
Searching a Database Based Web Site

Filipe Silva1 and Gabriel David1,2

1 Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias

4200-465 Porto Portugal,
{fsilva,gtd}@fe.up.pt
http://www.fe.up.pt/

2 Inesc-Porto
 Rua Dr. Roberto Frias

4200-465 Porto Portugal

Abstract. Currently, information systems are usually supported by databases
(DB) and accessed through a Web interface. Pages in such Web sites are not
drawn from HTML files but are generated on the fly upon request. Indexing and
searching such dynamic pages raises several extra difficulties not solved by most
search engines, which were designed for static contents. In this paper we de-
scribe the development of a search engine that overcomes most of the problems
for a specific Web site, how the limitations put to indexing dynamic Web pages
were circumvented, and an evaluation of the results obtained. The solution in-
volves using a locally developed crawler, the Oracle Text full text indexer, and
meta-information automatically drawn from the DB or manually added to im-
prove the relevance factor calculation. It has the advantage of uniformly cover-
ing the dynamic pages and the static Web pages of the site.

Keywords. information retrieval, Web search engine, indexing database-based
Web sites

1 Introduction

The revolution brought by the Web to the information world is not as much due to
the huge volume of information at everyone’s disposal as to the dramatic increase on
the information access efficiency that made possible previously unfeasible tasks [1].

Among the key tools in this context are the Web search engines. They evolved
from an idea as simple as the model of the Web: the Web is a network of Web servers,
each one responsible for a collection of cross-linked HTML pages (see Fig. 1). The
search engine includes a crawler that, starting at a given URL, retrieves the corre-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143392635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sponding page and recursively follows its links to other pages. Then it indexes the full
text of the page, along with its URL. Afterwards, it becomes able to answer requests
on information related to specified words by returning the URLs of the pages contain-
ing them. Thus, the search engine can be seen as made of three components: the
crawler, the indexer, and the query processor. Many developments of this basic idea
have been produced in order to improve the relevance factor of each page and the
precision and recall metrics of the search [2], for instance, counting the number of
occurrences of each word in the page, assigning more weight to occurrences in head-
ings or in META tags, combining with other methods of classification, etc.

Fig. 1. Answering a static page request

However, the Web contains more than collections of HTML pages. Information
systems (IS) contain large amounts of information which is typically more structured
than the texts in HTML files and is organized in database systems with their own link-
ing mechanisms. Current IS are accessible via interfaces that adopted the Web para-
digm and technology. The end-user just requires a Web browser to navigate through
the pages of the corresponding sites. The main difference is that these pages no
longer correspond to a HTML file stored in a file system but are instead generated
upon a user request by specific programs that gather the information needed from the
database and deliver the HTML page directly to the user (see Fig. 2). These pages are
called dynamic pages1 in data intensive sites [3] as opposed to the static pages frozen
in HTML files.

There are a number of advantages of this approach. The quality of the information
presented directly benefits from the ability of DB systems to organize, maintain consis-
tency, update and control the access to information. Generating the page at request-
time enables a more flexible presentation of information, through the specification of
several search criteria, and even to personalize it, if the user is known to the system.

1 This is distinguished from pages that incorporate Dynamic HTML or JavaScript to get ani-

mation effects but are nevertheless defined beforehand in a static file.

Fig. 2. Answering a dynamic page request

The user is probably not aware of these technical issues and sees the site as a set
of linked pages irrespective of their source, real or “virtual” files. So, the user expects a
search facility that answers a set of relevant pages to a query involving one or more
terms. This goal of uniformly dealing with static and dynamic sites is especially rele-
vant in mixed sites combining structured data with non-structured text.

This is the case of the information system of the Faculty of Engineering of the Uni-
versity of Porto (SiFEUP, [4,5]), an integrated system that combines academic records
of various kinds with class summaries, bibliographic data with teaching materials, etc.
SiFEUP is the case study considered in this paper.

The following sections present in more detail the problems raised to the search en-
gines by dynamic Web sites, the solution that has been developed, and an assess-
ment of the results achieved.

2 Why Search Engines Fail in Dynamic Web Sites

Before the discussion of the above mentioned difficulties, there is a comparison
with the usual way of querying an IS with a Web interface. Depending on the sophis-
tication of the site, the interface to the DB may be as obvious as a series of forms
where the user types the search criteria receiving as an answer a page with a table
containing the records which have been retrieved by the DB query processor. In some
systems it is even possible to write down an SQL query.

The main problems with the forms -based approach are:

− the forms to be used must be anticipated by developers, trying to match the typical
user requests but leaving out more specific needs;

− in a DB, the information is stored in different tables and columns and retrieval must
specify which one is to be used, but users don’t like to choose fields before the
search [6];

− the search requires exact-match and the SQL to simulate a generic search (including
stemming and the stripping of capitalization and accents) becomes rather cluttered
and complex [7];

− all the records satisfying the search criteria are retrieved with equal importance and
ordered by column contents, but the relevance of the items in the answer are differ-
ent and acknowledging this is crucial when large numbers of records are retrieved
[6].

Not everything is bad with the forms -based query with respect to the full-text index-

ing:

− DB indexing is usually done in real-time, while in the other case it is deferred and
thus require periodic update;

− the DB needs less computing resources (CPU and storage) than the search engine;
− the output sorting method can be specified, while in the search engine is usually

fixed to be the decreasing relevance order.

In more worked interfaces, the tabular nature of the system is much more distant

from the user eyes, and the page includes significant pieces of text and data collected
from several DB tables, creating something closer to a document than to a DB extract.

A generic search facility is expected to retrieve these documents and not lists of re-
cords from the DB. The combination of the Web and DB technologies produce highly
mutable pages which may be different depending on the user and on the mo ment of
the request. So, the very notion of document must be revised. In this paper, if to simi-
lar requests the system answers pages with different contents because the user is
different, they are considered different documents. If the difference is only due to
changes in the DB between the requests, these are considered different versions of
the same document.

Therefore a generic search mechanism is justified. However, typical search engines,
which were designed for static contents, do not index dynamic Web pages or just do
that for those that are specifically linked from a static page and do not follow on the
links the dynamic page may contain. Indexing and searching dynamic pages raises
several extra difficulties not solved by most search engines [8,9,1]:

− the number of URLs of dynamic pages in a site may be infinite due, for example, to
the use of a session number as an entry parameter in the URL, which changes on
each request, despite the actual contents remaining the same;

− there is the possibility of falling into an infinite loop of page generation not easy to
detect;

− many dynamic pages are not directly accessible from a link in another page but only
as a result of the submission of a form filled in with appropriate values, but allowing
the crawler to submit a form is questionable because it is not easy to know which
values to choose (the number of combinations may be infinite) and sometimes to

submit a form causes a change in the DB, something a crawler is not supposed to
do;

− the inherent dynamics of these pages leads to indexes built by the search engine
that become outdated at a fast pace;

− in sites with access control, the crawlers are assigned a general public status, re-
ducing the interest of the engine to the qualified user;

− it is hard to decide on index refresh policies due to the absence or variability of last
change date.

In conclusion, a significant number of the pages that a user may be interested in are

not indexed by most search engines. They constitute part of what is called the Invis i-
ble or Hidden Web [10,11,12,13,14,15], along with the pages that have no access path
to them.

3 Contribution to Reducing the Invisible Web

Among the techniques to overcome some of the barriers listed in the last section
one is the analysis of the Web forms that the crawler goes into. It looks for input fields
with associated lists of values which may be repeatedly used in automatic submis-
sions of that form, in order to collect the maximum number of result pages
[16,17,18,19,20].

Going much further requires the use of meta-information about the DB. This is the
approach followed in this paper because the motivating case study problem is a local
organizational Web IS. Therefore, there is knowledge about the DB schema and access
to the DB contents, which can be used by the search engine. This situation is common
to other intranet IS. The solution described in this section proposes an architecture
where the inside information needed is clearly identified and localized.

The proposed search engine (see Fig. 3) includes the usual components (the
crawler, the indexer, and the query processor) plus a DB information processor, which
concentrates the DB specific knowledge required to improve the recall.

The crawler is a complex component accomplishing several tasks. The Page Finder
is in charge of following the links and does that with no other concern besides not
going outside the target URL domain. As opposite to many crawlers, it accepts URL
parameters and insists on following every link to any depth, leading both to dynamic
and static pages. The target domain and exceptional URLs that must not be followed
are stored in the Configuration Data. The starting points are stored in the Starting
URL list. The links found in the processing of a document are queued in the Docu-
ments URL list, for a later visit.

Fig. 3. System architecture

The ideas behind dealing with forms are: values in hidden fields of a form, normally
used to forward previously collected data, are kept as they are and used in the auto-
matic submission of the form; the other fields are filled in with the default values, if
any, or taken to be null. Combinations of possible values present in combo-boxes and
radio buttons are not currently used as, in SiFEUP, they would mean to obtain a sub-
set of the default answer. The Form Processor will apply this technique to the forms
classified as able to be followed by a meta-tag in the page itself. This is an example of
establishing some rules for the development of new modules in the IS.

The Update Controller uses HTTP information (If-changed-since tag) to recognize
a change in a static document, and the information given by the DB Information Proc-
essor for the dynamic pages.

The Static Page Descriptor gets metadata about the static pages. The metadata
relative to the dynamic pages comes from the DB Information Processor as well. This
information is stored in the Document Metadata table. Among other data, the size of
the document is available.

The last module in the Crawler component is the Text Processor. It cleans up the
text, for instance stripping HTML tags, and converts from different file formats like MS
Office, PDF, etc.

The other modules have been specifically developed for this project. However, for
the Text Processor and the Indexer, an Oracle Tool called Oracle Text has been used,
and properly configured.

The Indexer builds two inverted file indexes whose entries are the words appearing
respectively in the document and in the metadata (Document Metadata), except for the
stop-words listed in the corresponding table.

The Query Processor is the third component. It receives a user query, may change
it using the synonyms dictionary and the stop words, and consults the indexes to
build the result, according to the relevance information of the pages.

To calculate the relevance factor, the starting point is the value given by Oracle
Text . This number lies between 0 and 100 and is given by 3f(1 + log(N/n)) where f is
frequency of the term in the document; N is the total number of documents and n is
the number of documents containing the term. This way, a term showing up in many
documents is less relevant than a term contained in fewer documents.

However, Oracle Text is not able to index at the same time the HTML text read and
the extra metatags produced by the meta-descriptor of the dynamic pages. So, a modi-
fication of the relevance factor has been done to account for this and for the impor-
tance of the page in its environment. The first component is based on the contents of
the two indexes and is weighted between 0 and 30. The second component gives more
relevance to the pages based on tables which are central and possess more relation-
ships going into them. This factor is weighted typically between 0 and 15 and is re-
sponsible for giving more relevance to the home page of a professor than to his list of
publications, where his name is likely to appear a lot more frequently.

To complete the description of the system developed, the DB Information Proces-
sor gets metadata about the dynamic pages, including criteria to support the refresh-
ing policy and improving the pages relevance factor. It also deals directly with DB

columns that are known, in the Configuration Data, to contain URLs, like the links to
the teacher or the student non-official pages.

As the RDBMS used by the case study IS is Oracle, the language chosen for the
development has been PL/SQL. The tests performed with the system indexed about
140 000 pages, both dynamic and static, including non HTML documents.

The sample test queries used were taken from a two-days log of the actual searches
performed on the main system forms by the users. Additionally some experimentation
has been made by experts, for more complex and critical queries. These included opera-
tors like AND, OR and distance in the text between certain specific terms. The answer
time to queries varied from negligible to 10 seconds, with a typical value around 3
seconds.

Documents found vs answering time

0

5

10

15

20

0 500 1000 1500 2000 2500 3000

Documents found

A
ns

w
er

in
g

tim
e

(s
)

Fig. 4. Search results

The analysis of the graphic in Fig. 4 shows that some queries produce large quanti-

ties of documents. They correspond to specifying a common single term query. This is
not a bad result from the viewpoint of finding the appropriate documents, because the
more relevant are shown first. However, it implies a longer comp utation time while the
user is waiting, spent mainly on sorting the result . Fortunately, most queries lie on the
left side of the graphic meaning shorter and, most of the time, faster answers to 3-4
term query.

4 Conclusion

Current IS are subject of an apparent contradiction. On one hand they are built on
top of databases storing highly structured information. On the other hand, the presen-
tation of this information is done via Web interfaces made of HTML pages, usually
not structured. The bridge between the DB and the user is made by dynamic Web
sites, in the organizational intranet which is, sometimes, accessible by the whole Inter-
net. Using complementary information from the RDBMS relationships in the pages
generated from that data, a better recall figure is obtained.

The main conclusion is that adding to the IS the generic textual search composed
with metadata from the DB improves the access to information, with respect to the
traditional method based on menus, hyperlinks and Web forms, especially for the
occasional users. It has been noticed that, even for regular users, it increases the vis i-
bility of certain contents in the periphery of the system.

The criteria followed in modifying the relevance factor, though always subjective,
proved to bring to the first rows the kinds of pages the user expects. For example,
asking for a person’s name retrieves, most of the times, the corresponding official
personal page. This happens because those pages are central in the system. Some-
times, the first row is the bibliographic page of that person, as it contains multiple
occurrences of the name as the author of the different publications. Finding the desir-
able weight factors requires a careful tradeoff.

The results of the interaction with an Information Retrieval system are of a different
nature from those obtained from a database. When querying a DB, the answer given to
the user is a record set corresponding, in a deterministic and objective way, to the
query, irrespective of the DBMS used. In an interaction with an Information Retrieval
system, the answers are less determined by the query, though some level of relation-
ship always exists. Determinism in these searches is derived more from the nature of
the document preprocessing techniques like index construction and clustering, and
query interpretation, than from the structure of the information. Different systems
typically produce results not fully coincident.

References

1. LAWRENCE, Steve ; GILES, C. Lee - Accessibility of Information on the Web. Nature.
400, no. July 1999 (1999) 107-109.

2. JONES, Karen Spark ; WILLETT, Peter - Overal Introduction. In Karen Spark Jones e Peter
Willett, eds.- Readings in Information Retrieval. Morgan Kaufmann, 1997, 1-7.

3. FRATERNALI, P. - Tools and approaches for developing data-intensive {Web} applica-
tions: a survey. ACM Computing Surveys. 31, no. 3 (1999) 227-263.
http://www.ucsd.edu/cse132B/WSMT.pdf. 20-12-2002.

4. DAVID, Gabriel ; RIBEIRO, Lígia Maria - Getting Management Support from an Univer-
sity Information System. Proceedings of the European Cooperation in Higher Education In-
formation Systems, EUNIS99, Espoo, Finland, 1999.

http://sifeup.fe.up.pt/sifeup/WEB_BIB$PESQUISA.download?p_file=F6934/Eunis99sent.d
oc. 19-12-2002.

5. DAVID, Gabriel ; RIBEIRO, Lígia Maria - Impact of the Information System on the Peda-
gogical Process. 7th International Conference of European University Information Systems,
EUNIS 2001, Berlin, Germany, 2001.
http://sifeup.fe.up.pt/sifeup/WEB_BIB$PESQUISA.download?p_file=F14804/eunis2001_b
_final.doc. 19-12-2002.

6. RAPPOPORT, Avi - Search Engines: The Hunt is on. 2000.
http://www.networkcomputing.com/1120/1120f1.html. 02-07-2002.

7. ANDERSSON, Eve, GREENSPUN, Philip ; GRUMET, Andrew - Internet Application
Workbook. 2001. http://philip.greenspun.com/internet-application-workbook/. 21-12-2002

8. BERGMAN, Michael K. - The Deep Web: Surfacing Hidden Value. The Journal of Elec-
tronic Publishing. 7, no. 1 (2001). http://www.press.umich.edu/jep/07-01/bergman.html. 20-
12-2002, http://www.brightplanet.com/deepcontent/tutorials/DeepWeb/. 20-12-1002.

9. LAWRENCE, Steve ; GILES, C. Lee - Searching the World Wide Web. Science. 280, no.
5360 (1998) 98-100. http://www.neci.nec.com/~lawrence/science98.html. 9-12-2002.

10. BARKER, Joe - Invisible Web: What it is, Why it exists, How to find it, and Its inherent
ambiguity. 2002.
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/InvisibleWeb.html. 20-12-2002.

11. BOTLUK, Diana - Exposing the Invisible Web. LLRX. no. October 1999 (1999).
http://www.llrx.com/columns/exposing.htm. 21-12-2002.

12. HARTMAN, Karen ; ACKERMANN, Ernest. The Invisible Web. A presentation at Com-
puters in Libraries 2000, 2000. http://www.webliminal.com/essentialweb/invisible.html. 20-
12-2002

13. LACKIE, Robert J. - Those Dark Hiding Places: The Invisible Web Revealed. 2001.
http://library.rider.edu/scholarly/rlackie/Invisible/Inv_Web.html. 20-12-2002.

14. SHERMAN, Chris ; PRICE, Gary - The Invisible Web: Finding Hidden Internet Resources
Search Engines Can't See. Independent Publishers Group, 2001.

15. CLYDE, Anne - The Invisible Web. Teacher Librarian. 29, no. 4 (2002).
http://www.teacherlibrarian.com/pages/infotech29_4.html. 20-12-2002.

16. BENEDIKT, Michael, FREIRE, Juliana ; GODEFROID, Patrice. VeriWeb: Automatically
Testing Dynamic Web Sites. Proceedings of the 2002 WWW conference, Honolulu, Hawaii,
USA, 2002. http://www2002.org/CDROM/alternate/654/ 22-12-2002.

17. LIDDLE, Stephen W., EMBLEY, David W., SCOTT, Del T. ; YAU, Sai Ho. Extracting
Data Behind Web Forms. Proceedings of the 28th VLDB Conference, Hong Kong, China,
2002a. http://www.deg.byu.edu/papers/vldb02.pdf. 20-12-2002.

18. LIDDLE, Stephen W., YAU, Sai Ho ; EMBLEY, David W. On the Automatic Extraction of
Data from the Hidden Web. Proceedings of the International Workshop on Data Semantics in
Web Information Systems (DASWIS-2001), Yokohama, Japan, 2001.
http://www.deg.byu.edu/papers/daswis01.pdf. 22-12-2002.

19. RAGHAVAN, Sriram ; GARCIA-MOLINA, Hector - Crawling the Hidden Web. Techni-
cal Report, Computer Science Department, Stanford University, 2000. 2000-36.
http://dbpubs.stanford.edu/pub/2000-36. 22-12-2002.

20. YAU, Sai Ho - Automating the Extraction of Data Behind Web Forms. Masters Thesis,
2001. http://www.deg.byu.edu/papers/TonyYauThesis.doc. 22-12-2002.

