bridge may be satisfactorily described by the Masing model, since some apparent 

deviation from the Masing behaviour may be justified by scatter in material 

properties rather than by phenomenological reasons. The material from Trezói 
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bridge does not follow the Masing behaviour. The material from Fão bridge shows 

a cyclic elastoplastic behaviour dependent on strain ratio. 

The fatigue crack propagation tests showed that the Paris law gives a good 

description of the fatigue crack growth data, for each stress ratio. The exponent of 

the Paris law resulted always greater than the value suggested by codes of 

practice (m=3). The C coefficient was in a range lower than recommended in 

literature for modern construction steels. 

S-N fatigue data from original riveted joints was compared with existing design 

curves. The comparison performed with literature S-N data suggests the need for a 

riveted joint categorization, in particular the consideration of single and symmetric 

double shear splices. Also, a slope, m=5 seems to be more appropriate for the 

riveted joints, rather than m=3, as suggested by the code design curves. 

2. A proposal for generalization of existing probabilistic fatigue damage models 

A generalization of the probabilistic model originally proposed by Castillo and 

Fernández-Canteli [1,2] is proposed, which opens new perspectives for the 

application of the probabilistic model to a number of very general problems of 

lifetime involving fatigue modelling, instead of use deterministic approaches. 

Energetic parameters as reference for fatigue damage for both uniaxial and 

multiaxial fatigue are considered and adequately estimated using the probabilistic 

model. 

3. Procedure to derive probabilistic fatigue crack propagation fields 

Based on probabilistic local approaches to fatigue, p-da/dN-K-R fields were 

derived allowing the description of stress R-ratio effects on fatigue crack 

propagation rates as well as the scatter on these fatigue crack propagation rates, 

which are significant for materials from old bridges. Predictions taking into 

account the p-εa-N material field produced satisfactory crack propagation fields for 

the materials from the Fão bridge and for the P355NL1 steel, since these materials 

showed crack propagation rates with relative small stress R-ratio sensitivity. For 

the material from the Eiffel bridge and the S355 structural steel, the p-da/dN-K-R 

fields were obtained using the p-SWT-N material fields since these materials 

showed fatigue crack propagation rates that are more sensitive to stress ratio. 
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4. Procedure to derive probabilistic S-N fields for structural details 

A unified approach for global p-S-N field prediction for structural/mechanical 

details was proposed. Both crack initiation and crack propagation were accounted 

in the approach using a similar methodology based on the failure of successive 

material elementary blocks. This was applied to the P355NL1 steel and to the 

puddle iron from the Eiffel bridge resulting satisfactory correlation of the 

experimental S-N data. The crack initiation was the dominant damaging process; 

the fatigue crack propagation only exerted a small influence on global p-S-N field, 

mainly in the high-cycle fatigue regime. The procedure proposed to derive the 

probabilistic S-N curves for structural details proved to be quite efficient, since it 

can be used to reduce the need for extensive testing. 

5. A probabilistic interpretation of fatigue damage under variable amplitude 

loading 

An approach for a probabilistic interpretation of fatigue damage under variable 

amplitude data, based on the probabilistic model by Castillo and Fernández-

Canteli [2] was discussed. The possibility to associate a failure probability to the 

classical Miner number reduces the need of to perform extensive variable 

amplitude testing to identify the wanted cumulative distributions by direct ranking 

of data. 

8.2. SUMMARY OF CONTRIBUTIONS 

The original contributions of this thesis are summarized as follows: 

- The generalization of existing original probabilistic fatigue damage model 

proposed by Castillo and Fernández-Canteli [1,2], proposing several fatigue 

damage parameters [3,4] for both uniaxial and multiaxial fatigue, opened new 

perspectives for the application of the probabilistic model to a number of very 

general problems of fatigue lifetime modeling instead of using classical 

deterministic approaches; 

- A procedure to derive probabilistic fatigue crack propagation fields using local 

approaches to fatigue, based on probabilistic material (smooth) fatigue data was 
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proposed. To demonstrate this procedure, local approach to fatigue crack 

propagation as proposed by Noroozi et al. [5,6,7] was used with some 

modifications; 

- The procedure to derive probabilistic S-N fields for structural details, including 

crack initiation and crack propagation, is presented as a unified approach. The 

probabilistic fatigue crack initiation fields is determined using a local elastoplastic 

approach together with a material probabilistic S-N fatigue (smooth) 

representation (e.g. p–εa–N or p–SWT–N fields) to calculate the fatigue damage of 

the first elementary material block, ahead of the notch root. The crack 

propagation is modelled using the same local approaches to fatigue assuming that 

fatigue crack propagation is a process of continuous re-initializations, as argued in 

the UniGrow model proposed by Noroozi et al. [5,6,7]. The proposal was 

demonstrated to be satisfactory for structural/mechanical details. 

-Finally some research was performed about fatigue damage assessment under 

variable amplitude fatigue loading and the potentialities of using the probabilistic 

S-N fields as proposed by Castillo and Fernández-Canteli were illustrated to serve 

as an alternative to the classical Miner analysis.    

8.3. FUTURE WORKS 

The future work after this thesis will consist in the following: 

- To perform fatigue tests of materials from other ancient Portuguese riveted steel 

bridges with the purpose of extending the existing fatigue properties database; 

- To search for more fatigue damage parameters candidates that could be used 

together with the base probabilistic model as proposed by Castillo and Fernández-

Canteli [2]. A damage parameter that could transform the current hyperbolic S-N 

field into a sigmoidal one would be a very significant contribution;  

- Development and validation of probabilistic fatigue life models using an 

equivalent initial flaw size distribution, and fatigue crack propagations estimated 

according to probabilistic fatigue models proposed in this thesis. This concept of 
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equivalent initial flaw size may be considered physically justified for the old 

materials from bridges (puddle irons) that show a significant number of intrinsic 

heterogeneities working as defects;  

- Apply the proposed procedures in this thesis to the prediction of p-S-N fields to 

complex structural/mechanical details more representative of the real structures 

such as riveted or bolted connections; 

- More studies in the field of fatigue damage accumulation under variable 

amplitude loading, using a probabilistic emphasis would be required. For example, 

more experimental validation is required to demonstrate the goodness of the 

normalized V parameter as a damage measure indicator. Also, the possibility of 

including loading sequential effects in damage computation using the normalized 

V parameter has to be investigated due to its relevance for some loading histories. 
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