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Resumo

Human-Robot Interaction (HRI) é uma área de estudo que tem recebido atenção considerável na
comunidade académica e na indústria. Os robots estão a preencher cada vez mais papéis na so-
ciedade de hoje, realizando tarefas que são cada vez mais complexas e desafiantes a nível social.
Consequentemente, é importante perceber como funciona esta interação, como medir a sua eficiên-
cia, onde melhorar, e como desenhar um sistema capaz de funcionar ao mais alto nível cumprindo
todas as necessidades interativas que a tarefa precise e que cumpra todas as restrições impostas
pelo ambiente.

Esta tese propõe alguns princípios aplicáveis numa aplicação genérica de HRI, como também
discute uma implementação num setup de validação (ABB IRB140) com o objetivo de integrar o
sistema produzido no projeto CLARiSSA. O sistema de validação foi modelado com auxílio do
Eyeshot e ao Gazebo usando ficheiros CADs (STLs, IGSs). Também foram realizadas calibrações
de câmara e projetor.

Uma interface foi desenvolvida em Eyeshot de forma a permitir feedback do operador, quer
na forma de projection mapping ou com uma Graphical User Interface (GUI) que permite ao
utilizador(es) interpretar num computador informação proveniente do ambiente real utilizando o
Eyeshot como ferramenta de modelação. O sistema desenvolvido tem diversos módulos e um
dos mais importantes é a possibilidade de adicionar novos objetos dinamicamente em run-time.
Juntando isto a outro sistema que consiga identificar objetos e informar a interface da sua pose
aumentamos a sua capacidade de adaptação a vários cenários.

O sistema desenvolvido apresenta uma interface intuitiva para uso por operadores especial-
izados, reduzindo a necessidade de mudança de contexto, ou seja, reduz a necessidade de ter o
operador a memorizar o estado do sistema e a reproduzi-lo depois. Também reduz erros de oper-
ação e permite cooperação entre diversos utilizadores e robôs. Em relação ao projecto CLARiSSA,
onde esta tese foi aplicada, a interface promove uma abordagem interessante com uso de projec-
tion mapping. Embora existam erros de projeção, devido às calibrações, o sistema projeta imagens
com 2 cm de erro a meio metro de distância da superficie. Finalmente, a empresa SARKKIS pode
usar o sistema proposto adaptando o programa em Eyeshot porque a versão final do programa
usou Gazebo e recorreu ao ROS para as comunicações, que são funcionalidades experimentais em
Windows e que não são trivialmente convertidas para Eyeshot e C#.
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Abstract

Human-Robot Interaction (HRI) is a field of study that has received considerable attention in the
academic community and in the industry. Robots are filling more and more roles in present society,
performing tasks that are more complex and more socially challenging. It is therefore important
to define this interaction, how it works, how to measure it, how to improve it and how to design a
system capable of fully performing all the interactive necessities required by the tasks or restrained
by the environment.

This thesis proposes generic architecture principles for an HRI application, as well as an im-
plementation on a validation setup (ABB IRB140), with the aim of further implementing the sys-
tem produced in project CLARiSSA. The validation system was modeled in Eyeshot and Gazebo
through the use of CADs files (STLs, IGSs). Camera and projector calibrations were also per-
formed.

An interface was developed in Eyeshot to enable user feedback, either in the form of projection
mapping or with a Graphical User Interface (GUI) that allows the user(s) to visually interpret the
real scene in a computer resorting to Eyeshot. The system has different modules, and one of the
most important is the ability to dynamically load new objects into the world. Coupling this with
a system that identifies the objects and informs the interface of what the object is and its position
increasing the system’s flexibility in handling various scenarios.

The system design presented provides an intuitive interface for industry operators by reducing
the need to context-switch and hence reduce errors. It also allows for cooperation between sev-
eral users and robots. As for Project CLARiSSA, the provided interface promotes an interesting
approach to the projection mapping paradigm. While the existing errors are all due to the cali-
brations, the system accurately projects images with 2 cm error at half a meter distance from the
target. Lastly, SARKKIS can use the proposed system design up to an extent. This means that,
some future work has to be done in order to be able to integrate the system’s features in Eyeshot,
because the final version was produced in Gazebo and resorting to ROS, which are features that
are not trivially transformed to Eyeshot and C#.

Keywords: Human-Robot Interaction, Augmented Reality, Projection Mapping, Generic Ar-
chitecture, Robotics, Project CLARiSSA, ABB
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“If the only tool you have is a hammer,
you tend to see every problem as a nail.”

Abraham Maslow.
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Chapter 1

Introduction

The term robotics refers to the study of robots and it first appeared when Isaac Asimov, scientist

and science fiction writer, employed it in one of his works to describe the technology used to make

robots [1]. In the mid 20th century, the field of robotics developed even further causing diverse

changes in the way work was done. The robots are faster, do not need to stop to rest, and rarely fail.

In fact, the human element is considered the weak link in the operation of automatized systems.

Nowadays, co-operation between elements of the world (humans and robots) is of increased

priority because these machines are being used in a growing range of applications. The demand

for high flexible robotic systems, which must have the capability of adapting themselves to their

surrounding, are rapidly increasing. In industrial environments, where the robot’s work is well-

known and structured settings, that need decreases, but if the world becomes too complex, a human

will always need to be present to interact with it.

There is also an increasing trend of robots being moved into environments originally designed

for human use. This has, during the past few years, led to increased interest for the field of dual-

arm manipulation. "Robot manipulation in its basic forms is a well studied field that has seen

remarkable developments in the last 50 years, but the added complexity of dual or multi-arm

manipulation presents many challenges that may not be present in the single manipulator case"

[2]. Even if that robot is considered fully autonomous the human might be supervising its goals

or results, changing them, approving them or even adding new ones without physically interfering

with him [3]. This higher complexity means that dual arm manipulation requires more advanced

system integration, high level planning and reasoning, while also solving the problems of how to

create an intuitive interaction.

This interaction is not only important for the humans safety, but it also boosts the team’s

productivity, leaving the hazardous, tedious chores to the robot and letting the human perform

other high-level cognitive tasks. More will be detailed about this topic in subsequent chapters.
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2 Introduction

1.1 Motivation

Industrial environments often have non-optimal working conditions, which are considerably harsher

than white-collar jobs, and may pose a threat to the health of workers. In an industrial environ-

ment, humans are exposed to extreme conditions, which, depending on the job, can be very severe

(workers are exposed to extreme environments, such as temperature, radiation, and others) [4].

Autonomous machines are good candidates to replace human workforce at high-risk jobs,

both due to ethic concerns and the machine’s imperviousness to harsh conditions. Additionally,

the flexibility, adaptability and precisions of robotic manipulators can avoid common industrial

problems.

In order to integrate the robot in a human team, one must first solve questions related to

their interaction. In order to increase the performance of any complex system, in many domains

like transportation, assembly, maintenance and others, it is necessary to understand the nature of

interactions between the human and machine components [5].

1.2 Objectives

The objective of the current work is the development of advanced human robot interaction sys-

tems, with mixed initiative and intuitive interaction even for the worker unfamiliar with robotics.

Tasks will include the development of interaction devices, such as augmented reality for operator

feedback and teaching systems for part positioning and correction.

The augmented reality must be projected on any sort of display, as it is to apply in an industrial

environment. This means that a solution for non-planar projection and acquisition will also be

presented. This system will also be integrated in a simulator with a file serialization to model the

aggregate scene and manipulator. All of the above, decreases the need to perform context-switches

because all important information will be in the human operator line-of-sight.

1.3 Document Structure

This chapter presented a brief introduction and motivation to the Dissertation, and ends with the

proposed objectives. Chapter 2 asserts the necessary tools and familiarity required for the reading

of this document, such as literature reviews and related work. Chapter 3 introduces statements

regarding the problem at hand and its application in project CLARiSSA. The next chapter (chapter

4) describes the main premise behind this work which is the identification of a generic Human-

Robot interaction architecture applied to beam weld applications. Next, chapter 5 derives the

previous architecture into the solution implemented, while discussing the problems and obstacles

encountered. Finally, chapter 6 discusses conclusions withdrawn from the work presented and

elaborates on future work that can be used to improve upon the architecture implemented.



Chapter 2

State-of-Art

2.1 Robotic Manipulators

Robot Institute of America’s (RIA) definition of robot manipulator is:

Definition 1. A reprogrammable, multifunctional manipulator designed to move material, parts,

tools, or specialized devices through various programmed functions for the performance of a va-

riety of tasks.

Through this definition, it is possible to see the interest it brings to the modern industry because

it can reduce labor cost and improve human working conditions [6]. Usual applications of robot

manipulators are in welding, painting, assembly and pick and place routines. This technology

first appeared in 1954 with the first programmable robot by George Devol, as an union of two

technologies (teleoperators and milling machines). A literature review of robotic manipulators

constitution will be presented, and several key concepts that might prove interesting when dealing

with these manipulators will be studied in the following sections.

According to ISO 8373 standard, a manipulator is a machine in which the mechanism usually

consists of a series of segments, jointed or sliding relative to one another usually in several de-

grees of freedom (DOF). A manipulator has links connected by joints to form a kinematic chain.

Each joint represents the connection between two links. There are physical aspects and concepts

regarding industrial manipulators such as the way joints are implemented, accuracy, repeatability

and the way the tool is attached but those will not be addressed in this work because they are not

interesting in this scope.

3



4 State-of-Art

(a) Real robotic arm from ABB (b) Robotic arm representation

Figure 2.1: Robotic Arm parts and representation.

Looking at Figure 2.1, it is not intuitive to understand that the mechanical arm is just one

component in a robotic system. Section 2.1.3 resumes common kinematics arrangements and

introduces concepts that will be used in section 2.2.

2.1.1 Dual-arm manipulators

Single arm robots can’t do their roles in tasks that involve two end-effectors (for instance assem-

bling parts). It’s for these specific tasks that a dual-arm robotic should be used [7].

Figure 2.2: Dual Arm industrial manipulator.
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2.1.2 End-Effector

It is the end-effector or tool that actually performs the task. A great deal of research is devoted to

study new tools design [8]. The joints between the arm and the end-effector are referred to as the

wrist and in most applications they are usually revolute.

2.1.3 Mathematical Modeling of Robotic Manipulators

Mathematical modeling of robotic manipulators is a very extensive topic. Therefore only a brief

overview of some topics will be covered, in order to contextualize later concepts. To accomplish

a generic task some topics must be solved first:

• Forward kinematics: Calculation of the position and orientation of the end-effector in terms

of the joint variables [9].

• Inverse kinematics: Refers to the use of the equations of a robot to determine the joint

parameters that provide a desired position of the end-effector [9].

• Path planning: Defining a path in task space to move a robot to goal position while avoiding

obstacles is called path planning for the robot joints[6].

• Independent joint control: Once the path is planned and reference trajectories are specified,

the manipulator must track them by controlling each joint to follow a specific path, velocity

or force. That operation is called Independent Joint Control.

• Sensorization model: Cameras are reliable and cheap sensors used in many robotic applica-

tions. They can be used to measure robot localization and find other objects position. We

can also control the motion of the manipulator relative to the final destination [6, 10]. In

section 2.2 this will be elaborated.

There are more problems than those referred here, such as velocity kinematics, dynamics, multi-

variable/force control and geometric nonlinear control.

2.1.3.1 Homogeneous Transformations and Quaternions

Another set of tools relevant to future topics are the homogeneous transformations. Transfor-

mations matrices like equation 2.1 are a representation of a rigid motion combining rotation and

translation.

H =

[
R d

0 1

]
(2.1)

where R ∈ SO(3), d ∈ R3 (SO(n) is the special orthogonal group of order n).

These matrices are used to perform coordinate transformations, analogous to rotational trans-

formations [6]. In order to calculate 3D rotations quaternions are also needed. Quaternions are
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a number system and can be defined as the quotient of two directed lines in a three-dimensional

space or equivalently as the quotient of two vectors [11]. A quaternion is a quad-tuple that defines

an element in R4 where:

q = (q0,q1,q2,q3) (2.2)

where q0,q1,q2,q3 are real numbers.

Basic quaternion properties are as follows:

• Complex Conjugate: The complex conjugate of q is denoted q∗ and (p.q)∗ = q∗p∗.

• Length: The length/norm of a quaternion is given by N(q) =
√

q∗q.

• Unit Quaternion: A unit quaternion has norm equal to 1.

• Inverse: The quaternion inverse is given by the expression q−1 = q∗

N(q)2

• Rotation Operator Geometry: The quaternion rotation operator v→ w, where the mapping

from quaternion to rotation matrix is done by:

w = qvq∗ = (q2
0−N(q)2)v+2(q.v)q+2q0(qxv) (2.3)

2.2 Sensory Systems

To create a system capable of interacting with its surroundings it must first be able to perceive the

environment. In robotic manipulators (and robots in general) this is done by setting up a camera on

top of said robot. In order to simplify the equations in this section, the coordinates of the objects

are relative to a camera centered coordinate frame as shown in Figure 2.3

Figure 2.3: Camera coordinate frame [12].
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With this assumption for the camera frame, a point in the image plane will have coordinates

(u, v, λ ). We can now use (u, v) as the image plane coordinates. Using the same notation as

referred by W. Spong [6] where P is a point in the world with coordinates (x, y, z) relative to the

camera frame and p is the projection of P onto the image plane and has coordinates (u, v, λ ). The

pinhole theorem states that the points P and p will be collinear (can be seen in Figure 2.3):

k ∗

x

y

z

=

u

v

λ

 (2.4)

that represents the following equation system.


kx = u

ky = v

kz = λ

(2.5)

This gives k = λ

z , u = λ ∗ x
z and v = λ ∗ y

z which are the equations for perspective projection.

[13]. In order to relate pixel coordinates (r, c) relation to the real world coordinates (u, v) a

relationship must be found first. Usually the origin of the pixels are at a corner rather than the

center [14]. The relationship between image plane coordinates and pixel array coordinates is

− u
sx
= (r− or) and − v

sy
= (c− oc), where sx and sy are pixel coordinates and or and oc are the

center coordinates. The result of sx and sy must be truncated or rounded up because pixel values

are integers.

2.2.1 Camera systems applied to robotic manipulators

Visual systems can be characterized according to where their point of view is placed. Figure 2.4

shows typical configurations. It is also possible to employ a combination of the configurations

[15] (Figure 2.4).

(a) End-Effector or active arm (b) Fixed in the workspace
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(c) Active head or fixed torso

Figure 2.4: Types of camera configurations for dual-arm manipulators [15].

• End-effector: This configuration can also be called "eye-in-hand". The camera is setup in

the robot’s end-effector. This configuration provides a predefined geometric relationship

between the position and orientation of the camera with respect to the arm.

• Fixed in the workspace or in the torso: This configuration provides a stable place for the

vision system to observe the scene.

• Active head or active arm: This configuration provides the vision system with a limited

flexibility with respect to the arm’s reference system.

The most commonly employed cameras in these kind of systems are RGB-Ds (RGB-Depth

cameras) [16], because they provide additional depth information.

2.2.2 Camera Calibration

Another important problem in autonomous manipulation is synchronizing the robot’s internal rep-

resentation of the world with the real world by calibrating its sensors [17]. The objective of camera

calibration is to determine all of the parameters that are necessary to relate the pixel coordinates

(r, c) to the (x, y, z) world coordinates of a point in the camera’s field of view (FOV). When all of

the parameters are known, an accurate prediction is possible relating the image pixel coordinates

to the projection of P(r, c).

In robotics applications, tasks are expressed in terms of the world coordinate frame [6]. Know-

ing the position and orientation of the camera frame relative to the world coordinate frame, the

following expression is valid:

xw = Rw
c ∗ x+Ow

c (2.6)

or:

xc = Rc
w ∗ (xw−Ow

c ) (2.7)

Defining R = Rc
w and T =−Rc

wOw
c ,

xc = Rxw +T (2.8)



2.2 Sensory Systems 9

where R and T are called the extrinsic camera parameters.

Using perspective projection equations, the 3D mapping to pixel coordinates is obtained.

r =−λ ∗ x
sx ∗ z

+or (2.9a)

c =−λ ∗ y
sy ∗ z

+oc (2.9b)

To determine (r, c) values of fx, or, fy, oc must be known, where

fx =
λ

sx
(2.10a)

fy =
λ

sy
(2.10b)

The parameters or,oc, fx, fy are constant for a given camera and do not change when the camera

moves [6]. The first parameter to be determined is the image center which can be achieved through

the vanishing points concept. This concept represents the intersection of three mutually orthogonal

parallel set of lines. The image center is given by the center of the triangle formed by the three (as

seen in Figure 2.5).

Figure 2.5: Vanishing point illustration. Adapted from [18].
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Once the center is found, determing the remaining parameters is straightforward. The extrinsic

parameters of the camera are given by:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,T =

Tx

Ty

Tz

 (2.11)

The coordinates of a point in the world with respect to the camera frame are given by:
xc = r11x+ r12y+ r13z

yc = r21x+ r22y+ r23z

yc = r31x+ r32y+ r33z

(2.12)

Combining these equations with the intrinsic parameters equation to obtain:{
r−or = − fx

xc

zc = − fx ∗ r11x+r12y+r13z+Tx
r31x+r32y+r33z+Tz

c−oc = − fy
yc

zc = − fy ∗ r21x+r22y+r23z+Ty
r31x+r32y+r33z+Tz

(2.13)

Since the coordinates of or and oc are known, two transformations to simplify the current

equation system can be applied. The first one is r← r−or and the second is c← c−oc. Now, for

the points ri,ci,xi,yi,zi:

ri fi(r21xi + r22yi + r23zi +Ty) = ci fx(r11xi + r12yi + r13zi +Tx) (2.14)

Combining the N equations into the matrix equation Ax = 0:

A =


r1x1 r1y1 r1z1 r1 −c1x1 −c1y1 −c1z1 −c1

r2x2 r2y2 r2z2 r2 −c2x2 −c2y2 −c2z2 −c2
. . . . . . . . . . . . . . . . . . . . . . . .

rNxN rNyN rNzN rN −cNxN −cNyN −cNzN −cN

 (2.15)

and

x =



r21

r22

r23

Ty
fx
fy

r11
fx
fy

r12
fx
fy

r13
fx
fy

Tx


(2.16)

If x̄ =
[
x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

]
is a solution for Ax = 0,

x̄ = k
[
r21 r22 r23 Ty

fx
fy

r11
fx
fy

r12
fx
fy

r13
fx
fy

Tx

]T
(2.17)
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k being and unknown scalar. To solve for the camera parameters W. Spong [6] demonstrates

that by exploiting the fact that R is a rotation matrix (see 2.18 and 2.19 ):√
x̄1

2 + x̄2
2 + x̄3

2 =
√

k2(r2
21 + r2

22 + r2
23) = |k| (2.18)

√
x̄5

2 + x̄6
2 + x̄7

2) =

√
fx

fy
k2(r2

21 + r2
22 + r2

23) = |
fx

fy
k| (2.19)

Therefore, choosing k such that r(r11x + r12y + r13z + Tx) < 0. After that, the values of

k, fx
fy
,r21,r23,r11,r12,r13,Tx,Ty. All that remains is to determine Tz, fx, fy, and the third column

of R. R can be determined as the vector cross product of its first two columns. Returning to the

projection equations

r =− fx
xc

zc =− fx
r11x+ r12y+ r13z+Tx

r31x+ r32y+ r33z+Tz
(2.20)

Using a similar approach as for the first eight parameters:

r(r31x+ r32y+ r33y+ r33z+Tz) =− fx(r11x+ r12y+ r13z+Tx) (2.21)

and solve for the remaining two parameters (Tz and fx).

A pan tilt head can also exist. Usually it has two DOF: a rotation about the world z axis and

a rotation about the head’s x axis. Basically, it allows looking up and down, left and right. The

rotation matrix is given by 2.22 where θ is the pan angle and θ is the tilt angle [14].

R = Rz,θ Rx,α (2.22)

2.2.3 Camera and Projector Systems

A projector and camera work together as a stereo system, with the advantage of being able to

choose an adequate pattern to find point correspondences. However, the calibration procedure

must be adapted to the projector [?].

Augmented Reality (AR) is the technology of combining real word images and video with

computer-generated information and imagery. A projector and a camera system is an example

of AR, more specifically of a spatial augmented reality (SAR). AR has vast uses in medical,

manufacturing and repair, military, and robotics [3]. The camera is used to detect objects and that

information is then mapped to the projector.

2.3 Human-Robot Interaction

Human-Robot interaction (HRI) is a field of study dedicated to understand, design and evaluate

robotic systems for use with or by humans [3, 5]. We can categorize the interaction in two cate-

gories:
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• Remote Interaction The human and the robots are not co-located in the same physical or

temporal space;

• Proximate Interaction The humans and the robots are located in the same space for exam-

ple service robots.

This field of study appeared in the beginning of the twenty-first century. In 1992 the IEEE

International Symposium on Robot Human Interactive Communication (RoMan) was first held

and continues annually [19]. This field has been propelled by two major worldwide competitions:

the AAAI Robotics Competition and Exhibition [20] and the RoboCup Search and Rescue. From

these competitions the three main fields of application emerged. Those are robot-assisted search

and rescue, assistive robots and space exploration. Service robots assist human beings in various

tasks, from household chores to other dull, repetitive or difficult tasks. Industrial robots are pro-

grammed to carry out repetitive actions with high level of precision. With HRI, a designer can

affect five attributes that influence the interactions between humans and robots [3]:

• Level and behavior of autonomy;

• Nature of information exchange;

• Structure of the team;

• Adaptation, learning, and training of people and the robot;

• Shape of the task.

These attributes are important because it is fundamental to understand the environment and

how structured it is. A simple deviation from the world model can cause the system to fail. A

possible compromise to avoid the domain restriction is to find the right balance between robot

autonomy and human-robot interaction [5]. These attributes will be detailed in a later section.

The main idea behind HRI is to compensate uncertainty in order to avoid the robot to break

down by using an appropriate mixture of knowledge about the environment, robot autonomy and

user input. Communications factors, such as delay, jitter and bandwidth have profound effects

on human performance. As such, HRI quality depends strongly on the communication channel’s

capacity to carry information [21]. Timing factors in the robot may time-oriented HRI metrics too,

like in robots that do not interact at human rates.

Lastly, the human’s role also affects the effectiveness of HRI. There are 5 roles [3] a human

can possess: Supervisor, Operator, Mechanic, Peer and Bystander. The way the interface supports

the interaction is a measure of its performance.

2.3.1 Task Metrics

In order to establish a functional communication channel, two requirements have to be fulfilled.

The task definition can be divided into definition, which is the action of providing parameters as
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inputs for task execution, and description. This last one results in the appointment of instructions

to the robot about how to solve a specific task. The final requirement is the dynamic function

allocation which encompasses the process dynamics.

The transmission of information from one peer to another occurs through a predefined proto-

col. In a human-robot team that transmission works differently. The sensors must not only be used

for task execution, but also to recognize situations of possible interactions with other agents. It is

important to avoid interpretation errors to safeguard human agents from hazardous situations [?].

Many problems cannot be solved by single Human/Robot agents working in isolation, because

they do not have all the necessary resources or information [5].

2.3.2 Design attributes

Designing autonomy consists of mapping inputs from the environment into actuator movements,

schemas or other acts. In the words of [3] "Autonomy is not an end in itself in the field of HRI,

but rather a means to supporting productive interaction" . Table 2.1 shows a scale of levels of

autonomy (LOA) for machines introduced by Sheridan and Verplank in 1978.

Table 2.1: Table of Levels of autonomy, defined by Sheridan and Verplank.

1 Human does it all;
2 Robot offers alternatives;
3 Robot narrows alternatives down to a few;
4 Robot suggests a recommended alternative;
5 Robot executes alternative if human approves;
6 Robot executes alternative; human can veto;
7 Robot executes alternative and informs human;
8 Robot executes selected alternative and informs human only if asked;
9 Robot executes selected alternative and informs human only if it decides to;
10 Robot acts entirely autonomously;

The scale introduced by Sheridan and Verplank suffered minor changes in order to adapt it

to run in every task instead of the global process [22]. The autonomy scale of HRI can go from

teleoperated operation (minimum autonomy) to peer-to-peer collaboration (full autonomy at ap-

propriate times).

A second component is the manner in which information is exchanged between the human and

the robot. Metrics for efficiency of exchanges include the interaction time required for intent and

the time for the instructions to be communicated to the robot, the workload of the interaction, the

amount of situation awareness produced by the cooperation and the extent of shared understanding

between all parties [3, 21, ?]. By analyzing the way information is exchanged, and the format of

the medium, HRI can be divided in the structure shown in Table 2.2.

One of the objective of HRI is to produce systems that do not require significant training. For

long term interactions, it is a must that the robot is able to adapt to its environment and learn from

the participants.
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Table 2.2: Types of HRI information exchange

Type Uses
Visual Displays GUIs or Augmented Reality interfaces
Gestures Hands, facial movements and movement-based signaling of intent
Speech and natural language Auditory speech, text-based responses
Physical Interaction and haptics Used remotely in augmented reality or in teleoperation

To apply HRI to robotic manipulators, it is common to add either a camera, a projector or a

combination of both. Projectors are used as HRI systems to produce augmented reality. The use

of a projector makes it so the users don’t need to use an accessory to see the augmented reality.

Projector-based AR is called SAR. Projector installations can be fixed or portable [23]. A fixed

projector installation is sold by Prodevco [24] and shown in Figure 2.6.

Figure 2.6: Fixed projector installation on dual-arm scenario.

Common accessories for HRI include a variety of devices worn by an operator, such as colored

markers [25], instrumented gloves [26], motion tracking sensors or even pocket lasers which will

be discussed in the next section.

2.3.3 Sensorizing non-planar environments

Sensorizing non-planar environments is a particularly challenging undertaking. In cases where

HRI relies on a laser accessory, significant problems occur determining pose, angle of incision

and direction. However, there are two different methods to solve this. The first, requires the laser

to be adapted to emit three/four beams and then calculating the projection they make with the

surface. The other requires the use of a laser beam that projects an arrow (giving us the sense of

direction). On this last approach, determining the angle of incidence wouldn’t be trivial, in which

case, a 45o degree assumption would have to be made.
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2.3.4 Projection Mapping

"Projection Mapping uses everyday video projectors, but instead of projecting on a flat screen

(e.g. to display a PowerPoint), light is mapped onto any surface, turning common objects of any

3D shape into interactive displays" [27]. Projection mapping can be used for advertising, live

entertainment, gaming, and recently it has been used in engineering. Profitter [24] is an interesting

example of this, because it allows the operator a more precise method of welding, less context-

switching and faster operation times (the operator doesn’t need to be sure that the welding is in

the right place). Some commercially available software are presented in table 2.3.

Table 2.3: Projection Mapping software commercially available

Software Name Operative System
DynaMapper IOS

LPMT Linux / Mac OSX / Windows

Avolites Mac OSX / Windows

Arkaos GrandVJ XT Mac OSX / Windows

MadMapper Mac OSX

Blendy Dome VJ Mac OSX

Resolume Arena Mac OSX / Windows

Visution Mapio Mac OSX / Windows

HeavyM Mac OSX / Windows

VPT Mac OSX

MXWendler Mac OSX / Windows

Millumin Mac OSX

MWM – Multi Window Mapper Mac OSX

Mesh Warp Server Mac OSX / Windows

Painting With Light Mac OSX / Windows

Vioso Windows

Coolux Windows

d3 Technologies Windows

With projection mapping it is possible to project an image or video allowing the creation of

augmented reality scenes. "If we project an image in a non flat surface it will only look right from

only one point of view and distorted from all other" [?].

Analyzing Figure 2.7 and discovering the geometric relationship between the user T, the projector

P and the display surface D for any arbitrary three dimensional point V, where the projector and

the user are defined by a camera model, it is possible to determine the point of view of the lens of

the projector.
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Figure 2.7: Scene rendering process [?].

The transformation process can be split into two tasks. The first is the calculation of the

projected image on the display surface from the user point of view (forward mapping). The second

is the calculation of the projector’s view of the first projection (backwards mapping).

To project in a flat surface, a virtual representation of the world is necessary, and the result

image of this process is related by an homography [?].

A transformation of the projective space is a mapping M: P3−> P3 defined as:
s

u

v

w

 7→


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44




s

u

v

w

 (2.23)

The (4,4) matrix is called the homogeneous transformation matrix of M. The (3,3) matrix con-

sisted of m11,m12,m13,m21,m22,m32,m31,m32,m33 is the Rotation matrix while the last column

represents the translation. Homogeneous transformations allow the conversion of a point’s coor-

dinates into another point coordinates.

PointA = H pointA
pointB ∗ pointB (2.24)

2.4 Discussion

In this chapter, a state-of-art was presented for industrial manipulators, HRI and its applications

in industry. Regarding manipulator modeling, the next chapter will present the test setup used

for the dissertation and will build from the concepts studied in section 2.1. Lastly, the generic

HRI architecture that will be developed and evaluated by the metrics presented in section 2.3 and

will use projection mapping as a primary communication tool. This concepts are essential to the

understanding of following chapters, since the work was built on top of them. The projection

mapping and homography concepts are of particular interest to model the system.



Chapter 3

Context

3.1 Project CLARiSSA

The CLARiSSA demonstrator makes part of the SMERobotics project and is focused on a col-

laborative dual-arm robot for assembly applications in steel fabrication. It was first presented at

Automatica trade fair 2014 by SARKKIS [28] and INESC Porto (Figure 3.1, 3.2). The SMER-

obotics consortium (European Robotics Initiative for Strengthening the Competitiveness of SMEs

in Manufacturing) aim to create SME-suitable robots that assist in managing uncertainty by sym-

biotic Human-Robot-Interaction and embedded cognition going beyond flexibility by semantic

integration [29]. SARKKIS is a partner of the SMERobotics consortium and focuses on inno-

vation mechatronics software with a portfolio of products for off-line programming of robots for

structural steel fabrication.

(a) CLARiSSA welding figure (b) Benefits and innovation

Figure 3.1: Poster presented at Automatica 2014.

17
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Welding is the process of joining two or more materials by heating, by applied pressure, or

both [30]. The surfaces of the materials are fused to form a single unit. Welding dates back to

the earliest days of metalworking, and continues to be widely applied today due to its cost effec-

tiveness, reliability, and safety. When compared with other joining methods, such as riveting and

bolting, welded structures tend to be stronger, lighter-weight, and cheaper to produce [30]. Auto-

matic welding improves quality, productivity and reduces overall cost from the welding process.

Clarissa aims to answer the needs of this market.

CLARiSSA is a dual-arm manipulator with automatic path planning, CAD based interpreter,

parts recognition and localization, and HRI for quality control and completing missing informa-

tion. CLARiSSA takes inputs from a CAD file, and performs welding operations on steel beams.

However, it’s not known whether the CAD files are correct or not, and therefore an HRI system

could be a useful addition. The next section will detail this problem further.

Figure 3.2: CLARiSSA demonstrator in Automatica 2014.

Robotics is a highly interdisciplinary field of engineering, demanding knowledge of Operative

Systems, Communications, Image Processing, Software Engineering, Task Planning, Machine

Learning, among others. Therefore, it is a field that usually requires multidisciplinary teams and

efforts. With that in mind, it’s easy to see that tools that abstract certain aspects of reality (simula-

tors) behind it, make the robotic programmer’s life easier. It lets you focus on a specific problem,

develop and test new ideas. Industrially, it saves time and therefore money. It also allows for quick

experiments before implementation into real life manipulators. This is particularly important in

HRI, in scenarios where robots physically interact with humans, such as medical robotics, HRI

and serviceable environments. In these cases, since the environment isn’t well structured (unpre-

dictable patterns, too many variables to consider), it is imperative to test the safety, and robustness

of any new algorithms by means of realistic and reliable simulations [31]. In light of this, a grow-

ing number of commercial and open-source simulators have been designed and implemented.

"There is an increasing trend of robots being moved into environments originally designed for

human use" [2]. Dual-arm robots can outperform their single armed counterparts because they are
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able to perform roles in which operators do the job with their two arms, for example in assembly

applications. There are several factors that motivate the use of dual arm setups:

• Similarity to operator: as referred above, transferring the operator’s bi-manual skills allows

robots to operate in roles that require two hands;

• Manipulability: The second manipulator allows the ability to control both parts;

• Cognitive motivation: "Human-like dual-arm setups have been used to explore how human-

like physical interaction relates to cognition. Likewise, in an HRI context, it has been argued

that since humans have an intuitive understanding of bi-manual manipulation, the actions of

a dual arm robot are easier for an observing human to understand and relate to" [2];

• Human form factor: Dual-arm systems occupy less space, and they are interchangeable with

their human peers, which removes the need to redesign the workspace.

3.1.1 Eyeshot

Eyeshot is a 3D graphics and CAD control for .NET Framework which combines multiple data

sources, input devices and CAD entity types. Eyeshot can be used as a simulator for robotics

because of its ability to:

• Do heavy modeling operations asynchronously;

• Import/export standard CAD formats;

• Select between a number of preconfigured viewport styles and configurations at design-time;

• The Eyeshot control can be easily configured as 2D or as a 3D viewport;

The items above address the features Eyeshot is useful as a robotics simulator tool. It lacks

however, usual features such as direct kinematics and inverse kinematics calculator, but they can

be implemented. For example, Figure 3.3 shows the complex model of a motherboard taken from

the website image gallery [32].
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Figure 3.3: Eyeshot gallery image [?]

3.1.2 Gazebo

Gazebo is another simulator that offers the ability to simulate complex 2D and 3D environments

(Figure 3.4). In alternative to Eyeshot, it is a cross-platform interface. Gazebo was used in the

scope of this work to produce the final version of the prototype, because Eyeshot did not accurately

represent the transformations imposed. This will be detailed further in section 5.2.

Figure 3.4: Gazebo simulating a robot [33].

The scene modeling is done similarly to Eyeshot, but only .STL files are used for the scene.
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3.1.3 Computer Assisted Design

Computer Assisted Design (CAD) systems came to combat traditional industrial robot program-

ming, using the teach pendant which was a time-consuming task and required technical expertise

[34]. CAD packages are becoming more powerful and widespread extracting motion information

from a CAD data exchange format (DXF) files and converting it into robot commands. As CAD

systems are a very powerful tool, they are widely used. For example, [35] use CAD specification

with and open-source robotic grasping simulator and [36] where CAD is also used for cell speci-

fication. Eyeshot and Gazebo can import standard CAD formats (IGES, STEP, STL, others). The

import in Eyeshot was performed to allow all of the standard CADs (using native functions), while

in Gazebo only STLs were imported. The main difference between IGES/STEP and STL files is

the amount of space the output files occupy and consequently the modeling speed. For example,

while modeling a circle of 1 cm diameter the output STL file has up to 15 Megabytes while in

Eyeshot it has 75 Kilobytes.

3.2 The Human-Robot interaction problem in welding applications

Up to this date, the vast majority of the effort employed has been spent on developing hardware

and software that could expand the robots’ capabilities instead of developing intuitive controls and

displays. In welding applications, where the environment is harsh and the probability of the user

making a mistake is high, a human-robot interaction display could prove beneficial.

Project CLARiSSA aims to be able to automatically weld with the help of the user. HRI facilitates

this interaction, making user activity less skill intensive and more error tolerant. A display of the

welds position on top of the beams, can improve the users performance, reducing the need for

context-switch and the need to memorize or mark specific positions. It also vastly reduces the

need for highly trained operators.

To particularize, an HRI in a welding application would be a proximate interaction, where the

human’s role would adapt according to the current necessity. In the ideal case, the user would be a

supervisor, or a bystander (if the robot would be fully automated), instructing the robot, but would

also work as a peer or operator when needed (scenarios of uncertainty or places the robot can’t

reach). The robot would always be dependent of the operator’s orders asking when in doubt, (5 on

the Sheridan, Verplank table 2.1) either through a visual display (simulator) or through augmented

reality/projection mapping.

The need to withdraw the human operator from welding operations is because they are jobs in

great supply but that demand a vast expertise. For example, in Figure 3.5 it’s clear that a weld has

to be perfectly executed and at the correct range. Moreover, replacing welds is extremely tricky

and inconvenient.
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(a) Arc Length Faults Up View (b) Arc Length Faults Side View

Figure 3.5: Arc length faults on welding processes.

Some common welding errors are presented, and some causes and solutions are discussed in

table 3.1 as well as a brief exposure of how HRI can solve them is shown.
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Table 3.1: Possible welding defects

Defects Probable cause Traditional solution How Human-Robot interaction can help solving the defect
a) Short arc Hold longer arc. Use proper electrode. The arc will always be projected

on the surface to weld.
1. b) Insufficient puddling time Allow sufficient time for gases to escape. Not applicable.
Porous welds c) Impaired base metal Remove impurities in base metal. Not applicable.

d) Incorrect current Use proper current. Not applicable.
e) Improper welding technique Use weaving motion to eliminate pin holes. Not applicable.

a) Speed too fast Weld slowly enough to get good root penetration. Not applicable.
2. b) Electrode too large Select electrode according to welding Selecting the electrode can be done
Incomplete groove size. with the projection in front of the operator.
penetration c) Current too low Use sufficient current. Not applicable.

d) Faulty preparation Calculate electrode penetration properly. Electrode penetration can be done
Leave proper free space at bottom of weld. with the projection in front of the operator,

if operator is welding.

a) Shrinkage of weld metal Use intermittent welds. Control cooling. Not applicable.
3. b) Faulty clamping of parts Clamp parts properly. Not applicable.
Warping c) Faulty preparation Peen joint edges before welding. Not applicable.

Space parts properly.
d) Overheating at joints Increase travel speed. Not applicable.

Use high speed, moderate penetration
electrodes.

a) Incorrect speed Use correct speed. Not applicable.
4. b) Current improperly adjusted Use proper current to allow deposition Not applicable.

penetration.
Poor fusion c) Faulty preparation Use proper cleaning, edge preparation, Faulty preparation can be solved

and positioning. by eliminating the need of context switch.
d) Improper electrode size Select proper electrode. Selecting the electrode can be done

with the projective in front of the operator.
e) Improper welding technique Weave must be sufficient to meld sides Not applicable.

of joint.
Prevent weld metal from curling away
from plates.
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It is proven therefore, that there is a need for highly intuitive welding interfaces to ease the

operator’s workload and that at the same time allows inter-cooperation between operators and

machines (exchanging information both ways) exists.

3.3 Validation Setup

As CLARiSSA’s robotic arm was unavailable during the duration of the dissertation, a validation

setup was necessary to recreate the circumstances and industrial environment. The setup drawing

is represented in Figure 3.6 and consists of the ABB_IRB140T robot manipulator, a table where

the beam is placed and where the projection will occur, and a cardboard floor to fixate the origin

of the scene. The origin of the scene is on the top left corner of the floor.

Figure 3.6: Validation setup drawing.

3.3.1 Setup Calibration

The first step when handling the ABB robotic arm is to calibrate the work referential and the tool.

This can be done using the ABB’s console. The point chosen to be the table referential (in cm

referent to the origin) was x = 45, y = 673.4, and z = 191. Next, to avoid trajectory collisions with

the projector handle, the center of gravity and weight of the tool also has to be defined (Figure

3.7).
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(a) Work object referential definition. (b) Weight of the tool and center of gravity.

Figure 3.7: ABB console definitions.

When the tool and work referential are set, a workspace needs to be programmed. As the

validation setup required the projection to be displayed in 2 faces of the beam (see Figure 3.8), a

workspace that could sweep both the upper part of the beam and the right part was programmed.

Figure 3.8: Beam Model in 3D software Eyeshot.

The serial port had the following configurations on both ends (ABB and computer):

> Baud Rate = 9600 ;

> Data B i t s = 8

> Stop B i t s = one ;

> P a r i t y = None ;

> Handshake = None ;
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The serial client and server’s operation methods are detailed below in pseudo-code. In order

to allow parallel execution between the robot’s move order and the serial operations, a trap routine

was configured to run with each 0.25 seconds of operation. "When an interrupt occurs, control is

immediately transferred to the associated trap routine (if any)" [37].

ABB:
> Read Tool Position (x,y,z);

> Read Tool Quaternions (qw,qx,qy,qz);

> Read Joint Position;

> Structure the serial package;

> Send serial package;

> Loop;

Computer:
> Read data package from serial;

> Divide string first level;

> Divide strings second level;

> Update simulator variables;

> Loop;

It is to note that in the simulator, the packet must be handled carefully, and if it is empty or

incomplete the simulator must not parse that packet (which introduces communications delays).

After this, the camera and the projector have to be calibrated. Camera calibration is a necessary

procedure in 3D computer vision in order to extract metric information from 2D images. It has

been studied extensively in computer vision and photometry. Camera calibration describes the

process of finding the camera parameters which facilitates the mapping between image and world

coordinates. It captures the properties of a camera’s lens such that it becomes possible to work

with your images like they had been captured by a perfect pinhole camera.

The intrinsic camera parameters are related to the camera internal characteristics while the

extrinsic relate transformations to determine other relevant transformations (in the case of the

setup shown, transformations from the end-effector to the camera and then from the camera to the

projector). Ideally, the central pixel would be half of the resolution of the image (in the x and y

component) and the focal distances would be the same. However since the camera center is not

parallel to the image plane the parameters are determined by:

fx = fy =
Cx

tan( fov/2)
(3.1)

where fx and fy are the focal lengths in pixels, Cx and Cy are the optical center coordinates and fov

is the field of view.

Then using a calibration toolbox [38] we calculate the extrinsic and intrinsic camera parame-

ters and the associated error. The calibration procedure starts by obtaining several images from a

chess pattern, with know dimensions in various perspectives (Figure 3.9).
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Figure 3.9: Chess pattern for camera calibration.

Identifying the chessboard corners and calculating the error associated (error between the posi-

tion of the point identified and its projection) indicates a good estimative of the parameters found.

The error was less than 1 pixel which further indicates that the estimative was good.

The following results were obtained:

Table 3.2: Intrinisic parameters for camera calibration

Values Error
Focal Length (fc) [1525.72360, 1523.58147] px [4.65717, 4.27532] px
Central Point (Cx, Cy) [664.94735, 361.32823] px [4.60629, 3.96935] px

Distortion (kc)
[-0.20860, 0.23070, 0.00220,
0.00027, 0.00000]

[0.01334, 0.10986, 0.00052,
0.00058„ 0.00000]

Skew [0.00000] - 90.0o [0.00000] - 0.0o

In the same way as the camera, projectors also need to be calibrated. The projector parameters

were obtained resorting to the calibration software [39, 40]. This system uses the projector to

project structured light patterns and the camera to capture this images. This process is repeated for

diverse pattern perspectives. The methodology implemented uses local homographies to obtain

sub-pixel precision. The following results were achieved for intrinsic parameters:

Table 3.3: Intrinsic parameters errors

Values Error
Focal Length (fc) [407.8939, 861.1495] px [0.12342, 0.12342] px
Central Point (Cx, Cy) [642.7833, 418.3529] px [0.12342, 0.12342] px

Distortion (kc)
[-0.00134, -0.10030, -0.00071,
-0.00341, 0.00000]

[0.01334, 0.10986, 0.00052,0.00058, 0.00000]
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For the extrinsic parameters:

R =

0.97663 −0.01396 −0.21445

0.01416 0.99989 −0.00062

0.21443 −0.00243 0.97673

 (3.2)

T =
[
0.29298 −0.01450 −0.06229

]T
±0.00019 (3.3)

HCameraPro jector =

[
R T

0 1

]
(3.4)

To calculate the homography between the support and the camera, the ABB IRB_140T was

used. A camera and projector were fixed on a support like shown in Figure 3.10. Using the robotic

arm it is possible to determine with high precision the position of the end-effector relating the

robot base. The following strategy was used:

• Calculate the homography between the pattern and the robot base;

Calibrate the tool;

With the tool identify three corners of the calibration pattern (superior left, right and

inferior left) and save the translations values and quaternions for each position;

Calculate the homography;

• Calculate the homography between the camera and the calibration pattern and store the

translation values and the quaternions in each position;

• Calculate the remaining homography.

Figure 3.10: Projector setup drawing.

To detail the transformation between the calibration pattern and the robot base, a tool must be

used (pointed tip). This calibration allows the robotic manipulator to determine the dimensions of

the tool and returns the value of the position and orientation. To do this calibration procedure, the

tip of the tool is placed in the same position in different angles preferably in distinct quadrants to

obtain higher robustness.
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Figure 3.11: Tool calibration procedure.

Through direct kinematics the 3D localization of each of the points is given in relation to the

robot base frame. In Table 3.4 these points are shown:

The points acquired represent the referential frame of the calibration pattern (origin, X axis, Y

axis) in the robot frame. The following homography is obtained:

HChessPattern =


0.0406 −0.9992 −0.0054 0.7424

0.9992 0.0406 0.0013 0.1527

−0.0011 −0.0054 1.0000 −0.1956

0 0 0 1

 (3.5)

The homography between the camera and the calibration pattern is equal to the calibration of

the extrinsic parameters, which means, its position relating to the world.

HCamera
ChessPattern =


−0.033678 0.999400 0.008081 −0.16503801

0.998053 0.033205 0.052798 −0.99002173

0.052498 0.009844 −0.998572 0.52561520

0 0 0 1

 (3.6)

HRobotBase
End E f f ector =


0.0637 −0.9980 −0.0028 −0.0229

−0.9814 −0.0632 0.1812 0.4613

−0.1810 −0.0088 −0.9835 0.7860

0 0 0 1.0000

 (3.7)

The missing transformation is obtained from:

HendE f f ector
Camera = HChessPattern

RobotBase ∗HendE f f ector
Camera ∗HCamera

ChessPattern = I (3.8)
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Table 3.4: Three corner positions from the pattern.

Origin Down Right
X (m) -0.1829 -0.1758 0.1158
Y (m) 0.7345 0.5482 0.7474
Z (m) 0.1994 0.1984 0.1998
qw 0.00019 0.00023 0.00022
qx 0.70160 0.70156 0.70159
qy -0.71255 -0.71259 -0.71257
qz 0.00464 0.00465 0.00468

resulting in:

HEnd E f f ector
Camera =


0.0218 0.9996 0.0176 −0.0834

−0.9776 0.0177 0.2095 −0.1357

0.2091 −0.0217 0.9776 0.0409

0.0000 0.0000 0.0000 1.0000

 (3.9)

After the calibrations routines are done, the end effector’s position is given in accordance to

the table referential. To have that position in the scene coordinates, a transformation that relates

the table coordinate frame to the scene frame is needed. That transformation is fixed if the table

doesn’t move spatially. To combat this problem, tape markers were placed on both the table

legs and on the table referential origin. After this transformation is obtained, multiplying it by

the transformation that relates the scene origin to the robot base and the robot base to the end

effector coordinates gives the end effector coordinates in the scene coordinate frame. Lastly, a

transformation that relates the end effector coordinate frame to the projector is necessary. The

equations that dictate the above operations are presented below:

HtableToPro jector = HtableToWorld ∗HWorldToBase ∗HBaseToE f f ector ∗HE f f ectorToPro jector (3.10)

Ppro jector = HtableToPro jector ∗PendE f f ectorInTableCoordinates (3.11)

The HtableToWorld is created by measuring the physical space with a measuring tape. As the

table was aligned and marked with the origin, no rotation is needed. The translation that details

the transformation is:

PtableToWorld = HtableToWorld ∗Ptable (3.12)
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where HtableToWorld =


1 0 0 −1000

0 1 0 −570

0 0 1 −920

0 0 0 1

,

In the same way, the matrices that describe the necessary transformations are shown below:

HWorldToBase =


1 0 0 270

0 1 0 580

0 0 1 720

0 0 0 1



HBaseToE f f ector =


1−2∗ (q22 +q32) 2∗ (q1∗q2−q0∗q3) 2∗ (q0∗q2+q1∗q3) ABB x

2∗ (q1∗q2+q0∗q3) 1−2∗ (q12 +q32) 2∗ (q2∗q3−q0∗q1) ABB y

2∗ (q1∗q3−q0∗q2) 2∗ (q0∗q1+q2∗q3) 1−2∗ (q12 +q22) ABB z

0 0 0 1

,

where q0, q1, q2, q3, ABB x, ABB y, and ABB z are values that come through the ABB serial port.

HE f f ectorToPro jector =


0.0464 0.9985 0.0276 −89.1

−0.9515 0.0368 0.2258 −43.49

0.2245 −0.0409 0.9519 3.83

0 0 0 1

.

3.4 Discussion

In this chapter, a case study of project CLARiSSA is presented, and discussion on its functionali-

ties and requirements are shown. To meet the demand, a validation setup was recreated since the

CLARiSSA robot was unavailable. This setup was used to experiment the projection mapping.

Camera and projector calibrations are also discussed for the validation setup, as well as general

calibrations for the ABB IRB_140T, calibrating the work referential, the tool weight and center

of gravity, and the serial communication between the robot and the computer. In the next chapter

several concepts for a generic HRI are presented and discussed, as well as a generic architecture

for Projection Mapping. These concepts will be examined and studied and an implementation

based of them will be produced in Chapter 5.
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Chapter 4

Generic Architecture for HRI
Applications

The concept of a generic architecture for HRI interactions considers an environment (scene), which

is composed of several devices such as a robot (can be a mobile robot, a robotic arm or other

automated machinery such as a track beam), the surrounding objects (such as tables, obstacles,

other machinery, etc.) and a projector to perform projection mapping. Exploring the concept

presented, it’s possible to divide the architecture in three main components:

• User Interface: Manages user interface events from an input device. That device can be

either a voice recognition module, a laser pointer, a mouse, a keypad, a joystick, a gesture

recognition module, a generic controller (Wii remote, Playstation controller), a marker or

instrumented gloves selected and configured with the proper environment variables defined

in the configuration system (ECS), according to each end-user.

• Software: Transforms user/interface events into actions/outputs, transmitting the informa-

tion to different physical items. It is also responsible for updating the graphical interface,

managing errors, supervising the communication module, and managing the multi-threaded

synchronization of every software unit.

• Peripherals: The group of physical components aggregated to the system. It consists of a

robot (mobile or robotic arm), and a projector to perform projection mapping. It deals with

the specific characteristics of each peripheral allowing two-way communication between

each component (through Wi-Fi, Ethernet, Serial RS232, CAN, infra red, radio protocol,

and others).

An example of this can be explained from leap motion [41]. This concept is illustrated in

figure 4.1.
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Figure 4.1: Software architecture for a generic HRI interface.

The HRI represents the main core of the architecture and plays the role of supervision, syn-

chronization and coordination between other components. It includes the following modules:

• Scene interpreter;

• Dynamic object scan;

• GUI update;

• Control.

• Projection update;
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• Communication.

In the following sections the previous modules will be discussed in greater detail.

4.1 Modules Description

4.1.1 Scene interpreter

One can argue that the understanding of reality contents and restraints is of great importance

to apply correct projection mapping techniques. A general-purpose scene analysis system can

be achieved with some success by limiting the task domain [42]. Scene analysis has also been

approached by restricting the complexity of the scene (for example in outdoors) [43]. One way to

combat the problems depicted in scene interpretation is to generate prior knowledge of the scene,

which means, to have up to some extent the 3D model of the scene beforehand and to dynamically

insert or remove objects from it.

To model the robot, several tools already exist [44]. To some extent, these tools can be used

to model a scene using CADs. So, the scene interpreter can be modeled as an extension of a

CAD interpreter. Using a tree approach to load CADs we have the potentiality of referencing

objects/meshes to one another. The tree decomposition groups objects into Block References,

which consequently creates a relationship between the current block to its parent and allows the

block to be displayed as it is defined in its content fields. Each instance of the block reference

includes parameters that define the content encased in the block and a reference to another block.

A collection of parent and referenced blocks constitute a block reference hierarchy (Figure 4.2).

Figure 4.2: Example of a block reference hierarchy for a scene with a robotic manipulator and
track.

A referenced block can contain as many blocks as possible and therefore reference lower-level

blocks to any depth. The top block is the topmost level in the hierarchy of referenced blocks. Only

one top block can exist, making it the parent block of the hierarchy. To prevent cyclic inheritance,
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a block cannot refer directly or indirectly to a block that is superior to it in the block reference

hierarchy (Figure 4.3).

Figure 4.3: Block reference cyclic inheritance example.

A parent block can reference multiple child blocks. Different blocks can reference the same

child block, by creating a copy of that block’s data. If a block does not depend on data that

is available only from a parent block, it can be used as a standalone block. This approach is

advantageous because it allows block references to be used like subsystems, and organizes them

hierarchically. Besides, it is possible to develop a block reference independently from the models

that use it (modularity). It is also possible to reference a block multiple times without having to

make redundant copies of it, and multiple blocks can reference the same block.

4.1.2 Dynamic object scan and GUI update Modules

The graphical user interface can be used in several applications, and therefore should be consid-

ered when designing a generic architecture for HRI. Visual information is precious to operators

to understand the scene, and to be able to debug on a computer. Therefore, the graphical user

interface should be updated as often as possible with new information. In the same way, the dy-

namic object scan module deals with entity operations (insert / remove / transform), transforming

the current virtual scene entities to match the new information received. It should also modify

the scene file to the current virtual environment settings, as well as couple necessary functions/-

functionalities to each new entity. This operations should preferably be performed on the interface

low-times (times where normal operation is not active).

4.1.3 Processing Projection Module

This module is responsible for performing projection mapping on the environment. Given the

projector position and parameters (such as focal length, angle of view, width and height) and the
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environment scene description, the module is able to output the correct image to project (Fig-

ure 4.4). In a generic architecture, it should also allow to tune the image according to several

environment configurations (such as contrast, lighting, and others).

Figure 4.4: System representation of data fusion converting the configurations and the robot posi-
tion into an updated projected image and a GUI update.

4.1.4 Communication Module

The communication module represents the low-level controller having the role of an intermediate

between the HRI software and the physical peripherals. It ensures the possibility of intercommu-

nication between the HRI supervisor and different environment peripherals. In fact, the diversity

of common peripherals implies a wide range of networking protocols necessary to manage the

whole network.

4.2 Key HRI features and functionalities

The HRI interface turns user and robot inputs into actions and commit a projected image as an

output to the projector. The interface is a configurable software that connects the user to the

environment. The HRI manages the actions of the user and the events which come from the

system or physical peripherals. Some key features include:

• Modularity: The system must be as modular as possible, using as many or as little parts as

needed;

• Extensibility: Adding/removing services or functionalities without modifying the operation

of the system;

• Precision: Reduced projection errors on any scenario, indoors or outdoors, invariant to light-

ing as possible.

Another feature of the generic HRI architectures is the ability to project dialog boxes into a

scenario. Common examples of dialogs (Figure 4.5)include:
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• Error Dialog: This dialog is shown when the operation is not supported or an error has

occured;

• Warning Dialog: This is shown to advertise the user that an operation did not go as expected.

Usually followed by an acknowledge message;

• Acknowledge Dialog: This dialog is shown when a new command is performed or a new

command was chosen after an warning message.

(a) Error Dialog. (b) Acknowledge Dialog.

(c) Acknowledge Dialog.

Figure 4.5: Different types of dialogs.

4.3 Discussion

In this chapter, some principles for a generic HRI application were discussed. These should be

applied when designing an interface for human robot interaction. Some considerations about the

peripherals the user and a way to create abstract communications between them and the projection

mapping system were studied and explained. A scene interpreter module is discussed, and the key

features of the HRI and projection mapping are presented. The following chapter will build on the

concepts presented and present the HRI architecture implemented with the help of Eyeshot and

Gazebo in the validation setup presented in Chapter 3.
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Proposed Solution

5.1 Eyeshot implementation

Starting from the generic idea presented in the previous chapter, and focusing on the requirements

presented by CLARiSSA project, such as scene adaptation, projection mapping on beams, and

operator communication and visual feedback, we can outline and particularize the architecture

presented in a way that it only contains relevant components. To implement the HRI and projection

mapping system, Eyeshot was used. The software makes working with graphics easy and it is able

to build complex scenes/environments easily. The CAD interpreter followed the same generic

principles as the one presented in chapter 4. In order to perform projection mapping some concept

introductions have to be explained, such as, the way Eyeshot models a camera, how it handles

projections and how it deals with color spaces. It would be possible to manually perform projection

mapping using only image transformations, but since Eyeshot already provides functions related

to camera and scene modeling making it easier for the end-user. However, to compare the manual

implementation to the Eyeshot implementation, it was necessary to implement both solutions. It is

also important that for the proof-of-concept the validation setup mentioned in chapter 3 was used

with the same calibrations procedures presented.

5.1.1 Eyeshot camera model

Transforming an image to produce an output for correct viewing is the same procedure one must

make when taking a photograph with a camera. The steps are as follow:

• Viewing Transform: Position the camera on the scene;

• Modeling Transform: Arrange the scene to be photographed at the correct position and

rotation;

• Projection Transform: Choose the camera parameters, such as, the lens (focal length/angle

of view) and adjust the zoom;

39



40 Proposed Solution

• Viewport Transformation: Perform size transformations to the image, enlarging or reducing

the view so that it matches the expected output;

• Draw Scene: After all the transformations are performed, the scene can be drawn.

The figure 5.1 represents a simple camera analogy to explain how the viewport modeling works

when compared to a real-life camera. The figure on the right exemplifies a vertex transformation

from object coordinates to the viewport coordinates.

(a) Camera Analogy: Photograph vs Computer Model. (b) Steps to perform the vertex transformation using a
computer.

Figure 5.1: Basic concepts of camera modeling done with the use of computers [45].

To specify viewing, modeling, and projection transformations, 4x4 matrices are constructed

and then multiplied in succession and with the coordinates of each vertex. The viewing and mod-

eling transformations represent the model view matrix (eye coordinates). All transformations are

applies to the z coordinates as well. This way, it can correctly reflect the depth of a coordinate.

This is very important because the scene can delete certain invisible objects. (Example: Two ob-

jects with the same x and y coordinates but different z values). In figure 5.2 the z plane obstruction

is explained. The image on the left has the camera position in the way that both cubes are visible.

On the right, the view is placed facing frontwards towards the cubes, allowing the graphical library

not to draw the back cube.
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(a) Cube modeling without z
plane obstruction

(b) Z plane obscuration.

Figure 5.2: Modeling example using Eyeshot [45].

The projection transform works exactly like choosing a lens for a camera.

While modeling the camera one must look at three different parameters (figure 5.3): The first,

the focal length of a lens which is the distance (fixed) from the optical center of the lens to the

sensor when the lens is focused on an object at infinity. "The angle of view is the angle of subject

area that is projected onto the camera’s sensor by the lens" [46]. The angle of view depends of

the focal length, and the size of the camera’s sensor. Lastly, the field of view is another way of

representing the angle of view, but is expressed as a measurement of the subject area.

Figure 5.3: Top view of a camera [46].

In addition to the field-of-view considerations, the projection transformation determines how

objects are projected onto the screen. Two types of projections are provided by Eyeshot:
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• Perspective projection: Matches real-life view. Makes objects farther away appear smaller;

• Orthographic projection: Maps objects directly onto the screen without affecting their rela-

tive size.

In this work only perspective projections were used. The viewing volume for a perspective pro-

jection is a frustum of a pyramid (a truncated pyramid whose top has been cut off by a plane

parallel to its base). Objects that fall within the viewing volume are projected toward the apex of

the pyramid, where the camera or viewpoint is (Figure 5.4).

Figure 5.4: Perspective Transformation view.

Windows is responsible for placing windows on screen. By default the viewport is set to the

entire pixel rectangle of the window that’s opened. Eyeshot fixes this by intercepting windows

events and rescaling the viewport accordingly.

5.1.2 Eyeshot color representation

In Eyeshot, visible colors are emulated by lighting pixels with a combination of red, green and

blue light. To display a particular color, the monitor sends the right amounts of red, green, and

blue light. The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). When R, G

and B are 0.0 the color displayed is black (absence of color), and if they are 1.0 the color displayed

is white (full color intensity). Another way to represent this colors is to use the HSV or HSL color
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space. The idea is to rearrange the geometry of RGB in an attempt to be more intuitive by mapping

the values into a cylinder (figure 5.5).

(a) RGB Cube (b) HSV Cylinder

Figure 5.5: Color spaces (RGB and HSV) [47] .

Eyeshot provides two color display modes. The first, the RGBA mode, uses a fourth variable

(the alpha) to provide transparency and blending. The number of distinct colors that can be dis-

played at a single pixel depends on the number of bitplanes and the capacity of the hardware to

interpret those bitplanes. "The number of distinct colors can’t exceed 2n, where n is the number

of bitplanes. Thus, a machine with 24 bitplanes for RGB can display up to 16.77 million distinct

colors" [47]. The second one, the color-index mode is basically a LUT (Look-Up table). "(...) the

number of simultaneously available colors is limited by the size of the color map and the num-

ber of bitplanes available. The size of the color map is determined by the amount of hardware

dedicated to it" [47].

Figure 5.6: Color space representation.

Eyeshot uses both these display modes whenever it feels appropriate to (unless forced other-

wise).
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5.1.3 Manual implementation

Before explaining how the implementation was performed in Eyeshot, a brief mention on how

the manual implementation is done is necessary. First, an image must be created with the size

of the projector’s lens (width and height). Next, a perspective view of the object has to be taken

(Figure 5.7) and then, depending on the camera location, the horizon has to be determined (using

the vanishing points technique). After the horizon is determined, it is possible to determine the

remain angles. Then, in whatever scene is present, screen shot the weld in the appropriate camera

position. The camera must be moved to the correct position first (to have in accordance the depth

of the beam). When the screen shot of the weld is taken, an homography must be calculated to

achieve the expected result, followed by an perspective transform to map the beam welds into the

real-life scenario.

Figure 5.7: Perspective Projection referential.

5.1.4 Eyeshot implementation

To perform projection mapping with Eyeshot, and taking from the principles enunciated above,

one must first create a viewport. The viewport doesn’t need to have the projector width or height

(since this will be forced later through EMGU_CV). This viewport will hold several properties,

and if it is the reference for the projection (the viewport whose screen shot will be used as the im-

age source for projection) a suitable background color must be chosen (or a way to automatically

contrast the background must be provided). In the tests performed, in order to ensure contrast with

the beam welds, the background of the viewport was painted black RGB(0,0,0). As mentioned

in the previous subsections, the projection type has to be perspective in order to work with it to

match real-life view. When the projection starts, the viewport image is resized and adjusted to

the projector width and height, modifying the viewport camera’s and then on a new window the
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image source control is updated (each process has a different thread attached to it, so in order to

update the source control a delegate must be created). To ensure modularity, every information

pertained to the environment (ABB position, scene description file, Beam CAD, beam position

and projected image) must be abstracted from the interface through a communication node. The

nodes implemented were a serial node for the ABB end-effector position, a local scene file (.scene)

containing the scene definition plus the projector position in the world, a local CAD standard file

(.igs). Through TCP/IP sockets the beam position, rotation and scale is given, and the projected

image is saved locally. This is for the cases when there’s another application managing the projec-

tion (the same application in case the same computer is used for the projection). In those cases the

images is saved for the other application to open it. When that doesn’t happen the image control

is instantly updated.

Figure 5.8: Detailed architecture for the projection mapping software in ABB IRB140.

In Figure 5.8 a schematic of the implemented architecture (both in Eyeshot and Gazebo is

shown). The image shows some HRI elements passable of being implemented such as a laser

pointer (which can be any other input device). The graphical interface is linked to a database or a

dictionary to allow fast object recognition.
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5.2 Discussion and Results

At the end of this work, an interface for projection mapping was obtained.

Figure 5.9: Eyeshot Interface explained.

The interface developed has several key points such as:

1. The main viewport, that can be maneuvered (zoom, translate, etc.) by the user;

2. The secondary viewport represents the projector image. When the projector or the ABB

moves, this image is updated;

3. A serial communication is implemented to receive values from the end effector of the ABB;

4. An automatic mode is available as well as a manual mode. The manual mode is present for

tests;

5. The projection start button initializes the timed events to refresh the source control. It also

detaches the viewport into a new window and sourcing it with the projected image;

6. This button changes the pose of the robot. If the communication was bi-directional, one

might order the robot to perform those movements;

7. In this menu, the beams coordinates are received and updated (the user can update them by

hand).

The need for highly modular and intuitive interfaces is partly solved with this application because it

can perform projection mapping everywhere as long as a scene exists and is modeled accordingly,

and the projector position is known. The scene can change and the system will adapt accordingly

because it can dynamically adjust itself by rendering after an object place event is detected.

However, some limitations are also present. The first one is that all the communications nodes

are not abstract and have to be selected (at the expense of having to have them implemented).
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Reading from the serial or TCP/IP or others and handling the packets is also time-consuming

and creates unmeasurable delay to the projection. This can be avoided by using ROS (Robotic

Operative System) to abstract communications and manage a more constant rate of data. This

approach is particularly useful because when dealing with serial events the new data string can

only be used if an entire packet is received (there might be times when the serial port read is

scheduled over another instance of itself and the packet is scrambled and unusable). As ROS deals

with this, it makes the system less prone to error. ROS also allows the system to be modular. In

Eyeshot, to add extra viewport views, extra viewports have to be added. If object manipulation is

required in the different windows, it becomes even more tricky as all actions performed in one of

the viewports would have to be copied to the other viewport.

For example, as only one viewport camera can exist, extra viewports are necessary to display

visual feedback.

One way to delete communication errors would be to remove from the architecture the need to

create an image and source the viewport view to the image. This is be accomplished by creating

two viewports and allowing one of them to detach itself from the control window. However,

Windows does not allow this, unless they are different viewports all together.

Another limitation of this system is that its not cross-platform, and requires Eyeshot to work.

This eliminates the possibility of transferring the code to an embedded platform. Windows O.S

also induces lag in the current architecture because it is responsible for managing windows. This

means that it will only update when it has time to do so, since refreshing the screen is not a priority

task which means that, the Windows scheduler never refreshes the window, and the objects of the

scene are never visible to the camera. This is fixed in later versions of Eyeshot, but a quick work-

around was to render the viewport to bitmap every iteration (lag inducing).

Another limitation is when performing kinematics of the robot for visual feedback. When the

robot is a simple case-study like the ABB_IRB140T, the Denavit-Hartenberg (DH) and the inverse

kinematics (ikfast) are found online and can be encapsulated in a Windows .dll file and included

in the Visual Studio solution (vastly reducing the ability to cross-platform the interface). For other

robots, DH and OpenRave’s ikfast tool would have to be used first to add kinematics to the robot

and later encapsulated in a .dll file and added to the solution. This ensues even less modularity

ability.

As for the precision of projection mapping, it’s normal to have errors ranging from 2 degrees

to 6 degrees (image 5.10). This is due to bad calibration of the workspace. As a 1:1 relation is

considered between the modeled scene and the real-world (in millimeters) a slight error on either

the projector position, the ABB end-effector data, or the table referential will originate small errors

on the modelview matrix, and consequently on the projection. This is particularly important when

the objects are small and the height of the projector is elevated (greater projection volume).
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(a) Front View. (b) Back View.

Figure 5.10: Initial tests performed with the ABB.

A way to reduce these errors is to force calibrations routines on the end-operator. It is however

impossible to fully eliminate these errors.

Another problem Eyeshot has is the lack of a module that can show what’s the current work

referential. This is a great addition and it’s present in RVIZ (ROS module) and can help debug

problems. A video of the system test can be found at [48].

It describes the interaction between the end-user and the robot to project the beam welds onto

the beam currently present at the lab (small size). A manual mode for scene operations is present,

to enable unit tests and for the calibration model (the manual mode saves the image, while the

automatic mode skips the save step to achieve faster times).

However, the video filmed the system running the application with Gazebo simulator and not

with Eyeshot. Although functionalities are similar, the current version of Eyeshot, at the time of

writing, has a bug when dealing with modelview matrices, and the camera class seems buggy, or

it does not update without an update command. It is also extremely slow because the scene needs

to be rendered to bitmap each time, which is not needed with Gazebo.

To take numbers into account, the window was refreshed every 1.5 seconds for a new projec-

tion compared to 50 ms using Gazebo. This was because the scene had to render to bitmap in

every iteration causing it to become slow (in Eyeshot version 8 this is no longer a problem). Other

causes for the delay include the one incurred by the serial string buffer (which would only get an

entire package every 200 ms).

With Gazebo, at half a meter from the beam, an error of 2 cm was measured for the projected

image. For Eyeshot at the same distance, an error of 10 cm was measured (Figure 5.11). While

the implementations were the same in both softwares, Eyeshot’s camera functions did not interpret

the final projection matrix for the projector’s view well, causing it to have that slight error.
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(a) Projection using Eyeshot. (b) Projection using Gazebo.

Figure 5.11: Initial tests performed with the ABB.

To summarize, Table 5.1 shows the main limitations of each implementation.

Table 5.1: Limitations and comparison of Eyeshot and Gazebo

EYESHOT GAZEBO
Projection Error 10 cm @ 0.5 meters 2 cm @ 0.5 meters
Projection Refresh Rate 1.5 seconds 50 milliseconds
CPU USAGE Can reach 100% Irrelevant
Communications Needs either a serial or TCP/IP layer. Uses ROS
Interface C# (Slow) C++ (fast)
Native CAD Controls YES NO
Matrix and Quaternion Functions Native, but buggy! Yes, through libraries
Documentation Scarce Good (Community-driven)
Abstract and Generic NO YES

After analyzing the limitations and testing the implementation on the validation setup, an

architectural change would be needed, either in the form of operative system/simulator change, or

develop modules for Eyeshot to enable effective communication between modules. Lastly, a way

to override window’s window control would be needed to improve projection time as it is largely

dependent on the viewport refresh and rendering. For SARKKIS and Project CLARiSSA three

possible solutions arise. The first, is to use Gazebo on a virtual machine and use ROS to handle

communication nodes allowing cooperation with the Eyeshot application if the use of Eyeshot is

still intended. The second solution is to port the entire code base to Gazebo (losing all Native

CAD controls which may not be optimal). The third and final solution is to wait for the update of

Eyeshot and hope that the camera methods are corrected.



50 Proposed Solution



Chapter 6

Conclusions and future work

This dissertation presented an HRI interface that was built on generic architectural principles for

an HRI application. The application was modeled using Eyeshot and used projection mapping and

a GUI to provide visual feedback.

This application will be integrated in project CLARiSSA and will serve as a proof of concept

for future beam welding applications using robotic manipulators. While some other solutions exist

in the market, those require extensive operator training, or are placed in locations where they might

not produce favorable results, or they are not adapted for human-robot cooperation scenarios.

While Eyeshot provides an easy interface for 3D modeling, it provided some implementa-

tion limitations that were not easy to deal with. Namely, the lack of documentation provided by

DevDept, was a big hindrance in the development of the work. Another limitation is that this

system is not cross-platform and would require a computer to be present at the scene. In mobile

applications, the PC battery would need to be taken into account and would turn into another lim-

itation of the system. Another limitating factor is the fact that both the camera and the projector

require cables to operate which might get in the way of the robot’s movement. Lastly, as cali-

brations are required, a fine tuning of the parameters would be needed, and even that would be

useless if the projector or camera deviated from their estimated position (physical impact, others).

In Eyeshot, the system presented a 4 6 degree error in the camera rotation when the position was

0.5 m from the target, which equates to a projection error of 10 cm (half the test beam length)

while projecting each second and a half. In the Gazebo implementation, the error vastly reduced

to 2 cm at 0.5 m while projecting at 20 Hz (50 ms).

For the future, one must analyze first whether the idea to maintain the generic HRI principles

would be beneficial or not. While some support exists for Windows, Linux has an extensive

community supporting Gazebo, and developing software for it is far easier. It also has access to

ROS to maintain as much modularity in the interface as possible. However, a step has been made

with the use of a 3D simulator to produce accurate projections, because it would be extremely

difficult otherwise. If a 1:1 relation is achieved, it is possible to have an accurate projection, and

hence this system would work.
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The system is still dependent on information of the robot’s localization and the world infor-

mation. To improve this, modules for self-localization, and dynamic world scanning would need

to be integrated. This would allow the system to track itself on the scene, to create a 3D rendering

of what the world would be and then to project welds anywhere on the scene. Going forward,

studying how to improve the information exchange between the several components would also

be beneficial. This means, for example, allowing operators to communicate changes effectively,

whether through gestures, markers, or other mechanisms. Safety mechanisms should also be re-

searched and implemented.

The thesis research contributed to the understanding of the needs that HRI can fulfill in in-

dustry applications, as well as identifying relative importance of visual feedback in these same

applications, how they interact with the common operator, and how they can improve their experi-

ence in robot cooperation. Lastly, it also contributed to validate robotic manipulators’ effectiveness

in beam weld applications (and others), through the use of projection mapping.
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