
Numerical Methods

for Optimal Control

and Model

Predictive Control

Luís Tiago de Freixo Ramos Paiva
Programa Doutoral em Matemática Aplicada
2014

Orientador
Fernando Arménio da Costa Castro e Fontes

Professor Associado com Agregação

Faculdade de Engenharia da U. Porto

D

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143392316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my family

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Prof.

Fernando Fontes for the continuous support of my Ph.D. study and research, for

his motivation, enthusiasm, knowledge, and friendship. His guidance was immensely

valuable during my research and writing of this thesis.

My sincere thanks goes to Prof. Maria do Rosário de Pinho for her assistance

along the way, exchanges of knowledge, skills, which helped enrich my Ph.D.

experience. Appreciation also goes out to Prof. Margarida Ferreira and Prof. Dalila

Fontes for their motivation and encouragement.

I must also acknowledge Prof. Hasnaa Zidani, Prof. Paola Falugi and Prof. Eric

Kerrigan for receiving me at their workplaces and for offering me opportunities to

acquire knowledge in their groups.

I thank my fellow labmates in the Department of the Electrical and Computer

Engineering – Juliana Almeida, Igor Kornienko, Filipa Nogueira, Luís Roque, Sofia

Lopes, Amélia Caldeira – and former labmates – Ana Filipa Ribeiro, Haider Biswas,

Mário Amorim Lopes, and Rui Calado – for the stimulating discussions, and for all the

good times we had in the last three years. A very special thanks goes out to Achille

Sassi for our debates about optimal control software and their features. Also I thank

my friends in the Mechanical Engineering field: Carlos Veiga Rodrigues, Carlos Silva

Santos, José Carlos Ribeiro and Alexandre Silva Lopes for their friendship over the

past years.

I would also like to thank my parents and my sister for the support they provided

me through my entire life and, in particular, I must acknowledge my wife and best

friend, Catarina, for the love, patience and encouragement.

iv

I would like to express my gratitude for the support of the coordinators of the

doctorate program, Prof. Sílvio Gama. I would also like to thank the Faculty of

Engineering of the University of Porto and the Institute of Systems and Robotics of

Porto for the excellent working conditions provided to me.

In conclusion, the support of FCT – Fundação para a Ciência e Tecnologia –

under Grants PTDC/EEA-CRO/116014/2009 and PTDC/EEI-AUT/1450/2012 and

of the European Union Seventh Framework Programme [FP7-PEOPLE-2010-ITN]

under grant agreement n. 64735-SADCO are greatly acknowledged.

v

Abstract

This thesis addresses, via numerical and optimisation methods, the control of non-

linear systems whose inputs or trajectories are subject to constraints. Nevertheless, we

review and apply theoretical results, such as conditions of optimality, to characterise

the optimal trajectory and to validate numerical results obtained using our proposed

methods.

We overview most used software packages for solving optimal control problems,

including numerical solvers which invoke local search methods and interfaces with

distinct features. A benchmark involving a differential drive robot with state

constraints is presented in order to compare the performances of the solvers.

We propose and develop an optimal control algorithm based on a direct method

with adaptive refinement of the time–mesh. When using direct methods to solve

nonlinear optimal control, regular time meshes having equidistant spacing are most

frequently used. However, in some cases, these meshes cannot cope accurately with

nonlinear behaviour and increasing uniformly the number of mesh nodes may lead

to a more complex problem, resulting in an incoherent solution. We propose a new

adaptive time–mesh refinement algorithm, considering different levels of refinement

and several mesh refinement criteria. This technique is applied to solve an open–

loop optimal control problem involving nonholonomic vehicles with state constraints,

which is characterized by presenting strong nonlinearities and by having discontinuous

controls, and a compartmental model for the implementation of a vaccination strategy.

This algorithm leads to results with higher accuracy and yet with lower overall

vi

computational time, when compared to results obtained by meshes having equidistant–

spacing.

We extend the time–mesh refinement algorithm to be applied to a sequence of

optimal control problems in a Model Predictive Control scheme. Model Predictive

Control is a technique widely used in industrial control problems that explicitly

consider constraints. The receding horizon control strategy can be used in real

time applications and it can be implemented for large-scale systems. The proposed

algorithm is applied to solve an optimal control problem involving parking manoeuvres.

The results are obtained as fast as the ones given by a coarse equidistant–spacing mesh

and as accurate as the ones given by a fine equidistant–spacing mesh.

Global Optimisation methods are addressed as well. The accurate solution of

optimal control is crucial in many areas of engineering and applied science. Since

problems involving nonlinear systems often contain multiple local minima, we study

deterministic and heuristic methods which attempt to determine the global solution.

A problem involving a car–like system is successfully solved and the global optimum

is found.

vii

Resumo

Esta tese tem por base o estudo e desenvolvimento de métodos numéricos e de

optimização para o controlo de sistemas não lineares sujeitos a restrições de estado ou

controlo. Os principais resultados teóricos, tais como as condições de optimalidade, são

analisados e aplicados para caracterizar a trajectória óptima, bem como para validar

resultados numéricos obtidos com os métodos propostos.

Algumas das bibliotecas de software disponíveis para resolver problemas de

controlo óptimo são apresentadas, entre as quais solvers numéricos que implementam

métodos de procura local, assim como interfaces com características distintas.

Um algoritmo de controlo óptimo com refinamento adaptativo da malha temporal,

baseado em métodos directos, é desenvolvido e implementado. Quando são usados

métodos directos na resolução problemas de controlo óptimo não linear é usual

recorrer–se a uma discretização do domínio temporal numa malha regular e com

nós equidistantes. Contudo, em determinados problemas, estas malhas temporais

não conseguem representar com precisão o comportamento não linear e aumentar

uniformemente o número de nós pode traduzir–se num problema mais complexo,

resultando numa solução incorrecta. Assim, um novo algoritmo para um refinamento

adaptativo da malha, onde são considerados diferentes níveis de refinamento e critérios

de paragem, é proposto. Este algoritmo é aplicado na resolução de problemas de

controlo óptimo emmalha aberta. Um dos problemas envolve veículos não holonómicos

com restrições de estado, caracterizado pela presença de não–linearidades e por

ter controlos descontínuos. O algoritmo proposto é também aplicado ao modelo

viii

compartimental para a implementação de uma estratégia de vacinação.

O algoritmo para o refinamento da malha foi estendido com o objectivo de ser

aplicado a problemas de controlo óptimo numa estratégia de Controlo Preditivo. O

Controlo Preditivo é uma técnica amplamente usada na indústria em problemas de

controlo com restrições explícitas. A estratégia de controlo com horizonte deslizante

pode ser usada em aplicações em tempo real e em sistemas de larga escala. O método

proposto é aplicado na resolução de um problema de controlo óptimo envolvendo

manobras de estacionamento de veículos. Os resultados foram obtidos quase tão rápido

quanto aqueles que foram calculados usando uma malha lassa com nós equidistantes

e com a mesma precisão dos resultados fornecidos por uma malha fina.

Esta tese aborda, também, métodos de Optimização Global. A precisão das

soluções de problema de controlo óptimo é crucial em várias áreas da engenharia e

das ciências aplicadas. Uma vez que os problemas que envolvem sistemas não lineares

contêm, muitas vezes, múltiplos mínimos locais, métodos globais determinísticos e

baseados em heurísticas foram estudados. Um problema envolvendo um sistema que

modela um veículo foi resolvido com sucesso e o óptimo global foi encontrado.

ix

Contents

Abstract vi

Resumo viii

List of Tables xv

List of Figures xvii

List of Acronyms xviii

Nomenclature xx

1 Introduction 1

2 Nonlinear Programming and Optimal Control 8

2.1 Nonlinear Programming . 8

2.1.1 Mathematical Programming Problem 8

2.1.2 Unconstrained Nonlinear Programming Problem 9

2.1.3 Constrained Nonlinear Programming Problem 10

2.1.3.1 Fritz John Optimality Conditions 12

x

2.1.3.2 Karush–Kuhn–Tucker Conditions 13

2.2 Optimal Control . 16

2.2.1 Discrete Optimal Control Problem 16

2.2.2 Necessary Conditions of Optimality: Discrete Maximum Principle 17

2.2.3 Relationship Between the MP and the FJ and KKT conditions . 19

2.2.4 Dynamic Programming and Sufficient Conditions for Global

Optimum . 24

2.2.5 Continuous Optimal Control Problem 26

2.2.6 Necessary Conditions of Optimality: Maximum Principle 27

2.2.7 Hamilton–Jacobi and Sufficient Conditions for Global Optimum 28

3 Optimisation Software 32

3.1 Introduction . 32

3.1.1 Dynamic Programming . 33

3.1.2 Direct vs Indirect Methods . 34

3.2 NLP Solvers . 35

3.2.1 IPOPT – Interior Point OPTimiser 35

3.2.2 KNITRO . 36

3.2.3 WORHP – WORHP Optimises Really Huge Problems 37

3.2.4 Other Commercial Packages . 38

3.3 Interfaces . 39

3.3.1 AMPL – A Modelling Language for Mathematical Programming 40

xi

3.3.2 ACADO – Toolkit for Automatic Control and Dynamic Opti-

misation . 41

3.3.3 BOCOP – The optimal control solver 42

3.3.4 DIDO – Automatic Control And Dynamic Optimisation 43

3.3.5 ICLOCS – Imperial College London Optimal Control Software . 43

3.3.6 ROC-HJ – Reachability and Optimal Control Software 44

3.3.7 TACO – Toolkit for AMPL Control Optimisation 45

3.3.8 Pseudospectral Methods in Optimal Control 46

3.4 Solvers Benchmark . 48

3.4.1 Differential Drive Robot . 48

3.4.2 Numerical Results . 49

3.5 Final Remarks . 52

4 Time–Mesh Refinement for Optimal Control 54

4.1 Introduction . 54

4.2 Adaptive Mesh Refinement Algorithm 56

4.2.1 Adaptive Mesh Refinement . 56

4.2.2 Refinement and Stopping Criteria 57

4.2.3 Warm Start . 59

4.2.4 Algorithm Implementation . 60

4.3 Application . 61

4.3.1 Car–like System . 61

xii

4.3.1.1 Problem Statement . 63

4.3.1.2 Numerical Results . 64

4.3.1.3 Characterisation of the Solution using the NCO 68

4.3.2 The SEIR Model . 72

4.3.2.1 Problem Statement . 73

4.3.2.2 Numerical Results . 74

4.4 Final Remarks . 78

5 Time–Mesh Refinement for MPC 79

5.1 Introduction . 80

5.2 Principle of MPC . 81

5.3 Mathematical Formulation of Nonlinear MPC 82

5.4 Extension of the Time–Mesh Refinement Algorithm 84

5.4.1 Motivation . 84

5.4.2 Time–Mesh Refinement Algorithm 85

5.4.3 Refinement Criteria . 87

5.4.4 Warm Start . 87

5.4.5 MPC coupled with the Extended Algorithm 87

5.4.6 Algorithm Implementation . 88

5.5 Application . 89

5.5.1 Parking Manoeuvres . 89

5.5.2 Numerical Results . 92

xiii

5.6 Final Remarks . 96

6 Global Optimal Control 98

6.1 Introduction . 98

6.2 Global Exact Methods Overview . 99

6.2.1 Global Methods for Nonlinear Programming Problems 99

6.2.2 Global Methods for Optimal Control Problems 101

6.3 Application . 104

6.3.1 Problem Statement . 104

6.3.2 Numerical Results . 105

6.4 Final Remarks . 107

7 Conclusion 108

7.1 Contributions . 108

7.2 Future Work . 110

A Background 111

References 116

xiv

List of Tables

3.1 Comparing results for (PDD) without an initial guess 50

3.2 Comparing results for (PDD) with an initial guess 52

4.1 Comparing results for the Car–like system problem (PCL) 67

4.2 Parameters with their clinically approved values [NL10]. 75

4.3 Comparing results for the SEIR problem (PS) 76

5.1 Comparing MPC results for the problem (PCP) 95

xv

List of Figures

3.1 Methods for solving an OCP . 33

3.2 Fluxogram illustrating the use of NLP Solvers 35

3.3 Fluxogram illustrating the use of Interfaces 40

3.4 Differential drive robot geometry . 48

3.5 xy trajectory for (PDD) . 50

3.6 Optimal solution for (PDD) . 51

3.7 Estimate for the travelling distance (PDD) 51

4.1 Illustration of the time–mesh refinement strategy 58

4.2 Adaptive time–mesh refinement diagram 61

4.3 Nonholonomic system characterisation: Speed profile 62

4.4 Car–like system geometry . 62

4.5 Optimal trajectory for (PCL) . 64

4.6 Numerical results of (PCL) using πML 65

4.7 Local error for (PCL) using all meshes 66

4.8 Solution characterisation for the problem (PCL) 73

xvi

4.9 Results for the problem (PS) . 77

5.1 Principle of model predictive control 83

5.2 Illustration of the extended time–mesh refinement strategy 86

5.3 Time–mesh refinement algorithm for MPC 89

5.4 Pathwise state constraints (5.27) for (PCP) 91

5.5 Optimal trajectory for (PCP) using MPC 93

5.6 Sequence of optimal trajectories for (PCP) 94

5.7 Optimal control for (PCP) . 94

5.8 Optimal trajectories for (PCP) considering different initial conditions . 96

6.1 Illustration of the B&B method . 100

6.2 Illustration of the Dynamic Programming procedure 103

6.3 Optimal trajectory and reachable set using ROC-HJ for (PGO) 106

xvii

List of Acronyms

ACADO Automatic Control And Dynamic Optimisation. 41, 42

AMPL A Modelling Language for Mathematical Programming. 35, 36, 38, 40, 41,

45, 49, 51

BOCOP BOCOP. 42

B&B Branch and Bound. 5, 6, 99, 100

DIDO DIDO. 43

DP Dynamic Programming. 1, 2, 5, 6, 24, 28, 33, 99, 102, 107, 109

FJ Fritz John. 11–13, 15, 20–23

GO Global Optimisation. 5, 6, 98, 99, 107, 109, 110

GOC Global Optimal Control. 6, 98, 107, 109

GPOPS-II Gauss Pseudospectral Optimal Control Software. 47

HJ Hamilton–Jacobi. 6, 44, 106, 107, 109

HJB Hamilton–Jacobi–Bellman. 2, 5, 102

HJE Hamilton–Jacobi Equation. 30, 31

xviii

ICLOCS Imperial College London Optimal Control Software. 43, 44, 60

IPOPT Interior–Point Optimiser. 6, 35, 36, 42, 44, 46–53, 60, 68, 77, 108

IS Impulsive System. 110

KKT Karush–Kuhn–Tucker. 13, 15, 23

KNITRO KNITRO. 6, 36, 37, 48–53, 108

MP Maximum Principle. 2, 31

MPC Model Predictive Control. 4–6, 41, 67, 78–84, 87–90, 92, 93, 95, 96, 109, 110

NLO Nonlinear Optimisation. 98

NLP Nonlinear Programming. 3, 6, 8, 10, 32, 34, 35, 37, 39–41, 47, 50, 52, 53, 55,

56, 59, 60, 66, 75, 87, 95, 99, 101, 108

OC Optimal Control. 3, 6, 8, 39, 40, 53, 108

OCP Optimal Control Problem. 1, 2, 4–6, 16, 19, 24, 26, 28, 29, 31, 32, 34, 35, 44,

45, 55, 56, 60, 66, 75, 78, 80–84, 87, 88, 92, 95, 96, 98, 99, 102, 109

PSOPT PSOPT. 46, 47

ROC-HJ Reachability and Optimal Control Software. 44, 45, 105–107

SNOPT Sparse Nonlinear Optimiser. 6, 39, 47

SOCS Sparse Optimal Control Software. 6, 38, 39

TACO Toolkit for AMPL Control Optimisation. 45

WORHP WORHP Optimises Real Huge Problems. 6, 37, 38, 48–53, 108

xix

Nomenclature

ε̄ Levels of refinement

(PCL) Car–like System Problem

(PCP) Car Parking Manoeuvres Problem

(PDD) Differential Drive Robot Problem

(PDOC) Discrete Optimal Control Problem

(PGO) Global Optimal Control Problem

N Number of mesh nodes

Sk Mesh subinterval generated according to some refinement criteria

Sk,i Mesh subinterval of Sk in the ith level of refinement

(PNLP) Nonlinear Programming Problem

(PS) SEIR Problem
[
t0, tf

]
Time domain

εmax Error threshold

εx, εq Error on the trajectory/adjoint multipliers

X, U State/Control domain

xx

Chapter 1

Introduction

“Most things can be improved,

so scientists and engineers optimise.”

Lorenz T. Biegler

This thesis addresses, via numerical and optimisation methods, the control of

nonlinear systems whose inputs or trajectories are subject to constraints.

Constrained control problems arise naturally and frequently in real applications

due to safety reasons, reliability of operation, or physical restrictions that are not

described in the dynamic equations not in the control constraints. There are many

examples of these state constraints such as minimum altitude or velocity of a plane,

maximum temperature or pressure in a chemical reactor, obstacles to be avoided by

a vehicle or robot, among others. Nonlinear models are often use to approximate real

applications since common hard nonlinearities of a discontinuous nature do not allow

linear approximation.

We can solve an Optimal Control Problem (OCP) using Dynamic Programming

and Hamilton–Jacobi methods, Indirect Methods or Direct Methods. Dynamic

Programming (DP) is a stage wise search method of optimisation problems whose

solutions may be viewed as the result of a sequence of decisions. The selection of the

1

CHAPTER 1. INTRODUCTION 2

optimal decision in based on the Bellman’s Principle of Optimality. In continuous–

time problems the DP procedure can be formulated as a partial differential equation

known as the Hamilton–Jacobi–Bellman (HJB) equation. The solution of the DP

recursion or the HJB partial differential equation is very expensive, except for small

dimension problems. An optimal sequence of decisions is obtained if and only if each

subsequence is optimal. The analytical solution of the HJB equation is, in general, not

possible to achieve and a numerical solution is computationally very hard to compute.

Thus, in general, only very low dimensional problems can be solved in reasonable time,

which is the main practical limitation on this approach.

Indirect and Direct methods for solving OCP have, also, their advantages and

disadvantages [Bet01, BH98, Bie10]. The Indirect Methods involve the conditions

of optimality, the adjoint equations, a maximisation condition and the boundary

conditions, forming a boundary value problem. We can compute the solution via

shooting, multiple shooting, or discretisation. The Direct Methods directly optimise

the objective without formation of the necessary conditions, using control and

state parametrisation. When using direct methods, practical methods for solving

OCP [Bie10, BH75, JTB04] require Newton-based iterations with a finite set of

variables and constraints, which can be achieved by converting the infinite-dimensional

problem into a finite-dimensional approximation. The indirect methods only discretise

after the optimisation. Therefore, solutions can be achieved with high level of

accuracy (significant digits). They are popular in the Aerospace Industry to compute

trajectories for rockets/satellites where accurate solutions are needed. However, such

analytical solutions are very hard or even impossible to achieve.

Over the past decades, direct methods have become increasingly useful when

computing the numerical solution of nonlinear OCP [Bet01]. These methods directly

optimise the discretised OCP without using the Maximum Principle (MP) and they are

known to provide a robust approach for a wide variety of optimal control problems.

To achieve the optimal solution we need a numerical/computational solver. A list

of solvers including open–source, freeware and commercial software, working under

CHAPTER 1. INTRODUCTION 3

different operating systems, is available [Pai13]. Since they are based on local search

methods, these solvers compute a local optimal solution, when convergence is achieved.

To test them, we consider a minimum time problem involving a differential drive robot

system. The selection of an initial guess proved to vital to improve the performances

of all solvers.

We can make a better use of solvers if we access them with a proper interface.

An interface is a software that provides us the means to communicate with the solver.

The Optimal Control (OC) interfaces handle with the discretisation and transcription

procedures, while the Nonlinear Programming (NLP) interfaces leave this task to the

user. Several interfaces are presented, encompassing both types.

In a direct collocation method, the control and the state are discretised in a

set of appropriately chosen mesh, in the time interval. Most frequently, in the

discretisation procedure, regular time meshes having equidistant spacing are used.

However, in some cases, these meshes are not the most adequate to deal with nonlinear

behaviours. One way to improve the accuracy of the results, while maintaining

reasonable computational time and memory requirement, is to construct a mesh having

different time steps. The best location for the smaller steps sizes is, in general, not

known a priori, so the mesh will be refined iteratively.

In this thesis, an adaptive time–mesh refinement algorithm is presented [PF14b].

There are three new main features in this algorithm: (a) we introduce several levels

of refinement, obtaining a multi–level time–mesh in a single iteration – such concept

allows us to implement the nodes collocation in a faster and clever way; (b) we also

introduce different refinement criteria – the relative error of the primal variables, the

relative error of the dual variables and a combination of both criteria are used in

the refinement procedure; (c) we consider distinct criteria for refining the mesh and

for stopping the refinement procedure – the refinement strategy can be driven by

the information given by the dual variables and it can be stopped according to the

information given by the primal variables. The local error of the adjoint multipliers

is chosen as a refinement criterion because they are solution to a linear differential

CHAPTER 1. INTRODUCTION 4

equation system, easily solved with high accuracy, and because they give sensitivity

information. It is still a direct method approach but we can use some information

given by necessary conditions, namely, the adjoint differential equation, which is use

in the indirect methods context. To decrease the overall computational time, the

solution computed in the previous iteration is used as a warm start in the next one,

which proved to be of major importance to improve computational efficiency.

In order to validate the results obtained for this problem, we apply the Maximum

Principle of Pontryagin. This analysis allows us to characterize the optimal trajectory

and control and it also provides us the differential equation system for the multipliers.

This last information is needed to estimate the error in the multipliers for one of the

refinement criteria.

When using this strategy, an OCP is solved using less nodes in the overall

procedure which revert in significant savings in memory and computational cost. In

addition, there is no need to decide a priori an adequate mesh meeting our accuracy

specifications, which is a major advantage of this procedure. The proposed refinement

strategy shows more robustness, since it was able to obtain a solution when the

traditional approach – starting with a very large number of mesh nodes – failed to

do so. With this mesh–refinement strategy, nonlinear OCP solvers can be used in

real–time optimization, since approximate solutions can be produced even when the

optimizer is interrupted at an early stage.

This technique is applied to solve two different problems, both with pathwise state

constraints: a car–like system problem [PF13, PF14a] which involves nonholonomic

systems [KM95], and a vaccination strategy problem involving a SEIR model [BPd14,

KPP14, NL10] which describes the spreading of an infectious disease. The results

show solutions with higher accuracy obtained in a overall computational time that is

lower when compared to the ones computed with a mesh having equidistant spacing

and to the ones computed with a mesh designed as suggested in [PF13].

A powerful technique to solve OCPs is Model Predictive Control (MPC) which

CHAPTER 1. INTRODUCTION 5

is also addressed in this thesis. MPC, also referred to as moving horizon control

or receding horizon control, is an optimisation based method for feedback control.

After MPC appeared in industry, a theoretical basis for this technique has started to

emerge [MM90]. MPC has become a preferred control strategy for a large number

of processes. The MPC problem is formulated as solving on–line a sequence of finite

horizon open–loop OCP subject to system dynamics and constraints involving states

and controls. The receding horizon control strategy is especially useful for the control

of slow nonlinear systems, such as chemical batch processes, where it is possible to

solve, sequentially, open–loop fixed–horizon, optimal control problems on–line [MM90].

MPC can, also, be used in tracking control [GP11]. Much progress has been made on

these issues for nonlinear systems [FP12a, GP11] but for practical applications many

questions remain, making MPC an interesting topic of research.

We extend the time–mesh refinement algorithm to a sequence of optimal control

problems in a MPC scheme. We consider several levels of refinement depending on

time, obtaining a multi–level scheme that varies along the time interval. The idea is to

establish planning strategies similar to the ones we use in our daily basis routine. The

proposed algorithm is applied to solve an optimal control problem involving parking

manoeuvres. The results are obtained as fast as those we get with a coarse equidistant–

spacing mesh and as accurate as the ones get with a fine equidistant–spacing mesh.

Due to the fast response of the algorithm, it can be used to solve real–time optimisation

problems.

Global Optimisation (GO) methods are addressed in this thesis as well. Since

problems involving nonlinear systems often contain multiple local minima, we

study deterministic [HP95b, PR02] and heuristic methods [Wei08] which attempt

to determine the global solution. The objective of GO is to find the globally best

solution of models when multiple local optima exist. Among the methods for GO, we

emphasize Dynamic Programming (DP), the D.C. Programming method, the Lipschitz

Optimisation approach and Branch and Bound (B&B) algorithms. DP and HJB

methods are used for solving large problems which are divided into smaller problems.

CHAPTER 1. INTRODUCTION 6

By solving the individual smaller problems, the solution to the larger problem is found.

In the nonconvex optimisation context, D.C. Programming plays an important role

because of its theoretical aspects as well as its wide range of applications [HT99]. The

Lipschitz Optimisation approach to GO has always been attractive since in the cases

that we know the Lipschitz constant, global search algorithms can be deployed and

convergence theorems easily proved. The Branch and Bound (B&B) technique is a

widely used technique to solve several types of difficult optimisation problems. In the

B&B methods, the feasible set is relaxed and subsequently partitioned into refined

parts – branching – over which lower ad upper bounds of the minimum objective

function value can be determined – bounding [HP95a].

We use a Global Optimal Control (GOC) approach, using DP and Hamilton–

Jacobi (HJ) methods, which attempt to determine the global solution of a minimum

time problem involving a car–like system which has to avoid an obstacle. This problem

is successfully solved and the global optimal trajectory is found.

This thesis is organized as follows. In chapter 2, we review some basic concepts

and theoretical results in the NLP and OC contexts [BSS06, Bel57, Cla98, Fon99,

FH10, Ger12, GSD06, Var72, Vin00]. In chapter 3, we overview available software for

solving nonlinear programming problems and optimal control problems, highlighting

their features, namely for Interior–Point Optimiser (IPOPT) [WB06], KNITRO

[LLC13], WORHP Optimises Real Huge Problems (WORHP) [NBW11], and, also, for

Sparse Optimal Control Software (SOCS) and Sparse Nonlinear Optimiser (SNOPT).

We do a benchmark in order to compare the performance of the solvers. In chapter

4, we propose an adaptive time–mesh refinement algorithm that is based on block-

structured adaptive refinement method. In chapter 5, we provide the principles

underlying MPC, its advantages and some computational aspects, as well as an extend

algorithm for adaptive time–mesh refinement. In chapter 6, we introduce Global

Optimal Control (GOC). GO and GOC methods are described and applied to a

nonlinear OCP towards global optimality. In chapter 7, we summarise the conclusions

CHAPTER 1. INTRODUCTION 7

made along the chapters and we end with some future work proposals.

Chapter 2

Nonlinear Programming and

Optimal Control

“I understood that the will could not be improved before

the mind had been enlightened.”

Johann Heinrich Lambert

In this chapter we review some basic concepts and theoretical results in the NLP

and OC contexts [BSS06, Bel57, BH75, Cla13, Cla90, Cla98, Fon99, FH10, Ger12,

GSD06, Var72, Vin00].

2.1 Nonlinear Programming

2.1.1 Mathematical Programming Problem

Let us consider a scalar real objective function in n variables, i.e., f : Rn→ R.

The Nonlinear Programming (NLP) problem can be written as [Bie10]:

min
x∈S

f(x) (2.1)

8

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 9

where S ⊂ Rn, which is equivalent to the problem

max
x∈S
−f(x) . (2.2)

Let us consider f and the optimisation problem (2.1), where S ⊂Rn is a nonempty

set:

(i) A point x ∈ S is called a feasible solution to problem (2.1).

(ii) If x∗ ∈ S and f(x)≥ f (x∗) for each x ∈ S, then x∗ is called an optimal solution,

a global optimal solution, or simply a minimiser to the problem.

(iii) The collection of optimal solutions is called the set of alternative optimal

solutions.

(iv) If x∗ ∈ S and if there exists an Nε(x∗) around x∗ such that f(x)≥ f (x∗) for each

x ∈ S∩Nε(x∗), then x∗ is called a local optimal solution or local minimiser.

(v) If x∗ ∈ S and if f(x) > f (x∗) for each x ∈ S ∩Nε(x∗), x 6= x∗, for some ε > 0,

then x∗ is called a strict local optimal solution or strict local minimiser.

2.1.2 Unconstrained Nonlinear Programming Problem

Let S ⊂ Rn be an open set, e.g., S = Rn.

For differentiable functions, there exist conditions to know if a given point x ∈ S

is a local or global minimiser of a function f .

Theorem 2.1.1. Suppose that f : Rn → R is differentiable at x∗. If x∗ is a local

minimiser, then ∇f(x∗) = 0.

The above condition is called a first–order condition since it uses the gradient

vector, which has the first partial derivatives of f as components. We can also state

necessary conditions in terms of the Hessian matrix H, which comprises the second

derivatives of f . These conditions are called second–order conditions.

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 10

Theorem 2.1.2 (Necessary Condition). Suppose that f : Rn → R is twice–

differentiable at x∗. If x∗ is a local minimizer, then ∇f(x∗) = 0 and H(x∗) is positive

semidefinite.

Since the conditions stated so far are necessary conditions for a local optimal

solution, now we present a sufficient condition for a local optimal solution.

Theorem 2.1.3 (Sufficient Condition). Suppose that f :Rn→R is twice–differentiable

at x∗. If ∇f(x∗) = 0 and H(x∗) is positive definite, then x∗ is a strict local minimiser.

When solving an unconstrained problem, we have to minimize a certain function

f(x) without any constraints on the vector x. However, in real applications we have

to deal with constrained problems.

2.1.3 Constrained Nonlinear Programming Problem

Let us consider a scalar real objective function in n variables, i.e., f : Rn→ R.

The NLP constrained problem can be written as

min
x∈S

f(x) (2.3)

where S ⊂ Rn is a closed set. The set S can be defined by the set of points that

satisfies certain inequality and equality constraints.

Considering a real objective function in n variables f : Rn → R, the NLP

constrained problem (PNLP) with inequality and equality constraints can be written

as

min
x∈X

f(x) (2.4)

subject to

(i) a system of inequalities constraints

gi(x)≤ 0 , i= 1, . . . ,m (2.5)

and

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 11

(ii) a system of equalities constraints

hj(x) = 0 , j = 1, . . . , l (2.6)

where g : Rn→ Rm, h : Rn→ Rl, x ∈ X⊆ Rn and X is a nonempty open set.

The Fritz John (FJ) optimality conditions are geometric necessary conditions

that can be written in terms of the gradients of the objective functions, the inequality

constraints and the equality constraints.

Theorem 2.1.4 (The FJ Necessary Conditions). Let X be a nonempty open set in

Rn, and let

f : Rn→ R ,

gi : Rn→ R for i= 1, . . . ,m,

hj : Rn→ R for j = 1, . . . , l .

Considering the optimisation problem (PNLP)

Minimise f(x)

subject to g(x)≤ 0 ,

h(x) = 0 ,

x ∈ X

let us suppose that

(i) x∗ is a feasible solution and let I = {i : gi(x∗) = 0},

(ii) each gi for i /∈ I is continuous at x∗,

(iii) f and gi for i ∈ I are differentiable at x∗,

(iv) each h is continuously differentiable at x∗.

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 12

If x∗ locally solves problem (2.4), then there exist scalars u0 and ui for i ∈ I, and vj
for j = 1, . . . , l, such that

u0∇f(x∗)T +
∑
i∈I

ui∇gi(x∗)T +
l∑

j=1
vj∇hj(x∗)T = 0

u0,ui ≥ 0 for i ∈ I

(u0,uI ,v) 6= (0,0,0)

where uI and v are vectors with components ui, i ∈ I, and vj, j = 1, . . . , l, respectively.

Furthermore, if gi, i /∈ I are also differentiable at x∗, then the above conditions can be

written as

u0∇f(x∗)T +
m∑
i=1

ui∇gi(x∗)T +
l∑

i=1
vi∇hi(x∗)T = 0 (2.7)

uigi(x∗) = 0 for i= 1, . . . ,m (2.8)

u0,ui ≥ 0 for i= 1, . . . ,m (2.9)

(u0,u,v) 6= (0,0,0) (2.10)

where u and v are vectors whose components are ui, i= 1, . . . ,m, and vj, j = 1, . . . , l,

respectively.

2.1.3.1 Fritz John Optimality Conditions

In the FJ conditions, the scalars u0, ui for i= 1, . . . ,m, and vi for i= 1, . . . , l, are

called the Lagrange multipliers associated, respectively, with the objective function,

the inequality constraints gi(x)≤ 0, i= 1, . . . ,m, and the equality constraints hj(x) =

0, j = 1, . . . , l.

The condition that x∗ be feasible for the optimisation problem (PNLP) is called

the primal feasibility [PF] condition. The requirements of (2.7) with (2.9) and (2.10)

are called the dual feasibility [DF] conditions. The condition (2.8) is called the

complementary slackness [CS] condition. This condition requires that ui = 0 if the

corresponding inequality is nonbinding, i.e.if gi(x∗) < 0, and it allows for ui > 0 only

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 13

for those constraints that are binding. Together, the [PF], [DF] and [CS] conditions

are called the Fritz John (FJ) optimality conditions. Any point x∗ for which there exist

Lagrange multipliers ū0, ūi, i = 1, . . . ,m, v̄i, i = 1, . . . , l such that the FJ conditions

are satisfied is called an Fritz John (FJ) point.

The FJ conditions can also be written in vector form as follows:

∇f(x∗)Tu0 +∇g(x∗)Tu +∇h(x∗)Tv = 0

uTg(x∗) = 0 (2.11)

(u0,u)≥ (0,0)

(u0,u,v) 6= (0,0,0)

where:

(i) ∇g(x∗) is the m×n Jacobian matrix whose ith row is ∇gi(x∗),

(ii) ∇h(x∗) is the l×n Jacobian matrix whose ith row is ∇hi(x∗),

(iii) g(x∗) is the m vector function whose ith component is gi(x∗), and

(iv) u and v are, respectively, an m vector and an l vector, whose elements are the

Lagrange multipliers associated with, respectively, the inequality and equality

constraints.

2.1.3.2 Karush–Kuhn–Tucker Conditions

From the FJ optimality conditions, it is possible to derive the following Karush–

Kuhn–Tucker (KKT) necessary conditions for optimality. Note that when u0 > 0, we

can assume u0 = 1 without loss of generality, by scaling the dual feasibility conditions.

Theorem 2.1.5 (KKT Necessary Conditions). Let X be a nonempty open set in Rn,

and let

f : Rn→ R ,

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 14

gi : Rn→ R for i= 1, . . . ,m,

hj : Rn→ R for j = 1, . . . , l .

Let us consider the optimisation problem (PNLP)

Minimise f(x)

subject to g(x)≤ 0 ,

h(x) = 0 ,

x ∈ X .

Let x∗ be a solution, and let I = {i : gi(x∗) = 0}. Suppose that

(i) f and gi for i ∈ I are differentiable at x∗,

(ii) each gi for i /∈ I is continuous at x∗,

(iii) each hi for i= 1, . . . , l, is continuously differentiable at x∗.

In addition, suppose that ∇gi(x∗)T for i ∈ I and ∇hi(x∗)T for i= 1, . . . , l are linearly

independent. If x∗ is a local optimal solution, then there exist unique scalars ui for

i ∈ I,and vi for i= 1, . . . , l, such that

∇f(x∗)T +
∑
i∈I

ui∇gi(x∗)T +
l∑

i=1
vi∇hi(x∗)T = 0 (2.12)

ui ≥ 0 for i ∈ I

Furthermore, if gi, i /∈ I are also differentiable at x∗, then the above conditions can be

written as

∇f(x∗)T +
m∑
i=1

ui∇gi(x∗)T +
l∑

i=1
vi∇hi(x∗)T = 0

uigi(x∗) = 0 for i= 1, . . . ,m (2.13)

ui ≥ 0 for i= 1, . . . ,m

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 15

The KKT conditions can also be written in vector form

∇f(x∗)T +∇g(x∗)Tu +∇h(x∗)Tv = 0 ,

uTg(x∗) = 0 ,

u≥ 0 ,

where

(i) ∇g(x∗) is the m×n Jacobian matrix whose ith row is ∇gi(x∗),

(ii) ∇h(x∗) is the l×n Jacobian matrix whose ith row is ∇hi(x∗),

(iii) g(x∗) is the m vector function whose ith component is gi(x∗), and

(iv) u and v are, respectively, an m vector and an l vector, whose elements are the

Lagrange multipliers associated with, respectively, the inequality and equality

constraints.

The difference between the FJ and KKT conditions is that we can guarantee the

u0 = 1 when ∇gi(x∗), for i ∈ I, and ∇hi(x∗) are linearly independent – a condition

called constraint qualification.

The following result shows that, under moderate convexity assumptions, the KKT

conditions are also sufficient for local optimality.

Theorem 2.1.6 (KKT Sufficient Conditions). Let X be a nonempty open set in Rn,

and let

f : Rn→ R ,

gi : Rn→ R for i= 1, . . . ,m,

hj : Rn→ R for j = 1, . . . , l .

Let x∗ be a feasible solution, and let I = {i : gi(x∗) = 0}. Suppose that the KKT

conditions hold at x∗, i.e., there exist scalars ūi ≥ 0 for i ∈ I, and v̄i for i = 1, . . . , l,

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 16

such that

∇f(x∗)T +
∑
i∈I

ui∇gi(x∗)T +
l∑

i=1
vi∇hi(x∗)T = 0 (2.14)

ui ≥ 0 for i ∈ I

Let J = {i : v̄i > 0} and K = {i : v̄i < 0}. Furthermore, suppose that

(i) f is pseudoconvex at x∗,

(ii) gi is quasiconvex at x∗ for i ∈ I,

(iii) hi is quasiconvex at x∗ for i ∈ J , and

(iv) hi is quasiconcave at x∗ (that is, −hi is quasiconvex at x∗) for i ∈K.

Then x∗ is a global optimal solution to problem (PNLP). In particular, if these

generalised convexity assumptions on the objective and constraint functions are

restricted to the domain Nε(x∗) for some ε > 0, then x∗ is a local minimiser for

problem (PNLP).

2.2 Optimal Control

2.2.1 Discrete Optimal Control Problem

Let us consider the following fixed horizon OCP, in discrete form, (PDOC), with

input and state constraints

Minimise JN ({tk},{xk},{uk}) = G (xN) +
N−1∑
k=0
L(tk,xk,uk) (2.15)

subject to

(i) the dynamic constraints

xk+1 = f(tk,xk,uk) for k = 0, . . . ,N −1 , (2.16)

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 17

(ii) the input constraints

uk ∈ U⊂ Rm for k = 0, . . . ,N −1 , (2.17)

(iii) the state constraints

xk ∈ X⊂ Rn for k = 0, . . . ,N , (2.18)

(iv) and the end–point constraints

x0 ∈ X0 ⊂ Rn and xN ∈ X1 ⊂ Rn (2.19)

where N is the optimisation horizon, {tk}, {xk} and {uk} are time, state and control

sequences. The functions invoked comprise

(i) the objective function JN ({tk},{xk},{uk}),

(ii) the running cost L :
[
t0, tf

]
×Rn×Rm→ R,

(iii) the terminal cost G : Rn→ R, and

(iv) the dynamic function f :
[
t0, tf

]
×Rn×Rm→ Rn.

Usually, U is compact, and X, X0 and X1 are closed.

In the context of optimisation, a trajectory {xk} is obtained iteratively consider-

ing an initial value x0 ∈X0 and a control sequence u(·) ∈U. The constraints provided

by the system of equations f that must be satisfied for all time instants k in the time

interval. The state and control sequences that attain the minimum are the optimal

sequences or minimisers.

2.2.2 Necessary Conditions of Optimality:

Discrete Maximum Principle

The conditions required on the data of the optimisation problem (2.15)–(2.19)

assume the following assumptions:

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 18

H’1. The function G(x) is twice–continuously differentiable.

H’2. For every u ∈ U, the functions f(t,x,u) and L(t,x,u) are twice–continuously

differentiable with respect to x and t.

H’3. The terminal constraint function h(x) is twice–continuously differentiable and

satisfies the “constraint qualification” that the Jacobian matrix ∂h(x)/∂x has

full row rank for all x ∈ Rn.

H’4. The functions f(t,x,u) and L(t,x,u), and all their first and second partial

derivatives with respect to x, are uniformly bounded on A×U for any bounded

set A⊂ Rn.

H’5. The matrix ∂f(·, ·, ·)/∂x is nonsingular on Rn×U.

H’6. The set


 f(t,x,u)

L(t,x,u)

 : u ∈ U

, is convex for all x ∈ Rn.

Let us consider the Hamiltonian

H (k,xk,ηk,uk,λ) = ηk · f(k,xk,uk)−λL(k,xk,uk) (2.20)

where λ is a real number and ηk, k = 0, . . . ,N −1 are vector in Rn.

The Maximum Principle, in discrete–time, for state constrained problems stated

in [GSD06]:

Theorem 2.2.1. Subject to assumptions H’1–H’6, if the sequences {x0, . . . ,xN},

{u0, . . . ,uN−1} are minimisers of problem (PDOC), then there exist a sequence of

vectors {η−1,η0, . . . ,ηN−1} and a real number λ such that the following conditions

hold:

(i) Adjoint equations

(
η∗k−1

)T
= ∂H (xk,ηk,uk,λ)

∂xk
for k = 0, . . . ,N −1 . (2.21)

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 19

(ii) Boundary conditions: There exists a real number β ≥ 0 and a vector γ ∈Rl, such

that

η∗N−1 =
[
∂h

∂x

]T
γ+

[
∂G
∂x

]T
β , (2.22)

λ∗ = β ≥ 0 , (2.23)

where λ∗ and η∗N−1 are not simultaneously zero. Moreover, if λ∗ = 0 in (2.23),

then the vectors
{
η∗−1, . . . ,η

∗
N−1

}
satisfying (2.21) and (2.22) are all nonzero.

(iii) Maximisation of the Hamiltonian

H (k,x∗k,η∗k,u∗k,λ∗)≥H (k,x∗k,η∗k,u,λ∗) , (2.24)

for all k = 0, . . . ,N −1 and all u ∈ U.

2.2.3 Relationship Between the Maximum Principle and

the Fritz–John and Karush–Kuhn–Tucker conditions

For further discussion, we intend to analyse the relationship between the Maxi-

mum Principle and the Fritz–John and Karush–Kuhn–Tucker conditions [GSD06]. Let

us consider the following fixed horizon OCP, in discrete form, with input and state

constraints

PN (x̄) : Minimise JN ({k},{xk},{uk}) (2.25)

subject to xk+1 = f(k,xk,uk) for k = 0, . . . ,N −1 , (2.26)

x0 = x̄ , (2.27)

gk(uk)≤ 0 k = 0, . . . ,N −1 , (2.28)

gN (xN)≤ 0 , (2.29)

hN (xN) = 0 , (2.30)

where

JN ({k},{xk},{uk}) = G (xN) +
N−1∑
k=0
L(k,xk,uk) (2.31)

and

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 20

(i) {k}, {0, . . . ,N} is the time sequence,

(ii) {xk}, {x0, . . . ,xN}, xk ∈ Rn is the state sequence,

(iii) {uk}, {u0, . . . ,uN−1}, uk ∈ Rm is the control sequence,

(iv) (2.26)–(2.27) are the state equations,

(v) gk : Rm→ Rr, k = 0, . . . ,N − 1, represent r (elementwise) inequality constraints

(compare against (2.17)),

(vi) gN : Rn→ Rp and hN : Rn→ Rl represent, respectively, inequality and equality

constraints on the terminal state (compare against (2.18) where only equality

constraints on the terminal state were considered).

We will assume that all functions in (2.25)–(2.31) are differentiable functions

of their variables and that f and hN are continuously differentiable at the optimal

solution.

In [GSD06], necessary optimality conditions for the sequences {x∗0, . . . ,x∗N} and

{u∗0, . . . ,u∗N−1} to be minimisers of the optimisation problem PN (x̄) are derived,

using the FJ necessary optimality conditions (see Theorem 2.1.4). Note that the FJ

conditions are always a necessary condition for optimality under the differentiability

assumption, without requiring any constraint qualification.

Defining the vector

X ,
[
xT

0 . . . xT
N uT

0 . . . uT
N−1

]T
∈ R(N+1)n+Nm (2.32)

we can rewrite the problem (2.25)–(2.31) in the form

Minimise φ(k,X)

subject to g(X)≤ 0 (2.33)

h(X) = 0

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 21

where

φ(k,X) , G (xN) +
N−1∑
k=0
L(k,xk,uk) , (2.34)

g(X) ,



g0(u0)

g1(u1)
...

gN−1(uN−1)

gN (xN)


, (2.35)

h(X) ,



x̄−x0

f(0,x0,u0)−x1
...

f(N −1,xN−1,uN−1)−xN
hN (xN)


. (2.36)

Supposing

X ∗ =
[
x∗T0 . . . x∗TN u∗T0 . . . u∗TN−1

]T
(2.37)

is a minimiser of (2.33), the FJ conditions (see Theorem 2.1.4) hold for problem (2.33)

at X ∗, that is, there exist a scalar λ∗ and vectors {η∗−1, . . . ,η
∗
N−1}, γ∗ and {ν∗0 , . . . ,ν∗N}

such that

[
∂φ(k,X ∗)

∂X

]T
λ∗+

[
∂h(X ∗)
∂X

]T



η∗−1
...

η∗N−1

γ∗


+
[
∂g(X ∗)
∂X

]T


ν∗1
...

ν∗N

= 0 , (2.38)


ν∗1
...

ν∗N

g(X ∗) = 0 , (2.39)

(λ∗,ν∗0 , . . . ,ν∗N)≥ 0 , (2.40)(
λ∗,η∗−1, . . . ,η

∗
N−1,ν

∗
0 , . . . ,ν

∗
N

)
6= 0 , (2.41)

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 22

where

∂φ

∂X
=
[
∂L
∂x0

. . .
∂L

∂xN−1

∂G
∂xN

∂L
∂u0

. . .
∂L

∂uN−1

]
, (2.42)

∂h

∂X
=



−In 0 0 · · · 0 0 0 0 · · · 0
∂f
∂x0

−In 0 · · · 0 0 ∂f
∂u0

0 · · · 0

0 ∂f
∂x1

−In · · · 0 0 0 ∂f
∂u1

· · · 0
...

0 0 0 · · · ∂f
∂xN−1

−In 0 0 · · · ∂f
∂uN−1

0 0 0 · · · 0 ∂hN
∂xN

0 0 · · · 0


, (2.43)

∂g

∂X
=



0 · · · · · · · · · 0 ∂g0
∂u0

0 · · · 0
... 0 ∂g1

∂u1
· · · 0

...

... 0 0 · · · ∂gN−1
∂uN−1

0 · · · · · · · · · ∂gN
∂xN

0 0 · · · 0


, (2.44)

Defining the Hamiltonian

H (k,xk,ηk,uk,λ) , ηk · f(k,xk,uk)−λL(k,xk,uk) , (2.45)

and writing the FJ conditions (2.38)–(2.41) component–wise, we conclude that in order

for the sequences {x∗0, . . . ,x∗N} and {u∗0, . . . ,u∗N−1} to be minimisers of (2.25)–(2.31),

it is a necessary condition to exist a scalar λ∗ and vectors {η∗−1, . . . ,η
∗
N−1}, γ∗ and

{ν∗0 , . . . ,ν∗N}, not all zero, such that the following conditions hold:

(i) Adjoint equations:

(
η∗k−1

)T
= ∂H (k,x∗k,ηk,u∗k,λ)

∂xk
for k = 0, . . . ,N −1 , (2.46)

(ii) Boundary conditions:

η∗N−1 =
[
∂hN (x∗N)
∂xN

]T
γ∗+

[
∂G(x∗N)
∂xn

]T
λ∗+

[
∂gN (x∗N)
∂xN

]T
ν∗ , (2.47)

(ν∗N)T gN (x∗N) = 0 , (2.48)

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 23

λ∗ ≥ 0 , (2.49)

ν∗N ≥ 0 , (2.50)

(iii) Hamiltonian conditions:
[
∂H (k,x∗k,η∗k,u∗k,λ∗)

∂uk

]T
+
[
∂gk(x∗k)
∂uk

]T
ν∗ = 0 , (2.51)

(ν∗k)T gk(u∗k) = 0 , (2.52)

ν∗k ≥ 0 , (2.53)

for k = 0, . . . ,N −1.

Let us consider the following related condition

H (k,x∗k,η∗k,u∗k,λ∗)≥H (k,x∗k,η∗k,uk,λ∗) for all uk such that gk(uk)≤ 0 . (2.54)

Notice that the KKT conditions for (2.54) coincide with (2.51)–(2.53) (compare

with (2.14)). However, in order to guarantee that (2.54) is a necessary condition for

(2.51)–(2.53), and hence for the original problem (2.15)–(2.19), we need additional

moderate convexity assumptions. Suppose now that H (k,x∗k,η∗k,uk,λ∗) is pseudocon-

vex at u∗k, and the constraint function gk(uk) in (2.54) is quasiconvex at u∗k. We can

then apply the KKT sufficient optimality conditions of Theorem 2.1.6 to conclude that

conditions (2.51)–(2.53) imply (2.54).

For the original optimisation problem (2.15)–(2.19), under the above (gener-

alised) convexity assumptions, a necessary condition for the sequences {x∗0, . . . ,x∗N}

and {u∗0, . . . ,u∗N−1} to be minimisers is that there exist a scalar λ∗ and vectors

{η∗−1, . . . ,η
∗
N−1}, γ∗ and {ν∗0 , . . . ,ν∗N}, not all zero, such that conditions (2.46)–(2.50)

hold, and, furthermore, u∗ minimises the Hamiltonian for k = 0, . . . ,N −1.

Moreover, we can apply the KKT necessary optimality conditions to the original

problem, that is, we can set λ = 1 in the FJ conditions (2.38)–(2.41) and in the

Hamiltonian (2.45).

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 24

2.2.4 Dynamic Programming and Sufficient Conditions for

Global Optimum

Dynamic Programming (DP) is a technique which compares the optimal decision

with all the other decisions. This global comparison, therefore, leads to optimality

conditions which are sufficient. The main advantage of DP, besides the fact that it

gives sufficiency conditions, is that DP permits very general problem formulations

which do not require differentiability or convexity conditions or even the restriction

to a finite–dimensional state space. The only disadvantage of DP is that it can easily

give rise to enormous computational requirements.

Let us consider the following discrete OCP

Minimise G (xN) +
N−1∑
k=0
L(k,xk,uk)

subject to xk+1 = f(k,xk,uk) for k = 0, . . . ,N −1 ,

uk ∈ U⊂ Rm for k = 0, . . . ,N −1 , (2.55)

xk ∈ X⊂ Rn for k = 0, . . . ,N ,

x(0) = x0 .

The main idea underlying DP involves embedding the optimal control problem

(2.55), in which the system starts in state x0 at time 0, into a family of optimal

control problems with the same dynamics, objective function, and control constraint

as in (2.55) but with different initial states and initial times. More precisely, for each

x ∈ X and j between 0 and N −1, consider the following problem:

(PDP) : Minimise G (xN) +
N−1∑
k=j
L(k,xk,uk)

subject to xk+1 = f(k,xk,uk) for k = j,j+ 1, . . . ,N −1 ,

uk ∈ U⊂ Rm for k = j,j+ 1, . . . ,N −1 ,

x(j) = x .

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 25

Since the initial time j and initial state x are the only parameters in the problem

above, we use (PDP)j,x to distinguish between different problems.

The following Lemma is an elementary but crucial observation [Var72].

Lemma 2.2.2. Suppose u∗j , . . . ,u∗N−1 is an optimal control for (PDP) and let x∗j =

x∗,x∗j+1, . . . ,x∗N be the corresponding optimal trajectory. Then for any l, j ≤ l≤N−1,

u∗l , . . . ,u∗N−1 is an optimal control for (PDP)l,x
∗
l .

Let us assume that an optimal solution to (PDP)j,x exists for all 0 ≥ j ≥ N − 1,

and all x ∈ X. Let V(j,x) be the maximum value of (PDP)j,x. V is called the value

function.

Theorem 2.2.3. Let us define V(N, ·) by V(N,x) = G(xN). V(j,x) satisfies the

backward recursion equation

V(j,x) = min{L(j,xj ,uj) +V (j+ 1, f (j,xj ,uj)) |u ∈ U} , 0≤ j ≤N −1 . (2.56)

Corollary 1. Let ul, . . . ,uN−1 be any control for the problem (PDP)j,x and let xj =

x,xj+1, . . . ,xN be the corresponding trajectory. Then

V(l,xl)≤ L(l,xl,ul) +V (l+ 1, f (l,xl,ul)) , j ≤ l ≤N −1 , (2.57)

and equality holds for all j ≤ l≤N−1 if and only if the control is optimal for (PDP)j,x.

Corollary 2. For j = 0,1, . . . ,N −1, let u(j, ·) : Rm→ U be such that

L(j,xj ,u(j,xj))+V(j+1, f (j,xj ,u(j,xj)) = min{L(j,xj ,uj)) +V(j+ 1, f(j,xj ,uj)|u ∈ U} .

Then u(j, ·), j = 0,1, . . . ,N −1, is an optimal feedback control, i.e., for any (j,xj) the

control u∗j , . . . ,u∗N−1 defined by u∗l = u(l,x∗l), j ≤ l ≤N −1, where

x∗l+1 = f (l,x∗l ,u∗l) , j ≤ l ≤N −1 ,

x∗l = x ,

is optimal for (PDP)j,x.

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 26

2.2.5 Continuous Optimal Control Problem

An OCP [Vin00] has as main goal to find dynamic variables subject to constraints

and bounds, which minimises a certain cost function [FH10]. Let us consider the

following optimal control problem, in Bolza form, with input and state constraints

[Vin00]:

Minimise J(t,x,u) =
tf∫
t0

L(t,x(t),u(t))dt+ G
(
x(tf)

)

subject to

(i) dynamic constraints

ẋ(t) = f(t,x(t),u(t)) a.e. t ∈
[
t0, tf

]
,

(ii) input constraints

u(t) ∈ U⊂ Rm a.e. t ∈
[
t0, tf

]
,

(iii) pathwise state constraint

h(x(t))≤ 0 ∀t ∈
[
t0, tf

]
,

and

(iv) end–point constraints

x(t0) ∈ X0 ⊂ Rn and x(tf) ∈ X1 ⊂ Rn ,

where x :
[
t0, tf

]
→ Rn is the state, u :

[
t0, tf

]
→ Rm is the control and t ∈

[
t0, tf

]
is

time. The functions involved comprise the running cost L :
[
t0, tf

]
×Rn×Rm → R,

the terminal cost G : Rn→ R, the dynamic function f :
[
t0, tf

]
×Rn×Rm→ Rn and

the state constraint h : Rn→ Rk.

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 27

2.2.6 Necessary Conditions of Optimality:

Maximum Principle

We use a smooth version of the Maximum Principle for state constrained problems

which is valid under the following hypotheses. There exists a scalar ξ > 0 such that:

H1. f(·,x, ·) is L×Bm measurable for fixed x;

H2. f(t, ·,u) is continuously differentiable on x̄ + ξB, ∀u ∈ U,a.e. t ∈
[
t0, tf

]
;

H3. There exists Cu > 0 such that ||f(t,x, ·)|| ≤Cu for x̄+ξB, ∀u ∈U,a.e. t ∈
[
t0, tf

]
;

H4. G is continuously differentiable on x̄ + ξB;

H5. U is compact;

H6. h is continuously differentiable on x̄ + ξB.

where B denotes the closed unit ball.

A feasible process (x∗,u∗) is a W 1,1 local minimizer if there exists δ > 0 such

that (x∗,u∗) minimizes J(t,x,u) for all feasible processes (x,u) which satisfy ‖ x−

x∗ ‖W 1,1≤ δ [Vin00].

Let us consider the Hamiltonian

H(t,x(t),p(t),u(t)) = p(t) · f(t,x(t),u(t))−λL(t,x(t),u(t)) ,

the Maximum Principle for state constrained problems in [Vin00, p. 329], and its

remark d) in page 331.

Theorem 2.2.4. Let (x∗,u∗) be a W 1,1 local minimizer of OCP. Assume hypotheses

(H1)–(H6) are satisfied. Then, there exist an absolutely continuous function p ∈

W 1,1(
[
t0, tf

]
;Rn), a scalar λ≥ 0 and positive Radon measures µi ∈ C⊕

([
t0, tf

])
, i =

1, . . . ,k satisfying

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 28

(i) the nontriviality condition

(p,µ,λ) 6= (0,0,0) , (NT)

(ii) the adjoint system

−ṗ(t) =∇H(t,x∗(t),q(t),u∗(t)) , (AS)

(iii) the transversality condition

(
p(t0),−q(tf)

)
∈ λGx

(
x∗(tf)

)
+NX0×X1

(
x∗(t0),x∗(tf)

)
, (T)

(iv) the Weierstrass condition

H(t,x∗(t),q(t),u∗(t)) = max
u∈U

H(t,x∗(t),q(t),u) , (WC)

(v) the complementary slackness condition

supp{µi} ⊂ {t : hi (x(t)) = 0} , (CS)

and q :
[
t0, tf

]
→ Rn is a normalized function with bounded total variation defined as

q(t) =



p(t) +
∫

[t0,t)

k∑
i=1
∇hi(x∗(s))dµi(s) t ∈ [t0, t)

p(tf) +
∫

[t0,tf]

k∑
i=1
∇hi(x∗(s))dµi(s) t= tf .

(2.58)

The conditions of Theorem 2.2.4 will by applied to OCPs in order to characterise

the optimal solution and to validate some numerical results.

2.2.7 Hamilton–Jacobi and Sufficient Conditions for

Global Optimum

The concept of Dynamic Programming (DP) is based on Bellman’s Principle

of Optimality [Bel57] which states that “An optimal policy has the property that

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 29

whatever the initial state an initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision.”

Applying the Principle of Optimality to continuous time OCPs, we obtain the

Hamilton–Jacobi equation, and under some assumptions a very simple deduction of

the Maximum Principle is possible [Fon99].

Redefining the Value Function, in continuous time, as the infimum cost from a

initial pair (t0,x(t0)) as

V (t0,x(t0)) = inf
x∈[t0,tf]

u∈U


tf∫
t0

L(s,x(s),u(s))ds+ G
(
x(tf)

) , (2.59)

from the Principle of Optimality, we can see that for any time subinterval [t, t+ δ]⊂[
t0, tf

]
, (δ > 0) we have

V (t,x(t)) = inf
x∈[t,t+δ]

u∈U


t+δ∫
t

L(s,x(s),u(s))ds+V (t+ δ,x(t+ δ))

 , (2.60)

for x corresponding to u, with the condition

V (tf ,x(tf)) = G
(
x(tf)

)
. (2.61)

Assuming the existence of a process (x∗,u∗) defined on [t, t+ δ] which is a

minimiser for (2.60), we can write

−V (t,x∗(t)) +
t+δ∫
t

L(s,x∗(s),u∗(s))ds+V (t+ δ,x∗(t+ δ)) = 0 , (2.62)

and for all pairs (x∗,u∗)

−V (t,x(t)) +
t+δ∫
t

L(s,x(s),u(s))ds+V (t+ δ,x(t+ δ))≥ 0 . (2.63)

Let us suppose that u∗ and u are continuous from the right and, also, that

V is continuously differentiable and L is continuous. By adding and subtracting

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 30

V (t+ δ,x(t)) to the equations (2.62) and (2.63), dividing by δ, and taking the limit

as δ→ 0, we obtain the Hamilton–Jacobi Equation (HJE)

Vt(t,x(t)) + min
u∈U
{Vx(t,x(t)) · f(t,x(t),u) + L(t,x(t),u)}= 0 , (2.64)

V (tf ,x(tf)) = G(x(tf)) .

This is typically written as

Vt(t,x)−max
u∈U

H(t,x(t),−Vx(t,x),u) = 0 , V (tf ,x) = G(x) ,

where, as before,

H(t,x(t),p(t),u(t)) = p(t) · f(t,x(t),u(t))−L(t,x(t),u(t)) ,

is the (unmaximised) Hamiltonian.

The above analysis relates the HJE and the Value Function. The HJE also

features in the following sufficient condition for a pair (x∗,u∗) to be a minimiser.

Theorem 2.2.5 (Sufficient Condition). If there exist a continuously differentiable

function V such that the HJE is satisfied and

Vt(t,x∗(t))−H(t,x∗(t),−Vx(t,x∗),u∗(t)) = Vt(t,x∗(t))−max
u∈U

H(t,x∗(t),−Vx(t,x∗),u)

then (x∗,u∗) is a local minimiser.

A natural candidate for the function V in Theorem 2.2.5 is the value function, if

it is a continuously differentiable function. The main limitation of this result is the

fact that a continuously differentiable function V may not exist.

The analytical solution of the HJE is in general not possible to achieve and a

numerical solution is computationally very hard to compute. Thus, in general, only

very low dimensional problems can be solved in reasonable time, which is the main

practical limitation on this approach.

CHAPTER 2. NONLINEAR PROGRAMMING AND OPTIMAL CONTROL 31

The derivation of the MP can be easily done by assuming that V is C2 [Dre65].

Let (x∗,u∗) be a minimiser satisfying the HJE and let us define

p(t) =−Vx(t,x∗(t))

For an OCP with free terminal state the boundary condition can be written

as V (tf ,x) = G(x) for all x in the domain of G(·). Thus, we have Vx(tf ,x∗(tf)) =

Gx(x∗(tf)). It follows that

p(tf) =−Gx(x∗(tf)) .

From the HJE, we get

p(t) · f(t,x∗(t),u∗(t))−L(t,x∗(t),u∗(t)) = max
u∈U
{p(t) · f(t,x∗(t),u)−L(t,x∗(t),u)}

The transversality condition and the maximisation condition are found.

Since the HJE is equal to zero for any x, differentiating with respect to x we

obtain

Vtx(t,x∗(t)) +Vxx(t,x∗(t)) · f(t,x∗(t),u∗(t))+ (2.65)

+Vx(t,x∗(t)) · fx(t,x∗(t),u∗(t)) + Lx(t,x∗(t),u∗(t)) = 0 .

Using (2.65), the derivative of p is

ṗ(t) =− d
dtVx(t,x∗(t))

=− [Vtx(t,x∗(t)) +Vxx(t,x∗(t)) ·f(t,x∗(t),u∗(t))]

=− [Vx(t,x∗(t)) · fx(t,x∗(t),u∗(t)) + Lx(t,x∗(t))]

and the Euler–Lagrange equation is

−ṗ(t) = p(t) · fx(t,x∗(t),u∗(t)) + Lx(t,x∗(t),u∗(t)) .

Chapter 3

Optimisation Software

“The purpose of computing is insight,

not numbers.”

Richard Hamming

In this chapter, we review methods for solving an Optimal Control Problem

(OCP). Moreover, we are interested in applying direct methods and, for that reason,

we introduce three numerical Nonlinear Programming (NLP) solvers and a list of

several interfaces used to generate the solver input.

3.1 Introduction

To solve an OCP, we can use Indirect Methods, which involve the Maximum

Principle and shooting methods, Dynamic Programming and Hamilton–Jacobi meth-

ods, or Direct Methods, which involve discretising and transcribing a OCP into a NLP

problem.

32

CHAPTER 3. OPTIMISATION SOFTWARE 33

Optimal Control

Direct
methods

Trans-
cription

Problem
discreti-
sation

Dynamic
programming
+ Hamilton–

Jacobi
methods

Indirect
methods

Shooting
methods

Maximum
Principle

Figure 3.1: Methods for solving an OCP

3.1.1 Dynamic Programming

Dynamic Programming (DP) is a stage wise search method of optimisation

problems whose solutions may be viewed as the result of a sequence of decisions. The

selection of the optimal decision in based on the Bellman’s Principle of Optimality. An

optimal sequence of decisions is obtained if and only if each subsequence is optimal.

Therefore, if the initial state and decisions from this point are optimal then the

remaining decisions must constitute an optimal sequence with respect to the state

resulting from the first decision.

For achieving the solution using DP, we should implement the following strategy:

a) the optimal control problem is divided into a certain number of smaller but similar

sub–problems;

b) the solution to main problem is rewritten in terms of the solutions for the smaller

sub–problems;

c) stage wise solutions start with the smallest sub–problems;

d) solutions of smallest sub–problems are combined to obtain the solutions to sub–

CHAPTER 3. OPTIMISATION SOFTWARE 34

problems of increasing size;

e) the process is continued until we arrive at the solution of the original problem.

It is recommended to construct a table of known results of sub–problems to avoid

calculating the same sub–problem twice.

3.1.2 Direct vs Indirect Methods

According to [Bet01, BH98, Bie10], Indirect and Direct methods for solving OCP

have, each one, their advantages and disadvantages.

The Indirect Methods involve the conditions of optimality (Maximum principle),

the adjoint equations, a maximisation condition and the boundary conditions, forming

a boundary value problem. We can compute the solution via shooting, multiple

shooting, or discretisation. Indirect Methods can give us an accurate solution for

“special cases” (e.g.singular arcs) but they require derivation and implementation of

adjoint equations, becoming not robust in general cases.

The Direct Methods directly optimise the objective without formation of the

necessary conditions, using control and state parametrisation. The Direct Methods

can give us a very robust and general approach and some special treatment is needed

for “special cases”. When using direct methods, practical methods for solving OCP

[Bie10, BH75, JTB04] require Newton-based iterations with a finite set of variables and

constraints, which can be achieved by converting the infinite-dimensional problem into

a finite-dimensional approximation. The transcription method has three fundamental

steps:

a) converting a dynamic system into a problem with a finite set of variables;

b) solving the finite dimensional problem using a parameter optimisation method (i.e.a

NLP sub–problem); and

CHAPTER 3. OPTIMISATION SOFTWARE 35

c) assessing accuracy of finite dimensional problem [CdB80, Pin10] and if necessary

repeat transcription and optimisation steps.

3.2 Nonlinear Programming Solvers

We are interested in solving OCP via direct methods. After discretising and

transcribing an OCP into a NLP, we need a numerical/computational solver to achieve

the optimal solution (see Fig. 3.2).

There is list of solvers including open–source, freeware and commercial software,

working under different operating systems, is available. In this section, we discuss

several widely used NLP solvers, highlighting their features. Since they are based on

local search methods, these solvers compute a local optimal solution, when convergence

is achieved.

OPTIMAL
CONTROL
PROBLEM

Discretisation
+

Transcription

NONLINEAR
PROGRAMMING

PROBLEM
NLP SOLVER

OPTIMAL
SOLUTION
FOUND

Figure 3.2: Fluxogram illustrating the use of NLP Solvers

3.2.1 IPOPT – Interior Point OPTimiser

“IPOPT is a software package for large–scale nonlinear optimisation. It is

designed to find (local) solutions of mathematical optimisation problems.” The IPOPT

library can be found in http://www.artelys.com/. [WB06]

IPOPT has been developed by Andreas Wächter and Carl Laird and it can be

used on Linux, Unix, Mac OS X and Microsoft Windows operating systems. IPOPT

is written in C++ and it is released as open source code under the Eclipse Public

License (EPL). IPOPT can be used as a library that can be linked to C++, C or

Fortran code, as well as a solver executable for the AMPL modelling environment.

http://www.artelys.com/index.php?page=knitro&hl=en_EN

CHAPTER 3. OPTIMISATION SOFTWARE 36

The package includes interfaces to CUTEr optimisation testing environment, as well

as the MATLAB and R programming environments.

IPOPT implements an interior-point line-search filter method and this approach

makes IPOPT particularly suitable for large problems with up to millions of variables

and constraints, assuming that the Jacobian matrix of constraint function is sparse,

but also small and dense problems can be solved efficiently.

More informations can be found in the IPOPT http://www.coin-

or.org/Ipopt/documentation/, where a short IPOPT tutorial [Wä14] is available.

Specific instructions to the MATLAB interface can be found at the Matlab interface

page.

3.2.2 KNITRO

“KNITRO is an optimisation software library for finding solutions of both

continuous (smooth) optimisation models (with or without constraints), as well as

discrete optimisation models with integer or binary variables (i.e. mixed integer

programs). KNITRO is primarily designed for finding local optimal solutions of

large-scale, continuous nonlinear problems.” The KNITRO library can be found in

http://www.artelys.com/.

KNITRO is a software package for solving smooth optimisation problems, with

or without constraints [LLC13]. KNITRO has been developed at Ziena Optimisation

and it can be used on Linux, Unix, Mac OS X and Microsoft Windows operating

systems. KNITRO is written in C, C++, Fortran and Java. KNITRO can be used

as a library that can be linked to Fortan, C/C++, Java and Microsoft Excel, as well

as a solver executable for Matlab, AMPL, Mathematica, AIMMS, GAMS and MPL

modelling environments.

Some of KNITRO key benefits are: (a) it solves complex nonlinear problems since

it handles large-scale, complex problems with millions of variables and constraints;

https://projects.coin-or.org/Ipopt/wiki/MatlabInterface
https://projects.coin-or.org/Ipopt/wiki/MatlabInterface
http://www.artelys.com/index.php?page=knitro&hl=en_EN

CHAPTER 3. OPTIMISATION SOFTWARE 37

(b) it offers the leading combination of computational efficiency and robustness; (c) it

computes high accuracy solutions via the Active Set algorithm; (d) it offers the ability

to choose the best algorithm among three options; and (e) it has some flexibility of

use.

The KNITRO key features are: (a) efficient and robust solution on large

scale problems; (b) one active-set and two interior-point/barrier algorithms; (c) two

algorithms for mixed-integer nonlinear optimisation; (d) parallel multi–start feature

for global optimisation; (e) heuristics, cutting planes, branching rules for MINLP;

(f) ability to run multiple algorithms concurrently; (g) fast infeasibility detection; and

(h) automatic computation of approximate first and second derivatives.

Problems classes solved by KNITRO solves problems involving em general NLP

problems, including non-convex; systems of nonlinear equations; linear problems;

quadratic problems, both convex and non-convex; least squares problems/regression,

both linear and nonlinear; mathematical programs with complementary constraints;

and mixed–integer nonlinear problems.

More information can be found in the KNITRO manual [LLC13] available in its

web–page. Specific KNITRO/Matlab interface documentation can be found on the

Matlab Optimisation Toolbox – web–page.

3.2.3 WORHP – WORHP Optimises Really Huge Problems

“WORHP Optimises Real Huge Problems (WORHP) is a software library for

mathematical nonlinear optimisation, suitable for solving problems with thousands

or even millions of variables and constraints.” The WORHP library can be found in

http://www.worhp.de/.

WORHP has been developed under the direction of Christof Büskens with

Matthias Gerdts, and it can be used on Linux, Unix, Mac OS X and Microsoft

Windows operating systems. WORHP is written in Fortran and C. WORHP offers a

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/
http://www.worhp.de/

CHAPTER 3. OPTIMISATION SOFTWARE 38

total of nine interfaces: 3 for Fortran, 3 for C/C++, Matlab, ASTOS and AMPL, for

different programming languages and communication paradigms.

WORHP options involve: (a) different finite difference derivative approxima-

tions, (b) several BFGS and sparse BFGS strategies, (c) extended optimality and

termination criteria, (d) numerical inaccuracy validation, (e) lowpass-filter termination

checks, (f) different feasibility strategies, (g) miscellaneous recovery strategies,

(h) strategies for automatic scaling, (i) workspace management system, (j) automatic

Hessian structure approximation, (k) multiple relaxation variables, (l) warm–start

capability for QPSOL, (m) hot–start capability for WORHP, (n) Lagrange multiplier

initialization, (o) interfaces to following linear algebra solvers (SuperLU, MA57, MA86,

PARDISO, MUMPS, WSMP), (p) modularization using Unified Solver Interface,

(q) advanced, basic and simple interfaces, (r) cross-language and cross-platform

capability, (s) check routine for structural errors in matrices, (t) detailed termination

output routine, (u) process monitoring, and (v) stage history.

Documentation is available on WORHP web–page, namely a tutorial [wor12], an

User Manual [wor13] and applications [NBW11].

3.2.4 Other Commercial Packages

SOCS – Sparse Optimal Control Software

“The Sparse Optimal Control Family, developed by The Boeing Company,

contains two advanced software packages, available separately or together.”

The Sparse Optimal Control Software (SOCS) library can be found in Boeing web–

page.

Sparse Optimal Control Software (SOCS) is general-purpose software for solving

optimal control problems [BH97, Tec]. Applications include trajectory optimisation,

chemical process control and machine tool path definition.

http://www.worhp.de/content/publications
http://www.boeing.com/phantom/socs/
http://www.boeing.com/phantom/socs/

CHAPTER 3. OPTIMISATION SOFTWARE 39

SOCS has been developed at The Boeing Company and it is supported on most

UNIX and Windows operating systems. This software is supported on most major

platforms with at least 14 decimal digits of precision, which on most systems means

double precision. SOCS and all lower-level support routines are written in ANSI-

Standard FORTRAN 77. SOCS can be used as a library that can be linked to Fortran

77.

SNOPT – Sparse Nonlinear OPTimiser

Sparse Nonlinear Optimiser (SNOPT) is a software package for solving large-

scale optimisation problems (linear and nonlinear programs) [GMS08]. It is especially

effective for nonlinear problems whose functions and gradients are expensive to

evaluate. The functions should be smooth but need not be convex. The SNOPT

library can be found in http://www.sbsi-sol-optimize.com/.

SNOPT has been developed by Philip Gill, Walter Murray and Michael Saunders,

and it is intended for any machine with a reasonable amount of memory and a

FORTRAN compiler. SNOPT is implemented in FORTRAN 77 and distributed as

source code. SNOPT may be called from a driver program, typically in Fortran, C or

MATLAB.

3.3 Interfaces

An interface is a software that provides us the means to communicate with the

solver. Using the interface, we are able to prepare all data associated to the problem

we are solving as input to the solver.

Interfaces can be catalogued in two groups: OC interfaces or NLP interfaces. The

first ones handle with the discretisation and transcription procedures, while the other

ones leave this task to the user (see Figure 3.3). In this section, several interfaces

http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm

CHAPTER 3. OPTIMISATION SOFTWARE 40

are presented, encompassing OC interfaces and NLP interfaces, open–source, freeware

and commercial software, working under different operating systems.

OPTIMAL
CONTROL
PROBLEM

Discretisation
+

Transcription

NONLINEAR
PROGRAMMING

PROBLEM
NLP SOLVER

OPTIMAL
SOLUTION
FOUND

OCP INTERFACE

NLP INTERFACE

Figure 3.3: Fluxogram illustrating the use of Interfaces

3.3.1 AMPL – A Modelling Language for Mathematical

Programming

“A Modelling Language for Mathematical Programming (AMPL) is a comprehen-

sive and powerful algebraic modelling language for linear and nonlinear optimisation

problems, in discrete or continuous variables.” The AMPL library can be found in the

official site.

AMPL has been developed by Robert Fourer, David Gay and Brian Kernighan

at Bell Laboratories, and it can be used on Linux, Unix, Mac OS X and Microsoft

Windows. AMPL is written in C++ and it is released as open source code under the

Eclipse Public License (EPL).

AMPL [FGK02] integrates a modelling language for describing optimisation data,

variables, objectives, and constraints, a command language for browsing models and

analysing results, and a scripting language for gathering and manipulating data and

for implementing iterative optimisation schemes.

AMPL provides a general and natural syntax for arithmetic, logical, and

conditional expressions, and familiar conventions for summations and other iterated

http://www.ampl.com

CHAPTER 3. OPTIMISATION SOFTWARE 41

operators. This software enables NLP features such as initial primal and dual values,

user-defined functions, fast automatic differentiation, and automatic elimination of

“defined” variables. AMPL has tools for automatic handling of linear and convex

quadratic problems in continuous and integer variables, and it promotes the use of

sets and set operators.

Further documentation can be found in [FGK02, FGK90].

3.3.2 ACADO – Toolkit for Automatic Control and Dynamic

Optimisation

“Automatic Control And Dynamic Optimisation (ACADO) is a software envi-

ronment and algorithm collection for automatic control and dynamic optimisation.

It provides a general framework for using a great variety of algorithms for direct

optimal control, including model predictive control, state and parameter estimation

and robust optimisation.” The ACADO library can be found in the official site

[HFD11a, HFD11b].

ACADO has been developed under the direction of Moritz Diehl, and it can be

used on Linux, Unix, Mac OS X and Microsoft Windows. ACADO is implemented

as self-contained C++ code and comes along with user–friendly MATLAB interface.

The object–oriented design allows for convenient coupling of existing optimisation

packages and for extending it with user–written optimisation routines. ACADO is

released under the LGP License.

Not only we can solve standard optimal control problems with ACADO, but it

also offers systematic and advanced tools for solving general optimal control problems

with multiple and conflicting objectives. The ACADO Code Generation tool can

automatically generate Gauss-Newton real–time iteration algorithms for fast nonlinear

MPC applications. This software provides also tools to solve state and parameter

estimation problems.

http://sourceforge.net/projects/acado/

CHAPTER 3. OPTIMISATION SOFTWARE 42

On the ACADO documentation web–page is available its User’s Manual

[HFVQ13], the User’s Manual for Matlab [AHF11] and a ACADO Introductory Talk.

3.3.3 BOCOP – The optimal control solver

“The BOCOP project aims to develop an open-source toolbox for solving optimal

control problems.” The BOCOP library can be found in the official site.

BOCOP has been developed V. Grelard, P. Martinon and F. Bonnans at Inria-

Saclay, and it is available for linux precompiled packages (Mac and Windows versions

are still under testing). The core files for BOCOP are written in C++ and released

under the Eclipse Public License. User supplied functions can be written in plain C,

and do not require advanced programming skills.

The BOCOP project aims to develop an open-source toolbox for solving optimal

control problems, with collaborations involving industrial and academic partners. It

is developed since 2010 in the framework of the Inria–Saclay initiative for an open

source optimal control toolbox.

BOCOP can be used in command line mode, especially for experienced users,

however, it is recommend using the GUI, at least for the first steps. It provide

visualization scripts for Matlab and Scilab.

BOCOP currently uses IPOPT (with MUMPS as linear solver) for solving the

nonlinear programming problem resulting from the direct transcription of the optimal

control problem. BOCOP relies on ADOL-C (with ColPack for the sparsity) to

compute derivatives of the objective and constraints by automatic differentiation.

Further information can be found in BOCOP user’s guide [BGG+14] and run the

examples available on its official web–page.

http://sourceforge.net/p/acado/wiki/Documentation/
http://www.bocop.org/

CHAPTER 3. OPTIMISATION SOFTWARE 43

3.3.4 DIDO – Automatic Control And Dynamic Optimisation

“DIDO, the leading optimal control software, powers users by offering the easiest

and direct solutions to the most complex problems.” The DIDO software can be found

in the official site.

DIDO has been developed at Elissar Global, and it can only be used on Microsoft

Windows. DIDO requires MATLAB and it is released under academic and commercial

licenses.

DIDO foundation is pseudospectral theory and is the only pseudospectral solution

with mathematically proven convergence properties. DIDO is a MATLAB program

for solving hybrid optimal control problems. The general–purpose program is named

after DIDO, the legendary founder and first queen of Carthage who is famous in

mathematics for her remarkable solution to a constrained optimal control problem

even before the invention of calculus.

This generality allows for (a) fairly complex interior point constraints, (b) pre–

defined segments, (c) differentially-flat segments, (d) Transition conditions, (e) mid–

manoeuvre changes in dynamics, (f) multi-dynamical systems, (g) mid–manoeuvre

changes in the cost function, (h) switches, and (i) discrete events.

3.3.5 ICLOCS – Imperial College London Optimal Control

Software

“The code allows users to define and solve optimal control problems with general

path and boundary constraints and free or fixed final time. It is also possible to include

constant design parameters as unknowns.” The Imperial College London Optimal

Control Software (ICLOCS) software can be found in the official site.

ICLOCS has been developed by Paola Falugi, Eric Kerrigan and Eugene van Wyk,

and it can be used on Linux, Unix, Mac OS X and Microsoft Windows. ICLOCS is

http://www.elissarglobal.com/industry/products/software-3/
http://www.ee.ic.ac.uk/ICLOCS/

CHAPTER 3. OPTIMISATION SOFTWARE 44

implemented in MATLAB and it is released as open source code under the BSD

License.

ICLOCS starts by transcribing the OCP to a static optimisation problem by either

direct multiple shooting or direct collocation methods. The direct multiple shooting

formulation requires the solution of initial value problems that can be determined using

the an open–source sensitivity solver. The direct collocation formulations discretise

the system dynamics using implicit Runge–Kutta method and can also be used to

incorporate discrete–time problems. Once the OCP has been transcribed, it can

be solved with a selection of nonlinear constrained optimisation algorithms given by

IPOPT or MATLAB’s fmincon solver. The derivatives of the ODE right-hand side,

cost and constraint functions are also required for the optimisation and they can be

either estimated numerically or supplied analytically.

Further documentation can be found in ICLOCS User’s Guide [FKvW10] and the

user can learn about ICLOCS by testing several default examples.

3.3.6 ROC-HJ – Reachability and Optimal Control Software

The software Reachability and Optimal Control Software (ROC-HJ) implements

a set of numerical methods for solving some HJs equations arising in optimal

control theory. The library also offers some useful tools for analysing the numerical

solutions and it provides the designing the optimal control laws along with the

corresponding optimal trajectories [BDZ13a]. The library can be used for a large

class of deterministic control problems including: reachability analysis, path planning,

collision avoidance, infinite horizon control problems, minimum time problems, Mayer

or Bolza type problem, state-constrained control problems, differential games, and exit

time problems.

ROC-HJ has been developed by Olivier Bokanowski, Anna Désilles, and Hasnaa

Zidani, and it can be used on Linux, Unix, Mac OS X and Microsoft Windows.

CHAPTER 3. OPTIMISATION SOFTWARE 45

ROC-HJ is a C++MPI/OpenMP library for solving d−dimensional Hamilton–Jacobi–

Bellman equations by finite difference methods, or semi–lagrangian methods.

ROC-HJ implements finite difference methods – the discretisation with respect

to the time variable is performed by Euler scheme or Runge-Kutta method (RK2

or RK3), and the discretisation in space is based on upwind finite difference, Lax-

Freidrich method, or ENO2 – and semi–lagrangian methods – the user may choose an

integration scheme for the characteristics such as explicit Euler scheme, RK2, RK3,

adaptive method using a number of intermediary time steps. For the interpolation

method, the code uses only the bilinear scheme.

ROC-HJ has its own editor. Further documentation can be found in [BDZ13b].

3.3.7 TACO – Toolkit for AMPL Control Optimisation

“Toolkit for AMPL Control Optimisation (TACO) is the Toolkit for AMPL

Control Optimisation. It defines some add-ons to the AMPL modeling language that

allow the elegant formulation of ODE/DAE optimal control problems in AMPL.” The

TACO toolkit can be found in the official site.

TACO has been developed by Christian Kirches and Sven Leyffer, and it can be

used on Linux, Unix, Mac OS X and Microsoft Windows. TACO is written in C and

it is freeware.

TACO reads AMPL files and detects the structure of the OCP. This toolkit is

designed to facilitate the coupling of existing optimal control software packages to

AMPL.

Further documentation can be found in [KL13].

http://www.iwr.uni-heidelberg.de/~Christian.Kirches/software.html

CHAPTER 3. OPTIMISATION SOFTWARE 46

3.3.8 Pseudospectral Methods in Optimal Control

PSOPT

PSOPT is an open source optimal control software package written in C++ that

uses direct collocation methods, including pseudospectral and local discretizations,

available in the office site. Pseudospectral methods solve optimal control problems

by approximating the time-dependent variables using global polynomials, such as

Legendre or Chebyshev functions. Local discretisation methods approximate the time

dependent functions using local splines, and can be seen as implementations of implicit

Runge-Kutta integrators. With both global and local methods, differential equations,

continuous constraints and integrals associated with the problem are discretised over

a grid of nodes. Sparse nonlinear programming is then used to find local optimal

solutions.

PSOPT is able to deal with problems with the distinct characteristics: (a) single

or multiphase problems; (b) continuous time nonlinear dynamics; (c) nonlinear path

constraints; (d) general event constraints; (e) integral constraints; (f) interior point

constraints; (g) bounds on controls and state variables; (h) general cost function with

Lagrange and Mayer terms; (i) linear or nonlinear linkages between phases; (j) fixed

or free initial phase time; (k) fixed or free final phase time; (l) optimisation of static

parameters; and (m) optimal parameter estimation given sampled observations.

Among other features, the implementation allows: (a) choice between Legen-

dre, Chebyshev, central differences, trapezoidal or Hermite-Simpson discretisation;

(b) large scale nonlinear programming using IPOPT and (optionally) SNOPT;

(c) estimation of the discretisation error; (d) automatic scaling; (e) automatic

differentiation using the ADOL-C library; (f) numerical differentiation by using sparse

finite differences; (g) automatic identification of the sparsity of the derivative matrices;

(h) DAE formulation, so that differential and algebraic constraints can be implemented

in the same C++ function; (i) easy to use interface to GNUplot to produce graphical

http://www.psopt.org

CHAPTER 3. OPTIMISATION SOFTWARE 47

output, including 2D plots, 3D curves and surfaces, and polar plots; and (j) automatic

generation of LaTeX code to produce a table that summarizes the mesh refinement

process.

Full details on PSOPT and its features can be found in its documentation [Bec11].

GPOPS-II - Gauss Pseudospectral OPtimal Control Software

Gauss Pseudospectral Optimal Control Software (GPOPS-II) is a general purpose

optimal control software available in the office site. GPOPS-II is a new open-

source MATLAB optimal control software that implements a brand new hp-adaptive

Legendre-Gauss-Radau quadrature integral pseudospectral method for solving general

nonlinear optimal control problems. Using GPOPS-II, the optimal control problem

is transcribed to a nonlinear programming problem (NLP). The NLP is then solved

using either the solver SNOPT or the solver IPOPT.

Among other features, GPOPS-II (a) allows for an extremely general formulation

of the optimal control problem, (b) allows for inclusion of integral constraints and

highly general boundary conditions, (c) complete first and second sparse finite-

differencing of optimal control problem to compute all derivatives required by the NLP

solver., (d) provides Gaussian quadrature integration methods for rapid convergence,

(e) enables the inclusion of the NLP solver SNOPT (for Academic Users) and IPOPT

(for Not-for-Profit and Commercial Users), and (f) has no third-party products other

than MATLAB are required.

More information about the methodology used in GPOPS-II can be found in

[PR13, PR14].

http://code.google.com/p/psopt/downloads/detail?name=PSOPT_Manual_R3.pdf&can=2&q=
http://www.gpops.org

CHAPTER 3. OPTIMISATION SOFTWARE 48

3.4 Solvers Benchmark

3.4.1 Differential Drive Robot

To test the solvers of section 3.2 – IPOPT, KNITRO and WORHP – we consider

a minimum time problem involving a differential drive robot system. The geometry

of such vehicle is presented in Fig. 3.4 where (x,y) is the position of mid–point of the

axle connecting the both wheels and ψ is the heading angle.

x

y ψ

Figure 3.4: Differential drive robot geometry

The movement of a differential drive robot is based on two separately driven

wheels placed on either side of the robot body. There is no need for an additional

steering motion since it can change its direction just by varying the relative rate of

rotation of its wheels.

Aiming minimum time, the differential drive robot (PDD) can be stated as:

Minimise tf (3.1)

subject to

(i) dynamic constraints

ẋ(t) = (u1(t) +u2(t))cos(ψ(t)) a.e. t ∈
[
t0, tf

]

CHAPTER 3. OPTIMISATION SOFTWARE 49

ẏ(t) = (u1(t) +u2(t))sin(ψ(t)) a.e. t ∈
[
t0, tf

]
(3.2)

ψ̇(t) = u1(t)−u2(t) a.e. t ∈
[
t0, tf

]
,

where x(t) = (x(t),y(t),ψ(t)) is the state and u(t) = (u1(t),u2(t)) is the control

– u1(t) and u2(t) are the speed of each wheel in
[
ms−1

]
,

(ii) input constraints

0≤ u1(t)≤ 1 a.e. t ∈
[
t0, tf

]
0≤ u2(t)≤ 1 a.e. t ∈

[
t0, tf

]
,

where u1(t) and u2(t) are the speed of each wheel in
[
ms−1

]
.

(iii) end–point constraints

x(0) = x0 = (x0, y0, ψ0) = (0,0,0) (3.3)

x(tf) ∈ X1 =
{

(x,y,ψ) :
(
x−xf

)2
+
(
y−yf

)2
+
(
ψ−ψf

)2
≤ r2

}
, (3.4)

where r2 = 0.1 and xf = (xf , yf , ψf) = (10,0,0) is a user–defined target point,

and

(iv) pathwise state constraint

h(x(t)) = (ȳ−y(t))−k (x̄−x(t))2 ≤ 0 , ∀t ∈
[
t0, tf

]
, (3.5)

where (x̄, ȳ) = (5,1) and k = 10.

The goal is to drive this differential drive robot from x0 to some point near xf
according to the terminal condition (3.4) without violating the state constraint (3.5).

3.4.2 Numerical Results

The differential drive robot problem (PDD) was written in the AMPL interface

and it was solved using IPOPT, KNITRO and WORHP solvers with the same set of

CHAPTER 3. OPTIMISATION SOFTWARE 50

options, namely with the same acceptable tolerance. We computed the solutions in a

computer with a Intel™ Core© i7-4770K CPU @3.50GHz.

In Fig. 3.5, the xy trajectory obtained using IPOPT is shown. The optimal

trajectories for state variables and controls associated to (PDD) are shown in Fig. 3.6.

Figure 3.5: xy trajectory for (PDD)

As it can be seen in Fig. 3.5, the differential drive robot successfully goes round

the obstacle and it stops inside the circle defined by (3.4).

The numerical results concerning all solvers are shown in Table 3.1, which shows

information about the number of nodes, the initial guess for the objective function,

the number of iterations needed to solve the NLP problem, the objective functional,

and the CPU times spent for the solver computations and NLP evaluations.

Table 3.1: Comparing results for (PDD) without an initial guess

Solver Nj

Initial
Ij Objective

CPU time (s)

guess Solver NLP eval

IPOPT 1000 0 2899 9.4986378544 64.106 13.585

KNITRO 1000 0 710 9.4986463551 16.970 2.534

WORHP 1000 0 (288) local infeasibility (14.566) (4.864)

Considering an equidistant–spacing mesh with 1000 node points, IPOPT and

CHAPTER 3. OPTIMISATION SOFTWARE 51

(a) Optimal Trajectories (b) Control

Figure 3.6: Optimal solution for (PDD)

KNITRO converge to a local optimal solution. WORHP was inefficient, not converging

to a valid solution. According to Table 3.1, IPOPT and KNITRO solvers establish the

minimum time around 9.4986s. When solving (PDD), KNITRO is the fastest solver

to compute a solution, taking 25% of the CPU time spent by IPOPT.

By default, when using AMPL, the value of the objective function is zero–

initialised. However, we can improve the performance of the solvers by setting-up an

initial guess. In problem (PDP) we can compute an estimate for the travelling distance.

With that information and considering the maximum speed for the differential drive

robot, we can underestimate the minimum time need for the robot to arrive to the

target area.

5

1

0 10

√
26

√
26

Figure 3.7: Estimate for the travelling distance (PDD)

CHAPTER 3. OPTIMISATION SOFTWARE 52

According to Fig. 3.7, the estimate for the travelling distance is 2
√

26≈ 10.198m

and, since the maximum speed in 1ms−1, we get an estimate of 10.198s for the

minimum time.

Initialising the value of the objective function to 10.198s and considering the

same mesh, we solve, once more, the problem (PDD). According to Table 3.2, all three

solvers establish the minimum time around 9.49863s. This value is lower than the

initial guess 10.198s because the differential drive robot immediately stops when it

enters in the target area, defined by (3.4), before it reaches x(tf).

Table 3.2: Comparing results for (PDD) with an initial guess

Solver Nj

Initial
Ij Objective

CPU time (s)

guess Solver NLP eval

IPOPT 1000 10.198 1986 9.4986378544 31.825 7.890

KNITRO 1000 10.198 515 9.4986351465 13.483 1.889

WORHP 1000 10.198 60 9.4986352207 9.260 0.197

We notice that IPOPT provides the same result and compute it twice faster than

the previous one. KNITRO computes a lower solution than the one given without

setting-up the initial guess and it takes about 80% of the CPU time. With this initial

guess, WORHP is able to provide a solution and it do it in just 9.457 seconds, being

the fastest solver tested. When solving (PDD), WORHP is 4.2× faster than IPOPT

and it is 1.6× faster than KNITRO.

3.5 Final Remarks

With respect to interfaces, there are a lot of options we can chose from, involving

open–source, freeware and commercial software, working under different operating

systems. The choice of an interface should be made taking into account the number

of solvers it can connect and the level of programming expertise of the user.

CHAPTER 3. OPTIMISATION SOFTWARE 53

Among open–source, freeware and commercial software, there are also a big list

of OC and NLP solvers useful for solving optimal control problems.

The minimum time problem (PDD) involving a differential drive robot system was

successfully solved using IPOPT and KNITRO, and also by WORHP when an initial

guess was provided. The selection of an initial guess proved to vital to improve the

performances of all solvers. The three solvers computed similar results but, still, they

can compared in terms of CPU time spent. In that matter, WORHP was the fastest

one.

Chapter 4

Time–Mesh Refinement for

Optimal Control

“The whole of science is nothing more than

a refinement of everyday thinking.”

Albert Einstein

In this chapter we propose a time–mesh refinement algorithm that is based on

block-structured adaptive refinement method. These results were submitted to the

Discrete and Continuous Dynamical Systems journal, a publication of the American

Institute of Mathematical Sciences [PF14b]. The strategy proposed was reported in

[PF13], [PF14a], and its last improved version in [PF14b]. It is based on block-

structured adaptive refinement method which became popular within fluid mechanics

since multi–grid algorithms can be used for time and space domains.

4.1 Introduction

In a direct collocation method, the control and the state are discretised in a

set of appropriately chosen mesh, in the time interval. Then, the continuous–time

54

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 55

Optimal Control Problem (OCP) is transcribed into a finite–dimensional Nonlinear

Programming (NLP) which can be solved using widely available software packages

[Pai13]. Most frequently, in the discretisation procedure, regular time meshes having

equidistant spacing are used. However, in some cases, these meshes are not the most

adequate to deal with nonlinear behaviours. One way to improve the accuracy of the

results, while maintaining reasonable computational time and memory requirement,

is to construct a mesh having different time steps. The best location for the smaller

steps sizes is, in general, not known a priori, so the mesh will be refined iteratively.

In a mesh–refinement procedure the problem is solved, typically, in an initial

coarse uniform mesh in order to capture the basic structure of the solution and of

error. Then, this initial mesh is repeatedly refined according to a chosen strategy

until some stopping criteria is attained.

Several mesh refinement methods employing direct collocation methods have been

described in the recent years. In [Bet01] and [BH98] a mesh refinement procedure is

developed for changing the discretisation in order to improve the accuracy of the

approximation involving an integer programming technique. In [BBCH00] its shown

that there can be order reduction for Implicit Runge–Kutta methods that can be

utilized in direct transcription trajectory optimisation by modifying a currently used

mesh refinement strategy. In [ZT11] a density function is used to generate a fixed-

order mesh on which the problem is solved. In [PHR14] an approach based on

varying the order of the approximation in each mesh interval and using the exponential

convergence rate of a Gaussian quadrature collocation method is reported. In [PF13],

a adaptive mesh refinement strategy based on block–structured refinement method

for solving continuous–time nonlinear OCP is presented. It is a purely direct method

approach and the convergence is achieved by increasing the number of nodes and by

selecting their placement according the refinement criterion. In this algorithm, just

one refinement criterion can be defined and it coincides with the stopping criterion.

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 56

4.2 Adaptive Mesh Refinement Algorithm

In this approach, we are concerned in solving the problem, in a first step, on

a coarse mesh and, according to a decision based on some refinement criteria, the

mesh is refined locally or entirely, using different levels of refinement. The discretised

problem is then solved on the new refined mesh using information from the coarser

mesh solution of the previous step. According to this strategy, we do not need to

remove nodes.

4.2.1 Adaptive Mesh Refinement

The adaptive mesh refinement process starts by discretising the time interval[
t0, tf

]
in a coarse mesh, π0, containing N0 equidistant nodes. After being transcribed

into a NLP problem, the OCP is solved in this coarse mesh to catch the main structure

of the problem. Then, the mesh is progressively refined. According to some refinement

criteria, the mesh is divided in K mesh intervals

Sk = [τk−1, τk[, k = 1, . . . ,K−1 and SK = [τK−1, τK]

where (τ0, . . . , τK) coincide with nodes. These mesh intervals Sk form a partition of

the time interval, that is,

K⋃
k=1
Sk =

[
t0, tf

]
and

K⋂
k=1
Sk = ∅ ,

while the mesh nodes have the property that

τ0 < τ1 < τ2 < .. . < τK .

According to the algorithm reported in [PF13], the subintervals Sk that verify

the refinement criteria were refined by adding a fixed number N of equidistant nodes

between each two mesh points in such way that the refined mesh πj+1 will contain the

nodes of the prior one πj . This property is an important feature in block–structured

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 57

schemes. The procedure was repeated until the stopping criterion was achieved. We

also considered a more conservative approach by refining the neighbours of Sk, i.e.,

Sk−1 and Sk+1. The resulting mesh using this strategy is denoted further ahead by

πR.

Now, we present an improved version of this algorithm by introducing different

levels of refinement in a single iteration. After selecting the intervals Sk that verify

the refinement criteria, they are divided into smaller subintervals according to the

user–defined levels of refinement

ε̄= [ε1, ε2, . . . , εm] .

For example, the higher levels can be defined as multiple powers of 10 of the first level

ε̄=
[
1, 10, 102, . . . , 10m

]
ε1.

A subinterval Sk,i is at the ith level of refinement if

Sk,i = {t ∈ Sk : ε(t) ∈ [εi, εi+1[} (4.1)

for i= 1, . . . ,m, and it will be refined by adding N i of equidistant nodes between each

two mesh points. This procedure adds more node points to the subintervals in higher

levels of refinement, corresponding to higher errors, and it adds less node points to

those in lower refinement levels.

By defining several levels of refinement, we get a multi–level time–mesh in a single

iteration as shown in Fig. 4.1. The resulting mesh using this strategy is denoted further

ahead by πML.

4.2.2 Refinement and Stopping Criteria

In order to proceed with the mesh refinement strategy, we have to define some

refinement criteria and a stopping criterion. We consider three refinement criteria:

1. the estimate of the relative error of the trajectory (primal variables) (εx)

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 58

t0 tftime

lo
g
(ε
(t
))

level 1

level k

Figure 4.1: Illustration of the time–mesh refinement strategy

2. the estimate of the relative error of the adjoint multipliers (dual variables) (εq)

3. a combination of both criteria

and we consider a threshold for the relative error of the trajectory as the stopping

criterion.

For the first refinement criterion, the relative error estimate is, at each time, the

difference between the obtained state trajectory and an higher order approximation

of the solution of the dynamic differential equation. In this case, the solution is given

by piecewise cubic polynomials using Hermite interpolation and, then, it is integrated

using the Romberg quadrature. At each refinement iteration, the local error (εx) is

computed and this information is taken into account when deciding if the refinement

procedure should continue.

In the second case, we consider the multipliers qMP which are solution of

the differential equation system (AS), (T) and (2.58) given by the Maximum

Principle 2.2.4, and we also consider the multipliers qKKT obtained by applying

the Kuhn–Tucker conditions to nonlinear optimisation problem which results from

the transcription of the optimal control. The relative error estimate is, at each

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 59

time, the difference between the multipliers qKKT computed by the numerical solver

and qMP computed by integrating numerically the adjoint equation given by the

Maximum Principle. This criterion is chosen because these multipliers give sensitivity

information. Furthermore, qMP are solution to a linear differential equation system,

which can be easily solved in a faster way and with higher accuracy. At each refinement

step, the local error of the multipliers (εq) is evaluated

εq = ||qMP−qKKT||

and the procedure selects which time intervals should be further refined.

In the last case, we use both refinement criteria simultaneously and the procedure

will continue until the stopping criterion is satisfied.

As stopping criterion, we consider the L∞ norm of the relative error of the primal

variables (εx). Even when using the relative error of the adjoint multipliers (εq) as

refinement criteria, we still need to estimate the error on the trajectory since it is the

stopping criterion. However, we do not need to compute εx (t) for all t – as in the case

of the refinement criteria – but just an estimate of
∣∣∣∣∣∣∣∣ε(j)

x

∣∣∣∣∣∣∣∣
∞

which is much faster to

obtain.

4.2.3 Warm Start

Since the proposed procedure increases the number of nodes, more computational

time would be expected. To decrease the CPU time, when going from a coarse mesh

to a refined one progressively, the previous solution is used as a warm start for the

next iteration. To create this warm start, the solution obtained in the coarse mesh

is projected in the refined one using the cubic Hermite interpolation. This action

proved to be vital in the decreasing of the overall computational time. In particular,

we notice that the number of iterations of the NLP solver remains within the same

order of magnitude when we considerably increase the number of nodes.

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 60

4.2.4 Algorithm Implementation

The overall procedure is described in Algorithm 1. To test the algorithm, the

proposed procedure was implement in MATLAB R2008a combined with the Imperial

College London Optimal Control Software (ICLOCS) – version 0.1b [FKvW10].

ICLOCS is an optimal control interface and it uses the Interior–Point Optimiser

(IPOPT) solver, which is an open-source software package for large-scale nonlinear

optimisation [WB06]. The problems are solved in a computer with a Intel™ Core© 2

CPU 6600@2.40GHz.

Data: Cost functions, dynamics, constraints, initial/terminal boundaries,

parameters, refinement and stopping criteria
(
εmax

x and εmax
q

)
Result: candidates to optimal solution, controls

initialization;

select a time–mesh;

discretize and transcribe the OCP;

solve the NLP;

estimate the discretisation error – ε(0)
x ;

estimate the error on the multipliers – ε(0)
q ;

while stopping criteria not met do

select the mesh subintervals Sj,i to be refined ;

apply the discretisation scheme according to the multi–level refinement criteria;

transcribe the OCP ;

create warm start;

solve the NLP;

estimate the discretisation error – ε(j)
x ;

estimate the error on the multipliers – ε(j)
q ;

end
Algorithm 1: Adaptive time–mesh refinement algorithm considering both refinement

criteria

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 61

initialization
time-mesh
generation

descritisation
and

transcription

was the
mesh

refined?

create warm start
from previous solution

solve
NLP problem

converged
to a

solution?

STOP

error
estimation

select time-mesh
subintervals that
need to be refined

error
threshold
achived?

OPTIMAL
SOLUTION

FOUND

yes

no yes

no

yes

no

Figure 4.2: Adaptive time–mesh refinement diagram

4.3 Application

To test and to validate the proposed algorithm, a problem involving nonholonomic

systems [KM95, PF13] and another one regarding the SEIR model [BPd14, KPP14,

NL10] are solved considering, in both cases, a pathwise state constraint.

Both problems, (PCL) and (PS), are solved considering four meshes:

a) πML obtained by the multi–level time–mesh refinement strategy considering N = 4;

b) πR obtained by the (single–level) time–mesh refinement strategy consideringN = 4;

c) πF considering equidistant–spacing with the lowest time step of πML;

d) πS considering equidistant–spacing with the same number of nodes of πML.

4.3.1 Car–like System

A car–like system that moves in a plane generally has three degrees of freedom:

translation along the two axes in the plane and rotation about the axis perpendicular

to the plane. Nevertheless, these vehicles cannot move freely in all three degrees of

motion due to their steering constraints. These kind of models are highly nonlinear

and, for that reason, it is expected that a refined mesh having non equidistant spacing

is more suitable. Such problems belong to the class of nonholonomic systems [KM95].

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 62

A system is nonholonomic if the velocity set f (x,U) does not contain a neighbourhood

of the origin.

x

y

Figure 4.3: Nonholonomic system characterisation: Speed profile

In Fig. 4.4, the geometry of a car–like system is given. For a given time t,

(x(t),y(t)) is the position of mid–point of the axle connecting the rear wheels, ψ(t) is

the yaw angle, δ(t) is the steering angle and l is the wheelbase of the vehicle, i.e., the

distance between its front and rear wheels. We consider also the curvature c(t) which

relates to the steering angle δ and the minimum turning radius by

c(t) = tan(δ(t))
l

and Rmin = 1
|cmax|

.

x

y

l

ψ

δ

Figure 4.4: Car–like system geometry

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 63

4.3.1.1 Problem Statement

Let us consider t∈ [0,10], in seconds, x(t) = (x(t),y(t),ψ(t)) and u(t) = (u(t), c(t)).

Aiming minimum energy, the car–like system problem (PCL) can be stated as:

Minimize
10∫
0
u2(t)dt (4.2)

subject to

• the dynamic constraints

ẋ(t) = u(t)cos(ψ(t)) a.e. t ∈ [0,10]

ẏ(t) = u(t)sin(ψ(t)) a.e. t ∈ [0,10] (4.3)

ψ̇(t) = u(t)c(t) a.e. t ∈ [0,10] ,

where u(t) is the speed and c(t) is the curvature,

• the input constraints

0≤ u(t)≤ 1 a.e. t ∈ [0,10]

−0.7≤ c(t)≤ 0.7 a.e. t ∈ [0,10] ,

• the end–point constraints

x(0) = x0 = (x0, y0, ψ0) = (0,0,0) (4.4)

x(10) ∈ X1 =
{

(x,y,ψ) :
(
x−xf

)2
+
(
y−yf

)2
+
(
ψ−ψf

)2
≤ r2

}
, (4.5)

where r2 = 0.1 and xf = (xf , yf , ψf) = (10,0,0) is a user–defined target point,

and

• the pathwise state constraint

g (x(t)) = (ȳ−y(t))−k (x̄−x(t))2 ≤ 0 , ∀t ∈ [0,10] , (4.6)

where (x̄, ȳ) = (5,1) and k = 10.

The goal is to drive this car–like system with minimum energy from x0 to some

point near xf according to the terminal condition (4.5) while overcoming the state

constraint (4.6).

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 64

4.3.1.2 Numerical Results

For this problem (PCL), we consider

εmax
x = 5×10−5

εmax
q = 5×10−4

ε̄x =
[
1,10,102,103,104,105

]
εmax

x

ε̄q =
[
1,10,102,103,104

]
εmax

q

where εmax
x is used in the stopping criterion and the vectors ε̄x and ε̄q are used in the

refinement criteria.

As it can be seen in Fig. 4.5, the car–like system successfully overcomes the

obstacle and it stops when the terminal condition (4.5) is satisfied.

Figure 4.5: Optimal trajectory for (PCL)

According to Fig. 4.6b, where the controls associated to (PCL) are shown, the

constraint for the curvature c(·) becomes active at the start, in the middle and at the

end of the trajectory.

The local errors of the trajectory for all meshes are shown in Fig. 4.7a using a

logarithmic scale. The subintervals that need refinement are at the start, in the middle

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 65

(a) Optimal solution

(b) Optimal control

(c) Adjoint multipliers

Figure 4.6: Numerical results of (PCL) using πML

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 66

(a) Error on the trajectory
(
ε

(j)
x
)

(b) Error on the q multipliers
(
ε

(j)
q
)

Figure 4.7: Local error for (PCL) using all meshes

and at the end of the time interval, since the local errors are greater than the user–

specified threshold, coinciding with the subintervals where the curvature is nonzero

and the constraint for the curvature becomes active. We also notice that there are

different subintervals belonging to different levels of refinement which indicates that

the procedure to generate πML is quite distinct from the one used to generate πR.

The adjoint multipliers are presented in Fig. 4.6c and the local error associated

to them is shown in Fig. 4.7b. Comparing Fig. 4.7a with Fig. 4.7b, we see that the

errors in the trajectory and in the adjoint multiplier have a similar structure along

time, further validating the use of the adjoint multiplier in the refinement criteria.

The numerical results concerning the four meshes are shown in Table 4.1, which

shows information about the number of nodes, the smallest time step, the number of

iterations needed to solve the NLP problem, the objective functional, the maximum

absolute local errors of the trajectory and the q multipliers, and the CPU times for

solving the OCP problem and for computing the local error as well.

According to Table 4.1, the mesh πML has only 32.4% of the nodes of πF,

nevertheless both meshes have maximum absolute local errors of the same order of

magnitude. Since the procedure to obtain πML uses a warm start at each refinement

iteration, the OCP can be solved three consecutive times and it is still much faster than

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 67

Table 4.1: Comparing results for the Car–like system problem (PCL)

πj Nj ∆tj Ij Objective
∣∣∣∣∣∣ε(j)

x
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ε(j)
q
∣∣∣∣∣∣
∞

CPU time (s)

Solver εx εq

π0 101 1/100 25 9.7700173 1.029e−2 2.443e−2 1.859 0.638 0.004

π1 869 1/25600 34 9.7805247 4.096e−4 1.444e−3 8.895 6.345 0.007

π2 8285 1/25600 50 9.7805398 4.714e−5 1.684e−4 186.870 102.973 0.018

πML 8285 1/25600 109 9.7805398 4.714e−5 1.684e−4 197.624 109.956 0.029

π0 101 1/100 25 9.7700173 1.029e−2 2.443e−2 1.859 0.638 0.004

π1 182 1/400 21 9.7798518 2.572e−3 8.180e−3 2.806 1.626 0.004

π2 577 1/1600 31 9.7804932 6.407e−4 3.061e−3 7.938 5.494 0.007

π3 2193 1/6400 38 9.7805272 1.598e−4 7.837e−4 35.156 23.129 0.013

π4 8707 1/25600 31 9.7805392 3.996e−5 1.971e−4 162.731 118.277 0.021

πR 8707 1/25600 153 9.7805392 3.996e−5 1.971e−4 210.490 149.164 0.049

πF 25601 1/25600 406 9.7805377 3.996e−5 – 4840.185 773.192 –

πS 8285 1/8284 80 9.7805577 1.236e−4 – 333.428 113.912 –

to solve this problem with the mesh πF. In fact, computing the solution using πML

takes only 4% of the time needed to get a solution using πF, causing significant savings

in memory and computational cost. The use of multi–level refinement algorithm in

real time optimisation problems, such as MPC, has benefits since it is possible to

obtain a solution very quickly even if the procedure is interrupted in an early stage.

According to Table 4.1, if the procedure is interrupted after 12 seconds, a solution

with local error lower than 4.096×10−4 is obtained.

The mesh πS has the same number of nodes of πML but considering equidistant

spacing. The analysis of the solution obtained using this mesh allows us to verify

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 68

the importance of nodes collocation, i.e., having a mesh with non–equidistant spacing

nodes produces a solution with higher accuracy than the one obtain using a mesh with

equidistant spacing nodes. Moreover, the CPU time spent to compute solution using

πML is 31,3% lower than the one spent to obtain a solution using πS, emphasizing the

relevance of using meshes with non–equidistant spacing nodes.

When comparing both refined meshes, we notice that the process to compute the

mesh πML having several refinement levels in a single iteration took only 2 refinement

iterations, producing a mesh that has 95% of the nodes of πR. The solution is obtained

6% faster when compared to the CPU time spent to compute the solution using πR.

We could expect to be even faster but, as shown in the Table 4.1, the second refinement

iteration takes 50 IPOPT iterations to converge to the optimal solution. This event

occurs because the solution of the previous refinement iteration, which is used to

create a warm start, has only about 10% of the nodes, having less information about

the structure of the solution.

In terms of CPU time, we can see that it is much faster to compute εq than εx. In

the all procedures, the use of εq in the refinement criterion reduces the computational

time, making the refinement algorithm faster.

With respect to IPOPT and according to Table 4.1, even if the number of nodes

is increasing fast at each refinement step, the number of IPOPT iterations are of the

same order of magnitude. This is another advantage of the mesh refinement strategy.

4.3.1.3 Characterisation of the Solution using the Necessary Conditions

of Optimality

In this section we establish necessary conditions of optimality for the car–like

system problem (PCL) considering the pathwise state constraint (4.6). Then, we

verify that the solution obtained numerically satisfies the necessary conditions. Similar

analysis to the second problem (PS) involving the SEIR model is reported in [BPd14].

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 69

Considering the problem (PCL), let us recall

L(t,x,u) = u2 ,

G
(
x(tf)

)
= 0 ,

f(t,x,u) = [ucos(ψ), usin(ψ), uc] ,

g (x) = (1−y)−10(5−x)2 ,

U = [0,1]× [−0.7,0.7] ,

x(t0) = (0,0,0) ,

X1 =
{

(x,y,ψ) :
(
x−xf

)2
+
(
y−yf

)2
+
(
ψ−ψf

)2
≤ r2

}
.

The assumptions (H1)–(H6) presented in section 2.2 are satisfied.

A nontrivial choice of multipliers can be made if there exists a continuous feedback

u = η(t,ξ) such that

ht(t,ξ) +hx(t,ξ) · f(t,ξ,η(t,ξ))<−δ′ (4.7)

for some positive δ′, wherever (t,ξ) is close to the graph of x∗(·) and ξ is near the

state constraint boundary [RV99]. Moreover, in this case the Maximum Principle can

be written with λ= 1.

Let us recall that x(t) = (x(t), y(t), ψ(t)), u(t) = (u(t), c(t)) and

h(t,x(t)) = (ȳ−y(t))−k (x̄−x(t))2 .

Considering the pathwise state constraint (4.6), from (4.7) we may write

hx(t,ξ) · f(t,ξ,η(t,ξ)) =−2k (x̄− ξ1)η1(t,ξ) cos(ξ3)−η1(t,ξ) sin(ξ3)<−δ′ (4.8)

where ξ = (ξ1, ξ2, ξ3) and η = (η1,η2). For a ξ in a neighbourhood of x∗(·) we can

choose η sufficiently large satisfying the equation (4.8). Thus, when the trajectory is

in a neighbourhood of the boundary, there exists a control that drives the car–like

system away from the state constraint boundary.

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 70

Proposition 1. Consider problem (PCL). A local minimizer (x∗,u∗) satisfies

1. (p,µ,λ) 6= (0,0,0),

2.


p1(t) = p1(t0) ∈ R , t ∈

[
t0, tf

]
p2(t) = p2(t0) ∈ R , t ∈

[
t0, tf

] ,
3. −q(tf) ∈NX1

(
x∗f ,y

∗
f ,ψ

∗
f

)
= α

(
2
(
x∗f −xf

)
,2
(
y∗f −yf

)
,2
(
ψ∗f −ψf

))
where α > 0 and (x∗f ,y∗f ,ψ∗f) =

(
x∗(tf),y∗(tf),ψ∗(tf)

)
,

4. H(t,x∗,q,u∗) = max
u,c∈U

q1ucos(ψ∗) + q2usin(ψ∗) + q3uc−u2 ,

5. supp{µ} ⊂ I (x∗) =
{
t ∈

[
t0, tf

]
: (ȳ−y(t))−k (x̄−x(t))2 = 0

}
.

Proof. The nontriviality condition (NT) is ensured with λ= 1.

Considering p(t) = (p1(t), p2(t), p3(t)) and q(t) = (q1(t), q2(t), q3(t)), we define

the Hamiltonian as

H(t,x,q,u) = q1ucos(ψ) + q2usin(ψ) + q3uc−u2 . (4.9)

From the adjoint system

−ṗ1(t) = Hx(t,x∗,q,u∗) = 0 a.e. t ∈
[
t0, tf

]
−ṗ2(t) = Hy(t,x∗,q,u∗) = 0 a.e. t ∈

[
t0, tf

]
(4.10)

−ṗ3(t) = Hψ(t,x∗,q,u∗) =−q1u
∗ sin(ψ∗) + q2u

∗ cos(ψ∗) a.e. t ∈
[
t0, tf

]
.

Since p(·) is an absolutely continuous function, we get

p1(t) = p1(t0) ∈ R , t ∈
[
t0, tf

]
p2(t) = p2(t0) ∈ R , t ∈

[
t0, tf

]
concluding that q1(·) and q2(·) may change their value just when t ∈ {t ∈

[
t0, tf

]
:

h(x∗(t)) = 0}. In fact, according to Fig. 4.6c, q1(t) is a constant function and q2(t)

changes its value just in one time instant when the trajectory hits the state constraint.

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 71

Considering G(·) = 0, the end–point constraints (4.4) and (4.5), the transversality

condition (T) reads

−q(tf) ∈NX1

(
x∗f ,y

∗
f ,ψ

∗
f

)
= α

(
2
(
x∗f −xf

)
,2
(
y∗f −yf

)
,2
(
ψ∗f −ψf

))
where α > 0 and (x∗f ,y∗f ,ψ∗f) =

(
x∗(tf),y∗(tf),ψ∗(tf)

)
, and according to the Weier-

strass condition (WC)

H(t,x∗,q,u∗) = max
u,c∈U

q1ucos(ψ∗) + q2usin(ψ∗) + q3uc−u2 . (4.11)

Recalling the pathwise state constraint (4.6), from (CS) we obtain

supp{µ} ⊂ I (x∗) =
{
t ∈

[
t0, tf

]
: (ȳ−y(t))−k (x̄−x(t))2 = 0

}
(4.12)

for some (x̄, ȳ) ∈ R2 and k ∈ R. Moreover,

∇g (x∗(t)) = (2k(x̄−x∗(t)),−1,0) (4.13)

and

q1(t) = p1(t) + 2k
∫

[t0,t)

(x̄−x∗(t))dµ(s) (4.14)

q2(t) = p2(t)−
∫

[t0,t)

dµ(s) (4.15)

q3(t) = p3(t) , (4.16)

implying q3(·) is an absolutely continuous function.

Applying the Maximum Principle we obtain a set of conditions characterising the

optimal solution which are in agreement with the numerical results (cf.Fig. 4.6c)

Proposition 2. Let (x∗,u∗) be a local minimizer to the problem (PCL). Applying the

Maximum Principle 2.2.4, we conclude that

1. if u∗, c∗ ∈ int U then 
u∗ = q1

2 cos(ψ∗) + q2
2 sin(ψ∗)

q3 = 0
, (4.17)

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 72

2. if c∗ = cmin, then q3 ≤ 0, and

3. if c∗ = cmax, then q3 ≥ 0.

Proof. Let us first consider the case when u ∈ int U. In this case, the Hamiltonian,

stated in proposition 1, is maximized when

Hu(t,x∗,q,u∗) = 0 .

When u∗ ∈ int U we get
Hu(t,x∗,q,u∗) = q1 cos(ψ∗) + q2 sin(ψ∗) + q3c

∗−2u∗ = 0

Hc(t,x∗,q,u∗) = q3u
∗ = 0

implying 
u∗ = q1

2 cos(ψ∗) + q2
2 sin(ψ∗)

q3 = 0
.

When c∗ = cmin, the Weierstrass condition (WC) reads

q3u
∗ (cmin− c)≥ 0 .

Since u∗ ≥ 0 and c ≥ cmin, we conclude q3 ≤ 0 when c∗ = cmin. Furthermore, it

can be shown that q3 ≥ 0 when c∗ = cmax.

Remark 1. We use the numerical results for ψ∗, c∗ and q to evaluate u∗ and we

compare it against the û∗ given by the numerical procedure. According to Fig. 4.8a,

they coincide.

In Fig. 4.8b, we provide the graphics of c∗ and q3 obtained numerically and we

can verify relationships of the proposition 2.

4.3.2 The SEIR Model

The SEIR model is a compartmental model that describes the spreading of

an infectious disease among a population (N) by dividing it into four different

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 73

(a) u∗(t): analytical vs numerical (b) Relationship between c∗(t) and q3(t)

Figure 4.8: Solution characterisation for the problem (PCL)

compartments: susceptible (S), exposed but not yet infectious (E), infectious (I)

and recovered (R) [BPd14, KPP14, NL10]. SEIR models can represent many human

infectious diseases such as measles, pox, flu or dengue. According to [BPd14], we

can add to the dynamical system given in [NL10] an extra variable (W), which

stands for the number of vaccinated people and which is governed by the differential

equation Ẇ (t) = u(t)S(t). Then, the ordinary differential equation governing Ṙ =

gI(t)−dR(t) +u(t)S(t) can be replaced with the one for Ṅ .

4.3.2.1 Problem Statement

We consider t ∈ [0,20], in years, x(t) = (S(t),E(t), I(t),N(t),W (t)) and u(t) =

u(t). This problem (PS) can be stated as:

Minimize
20∫
0

0.1I(t) +u2(t)dt (4.18)

subject to

(i) the dynamic constraints

Ṡ(t) = bN(t)−dS(t)− cS(t)I(t)−u(t)S(t) a.e. t ∈ [0,20]

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 74

Ė(t) = cS(t)I(t)− (e+d)E(t) a.e. t ∈ [0,20]

İ(t) = eE(t)− (g+a+d)I(t) a.e. t ∈ [0,20] (4.19)

Ṅ(t) = (b−d)N(t)−aI(t) a.e. t ∈ [0,20]

Ẇ (t) = u(t)S(t) a.e. t ∈ [0,20] ,

where u(t) represents the percentage of susceptible individuals being vaccinated

per unit of time,

(ii) the input constraints

0≤ u(t)≤ 1 , a.e. t ∈ [0,20] (4.20)

(iii) the end–point constraints

x(t0) = (S0, E0, I0, N0, W0) , (4.21)

(iv) the state constraint h(t,x(t)) = S(t)−1100≤ 0 , ∀t ∈ [0,20].

This problem is nonlinear, thus an adaptive mesh is expected to be more adequate.

4.3.2.2 Numerical Results

For problem (PS), we consider

εmax
x = 5×10−5

εmax
q = 5×10−4

ε̄x =
[
1,5,10,50,102

]
εmax

x

ε̄q =
[
1,5,10,50,102

]
εmax

q

The optimal trajectory is shown in Fig. 4.9a and 4.9b and the control is presented

in Fig. 4.9c. The local errors of the trajectory for all meshes are shown in Fig.

4.9d using the logarithmic scale. Regarding the latter figure, we see that the time

domain needs to be entirely refined in the first step and there are different subintervals

belonging to different levels of refinement.

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 75

Table 4.2: Parameters with their clinically approved values [NL10].

Parameters Definition of Parameters
Clinical

values

b natural birth rate 0.525

d natural death rate 0.5

c incidence coefficient 0.001

e exposed to infectious rate 0.5

g recovery rate 0.1

a disease induced death rate 0.2

S0 initial susceptible population 1000

E0 initial exposed population 100

I0 initial infected population 50

R0 initial recovered population 15

N0 initial population 1165

W0 initial vaccinated Population 0

The numerical results concerning the four meshes are shown in Table 4.3, which,

as before, shows information about the number of nodes, the smallest time step, the

number of iterations needed to solve the NLP problem, the objective functional, the

maximum absolute local error of the trajectory and the CPU times for solving the

OCP problem and for computing the local error as well.

According to Table 4.3, the mesh πML has 85% of the nodes of πF and computing

the solution using πML takes only 30% of the CPU time needed to get a solution using

πF. Nevertheless, we get solution with the same accuracy.

The solution obtained using the mesh πS, which has the same number of nodes of

πML but with equidistant spacing, has less accuracy than the one computed on πML.

Moreover, computing the solution on πS took 3 times the CPU time spent to get the

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 76

Table 4.3: Comparing results for the SEIR problem (PS)

πj Nj ∆tj Ij Objective
∣∣∣∣∣∣ε(j)

x
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ε(j)
q
∣∣∣∣∣∣
∞

CPU time (s)

Solver εx εq

π0 101 1/100 56 25.65774542 1.246e−3 1.246e−2 4.121 0.907 0.007

π1 1589 1/6400 24 25.58223462 1.285e−4 1.285e−4 21.877 14.611 0.012

π2 5498 1/6400 23 25.57879504 4.191e−5 4.491e−5 64.236 76.057 0.018

πML 5498 1/6400 103 25.57879504 4.191e−5 4.491e−5 90.234 91.575 0.037

π0 101 1/100 56 25.65774542 1.246e−3 1.246e−2 4.121 0.907 0.007

π1 401 1/400 18 25.59608912 3.115e−4 4.894e−3 4.672 3.423 0.009

π2 1601 1/1600 21 25.58021428 7.786e−5 1.261e−3 16.850 16.439 0.014

π3 5789 1/6400 25 25.57875577 3.998e−5 3.379e−5 85.464 83.978 0.022

πR 5789 1/6400 120 25.57875577 3.998e−5 3.379e−5 111.117 204.747 0.052

πF 6401 1/6400 70 25.57871473 3.646e−5 – 292.155 99.496 –

πS 5498 1/5497 66 25.5784340705 2.266e−4 – 254.806 87.912 –

solution using πML.

When comparing both refined meshes, we notice that the process to compute the

mesh πML having several refinement levels in a single iteration took only 2 refinement

iterations, producing a mesh that has 95% of the nodes of πR. The use of the

refinement levels brings a significant improvement in the overall computing time, since

the solution is obtained 19% faster when compared to the time spent to compute the

solution using πR.

With respect to CPU time, once again, we see that it is much faster to compute

εq than εx. Also in this application, the use of εq as refinement criterion reduces the

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 77

(a) Optimal trajectory: S(t), W (t), N(t) (b) Optimal trajectory: E(t), I(t)

(c) Vaccination strategy: u(t) (d) Error on the trajectory:
(
ε

(j)
x
)

Figure 4.9: Results for the problem (PS)

computational time, making the refinement algorithm quicker.

In terms of IPOPT and according to Table 4.3, the number of IPOPT iterations

are of the same order of magnitude at each refinement step, even if the number of

nodes is increasing.

Among other results, the characterisation of the solution for this problem (PS),

using the necessary conditions of optimality and considering state constraints as well

as mixed constraints, is reported in [BPd14] and [Bis13].

CHAPTER 4. TIME–MESH REFINEMENT FOR OPTIMAL CONTROL 78

4.4 Final Remarks

We develop an adaptive mesh refinement algorithm providing local mesh reso-

lution refinement only where it is required. In the end, the OCP is solved using

an adapted mesh which has less nodes in the overall procedure, yet with higher

concentration of nodes in time subintervals where the trajectory shows higher nonlinear

behaviour. This procedure showed significant savings in memory and computational

cost when compared to equidistant meshes.

When using this strategy, where the mesh is progressively refined to catch special

features of the problem, there is no need to define a priori the most appropriately mesh,

which is another advantage of this procedure. According to the proposed algorithm,

we do not need to remove nodes, nevertheless this algorithm can be extended to a

version that includes to coarsen the mesh. This feature would be of relevance in the

context of MPC in which sequences of similar optimal control problems are solved.

Due to the fast response of the algorithm, it can be used to solve real–time

optimisation problems, in particular, in model predictive control. The use of adaptive

mesh refinement algorithm in real time optimisation problems, such as MPC, has

additional benefits since it is possible to quickly obtain a solution even if the procedure

is interrupted at an early stage.

The applications presented in this chapter demonstrate the advantage of the

proposed adaptive mesh strategy, which leads to results with greater accuracy and with

lower overall computational time when compared to other commonly used approaches.

Chapter 5

Time–Mesh Refinement for

Model Predictive Control

“Prediction is very difficult,

especially if it’s about the future.”

Niels Bohr

More than 15 years after Model Predictive Control (MPC) appeared in industry,

known to be an effective way to deal with multivariable constrained control problems

[RRTP76], a theoretical basis for this technique has started to emerge [MM90]. MPC

has become a preferred control strategy for a large number of processes and the

main reasons are the ability to handle constraints in an optimal way and the flexible

formulation in the time domain [ABQ+99].

Some questions regarding the feasibility of the on–line optimisation, stability and

performance are largely understood for systems described by linear models. Much

progress has been made on these issues also for nonlinear systems [FP12a, GP11] but

for practical applications many questions remain, making MPC an interesting topic

of research.

In this chapter, we provide the principles underlying MPC, its advantages and

79

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 80

some computational aspects. We introduce the generic MPC algorithm and, by

adapting the algorithm 1 described on Chapter 4, we propose an adaptive time–mesh

refinement algorithm in the MPC context. To our knowledge this is the first time that

the time–mesh is adapted while using the MPC technique to solve an OCP.

5.1 Introduction

Model Predictive Control (MPC), also referred to as moving horizon control or

receding horizon control, is an optimisation based method for the feedback control.

The first term points out the use of model based predictions, while the second one

highlights the moving horizon idea [Fon01, Raw00].

The idea of MPC – linear or nonlinear – is to use a model of the process

in order to predict the system and optimise its future behaviour. Regarding the

Linear MPC, it involves MPC schemes in which linear models are used to predict the

system dynamics, even though the dynamics of the closed–loop system is nonlinear.

Linear MPC approaches have found successful applications, especially in the process

industries, in a very wide range from chemicals to aerospace industries. An overview

of commercially available MPC technology can be found in [QB03].

Nevertheless, researchers and industries have, in general, to deal with nonlinear

systems. Among other reasons, these nonlinear systems arise from [FA03]:

• higher product quality specifications,

• increasing productivity demands,

• tighter environmental regulations,

• demanding economical considerations,

requiring the process industry to operate systems closer to the boundary of the

admissible operating region. In these cases, linear models are often inappropriate

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 81

to describe the process dynamics and nonlinear models emerge, motivating the use of

Nonlinear MPC. Nonlinear MPC has become an attractive feedback strategy and its

primary applications are stabilization and tracking problems [GP11].

The receding horizon control strategy is especially useful for the control of

slow nonlinear systems, such as chemical batch processes, where it is possible to

solve, sequentially, open–loop fixed–horizon optimal control problems on–line [MM90].

When applying this control strategy, the current control action is obtained by solving,

at each sampling instant, a finite horizon open–loop optimal control problem, using

the current state of the plant as the initial state. The optimisation procedure gives

us an optimal control sequence and the first control in this sequence is applied to the

plant [CB04, FA03, Fon03, MRRS00].

The nonlinear MPC is a technique that can be use in real time applications and it

can be implemented for large-scale systems. It guarantees on feasibility and stability

[Fon01], and robustness [MM93, FM03, RLL+09].

5.2 Principle of Model Predictive Control

If there were no disturbances and no model–plant mismatch, and if the

optimisation problem could be solved for infinite horizons, then we could apply the

input function found at time t = 0 to the system for all times t ≥ 0. However, this

is not possible in general. Due to disturbances and model–plant mismatch, the real

behaviour of the system is different from the predicted one. In this case, we can

implement a MPC methodology in order to update the trajectory and to correct the

behaviour of the system.

The MPC problem is formulated as solving on–line a sequence of finite horizon

open–loop OCP subject to system dynamics and constraints involving states and

controls. Figure 5.1 shows the basic principle of MPC.

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 82

Let us suppose that we have a controlled process whose state x(·) is measured at

discrete time instants ti, i= 0,1,2, Since it is a controlled process, we can alter the

future behaviour of the state of the system by selecting a certain control input u(·).

Based on measurements obtained at the time instant tk, the controller predicts the

future input such that a predetermined open–loop performance objective functional is

optimised. Then, the open–loop control is implemented until the next measurement

becomes available. Using the new measurement at the time instant tk + δk, where

δk is the sampling time step, the whole procedure – prediction and optimisation – is

repeated to find a new input function with the control and prediction horizon moving

forward [Fon01, MHL99]. The sampling step of the MPC procedure is often considered

to be fixed, i.e., the measurement takes place every δk = δ sampling time–units.

MPC can, also, be used in tracking control. In this case, the main purpose is

to determine the control inputs u such that x follows a given reference xref as good

as possible. Thus, if the current state x(tk) is close to the reference then we want

to preserve it there, otherwise if the current state is aside from the reference then we

want to control the system towards the reference xref (tk) [GP11].

5.3 Mathematical Formulation of Nonlinear

Model Predictive Control

Let us consider the following OCP:

Minimise
tf∫
t0

L(t,x(t),u(t))dt+ G
(
x(tf)

)
(5.1)

subject to ẋ(t) = f(t,x(t),u(t)) a.e. t ∈
[
t0, tf

]
, (5.2)

x(t0) = x0 , (5.3)

x(tf) ∈ X1 ⊂ Rn , (5.4)

x(t) ∈ X⊂ Rn a.e. t ∈
[
t0, tf

]
, (5.5)

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 83

t0 Ttktk−1 tk+1 tk + δ

δ

past

current time

prediction horizon

x̄
x∗

past feedback u∗ optimal control sequence

current state
measured

Figure 5.1: Principle of model predictive control

u(t) ∈ U⊂ Rm a.e. t ∈
[
t0, tf

]
, (5.6)

where x :
[
t0, tf

]
→Rn is the state, u :

[
t0, tf

]
→Rm is the control and t∈

[
t0, tf

]
is time.

As before, the functions involved comprise the running cost L :
[
t0, tf

]
×Rn×Rm→R,

the terminal cost G : Rn→ R and the system dynamics f :
[
t0, tf

]
×Rn×Rm→ Rn.

Considering the sampling step δ > 0, the prediction horizon T and a sequence

{ti}i≥0, the MPC algorithm can be implemented in four steps:

1. Measure state of the plant xtk ;

2. Determine ū : [tk, tk +T]→ Rm solution to the OCP:

Minimise
tk+T∫
tk

L(t,x(t),u(t))dt+ G(x(tk +T)) (5.7)

subject to ẋ(t) = f(t,x(t),u(t)) a.e. t ∈ [tk, tk +T] , (5.8)

x(tk) = xtk , (5.9)

x(tk +T) ∈ S ⊂ Rn , (5.10)

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 84

x(t) ∈ X⊂ Rn a.e. t ∈ [tk, tk +T] , (5.11)

u(t) ∈ U⊂ Rm a.e. t ∈ [tk, tk +T] , (5.12)

3. Apply the control u∗(t) := ū(t) to the plant in the interval t ∈ [tk, tk + δ],

disregarding the remaining control ū(t), t > tk + δ;

4. Repeat this procedure for the next sampling time instant tk + δ.

5.4 Extension of the Time–Mesh Refinement Al-

gorithm

We extend the adaptive time–mesh refinement algorithm 1 described on section

4.2 in order to allow different refinement levels according to some partition of the time

domain. This extension is of relevance in the MPC context.

5.4.1 Motivation

In MPC context, the prediction can be interpreted in the sense of planning.

When we make plans to the future, we establish planning strategies depending on the

prediction horizon. When we think about planning our – professional or private –

schedule, we do a detail plan for one day (hourly planning), we have a pretty good

idea of what we will do the following week (daily planning), and we have some clouded

thoughts about what we will do until next year (monthly planning).

Let us consider a time interval t ∈
[
t0, tf

]
, a sampling step δ > 0 and a prediction

horizon T . When applying the MPC procedure to solve an OCP, at each time instant

tk we compute the solution in [tk, tk +T] but we just implement the open–loop control

until tk + δ. Therefore, taking under consideration the planning strategy discussed

above, it would be an improvement if we have an adaptive time–mesh able to cope

this feature, i.e., a time–mesh that is highly refined in the lower limit of the time

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 85

interval [tk, tk +T] and it is coarser in the upper limit of the same interval. Then,

we would implement the control on the time interval [tk, tk + δ] computed with high

accuracy in a refined mesh. For the remaining time interval we have an estimate of

the solution.

Following the described strategy, we obtain an adaptive time–mesh refinement

algorithm which generate meshes with higher concentration of node points in the

beginning of the interval [tk, tk +T] and less concentration of node points in the end

of the same interval, enforcing the idea of having more nodes point where they are

needed and keeping a low overall number of node points. This is an important issue

because we want to increase the accuracy of the solution without compromising low

CPU times.

5.4.2 Time–Mesh Refinement Algorithm

As in section 4.2, the time interval is divided in K intervals

Sk = [τk−1, τk[, k = 1, . . . ,K−1 and SK = [τK−1, τK]

where (τ0, . . . , τK) coincide with nodes.

We also recall the concept of level of refinement. The intervals Sk that verify the

refinement criteria are divided into smaller subintervals according to the user–defined

levels of refinement

ε̄= [ε1, ε2, . . . , εm] .

A subinterval Sk,i is at the ith level of refinement if

Sk,i = {t ∈ Sk : ε(t) ∈ [εi, εi+1[}

for i= 1, . . . ,m, and it will be refined by adding N i of equidistant nodes between each

two mesh points.

In this extension, we also consider a time–dependent stopping criterion for the

mesh refinement algorithm with different levels ε̄x(t). Instead of having a fixed

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 86

t0 tftime

lo
g
(ε
(t
))

level 1

level k

Figure 5.2: Illustration of the extended time–mesh refinement strategy

stopping criterion εmax
x , now we have a time–dependent ε̄x(t) stopping criterion which

sets different levels of accuracy for the solution, along the time domain. For example,

the time–dependent levels of refinement can be defined as

ε̄x(t) =



εmax
x , t ∈ [tk, tk +β1T]

α1ε
max
x , t ∈]tk +β1T,tk +β2T]

α2ε
max
x , t ∈]tk +β2T,tk +β3T]

. . .

αjε
max
x , t ∈]tk +βjT,tk +T]

where 1< α1 < α2 < .. . < αj ≤ εmax
x and 0< β1 < β2 < .. . < βj < 1.

This procedure adds more node points to the subintervals that are in lower levels

of the stopping criterion for the refinement procedure, corresponding to time instants

close to the initial time. By defining the levels of refinement in this way, we get a

more accurate solution in time subintervals close to the current time as illustrated in

Fig. 5.2.

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 87

5.4.3 Refinement Criteria

In order to proceed with the mesh refinement strategy, we have to define some

refinement criteria and a stopping criterion. We consider three refinement criteria:

1. the estimate of the relative error of the trajectory (primal variables) (εx),

2. the estimate of the relative error of the adjoint multipliers (dual variables) (εq),

3. a combination of both criteria.

5.4.4 Warm Start

Since we are solving a sequence of open–loop OCPs, to decrease the CPU time,

when going from the problem in [tk, tk +T] to the one in [tk + δ, tk +T + δ], the solution

of the previous previous is used as a warm start for the problem. To create this

warm start, the solution obtained in [tk, tk +T] is projected in the new mesh in

[tk + δ, tk +T + δ] using the cubic Hermite interpolation. This action proved to be

vital in the decreasing of the overall computational time. In particular, we notice

that the number of iterations of the NLP solver remains within the same order of

magnitude along the procedure.

5.4.5 Model Predictive Control coupled with the Extended

Algorithm

We start the MPC procedure in the typical way but considering an adaptive

mesh refinement strategy. We descritise the time interval
[
t0, tf

]
using the algorithm

proposed in Chapter 4 and we solve our OCP in open–loop. Then, we implement the

control in the first sampling interval. When starting the next MPC step, we apply

the time–mesh refinement strategy in order to find the best mesh suited to the solve

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 88

the OCP in the second sampling interval. We repeat this technique until the MPC

procedure ends.

In the MPC context, we develop the following algorithm:

1. Measure state of the plant xtk ;

2. (a) Select the intervals Sk,j to be refined according to the time–dependent levels

of refinement ε̄x(t);

(b) Determine ū : [tk, tk +T]→ Rm solution to the OCP:

Minimise
tk+T∫
tk

L(t,x(t),u(t))dt+ G(x(tk +T)) (5.13)

subject to ẋ(t) = f(t,x(t),u(t)) a.e. t ∈ [tk, tk +T] , (5.14)

x(tk) = xtk , (5.15)

x(tk +T) ∈ S ⊂ Rn , (5.16)

x(t) ∈ X⊂ Rn a.e. t ∈ [tk, tk +T] , (5.17)

u(t) ∈ U⊂ Rm a.e. t ∈ [tk, tk +T] , (5.18)

3. Apply the control u∗(t) := ū(t) to the plant in the interval t ∈ [tk, tk + δ],

discarding the remaining control ū(t), t > tk + δ;

4. Repeat this procedure for the next sampling time instant tk + δ.

This MPC algorithm is illustrated in Fig. 5.3.

5.4.6 Algorithm Implementation

To test the algorithm, the proposed procedure was implement in MATLAB

R2014a combined with the Imperial College London Optimal Control Software –

ICLOCS – version 0.1b [FKvW10]. ICLOCS is an optimal control interface and it

uses the IPOPT – Interior Point OPTimizer – solver, which is an open-source software

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 89

0 Ttk tk + δ tk + 2δ

δ

past

current time

prediction horizon

x̄
x∗

past feedback u∗ optimal control sequence

Figure 5.3: Time–mesh refinement algorithm for MPC

package for large-scale nonlinear optimisation [WB06]. The problems are solved in a

computer with a Intel™ Core© i7-4770K CPU @3.50GHz.

5.5 Application

5.5.1 Parking Manoeuvres

In order to apply our MPC strategy, let us consider, once again, the car–

like system problem with t ∈ [0,20], in seconds, x(t) = (x(t),y(t),ψ(t)) and u(t) =

(u(t), c(t)). Aiming minimum energy, this problem (PCP) [PF14c] can be stated as:

Minimize
20∫
0
u2(t)dt (5.19)

subject to

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 90

(i) the dynamic constraints

ẋ(t) = u(t)cos(ψ(t)) a.e. t ∈ [0,20]

ẏ(t) = u(t)sin(ψ(t)) a.e. t ∈ [0,20] (5.20)

ψ̇(t) = u(t)c(t) a.e. t ∈ [0,20]

where u(t) is the speed and c(t) is the curvature,

(ii) the input constraints

−1≤ u(t)≤ 1 ∀t ∈ [0,20]

−0.7≤ c(t)≤ 0.7 ∀t ∈ [0,20]

(iii) the end–point constraints

x(0) = x0 = (x0, y0, ψ0) = (1.5,3.5,π/2) (5.21)

x(20) ∈ X1 =
{

(x,y,ψ) :
(
x−xf

)2
+
(
y−yf

)2
+
(
ψ−ψf

)2
≤ r2

}
(5.22)

where r2 = 0.1 and xf = (xf , yf , ψf) = (0,4,0) is a user–defined target point, and

(iv) the pathwise state constraint

−M ≤ y(t)≤M if x(t) ∈ [x0,x
∗]

−b(t,x(t))≤ y(t)≤ b(t,x(t)) if x(t) ∈ [x∗,x?]

−m≤ y(t)≤m if x(t) ∈ [x?,xf]

(5.23)

where

b(t,x(t)) = y?−
√
ρ2− (x(t)−x?)2 , ρ= |x?−x∗| .

In order to apply the MPC algorithm, we start by introducing some perturbations

on the system dynamics test–plant:

ẋ(t) = u(t)(1 + δu)cos(ψ(t))

ẏ(t) = u(t)(1 + δu)sin(ψ(t))

ψ̇(t) = u(t)(1 + δu) c(t)(1 + δc)

. (5.24)

where δu and δc are perturbations associated to the controls u and c respectively.

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 91

x0 x∗ xfx?

y?

−y?

M

−M

m

−m

Figure 5.4: Pathwise state constraints (5.27) for (PCP)

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 92

5.5.2 Numerical Results

To test and to validate the proposed algorithm, a problem involving parking

manoeuvres is solved considering pathwise state constraints.

We choose this application because MPC can overcome nonholonomy challenges

since it involves planning, not just reactive control; it can generate required nonlinear,

discontinuous feedback; and it is known that sampled–data MPC framework combines

well with sampling-feedbacks [Fon03]. MPC can, also, overcome constraints challenges

since it is known to be a (if not the main) technique to deal appropriately with

constraints and MPC simply dealt with them within the optimisation.

Considering the end–point constraints

x(0) = (1.5,3.5,π/2) (5.25)

x(10) ∈ X1 =
{

(x,y,ψ) : x2 + (y−4)2 +ψ2 ≤ 0.1
}

(5.26)

the pathwise state constraint

−4≤ y(t)≤ 4 if x(t) ∈ [0,2]

−b(t,x(t))≤ y(t)≤ b(t,x(t)) if x(t) ∈ [2,3]

−0.5≤ y(t)≤ 0.5 if x(t) ∈ [3,4]

(5.27)

where

ρ= 1 , b(t,x(t)) =−1.5−
√

1− (x(t)−3)2 .

We consider δ = 2 s which means that we will solve a sequence of 10 open–loop OCPs

and we define δu = δc = 0.1. We also set

εmax
x = 5×10−5

and

ε̄x(t) =



εmax
x , t ∈ [tk, tk + 0.1T] → short–term planning

10× εmax
x , t ∈]tk + 0.1T,tk + 0.3T] → mid–term planning

103× εmax
x , t ∈]tk + 0.3T,tk +T] → long–term planning

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 93

This problem is solved considering three meshes:

a) πML obtained by the multi–level time–mesh refinement strategy with MPC

considering N = 4;

b) πF considering equidistant–spacing with the lowest time step of πML with MPC;

c) πC considering equidistant–spacing with the greatest time step of πML.

As it can be seen in Fig. 5.5, considering the mesh πML, the car–like system

successfully stops when the terminal condition (4.5) is satisfied without violating any

constraint. The sequence of solutions given by each sampling step on MPC is shown

in Fig. 5.6. The predictions are plotted with a dashed line , while the implemented

controls are plotted with a solid line. Each segment is drawn with a different color

representing different MPC sampling times.

Figure 5.5: Optimal trajectory for (PCP) using MPC

The numerical results concerning the three meshes are shown in Table 5.1, which

shows information about the number of nodes, the smallest time step, the number of

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 94

Figure 5.6: Sequence of optimal trajectories for (PCP)

Figure 5.7: Optimal control for (PCP)

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 95

iterations needed to solve the NLP problem, the maximum absolute local errors of the

trajectory, and the CPU times for solving the OCP problem and for computing the

local error as well.

Table 5.1: Comparing MPC results for the problem (PCP)

πj Nj ∆tj Ij

∣∣∣∣∣∣ε(j)
x
∣∣∣∣∣∣
∞

CPU time (s)

Solver εx

πML 365 1/3200 304|13|13|13|13|10|16|5|5|5 4.169e−5 11.448 5.231

πF 3201 1/3200 371|34|22|20|18|9|8|7|7|7 3.730e−5 53.493 31.239

πC 201 1/200 233|81|13|11|6|6|6|5|5|5 1.261e−3 8.667 1.960

According to Table 5.1, the mesh πML has only 11.4% of the nodes of πF,

nevertheless both meshes have maximum absolute local error of the same order of

magnitude. Computing the solution using πML takes less than 20% of the time needed

to get a solution using πF, resulting in significant savings in memory and computational

cost.

The mesh πC is the initial coarse mesh considering equidistant spacing. Without

applying our refinement strategy, the MPC produces a solution with lower accuracy,

1.261e−3, when compared against the solution obtained via refinement procedure,

4.169e−5. Moreover, the CPU time spent to compute solution using πML is, as

expected, 50% higher than the one spent to obtain a solution using πC, however

it is a good trade–off since the accuracy of the solution increases by two orders of

magnitude.

Fig. 5.8 shows solutions for different initial conditions. In all tests, the procedure

gives the optimal solution which is computed spending a few seconds.

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 96

Figure 5.8: Optimal trajectories for (PCP) considering different initial conditions

5.6 Final Remarks

MPC states for a robust technique to solve OCPs, specially if we are leading with

disturbances in the model or if we have model–plant mismatch. In these cases, the real

behaviour of the system is different from the predicted one and the MPC methodology

provides an update of the optimal trajectory based on the measurements obtained at

sampling time instants.

We develop an extended adaptive time–mesh refinement algorithm providing local

mesh resolution refinement only where it is required. In this extension, we consider

a time–dependent stopping criterion for the mesh refinement algorithm with different

levels ε̄(t). In the end, the OCP is solved using MPC with an adapted mesh which

has less nodes in the overall procedure, yet having maximum absolute local error of

CHAPTER 5. TIME–MESH REFINEMENT FOR MPC 97

the same order of magnitude when compared against a refined mesh with equidistant–

spacing.

Due to the fast response of the algorithm, it can be used to solve real–time

optimisation problems. The application presented in this chapter demonstrate the

advantage of the proposed adaptive mesh strategy, which leads to results obtained as

fast as the ones given by a coarse equidistant–spacing mesh and as accurate as the

ones given by a fine equidistant–spacing mesh.

Chapter 6

Global Optimal Control

“If there is a problem you cannot solve, then there is an easier problem you can solve:

find it!”

George Pólya

The accurate solution of optimal control problems is crucial in many areas of

engineering and applied science. Problems involving systems which are described by

nonlinear differential equations often contain multiple local minima. For these cases,

methods which attempt to determine the global solution exist [EF00, Flo99, HP95a,

Kro93, QB03, RL92].

In this chapter, Global Optimal Control (GOC) methods are introduced to

address the nonlinear OCP towards global optimality.

6.1 Introduction

Optimisation is often based on highly nonlinear descriptive models. Nonlinear

Optimisation (NLO) models – based on a highly nonlinear system description –

frequently possess multiple optima, thus finding the best possible solution requires

a global scope search approach. The objective of Global Optimisation (GO) is to find

98

CHAPTER 6. GLOBAL OPTIMAL CONTROL 99

the globally best solution of models when multiple local optima exist.

There several methods to search for the global optimum which can be divided in

two groups: Exact Methods [HP95b, PR02] and Heuristic Methods [Wei08].

In the Exact Methods context, we can find several methods such as (a) Dynamic

Programming; (b) Branch and Bound Algorithms; (c) D.C. Programming; (d) Lip-

schitz Optimisation. The first one is a method for OCP and the remain ones are

methods for NLP.

With respect to Heuristic GO Methods, we have available strategies such as

(a) Approximate Convex Underestimation; (b) Continuation Methods; (c) Simple

Globalise Local Search Methods Population-Based Strategies – Ant Colony Op-

timization, Genetic Algorithms and Particle Swarm Optimisation; (d) Sequential

Improvement of Local Optima – Simulated Annealing and (e) Tabu Search, among

others. Exact Methods have provable theoretical global convergence properties, as

opposed to Heuristic GO Methods which have not. However, some Heuristic GO

Methods can be modified to gain global convergence features.

6.2 Global Exact Methods Overview

Among the exact methods, we emphasize B&B algorithms, the D.C. Programming

method, the Lipschitz Optimisation approach, and Dynamic Programming (DP).

6.2.1 Global Methods for Nonlinear Programming Problems

Let us consider the following problem

Minimise f(x)

subject to x ∈ X (6.1)

g(x)≤ 0

CHAPTER 6. GLOBAL OPTIMAL CONTROL 100

X

X1

X11

...

X1...11 X1...12

...

X12

X2

X21

X211 X212

X22

...
...

X2...21 X2...22

Figure 6.1: Illustration of the B&B method

h(x) = 0

where X⊂ Rn is a closed convex set, f : Rn→ R, g : Rn→ Rn and h : Rn→ Rn.

Branch and Bound Algorithm

The Branch and Bound (B&B) technique is a widely used procedure to solve

several types of difficult optimisation problems.

In the B&B methods, the feasible set is relaxed and subsequently partitioned

into refined parts – branching – over which lower and upper bounds of the minimum

objective function value can be determined – bounding [HP95a]. Parts of the feasible

set with lower bounds exceeding the best upper bound found at a certain stage of the

algorithm are deleted from further consideration – pruning – since this parts of the

domain do not contain the optimum.

B&B methods are often visualised by a search tree where the root node represents

the initial relaxation of the feasible set and the remain ones correspond to successively

generated partition sets. If a certain partition set is obtained by a direct partition of

the previous one, the two corresponding nodes are connected by an arc, as it can be

seen in Fig. 6.1.

CHAPTER 6. GLOBAL OPTIMAL CONTROL 101

D.C. Programming

In the nonconvex optimisation context, D.C. Programming plays an important

role because of its theoretical aspects as well as its wide range of applications [HT99]. A

function is called D.C. if it can be represented as the difference of two convex functions.

NLP problems involving D.C. functions are called D.C. programming problems.

Let us consider the problem (6.1) and that f(·) and g(·) are D.C. functions. An

interesting feature of D.C. Programming is that any problem of the form (6.1) can be

reduced to a canonical problem of minimising a linear function over the intersection

of a convex set with the complement of an open set.

Lipschitz Optimisation

The Lipschitz Optimisation approach to global Optimisation has always been

attractive [Pin96]. Let us consider, once again, the problem (6.1) and that f(·) is a

Lipschitz function. Knowing the Lipschitz constant, i.e., a bound on the rate of change

of the objective function, global search algorithms can be developed and convergence

theorems easily proved. Since Lipschitz Optimisation methods are deterministic, there

is no need for multiple runs. These methods also have few parameters to be specified,

besides the Lipschitz constant, thus the need for parameter finite–tuning is minimised.

This type of methods can place bounds on how far they are from the optimum function

value, and hence can use stopping criteria that are more meaningful than a simple

iteration limit.

6.2.2 Global Methods for Optimal Control Problems

Let us consider the following optimal control problem, in Bolza form, with input

and state constraints:

Minimise J(x,u) =
tf∫
t0

L(t,x(t),u(t))dt+ G
(
x(tf)

)

CHAPTER 6. GLOBAL OPTIMAL CONTROL 102

subject to ẋ(t) = f(t,x(t),u(t)) a.e. t ∈
[
t0, tf

]
,

u(t) ∈ U⊂ Rm a.e. t ∈
[
t0, tf

]
,

h(x(t))≤ 0 ∀t ∈
[
t0, tf

]
,

x(t0) ∈ X0 ⊂ Rn and x(tf) ∈ X1 ⊂ Rn ,

where

x :
[
t0, tf

]
→ Rn ,

u :
[
t0, tf

]
→ Rm ,

L :
[
t0, tf

]
×Rn×Rm→ R ,

G :Rn→ R ,

f :
[
t0, tf

]
×Rn×Rm→ Rn ,

h :Rn→ Rk .

Dynamic Programming and Hamilton–Jacobi Methods

As seen before, Dynamic Programming (DP) is a stage wise search method of

optimisation problems whose solutions may be viewed as the result of a sequence of

decisions. The selection of the optimal decision in based on the Bellman’s Principle

of Optimality. According to Fig. 6.2, illustrating a top–down view of DP, we can use

a recursive procedure to solve an OCP.

For some t ∈
[
t0, tf

[
, in a given finite horizon tf > 0, let us consider the following

initial value problem

ẋ(s) = f(s,x(s),u(s)) a.e. s ∈
(
t, tf

)
x(t) = xt (6.2)

u(s) ∈ U .

Since the control problem is in presence of state constraints, a state–space

constrained HJB equation has been associated to the value function of (6.2) which

takes the form [ABZ13]:

CHAPTER 6. GLOBAL OPTIMAL CONTROL 103


Vt(t,x)−H(t,x(t),−Vx(t,x),u(t)) = 0 , x ∈ X , t ∈

[
t0, tf

]
V (tf ,x(tf)) = G(x(tf))

where

H(t,x,p) = max
u∈U

(p · f(t,x,u)−L(t,x,u)) .

Let the set of all feasible trajectories starting in x at time t be denoted as:

S[t,tf](x) =
{
x ∈W 1,1 : x satisfies (6.2)

}
. (6.3)

Let us also consider a non–empty closed set K ∈ Rn which is the set K =

{x : h(x)≤ 0}. Therefore, a trajectory y∈ S[t,tf](x) is admissible, on the time interval(
t, tf

)
, if y(s) ∈K, for all s ∈

(
t, tf

)
.

The problem of backward reachable sets from a closed target X1 ∈ Rn consists

in characterizing, for every t ∈
[
t0, tf

]
, the set of all initial positions from which it is

possible to find an admissible trajectory that reaches the target X1 at time tf while

lying in the set K on
[
t, tf

]
:

R(t) =
{

xt ∈ X : ∃x ∈ S[t,tf](xt) such that x(tf) ∈ X1, and x(s) ∈K for s ∈
[
t, tf

]}
.

(6.4)

•S

C1

•(1, 1)

C2

•(2, 1)

Ci

Ck

•(k, 1)

Cn

C̃1 C̃2 C̃k

Figure 6.2: Illustration of the Dynamic Programming procedure

CHAPTER 6. GLOBAL OPTIMAL CONTROL 104

It is known that the backward reachable set can be seen as a level–set for the

value function [MB05]. In our problem

R(t) =
{
x : V (x)≤ tf − t

}
(6.5)

6.3 Application

6.3.1 Problem Statement

Let us consider the time t, in seconds, x(t) = (x(t),y(t),ψ(t)) and u(t) =

(u(t), c(t)). Aiming minimum time, the car–like system problem (PGO) can be stated

as:

Minimise tf (6.6)

subject to

(i) dynamic constraints

ẋ(t) = u(t)cos(ψ(t)) a.e. t ∈
[
t0, tf

]
ẏ(t) = u(t)sin(ψ(t)) a.e. t ∈

[
t0, tf

]
(6.7)

ψ̇(t) = u(t)c(t) a.e. t ∈
[
t0, tf

]
,

where u(t) is the speed and c(t) is the curvature,

(ii) input constraints

−1≤ u(t)≤ 1 a.e. t ∈
[
t0, tf

]
−0.7≤ c(t)≤ 0.7 a.e. t ∈

[
t0, tf

]
,

(iii) end–point constraints

x(t0) = x0 = (x0, y0, ψ0) (6.8)

x(tf) ∈ X1 =
{

(x,y,ψ) :
(
x−xf

)2
+
(
y−yf

)2
+
(
ψ−ψf

)2
≤ r2

}
, (6.9)

where r ∈ R and xf = (xf , yf , ψf) is a user–defined target point, and

CHAPTER 6. GLOBAL OPTIMAL CONTROL 105

(iv) the state constraint

y ≤ ȳ− b ∨ y ≥ ȳ+ b , if x ∈ [x̄−a, x̄+a] , ∀t ∈
[
t0, tf

]
, (6.10)

where (a,b) ∈ R2 is half the width (horizontal) and half the length (vertical),

respectively, of a rectangle centred in (x̄, ȳ) ∈ R2.

The goal is to drive this car–like system from x0 to some point near xf according

to the terminal condition (6.9) while avoiding the obstacle (6.10).

6.3.2 Numerical Results

Let us consider the end–point constraints

x(0) = (0,0,0)

x(tf) ∈ X1 =
{

(x,y,ψ) : (x−10)2 +y2 +ψ2 ≤ 0.5
}
,

and the state constraint

y ≤−1.999 ∨ y ≥ 2.001 , if x ∈ [4.9,5.1]

We define (a,b) = (0.1,2) and we choose 0< ȳ� 1 because we want a vertical rectangle,

almost symmetrical with respect to the horizontal axis, with a very small perturbation

in its center (x̄, ȳ) = (5,0.001). This perturbation cause the rectangle to be slightly

unsymmetrical with respect to the horizontal axis and by doing this we know that

there are two sub–optimal solutions and there is only only global minimum.

The car–like system problem (PGO) was written in C++ and it was solved using

ROC-HJ in a computer with a Intel™ Core© i7-4770K CPU @3.50GHz.

The discretisation with respect to the time variable is performed by the 2nd order

Runge-Kutta method. The discretisation in space is based on upwind finite difference

method. We consider (x,y) ∈ [0,10]× [−5,5] and ψ ∈ [0,2π]. Then, we generate a

equidistant–spacing space mesh 200× 200× 50. With this information, the ROC-HJ

CHAPTER 6. GLOBAL OPTIMAL CONTROL 106

software generate a time–mesh with 692 nodes and it takes 13.5762s of CPU time to

find the backward reachable set. After the solution of the HJ equation is computed,

and considering x(0) = (0,0,0), the ROC-HJ software finds the optimal trajectory in

1.1265s.

Figure 6.3: Optimal trajectory and reachable set using ROC-HJ for (PGO)

As it can be seen in Fig. 6.3, the car–like system successfully avoids the obstacle

and it stops when the terminal condition (6.9) is satisfied. In Fig. 6.3, the blue area

corresponds to the backward reachable set and the red rectangle coincides with the

obstacle. The minimum time needed to reach the target area is 10.9284268708s.

CHAPTER 6. GLOBAL OPTIMAL CONTROL 107

6.4 Final Remarks

Nonlinear models exist in many applications, e.g., in advanced engineering design,

biotechnology, data analysis, environmental management, financial planning, process

control, risk management, scientific modelling, and others. Their solution often

requires a global search approach.

There are GO methods and GOC methods which can be divided in two main

categories: Exact methods and Heuristic Methods. Among the described methods,

we use DP and HJ methods. We solve an application involving a car–like system

which has to avoid an obstacle. ROC-HJ The application presented in this chapter

demonstrates the advantage of DP and of GOC methods where the global optimum

is achieved.

Global Optimal Control (GOC) is a subject of growing practical interest as indi-

cated by recent software implementations and by an increasing range of applications.

In spite of remarkable progress, GOC remains a field of extreme numerical challenges,

in particular, in practical attempts to handle complex and sizeable problems within

an acceptable time frame.

Chapter 7

Conclusion

“Mathematics is the science which draws

necessary conclusions.”

Benjamin Peirce

7.1 Contributions

Summarising all the conclusions made along the chapters, we conclude that

there are a lot of interfaces we can chose from, involving open–source, freeware and

commercial software, working under different operating systems. The choice of an

interface should be made taking into account the number of solvers it can connect

and the level of programming expertise of the user. Among open–source, freeware and

commercial software, there are also a big list of OC and NLP solvers useful for solving

optimal control problems. The minimum time problem (PDD) involving a differential

drive robot system was successfully solved using the IPOPT, KNITRO and WORHP

solvers. The three solvers provided similar results with errors of the same order of

magnitude.

With respect to adaptive mesh refinement strategy, we develop a new algorithm

108

CHAPTER 7. CONCLUSION 109

providing local mesh resolution only where it is required. In the end, the OCPs

are solved using an adapted mesh which has less nodes in the overall procedure, yet

with higher concentration of nodes in time subintervals where the trajectory shows

nonlinear behaviour. Therefore, this procedure is characterised by having significant

savings in memory and computational cost. When using this strategy, where the

mesh is progressively refined to catch special features of the problem, there is no need

to define a priori the most appropriately mesh, which is another advantage of this

procedure. In addition, the algorithm using the proposed refinement strategy showed

more robustness, since it was able to obtain a solution when the traditional approach

by starting with a very fine mesh failed to do it. The applications presented, (PCL)

and (PS), demonstrate the advantage of the proposed adaptive mesh strategy, which

leads to results with greater accuracy and with lower overall computational time when

compared to other common used approaches.

We develop an extended adaptive time–mesh refinement algorithm providing local

mesh resolution refinement only where it is required. In this extension, we consider

a time–dependent stopping criterion for the mesh refinement algorithm with different

levels ε̄max(t). In the end, the OCP is solved using MPC with an adapted mesh which

has less nodes in the overall procedure, yet having maximum absolute local error of

the same order of magnitude when compared against a refined mesh with equidistant–

spacing. Due to the fast response of the algorithm, it is extended be use to solve real

time optimization problems, in particular, in MPC.

Global Optimisation (GO) is a subject of growing practical interest as indicated

by recent software implementations and by an increasing range of applications. In

spite of remarkable progress, GO remains a field of extreme numerical challenges,

in particular, in practical attempts to handle complex and sizeable problems within

an acceptable time frame. There are several GO methods which can be divided in

two main categories: Exact methods and Heuristic Methods. Among the described

methods, we use DP and HJ methods. We implement a Global Optimal Control

(GOC) problem which attempt to determine the global solution of a car–like system

CHAPTER 7. CONCLUSION 110

which has to avoid an obstacle. This problem is successfully solved and the global

optimal trajectory is found.

7.2 Future Work

We intend to develop future work in the following main directions:

Adaptive Time–Mesh Refinement: The proposed adaptive time–mesh refine-

ment algorithm adds nodes to the initial coarse mesh according to some

refinement criteria. One of our goals is to improve this algorithm by allowing it

to remove/disregard nodes as well.

Model Predictive Control: The sampling step of the MPC procedure is often

considered to be fixed, but we indent to develop MPC strategies where we can

vary the sampling step along the MPC prediction;

Impulsive Dynamical Systems: We will apply our time–mesh refinement algo-

rithm to compute the solution of Impulsive System (IS). IS [AKP10, FP12a,

FP12b, Fra09] are systems in which the state trajectories can have discontinuities

(jumps, sudden changes) in response to (impulsive) controls, which are often an

instantaneous action with high impact on the results and the timing of this

action is often crucial. Since these discontinuity instants might not be known in

advance and they might depend on a chosen control action, we believe that our

adaptive time–mesh algorithm is a good tool to compute with high accuracy the

timing of the impulsive control.

GO: Since it is a subject of growing practical interest and the range of applications

is increasing, we intend to explore other tools for solving global optimal control

problems. We also will develop adaptive mesh strategies and other numerical

algorithms in this field.

Appendix A

Background

Let us consider a point x ∈ Rn, i.e., x = (x1, x2, . . . , xn). We define an ε–

neighbourhood around x as the set

Nε(x) = {y ∈ Rn : ||y−x||< ε} , for ε > 0 , (A.1)

where || · || denotes the Euclidean norm of a vector in Rn.

Let S be an arbitrary set in Rn. A point x is said to be in the closure of S,

denoted by clS, if

S∩Nε(x) 6= ∅ , ∀ε > 0 . (A.2)

A point x ∈ S is in the interior of S, denoted by intS, if Nε(x)⊂ S for some ε > 0. If

S = clS, then S is called closed. If S = intS, then S is called open.

A point x is in the boundary of S, denoted by ∂S, if Nε(x) contains at least one

point in S and one point not in S for every ε > 0. Hence, a set S is closed if and only

if it contains all its boundary points. Moreover, clS ≡ S ∪ ∂S is the smallest closed

set containing S. Similarly, a set S is open if and only if it does not contain any of its

boundary points. The only sets in Rn that are both open and closed are the empty

set and Rn itself.

Definition A.0.1 (Convex Set). A set S ⊂ Rn is convex if the line segment joining

111

APPENDIX A. BACKGROUND 112

any two points of the set also belongs to the set. In other words, if

x, y ∈ S ⇒ α x + (1−α)y ∈ S , ∀α ∈ [0,1] . (A.3)

Definition A.0.2 (Convex Cone). A nonempty set C ∈ Rn is called a cone with

vertex zero if

x ∈ C ⇒ α x ∈ C , ∀α≥ 0 . (A.4)

In addition, if C is convex, then C is called a convex cone.

Definition A.0.3 (Convex Function). Let us consider a nonempty convex set S ∈Rn

and a function f : S→ R.

(i) f is convex on S if

f (α x + (1−α)y)≤ αf(x) + (1−α)f(y) (A.5)

for each x,y ∈ S and for each α ∈]0,1[;

(ii) f is strictly convex on S if

f (α x + (1−α)y)< αf(x) + (1−α)f(y) (A.6)

for each distinct x,y ∈ S and for each α ∈]0,1[.

Furthermore, the function f is (strictly) concave on S if −f is (strictly) convex on S.

Convex functions have the following useful properties:

(i) Let f1,f2, . . . ,fk : Rn→ R be convex functions. Then

• f(x) =
k∑
i=1

αifi(x), where αj > 0 for i= 1, . . . ,k, is a convex function, and

• f(x) = max{f1(x),f2(x), . . . ,fk(x)} is a convex function.

(ii) Suppose that g :Rn→R is a concave function. Let us consider S = {x : g(x)> 0},

and let us define f : S→ R as f(x) = 1/g(x). Then f is convex over S.

APPENDIX A. BACKGROUND 113

(iii) Let g : R→R be a non–decreasing, univariate, convex function, and let h : Rn→

R be a convex function. Then, the function f : Rn→R defined as f(x) = g(h(x))

is a convex function.

(iv) Let g : Rm→ R be a convex function, and let h : Rn→ Rm be an affine function

of the form h(x) =Ax+b, where A is an m×n matrix, and b is an m×1 vector.

Then, the function f : Rn→ R defined as f(x) = g(h(x)) is a convex function.

Definition A.0.4 (Quasiconvex Function). Let f : S → R, where S is a nonempty

convex set in Rn. The function f is quasiconvex if, for each x1,x2 ∈ S, the following

inequality holds:

f (α x1 + (1−α)x2)≤max{f(x1),f(x2)} ∀α ∈]0,1[. (A.7)

The function f is quasiconcave if −f is quasiconvex.

Let S be a set in Rn with a nonempty interior and let f : S→ R:

(i) f is said to be differentiable at x̄ ∈ intS if there exists a vector ∇f(x̄)T ∈Rn, the

gradient vector, and a function α : Rn→ R, such that

f(x) = f(x̄) +∇f(x̄)(x− x̄) + ||x− x̄||α(x̄,x− x̄) for all x ∈ S, (A.8)

where lim
x→x̄

α(x̄,x− x̄) = 0. The function f is said to be differentiable on the open

set Ŝ ⊆ S if f is differentiable at each point in Ŝ.

(ii) f is said to be twice–differentiable at x̄∈ intS if there exists a vector∇f(x̄)T ∈Rn,

an n×n symmetric matrix H(x̄), the Hessian matrix, and a function α :Rn→R,

such that

f(x) = f(x̄) +∇f(x̄)(x− x̄) + 1/2(x− x̄)TH(x̄)(x− x̄)+

+ ||x− x̄||2α(x̄,x− x̄) for all x ∈ S, (A.9)

where lim
x→x̄

α(x̄,x− x̄) = 0. The function f is said to be twice–differentiable on

the open set Ŝ ⊆ S if f is twice–differentiable at each point in Ŝ.

APPENDIX A. BACKGROUND 114

Definition A.0.5 (Pseudoconvex Function). Let S be a nonempty open set in Rn and

let f : S→ R be differentiable on S. The function f is pseudoconvex if

∀x,y ∈ S :∇f(x)(y−x)≥ 0⇒ f(y)≥ f(x) (A.10)

or, equivalently, if

f(y)< f(x)⇒ f(x)(y−x)≥ 0 . (A.11)

The function f is pseudoconcave if −f is pseudoconvex.

The function f is strictly pseudoconvex if

for each distint x,y ∈ S :∇f(x)(y−x)≥ 0⇒ f(y)> f(x) (A.12)

or, equivalently, if

for each distint x,y ∈ S : f(y)≤ f(x)⇒ f(x)(y−x)≥ 0 . (A.13)

Definition A.0.6 (Absolutely Continuous Function). Let S be a set in Rn with a

nonempty interior and let f : S→ R. The function f is absolutely continuous on S if

∀ ε > 0 ∃ δ > 0 :
∑
j

(bj−aj)< δ ⇒
∑
j

|f (bj)−f (aj)|< ε (A.14)

for any finite or countably infinite collection of nonoverlapping subintervals

{[aj , bj]}j ∈ S.

A useful concept is the Radon Measure definition. Before defining it let us review

other concepts.

Let S ⊂ Rn be a nonempty set. We say that a collection ξ of subsets of S is a

σ–algebra on S if

∅ ∈ ξ , S \A ∈ ξ whenever A ∈ ξ ,⋃
k∈N

Ak ∈ ξ whenever Ak ∈ ξ for every k ∈ N .

We denote by B(S) the intersection of all σ–algebras on S containing the open

subsets of S. It turns out that B(S) is the smallest σ–algebra on S containing the

APPENDIX A. BACKGROUND 115

open subsets of S, and it is called the σ–algebra of Borel subsets of S and its elements

are called Borel sets.

Let (S,B(S)) be a Borel measure space.

Definition A.0.7 (Borel measure). A function µ : B(S)→ R is a Borel measure on

S if µ(∅) = 0 and µ is contably additive in the sense that

A=
⋃
k∈N

Ak , Ak ∩Aj = ∅ , k 6= j ⇒ µ(A) =
∑
k∈N

µ(Ak) . (A.15)

The set of such measures will be denoted by M(S). We also say that a Borel

measure in positive if it takes its values in [0,∞). The set of positive Borel measures

is denoted byM+(S).

Definition A.0.8 (Radon measure). A positive Borel measure on S that is finite on

each compact subset of S is said to be a Radon measure on S.

Bibliography

[ABQ+99] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J.

Wright. Nonlinear predictive control and moving horizon estimation —

an introductory overview. In Paul M. Frank, editor, Advances in Control,

pages 391–449. Springer London, January 1999.

[ABZ13] Albert Altarovici, Olivier Bokanowski, and Hasnaa Zidani. A gen-

eral hamilton-jacobi framework for non-linear state-constrained control

problems. ESAIM: Control, Optimisation and Calculus of Variations,

19(2):337–357, April 2013.

[AHF11] D. Ariens, B. Houska, and H.J. Ferreau. Acado for matlab user’s manual.

http://www.acadotoolkit.org, 2011.

[AKP10] Aram Arutyunov, Dmitry Karamzin, and Fernando Pereira. On a

generalization of the impulsive control concept: Controlling system jumps.

Discrete and Continuous Dynamical Systems, 29(2):403–415, October

2010.

[BBCH00] John T. Betts, Neil Biehn, Stephen L. Campbell, and William P. Huffman.

Compensating for order variation in mesh refinement for direct tran-

scription methods. Journal of Computational and Applied Mathematics,

125(1–2):147–158, December 2000.

116

BIBLIOGRAPHY 117

[BDZ13a] Olivier Bokanowski, Anna Désilles, and Hasnaa Zidani. ROC–HJ:

Reachability analysis and Optimal Control problems - Hamilton-Jacobi

equations, May 2013.

[BDZ13b] Olivier Bokanowski, Anna Désilles, and Hasnaa Zidani. User’s guide

for the ROC-HJ solver: Finite Differences and Semi-Lagrangian methods,

February 2013.

[Bec11] Victor M. Becerra. PSOPT Optimal Control Solver: User Manual, 2011.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, New

Jersey, 1957.

[Bet01] John T. Betts. Practical methods for optimal control using nonlinear

programming. SIAM, 2001.

[BGG+14] Frédéric Bonnans, Daphné Giorgi, Vincent Grélard, Stéphan Maindrault,

and Pierre Martinon. BOCOP User Guide, 2014.

[BH75] Arthur Earl Bryson and Yu-Chi Ho. Applied Optimal Control: Optimiza-

tion, Estimation, and Control. Taylor & Francis, 1975.

[BH97] John T. Betts and William P. Huffman. Sparse optimal control software

socs. Technical report, Mathematics and Engineering Analysis, Boeing

Information and Support Services, The Boeing Company, 1997.

[BH98] John T. Betts and William P. Huffman. Mesh refinement in direct

transcription methods for optimal control. Optimal Control Applications

and Methods, 19(1):1–21, 1998.

[Bie10] Lorenz T. Biegler. Nonlinear Programming: Concepts, Algorithms, and

Applications to Chemical Processes. Society for Industrial and Applied

Mathematics, September 2010.

BIBLIOGRAPHY 118

[Bis13] M.H.A. Biswas. Necessary Conditions for Optimal Control Problems with

State Constraints: Theory and Applications. PhD thesis, University of

Porto, November 2013.

[BPd14] Biswas, M.H.A., Paiva, Luís Tiago, and de Pinho, MdR. A SEIR model for

control of infectious diseases with constraints. Mathematical Biosciences

and Engineering, 11:761–784, August 2014.

[BSS06] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear

Programming: Theory and Algorithms. John Wiley & Sons, May 2006.

[CB04] E. F. Camacho and Carlos Bordons. Model Predictive Control. Springer,

July 2004.

[CdB80] Samuel Daniel Conte and Carl de Boor. Elementary Numerical Analysis:

An Algorithmic Approach. Mcgraw-Hill College, third edition, March 1980.

[Cla90] Frank H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[Cla98] Frank H. Clarke. Nonsmooth Analysis and Control Theory. Springer

Science & Business Media, 1998.

[Cla13] Francis Clarke. Functional Analysis, Calculus of Variations and Optimal

Control. 2013.

[Dre65] Stuart E. Dreyfus. Dynamic programming and the calculus of variations.

Academic Press, 1965.

[EF00] William R. Esposito and Christodoulos A. Floudas. Deterministic global

optimization in nonlinear optimal control problems. Journal of Global

Optimization, 17(1-4):97–126, September 2000.

[FA03] Rolf Findeisen and Frank Allgöwer. An introduction to nonlinear model

predictive control. In Control, 21st Benelux Meeting on Systems and

Control, Veidhoven, pages 1–23, 2003.

BIBLIOGRAPHY 119

[FGK90] Robert Fourer, David M. Gay, and Brian W. Kernighan. A modeling

language for mathematical programming. Management Science, 36(5):519–

554, May 1990.

[FGK02] Robert Fourer, David M. Gay, and Brian W. Kernighan. The AMPL Book.

Second edition, November 2002.

[FH10] Wilhelm Forst and Dieter Hoffmann. Optimization: theory and practice.

Springer, July 2010.

[FKvW10] Paola Falugi, Eric Kerrigan, and Eugene van Wyk. Imperial College

London Optimal Control Software: User Guide. Imperial College London

London England, June 2010.

[Flo99] Christodoulos A. Floudas. Deterministic Global Optimization: Theory,

Methods and Applications. Springer, December 1999.

[FM03] Fernando A.C.C. Fontes and L. Magni. Min-max model predictive control

of nonlinear systems using discontinuous feedbacks. IEEE Transactions on

Automatic Control, 48(10):1750–1755, October 2003.

[Fon99] Fernando A.C.C. Fontes. Optimisation–Based Control of Constrained

Nonlinear Systems. PhD thesis, Centre for Process Systems Engineering

and Department of Electrical and Electronic Engineering, Imperial College

of Science, Technology and Medicine, London, August 1999.

[Fon01] Fernando A.C.C. Fontes. A general framework to design stabilizing

nonlinear model predictive controllers. Systems and Control Letters,

42(2):127–143, 2001.

[Fon03] Fernando A.C.C. Fontes. Discontinuous feedbacks, discontinuous optimal

controls, and continuous-time model predictive control. International

Journal of Robust and Nonlinear Control, 13(3-4):191–209, March 2003.

BIBLIOGRAPHY 120

[FP12a] Fernando A.C.C. Fontes and Fernando Lobo Pereira. Model predictive

control of impulsive dynamical systems. In Nonlinear Model Predictive

Control, volume 4, pages 305–310, August 2012.

[FP12b] S.L. Fraga and F.L. Pereira. Hamilton-jacobi-bellman equation and

feedback synthesis for impulsive control. IEEE Transactions on Automatic

Control, 57(1):244 –249, January 2012.

[Fra09] Sérgio Loureiro Fraga. Impulsive feedback control: a constructive approach.

PhD thesis, Universidade do Porto, 2009.

[Ger12] Matthias Gerdts. Optimal Control of Odes and Daes. De Gruyter, January

2012.

[GMS08] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s Guide

for SNOPT Version 7: Software for Large-Scale Nonlinear Programming,

2008.

[GP11] Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control. 2011.

[GSD06] Graham C. Goodwin, María M. Seron, and José A. de Doná. Constrained

Control and Estimation: An Optimisation Approach. Springer Science &

Business Media, March 2006.

[HFD11a] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open Source

Framework for Automatic Control and Dynamic Optimization. Optimal

Control Applications and Methods, 32(3):298–312, 2011.

[HFD11b] B. Houska, H.J. Ferreau, and M. Diehl. An Auto-Generated Real-

Time Iteration Algorithm for Nonlinear MPC in the Microsecond Range.

Automatica, 47(10):2279–2285, 2011.

[HFVQ13] B. Houska, H.J. Ferreau, M. Vukov, and R. Quirynen. ACADO Toolkit

User’s Manual. http://www.acadotoolkit.org, 2013.

BIBLIOGRAPHY 121

[HP95a] R. Horst, Panos M. Pardalos, and Nguyen Van Thoai . Introduction to

Global Optimization. 3rd edition, 1995.

[HP95b] R. Horst and Panos M. Pardalos. Handbook of Global Optimization,

volume 1. Springer, 1995.

[HT99] R. Horst and N. V. Thoai. DC programming: Overview. Journal of

Optimization Theory and Applications, 103(1):1–43, October 1999.

[JTB04] S. L. Campbell J. T. Betts. Initialization of direct transcription optimal

control software. pages 3802 – 3807 vol.4, 2004.

[KL13] Christian Kirches and Sven Leyffer. TACO: a toolkit for AMPL control

optimization. Mathematical Programming Computation, 5(3):227–265,

September 2013.

[KM95] I. Kolmanovsky and N.H. McClamroch. Developments in nonholonomic

control problems. IEEE Control Systems, 15(6):20–36, 1995.

[KPP14] Igor Kornienko, Luís Tiago Paiva, and Maria do Rosário de Pinho.

Introducing state constraints in optimal control for health problems.

Procedia Technology, 17:415–422, 2014.

[Kro93] V. F. Krotov. Global methods in optimal control theory. In Alexander B.

Kurzhanski, editor, Advances in Nonlinear Dynamics and Control: A

Report from Russia, number 17 in Progress in Systems and Control Theory,

pages 74–121. Birkhäuser Boston, January 1993.

[LLC13] Ziena Optimization LLC. KNITRO Documentation, 2013.

[MB05] Ian M. Mitchell, Alexandre M. Bayen, and TomlinClaire J. . A time-

dependent hamilton–jacobi formulation of reachable sets for continuous

dynamic games. IEEE Transactions on Automatic Control, 50(7):947–957,

July 2005.

BIBLIOGRAPHY 122

[MHL99] Manfred Morari and Jay H. Lee. Model predictive control: past, present

and future. Computers & Chemical Engineering, 23(4–5):667–682, May

1999.

[MM90] D.Q. Mayne and H. Michalska. Receding horizon control of nonlinear

systems. IEEE Transactions on Automatic Control, 35(7):814–824, July

1990.

[MM93] H. Michalska and D.Q. Mayne. Robust receding horizon control of

constrained nonlinear systems. IEEE Transactions on Automatic Control,

38(11):1623–1633, November 1993.

[MRRS00] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Con-

strained model predictive control: Stability and optimality. Automatica,

36(6):789–814, June 2000.

[NBW11] Tim Nicolayzik, Christof Büskens, and Dennis Wassel. Nonlinear opti-

mization in space applications with WORHP. 2011.

[NL10] Rachael Miller Neilan and Suzanne Lenhart. An introduction to optimal

control with an application in disease modeling. Modeling paradigms and

analysis of disease transmission models, 75:67–81, 2010.

[Pai13] Luís Tiago Paiva. Optimal control in constrained and hybrid nonlinear

system: Solvers and interfaces. Technical report, Faculdade de Engenharia,

Universidade do Porto, 2013.

[PF13] Luís Tiago Paiva and Fernando A.C.C. Fontes. Mesh refinement strategy

for optimal control problems. AIP Conference Proceedings, 1558:590–593,

October 2013.

[PF14a] Luís Tiago Paiva and Fernando A. C. C. Fontes. Time–mesh refinement in

optimal control problems for nonholonomic vehicles. Procedia Technology,

17:178–185, 2014.

BIBLIOGRAPHY 123

[PF14b] Luís Tiago Paiva and Fernando A.C.C. Fontes. Adaptive time-mesh

refinement in optimal control problems with constraints. Discrete and

Continuous Dynamical Systems, 2014. (Submitted for Publication).

[PF14c] Luís Tiago Paiva and Fernando A.C.C. Fontes. Mesh refinement in optimal

control: Nonholonomic vehicles manoeuvre problems, January 2014.

[PHR14] Michael A. Patterson, William W. Hager, and Anil V. Rao. A ph mesh

refinement method for optimal control. Optimal Control Applications and

Methods, February 2014.

[Pin96] János D. Pintér. Global Optimization in Action - Continuous and Lipschitz

Optimization: Algorithms, Implementations. 1996.

[Pin10] Heitor Pina. Métodos Numéricos. Escolar Editora, 3rd edition, 2010.

[PR02] Panos M. Pardalos and H. Edwin Romeijn. Handbook of Global Optimiza-

tion, volume 2. Springer, 2002.

[PR13] Michael A. Patterson and Anil V. Rao. Gpops-ii: A matlab software for

solving multiple-phase optimal control problems using hp-adaptive gaus-

sian quadrature collocation methods and sparse nonlinear programming.

ACM Transactions on Mathematical Software, 2013.

[PR14] Michael A. Patterson and Anil V. Rao. GPOPS-II A General-Purpose

MATLAB Software for Solving Multiple-Phase Optimal Control Problems,

May 2014.

[QB03] S. Joe Qin and Thomas A. Badgwell. A survey of industrial model

predictive control technology. Control Engineering Practice, 11(7):733–

764, July 2003.

[Raw00] J.B. Rawlings. Tutorial overview of model predictive control. IEEE Control

Systems, 20(3):38–52, June 2000.

BIBLIOGRAPHY 124

[RL92] O. Rosen and R. Luus. Global optimization approach to nonlinear optimal

control. Journal of Optimization Theory and Applications, 73(3):547–562,

June 1992.

[RLL+09] Davide Martino Raimondo, Daniel Limon, Mircea Lazar, Lalo Magni,

and Eduardo Ferná ndez Camacho. Min-max model predictive control

of nonlinear systems: A unifying overview on stability. European Journal

of Control, 15(1):5–21, 2009.

[RRTP76] J. Richalet, A. Rault, J. L. Testud, and J Papon. Algorithmic control of

industrial processes. In 4th IFAC symposium on identification and system

parameter estimation, pages 1119–1167, 1976.

[RV99] F. Rampazzo and R. B. Vinter. A theorem on existence of neighbouring

trajectories satisfying a state constraint, with applications to optimal con-

trol. IMA Journal of Mathematical Control and Information, 16(4):335–

351, December 1999.

[Tec] Boeing Research & Technology. SOCS User’s Guide.

[Var72] P.P. Varaiya. Notes on Optimization. Van Nostrand Reinhold, 1972.

[Vin00] Richard B. Vinter. Optimal Control. Springer, 2000.

[WB06] Andreas Wächter and Lorenz T. Biegler. On the implementation of

an interior-point filter line-search algorithm for large-scale nonlinear

programming. Mathematical Programming, 106(1):25–57, March 2006.

[Wei08] Thomas Weise. Global optimization algorithms – theory and application,

2008.

[wor12] Tutorial for WORHP 2.0, 2012.

[wor13] WORHP User Manual, 2013.

BIBLIOGRAPHY 125

[Wä14] Andreas Wächter. Introduction to Ipopt: A tutorial for downloading,

installing, and using Ipopt, 2014.

[ZT11] Yiming Zhao and Panagiotis Tsiotras. Density functions for mesh

refinement in numerical optimal control. Journal of Guidance, Control,

and Dynamics, 34(1):271–277, January 2011.

