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Chapter 1

Introduction

1.1 Context an Motivation

Communication between and inside cells is a vital function for human organism. In fact, intracel-

lular transport of organelles is a fundamental process and despite being intensively studied, it is

still an open challenge for researchers.

Neurons are highly differentiated cells composed of a cell body, dendrites and axon, and are

responsible for transporting information from and to the brain. The communication between two

neurons is established by endogenous chemical particles called neurotransmitters, which travel

along neuron’s axon aggregated in vesicles [1]. It is known that an abnormal transport of these

vesicles is correlated with neurodegenerative diseases such as spastic paraplegia, Charcot Marie

Tooth, amyotrophic lateral sclerosis (ALS), Alzheimer’s, Huntington’s and Parkinson’s [2, 3].

With the rapid evolution of microscopy techniques and computer science, it is now possible

to acquire dynamic images of moving cells, including neurons, and automatically process them in

order to extract a set of features that may considerably facilitate researchers’ work. This project is

being developed in a cooperation between BRAINlab group from INESC-TEC and IBMC.

1.2 Main Objectives

The resolution of the problem identified above depends on an extensive and strenuous analysis

of microscopy films containing innumerous vesicles travelling along neuron’s axon that must be

done by one or more researchers. The main problem is that the image is not always in the best

conditions for bare eye analysis, for example due to the presence of noise, lack of contrast or not

good resolution.

As this project is a follow up to a master’s thesis [4] developed at Faculdade de Engenharia da

Universidade do Porto (FEUP), the main objective consists on improving the algorithm and GUI

making it possible for researchers to better characterize vesicles’ dynamics through the analysis

of some important measures that will be described further in this report.
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2 Introduction

Some of the main improvements to the existent algorithm passes through a more robust classi-

fication, using an SVM based approach, and tracking algorithm, by optimizing the global nearest

neighbor method. Also it is desirable to extract more features from the vesicles although its size

makes this task extremely difficult once the majority of the features that can be used to charac-

terize vesicles are related with its morphology. Another issue regards the difficulties that Matlab

presents in processing videos with high resolution and duration. This problem could possibly be

fixed by changing the programming language.

1.3 Contributions

The main improvements made to the algorithm were:

• New candidate detection method using adaptive threshold value.

• New method for segmentation of both candidates and objects selected in training step. Ac-

tive contours approach selected instead of region growing which allows a better performance

for datasets with different characteristics.

• New SVM based classification instead of ANN, used to improve computational time.

• Vesicle path can now be seen along time and not only on a static frame.

Two publications resulted from the present thesis: one local publication in 1st Doctoral Congress

in Engineering which took place at FEUP, and an international publication in the 37th Annual In-

ternational IEEE EMBS Conference, which will take place in Milan, Italy.

Hélder T. Moreira, Ivo M. Silva, Mónica Sousa, Paula Sampaio, João Paulo Silva Cunha.

Neurotransmitter Vesicle Movement Dynamics in Living Neurons. In 1st Doctoral Congress in

Engineering FEUP. Porto, Portugal, 2015. (see Appendix B)

Hélder T. Moreira, Ivo M. Silva, Mónica Sousa, Paula Sampaio, João Paulo Silva Cunha.

Neurotransmitter Vesicle Movement Dynamics in Living Neurons. In 37th Annual International

IEEE EMBS Conference. Milan, Italy, 2015. - Accepted for Publication (see Appendix A).

1.4 Work Structure

This thesis is divided in six main chapters, each one with an introductory note specifying the issue

addressed in that chapter.

After this introductory chapter, it is presented a brief background review about the Nervous

System, providing basic concepts of neuroscience as well as neurons properties for a better under-

standing of the following contents.

Chapter 3, Computational Analysis, is divided in several subtopics: the first on is focused on

image acquisition methods, predominantly confocal microscopy, which was the technique used to
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obtain the images that are on the basis of this project; the second one addresses image processing

and analysis, going from image restoration processes to feature extraction and classification; the

third and last one, summarizes the most recent and commonly used tracking algorithms. Chapter 4,

State of the Art, is directly related to the main problem addressed by this work, consisting on a

general overview of several algorithms used in neurotransmitter vesicle tracking, as well as a

detailed description of the most relevant ones. In Chapter 5, it is described the last version of the

algorithm and explained in detail each step of the process. Finally, in Chapter 6 are drawn some

conclusions about the whole work and highlighted the main improvements made.
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Chapter 2

Nervous System

This chapter provides essential background about the nervous system and the interaction between

nerve cells. Starting from general concepts of Neuroscience to detailed biological phenomena

regarding neuronal transmission of information, it will offer the reader a better perception of the

problem. This review is mainly supported by research papers, published in the last decade.

2.1 Neuroscience

Neuroscience can be defined as an interdisciplinary science that studies the nervous system from

the neurons interactions to a complete neural network, focusing in different levels, such as molec-

ular, cellular, structural, functional, computational and medical [5].

The first signs of human interest in Neuroscience are dated from as early as 7000 years ago,

when humans started boring holes in each other’s skulls with the aim not to kill but to cure.

However, only many years later after the invention of the microscope in the nineteenth century, the

nervous system was proved to being constituted by more than one type of cell [6]. In vertebrates,

the nervous system is divided into central nervous system (CNS, composed of brain and spinal

cord) and the peripheral nervous system (PNS) [7].

Today, to reduce the complexity of the problem, neuroscientists break neuroscience into smaller

pieces, in which the size of the unit in study is called level of analysis. In ascending order of com-

plexity, these levels are molecular, cellular, systems, behavioral, and cognitive [6].

All tissues and organs in the human body are constituted of cells. The specialized functions

of each cell and how they interact determine the functions of organs. The brain is considered the

most sophisticated and complex organ in nature. This way, in order to study its function, we must

begin by learning how basic brain cells work individually and then see how they are assembled to

work together [7].

5



6 Nervous System

2.2 Neurons

The human brain is composed of around one hundred billion neurons and one hundred trillion

synapses [5]. All neurological processes are dependent on complex cell–cell interactions among

single neurons as well as groups of related neurons. Neurons can be categorized according to their

size, shape, neurochemical characteristics, location, and connectivity, which are important deter-

minants of that particular functional role of the neuron in the brain. More importantly, neurons

form circuits, and these circuits constitute the structural basis for brain function [8].

2.2.1 Anatomy

Neurons are generated from a special type of stem cells in a process called neurogenesis, which

largely ceases during adulthood in humans. Generally, three functional classes of neurons make up

the nervous system: afferent neurons, efferent neurons and interneurons. Despite some variations,

neurons are generally composed by a cell body or soma, a dendritic arbor and an axon, being

connected between them by synapses (Figures 2.1 and 2.2) [9].

Figure 2.1: Structure and location of the three functional classes of neurons [9].
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Figure 2.2: Anatomy of most common type of neuron [9].

Cell body contains the nucleus and organelles, and has numerous extensions (Dendrites) which

project like antennae to increase the surface area available for receiving signals from other neurons.

In most neurons, the plasma membrane of the dendrites and cell body contains protein receptors

that bind chemical messengers from other neurons [10]. This way, the dendrites and cell body are

the neuron’s input zone, because these components receive and integrate incoming signals. This

is the region where graded potentials are produced in response to triggering events, in this case,

incoming chemical messengers [9–11].

The axon, or nerve fiber, is an elongated tubular extension that conducts electrical and chemical

signals away from the cell body (anterograde transport) [12], but also into the cell body (retrograde

transport) [13]. Axons vary in length from less than a millimeter to longer than a meter in neurons

that communicate with distant parts of the nervous system or with peripheral organs [9].

2.2.2 Synapses

A neuron may terminate in one of three structures: a muscle, a gland, or another neuron. When a

neuron terminates on a muscle or a gland, the neuron is said to innervate, or supply, the structure.

By the other hand, if a neuron terminates on another neuron, the junction between them is called

synapse [5].

There are two types of synapses: electrical and chemical, depending on the how the commu-

nications is established. In an electrical synapse, the information is transmitted through charge
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carrying ions which flow directly between the two neurons in both directions. Despite being ex-

tremely quick, these type of connections are relatively rare in human nervous system, appearing

in the CNS, where they synchronize electrical activity in groups of neurons interconnected by gap

junctions, and in specialized locations, such as the pulp of a tooth and the retina of the eye [9,14].

2.2.3 Neurotransmitters

Until the beginning of the twentieth century, the nervous system was considered to be one con-

tinuous network (a syncytium), where every cell was in direct physical contact with the others.

However, the pioneering studies of Ramon y Cajal revealed neurons as independent structures,

which was confirmed many years later with the invention of electron microscopy. The main prob-

lem then was how nerve cells communicated with each other [8, 15].

Within the CNS, neurons communicate with other nerve cells but also with glands and mus-

cles. In simpler animals, communication is mediated by hormones and growth factors that diffuse

relatively long distances from secretory cells to target tissues. In humans, chemical messengers

are secreted from specialized parts of neurons, called nerve terminals or nerve endings, to act

on receptors in the membrane of neighboring target cells. These chemical messengers are called

neurotransmitters [16].

Neurotransmitters (NT) are chemicals like glutamate, acetylcholine and dopamine. They travel

in the interior of organelles called vesicles and are released, in response to a depolarizing action

potential, by exocytosis of synaptic vesicles with the neuronal plasma membrane in the synaptic

cleft, acting at the receptors of the postsynaptic neuron and triggering an action potential (AP).

This process of neurotransmission is terminated by a number of processes including diffusion and

metabolic degradation of the neurotransmitter, and desensitization of the receptors [17, 18].

2.3 Neuronal Intracellular Transport

The distinctive morphology of neurons, highly polarized cells with extended dendrites and axons,

makes these cells extremely dependent on active intracellular transport. This way, transport of

organelles, vesicles, proteins and RNA to every region of the neuron requires molecular motors

that operate along the cellular cytoskeleton [1, 13].

Cargo movement occurs along axonal and dendritic thin tubes (diameter around 25nm) called

microtubules [19]. The molecular motor involved in the transport of a certain type of cargo is

directly related to the direction of the movement, for instance, kinesin motors are responsible for

anterograde transport towards the cell periphery, while dynein motors are responsible for retro-

grade transport back to the cell body [9, 20] (Figure 2.3).

Whereas individual motors move unidirectionally along micro tubules, the directional trans-

port of intracellular cargo is generally achieved through back-and-forth movements with an overall

net directionality towards the desired destination. It has been hypothesized that the main advan-

tages of this apparently inefficient behavior is to avoid eventual obstacles such as organelles or

microtubule-associated proteins, or to provide a mechanism where the desired cargo destination is
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Figure 2.3: Anterograde and retrograde transport of organelles on the microtubules of the axon
[21].

given by a sequence of instructions rather than by an ‘all-or-nothing’ decision determined by the

initial directionality [22, 23].

We can separate intraneuronal transport in two types: Anterograde and Retrograde transport

Anterograde transport. Kinesin superfamily proteins (KIFs) are responsible for anterograde

transport or plus-end directed [24]. The organelles moving in this direction are typically smaller

but more numerous than those moving in the retrograde direction. Generally, there are two types

of anterograde transport in the axon: fast transport of membranous organelles and slow transport

of cytosolic proteins and cytoskeletal protein [1]. In terms of the fast transport, various cargo

vesicles are conveyed by distinct KIFs. Cargos transported down the axon include, between others,

synaptic vesicle precursors, active zone vesicles, and mitochondria (essential for energy supply)

[19, 21, 25, 26].

Fast transport is bidirectional: many proteins that are distributed by fast anterograde transport

are also returned in the retrograde direction. By opposition, proteins transported at slow rates

are degraded when they reach their destination and are not detected in the retrograde component.

[1, 13].

Retrograde transport. Retrograde transport or minus-end directed transport is mediated by

dynein/dynactin complex which is responsible for cargo movement towards neuron’s cell body.

Despite existing numerous proteins in dynein family, only two of them (intraflagellar transport

dynein (IFT) and cytoplasmatic dynein) are responsible for this kind of transport. A summary of

neuronal transport is presented on Table 2.1 .
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Table 2.1: Neurodegenerative diseases with axonal transport defects. Adapted from [2].

Mutated gene
in patients Common protein name Affected axonal

transport transport-related process
Alzheimer’s Disease and other dementias

APP Amyloid precursor protein
Unkown effect but shown

to undergo axonal transport;
Retrograde tranport of NGF;

PSEN1 Presenilin 1
Microtubule stabilization through

GSK3 activation;
Cargo binding to motor proteins;

Parkinson’s Disease and Perry syndrome

SNCA synuclein
Unknown effect but shown

to undergo axonal transport;
PARK2 E3 ubiquitin-protein ligase parkin Mitochondrial function
PINK1 Serine/threonine-protein kinase Mitochondrial function
PARK7 Protein DJ1 Mitochondrial function
DCTN1 Dynactin subunit 1 Dynein complex function

Huntington’s Disease

HIT Huntingtin

Microtubule acetylation;
Cargo binding to motor proteins;
Kinesin binding to microtubules;

Retrograde transport
of BDNF (trophic support);

Amyotrophic lateral sclerosis

SOD1 Superoxide dismutase 1
Neurofilament phosphorylation
and binding to motor proteins;

Mitochondria binding to kinesin;
ALS2 Alsin Endosomal trafficking;

VAPB
Vesicle-associated

membrane
protein-associated protein B/C

Endoplasmic reticulum to Golgi transfer;

2.4 Neurodegenerative Diseases and Intraneuronal Transport

Recent studies suggest that defects in axonal transport such as mutations in the molecular motors

are potentially related with the degeneration of nervous cells [13]. In fact, it is proved that, for

example, a disruption of anterograde transport (kinesin motor) is sufficient to provoke neurodegen-

eration [24]. Nevertheless only a few neurodegenerative diseases have been unswervingly related

with kinesin motor malfunction, probably because of its functional redundancy (different elements

from the kinesin family can transport the same cargo) [27].

By opposition, some studies link anomalies in retrograde transport directly to neurodegenera-

tive disease [13]. In fact, defects in dynein-dynactin motor complex have already been linked to

motor-neuron loss and muscle denervation in mouse models [28].

Alzheimer’s disease (AD) is the most common form of dementia and generally affects elder
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people, causing global cognitive decline including a progressive loss of memory, orientation and

reasoning [29]. AD is characterized by synaptic and neuronal loss, pathological accumulation

of amyloid-beta peptide in senile plaques and formation of tangles of the microtubule-associated

protein tau13 that inhibit axonal transport. Reduced axonal transport represents an early step of

AD pathogenesis and may be used as a diagnosis method, once it is noticeable before the common

AD symptoms [2, 30–32].

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease

and is characterized by the degeneration of cortical, bulbar and spinal motor neurons. This de-

generation induces progressive muscle atrophy, paralysis and spasticity that eventually leads to

respiratory failure [2]. Several studies have proved that swellings occur in the initial region of mo-

tor axons in patients with ALS and that these swellings contain vesicles, lysosomes, mitochondria,

between others. These anomalies suggest axonal transport defects [33].

Huntington’s disease (HD) is one of the most common Polyglutamine diseases. This disease

is an inherited adult-onset neurodegenerative disorder caused by the expansion of a CAG tract in

particular genes, leading to the loss of selected neuronal populations and the formation of aggre-

gates that sequester essential cellular proteins. Huntington’s disease is characterized by muscle

incoordination, cognitive decline and dementia. It occurs when the number of CAG repeats in the

coding region of the gene huntingtin (HTT) is above 36 [2, 34, 35].

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons in

the substantia nigra, which causes rigidity, shaking and gait disturbance. The typical characteristic

lesions of the disease are the Lewy body inclusions, which are composed of hyperphosphorylated

synuclein. Moreover, axonal transport analysis in cultured neurons reveals that mutations mimick-

ing permanent phosphorylation of αsynuclein similarly slow down the axonal movement of this

protein [2, 36].

Due to the wide variety of defects that can occur in intraneuronal movement of vesicles, an

accurate detection and characterization is essential to distinguish between the numerous neurode-

generative diseases. In a near future, vesicle movement characterization can even work as a pre-

diagnostic tool for this kind of disorder.
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Chapter 3

Computational Analysis

This chapter approaches several aspects of the computational analysis of bioimages. It stars with

a description of most commonly used bioimaging techniques and then it explores different phases

of image processing methods, ranging from image restoration to classification and tracking algo-

rithms. Finally it is described a similar tracking tool available on the market which was used for

comparison with NeuronDyn.

3.1 Neuroimaging Techniques

Neuroimaging is a branch of neuroscience responsible for acquiring images of the nervous system.

This discipline can be divided in: structural imaging, which deals with the diagnosis of injuries

like tumors, and functional imaging, used to indirectly measure brain functions [37]. The au-

tomation of the acquisition and interpretation of biological data in microscopy began in the 1950s.

This first step was focused on digitalizing optical information of the cell cultures to images to

obtain basic measurements like cell size and count. During the last decades, the processing and

extraction of information from images has become indispensable in the experimental research and

neuroscientists have benefited from the emergence of many powerful techniques that cover both

spatial and temporal scales [38,39]. In Figure 3.1 there is a comparison in terms of the spatial and

temporal resolution of some neuroimaging techniques [39].

13
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Figure 3.1: Temporal and spatial resolution of some Neuroimaging techniques with particular
emphasis on optical imaging [39].

3.1.1 Spinning-disk Confocal Microscopy

The basic concept of confocal microscopy was originally developed by Marvin Minsky in the

mid-1950s (patented in 1957) when he was a postdoctoral student at Harvard University. Minsky

wanted to image neural networks in unstained preparations of brain tissue and was driven by the

desire to image biological events as they occur in living systems (see Figure 3.2). Minsky’s inven-

tion remained largely unnoticed, due most probably to the lack of intense light sources necessary

for imaging and the computer horsepower required to handle large amounts of data [40–42].

(a)
(b)

Figure 3.2: a)First page of the patent registered in 1957; b)First prototype of a confocal microscope
developed by Marvin Minsky [40].

Confocal microscopy offers several advantages over conventional wide field optical microscopy,

including the ability to control depth of field, elimination or reduction of background information
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and the capability to collect serial optical sections from thick specimens. The basic key to the

confocal approach is the use of spatial filtering techniques to eliminate out-of-focus light or glare

in specimens whose thickness exceeds the immediate plane of focus. There has been a remarkable

increase in the popularity of confocal microscopy in past years, due in part to the relative ease

with which high-quality images can be obtained from specimens prepared for conventional fluo-

rescence microscopy, and the growing number of applications in cell biology. The best advantage

of these tools is that the movement of organelles, particles and even proteins can be visualized in

living cells. In fact, confocal technology is proving to be one of the most important advances ever

achieved in optical microscopy [40, 43].

Given the need for a rapid confocal scanning system, scientists developed what is called Con-

focal Laser Scanning Microscopy (CLSM). This technique was created to eliminate the out-of-

focus haze of fluorescent objects. Other methods such as computational deconvolution are also

used to sharpen images, but CLSM has quickly spread among life science laboratories because

of its convenience and ease of use. However, there is a big serious problem if one wants to ap-

ply CLSM to vesicular transport. The original and many current models of confocal microscopy

adopt a mechanical way of scanning. As shown in Figure 3.3, a typical confocal microscope fo-

cuses the laser beam after passing it through a pinhole into a very small light point. This point has

to be scanned over the specimen by the mechanical movement of mirrors. This is called point-

scanning or galvano-mirror method. The fluorescence emitted from the sample is now collected by

a photomultiplier tube and its change in time is then reorganized into a 2-D image by a computer.

Unfortunately, the single-beam laser confocal microscope is limited in image acquisition speed

due to the need for extremely precise control of galvanometer mirrors that are used to raster scan

the beam across the specimen, as well as the limited number of photons emitted by the specimen

during the pixel settle time [43–45]. An example of this type of confocal microscope can be seen

in Figure 3.3.

Figure 3.3: Conventional confocal laser scanning microscope [43].
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A different type of scanning method, known as the Nipkow disk or spinning-disk method,

raster-scans the specimen with many light points obtained through multiple pinholes. The Yoko-

gawa Electric Corporation devised a unique Nipkow disk system with another coaxial spinning

disk containing an array of microlenses, which efficiently guides the laser beams into pinholes

(Figure 3.4).

(a)
(b)

Figure 3.4: a) Nipkow disk confocal laser scanning microscope with microlens. b) closer view of
the Nipkow spinning disk [43].

Using this method, any of the speed limitations associated with point-scanning confocal mi-

croscopes can be overcome. Spinning disk confocal microscopes are emerging as a powerful tool

for rapid spatial and temporal imaging of living cells. Although the technique was originally

introduced over 40 years ago, recent improvements in microscope optical design and camera tech-

nology have significantly expanded the versatility and potential of this approach. Examples of

images obtained through this imaging technique are presented on Figure 3.5.

Figure 3.5: Examples of images obtained by spinning-disk confocal microscopy (withdrawn from
the dataset used in our project).
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3.2 Image Analysis in CAD Systems

These days, it is extremely important to extract, analyze and represent information from digital

images obtained by neuroimaging techniques. After gathering the raw images, it is necessary to

process them in order to enhance a determined characteristic of interest. These image processing

tools are widely used in many fields like medicine, biological research and metallurgy [46]. In

most of the cases the final objective of image processing is to detect and/or segment a given object

(like cells, particles or organelles) or to study objects’ movement over time.

3.2.1 Types of Noise

Noise is still very common in medical images, and is generally characterized by random intensity

values that are distributed in many different ways. Bearing this in mind, several noise models were

created, the most common ones are:

Gaussian Noise is an addictive type of noise, meaning that the corrupted pixel is the sum

of the true pixel intensity value and a random Gaussian distributed noise value. It is difficult to

remove because it generally affects almost every pixel in the image. Gaussian distribution is given

by:

F(g) =
1√

2πσ2
× e

−(g−m)2

2σ2

Where g represents the gray level, m is the mean or average of the function, and σ is the

standard deviation of the noise.

Salt and pepper noise is an impulse type of noise, which means that the corrupted pixels are

randomly set to either a maximum or minimum intensity value (generally 0 to “pepper” noise and

255 to “salt” noise). This kind of noise is normally related with defective pixel in camera sensors

or errors in data transmission.

Speckle noise is a multiplicative noise that is common in many imaging systems. The source

of this noise is attributed to random interference between the coherent returns. Speckle distribution

is given by:

F(g) =
ga−1

(a−1)!aa × e
−g
a

Where aα is the variance and g is the gray level.

Brownian noise is an example of fractal (1/f) noise which follows the mathematical model

of fractional Brownian motion. Fractal Brownian motion is a non-stationary stochastic process

that follows a normal distribution. Brownian noise is a special case of 1/f noise. It is obtained by

integrating white noise [47].
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3.2.2 Image Restoration

The quality of the images acquired through neuroimaging techniques is still relatively low and it

is extremely difficult to extract proficuous information without any further processing. Artefacts

such as noise, blur, optical aberrations, between others, must be attenuated in order to obtain better

data from the images. Depending on the method used to acquire the images, we find different types

of artefacts and consequently several different denoising processes have been developed [48].

After the type of noise is correctly identified, we can use the denoising method that best suits

our needs. The main problem about this choice resides on the fact that most methods are specific

for one problem and its performance may not be the ideal for our situation. Generally, denoising

methods can be divided into two major groups: spatial domain filters and transform domain filters

(illustrated in Figure 3.6).

Figure 3.6: Classification of image denoising methods [4].

3.2.2.1 Spatial Domain Filters

These are the most traditional methods used in image restoration and they can be divided in lin-

ear and non-linear filters. In the first case, the output values are linear function of the pixels in

the original image and are easier to analyze mathematically. The non-linear filters present more

accurate results due to their ability to preserve edges.

Linear Filters. These filters are good in the presence of noise with known distribution model

( e.g. Gaussian), they are able to remove noise to a reasonable extent and are easy and fast to

implement but have the inconvenient of blurring edges. There are several filters in this category, the
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mean filter, for example, calculates the average value of a predefined area of the image and sets the

region’s central pixel intensity value to that average value. It smoothes the image by reducing the

intensity variation between adjacent pixels being a good solution to Gaussian noise. The Wiener

filter (also known as minimum mean-squared error – MMSE) convolves the image with a constant

matrix to obtain a linear combination of neighborhood values. It removes the additive noise and

inverts the blurring simultaneously, without compromising the visibility of edges [47–49].

Non-Linear Filters. With non-linear filters, the noise is removed without any attempts to

explicitly identify it. Spatial filters employ a low pass filtering on groups of pixels with the as-

sumption that the noise occupies the higher region of frequency spectrum. In recent years, a variety

of nonlinear median type filters such as weighted median have been developed to remove noise

but preserving edges, unlike most linear filters. Weighted median filtering combine the robust-

ness and edge preserving capability of the classical median filter and great properties in sparsity

representation [47, 48, 50].

3.2.2.2 Transform Domain Filters

Although the transform domain filtering methods can be subdivided in data adaptive and non-

adaptive, the last are the most popular and most commonly used. Between non-adaptive filters the

most used are:

Spatial Frequency Filters. Spatial-frequency filtering refers to the use of low pass filters

using Fast Fourier Transform (FFT). In frequency smoothing methods the removal of the noise

is achieved by designing a frequency domain filter and adapting a cut-off frequency when the

noise components are decorrelated from the useful signal in the frequency domain. However,

these methods are time consuming and depend on the cut-off frequency and the filter function

behavior [48].

Wavelet Domain Filters. Many image denoising approaches perform denoising on wavelet

domain. Wavelet decompositions have the desirable property of locality both in space and in

frequency, which is not the case for other transforms, such as the Fourier transform. Wavelet-

based denoising algorithms are based on the following steps. First, an image is transformed into a

wavelet domain. Next, denoising is effected on the wavelet coefficients, and finally the denoised

image is obtained by applying the inverse wavelet transform on the denoised wavelet coefficients.

Linear filters such as Wiener filter yield optimal results in the wavelet domain when the signal

corruption can be modeled as a Gaussian process and the accuracy criterion is the mean square

error.

However, the most used domain in denoising using Wavelet Transform is the non-linear coeffi-

cient thresholding based methods. This methods exploit sparsity property of the wavelet transform

and the fact that the Wavelet Transform maps white noise in the signal domain to white noise in

the transform domain. Moreover, while signal energy becomes more concentrated into fewer co-

efficients in the transform domain, noise energy does not. It is this important principle that enables

the separation of signal from noise [47, 48].
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3.2.3 Image Enhancement

Following the image restoration, the aim is to perform the enhancement of the region of interest.

In simple terms, image enhancement consists on improving the interpretability or perception of

information in images for human viewers and providing an easier input for other automated image

processing techniques. The principal goal of image enhancement is to modify attributes of an

image to make it more suitable for a given task and a specific observer [51]. During this process,

one or more attributes of the image are modified. The choice of attributes and the way they are

modified are specific to a given task and image. Basically there are two main categories in which

image enhancement can be divided (Figure 3.7).

Figure 3.7: Image Enhancement Methods [4].

Spatial Domain Methods. Spatial domain techniques directly deal with the image pixels. The

pixel values are manipulated to achieve desired enhancement. Between the most commonly used

techniques are logarithmic transforms, power law transforms and histogram equalization. Spatial

methods are particularly useful for directly altering the gray level values of individual pixels and

hence the overall contrast of the entire image. However, they usually enhance the whole image in

a uniform manner which in many cases produces undesirable results [51, 52].

Frequency Domain Methods. In frequency domain methods, the image is first transferred

into frequency domain. It means that, the Fourier Transform of the image is computed first. All the

enhancement operations are performed on the Fourier transform of the image and then the Inverse

Fourier transform is performed to get the resultant image. These enhancement operations are

performed in order to modify the image brightness, contrast or the distribution of the grey levels.

As a consequence the pixel value (intensities) of the output image will be modified according to

the transformation function applied on the input values [51–53].
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3.2.4 Image Segmentation

The objective of this image segmentation methods is to separate the object we need to study from

the rest of the image. Based on the response of the filters in the enhancement step, and according to

exclusion criteria it’s possible to map the object candidates. There are several techniques used for

this purpose, depending on the type and quality of images, and on the final goal. These techniques

can be divided into categories sorted by the method used to segment the image (Figure 3.8) [54].

Figure 3.8: Principal Image Segmentation methods. Adapted from [54].

Thresholding. This method has a relatively simple principle, which is based on a clip-level

(or a threshold value) to turn a gray-scale image into a binary image. This way, the most important

factor while using this method resides on choosing an adequate threshold value that fits our needs

and our image. Several popular methods include the maximum entropy method, Otsu’s method

(maximum variance), and k-means clustering [55].

Clustering. The most common clustering technique is the K-means algorithm. This method

is an iterative technique that is used to partition an image into K clusters. Basically this algorithm

calculates the center from each of the K clusters and measures the distance from each pixel in

the image to every picked center. After comparing the obtained distances it decides that the pixel

belongs to the cluster where the distance center-pixel is minimal. Then the pixel is incorporated in

the cluster and a new center is calculated already counting with the recently classified pixel. All

previous process is repeated until all pixels are classified.

This algorithm is guaranteed to converge, but it may not return the optimal solution. The

quality of the solution depends on the initial set of clusters and the value of K [56].

Region-based. Also known as region-growing, most part of these methods work in the fol-

lowing way: a set of seeds are defined as input along with the image. The seeds mark each of the
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objects to be segmented. The regions are iteratively grown by comparing all unallocated neighbor-

ing pixels to the regions. The difference between a pixel’s intensity value and the region’s mean is

used as a measure of similarity. The pixel with the smallest difference measured is allocated to the

respective region. This process continues until all pixels are allocated to a region. Seeded region

growing requires seeds as additional input. The segmentation results are dependent on the choice

of seeds. Noise in the image can cause the seeds to be poorly placed [57, 58].

Boundary-based. The basic idea in active contour models or snakes is to evolve a curve,

subject to constraints from a given image, in order to detect objects in that image. For instance,

starting with a curve around the object to be detected, the curve moves toward its interior normal

and has to stop on the boundary of the object.

The snakes’ model is popular in computer vision, and led to several developments in 2D and

3D. In two dimensions, the active shape model represents a discrete version of this approach,

taking advantage of the point distribution model to restrict the shape range to an explicit domain

learned from a training set.

This method is particularly efficient for noisy images, for example, when the interior of the

object is too chaotic to apply a region growing method, as long as you can enhance and make

visible the edges of the object or at least a part of them [59].

3.2.5 Feature Extraction

The main goal of image processing tools is to be able to detect and extract significant features

from images. This way we can divide feature extraction method in two categories:

Low-level methods. We can define low-level features to be those basic features that can be ex-

tracted automatically from an image without any shape information. The first low-level feature is

called edge detection and it aims to produce a line drawing. Edge detectors can also be divided into

two groups: first-order detectors, which are equivalent to first-order differentiation, and second-

order edge-detection operators that are equivalent to a higher level of differentiation. Between the

most used first-order edge detectors are Prewitt, Sobel and Canny detectors while in second-order

detectors we find the Laplacian and Marr-Hildreth operators [60]. A visual comparison between

edge detection operators is shown in Figure 3.9. Other examples of low-level methods are corner,

blob and ridge detectors.

High-level methods. By opposition, high-level feature extraction, concerns finding shapes

and objects in computer images. To be able to recognize human faces automatically, for example,

one approach is to extract the component features, like the eyes, the ears, and the nose, which

are the major face features. To find them, we can use their shape: the eyes are approximately

ellipsoidal; the mouth can appear as two lines, as do the eyebrows. Alternatively, we can view

them as objects and use the low-level features to define collections of points which define the

eyes, nose, and mouth, or even the whole face. This feature extraction process can be viewed as

similar to the way we perceive the world. High-level detectors are also called shape detectors due

to their concern about finding determined shapes in the images. Figure 3.10 provides an overview

over shape descriptors.
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Figure 3.9: Comparison of edge-detection operators. Adapted from [60].

Any feature extraction method aims, obviously, to obtain certain features from a certain object.

There are several types of features that can be extracted from images, namely:

Color Features. Color is one of the most important features of images. Color features are

defined subject to a particular color space or model. A number of color spaces have been used in

literature, such as RGB, LUV, HSV and HMMD. Once the color space is specified, color feature

can be extracted from images or regions. A number of important color features have been proposed

in the literatures, including color histogram, color moments, color coherence vector and color

correlogram [62].

Textures Features. Texture is a very useful characterization for a wide range of image. It

is generally believed that human visual systems use texture for recognition and interpretation. In

general, color is usually a pixel property while texture can only be measured from a group of

pixels. A large number of techniques have been proposed to extract texture features. Based on

the domain from which the texture feature is extracted, they can be broadly classified into spatial

texture feature extraction methods and spectral texture feature extraction methods. For the former

approach, texture features are extracted by computing the pixel statistics or finding the local pixel

structures in original image domain, whereas the latter transforms an image into frequency domain

and then calculates feature from the transformed image. Both spatial and spectral features have

advantage and disadvantages.

Shape Features. Shape is known as an important cue for human beings to identify and recog-

nize the real-world objects, whose purpose is to encode simple geometrical forms such as straight

lines in different directions. Shape feature extraction techniques can be broadly classified into two

groups: contour based and region based methods. The first one calculates shape features only from
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Figure 3.10: An overview of shape description techniques [61].

the boundary of the shape, while the latter method extracts features from the entire region [62].

Figure 3.11 presents a general overview of shape descriptors.

3.2.6 Machine Learning and Classification

Machine learning can be considered a subfield of computer science and statistics, which is em-

ployed in a range of computing tasks where designing and programming a rule-based algorithm

is impractical. These methods have been widely used in the past decades in computer vision and

image processing [64].

Generally, we can divide machine learning algorithms in two types: supervised and unsuper-

vised methods. Most commonly used machine learning methods are presented in Table 3.1.

3.2.6.1 Supervised Learning

Supervised learning methods are based on inferring a function from a set of training examples. A

supervised learning algorithm analyzes the training data and produces an inferred function, which
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Figure 3.11: Overview of shape descriptors [63].

can be used for mapping new examples [64, 65]. Among supervised learning methods, the most

widely used are:

Artificial Neural Networks (ANNs). ANNs are computational models inspired by biological

neural networks and are used to estimate or approximate functions that can depend on a large

number of inputs and are generally unknown [66]. These artificial neurons work together in a

distributed manner to learn from the input information, to coordinate internal processing, and to

optimize its final output. The basic structure of a neuron can be theoretically modelled as shown

in Figure 3.12, where X xi, i=1, 2, ..., n represent the inputs to the neuron and Y represents the

output. Each input is multiplied by its weight wi, a bias b is associated with each neuron and their

sum goes through a transfer function f.

Figure 3.12: Basic functioning of artificial neuron networks [67].
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Table 3.1: Machine Learning Methods

Unsupervised Supervised

Continuous

Clustering & Dimensionality Reduction:
•Mean-shift
•Fuzzy C-means
•K-means

Regression:
•Linear
•Polynomial
Decision Trees
Random Forests

Categorical

Association Analysis
• Apriori
• FP - Growth
Hidden Markov Models

Classification
• KNN
• Trees
• ANN
• Naive-Bayes
• SVM

As a result, the relationship between input and output can be described by the following equa-

tion,

Y = f (
n

∑
i=1

wixi +b)

In recent years, ANN has been widely used for medical image segmentation and classification

purposes and a large variety of ANN based algorithms have been developed to segment images

with high accuracy rates.

Naive-Bayes classifiers. Bayesian classifiers have been used in many areas and fields due to

their capability of “learning”, fundamental characteristic in many neuroscience studies. A certain

collection of data (training stage) can be passed to the classifier in order to provide discriminatory

information to differentiate the objects from the rest of the image. The more accurate and precise

the information is, the better the classifying result. The Bayesian classifier is based on Bayes’

formula, expressed in the following equations:

P(Wi | x) =
P(Wi)p(x |Wi)

p(x)

p(x) =
c

∑
k=1

P(Wi)p(x |Wi)

where P(Wi|x) represents the probability of Wi occurring given x. P(Wi) is the probability

alone of W occurring, whereas P (x|Wi) is the likelihood and p(x) is the evidence. c is the number

of classes.

Summarizing, the Bayesian Classifier determines the probability of the evidence x belong to

each of the c classes depending of his proper occurrence. Then, the decision is simple; it’s con-

sidered object if it belongs to a c class that presents the high probability, knowing that the exit is



3.2 Image Analysis in CAD Systems 27

x, or it is not considered object otherwise [68]. The Bayesian classifier for normally distributed

classes with equal covariance matrices is a linear classifier. Both Euclidean and minimum Maha-

lanobis distances are used in these situations to obtain the decision line between two classes. If

the classes are normally distributed but without equal covariance matrices a quadratic classifier is

applied [69].

Support Vector Machines (SVM). In machine learning, SVM are learning algorithms that

analyze data and recognize patterns and are used for classification and regression analysis. Given

a set of labelled training examples, an SVM training algorithm constructs a model that assigns new

examples into one category or the other, making it a non-probabilistic binary linear classifier. An

SVM model is a representation of the examples as points in space, mapped so that the examples

of the separate categories are divided by a clear gap that is as wide as possible. New examples are

then mapped into that same space and predicted to belong to a category based on which side of the

gap they fall on [70, 71]. Two general attributes define the SVM algorithm: C, a hyper-parameter

which controls the trade-off between margin maximization and error minimization; and kernel,

a function that maps training data into high-dimensional features spaces. The kernel function is

used to train SVMs classifiers. The type of kernel function used is a key factor on the performance

of SVM classification algorithm. The types which are more commonly used are the linear (Linear

SVM) and the gaussian (Radial Basis Function, RBF) - RBF SVM [72]. In this phase of the project

we are using a linear kernel SVM classifier.

3.2.6.2 Unsupervised Learning

By opposition, unsupervised learning consists on trying to find hidden structure in unlabeled data.

Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate

a potential solution. The most common unsupervised learning methods are clustering methods

which consist on representing characteristics in the feature space to find natural grouping clusters

[65–67]. The most common unsupervised learning algorithms are:

K-means. This algorithm starts with a set of information, and a choice of the number of

clusters (k, number of different regions to segment). These clusters have a centroid (intensity

mean e.g.) that can be selected randomly or not. Then, every pixel will be labelled as belonging to

the cluster that has the minor distance to the mean. After all pixels are classified, the algorithm will

estimate the new position of the centroids. This will lead to a new comparison of all pixels with

these new means and new labelling, changing the clusters. This process occurs until the means

of each cluster stays unchanged between two consecutive iterations. After this, the pixels of the

image assume the value of the mean of its cluster, producing a histogram with only k intensities.

Although it’s a precise segmentation method it has high computational cost, and produces poor

results if the images have low quality [56, 73].

Hidden Markov Models (HMMs). The model presented in Figure 3.13a describes a simple

model for a stock market index. The model has three states, Bull, Bear and Even, and three

index observations up, down, unchanged. The model is a finite state automaton, with probabilistic

transitions between states. Given a sequence of observations, example: up-down-down we can
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easily verify that the state sequence that produced those observations was: Bull-Bear-Bear, and

the probability of the sequence is simply the product of the transitions, in this case 0.2 0.3 0.3.

Figure 3.13b shows an example of how the previous model can be extended into a HMM.

The new model now allows all observation symbols to be emitted from each state with a finite

probability. This change makes the model much more expressive and able to better represent our

intuition, in this case, that a bull market would have both good days and bad days, but there would

be more good ones. The key difference is that now if we have the observation sequence up-down-

down then we cannot say exactly what state sequence produced these observations and thus the

state sequence is ‘hidden’. We can however calculate the probability that the model produced the

sequence, as well as which state sequence was most likely to have produced the observations.

(a) (b)

Figure 3.13: a) Markov process representation; b) Hidden Markov model representation [74].

3.3 Tracking/Motion Analysis in CAD Systems

Full understanding of any animate entity requires studying not only its spatial (anatomic) but also

its temporal (dynamic) properties [46]. It is therefore no surprise that research in medicine and

biology has come to rely increasingly on timelapse imaging and longitudinal examinations. In

both the health sciences and the life sciences, the technologically deficient times when researchers

had to draw conclusions based on static two-dimensional (2D) images are long gone, and it is now

commonplace to image and study subjects in three dimensions over time (denoted 3D+t or 4D).

Actually, the number of publications which included the words particle tracking, cell tracking or

similar as largely increased in the last years, as it is visible in Figure 3.14.

The general assumption made by most cell or particle tracking tools is that the cells are gen-

erally represented by bright regions against a darker background (the fluorescence microscopy

scenario). If this is not the case, or if the images are too noisy, it is necessary to apply suitable

filters to match this assumption. Most commercial tracking tools, as well as more general purpose

open-source software packages, offer ample functionality for image preprocessing [75]. Some of

the most relevant tracking algorithms on the market are summarized on Table 3.2.

Bearing in mind the main goal of this project it will be described in more detail FluoTracker

system. It will also be described NeuronDynamics tool, which was the precursor of NeuronDyn.
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Figure 3.14: Percentage of publications in the PubMed database as a function of publication year
for the indicated combinations of words in the title and/or abstract [75].

A final comparison will be established between these three algorithms in order to better understand

how our algorithm can be improved to obtain even better results.

The main goal of object tracking is to locate a moving object in consecutive video frames. Nor-

mally, a video tracking system combines two key steps: object detection and object tracking. The

first step, object detection, can be defined as the process of segmenting an object of interest from

a sequence of video scenes. This process should keep track of its motion, orientation, occlusion,

between others, in order to extract useful context information, which will be used on higher-level

processes. In the second step, object tracking, given the locations of the particles in successive

images, we need to link them along time. Object tracking can be a very difficult process due to

several problems, namely: the object’s shape and size may vary from frame to frame, partial and

full object occlusion, presence of noise and blur in video, luminance and intensity changes and

object’s abrupt motion [76–78].

Designing an universal tracking algorithm is nearly impossible due to the enormous variety of

images and objects to be tracked. Figure 3.15 illustrates object tracking process.

Figure 3.15: Schematic representation of multi-object tracking [76].
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Table 3.2: List of some available particle tracking tools. Adapted from [75].

Name Available Platform Dimension Automation
CellProfiler Free Win/Lin/Mac 2D Auto

ClusterTracker Free Matlab 2D Auto
Fluotracker Paid Matlab 3D Auto

Icy Free Java 3D Auto
Image-Pro Plus Paid Win 3D Auto

ImarisTrack Paid Win/Mac 3D Auto
ManualTracking Free ImageJ 3D Manual

MetaMorph Paid Win 3D Auto
MTrack2 Free ImageJ 2D Auto
MTrackJ Free ImageJ 3D Manual

MTT Free Matlab 2D Auto
Octane Free ImageJ 2D Auto

ParticleTracker Free ImageJ 3D Auto
plusTipTracker Free Matlab 2D Auto

PolyParticleTracker Free Matlab 2D Auto
SpeckleTrackerJ Free ImageJ 2D Semi

SpotTracker Free ImageJ 2D Auto
TIKAL Request Win/Lin 3D Auto
u-track Free Matlab 2D Auto
Volocity Paid Win/Mac 3D Auto

In an overall way, object tracking methods can be divided in three groups: point tracking,

appearance (or kernel) tracking, and silhouette tracking.

Point tracking. The detected objects are represented by points, and the tracking of these

points is based on the previous object states which can include object positions and motion. Point

tracking is a difficult problem particularly in the existence of occlusions, false detections of object.

An example of object correspondence is shown in Figure 3.16a [77, 79].

Appearance tracking. The object appearance can be for example a rectangular template or

an elliptical shape with an associated RGB color histogram. Objects are tracked by considering

the coherence of their appearances in consecutive frames (Figure 3.16b) [77].

Silhouette tracking. The tracking is performed by estimating the object region in each frame.

Silhouette tracking methods use the information encoded inside the object region. This informa-

tion can be in the form of appearance density and shape models which are usually in the form of

edge maps. Given the object models, silhouettes are tracked by either shape matching or contour

evolution (Figures 3.16c, 3.16d) [77].

Inside these three categories there are several tracking methods that are based on the same

general objective but differ in the process to achieve it. The main tracking algorithms are specified

in Figure 3.17. Some of the most used tracking algorithms are described then.

Kalman filter. The Kalman filter is an algorithm that uses a series of measurements observed



3.3 Tracking/Motion Analysis in CAD Systems 31

(a) (b) (c) (d)

Figure 3.16: Illustration of different tracking approaches. (a) Multipoint correspondence, (b)
Parametric transformation of a rectangular patch, (c, d). Two examples of silhouette matching [79].

over time, containing noise and other inaccuracies, and produces estimates of unknown variables

that tend to be more precise than those based on a single measurement alone. More formally, the

Kalman filter operates recursively on streams of noisy input data to produce a statistically optimal

estimate of the underlying system state. The filter is named for Rudolf E. Kálmán, one of the

primary developers of this method [80].

The algorithm works in a two-step process. In the first step, the Kalman filter produces esti-

mates of the current state variables, along with their uncertainties. After gathering the results of

the next measurement, these estimates are updated using a weighted average, with more weight

being given to estimates with higher certainty. Because of the algorithm’s recursive nature, it can

run in real time using only the present input measurements and the previously calculated state and

its uncertainty matrix. One of this method’s advantages is that Kalman filter does not require any

assumption of error distribution [81].

NNA Method. A simple and commonly used approach to link objects is the nearest neighbour

association. After an object is segmented in a certain frame, the distance between this object’s

position and similar objects’ position in the following frame is measured. The par of objects with

shortest distance between them is linked as the same object. [82]. Other extensions of this method

are: the probabilistic nearest neighbor, distributed sequential nearest neighbor, suboptimal nearest

neighbor, and global nearest neighbor (GNN).

The GNN tracking algorithm not only gives the nearest object from one frame to other, but it

also relates the information of a defined of number of frames. This method can deal with gaps,

which happen when one particle that is detected in one frame is not detected in the subsequent

one, appearing in a further frame. This algorithm can efficiently identify and associate targets in

complex state, such as targets with parallel movement, targets with intersecting movement, and

targets with turning movement, but it only associates at most one target point, ignoring divisions

[83, 84].

3.3.1 Vesicle Tracking

There are several problems regarding the tracking of neurotransmitter vesicles in images obtained

from neuronal cultures, using optical imaging, namely: high noise level and image artefacts,

non–uniform background, variant brightness of vesicles introduced by inherent heterogeneity of

the staining, variability of vesicle shapes and sizes, and partial occlusion and clustering. These

characteristics lead to difficulties in the detection of the vesicles. Inaccurate detection normally
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Figure 3.17: Object Tracking Methodologies [77].

leads to false positives (background noise classified as vesicle) or false negatives (missed detection

of real vesicles), compromising the quantification [82, 85].

An essential requirement for tracking a vesicle is to determine its position in each frame of the

image sequence. When the number of vesicles is fixed, there is high frame rate and the detection

step was well performed, this task is reduced to link objects between the frames. In that case NNA

offers a good and fast solution. As said before, NNA can be used to track vesicles, although it is not

the best approach taking in consideration vesicle events like the merge/split, birth/death, clusters,

lower quality of images with high background noise, changes of intensity of vesicles, and changes

in object’s area [82, 86]. Due to this nonlinear movement and events, non-linear approaches are

the best solution to track these biological targets.

3.3.1.1 FluoTracker

FluoTracker is a recursive Bayesian estimation algorithm that exploits intrinsic information con-

tained in an image sequence. The algorithm is sequential and uses information extracted from

previous frames to predict the most likely object position. The objects are detected and tracked

robustly despite complicating factors inherent to biological samples. In order to track a variable

number of objects with different movement characteristics, it uses multi-hypothesis tracking to

render the approach computationally feasible.
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It addresses problems associated with biological samples (e.g. autofluorescence, expression

levels), events (split/merge, birth/death and clutters) and imaging (e.g. excitation intensity, bleach-

ing) using three elements in their algorithm design (Figure 3.18):

1. Automatically separate the background from objects of interest by taking the maximum in-

tensity projected over the entire sequence using a range method. Additionally, for adjoining

objects, automated local analysis was used to determine a refined threshold to classify the

separate objects.

2. They introduced an appearance model, describing the pixel intensities of an object as a

discrete histogram, to identify unique objects in each frame. Other information such as

speed or shape was not reliable due to the large variation between frames.

3. After detection, it uses a method to link the objects throughout the image sequence while

conserving their identity. A complicating factor typical for biological samples is the chang-

ing number of objects in the image, caused by splitting/merging and birth/death of objects.

Figure 3.18: FluoTracker general workflow [82].

The program was coded in Matlab. Time-lapse stacks are converted into uncompressed AVI

files using MetaMorph and loaded into the FluoTracker program using a graphical user interface.

Automatic tracking of vesicles is done according to the flowchart shown in Figure 3.18. After the

movie is converted to a Matlab format, the objects are detected and then tracked. After tracking,

the objective magnification and time interval are entered and the location of the soma is indicated

by a mouse click before quantitative analysis, and the results are exported to Excel. The program

output consists of data on the number of frames each object was tracked, their direction and their

average, minimal and maximal velocity over their respective track. For validation, is used the

velocity and direction data from vesicles tracked from the first frame onwards for comparison

with the manual tracking [82].

3.3.2 Manual Tracking vs Automatic Tracking

In neuroscience, the quantification of the dynamic properties of cell constituents is mostly done

manually, an intensive and tedious labour operation due to the vast amount of data, often exceeding

thousands of cargo trajectories. This manual process is userbiased and requires experience to

correctly identify particles like vesicles. Despite the considerable range of tracking algorithms, the

most reliable results are still achieved through manual tracking. In contrast to human inspection,
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none of the automated tracking approaches to date controls the reliability of its output. Yet, cell and

particle tracking has a particularly fatal error propagation mechanism. Consequently, even robust

tracking algorithms with very low error rates can produce substantial amounts of false results, if

their reliability is not assessed independently. These facts allow semi-automatic tracking tools to

increase their potential, joining the benefits of the two types. They can build tools with a training

step where the user detects some particles and then the algorithm learns and does the rest. These

semi-automatic tracking tools present very good results and less computational errors.

3.3.3 Tracking Measures

The direct result of applying tracking tools is a sequence of coordinates indicating the position of

each tracked object at each time point. From these coordinates it can be extracted some meaningful

quantitative measures which are related to motility, diffusivity, velocity and morphology of the

moving objects. In this analysis, the first step is to obtain the trajectories of the tracked objects

from the measured coordinates. After this some measures related to motility can be obtained like

the total distance travelled, the distance between start and end point, the maximum distance from

the start or any other reference point, the orientation referring to a specific point and direction

and path of movement. Other measures that can be easily obtained are instantaneous and mean

velocity and morphological measures like area, centroid, major axis length and eccentricity [87].

3.4 Evaluation

Every CAD system needs an evaluation process to measure its performance and compare to a well-

established ground truth, allowing to compete adequately in the market and to be used in clinical

applications. The ground truth is normally established by at least 2 or 3 specialist in the field.

Regarding the classification of the algorithm, four types of labels can be applied to the candidates

(Figure 3.19):

• True Positive (TP): When a candidate is classified as positive and it really is;

• True Negative (TN): When a candidate is classified as negative and it really is;

• False Positive (FP): When a candidate, despite being negative, is classified as positive;

• False Negative (FN): When a candidate, despite being positive, is classified as negative [88].

Using these four quantities, there are many different parameters to evaluate the algorithm

response: Accuracy, sensitivity, precision/recall, specificity, F-measure, ROC curve (receiver op-

erating characteristic), among others.

Accuracy. The accuracy is a global performance measurement of the algorithm that shows the

percentage of correct classifications.

Accuracy =
T P+T N

T P+T N +FP+FN
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Figure 3.19: The round green object is miss-segmented as a diamond (red) [88].

Sensitivity. The sensitivity or recall indicates the true positive fraction, i.e., from all positives,

which percentage the algorithm considers.

Sensitivity = Recall =
T P

T P+FN

Specificity. The specificity expresses the percentage of times where the algorithm reports that

there are no lesions, when in truth there aren’t. 1-Specificity is the false positive fraction that, in

other words, indicates how many lesions are indicated when they shouldn’t.

Speci f icity =
T N

T N +FP

Precision. The precision indicates which fraction of the detections is relevant, i.e., how many

of the positive detected are really lesions.

Precision =
T P

T P+FP

F-measure. The F-measure combines the Precision (P) and the Sensitivity/Recall (R) through

a harmonic mean, showing the system’s behaviour when it gives more importance to precision or

to sensitivity, by comparing the resulting F-values to different values (that normally varies from

0.5 to 2). When = 0.5, precision counts double of the recall, and the inverse situation for = 2.

With a F-value higher than = 0.5, the system is more capable of, from the positive choices, to have

a higher true positive rate, but it’s less capable of detecting all positives.

Fβ = (1+β
2)× P.R

β 2×P+R

ROC Curve. The type of measurements discussed above allows the construction of a per-

formance curve (Receiver Operating Characteristic - ROC curve). This curve corresponds to the

sensitivity vs 1-specificity (Figure 3.20). Every time the true positive rate rises, the same occurs to
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the false positive rate. The ideal operation point is the left superior corner, where only positives are

detected. A bigger area under the curve corresponds to better performance of the algorithm [89].

Figure 3.20: Example of several ROC curves. In this case, by best performance order curve
A>B>C because there is a bigger area under the curve.

After reviewing the most recurring techniques used on image processing and analysis it is clear

the importance of choosing the most adequate method to the data we are dealing with. Using some

of the described evaluation parameters, we will evaluate our tool and compare it with a similar tool

from the literature (FluoTracker).



Chapter 4

Previous Work

In this Chapter it will be presented some previous work developed in BRAINlab group including

some algorithms regarding vesicle tracking problem. Firstly, we will analyze NeuronDynamics, a

precursor of the first version of NeuronDyn [4]. The present work is the 2nd version of NeuronDyn

and it is based on the flaws of the first version, consisting on an improvement of the algorithm aim-

ing to achieve more reliable results. This final version will be further described and the challenges

to address in the future will be analyzed.

4.1 NeuronDynamics

As explained in point 3.3, this project is a follow up to a master’s thesis [4] developed at FEUP.

This way, NeuronDynamics algorithm consists on a precursor of the current algorithm which has

been constantly improved in order to achieve better and more reliable results.

Image Acquisition. The video set used was provided by the Department of Functional Ge-

nomics, Vrije University, Amsterdam. It consisted in recordings of neurons conducting marked

vesicles (NPY-EGFP) obtained by confocal microscopy. The dataset was composed of two videos,

with a resolution of 399x201 pixel2 and a video frame rate of one frame per second. The number

of vesicles (true positives) per frame ranged between 25 and 29.

Algorithm Training. The first frame of the video was subjected to a visual enhancement

operation (linear expansion of the histogram). Then, the user marks a predefined number of strong

candidates for vesicles, a similar number of ambiguous candidates and the reference point for the

movement (cellular body). Each user-marked point was used as a seed point to a region growing

segmentation algorithm that allowed the extraction of four features for each vesicle: eccentricity,

centroid coordinates, area and major axis length. The training method used a Bayesian approach

with Mahalanobis distance, where both classes are obtained from the same image (with the same

variance) to get a linear classifier.

Vesicle Segmentation and Classification. Each frame of the video, disregarding all objects

next to the borders and with areas out of a user-predefined range, was enhanced by two sequential

filters: 1) an average filter for smoothing the image and 2) a Laplacian of Gaussian (LoG) for high

37
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frequency emphasis. The result of the operation was subtracted to the original image using the

criteria shown on the following equations:

Ip(i, j) =

{
ILOG(i, j) i f ILOG(i, j)> T.max{ILOG(i, j)}
0 otherwise

Iout(i, j) = Ip(i, j)− Iin(i, j)

Where T is a parameter to determine the threshold level, ILOG(i, j) is the output image from

the enhancement step, Ip(i, j) is the image after the threshold operation and Iin(i, j) is the orig-

inal image. For each segmented object the eccentricity and major axis length parameters were

obtained, as well as the coordinates for its centroid. The objects were then classified using the

fore-mentioned classifier.

Vesicle Tracking. The first step of the tracking stage was determining in which frame the

number of vesicles was the lowest. This allows to keep a consistent number of vesicles in each

frame and, at the same time, to avoid the influence of biological phenomena such as fusion, death,

splitting and temporary disappearing in the z-plane. The tracking was then performed from that

frame, to the first and to the last one. Each vesicle from each frame was compared to all the

candidates of the next frame and the new position was determined using, on plane z, the Euclidean

distance between two consecutive points Dv,k→k+1, where the new coordinates are those who have

the shortest distance to the previous position. This approach is derived from the NNA tracking

method with a notorious improvement: no fixed velocity is required. The vesicle speed Sv,k→k+1

was estimated (in pixels/second) by the following equation:

Sv,k→k+1 =
Dv,k→k+1

VideoRate

A vesicle is considered to be moving if it changes its position for at least a user-defined number

of consecutive frames (typically three). If the new position is farther away to the cellular body

than the last one, the vesicle is labelled as moving forward. If opposite, backwards, but can also

be bidirectional or even stopped. The general preferred movement is determined as the most

common vesicle movement in a global context, considering all the moving vesicles along all the

frames. This result, as well as the global average velocity of each movement, average velocity

and most common movement of each vesicle and vesicle velocity in each frame are outputs of the

method and can be exported to a MS Excel file. In Figure 4.1 is a pipeline of the algorithm.

NeuronDynamics showed good performance considering the values of accuracy, sensitivity,

specificity, precision and computational time (compared with FluoTracker and the ground-truth

established manually), that are presented in Table 4.1. The low computational cost (182 ms/frame)

is due to the less local information used. As most of the false positives are random noise or small

cellular components with high fluorescence, discarding them increases the ratio of true positives

and the precision of the detection [4].
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Figure 4.1: NeuronDynamics’ pipeline [4].

Table 4.1: Performance comparison between Fluotracker and NeuronDynamics algorithms [4].

Algorithm Accuracy Sensitivity/
Recall Specificity Precision F1 F0.5 F2 Computational

Time (s)
NeuronDynamics 0.853 0.849 0.956 0.978 0.818 5 1.25 0.183

FluoTracker 0.414 0.434 0.403 0.285 0.344 5 1.25 125.2
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4.2 NeuronDyn - First version

Improvements from NeuronDynamics.
The first version of NeuronDyn [4] was designed addressing the main problems of NeuronDy-

namics. This way the main improvements registered from NeuronDynamics to the first version of

NeuronDyn included:

• In vesicle detection and segmentation. The parameter T used in vesicle detection is chosen

automatically for each dataset unlike NeuronDynamics. This avoids user bias and saves

time;

• Before the training stage, the user has the option to see the entire film and choose in which

frame he wants to do the training stage. After this, the chosen frame is subject to a visual

enhancement operation to increase the contrast between the vesicle and the background;

• Possibility to upload up to three videos simultaneously, using the same training stage to

analyze all of the selected videos;

• The analysis can be performed on a single process of the neuron rather than in the entire

image. This saves time when most of the objects of interest are located in a specific region

of the image and it is pointless to spend time analyzing the rest of the image. Also reduces

the influence of surrounding noise on the results;

• Bayesian approach for classification replaced by a more robust classifier based on artificial

neural networks;

• Necessary adjustments on the GUI to include the above enumerated modifications.

Problems and open challenges.
Despite the good results obtained in this first version of NeuronDyn, there were still some

flaws and issues that could be corrected/optimized. As the candidate identification step does not

need to have high precision, a simpler method can be used improving algorithm’s speed. The

region growing methdod used for segmentation may become problematic if the stop condition is

not independent from the dataset used. This can lead to infinite growing causing Matlab to freeze.

Although the ANN classifier increased the results in terms of accuracy, specificity, sensitivity

and precision, it is too expensive in terms of computational time and complex to implement. It is

desirable to study other options that combine good results with low computational cost. Evaluation

is done with small datasets and number of frames. It is crucial to enlarge the ground-truth available

to ensure the reliability of the obtained results. The visualization of vesicles’ path can only be done

on a static image with their full path. A more interesting option would be to follow the evolution

of their path along the video.
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NeuronDyn

5.1 Introduction

The goal of this project is to perform neurotransmitter vesicle segmentation and tracking in 2D

confocal videos. The algorithm proposed uses an adaptive optimal threshold value for candidates

identification and a support vector machines based approach for classification. The tracking mod-

ule uses global nearest neighbor tracking method based in Hungarian algorithm [90] to associate

the vesicles over sequences of confocal images. This research is a result of a cooperation between

the Brain Lab group of INESC-TEC and Advanced Light Microscopy unit and Nerve Regeneration

group from IBMC.The software was programmed using Matlab R2014a.

5.2 NeuronDyn Modules

In order to respond to the existent problems and to address the investigators’ needs identified

in Chapter 4 , a multistage approach was developed and is divided in several stages: Training,

Candidate Detection and Classification, Vesicle Tracking and Quantification.

The NeuronDyn approach is schematized in the block diagram presented in Figure 5.1.

The algorithm starts by asking the user to upload the video and to select the desired type of

analysis, either global (analysis of the entire frame) or by processes (choosing only a branch of

the neuron). Then, the researcher can use an already trained classifier or train a new classifier. If

the last case is chosen it must be selected a frame to perform the training stage where examples

of vesicles and non-vesicles objects are marked. Based on this selection by the user, NeuronDyn

performs the segmentation and extracts the candidates’ characteristics. The classifier discards the

candidates that are not vesicles and the algorithm performs the tracking of the remaining true

vesicles to obtain some measures. Each block of NeuronDyn will now be presented with all its

features. Their presentation will follow the exact path researchers will have to go through when

using our tool.

41
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Figure 5.1: NeuronDyn’s pipeline
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5.2.1 Dataset Videos

The dataset available for this project is composed of a total of 13 time-lapse confocal microscopy

videos of living neurons. The first 10 videos were provided by IBMC while the last 3 were ob-

tained from the Department of Functional Genomics, Vrije University, Amsterdam, with neurons

conducting marked vesicles (NPY-EGFP). The number of true vesicles in each frame differs from

one video to the other ranging from 15 to 25. Datasets 1, 2, 3, 4, 9 and 10 were manually labeled

by experts and are our gold standard. The 13 videos’ characteristics can be observed in Table 5.1.

Table 5.1: Dataset Characteristics

Dataset Resolution Fram Rate
(fps)

Number of
Frames

1 to 8 1024x1024 11 107
9 512x512 1 60
10 1024x1024 1 60
11 399x201 1 61
12 298x187 1 61
13 298x211 1 61

5.2.2 Input Videos to NeuronDyn

The first phase of the NeuronDyn algorithm is to upload one or more videos (up to three). This

allows the user to run the algorithm and to do the training stage only one time, using the same

classifier on all the selected videos, saving a considerable amount of time. To optimize this mul-

tivideo classification, all the videos should present similar characteristics. NeuronDyn’s graphical

user interface (GUI) is presented on Figure 5.2.
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Figure 5.2: NeuronDyn’s Graphical User Interface

The initial block to upload the videos is constituted by a browse button and video information

window. After the selection of the first video, a message window will appear, asking if the user

wants to upload more videos (figure 5.3 b) ). After the videos are selected and loaded, their name

will appear on the selected videos list, where it is possible to see its width, height and number of

frames. It is also possible to play each video in a separate window.
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Figure 5.3: a) Video player in a new window; b) Message asking to upload more videos; c)
Browsing button and video characteristics

This multi video approach simplifies researchers’ work without compromising the results ob-

tained once the objects usually have similar characteristics. The videos are saved in structures and

can be reproduced multiple times before proceeding to the next step.

5.2.3 Parameters Selection

In this step, the user can select some parameters that will affect the tracking process, such as:

the number of frames to track, the area of the particles to consider in the process (minimum

and maximum value in pixel2), the minimum number of consecutive frames without movement

necessary for an object to be considered as non-moving vesicle, the frame rate, and the type of

analysis: Global, for the entire image, or Process analysis, for a small portion of an axon (between

two selected points).

Process Analysis

It is common that researchers only want to analyze a single neuron process. By selecting

Process analysis option, the user can perform the following tasks only on a portion of the image,

confining the area of interest to a smaller region that has higher density of objects to analyze.

This time saving option is also a good way to reduce computational cost and to minimize the

interference of noise on the area around the selected process.

The main steps of Process analysis are Path Detection and Process Selection:

Path Detection. To analyze the video by processes, first we need to know which region of

the image has vesicle movement to create the path image of the neurons. This detection consists,

firstly, on reducing the noise existent in each image so that its effects on the results are minimal.
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We are currently using Wiener filter for this purpose, which allows the removal of background

noise with good visual improvements in images with Gaussian distribution of noise. This adaptive

wiener filter smooths the image in function of the local variance, i.e., higher variance producing

lower smoothing and smaller variance, more smoothing. An adaptive filter obtains better results

when compared with linear filtering, preserving the edges and other high frequency parts of the

image. Also, a Gaussian filter was applied for visual enhancement. A Canny filter was applied

to obtain the edges (the limits of the paths and objects) and then an absolute difference was made

between consecutive frames. All the difference images resultant are overlapped and a global

movement image is saved. The image is then submitted to a set of morphological operations

to fill the holes and 10 pixels from each limit of the image are turned black to prevent the influence

of noise. The objects are then labelled and the ones with area<100 pixel2 (excluding objects which

are certainly not vesicles) and with eccentricity<0.85 (vesicles present an approximately spherical

shape) are eliminated. Figure 5.4 shows the pipeline of the Path Detection algorithm implemented

for NeuronDyn.

Figure 5.4: Path detection pipeline [4].
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Process selection. To select the process to analyze, the user is asked to select a starting and

end point on the original image. Figure 5.5 shows an example of that selection. Between the two

selected points a region-growing function was used to find the path that connects the two points in

the path image. If the points don’t belong to the same axon an error message is sent, until the user

selects two valid points.

Figure 5.5: Process selection and vesicle training detection [4].

Global Analysis

In the global analysis, the entire image is subjected to a visual enhancement operation (linear

expansion of the histogram). This option presents higher computational cost as the algorithm will

consider candidates from the whole image and will label all of them according to their features.

It may be the worst option if the goal is to obtain only a few representative examples of vesicle

dynamics in that video.

5.2.4 Algorithm Training

In the training block, the user can choose to use an already trained classifier or instead to train the

classifier at that moment using the selected video. In this last case, he can visualize each frame

of the selected video and choose in which he wants to perform the training stage. Next, the user

has to manually mark x examples of objects that are unequivocally vesicles and the same number

of ambiguous objects. Each user-marked point is then used as a seed point to a region growing

segmentation algorithm that allows the extraction of the centroid coordinates, object eccentricity,

major axis length and maximum intensity value. The training method uses an SVM based clas-

sifier with linear kernel. The features used for classification were the major axis length and the

maximum intensity values. Figure 5.6 shows GUI’s training block and training frame chosen by

the user, where the training input must be given.
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Figure 5.6: a) GUI’s training block revealing some of the parameters given by the user; b) training
frame chosen by the user, where the training examples are marked (in this case the user selected
process analysis);

5.2.5 Candidates Identification

Despite being an essential step in this kind of problem, candidate identification does not need to be

precise to the point of including only true vesicles, once the classification step will then exclude

exceeding candidates. Usually, researchers prefer not to detect all the true vesicles rather than

classify a non vesicle as a vesicle. This way, we opted for a relatively simple approach that could

perform well with low computational cost.

This way, an adaptive algorithm was used to select an optimal segmentation threshold to sep-

arate the candidates to vesicles from the background. The segmentation threshold is selected

through the following iterative procedure: Let T i be the segmentation threshold at step i, obtained

by calculating the mean intensity value between the two highest peaks on images histogram. To

choose a new segmentation threshold, we apply Ti to the image to separate object and background

pixels. Let µb and µn be the mean gray-level of the object pixels and background pixels after

segmentation with T i. Then the new threshold for step i+1 is

T i+1 =
µb +µn

2

This iterative threshold update procedure is repeated until there is no change in the threshold,

i.e., T i+1=T i . T i+1 is then selected as the optimal threshold value for that dataset [91].

The image is then submitted to a set of morphological operations to remove misdetections such

as objects with an area much bigger than the average vesicle size or with high eccentricity values.

This post-processing operation reduces possible artifacts which were considered candidates, sav-

ing time on the classification step.
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Figure 5.7: a) original image; b) candidates detected using optimal threshold value;

5.2.6 Classification

Before the tracking step, we need to find out which of the previously identified candidates are,

indeed, vesicles and which of them are not. In order to do so, we are using a SVM based algorithm

which, given a set of labelled training examples, constructs a model that assigns new examples into

one category or the other, making it a non-probabilistic binary linear classifier. A SVM model is

a representation of the examples as points in space, mapped so that the examples of the separate

categories are divided by a clear gap that is as wide as possible. New examples are then mapped

into that same space and predicted to belong to a category based on which side of the gap they

fall on [70, 71]. Two general attributes define the SVM algorithm: C, a hyper-parameter which

controls the trade-off between margin maximization and error minimization; and kernel, a function

that maps training data into high-dimensional features spaces. The kernel function is used to train

SVMs classifiers. The type of kernel function used is a key factor on the performance of SVM

classification algorithm. The types which are more commonly used are the linear (Linear SVM)

and the gaussian (Radial Basis Function, RBF) - RBF SVM [72]. In this phase of the project we

are using a linear kernel SVM classifier.

5.2.7 Vesicle Tracking

Usually, researchers are not interested on quantifying the movement of every vesicle from every

video. In fact they prefer to have only a few vesicles with profitable information, than to take

the risk of having every vesicle present on the video but also some misclassified vesicles that

can compromise the final results. The tracking method was chosen and designed taking this in

consideration and also the low image quality and the differences of fluorescence that the same

object can present in different frames. As only strong candidates are considered vesicles, one

common problem can be the exclusion of some vesicles that show low intensity in a determined

frame and, as a consequence, the tracing of two different paths instead of one. To overcome

this issue, an optimal association for multi-target tracking based on the Hungarian method was
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performed. This hungarian method provides Global Nearest neighbour tracking algorithm the

unique ability to deal with eventual gaps, once it consists on creating links amongst particle pars

found to be the closest (euclidean distance). It is also ensured that the sum of the pair distances is

minimized over all particles. Unlike the traditional nearest neighbour method, which simply links

an object with its nearest neighbour from the next frame, this algorithm takes in consideration a

user-defined number of frames choosing the most probable path. In Figure 5.8 it is possible to see

and example of the paths detected.

Figure 5.8: Static image of al detected paths (on the left) and possibility do see all paths frame by
frame (on the right).

After obtaining the tracks, the vesicle speed is estimated (in pixels per second). The vesicle

is then considered to be moving if it changes its position for at least a user-defined number of

consecutive frames (three by default), if its position does not change than the vesicle is considered

as stopped. If the new position is farther away to the cellular body (or the reference point, in

the absence of cell body in the image) than the previous one, the vesicle is labelled as moving

forward. Otherwise it is considered as moving backward and can even be considered as moving

bidirectionally if the direction of the movement changes along the video. The general preferred

movement is obtained as the most common vesicle movement in a global context, considering

each moving vesicle along all the frames. These results, as well as the global average velocity of

each movement and preferred movement of each vesicle are outputs of the algorithm. The output

data is then exported to an Excel file and can be further analysed and compared with data from

other videos. By default, the excel will be saved with the name of the program (NeuronDyn), and

the date.

5.3 Results and Discussion

Denoising and Enhancement
To reduce the background noise and improve contrast a sequence of Weiner and Gaussian

filters is used. In Figure 5.9 it is shown pixel intensities and the effect of each filter on them.
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Figure 5.9: A) Acquired image with intensity profile from Dataset 3; B) Image produced after
wiener filter; C) Image produced after Gaussian filter.

Detection and Segmentation
The core of the tracking procedure is candidate identification and classification. If this first

steps are accurate, the following steps will have better results. However there are some aspects to

consider that can difficult this task, including: the recordings are often noisy; the training stage

(when performed) has to be very strict because it can compromise the following steps producing

erroneous results.

Although we used a relatively simple method, the adaptive threshold approach performed well

and was able to exclude a big part of the artefacts and noise. Figure 5.10 shows the detected

vesicles in NeuronDyn based in the training choices.

Figure 5.10: Detected vesicles (right image) based on the training choices (left image).

Classification
The SVM classifier performed well specially if we considered the low computational cost it

presents. It is a very flexible method once you can optimize several parameters including the

kernel used. An example of SVM calssifier using RBF kernel is shown in Figure 5.11

Tracking
The principle behind tracking in NeuronDyn is a Global Nearest Neighbor, where the asso-

ciation is performed by Hungarian method. This method produces better results when compared
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Figure 5.11: Classification performed by NeuronDyn on manually marked objects in training
stage. The x axis represents eccentricity and the y axis major axis length.

with the naive nearest neighbor association, and considers some dynamic properties of the vesi-

cles: birth and death, gaps and clusters. However, the algorithm does not consider split and merge

events, not associating those vesicles. In the case of gaps, the algorithm searches for the next four

frames to fill its misdetection, continuing the track. Figure 5.12 shows the result of detected and

tracked vesicles.

Figure 5.12: Vesicles path obtained after applying the tracking algorithm. Coloured lines represent
the path of each vesicle. Highlighted on the figure is a zoomed view of one of the detected tracks.

The results are then exported to an Excel file (Figure 5.13), according to the user selected

parameters. It is possible to visualize the date, selected parameters, preferred movement, forward

and backwards velocities for each vesicle and the global values.
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Figure 5.13: Example of excel file with calculated vesicles’ movement measures.

The classification algorithm was evaluated based on some standard parameters and the results

were obtained by comparing masks created by the algorithm with the ones resultant from manual

marking. In a first phase of evaluation, it was used a limited number of datasets in order to allow

the comparison with a similar method from the literature (FluoTracker). The results of this step

are presented in Table 5.2.

Table 5.2: Classifier Preliminary Evaluation

FluoTracker
[82]

NeuronDynamics
[92]

NeuronDyn
(1st version) [4]

NeuronDyn
(final version)

Accuracy 41% 85% 99% 74%
Sensitivity 43% 85% 92% 89%
Specificity 40% 96% 99% 97%
Precision 29% 98% 77% 85%

Computational Cost
(s/frame) 125.2 0.183 20.18 0.245

By analyzing table 5.2 we easily observe that the results obtained with NeuronDynamics were

considerably better than the ones obtained by a similar method on the literature (Fluotracker).

From Neurondynamics to the first version of Neurondyn there was also an improvement on the

results, although they were obtained at a much higher computational cost, mainly due to the uti-

lization of an ANN based classifier. This way, one of the main points to improve on NeuronDynV1

was exactly to reduce computational cost without compromising the results. Once more by exam-

ining the table it is clear that the new version of the algorithm was able to maintain good results at

lower cost. However, the dataset used in this phase was still small and further testing was needed
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to support this preliminary results.

Bearing this in mind, the plan was to use datasets 1 to 10 to perform a more reliable evaluation

but researchers suggested to exclude datasets 5 to 8 due to presence of noise and doubt about the

relevant information that could be extracted, even using manual marking. This way, it was used a

total of 6 datasets (number 1,2,3,4,9 and 10 from Table 5.1) with a total of 548 analyzed frames.

As the datasets used were provided by IBMC exclusively for our project, we were not able to

continue comparing the tools developed by our group with FluoTracker.

Table 5.3 shows the results obtained by comparing all versions of our tool using the above

mentioned dataset.

Table 5.3: Classifier Final Evaluation

NeuronDynamics
[92]

NeuronDyn
(1st version) [4] NeuronDyn (final)

Accuracy 69% 81% 70%
Sensitivity 74% 79% 67%
Specificity 79% 87% 82%
Precision 70% 80% 73%

Computational Cost (s/frame) 0.25 30.46 0.31

After analyzing these final results we conclude that NeuronDynamics’ results dropped con-

siderably and it can be explained by several factors, including the utilization of a linear classifier

which is more susceptible to errors when adapting to new data or the different characteristics be-

tween the videos used on the first evaluation and on the last one (NeuronDynamics was optimized

based on the available videos at that time).

Both versions of NeuronDyn revealed more universality, once they were able to maintain a

good performance even with the inclusion of more datasets with higher resolution. This adaptabil-

ity is crucial because the videos we want to analyze in the future may present slight differences

from the ones available when the tool was developed. The most relevant distinction between the

first and second version is still centered on the amount of time consumed by the algorithm. This

aspect becomes even more important after multiplying the elapsed time in each frame by the total

number of frames in a video.

In general, the results show the classifier performed well although there are always improve-

ments to make. The low sensitivity value does not represent a big concern once it is mainly caused

by a high number of false negatives. This fact was expected once the algorithm was designed

bearing in mind researchers’ advice that it is preferable not to detect every vesicle than to include

non-vesicles in the results. Moreover, researchers generally only need to analyse some vesicles of

each video, enough to be a representation of general vesicles’ behaviour.
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Conclusions

The advances in neuroscience and the increasing challenges in the neuronal transport allowed

the development of solutions to better analyse and characterize particle’s movement, however it

is still done manually. In the present work, a semi-automatic vesicle movement characterization

algorithm was presented. It is known that manual vesicle counting and tracking is a tedious,

obsolete and time-consuming task. For these reasons, it is important to keep developing existent

tools in order to get acceptance from researchers and to implement the utilization of these tools

as a standard routine in researchers work. Semi-automatic algorithms combine the quickness of

automatic analysis and the know-how of experienced users. However, some issues are associated

to the tracking procedure, especially due to some vesicles events, misdetections and collisions of

objects.

Due to the large number of different conditions in image acquisition and cell/neuron features

and behaviours, designing a universal tracking system is impractical. However, NeuronDyn can

be improved in the future, mainly considering more robust tracking algorithms and implementing

it in a new programming language. The GUI can always be improved in order to make it more

user friendly.

Some of the latest NeuronDyn improvements include:

• Simpler candidate detection method using an adaptive threshold value;

• Region-growing method for candidates’ segmentation was replaced by an active contours-

based approach, which solved the problem of infinite growing and consequent freezing of

Matlab.

• More robust classification approach based on SVM, which also performed with lower com-

putational cost (the computational cost using ANN was 20.17 s/frame and with SVM was

0.24s/frame);

• Possibility to use an already trained classifier rather than train one every time we run the

algorithm;

• Vesicles’ path can be reviewed along time instead of presenting it on a static image;

55
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• Some more punctual improvements in terms of algorithm’s quickness and stability and in

GUI aspect (including the the alterations mentioned above);

• Evaluation was done using more datasets which ensures the reliability of the results ob-

tained.

We are currently gathering users’ feedback related to practical utilization of the tool but so far

the reactions are very positive.
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Abstract— The communication between two neurons is estab-
lished by endogenous chemical particles aggregated in vesicles
that move along the axons. It is known that an abnormal
transport of these vesicles is correlated with neurodegenera-
tive diseases. The quantification of the dynamics of vesicles
movement can therefore be a window to study early detection
of such diseases. Nevertheless, most of the studies in the
literature rely on manual tracking techniques. In this paper we
present a novel methodology for quantifying neurotransmitter
vesicle dynamics by using a combination of image tracking
and classification algorithms. We use confocal microscopy
videos of living neurons to detect and classify vesicles using
support vector machine (SVM), while motion is extracted via
global nearest neighbor (GNN) tracking approach. Results of
the classification algorithm are presented and compared to a
ground truth dataset defined by experts. Sensitivity of 90% and
specificity of 97% were obtained at a much lower computational
cost than an established method from the literature (0.24s/frame
vs. 125s/frame). These preliminary results suggest the great
potential of the method and tool we have been developing for
single particle movement dynamics measure in living cells.

I. INTRODUCTION

Communication between and inside cells is a vital func-
tion for human organism. In fact, intracellular transport of
organelles is a fundamental process and despite being inten-
sively studied, it is still an open challenge for researchers.

Neurons are highly differentiated cells composed of a cell
body, dendrites and axon, and are responsible for transporting
information from and to the brain. The communication
between two neurons is established by endogenous chemical
particles called neurotransmitters, which travel along neurons
axon aggregated in vesicles [1]. It is known that an abnormal
transport of these vesicles is correlated with neurodegenera-
tive diseases such as spastic paraplegia, Charcot Marie Tooth,
amyotrophic lateral sclerosis (ALS), Alzheimers, Hunting-
tons and Parkinsons. In fact studies show that altered vesicles
dynamics occur even before the first common symptoms are
detected [2], [3].
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With the rapid evolution of microscopy techniques and
computer science, it is now possible to acquire dynamic
images of moving cells, including neurons, and automatically
process them in order to extract a set of features that may
considerably facilitate researchers work.

To date, the characterization of vesicle movement has
remained a manual process where the researcher has to
individually mark every vesicle on each frame of the video.
Such a laborious process becomes impractical once the
number of vesicles per frame is usually large. In our work,
we leverage recent advancements made in the area of object
tracking to be able to automatically detect, classify and
extract relevant measures (such as backward and forward
velocity and morphology features) from vesicles [4], [5].
There are already some tools for cell and particle tracking in
the literature, developed for different platforms (Windows,
Mac, ImageJ, Matlab, between others) [6]. FluoTracker is
one of the most relevant contributions in this area. It consists
on a recursive Bayesian estimation algorithm that exploits
intrinsic information contained in an image sequence. The
algorithm is sequential and uses information extracted from
previous frames to predict the most likely object position.
The objects are detected and tracked robustly despite com-
plicating factors inherent to biological samples. In order to
track a variable number of objects with different movement
characteristics, it uses multi-hypothesis tracking to render the
approach computationally feasible [7].

However, most of the algorithms are fully automatic and
are not easily adapted to one specific problem. This could
constitute a disadvantage due to the wide variety of specifi-
cations that different videos can have. Besides, automation
can make them unattractive for researchers, which usually
like to have some control over the process.

Resulting from cooperation between BRAINlab engineer-
ing group from INESC-TEC Porto and IBMC - Instituto de
Biologia Molecular e Celular - Advanced Light Microscopy
unit and Nerve Regeneration group, where the need of
the project emerged, the main goal of this project is the
creation of a neuroscientist friendly computational tool to
help researchers achieving better and faster results in cell
particle tracking experiments.

Our approach consists in a semi-automatic tool which
is based on the combination of three methods: adaptive
threshold algorithm to detect candidates to vesicles; SVM
algorithm which classifies candidates into vesicles or non-
vesicles based on their characteristics; and global nearest
neighbor algorithm that captures vesicles trajectories over
time. Combined in an intuitive GUI, these three technologies



provide a unique ability to identify vesicles path and obtain
dynamic measures. The present work is an evolution of a
previous contribution of our group [8].

II. METHODS

A. Dataset

The dataset available for this project is composed of a total
of 13 videos of time-lapse confocal microscopy images of
living neurons with characteristics presented on Table I. The
first 10 videos were provided by IBMC while the last 3 were
obtained from the Department of Functional Genomics, Vrije
University, Amsterdam, with neurons conducting marked
vesicles (NPY-EGFP). The number of true vesicles in each
frame differs from one video to the other ranging from 15 to
25. Datasets 9, 10 and 11 are manually labeled by experts and
are our gold standard. The other datasets will be manually
labelled by experts in a second phase of the project.

TABLE I
DATASET CHARACTERISTICS

Dataset Resolution Frame Rate (fps) Number of Frames
1 to 8 1024x1024 11 107

9 512x512 1 60
10 1024x1024 1 60
11 399x201 1 61
12 298x187 1 61
13 298x211 1 61

B. Candidate detection & classification

Firstly, an adaptive algorithm was used to select an optimal
segmentation threshold to separate the candidates to vesicles
from the background. The segmentation threshold is selected
through the following iterative procedure: Let Ti be the
segmentation threshold at step i, obtained by calculating
the mean intensity value between the two highest peaks on
images histogram. To choose a new segmentation threshold,
we apply T i to the image to separate object and background
pixels. Let mub and mun be the mean gray-level of the
object pixels and background pixels after segmentation with
T i. Then the new threshold for step i+1 is T i+1 = µb+µn

2 .
This iterative threshold update procedure is repeated until

there is no change in the threshold, i.e., T i+1 = T i. T i+1 is
then selected as the optimal threshold value for that dataset
[9].

Before the tracking step, we need to find out which of the
candidates are, indeed, vesicles and which of them are not.
Given a set of labelled training examples, an SVM training
algorithm constructs a model that assigns new examples
into one category or the other, making it a non-probabilistic
binary linear classifier. A SVM model is a representation
of the examples as points in space, mapped so that the
examples of the separate categories are divided by a clear
gap that is as wide as possible. New examples are then
mapped into that same space and predicted to belong to
a category based on which side of the gap they fall on
[10], [11]. Two general attributes define the SVM algorithm:
C, a hyper-parameter which controls the trade-off between

margin maximization and error minimization; and kernel,
a function that maps training data into high-dimensional
features spaces. The kernel function is used to train SVMs
classifiers. The type of kernel function used is a key factor on
the performance of SVM classification algorithm. The types
which are more commonly used are the linear (Linear SVM)
and the gaussian (Radial Basis Function, RBF) - RBF SVM
[12]. In this phase of the project we are using a linear kernel
SVM classifier.

C. Tracking & obtained Measures

The GNN tracking algorithm not only relates the nearest
object from one frame to other, but it also relates the
information of a defined number of frames. This method
can deal with gaps, which happen when one particle that is
detected in one frame is not detected in the subsequent one,
appearing in a further frame. This algorithm can efficiently
identify and associate targets in complex state, such as targets
with parallel movement, targets with intersecting movement,
and targets with turning movement, but it only associates
at most one target point, ignoring divisions. In the case of
gaps, the algorithm searches for the next four frames to fill
its misdetection, continuing the track [13], [14].

Each vesicle from each frame is compared to all the can-
didates of the next frame and the new position is determined
using the Euclidean distance between two consecutive points
(Dv,k→k+1) where the new coordinates are those who have
the shortest distance to the previous position. This approach
is derived from the nearest neighbor tracking method with
a notorious improvement: no fixed velocity is required. The
vesicle speed (Sv,k→k+1) was estimated (in pixels/second)
by Dv,k→k+1 =

Sv,k→k+1

V ideoRate
A vesicle is considered to be moving if it changes its

position for at least a user-defined number of consecutive
frames (typically three). If the new position is farther away
to the cellular body than the last one, the vesicle is labelled
as moving forward. If opposite, backwards, but can also be
bidirectional or even stopped. The general preferred move-
ment is determined as the most common vesicle movement
in a global context, considering all the moving vesicles along
all the frames. This result along with the global average
velocity of each movement, average velocity, most common
movement of each vesicle and vesicle velocity in each frame
are outputs of the method.

D. Graphical User Interface

In order to enhance the usability and facilitate the interac-
tion between the user and the algorithm, we also developed
a GUI, shown in Figure 1.The GUI utilization intends to be
as simple and intuitive as possible to be biologists friendly.

In a first step, the user selects the video/dataset he/she
wants to analyze, being able to select up to three videos,
saving time in the training step (once the features extracted
may be similar from one video to another). After this, some
parameters can be defined in order to optimize the whole
process, including: number of frames to perform the tracking,
maximum and minimum particle size, maximum gap size (in



Fig. 1. GUI developed in this project.

frames) in which an object can disappear from the image and
still be considered a true vesicle, frame rate of the video, and
whether the user wants to perform global image analysis or
only in one specific process of the neuron.

In the training step there are two options available, either
the user does the training from zero or uploads the classifier
already trained from a previous utilization of the algorithm.

III. RESULTS

Visual results of the several steps of the algorithm are
shown in Figure 2. It shows an example of the dataset used
in this project, which was obtained from a living neurons
culture by confocal microscopy, and the preliminary results
of the segmentation step using an optimal threshold value to
encounter candidates to vesicles.

Fig. 2. A) Example of available dataset used in this project; B) Candidates
to vesicle detected by optimal threshold value (examples from dataset 5).

After this segmentation, candidates are analyzed with
SVM classification algorithm and grouped in two clusters

whether they represent true vesicles or artifacts which were
not excluded on the first step due to their similar intensity.
After the classification stage, vesicles path is tracked along
the previously defined frames and the results are presented
in a table similar to Table II.

TABLE II
OBTAINED MEASURES

Vesicle

Number Preferred Directiona Forward Speed
(pixels/s)

Backward Speed
(pixels/s)

1 1 0.0700 0.0241
2 2 0.0922 0.4898
3 2 0.1321 0.1972
...

a 0-stop; 1-forward; 2-backward; 3-equal;

It is also possible to visualize the detected vesicles path
on a static image or to follow its evolution along frames.
The results shown above can further be exported to an excel
document for posterior analysis. Figure 3 is an example of
the resulting image after the tracking algorithm is applied.
One of the vesicles path detected is zoomed and highlighted
in red.

In order to evaluate the performance of SVM algorithm,
we calculated some standard parameters such as: accuracy,
sensitivity, specificity, precision and computational cost [15],
[16]. Currently, the user is required to define the training
frame in which he/she marks x true vesicles and a similar
number of ambiguous vesicles (x is a number also defined by
the user). The remaining frames are then used as testing data.
In this phase of the project, we are using datasets 9, 10 and 11
to perform the evaluation of the classification. The training



Fig. 3. Vesicles path obtained after applying the tracking algorithm.
Coloured lines represent the path of each vesicle. Highlighted on the figure
is a zoomed view of one of the detected tracks.

stage is currently performed every time the program runs due
to the still limited ground truth provided by researchers.

The results are presented in Table III were obtained by
marking 10 true vesicles and 10 ambiguous vesicles as
training data.

TABLE III
CLASSIFIER EVALUATION

Fluotracker [7] NeuronDyn
Accuracy 41% 74%
Sensitivity 43% 90%
Specificity 40% 97%
Precision 29% 85%

Computational Cost
(s/frame) 125.2 0.24

IV. DISCUSSION AND CONCLUSION

Preliminary results indicate that the classification algo-
rithm performs well and with low computational cost, nev-
ertheless the dataset is still small. As this is a work in
progress, the tracking algorithm is still to be improved with
a larger dataset and by comparing obtained measures with
those obtained by manual tracking. With this contribution,
we achieved good results in terms of vesicle classification
and considerably faster than the traditional way and than
similar tools such as Fluotracker [7]. The project will now
progress to enlarge the ground truth dataset and evolve the
computational tool so that it can be integrated in the daily
usage of the neurobiology lab and contribute to speed-up
their data analysis procedures.
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Abstract 
In this paper we present a novel methodology for quantifying neurotransmitter 
vesicle dynamics by using a combination of image tracking and classification 
algorithms. We use confocal microscopy videos of living neurons to detect and 
classify vesicles using support vector machine (SVM), while motion is extracted via 
global nearest neighbor (GNN) tracking.  We present results of the classification 
algorithm when compared to a ground truth defined by experts. 
 

1. Introduction 

In recent years, there has been growing interest in the study of neurotransmitter vesicle 
dynamics as it is proved the relation between abnormalities in these dynamics and early stages 
of neurodegenerative diseases (Millecamps and Julien 2013). To date, the characterization of 
vesicle movement has remained a manual process where the researcher has to individually 
mark every vesicle on each frame of the video. Such a laborious process becomes impractical 
once the number of vesicles per frame is usually large. In our work, we leverage recent 
advancements made in the area of object tracking to be able to automatically detect, classify 
and extract relevant measures (such as backward and forward velocity and morphology 
features) from vesicles. Combined in an intuitive GUI, our algorithm provides a unique ability 
to identify vesicles’ path and obtain dynamic measures. 

2. Vesicle Tracking Approach 

Our approach is based on the combination of three methods: 

A. Candidate Detection using Adaptive Threshold Value: Firstly, we will use adaptive 
threshold to select a segmentation threshold to separate the candidates to vesicles from the 
background. The segmentation threshold is selected through an iterative procedure. Let Ti be 
the segmentation threshold at step i. To choose a new segmentation threshold, we apply Ti to 
the image to separate object and background pixels. Let µb and µn be the mean gray-level of 
the object pixels and background pixels after segmentation with Ti. Then the new threshold 
for step i+1 is 

𝑇𝑖+1 =  
µ𝑏+µ 𝑛

2
     (1) 

This iterative threshold update procedure is repeated until there is no change in the threshold, 
i.e., Ti+1 = Ti (Hu, Hoffman, and Reinhardt 2001). 

 B. Support Vector Machine for Candidate Classification: Given a set of labelled (vesicle 
or non-vesicle) training examples, an SVM training algorithm constructs a model that assigns 
new examples into one category or the other. An SVM model is a representation of the 
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examples as points in space, mapped so that the examples of the separate categories are 
divided by a clear gap that is as wide as possible (Steinwart and Christmann 2008). 

C. Global Nearest Neighbor Tracking Algorithm: The GNN algorithm not only associates 
each vesicle from one with its nearest neighbor from the next frame, but it also relates with 
information of a defined of number of frames. This method can deal with gaps, which happen 
when one vesicle that is detected in one frame is not detected in the subsequent one, 
appearing in a further frame (Banitalebi and Amiri 2008).  

3. Results 
The images obtained by confocal microscopy are converted to grayscale and an optimal 
threshold value is applied. Morphology features such as eccentricity, major axis length and 
area are extracted and candidates are classified by SVM algorithm. The vesicles’ path is 
defined by linking them over time using GNN approach. These steps are illustrated in Figure 
1. 

     
Figure 1: Example of available dataset used in our project (in the left); candidates 

detected by optimal threshold value (in the center); example of one of the 
detected vesicle paths (in the right). 

The SVM classifier was evaluated by comparison with groundtruth manually established by 
experts. The results are shown in Table 1. 

Accuracy Sensitivity Specificity Precision Computational Time (s/frame) 

74% 90% 97% 85% 0.24 

Table 1: Classification algorithm evaluation based on some standard parameters. 

4. Discussion and Conclusions 
Preliminary results indicate that the classification algorithm performs well and with low 
computational cost, nevertheless the dataset is still small. As this is a work in progress, the 
tracking algorithm is still to be tested and improved with a larger dataset and by comparing 
obtained measures with those obtained by manual tracking. 
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