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with him in this project, giving me the opportunity to do research on one of my favorite

fields of study.

A special thanks to my colleague Carlos Machado, for all the advice and expertise in some

hardware issues.

To my family, for all the patience and support, and specially for the unconditional love.

Last but not least, to my friends, who shared most of my growth and happiness in this

journey.

This work was supported by “Project RTS - Real Time Languages and Tools for Critical

Real-Time Systems” (contract NORTE-07-0124-FEDER-000062)

II



Resumo

Programar Redes de Sensores-Atuadores Sem Fios (WSN) não é uma tarefa trivial, dada a

variedade de configurações de hardware que são altamente dependentes da aplicação final.

Além disso, os sistemas operativos e máquinas virtuais existentes, na maioria dos casos

muito próximos do hardware, tornam esta tecnologia pouco apelativa e, por consequência,

impedem a sua mais ampla disseminação .

Nesta tese apresentamos uma nova versão da arquitetura SONAR, que tem como objetivo

minimizar o esforço necessário para configurar, programar e implantar uma WSN. Esta

arquitetura fornece um serviço de publish/subscribe que pode ser utilizado pelos clientes

para facilmente acederem às streams de dados geradas nos nós da rede, permitindo, ao

mesmo tempo, a gestão da rede, incluindo a sua reprogramação dinâmica e debug. A

arquitetura SONAR é composta por três camadas, que implementam uma interface de

cliente ao estilo shell, um serviço de broker e um sistema operativo e máquina virtual

que vêm pré-instalados nos nós da WSN.

Realizamos ainda um conjunto de testes que medem o impacto da nossa solução em termos

de tempo, consumo de energia e memória nos nós da rede. Os resultados obtidos mostram

que o impacto associado à utilização do nosso sistema operativo e máquina virtual é

relativamente pequeno, para os parâmetros medidos.

Para testar a portabilidade da nossa camada de dados, portamos a nossa implementação de

uma WSN baseada em Arduinos Mega2560 para outra baseada em Arduinos Uno. Estes

últimos são significativamente mais restritos em termos de recursos e configurações de

hardware. Esta experiência mostra que a quantidade de código que necessita de ser reescrito

é muito pequena (apenas algumas linhas), sendo ainda de referir que essas alterações

foram feitas em bibliotecas espećıficas para componentes de hardware, tendo-se mantido

inalterado o código referente ao sistema operativo e à máquina virtual com exceção de

algumas definições básicas de parâmetros.
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Abstract

Programming Wireless Sensor-Actuator Networks (WSN) is a non-trivial task, given the

multitude of hardware configurations that are highly dependent on the final application.

Moreover, the existing operating systems and programming languages, mostly very close

to the hardware, make the technology unappealing to the masses and therefore preclude

its wider dissemination.

In this thesis we present a new version of the SONAR architecture, which aims to minimize

the effort needed to configure, program and deploy a WSN. The architecture also provides a

publish/subscribe service that can be used by clients to seamlessly access the data-streams

generated by the sensing nodes while allowing, at the same time, the management of the

network, including its dynamic reprogramming and debugging. SONAR is a three-layer

architecture composed by a shell-like client interface, a broker service, and an operating

system and virtual machine installed in the nodes of the WSN.

We perform a set of tests that measure the impact of our solution in terms of time, energy

consumption and memory footprint on the devices. The results show that the resource

footprint associated with our operating system and virtual machine is small in all the

given parameters.

To test the portability of our data layer, we port the implementation from an Arduino

Mega2560 based WSN to another one based on Arduino Uno devices. The latter are

significantly more constrained in terms of resources and hardware configuration. This

experiment shows that the amount of code re-write is very small (just a few lines) and

these changes are done in libraries specific of hardware components. The operating system

and virtual machine are untouched, except for the definition of basic constant parameters.
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Chapter 1

Introduction

In the past 25 years, advances in hardware manufacture and wireless communications

provided the means to develop a new class of embedded devices, capable of interconnecting,

sensing physical conditions and of interacting with the environment.

In this context WSN arise as a new paradigm of networks. A WSN can be defined as

a distributed system composed of a varying number of embedded devices, usually called

nodes, provided with a processing unit, a wireless communication interface, and a set of

sensors/actuators, making these devices capable of sensing real physical environment or

interacting with it [1].

Figure 1.1 depicts an example of a typical WSN scenario. A set of nodes with different

sensors/actuators communicate via a radio interface, transmitting the sensed data to a

gateway (data collection node), which is directly connected to computing resources. A set

of clients can then access this data via a traditional network.

Given the characteristics of WSN nodes, the basic mode of operation of these networks

differs significantly from traditional ones. In [2], the authors present three main differences:

1. Nodes are highly restricted in terms of energy, computational power and memory;

2. The design of a WSN is strongly driven by each particular application;

3. The deployment of WSN applications requires self-configuration of nodes and soft-

ware updates in the network without human intervention.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: WSN typical scenario example.

The application areas of WSN goes from medical diagnosis, wildlife monitoring, traffic

control, military systems, precision agriculture, among others [3]. Currently, there is a

trend to increase the usage of WSN into new areas, alongside with development of the

so-called Internet of Things (IoT) [4].

1.1 Context

Despite their wide range of applications, WSN are still rather cumbersome to use, especially

by non-specialists. A few reasons can be identified for why this is so:

• The user needs a high level of expertise in configuring sensor devices, as well as low

level programming;

• The wide offer of hardware platforms that can be used to deploy WSN contribute to

a lack of portability of the applications;

• In most of the cases, the dynamic reprogramming or debugging of the deployment is

a difficult task to do, impossible in some cases;

• The integration of a WSN with a traditional network is not trivial.
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1.2 Motivation

Project Sensor Observation aNd Actuation aRchitecture (SONAR) [5, 6] purposes a three

layer framework that allows a seamless deployment of a WSN. Figure 1.2 depicts the

architecture used.

Figure 1.2: Previous architecture of SONAR

The Client Layer provides thin-clients implemented with a user-friendly Java Graphical

User Interface (GUI) that provide hooks to access the Processing Layer to manage the

deployments or to receive data streams. The management actions include: add/remove

a periodic task to a deployment, change the period of a running task and view the data

generated in a running task.

The Processing Layer is responsible for the reception and storage of the data generated in

the Data Layer, as well as providing remote methods so the client can access this data. This

layer also propagates management actions originating in the Client Layer to the underlying

Data Layer.

The Data Layer is composed of a set of nodes and a single gateway (the initial implementa-

tion uses nodes based on Arduino Mega 2560 [7]). The nodes run a small operating system

and virtual machine that schedule and run byte-code for tasks written in a domain-specific

programming language, the SONAR Task Language (STL).
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The initial SONAR architecture presented several limitations, first identified in [6]. These

include:

• non-scalable storage of data generated by WSN deployments;

• complex management of pre-compiled modules required for different platforms; a

hardware independent format is desirable;

• non-scalable, centralized processing of data in the Processing layer;

Some proposed solutions are forwarded in [6] but an implementation is lacking, together

with an evaluation of performance in the time/energy axes.

1.3 Problem Statement and Proposed Solution

The development and integration of systems that make use of WSN is still a hard task to

do, given the significant differences with traditional networks.

In this thesis we build on the work initiated in [6] and propose to answer the following

relevant research questions:

1. Is it possible to develop a framework for programming, configuring and deploying

WSN in a seamless way, providing clients with the corresponding data-streams?

2. What is the impact of this approach on hardware/energy resources?

3. Can we do this in such a way that it is portable across WSN and allows dynamic

reprogramming and debugging?

To answer these questions, we divide the work done in this thesis in three main phases:

1. Rewrite the Client and Processing Layer of SONAR, implementing command-line-

based thin-clients and a publish/subscribe broker;

2. Evaluate the impact of our approach in terms of computation overhead, energy

consumption, memory usage, and code size, with respect to a native Arduino, C++-

based solution;
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3. Test the effort of porting our architecture to different hardware nodes.

With respect to the former implementation of SONAR, the work presented in this disser-

tation involved:

1. the redesign and implementation of the client and processing layers, namely pub-

lish/subscribe broker and clients, and an administration client;

2. rewriting part of the virtual machine installed in the nodes (data layer), and extensive

testing;

3. significant changes to the SONAR Task Language (STL) compiler;

4. performance and resources usage evaluation of a prototype ported to a Arduino 2560

based WSN;

5. port the prototype to the Arduino Uno microcontroller.

1.4 Outline

The remainder of this thesis is organized as follows: Chapter 2 presents the state-of-the-

art in software systems for WSN relevant for this work. Chapter 3 presents a high-level

overview of the current SONAR architecture, detailing each layer and its components.

Chapter 4 presents the technical aspects related to the modification of the architecture.

Chapter 5 presents a formal description of the SONAR software that comes pre-installed

in the nodes, depicting the programming language used to write new tasks, the operating

system and virtual machine of these nodes, and the compiler we created to generate the

byte-code representation of the written tasks. Chapter 6 presents the evaluation of the

impact associated with our prototype, in terms of time, energy consumption, memory

usage, and code size comparing to the same implementations using the Arduino native

language. In Chapter 7 we describe the process of porting our prototype to Arduino Uno

based nodes with greater memory constraints, focusing on the changes made, which we try

to quantify. Finally, Chapter 8, presents a summary of the conclusions obtained in with

this work, as well as a set of changes to be implemented as future work.



Chapter 2

Related Work

In this chapter we present a survey on the state-of-the-art relevant for this thesis.

Section 2.1 starts by analyzing the relevant work done in the field of Programming Lan-

guages for WSN. Section 2.2 describes projects that developed operating systems and

virtual machines for WSN. Finally, Section 2.3 ends the chapter with existing publish/-

subscribe systems for WSN. Along the chapter we try to establish a parallelism between

our work and other approaches.

2.1 Programming Languages

Despite the advances observed in the last years, programming WSN applications still

remains a hard task to do, given the wide range of existing programming languages, aside

with the high heterogeneity of platforms. Most of the available languages work at low

level and focus on the development of specific types of applications. With respect to the

platforms, the configuration of the hardware is not a trivial task. Both these aspects

introduce the need for expert users.

Currently, there is a considerable range of programming languages for WSN, each with a set

of advantages/disadvantages in what concerns to the development of a specific application.

Next, we present a brief description of three different languages, each one belonging to a

different programming paradigm. To simplify the analysis, we define some taxonomy on

the programming languages for WSN.

6
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In [8], Gummadi et al. present a taxonomy that divides the programming languages in two

main groups, according to the network perception: macroprogramming and node-centric

programming. The former corresponds to an approach where application development is

done without defining the behavior of each node individually, the latter corresponds to an

approach where there is the need for the definition, and deployment of the behavior of each

node.

A different taxonomy was purposed by Mottola et al. in [1]. They present an extensive

survey on a set of different aspects related to programming WSN. In this article, they

purposed a taxonomy related with the language aspects, divided in four categories: Com-

munication, Computation Scope, Data Access Model, and Programming Paradigm. In

the current context, we only analyze the Programming Paradigm dimension as it is the

most relevant for this thesis when analyzing the following set of programming languages.

According to Motolla’s taxonomy, there are three main types of programming languages:

Imperative, Declarative, and Hybrid. The first type corresponds to the languages where

programs are described in terms of statements that change the program state, which can

be divided in Sequential and Event-Driven languages; the second type corresponds to the

the languages that expresses the logic of a program without describing the control flow,

which can be divided in Functional, Rule-Based, SQL-Like and Special-Purpose; the third

type corresponds to the programming languages that adopt a mixture of the two previous

ones. Figure 2.1 presents a scheme describing the two taxonomies previously presented.

Next, we describe and categorize the set of programming languages that may be relevant

in the current context of WSN, analyzing the network perception and the programming

paradigm of each.

2.1.1 Programming Languages Overview

TinyDB [9] is a query processing system focused in the optimization of energy consump-

tion, running in the top of TinyOS. It incorporates acquisitional techniques along with

traditional query techniques, taking advantage from the fact that sensors possess control

over when, where and how periodically the data is sensed and delivered to query processors.

Madden et al. detail in [9] all the aspects related to the query language implemented in

TinyDB, as well as the optimizations made in order to minimize the energy consumption,

the query dissemination in the system and, finally, the model created for query execution

and result collection.
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(a) Network Perception (b) Programming Paradigms

Figure 2.1: Network Perception and Programming Paradigms

nesC [10] is an event-driven programming language that extends the C language, built

atop of TinyOS. It is based in components that are assembled to form programs, as

well as bidirectional interfaces, which specify the components behavior in terms of their

interfaces. The interfaces specify the functions to be implemented by the interface’s

provider (commands) and by the user of the interface (events). nesC static links the

components via their interfaces, increasing their runtime efficiency and robustness [11].

Gay el al. detail in [10] the design of nesC, as well as summary of their experience with it.

Regiment [12] is spatial macroprogramming language and runtime environment, with a

compiler compiler that targets a lightweight intermediate representation called the Token

Machine Language. It is based in the concept of Functional Reactive Programming, a pro-

gramming paradigm that uses some building blocks of functional programming languages,

like map, reduce, or filter. It was designed to support Spatio-Temporal Macroprogramming

applications. In Regiment, the network is seen by the programmer as a set of spatial-

distributed and time-varying signals, which represents the state of an individual node or

region aggregate. Given this fact, the development of an application using Regiment is

based in the usage of three main language concepts:

1. Signals, which are principal object the developer control;
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2. Regions, which represent a collection of signals;

3. Nodes, which allows the developer to access the state of an individual node.

A Regiment program is translated to a node-level program using the language compiler. In

this process, the program code is first reduced to an intermediate language called RQuery,

which is finally translated to node-level code. In the process, the compiler performs many

stages of node normalization, analysis and optimizations. Newton et al. present in [12]

an overview of the Regiment language, describing in detail the respective compiler and

deglobalization techniques, as well as an evaluation of performance of some event-detection

in simulation.

Table 2.1 summarizes the information for the three programming languages presented that

are representative of the state-of-the-art.

Prog. Language Network Perception Prog. Paradigm

TinyDB Macroprogramming Declarative, SQL-Like
nesC Sensor-Based Imperative, Sequential
Regiment Macroprogramming Declarative, Functional

Table 2.1: Programming Languages classification

2.2 Operating Systems and Virtual Machines

The restricted resources that characterizes WSN makes the usage of a traditional Operating

System (OS) impracticable, given the fact that tradition OS are designed for devices

with significantly more resources. These differences should be taken into account when

developing a OS for nodes in a WSN.

There are a set of functionalities that an OS should provide and that include: resource

abstractions for different hardware devices, interrupt management, task scheduling, con-

currency control and networking support. Moreover, the OS should provide the application

programmers high-level Application Programming Interface (API), independent of the

underlying hardware [13].

Concurrently, virtual machines presented another important approach in developing WSN.

Despite the great advantages of using OS, like performance optimization and the reduction
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of energy consumption, the lack of interoperability and reprogramming of the network

makes them not totally satisfactory. In this context, Virtual Machine (VM) allow a more

flexible model for application development, eventually with some performance and energy

efficiency penalties.

In the next two subsections we describe the most important works done in these areas,

focusing in the main characteristics of each one. This part of the study will help under-

standing the current approaches that are being used when developing OS and VM for

WSN.

2.2.1 Operating Systems Overview

TinyOS is one of the most used OS for WSN, which can nowadays be thought as a standard.

It is a tiny multithreaded OS whose implementation tries to guarantee concurrent data flow

among hardware devices, providing modularized components with a small processing and

storage overhead. It follows an Event-based model designed to support high levels of

concurrent applications in a small amount of memory, using a simple FIFO mechanism for

task scheduling. Levis et al. [14] presents a complete description about the system where

they analyze the system components, execution models and support for concurrency.

Contiki [15] is an open-source OS designed for networked embedded devices, implemented

in the C language. A running instance of Contiki is composed for a kernel, a set of libraries,

program loader and a set of processes. In Contiki all the communication between processes

goes through the kernel, given the fact that it does not provide a hardware abstraction

layer. However, it allows devices and applications to access the hardware directly. This

OS allows preemptive multi-threading, implemented as a library on top of the event-based

kernel, which can be optionally linked when implementing applications that require a

multi-threading model of operation. Contiki’s kernel is a lightweight event scheduler that

dispatches events to running processes, with a periodical call to process polling handlers.

One particularity of Contiki is the implementation of a lightweight uIP TCP/IP stack,

allowing IPv4 and IPv6 addressing with a small footprint. Application development in

Contiki is made using the C language and it allows an over-the-air programming of the

entire network. Dunkel et al. [15] presents a full description of the Contiki, analyzing in

detail the construction of the kernel and the preemptive multi-threading. The authors also

analyze how Contiki handles the libraries and how it support communication, finishing the

article presenting some bedtests using this OS.
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LiteOS [16] is an OS for WSN, designed to provide a UNIX-like environment. It includes

a hierarchical file system, wireless shell interface, kernel support for dynamic loading,

native execution multithreaded applications, online debugging and a file system assisted

communication stack. The system is composed of three main parts: LiteShell, LiteFS and

the LiteOS Kernel. The former provides a UNIX-like command line interface to motes,

running on the Base Station PC side; The second provides support both for files and

for directory operations; the latter corresponds to a kernel design approach based on the

usage of threads, which at the same time allows the user applications to handle events using

callback functions. By default, LiteOS uses a priority-based scheduling scheme for task

scheduling, but it is possible for the user to configure the system so it uses a round-robin

scheduling scheme. Cao et al. [16] presents a detailed description about the design and

implementation of LiteOS, its programming environment and some applications samples.

They also present some evaluation results, as well as a brief description about some other

features offered by LiteOS.

SOS [17] is an OS composed by a common kernel and a set of dynamic application modules,

which can be loaded and unloaded at run time. It uses dynamic memory both in the kernel

and the application modules, decreasing the complexity of writing tasks and increasing

the temporal memory re-usage. The scheduling is based in a priority scheme, providing

support for time-critical applications and, at the same time, moving the processing out of

an interruption context. The implementation of an application for SOS is made using the

standard C language, reducing the learning curve while taking benefits from the existing

compilers, debuggers and analytic tools. C also provides an efficient execution, needed in a

environment composed of hardware constrained devices. Han et al. [17] presents a detailed

description of SOS architecture, focusing in a comparison with TinyOS. After that, some

application samples are presented, ending with a system evaluation.

RIOT [18] is an OS which design and implementation was made focusing in the concept

of the IoT, aiming to fulfill the gap between OS for WSN and traditional OS running

on Internet hosts. It implements a modular microkernel architecture, with a minimal

computational and memory overhead, inherited from FireKernel [19]. These characteristics

makes it robust against bugs in single components. RIOT implementation supports multi-

threading with a standard API and provides a TCP/IP network stack. The number of

threads created is not limited by the OS itself, being only limited by the available memory

in the device. Baccelli et al. [18] presents an analysis on the requirements of devices for the

IoT, as a motivation to the development of RIOT. After that, they present a comparison

on the existing OS, finishing with the description of RIOT characteristics.
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2.2.2 Virtual Machines Overview

Squawk [20] is a Java micro edition VM specially designed for the usage in embedded

devices. One of the main innovations of Squawk is the fact that almost all of the VM is

written in Java, except for the Java interpreter and the binary bootloader. It provides

OS level mechanisms for small devices, as well as easy to port applications and VM

debugging. Given the fact that applications are written in Java, Squawk takes advantage

from the fact that this programming language offers type safety, garbage collection and

exception handling, contributing for a more robust and reliable application development.

Applications running in this VM use Squawk byte-code, an optimized version of Java

byte-code obtained by transformation. The optimizations made were essentially focused

in minimizing space, in-place execution and to simplify the work of the garbage collector.

Some optimizations were made in the core data structures used in order to save space.

The execution model of Squawk allows the usage of green threads, which emulates multi-

threaded environments without relying on any OS capabilities. Simon et al. [20] presents

an extensive description of Squawk, detailing the internal implementation of this VM. They

also present a set of examples on programming Sun SPOTs and some experimental results.

Maté [21] is a VM based in a byte-code interpreted that runs on TinyOS. Applications

are implemented using a low level language in which transmission is based on the usage

of capsules which containing up to 24 instructions, where an instruction is stored in a

single byte. The limit of instructions in a capsule corresponds to the maximum number of

instructions that fit in a single TinyOS packet. A complete program can be composed by

more than one capsule, that can forwards themselves through the network with a single

instruction. Maté uses two stacks: an operand stack and a second one corresponding to

the address stack. It provides various ways of routing capsules: a built-in ad-hoc routing

algorithm which is used by default and a set of mechanisms available for writing new routing

algorithms. Given the hardware constrains in WSN, Maté was designed to run with the

smallest hardware requirements possible. The size of Maté itself and all his subcomponents

fit in 1kb of RAM and 16kb of instruction memory. Mueller et al. [21] presents a detailed

description of Maté design, structure and implementation, as well as a brief description of

the underlying OS, TinyOS. They also present some analysis of behavior and performance

of the VM, discussing their own evaluation of Maté.

TinyReef [22] is a register-based VM for WSN. It runs on top of TinyOS and was designed

with the premise that registered-based VM provides some advantages related with the

fact that it requires less instructions to implement a task, e.g. smaller programs and
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less update costs, which can compensate the offset introduced compared with stack-based

VM. The architecture is divided in five main parts: a Program State, a Loader, an

interpreter, a Instruction Set and an Event-Handler. The implementation of a program

is based in a low-level approach, where programs are divided in two main parts: a Data

segment, which stores all the static variables used and a Code segment, which contains the

program instructions. Marques et al. [22] a description on the implementation of TinyReef,

describing the main challenges of using VM in constrained devices and showing some basic

samples of programs written for TinyReef.

VMF [23] is software system based in the usage of a VM and a OS, whose implementation

was made with three main challenges in mind: 1) High heterogeneity of end systems in

WSN; 2) Need of dynamic updates in deployed software; and 3) Supply of a rich pro-

gramming interface while respecting the resource constrains in end devices. Programs are

written in Java, with access to the I/O and sensors via native interfaces. The architecture

of VMF includes six main parts: a component language for representing system software

components, a set of tools for analyzing and compacting Java classes, a component based

OS, a component based implementation of a subset of the VM, a set of tools for synthesizing

the VM and the underlying OS and an incremental linker to add features to the system.

Koshy et al. [23] a conceptual overview and implementation details of VMF, ending with

some evaluation results obtained in tests.

2.3 Publish/Subscribe Systems

Message Queue Telemetry Transport for Sensor Networks (MQTT-SN) [24] is an extension

of the open publish/subscribe protocol Message Queue Telemetry Transport (MQTT) [25],

developed to use in the top of TCP/IP protocol. Originally it was called MQTT-S, with

the S commonly confused with Security. It follows the design concept of MQTT, focusing

in allowing operations on low-cost and low-power sensor-actuators devices, most of the

integrated in non-TCP/IP networks. The main usage of this protocol is to provide a

simple and scalable communication mean while allowing a seamless integration of the

WSN into the traditional networks. In a MQTT-SN system, the running applications and

devices can be both Publisher and Subscribers. The published message always passes in the

Broker, even if they both reside in the same network. The construction of the widespread

topics is based in a hierarchical scheme, e.g. wsn/sensors/room183/node1. It supports

the usage of three levels of Quality of Service (QoS), not totally working when the main
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article about this work was released. The communication between the devices/clients inside

the WSN with the traditional network is made through the Broker, passing first for the

network Gateway. This protocol allows more than one running gateway, providing more

robustness. Hunkeler et al. [24] presents a full description of the MQTT-SN, as well as

some performance bedtests.

Mires [26] is a Publish/Subscribe middleware for WSN. The design and implementation

of this middleware was made in order to encapsulate the network, providing a seamless

access to the available nodes through a Publish/Subscribe architecture and facilitating the

development of applications to WSN. The implementation was made atop of TinyOS. In

Mires, the Publish/Subscribe mechanism is composed of three main phases: 1) a running

node, which wants to publish, advertise its available topics; 2) when data is available

to be published, the node routes that data to the sink node; 3) after verifying that the

received message has at least one subscriber, the sink node broadcasts that message down

to the network nodes. Souto et al. [26] presents a full description of this Publish/Subscribe

middleware, as well as environmental monitoring application used to validate their work.

TinyREST [27] is a Representational State Transfer (REST) middleware developed to

allow the exchange of information between an WSN and the Internet, using an Hypertext

Transfer Protocol (HTTP)-like approach. This system was built using MICAz [28] nodes,

which runs TinyOS. TinyREST uses a multi-threaded lightweight HTTP-2-TinyREST

gateway which is responsible to actuate as an interface between the sensors/actuators and

the clients. All the interactions made with the network are based in three methods: GET,

POST and SUBSCRIBE, which allows the users to, respectively, read the value of a sensor

in a specific node (e.g. GET /gatewayIP/dinningroom/temperature), change the current

value of a sensor/actuator (e.g. POST /gatewayIP/dinningroom/heater/on) and subscribe

for an event of interest (e.g. SUBSCRIBE /gatewayIP/entrance/motion-sensor/change).

Additionally, all of the three methods used to interact with the network can be forwarded

by the gateway to a set of nodes, or broadcasted to the entire network, using an addressing

mechanism. Luckenbach et al. [27] presents a full description of the implementation of

TinyREST, as well as some robustness, data loss and communication delay bedtests made

using the MICAz nodes.

MufFIN [29] is a generic middleware framework that allows for managing and programming

Internet of Things smart objects and to provide the resulting data-streams through publish-

subscribe web-services. The framework allows web clients to install code modules (filters)

directly into the devices or, when this is not possible, in the middleware side. These
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modules are organized in a chain of dependencies called a Data-Flow Network and allow

the processing of data gathered by the back-end WSN. The data streams hence produced

are provided in publish-subscribe web-services.

2.4 Summary

In this chapter we present an overview on the related work which may be relevant for this

thesis. We presented an overview on the different programming languages paradigms,

specifying a relevant language of each type. Later, we analyzed the most significant

operating systems and virtual machines developed to run in WSN. In the last section of

this chapter we analyzed a set of systems who implement a publish/subscribe architecture,

highlighting some particularities in each one.
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SONAR Architecture

In this chapter, we present the architecture of SONAR, describing the components in each

layer. The chapter is organized as follows: in Section 3.1, we start by presenting a typical

application scenario where SONAR can be used; Section 3.2 presents a simple overview

of the architecture, enumerating its layers and components. Sections 3.3, 3.4, and 3.5

describe, respectively, the Client layer, the Broker Layer, and the Data Layer.

3.1 Application Scenario

To clarify the main idea of SONAR, we present a typical application scenario of a WSN.

Imagine a person who owns a greenhouse and wants to implement a system to monitor

environmental variables and automate actions if certain conditions arise. The owner would

buy a kit composed by a set of nodes, a gateway node, and a software pack to install in a

common computer.

Each node can have a set of sensors, for example, temperature, humidity, and light sensors,

and a set of pins available to connect actuators, for example a window vent, a sprinkler

and a greenhouse awning motor. After installing the software, the owner places each node

in a strategic place and connect the actuators to the pins in the nodes. At this point, he

is able to connect the gateway node to the computer USB port and use the WSN. When

the gateway is connected to the computer, it sends a message to the software who parses

it and registers itself in the Broker, making the data produced in the deployment available

through this component.

16
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To manage the WSN the owner uses a simple shell interface that is also supplied with

the software. He can now list all the running tasks, set the period of a task, and add or

remove a task in the network. These tasks are written using a very simple specific domain

programming language, STL, which we address later in this thesis.

To monitor the data produced at his WSN, the owner simply connects to the Broker of the

publish/subscribe system. It then selects the data streams it is interested in from the WSN.

This can be done for multiple WSN (e.g., more greenhouses, the garden, the house), and

for many tasks running on the nodes of a WSN (e.g., temperature and humidity, movement

detection, luminosity), providing a multiplicity of data streams that can be subscribed by

users.

This is the level of seamlessness that we aim to address with our architecture, SONAR. In

the following sections we describe the components of each layer of the architecture.

3.2 Architecture Overview

SONAR follows a typical 3 layer architecture, depicted in figure 3.1. It is based on a

publish/subscribe architecture where a set of clients, connected to the Internet, access the

data generated at each SONAR deployment through the SONAR Broker.

The data layer is composed by a set of nodes that come with a pre-installed operating

system and virtual machine, and a gateway, that collects the data produced in the nodes.

Each node can schedule and run multiple tasks. A task can be described as a program

that periodically runs in the nodes, with no interruptions, and that generally produces a

data-stream. The gateway acts as a simple forwarder, exchanging data from the nodes

with the other layers.

A client, when connected to the Broker, can access a list containing information about the

registered deployments. For each deployment, it is presented the set of running tasks, with

the following parameters: task description, task period, and type of generated data. The

client can subscribe the desired data streams and receives the respective data produced in

the data layer.

The management of the each deployment is made using an administration client that

connects directly to a deployment adapter. With this client, a user is able to manage his

deployment, adding or removing tasks, or changing the period of a running task.
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Figure 3.1: SONAR architecture.

3.3 Client Layer

The Client layer is composed by two different modules included in the software the user

must install in his computer:

• a Publish/Subscribe Client, used to connect to a SONAR Broker (middle layer),

allowing the user to list and subscribe the available deployments, receiving the data

produced after the subscription;

• an Administration Client that allows authenticated users to access a deployment,

through a component called Adapter, and to manage it, sending control messages.
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3.3.1 Publish/Subscribe Client

The Publish/Subscribe Client is a shell-based interface where a user can access the methods

to list and subscribe a data stream, available in a SONAR Broker. Using this module, a user

can send data messages, allowing him to list all the available deployments and respectively

running tasks, subscribe and unsubscribe, tasks and query the Broker for a specific type

of data being produced in all the available deployments. Figures 3.2a and 3.2b depict,

respectively, the data flow of listing or subscribing a task and the data flow of publishing

data generated at the Data layer to a client. To subscribe a data stream, the user sends a

request to the broker indicating the ID of the desired data stream. The Broker parses that

request and then responds to the client with a message confirming a successful subscription.

When new data is available in the data layer, the respective adapter forwards that data

to the Broker, who checks the clients subscribing these data-streams. It then sends the

received data to each subscriber.

3.3.2 Administration Client

The Administration Client is the component used by the users to administer deployments,

namely, to register and unregister it own deployment in a Broker, as well as to manage it,

allowing him to add, remove or change the period of a running task. Figures 3.3a and 3.3b

depict, respectively, the data flow in the process of register/unregister the deployment and

the data flow when adding, removing, or changing the period of a task.

To register a deployment, the user sends a control message to the Adapter, who sends a

register request to the Broker containing the MAC Address of the gateway. The Broker

processes the request and response with a confirmation that the deployment had been

registered. To manage his own deployment, the user sends a message control message

to the Adapter containing the management command, which is then forwarded to the

deployment gateway node. After receiving the command, the gateway radio the command

to all the nodes in the deployment.
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(a) Data flow of listing and subscribing a task (b) Data flow of publish mechanism

Figure 3.2: Data flow in the Publish/Subscribe Client
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(a) Data flow in a deployment register (b) Data flow in tasks management

Figure 3.3: Data flow in the Administration Client
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3.4 Broker Layer

The Broker is the middle layer of our architecture, which maintains a connection with

one (or more) SONAR Adapters, as well as with a set of SONAR Clients. This com-

ponent is responsible for the three main tasks: registering deployments, publishing data

provided by the data layer, and handling subscription requests from clients. To allow these

functionalities, the Broker stores three main structures:

• a tasks structure that stores all the parameters of one data streams registered in

the Broker. Each task representation is composed by four parameters: an ID that

identifies inequivoquely the task; a period that indicates the periodicity of the task; a

values description that presents the data produced in that task; the units description

that presents the units of each value produced; and, the task info, an optional field

used to store some extra information about the task.

• a deployments table that stores all the registered deployments. For each deploy-

ment, this table maps a pair of parameters: an general information field (optional),

containing some generalist information about the deployment and a list of tasks,

containing the ID of each task running in that deployment.

• a subscribers table that, for each available data stream, maps a list of subscribers

IDs, identifying the clients subscribing that data stream.

3.4.1 Data Flow in SONAR Broker

There are two types of data flows related with the Broker: the first is related with the

messages sent by the SONAR Clients, when listing, subscribing or unsubscribing a data

stream; the second is related with the data produced at the data layer, which is received

from the Adapter to be forwarded to the respective subscribers.

Client layer ↔ Broker messages Figures 3.4 and 3.5 describe the messages flow

exchanged between the Client and the Broker when the Client is subscribing a data stream.

The Client starts by listing all the available data stream. Figure 3.4 depicts the data flow

involved
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1. the client send a message to the Broker asking for all the available data streams;

2. the Broker receives the message, queries its deployments table and produces a mes-

sage containing a summary with the available deployments and the respective data

streams.

3. The Broker responds to the client with the message containing the parameters needed

so that the Client can subscribe the desired tasks;

Figure 3.4: Available data streams

After receiving a list of the available data streams, the client is able to subscribe them

(Figure 3.5):

1. The Client sends a message to the Broker containing the IDs of the data streams to

be subscribed;

2. the Broker receives that message and add the client ID to the entry of the subscribers

table;

3. the Broker responds to the Client, confirming that he is now subscribing that data

streams.
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Figure 3.5: Subscribing/Unsubcribing a data stream

Data layer ↔ Broker messages Figure 3.6 describes the mechanism for publishing

a message. When the Broker receives a message containing Data from one Adapter, it

parses the message and retrieves two parameters: the identifier of the deployment where

the data was generated and the identifier of the task who generated the data. Using that

information, it queries its Subscribers Table and retrieve the identifiers of the Clients who

are subscribing that task. Using these identifiers, the Broker forwards the messages to the

respective clients.

Figure 3.6: Data delivery to subscriber of a given task.
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3.5 Data Layer

The Data layer abstract all the sensors and actuators present in each deployment. It is

composed by three different components:

• SONAR Adapter;

• gateway nodes;

• a mesh of Nodes.

3.5.1 Adapter

The Adapter is a software component that establishes connections with other two compo-

nents: the Administration Client and the Gateway. It is responsible for two main actions:

1. Administration: allows users to administrate the aspects related to his SONAR

Wireless Sensor Network deployment using the Administration Client. This connec-

tion is only active when the administrator is using the Administration Client.

2. Forwarding: gathers coming messages from the Gateway with the data generated

in each node and forward it to the Broker. This connection is always active when

the deployment is running.

Figure 3.7 depicts the data flow associated with the forwarding function of the Adapter.

Red arrows and radio signals indicate the path done by the data generated at the nodes.

For each running task that produces data, each node sends that data to the deployment

Gateway, who analyze the message and add parameters to unequivocally identify the origin

of the message. After that, it simply forward the message to the adapter, who then forward

it to the Broker.

3.5.2 Gateway and Nodes

The Gateway is a typical node equipped with a radio device capable of receiving and

forwarding tasks to a previously configured set of nodes. It is responsible to radio the
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Figure 3.7: Data flow generated in nodes

commands and tasks sent by the administrator to all the nodes, as well as receiving the

data produced in the nodes and forwarding it to the adapter. Figure 3.8a depicts a high

level hardware representation of a typical node and Figure 3.8b presents a picture of a

SONAR Gateway.

(a) Typical node scheme (b) SONAR Gateway Sensor.

Figure 3.8: Typical node scheme and SONAR Gateway node

The nodes used in SONAR follow the same hardware configuration as the gateway, with

the addition of some sensors and actuators. Currently, they contain temperature, humidity,

and light sensors, as well as a LED functioning as an actuator.

In the next chapter we are going to formally describe the software installed in the gateway
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and on the nodes, starting with the description of STL, and the node’s operating system

and virtual machine.

3.6 Summary

In this chapter we presented an high-level overview of the SONAR architecture, describing

each layer and its components. We also described the control message and data flow

message in the system.
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Client Layer and Broker Layer

In this chapter we describe the implementation of the SONAR Publish/Subscribe mech-

anism, focusing on the implementation of the Client and Broker layer. To simplify the

analysis of the architecture, we will first describe the Broker Layer and its implementation,

which is relevant to understand the implementation of the Client layer.

4.1 Broker Implementation

For the implementation of this Broker we used a simple Java Web Service with two termi-

nals (Server Endpoints), one reserved for the client connections and the other reserved for

the connections with SONAR Adapters. There are numerous ways to create communication

channels between the web service and a client, each one with different advantages and

disadvantages.

4.1.1 Communication model

In the process of implementing a Publish/Subscribe system, there is a fundamental question

that significantly affects the communication model: the communication between the server

and the clients is, in most of the cases, started by the server, a mechanism called “server

push”. In the traditional paradigm of communication between a server and its clients, all

the connections are started by the client, which sends a request to the server and waits for

the server to respond. After receiving the response, nothing happens until a new request is

28
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sent to the server. In cases where a server is generating (or gathering from a service) data

that it needs to send to some clients, this paradigm of communication is not applicable.

This is a well-known problem and there are a set of solutions to surpass this limitation. One

solution that has been widely used is a mechanism called long pooling [30]. It is based on

the usage of Asynchronous JavaScript and XML (AJAX) and relies in a client-side routine

being constantly called, sending requests to the server asking if new data is available.

With the fifth revision of HyperText Markup Language (HTML), two new solutions where

introduced as standards for this problem: Server-Sent Events (SSE) and WebSockets.

Both solutions present a better performance that the long pooling mechanism, given the

fact that none of these are constantly hitting the server with requests to verify if new data

is available. Given that, we decided to use one of these mechanisms (initially, the Server-

Sent Events; later, we changed to the WebSockets) to implement the Publish/Subscribe

component of the SONAR architecture, avoiding the long polling. Next, we describe each

of these mechanisms, analyzing the advantages and disadvantages of each one.

Server-Sent Events Server-Sent Events [31] were introduced in HTML5 specifications

as a mechanism to allow a server to push notifications through an HTTP connection to

a set of clients. These notifications are sent in the form of Document Object Model

(DOM) events. Using this mechanism it is possible to implement a Publish/Subscribe

service, where a client starts a connection to a server, chooses the desired data streams,

and subscribes them. The complete process of sending data to the client is made using the

pending request made by the client. Table 4.1 present the advantages and disadvantages

of using SSE.

Advantages Disadvantages

Transported over simple HTTP instead of a
custom protocol;

Unidirectional communication channel
(server to client only);

Built in support for timeouts and
re-connection;

Browser support is more limited;

Simpler protocol.
Relies on client to verify origin (possibly
more vulnerable to Cross-Site Scripting
(XSS) attacks).

Table 4.1: Server-Sent Events - advantages and disadvantages
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4.1.1.1 Web Sockets

Web Sockets are currently a part of HTML5 specification [32] as a protocol for a two-way

communication between a server and a remote host client, via a full-duplex channel. To

establish a WebSocket connection, the client sends a handshake request to the server, who

responds with an ACK. Thereafter, the server leaves the connection open so that if an event

occurs (in the case of SONAR, new data has been received from the Data layer), it can be

sent out immediately; otherwise, the event would have to be queued for transmission until

the client sends a new request to the server. Using this channel which is now open, both

client and server are able to send data anytime it is needed.

Table 4.2 presents the main advantages and disadvantages of WebSockets.

Advantages Disadvantages

Real time, full-duplex communication; Protocol more complex than SSE;
Native support in most of the browsers, as
an HTML5 standard;

Browsers must be fully HTML5 complaint;

Server can send data from multiple events
subscribed by one client using a single
connection;

Timeouts and re-connection must be
manually managed.

Table 4.2: WebSockets - advantages and disadvantages comparison

4.1.2 Chosen Mechanism

After analyzing the advantages and disadvantages of using each of the above mechanisms

to implement a Publish/Subscribe, we decided in first hand to use the Server-Sent Events.

This decision arises from the fact that we only need to push messages in one way (from

the web service to the client), coupled with the fact that Server Sent Events are a simpler

protocol, which uses HTTP as the transport layer.

The first implementation tests with Server-Sent Events allowed us to send message from

the web service to the connected clients, defining an EndPoint where the messages are

generated. Although we can successfully push messages generated at the web service to

the desired clients, it became clear that an increasing number of subscriptions by a client

will possibly result in a worst performance, given the fact that each subscription is a

pending request from the client to the server. At the same time, we decided that a shell-

based client could be an interesting feature in SONAR, allowing the user to interact with
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the project without a web browser.

Given these facts, we decided to abandon the implementation using Server Sent Events

to a new implementation using Web Sockets. WebSockets allowed us to create a two-way

communication channel where we can easily implement a simple shell client. Using that

channel, given the fact that all the data is pushed by the web service, we can make use of

the same channel to send data gathered from the different subscriptions made by a client.

4.2 Client Layer

Both the Publish/Subscribe Client and the Administration Client are implemented as Java

Web Services, using Web Sockets Clients to communicate with the Broker and the Adapter,

respectively. The usage of a Web Sockets allows the access to the Broker and to the Adapter

anywhere using a common terminal with Internet access.

Both Client interfaces are implemented as a shell. Tables 4.3 and 4.4 present the available

commands in the Publish/Subscribe Client and in the Administration Client.

Command Description

sonar ld List the available Deployments and Tasks
sonar sub -t ID TASK -d

DEP
Subscribe Task ID TASK running in Deployment DEP

sonar unsub -t ID TASK -d

DEP
Unsubscribe Task DEP running in Deployment ID TASK

sonar find -t DATATYPE
Query the Broker for tasks producing data with type
DATATYPE

help Show a list containing the available commands

Table 4.3: Commands available in the user interface.

The main advantage of this type of interfaces is that it allows the Publish/Subscribe Client

to simply pipe a set of commands in order to treat the received data from a subscribed

task. As an example, a client who owns a database server or an account in an online

storage service like Amazon S3 [33] can simply write a small script that waits for data to

be received in the standard input and sends that data to one of these databases. With a

simple pipe, the client can chain the subscription command to a script, say sendToDB.py

(Figure 4.2.1), receiving the data and storing it in the database. The command used for

subscribing the task with ID 1 from deployment 1 and passing the data to sendToDB.py
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Command Description

reg -a MAC Register the Deployment in the Broker.
unreg -a MAC Unregister the Deployment in the Broker.
list List the running Tasks
task -p PER -b BC PATH -d

DESC PATH

Add a new task with period PER, byte-code file
BC PATH, and description file DESC PATH;

period -t ID TASK -p PER Change the period of task ID TASK to PER.
kill -t ID TASK Remove task ID TASK from the runing tasks pool.
reset Remove the tasks from the running tasks pool.

Table 4.4: Commands available in the administration client interface.

script would be:

$$ sonar sub -t 1 -d 1 | sendToDB.py

A simpler example where the user stores the raw data received in a text file.

$$ sonar sub -t 1 -d 1 > dump t1 d1.txt

4.3 Summary

In this chapter we present the implementation of the Broker layer and Client layer com-

ponents. We explained the significant technological choices made when implementing each

of the components, analyzing some existing approaches. Next, we explained the decision

of using a shell-like interface in both clients, presenting the list of commands available in

both clients. We present a simple example of some chained command used to store the

received data from a client subscription in a MySQL database.
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Python Script Code 4.2.1 Python Script to insert data received in the STDIN to a
MySQL Database

Import MySQLdb
connec t i on = MySQLdb . connect (

hos t= ” l o c a l h o s t ” ,
u s e r= ” roo t ” ,
passwd= ” rootpasswd ” ,
db= ”room1 .83 dep ”)

c u r s o r = conn . c u r s o r ( )

wh i l e t r u e :
data = raw inpu t ( ) . s p l i t (” ”)
dep loyment = data [ 0 ]
t a s k i d = data [ 1 ]
mac senso r = data [ 2 ]
d a t a t yp e = data [ 3 ]
v a l u e = data [ 4 ]

t r y :
c u r s o r . e x e cu t e ( ” ’ ’ INSERT INTO data VALUES (%s ,%s ,%s ,%s ,%s ) ” ’ ’ ,

( deployment ,
t a s k i d ,
mac sensor ,
da ta type ,
v a l u e ) )

e xcep t :
conn . r o l l b a c k ( )

conn . commit ( )
conn . c l o s e ( )



Chapter 5

Data Layer

In this chapter we present the specification and implementation of the SONAR data layer.

This software runs in the gateway and nodes of the deployments and is pre-installed.

It includes an operating system, a domain-specific programming language, and a virtual

machine.

In Section 5.1 we describe the programming language used to implement tasks in SONAR,

SONAR Task Language (STL). Thereafter, in Section 5.2 we describe the SONAR Virtual

Machine and the compiler used to produce the byte-code executed in the nodes. Section 5.3

describes the operating system running both in the nodes and in the gateway. This chapter

ends with Section 5.4 that describes the data flow associated with each node.

5.1 Programming Language

In this section we describe the syntax and semantics of the domain-specific programming

language used to implement periodic tasks - the SONAR Task Language (STL).

5.1.1 Syntax

The syntax for tasks is described in Figure 5.1. The notation α̃ is used to denote a sequence

of pairwise distinct elements, α, of a given syntatic cathegory. A task T uses two sets of

identifiers, s and a, to specify the available sensors and actuators in a given platform. Each

34
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T ::= sensors {s1 : σ1 . . . sn : σn} Tasks

actuators {a1 : σ1 . . . am : σm}
init {q̃}
[τ̃ ] loop {r̃}

σ ::= τ̃ 7→ τ Types

τ ::= bool | int | float | void

q ::= τ x = v Initializations

r ::= x = e Instructions

| a(ẽ)

| radio [ẽ]

| if e {r̃} else {r̃}
| while e {r̃}

e ::= s(ẽ) | e op e | op e | (e) | v Expressions

v ::= x | u Values

u ::= bools | ints | floats Constants

Figure 5.1: The syntax of STL.

of these identifiers maps to a unique sensor or actuator in the hardware. This declaration

is thus similar for all tasks running on the same hardware configuration and in a more

concrete syntax would simply be included by the programmer using a compiler directive.

The code that is actually specific for the task starts with the init block, used to initialize

global task variables. This code is not executed, rather the compiler copies the initial

values for each variable directly to the data segment of the byte-code generated for the

program. The loop block, on the other hand, is the code executed for every (periodic)

activation of the task. It is immediately preceded by the type of message sent back by

the task to the gateway using the construct [τ̃ ]. The task only sends messages of this

type to the gateway and the type is checked against all radio statements in the task. The

instructions available to the programmer include: assignment, actuation - a(ẽ), sending a

set of evaluated expressions to the gateway - radio [ẽ], a conditional execution construct -

if e {r̃} else {r̃}, and a while loop - while e {r̃}. The expressions are standard except for

s(ẽ) that is used to read a value from a given sensor.

As we said, for a given platform and configuration, the hardware description provided by

the constructs sensors and actuators is the same. We use a preprocessing directive - use - to

include this description at the top of all programming examples in this thesis (Figure 5.1.1).
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STL Code 5.1.1 Hardware description for Arduino 2560 prototype WSN - file ”ard2560.hw”.

sensors {
t empe ra tu r e : void −> f l o a t ,
humid i t y : void −> f l o a t ,
l i g h t : void −> f l o a t

}

actuators {
l ed : bool −> void

}

The example in Figure 5.1.2 shows a STL program that at each activation reads the tem-

perature and humidity and radios the values to the gateway. A similar implementation in

Arduino C++ is presented in Appendix A.0.1. The example uses two sensors, designated as

temperature and humidity, whose types are declared in hardware description file “ard2560.hw”.

Notice that the periodicity of the task is not included in the code. It is an external attribute

set with the administration client when the task is sent to the gateway to be radioed to the

nodes. In this way, users with administration access can dynamically change the period of

running tasks using simple control messages.

STL Code 5.1.2 STL program that reads the temperature and humidity and radio the
results to the gateway.

use ” ard2560 . hw”

i n i t {
f l o a t t = 0 . 0 ;
f l o a t h = 0 . 0 ;

}

[ f l o a t @ ” tempe ra tu r e : C e l s i u s ” ,
f l o a t @ ”Humidity : Pe rcentage ” ]

l oop {
t = tempe ra tu r e ( ) ;
h = humid i t y ( ) ;
rad io [ t , h ] ;

}

The language specification is complete with both the operational and static semantics that

together define how well-formed programs are executed.

The operational semantics is defined through a reduction relation→ on the program state.

The latter is defined as either the halted state, ⊥, or, if the task is active, as a tuple



CHAPTER 5. DATA LAYER 37

(S,A, V, r̃). In the latter, S and A are of type Set(Vars) and keep the identifiers for the

built-in functions declared at the beginning of an STL program and that provide access to

sensors and actuators, respectively; V , of type Map(Vars,Values) keeps the values of the

variables during the execution of the program. Thus, the initial state for the task:

sensors {s1 : σ1 . . . sn : σn}
actuators {a1 : σ1 . . . am : σm}
init {q̃} [τ̃ ] loop {r̃}

is the tuple (S0, A0, V0, r̃), where:

S0 = {s1, . . . , sn}
A0 = {a1, . . . , am}
V0 = {(x : v) | τ x = v ∈ q̃ }

The reduction rules are presented in Figures 5.2 and 5.3, where the identifiers s and a are

built-in functions, as well as the function radio. We also simplify the notation somewhat by

not including S and A explicitly in the state, i.e., we represent the tuple (S,A, V, r̃) tuple

as the shorter version (V, r̃). The rules have the structure:

c1 . . . cn
(V1, r̃1)→ (V2, r̃2)

where the ci are preconditions or actions that must be fulfilled to make the transition from

the current state, (V1, r̃1), to a given state, (V2, r̃2), possible. For example, rule (2) for

instructions executes a(ẽ) statements, underlined and the next in the code sequence. It

evaluates the expressions ẽ into values ṽ first. It then calls a built-in function write(a, ṽ)

that actually performs the low-level operation for the program. When it returns the state

of the program is (V, r̃). The reasoning is similar in rule (2) for expressions, where we

read data from a sensor. Here, however, the value returned from the built-in function,

v = read(s, ṽ), is the value of the expression. Rule (8) for instructions, another example,

is invoked when the code sequence in the text block ends, the next state is ⊥.



CHAPTER 5. DATA LAYER 38

v = eval(V, e)

(V, x = e r̃)→ (V + {x : v}, r̃)
(1)

ṽ = eval(V, ẽ) a ∈ A write(a, ṽ)

(V, a(ẽ) r̃)→ (V, r̃)
(2)

ṽ = eval(V, ẽ) send(ṽ)

(V, radio [ẽ] r̃)→ (V, r̃)
(3)

eval(V, e) = true

(V, if e {r̃1} else {r̃2} r̃3)→ (V, r̃1 r̃3)
(4)

eval(V, e) = false

(V, if e {r̃1} else {r̃2} r̃3)→ (V, r̃2 r̃3)
(5)

eval(V, e) = false

(V,while e {r̃1} r̃2)→ (V, r̃2)
(6)

eval(V, e) = true

(V,while e {r̃1} r̃2)→ (V, r̃1 while e {r̃1} r̃2)
(7)

(V, ε)→ ⊥ (8)

Figure 5.2: Reduction rules for STL instructions.
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ẽ = e1 . . . en vi = eval(V, ei), 1 ≤ i ≤ n

eval(V, ẽ) = ṽ
(1)

ṽ = eval(V, ẽ) s ∈ S v = read(s, ṽ)

s(ẽ) = v
(2)

v1 = eval(V, e1) v2 = eval(V, e2)

eval(V, e1 op e2) = v1 op v2
(3)

v = eval(V, e)

eval(V, op e) = op v
(4)

eval(V, x) = V (x) (5)

eval(V, v) = v (6)

Figure 5.3: Reduction rules for STL expressions.

5.1.2 Static Semantics

The static semantics of a task is provided in the form of a type system (Figure 5.4). The

rules are fairly standard and use a typing environment Γ that keeps track of the types for

identifiers. The rules are written as Γ ` r for instructions, meaning that the instruction is

well-formed, and Γ ` e : τ for expressions, meaning that expression e has type τ . Some

rules have side effects, in which the environment Γ is enriched with new entries and becomes

Γ′, as in Γ ` · · · a Γ′. An example is rule (4): Γ ` [τ̃ ] a Γ, radiates : τ̃ (Γ′ is Γ plus the type

collected from the radiates construct). Besides this rule, three others are worthy of note.

Rule (10) checks that messages sent by the task have types that match the one declared

in the radiates construct. Rule (12) checks that the sensor, s, is of type τ̃ 7→ τ ′, that the

arguments ẽ match the type τ̃ to infer that the value returned by s(ẽ) is of type τ ′. The

logic is similar for rule (9), where the type system just checks that the instruction a(ẽ) is

well formed (instructions do not evaluate to values). Rules (15), (16), and (17) are axioms

and allow booleans, integers, and floating point values to be typed.
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∅ ` sensors {s1 : σ1 . . . sn : σn} a Γ1

∅ ` actuators {a1 : σ1 . . . am : σm} a Γ2

∅ ` init {q1 . . . ql} a Γ3

Γ1,Γ2,Γ3, radiates : τ̃ ` loop {r̃}

`

sensors {s1 : σ1 . . . sn : σn}
actuators {a1 : σ1 . . . am : σm}
init {q1 . . . ql}
[τ̃ ] loop {r̃}

(1)

∅ ` sensors {s1 : σ1 . . . sn : σn} a {s1 : σ1 . . . sn : σn} (2)

∅ ` actuators {a1 : σ1 . . . am : σm} a {a1 : σ1 . . . am : σm} (3)

Γ ` q1 a Γ1 Γ ` ql a Γl

Γ ` init {q1 . . . ql} a Γ1, . . . ,Γl

(4)

∅ ` v : τ

Γ ` τ x = v a Γ, x : τ

Γ ` r̃
Γ ` loop {r̃}

(5,6)

Γ ` r1 . . . Γ ` rn
Γ ` r̃

Γ ` x : τ Γ ` e : τ

Γ ` x = e
(7,8)

Γ ` a : τ̃ 7→ void Γ ` ẽ : τ̃

Γ ` a(ẽ)
(9)

Γ ` ẽ : τ̃ Γ(radiates) = τ̃

Γ ` radio [ẽ]
(10)

Γ ` e : bool Γ ` r̃1 Γ ` r̃2
Γ ` if e {r̃1} else {r̃2}

(11)

Γ ` s : τ̃ 7→ τ ′ Γ ` ẽ : τ̃

Γ ` s(ẽ) : τ ′
(12)

Γ(x) = τ

Γ ` x : τ
(13)

Γ ` e1 : τ1 . . . Γ ` en : τn
Γ ` e1 . . . en : τ1 . . . τn

(14)

∅ ` v : bool ∅ ` v : int ∅ ` v : float (15,16,17)

Figure 5.4: Type system for STL.
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p ::= h d b Program

h ::= i1 i2 Header

d ::= ṽ Data Segment

v ::= bools | ints | floats Values

b ::= r̃ Text Segment

r ::= ld i | st i | wrt i1 i2 | rd i1 i2 Instructions

| rad i | bf i | jp i | ret

| bop | uop

Figure 5.5: Byte-code syntax.

5.2 Compiler and Virtual Machine

In this section we give the specification for the SONAR Virtual Machine (SVM), one of the

modules pre-installed in the nodes. The virtual machine executes STL tasks, translated

into byte-code by a compiler. We begin by defining the byte-code format and then give

the translation function for the STL source code.

5.2.1 Formal Description

The byte-code is composed of 4 segments: header, data, stack, and text (Figure 5.5). The

header contains the total size of the byte-code as well as the offset to the beginning of

the text segment. The stack segment is allocated between the data and text segment,

growing towards the lower addresses. Its size is calculated at compile time since there are

no calls to user defined functions. The data segment provides space for all the variables

in a STL program. Constants and the initial values of global variables are stored there

by the compiler. The data segment can be seen as the only activation record required for

the virtual machine since, again, there are no calls to user functions or user functions in

tasks. All variables, of types bool, int, and float, use 4 bytes in the data segment in this

version, but this can and should be optimized to minimize the size of the byte-code. The

text segment is composed of instructions that have a 1 byte opcode and eventually 1 or

2 extra bytes for arguments. There are instructions for loading a value to the stack (ld ),

storing a value from the stack (st ), sending an actuation command (wrt ), reading a sensor

(rd ), sending a message over the radio (rad ), the usual control flow (bf , jp , ret ) and, the

usual integer and floating-point arithmetic and logic and relational operators (bop , uop ).
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Byte-code instructions map almost one-to-one with reduction rules from the operational

semantics.

This correspondence is important for proving that the virtual machine correctly executes

the byte-code, but this is a problem we will not address here.

The translation function receives a syntactic term and returns a pair of sequences (D,B)

(Figures 5.6 and 5.7). The first, D, is the contribution of the term to the data segment, the

latter, B, is the contribution to the text segment. The top level translation function [[·]], for

STL tasks, breaks the translation into a sequence of pairwise concatenations (operator ”:”)

and uses appropriate translation functions for each syntactic category. We use the same

[[·]] to simplify the notation, but these should be seen as distinct functions. The translation

function uses 3 sets which hold integer identifiers for sensors and actuators, S and A, and

data segment offsets for variables (set Var) and constants (set Const), V and U , defined

as follows:

S = {(si, i) | si ∈ s̃ : τ}
A = {(ai, i) | ai ∈ ã : τ}
V = {(x, i) | x ∈ Var ∧ i = offset(x)}
U = {(u, i) | u ∈ Const ∧ i = offset(u)}

The translation function is quite straightforward. The translation of an actuation com-

mand, a(ẽ), is simply the translation of the arguments ẽ, followed by a wrt instruction

with the integer identifier for the actuator A(a) and the number of expressions, |ẽ|, as

the arguments. Similarly, reading a sensor, s(ẽ), translates into the translation of the

expressions followed by a rd instruction with the integer identifier for the sensor S(s) and

the number of expressions, |ẽ|, as the arguments. Likewise, the translation for radio [ẽ]

is simply the translation of the expressions to be sent, followed by a rad instruction with

the number of expressions, |ẽ|, as the argument.

The state of the virtual machine is represented as the term [D|S|B]j, where j is the program

counter and is used to travel the instructions in the text segment. The halted machine is

represented by a special state denoted ⊥. To run a task T in the virtual machine we use

the translation function to get its byte code [[T ]] = (D,B) and set its initial state to:

[D| 0 . . . 0︸ ︷︷ ︸
k

|B]0
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[[T ]] =[[sensors {s̃ : τ}]] :

[[actuators {ã : τ}]] :

[[init {q̃}]] :

[[[τ̃ ] loop {r̃}]] :

(ε, ret )

[[sensors {s̃ : τ}]] =(ε, ε)

[[actuators {ã : τ}]] =(ε, ε)

[[init {q̃}]] =[[q̃]]

[[τ x = v q̃]] =(v, ε) : [[q̃]]

[[[τ̃ ] loop {r̃}]] =[[r̃]]

[[r r̃]] =[[r]] : [[r̃]]

[[x = e]] =[[e]] : (ε, st : V (x))

[[a(ẽ)]] =[[ẽ]] : (ε,wrt : A(a) : |ẽ|)
[[radio [ẽ]]] =[[ẽ]] : (ε, rad : |ẽ|)

[[if e {r̃1} else {r̃2}]] =[[e]] : (D′, B′)

where

(D1, B1) = [[r̃1]]

(D2, B2) = [[r̃2]]

D′ = D1 : D2

j1 = 2 + |B1|
j2 = |B2|
B′ = bf : j1 : B1 : jp : j2 : B2

[[while e {r̃}]] =[[e]] : (D,B′)

where

(D,B) = [[r̃]]

j = 2 + |B|
B′ = bf : j : B : jp : −j − 2

[[ε]] =(ε, ε)

Figure 5.6: Translation to bytecode (part I).
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[[e1, . . . , en]] =[[e1]] : · · · : [[en]]

[[s(ẽ)]] =[[ẽ]] : (ε, rd : S(s) : |ẽ|)
[[e1 bop e2]] =[[e1]] : [[e2]] : (ε,bop )

[[uop e]] =[[e]] : (ε,uop )

[[x]] =(ε, ld : V (x))

[[u]] =(u, ld : U(u))

[[ε]] =(ε, ε)

Figure 5.7: Translation to bytecode (part II).

where k is the maximum stack size computed by the compiler and included in the bytecode.

The computation proceeds according to the reduction rules presented in Figure 5.8, of the

form:
c1 . . . cn
S → S ′

where the ci are preconditions or actions that must be fulfilled to make the transition

from the current state, S, to a given state, S ′, possible. For example, when the current

instruction (the one the program counter j is indexing) is ld (1st rule), the next byte

contains i, the offset of a variable or a constant in the data segment, and we use it to

access the value (denoted as v ← D[i]). The new state has the same data and text

segments but the stack has the value v on top of it, and the program counter was updated

to j + 2. Similarly for st (2nd rule), we have a value v in the stack in the current state

and we make a transition to a state where that value has been removed from the stack and

copied to position i in the data segment (denoted as D′ = D+{i : v}). The arrays sensors

(3rd rule) and actuators (4th rule) provide the pointers to built-in functions associated

with the identifiers. For example, the rd instruction (3rd rule) has two arguments: i,

the index that identifies the built-in sensor function to be called, and n, the number of

arguments that function takes. The latter, v1 . . . vn, are all stored at the top of the stack.

The rule evolves by calling a built-in function f ← sensor [i] with the arguments taken from

the stack, f(v1 . . . vn) and placing the result of the call, v, at the top of the stack. The

function send (5th rule) is a built-in that sends data over the radio. Finally, instructions

bop and uop (9th and 10th rules) actually encapsulate a set of rules that include the usual

arithmetic, relational and logical binary and unary operators.
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B[j] = ld B[j + 1] = i v ← D[i]

[D|S|B]j → [D|v, S|B]j+2

B[j] = st B[j + 1] = i D′ ← D + {i : v}
[D|v, S|B]j → [D′|S|B]j+2

B[j] = rd B[j + 1] = i B[j + 2] = n
f ← sensors [i]
v ← f(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|v, S|B]j+3

B[j] = wrt B[j + 1] = i B[j + 2] = n
g ← actuators [i]
g(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|S|B]j+3

B[j] = rad B[j + 1] = n send(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|S|B]j+2

B[j] = bf B[j + 1] = i

[D|false, S|B]j → [D|S|B]j+2+i

B[j] = bf B[j + 1] = i

[D|true, S|B]j → [D|S|B]j+2

B[j] = jp B[j + 1] = i

[D|S|B]j → [D|S|B]j+2+i

B[j] = bop

[D|v2, v1, S|B]j → [D|v1 bop v2, S|B]j+1

B[j] = uop

[D|v, S|B]j → [D|uop v, S|B]j+1

B[j] = ret

[D|S|B]j → ⊥

Figure 5.8: Transition rules for SVM.



CHAPTER 5. DATA LAYER 46

5.3 Operating System

A node in a SONAR deployment may run multiple periodic tasks that generate data

streams. Users with administration access to the deployments can program tasks, compile

them and inject them in the deployment via the WSN Adapter (a Web service) which

then forwards the tasks to the gateway to be radioed to the nodes. A simple protocol,

implemented on top of the MAC layer, allows tasks, eventually divided into multiple blocks,

to be sent over-the-air to the nodes. On arrival, the tasks are reassembled and installed

in the nodes. Other control messages are also forwarded from the gateway to the nodes.

From the nodes, the gateway receives data messages that it forwards to the deployment’s

Adapter to be forwarded to the SONAR Broker. Thus, the gateway does not run tasks, it

acts simply as a message forwarder: it receives data messages from nodes in the deployment

and passes them to the Adapter, and receives control messages (including new tasks) from

the Adapter and radios them to the nodes in the deployment. Algorithm 1 shows this basic

component. The gateway is initialized by attaching two handlers for interrupts signaling

radio (from the nodes) and serial port (from the Adapter) data reception. It then sleeps

most of the time. When one of the interrupts is detected, the corresponding handler is

executed and a flag is set to identify the source. The remainder of the loop then processes

the incoming message.

Each node in a SONAR deployment has 2 pre-installed components: a small operating

system and the SONAR virtual machine. The operating system is responsible for processing

incoming control messages, for managing memory resources for tasks and for scheduling

them EDF-style. Nodes keep information about tasks in a table. For each task, an entry in

the table stores: a boolean - indicating if the entry is valid; three integers - the identifier,

the period and the next activation of the task, respectively; and, an array of bytes - the

byte-code for the task. The identifier is attached to messages sent by the task to the

gateway so that the latter can distinguish to which stream the data it is receiving belongs

to. This information is used to schedule the tasks and to prepare their execution with the

SVM. The operating system executes a loop as described in Algorithm 2. The currently

active task is identified by its integer index in the task table, denoted curr in the following

algorithms.

A brief initialization attaches handlers for radio reception and real-time clock interrupts.

The node then enters the loop and executes the following procedures: Run that executes

the current task; Schedule that selects the next task to be executed; Sleep - that sleeps
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Algorithm 1 The gateway program

function main()
Attach(Radio RCV,handleRadioMsg)
Attach(Serial RCV,handleSerialMsg)
loop

microSleep()
switch ( src )

case RADIO:
msg ← readRadioRCVBuffer()
forwardToAdapter(msg)

case SERIAL:
msg ← readSerialRCVBuffer()
forwardToNodes(msg)

end switch
end loop

end function

function handleRadioMsg()
src ← RADIO

end function

function handleSerialMsg()
src ← SERIAL

end function

Algorithm 2 The node main loop

function main()
Attach(Radio RCV,handleRadioMsg)
Attach(RTC ALARM,handleRTCAlarm)
loop

run()
schedule()
sleep()
listen()

end loop
end function
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until the next task must be activated, and, finally - Listen that listens for incoming radio

commands that may have been received while executing elsewhere in the loop. The first

3 procedures are executed only if there are valid tasks in the table, i.e., the predicate

TableEmpty evaluates to false.

Algorithm 3 Run current task

function run
if ¬tableEmpty() then

(D,S,B)← getBytes(curr)
runSVM(D,S,B)
t← rtcTime()
p← getPeriod(curr)
setNextActiv(curr, t+ p)

end if
end function

Procedure Run (Algorithm 3) gets the stored state for the current task, its data, stack

and text segments, and runs the task in the SVM. Note that changes to variables in a

task are made directly in the data segment of the byte-code so that any state is preserved

in between successive activations of the task. The virtual machine preserves the invariant

that the stack S is empty when a task begins to execute and when it exits. Finally, the

procedure adjusts the next activation time for the task by adding its period to the current

time given by the Real-Time Clock (RTC).

Algorithm 4 Select next task

function schedule()
if ¬tableEmpty() then

min←Max Int
for 0 < i <Max Tasks do

if taskValid(i) then
t← getNextActiv(i)
if t ≤ min then

min← t
curr ← i

end if
end if

end for
end if

end function

The Schedule procedure (Algorithm 4) computes the index of the (valid) task with the
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closest activation time. This becomes the next task to be executed by the operating system.

Otherwise the predicate TableEmpty will evaluate to true.

Algorithm 5 Sleep until next task activation

function sleep()
if ¬tableEmpty() then

t← getNextActiv(curr)
rtcAlarm(t)

end if
microSleep()

end function

Procedure Sleep (Algorithm 5) computes the time until the next task activation and

programs an alarm to wake up the node. The node then goes to sleep. This specification

builds on the underlying assumption that tasks, being so small, execute in only a tiny

fraction of their corresponding periods. In other words, if a task has a period p and an

execution time, per activation, of t, then t� p. Otherwise we make no effort to schedule

tasks within their periods. Since t is in the order of milliseconds we find this assumption

adequate for practical purposes.

Finally, procedure Listen (Algorithm 6) checks for any incoming messages while the

main loop was running. We assume that the nodes have the means to receive and to

buffer messages asynchronously, by programming an appropriate handler to process the

corresponding hardware interrupts. If a message is received, its tag is checked to identify

its type and it is processed accordingly. At this point, there are 4 types of control messages:

TASK - sends the identifier, the period and the byte-code for a new task to be executed

in the node; PERIOD - sends the identifier and the new period for a running task in the

node; KILL - sends the identifier of a task to be invalidated in the node, and; RESET -

that invalidates all tasks running on a node. When a new task is reassembled and copied

to the task table, its next activation is set to getNextActiv(curr) + δ, where δ is a

delay introduced to make sure that the task is schedulable in the next loop run, i.e., its

activation time is in the future when the Schedule procedure is called.

5.4 Implementation and Data Flow

Figure 5.9 depicts an high level overview of the implementation and the data flow in a

deployment gateway.
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Algorithm 6 Handle Incoming Radio Message

function handleRadioInterrupt()
interrupted ← True

end function

function listen()
if interrupted then

msg ← readRadioRCVBuffer()
tag ← getTag(msg)
switch ( tag )

case TASK :
i← getId(msg)
p← getPeriod(msg)
b← getBytes(msg)
addTask(i, p, b)

case PERIOD :
i← getId(msg)
p← getPeriod(msg)
changePeriod(i, p)

case KILL :
i← getId(msg)
removeTask(i)

case RESET :
for i = 0 . . .TableSize− 1 do

removeTask(i)
end for

end switch
interrupted ← False

end if
end function
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Figure 5.9: Message flow in SONAR gateway

The gateway software is composed by two main parts:

• a forwarding loop, which listens to control messages received from the deployment

adapter and data messages received from the deployment nodes;

• a set of hardware libraries, used to access and control the sensors, actuators and

other harware modules present in the board.

As presented in the same figure, the gateway is always listening to two different type of data:

control messages, sent by the adapter, which contains the management commands sent by

the Administration Client and data messages, sent by the deployment nodes, containing

the data produced in each running task.

Figure 5.10 depicts the same high level overview of the implementation and the data flow,

this time about the nodes.

Each node is composed by three main components:

• a receiving and scheduling loop, which is responsible for listening to new data radioed

by the gateway and containing the control messages sent by the Administration

Client, as well as by the scheduling of the running tasks in the node;

• a virtual machine, used to run the byte-code tasks stored at the node;

• a set of hardware libraries, used to access and control the sensors, actuators and

other harware modules present in the board.
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Figure 5.10: Message flow in SONAR nodes

As shown in the figure, a node receives control messages from the gateway via the XBee

antenna and processes it. These messages are used to change to reprogram the tasks in

the node, allowing to add or remove a task, change the period of a task and remove all the

tasks.

All the data produced in a running task is directly sent to the gateway by the virtual

machine, which uses the hardware libraries present in the node.

5.5 Summary

In this chapter we presented the formal description of the the data layer components. We

started by formally presenting the STL syntax, depicting thereafter some STL examples

and the respective reduction rules for the language instructions. Next we described the

operating systems pre-installed in SONAR nodes, depicting the most important routines

that compose both the nodes and the gateway. We finished this chapter with the formal

description of SONAR virtual machine, as well as the description of the STL compiler.



Chapter 6

Setup, Evaluation and Discussion

In this chapter we analyze the impact of using our virtual machine and operating system in

terms of energy consumption and memory footprint. We start by detailing the setup process

of our system, presenting an example on how to use all the components. Next, we describe

the hardware configuration of the nodes, a relevant point in the energy consumption.

Thereafter, we present the experimental results obtained, followed by the analysis and

discussion of the data gathered. We end this chapter with a brief summary.

6.1 Setup

We start this chapter by depicting the full process of using the SONAR prototype, ex-

plaining all the steps in the initialization process, the data flow happening when the

Administration submits a new task, and the data flow related with the subscription and

reception of the respective data by the Publish/Subscribe client.

6.1.1 Initialization

To start using SONAR, the user must own a computer with an USB interface, as simple as

a Raspbery-Pi, where he can connect the gateway node. This computer must have access

to the Internet, allowing the deployment to send the data to the Broker Web Service.

Using the previously installed SONAR software, the user starts the Adapter Web Service,

53
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which automatically connects to a SONAR Broker, and connects the gateway to the

computer. After finishing the boot, the gateway sends a message to the Adapter containing

some information that needs to register the deployment in the Broker.

At this point, the user can start the Administration Client. It starts by opening a

connection with the Adapter, then displaying in the user interface a list containing the

available commands.

Before starting the management of the deployment, the user must register his own deploy-

ment in the Broker using the reg command, which sends the necessary information to the

Broker in order to insert the deployment in the Broker running deployments list. Now, the

initialization process is finished and the user can fully use his own SONAR deployment.

6.1.2 Managing the running tasks

To add a new task, the user must use the task command, providing the paths to previously

created byte-code and description files.

Using this information, the Adapter starts two distinct data flows: one targeting the

Broker, sending the information that a new task had been added to the deployment and

another to the gateway, containing the byte-code that must be radioed to the nodes.

The same data flows are generated when the user submits the period, kill, and reset

commands, affecting the nodes in the Data layer and changing the information about the

tasks in the Broker.

6.1.3 Client subscription

To subscribe a set of tasks, a user must start the Publish/Subscribe client Web Service,

which opens a connection to the Broker, and send a ld command. This command contacts

the Broker and retrieves all the available deployments (and the respective tasks) that are

connected in that moment.

Using that information, the client is able to subscribe a task using the sub command, which

tells the Broker that this Client intends to receive all the data produced by a given task.

The Broker receives that information and adds the ID of the client in the Tasks Table.

From this moment, until the client closes the connection or unsubscribes the task, every
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time the Broker receives data from that task, it automatically forwards it to the Client.

6.2 Node Configuration

In the current configuration of our prototype, each node is composed by an Arduino

Mega2560 board connected to an Arduino Wireless Protoshield, equipped with a XBee

Series 2 antenna, a SHT-15 temperature and humidity sensor, a Light-Dependent Resistor

(LDR), one red LED and a Adafruit Chronodot Real-Time Clock. Figure 6.1 presents

the hardware scheme of the nodes, depicting the connection between all the hardware

components.

6.2.1 Jumper Connections

As depicted in Figure 6.1, we are currently using 3 jumpers from the wireless shield to the

Mega2560 board: one jumper from pin 3 to pin 18, which connects the XBee Rx to the

Arduino Tx 0, used to wake up the node when a new message is received from the gateway;

a second jumper from pin 2 to pin 19, which connects the XBee TX to the Arduino Rx 0,

used to pass to the antenna all the data produces in the tasks; and a third jumper from

pin 8 to pin 20, which connects the Chronodot SQW pin to the Arduino SDA pin, used to

wake up the node when a task must be executed.

6.2.2 XBee setup

To get a full description of the nodes in our prototype, it is relevant to describe how the

XBee antennas are configured, since it significantly affect the energy consumption of this

device.

When developing the software for our nodes, one important decision made was related

with the network organization, which determines how a node communicate with the others.

Currently, we are taking benefits from the fact that the XBee antennas allows the usage

of a mesh architecture, with multi-hop communication and message reliability. It was a

feature we thought that would be important given the fact that in some deployments, a

node can be physically placed in locals that are out-of-reach to a direct communication with
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Figure 6.1: SONAR node scheme - Arduino Mega 2560
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the gateway. The mesh architecture can be very useful in this situations, using message

forwarding through the network and allowing this nodes to send data to the gateway.

Despite very useful, the mesh architecture brings an increase in the energy consumption,

since all the nodes have to be configured has routers. This could in some cases be very

undesirable, since a node marked as router disallows the transition of the XBee antenna

to a sleep state, enabling power saving. A full description about all the possible XBee

antenna configurations can be accessed in [34].

Other important parameters of our XBee configuration are:

• The RF interface is configured to use the Highest Power Level, with Boost Mode

Enabled, increasing the amount of energy consumed by the antenna;

• There is no encryption in the radio messages and the network do no use any type of

security, which would increase the energy consumption.

Although there are a bigger set of XBee configuration parameters, we are only analyzing

a reduced number parameters since these are the ones that influence the most the energy

consumption of this device.

6.3 Evalutation

The following tests have the purpose to determine the energy consumption and computa-

tion overhead of our prototype. The tasks test radio transmission, access to sensors and

actuators and computation. Each test was implemented both in STL, running on top of

SVM in each node, and directly in Arduino’s native C/C++/Wiring. To measure the

timings and the energy consumption, we connected a multimeter in series with one node

(Figure 6.2) and registered the electric current variation associated with the execution of

each task. The multimeter we used was a TENMA 72-7732A [35]. A Keysight InfiniiVision

MSO-X 2002A oscilloscope [36] was also used for some time related measurements.

6.3.1 Experimental Results

The first tasks test radio transmissions. Figure 6.3.1 presents the STL code for a task

that radioes 64 bytes, simulating a case where, for example, a task is programmed to
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Figure 6.2: Multimeter and oscilloscope setup.

radio 16 sensor readings (floating point values) to the gateway. The 64 bytes refer only

to the payload of the messages that carry an additional 10 bytes of header information.

Appendix A.0.2 presents a similar implementation in Arduino C++.

STL Code 6.3.1 Transmission of data.

use ” ard2560 . hw”

[ f l o a t @ ” f l o a t 1 : s e n s o r 1 ” ,
f l o a t @ ” f l o a t 2 : s e n s o r 2 ” ,
f l o a t @ ” f l o a t 3 : s e n s o r 3 ” ,
. . . ,
f l o a t @ ” f l o a t 1 6 : s en so r 16 ” ]

l oop {
rad io [ 2 . 0 , 2 . 0 , 2 . 0 , 2 . 0 ,

2 . 0 , 2 . 0 , 2 . 0 , 2 . 0 ,
2 . 0 , 2 . 0 , 2 . 0 , 2 . 0 ,
2 . 0 , 2 . 0 , 2 . 0 , 2 . 0 ] ;

}

Figure 6.3 (blue line) shows current intensity vs. time when running the task with a period

of 10 seconds. The first records the successful reception of the message by the node (our

code puts the red LED on for 1.0 second). After the reception, one more peak (around

t = 20) is visible, corresponding to the moments where the node radioed the 64 bytes.
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Figure 6.3: Radio Tests - 64 bytes Message

We would expect five more peaks (marked in the plot with a blue dot) within that time

interval, given the period of the task. Their absence is due to a sampling problem related

with the number of measurements the multimeter can execute per second. We ran the task

again with a delay of 500 ms inserted and, sure enough, the other peaks became visible

(black line). This delay was used only to allow the graphical visualization of the peaks.

All the measurements given here were performed without the delay. Also, given the limited

time resolution of the multimeter, we decided to use the digital oscilloscope to make all

timing measurements. In this figure, the last, wide peak is due to a retransmission.

Figure 6.4 depicts the data obtained in one execution of this task. When the message is

sent over the radio, a slight increase in the voltage (≈ 0.1V) is detected, allowing us to

time a full execution at 135ms.

Similar measurements were done for messages carrying 4, 8, 16, 32 and 64 bytes to assess

how power varies with message size. Figure 6.5 presents the correlation between the size

of the message and the time it takes to be received in the node. As it shows, there is a

almost linear relation between those two parameters with a factor of 1.05 ms/B, plus an

overhead of about 59 ms.

To test the access to sensors, we wrote a STL task (Figure 6.3.2) that accesses the

temperature and humidity sensors in sequence. A similar program was written in C++ for

Arduino (Appendix A.0.3). Figure 6.6 shows 6 executions of the STL task (black line) and

of the Arduino code (red line). The graph plots current intensity vs. time when running

the task with a period of 10 seconds. The fact that the peaks for the red and black lines

are out of phase is due to overhead in the reception and initial scheduling of the task,
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otherwise the approximate periodicity is observed. The first peak is, again, due to the

reception of the task in the node. This color code - black for STL and red for Arduino -

will be used for all figures henceforth.

STL Code 6.3.2 Access to sensors.

use ” ard2560 . hw”

[ ]
l oop {

f l o a t t = tempe ra tu r e ( ) ;
f l o a t h = humid i t y ( ) ;

}
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Figure 6.6: Sensors Access - Temperature and Humidity Task

The third task tests computation within the microprocessor. The task computes the 1000th

term of the logistic map [37], a famous simple map that produces a series of numbers

between 0 and 1. Figure 6.3.3 shows the STL code and Figure 6.7 shows the execution

of 6 such tasks. Appendix A.0.4 presents a similar implementation in Arduino C++. A

careful measurement with the oscilloscope, for this and the other examples, allowed us to

conclude that the peaks are well approximated by a square wave with a maximum current

of 98.9mA.

Finally, a task tests the triggering of actuators by alternatively activating and deactivating

the external red LED. Figure 6.3.4 presents the code for the task. Appendix A.0.5 presents

the same code written in Arduino native language, using the same RTC library as in

SONAR. Figure 6.8 shows the execution of 6 tasks. The task activations correspond to the

observed peaks in the graph, except for the first one. After a task is executed the current
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STL Code 6.3.3 Computation of the logistic map.

use ” ard2560 . hw”

[ ]
l oop {

f l o a t x = 0 . 2 ;
f l o a t k = 4 . 0 ;

i n t i = 0 ;
whi le ( i < 1000) {

x = k ∗ x ∗ ( 1 . 0 − x ) ;
i = i + 1 ;

}
}
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Figure 6.7: Computation - while loop

stabilizes in one of 2 levels, corresponding to LED disconnected and LED connected, with

a difference of 4.3mA.

The intensity of the current in the Arduino Mega 2560 board varies between a base value,

when the board is in sleep mode, not running a task, and a peak value, when a task is

being executed by the virtual machine. The same values are observed for the corresponding

Arduino programs. Table 6.1 shows the base and peak values for current, voltage and

instantaneous power in the experiments. The Arduino 2560 provides a set of sleep modes

with different levels of energy savings and hardware components turned off. Our prototype

uses the IDLE mode, which is not the most power efficient, but allows us to wake up the

board in time to properly receive asynchronous messages from the gateway. In order to

save as much power as possible while in IDLE mode, we disable also: the analog-to-digital

converter, the peripheral interface, three different timers, and the two wire interface.
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STL Code 6.3.4 Access to external LED (actuators).

use ” ard2560 . hw”

i n i t {
bool s t a t e = f a l s e ;

}

[ ]
l oop {

l ed ( s t a t e ) ;
s t a t e = ! s t a t e ;

}
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Figure 6.8: Actuators Test - External Red LED

From these base and peak values, and from the execution times of the tasks, we can compute

the total energy spent by a SONAR task and by the corresponding native Arduino program.

The values were computed from the measurements using the following equations for the

instantaneous power and energy consumption:

P = V × I
E = P ×∆t

These equations are adequate as we measured the profile of the tasks to be well approxi-

mated by rectangles of height equal to the peak intensity and width equal to their execution

time. Table 6.2 shows, for each test: the size in byte of the STL task and then, the time

and energy consumed to execute both the STL tasks and the equivalent Arduino program.



CHAPTER 6. SETUP, EVALUATION AND DISCUSSION 64

base value peak value
current (mA) 86.3 98.9
voltage (V) 5.0 5.0
power (mW) 432 495

Table 6.1: Base and peak values

task size (B)
time (ms) energy (mJ) STL

ArdSTL Ard STL Ard
Computation 121 160 27 79.1 13.4 5.9
Temperature 37 275 247 136.0 122.1 1.1
Humidity 37 274 80 135.5 39.6 3.4
Luminosity 37 37 11 18.3 5.4 3.4
Actuator 71 38 13 18.8 6.4 2.9

Radio - 4B 36 74 36 36.6 17.8 2.1
Radio - 8B 50 80 40 39.6 19.8 2.0
Radio - 16B 54 89 49 44.0 24.2 1.8
Radio - 32B 78 105 66 51.9 32.6 1.6
Radio - 64B 126 135 99 66.8 49.0 1.4

Table 6.2: Energy consumption

6.3.2 Discussion

The analysis of the measured data allowed us to conclude some interesting facts about

the current prototype. The SONAR operating system and the virtual machine in the

nodes introduce the highest overhead for tasks that are purely computational, by a factor

of 5.9, for a cycle with 1000 iterations. However, a closer look at the ratio between the

execution times in STL and Arduino (Figure 6.9) shows that part of this overhead includes

an initial setup time by the node’s operating system. In fact, as the number of iterations

grows, the contribution of this initial overhead gets diluted and the real ratio between

STL and Arduino (native) operations stabilizes at around 4.5 (the bars represent 95%

confidence intervals). This is expected, and is due to the fact that we are running byte-

code tasks on top of a virtual machine, rather than native code generated from C++

programs. We believe that optimizations of the byte-code generator and of the virtual

machine implementation will diminish this gap, but it will otherwise be always present.

It is the price of portability and dynamic reprogramming. The difference for other tests

is far more modest, with access to sensors and actuators around 3 times slower and radio

transmission of any size around 2. Though we throughly analyzed the code that accesses
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the temperature sensor, we cannot yet explain the lower overhead (only a factor of 1.1

slower) relative to the other sensors and actuators (globally around 3 times slower). As

the energy consumed is proportional to the time the task takes to execute, clearly the

optimizations must focus on this aspect, all other being the same for STL tasks and for

Arduino programs. We believe, however, that even in this unoptimized state our prototype

compares well with Arduino native code with the added benefits of simplified programming

and dynamic reprogramming.
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Figure 6.9: SVM overhead vs. size of problem.

The possibility to dynamically reprogram the network allow us to change the running tasks

at a small energy cost, avoiding simultaneously the need to flash the board.

When programing in the Arduino native language, this process is much more complex,

forcing the user to upload the code to the flash memory. Figure 6.10 presents the profile

obtained using the oscilloscope when flashing one node to change the running program in

Arduino native language. This data was obtained then flashing the board with the code

used to test the temperature sensor access.

The first two visible peaks represents the moment when the board is reseting, a mandatory

step so it can access the bootloader. After accessing the bootloader, there is a visible

plateau where the board is waiting for a command indicating that there is a new program

to be flashed to the board (presented in the plot from t = 0.750 to t = 1.000 approximately).

Next, the flash starts and the data is written to the board (from t = 1.000 to t = 2.500

approximately), followed by a period where it is verified that all the data had been correctly

written. The whole process took 4294ms to occur, being the board fully active for a period

of 4024ms. Applying the formulas previously presented, flashing the board to upload a

new program consumed about 1991.9mJ.
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Figure 6.10: Board Flash Profile

To perform the same action using our prototype, the only consumption is the reception of

the message, plus a very small overhead when the code is being stored and scheduled. In

this case, it took us 100ms to receive the message, store the code and schedule it, with a

consumption of about 49.5mJ, 40 times less that flashing the board in Arduino.

6.4 Summary

In this chapter we describe the usage of SONAR and present the benchmarking of our

prototype. We describe the setup used to measure the energy consumption and execution

time of each tested task, presenting all the plots obtained in each execution. We compare

the values obtained using our prototype with the values obtained when running a task

written using the Arduino native language. The ratio between these values allowed us to

study the impact of our prototype in terms of energy consumption and execution time.



Chapter 7

Port to Arduino Uno

In this chapter we describe the process of porting our prototype to a new node based on

a Arduino Uno board. We start by presenting an overview of the parameters we analyzed

before starting to port our solution. Next, we describe the implementation of a hardware

test tool we created to provide a simple and fast way to test the hardware components

present on the board. We finish this chapter by describing the changes made to port

our prototype to the Uno board, detailing the main problems found and quantifying the

amount of code added or re-written.

7.1 Overview

In order to port the current solution to a new sensor based on the Arduino Uno, two main

steps were taken to adapt all the needed code which makes our solution possible to run in

a different node. First, we analyzed the used pins in Arduino Mega2560 and mapped it in

the Arduino Uno pins, focusing in the used Universal Asynchronous Receiver/Transmitter

(UART) connections used. Second, given the memory constrains of the Arduino Uno,

we analyzed the memory consumption of our prototype and parameterized the operating

system and virtual machine to reduce the maximum number of tasks allowed to run

simultaneously in a node

Figure 7.1 presents a picture of both boards: the Mega2560 and the Uno. Both boards

have the same hardware configuration, despite the differences in the jumpers connections,

depicted in the picture.
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Figure 7.1: SONAR nodes - Mega2560 and Uno

7.2 Hardware Test Tool

At this point we concluded that currently, the SONAR nodes were using two UART pins

in order to allow external interrupt events: one reserved to the XBee event, used to wake

the nodes when a control message is being received and one for the RTC alarm, used to

wake up the node when a deployed task must start to execute. At this point, one major

difference between the Arduino Mega2560 and the Arduino Uno arises: the former has four

UART pins and the latter only has one. This lead us to make some significant changes in

the way our nodes implement the external events to wake up.

In order to test all the needed changes, we decided to implement a simple test project that

allows us to interact with each module of our node, using the same hardware libraries we

were using before. In the next two subsection we describe the implementation process of

this tool.

7.2.1 XBee external event

The first change we have done was the XBee connection to the board. In the previous

implementation, the XBee antenna was connected to the Arduino Mega2560 board through

jumpers using the serial communication pins 18 and 19 (RX1 and TX1 respectively). Given
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the current wire welding, we would need to use software serial communication to allow

the serial communication between the XBee antenna and the Uno board. Since version

1.0, Arduino offers by default a library that emulates the serial communication on other

digital pins, the SoftwareSerial [38] library. Using this library, we mapped two serial

communication pins in digital pin 2 and 3, connecting the XBee TX pin to the Uno RX

pin and the XBee RX pin to the Uno Tx pin. With this configuration, we created a simple

example that tries to send some floating point values to the gateway using unicast radio

messages. The gateway correctly received the message sent, proving that the XBee antenna

and the Uno board are correctly connected and working.

7.2.2 RTC alarm

After changing the XBee connection and event in the Arduino Uno board, we started to

solve the RTC alarm problem. Given the fact that at this point we did not have any

more serial communication pins available in our board, we searched for a different way

of allowing events to wake up the board using the RTC. After some research, we found

a simple solution that can be used to overcome this restriction: Pin Change Interrupt

(PCInt). A Pin Change Interruption can be enabled on any of the Arduino Uno signal pin,

allowing the trigger of events ON CHANGE of the pin value. To test this feature we used

the same library, PinChangeInt [39]. With this library, we were able to enable software

interrupts in a given digital pin, allowing to receive the alarm event generated at the RTC.

At this point we analyzed the circuit connections used in the previous implementation

(Figure 6.1) and decided to use pin 8 as the target pin. With this choice, we were able to

maintain the same welded wires and allow the RTC to wake the board using pin CHANGE

interrupt.

To test if this approach works with our node configuration, we have written a very simple

test in C++ where we simply start the node, schedule an alarm for 5 seconds later, put

the node in sleep mode and wait for the alarm to wake it. With this test we were able to

verify that the chosen configuration allows the RTC to correctly generate wake up events

using PCInt.
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7.2.3 Gathering all together

After testing each of the previous changes, we tried to incorporate all the features in a

simple tool that allows the test the complete hardware components present in the board.

For this tool, we uses the same libraries used in SONAR, in order to guarantee that no

library conflicts occurs.

In the process of gathering all together, an error arises when incorporating the PCInt

library and the SoftwareSerial library. After some code analysis, we discovered that the

error was related with the fact that the SoftwareSerial library uses some PCInt definition

to work properly. More specifically, both libraries are defining a set of interrupt vectors,

which enter in conflict. To solve this problem, we analyzed the set of pins that each of this

vectors is using, getting the following results:

• ISR (PCINT0 vect) pin change interrupt for digital pins from 8 to 13

• ISR (PCINT1 vect) pin change interrupt for analogical pins from 0 to 5

• ISR (PCINT2 vect) pin change interrupt for digital pins from 0 to 7

Given the pin configuration we previously used, the solution to this problem was to simply

split which vector pins are used by each library: PCInt library defined the PCINT0 vect

and PCINT1 vect, allowing the usage of interrupts in pin 8, and the SoftwareSerial library

defined the PCINT2 vect, allowing the creation of software serial communication in pins

2 and 3. With these changes, we were able to use both libraries simultaneous without

conflicts, finishing the implementation of the hardware test tool.

Figure 7.2 shows an example of the interface: the user is asked which hardware component

he wants to test and then the output is retrieved by the selected component.

7.3 SONAR porting

The Hardware Test Tool allowed us to prove that it is possible to use all the hardware

components simultaneously using the Arduino Uno. At this point, we started to adapt all

the software code to run in the board. We started by adding the PCInt and SoftwareSerial

libraries, allowing the XBee to correctly communicate with the board and the RTC to
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Welcome to the Hardware Test Tool for Arduino Uno

Select one of the following options:

1 - Read SHT-15 temperature

2 - Read SHT-15 humidity

3 - Read LDR luminosity

4 - Read RTC time

5 - Turn on LED for 1.5 seconds

6 - Test board IDLE mode

7 - Test XBee Radio antenna

Option: 2

Humidity: 46.89 %

Figure 7.2: Hardware Test Tool Example

Section Size (kB) Total Size (kB)
#Tasks .data .test .bss FLASH SRAM

8 0.48 23.3 2.31 23.3 2.79
4 0.48 23.3 1.57 23.3 1.95
2 0.48 23.3 1.04 23.4 1.53

Table 7.1: Memory usage: max. of 8, 4, and 2 tasks

trigger the wake up events when a task must be executed. With these changes, we expected

to be able to run the full implementation using the Arduino Uno.

To test the port, we compiled all the code with the new libraries added. We adjusted

the number of maximum tasks to 4 and 2, in order to save some SRAM space. Table 7.1

presents all the values obtained when compiling the code.

As shown in 7.1, the 2kB of SRAM available in Arduino Uno do not allow to schedule 8

tasks simultaneously without some code optimization. However, reducing the maximum

number of tasks to 4 or 2 reduces the SRAM usage to about 1.95kB and 1.53kB respectively,

which fits in the Uno parameters (98% and 77% of total Uno SRAM size). Despite it was

possible to run the software with 4 tasks, we decided to configure the maximum number

of tasks as 2 for our porting test.
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7.3.1 Port Tests

After uploading the software to the Uno board, we used the previously presented STL

programs to test if everything is working correctly. When the node is turned on, it

broadcasts a message to its PAN announcing himself as a new node. As expected, the

gateway receives that message and stores the node Mac Address as a new deployment

node.

At this point we tried to radio a task from the gateway to verify if the node is receiving and

executing it correctly. Contrarily to what we expected, the node did not react to the task

reception, turning on the LED. In order to verify if the message was reaching the board

causing it to wake from the sleep mode, we again connected the node to the multimeter

and the oscilloscope. After resending the task to the node, we registered a peak in the

voltage, proving that the node is waking from sleep and receiving some radio message.

As we started to debug this problem, we discovered that it was related with the fact that

when a message is received through the XBee, the board is waking but for an unknown

reason the interruption was not being correctly generated. We suspected that this problem

may be related with the SoftwareSerial connections previously created, so we decided to

try a different approach. Another way to allow the XBee to wake the board is using the

same interrupts we had previously used with the RTC, an PCInt. Given the current board

wiring already presented, we changed the XBee interruption attachment from pin 3 to pin

11, which we connected with a jumper, and added another PCInt in pin 11, allowing the

board to wake when a radio message is received.

After these changes, we were able to correctly receive some messages from the gateway: MAC,

kill and period commands. When testing the reception of new tasks, another problem

occurred: when trying to send new tasks, the node only receives and executes them if the

byte-code size of that task is smaller than 55 bytes. After inspecting the SoftwareSerial

library, we found that this problem was related with the fact that the a SoftwareSerial

port uses a 64 bytes reception buffer, which will not be sufficient for receiving tasks with

size greater than 54 bytes (plus the 10 bytes header always sent). Given the fact that this

is a software limitation, we solved the problem by changing the communication protocol

created to divide the tasks in packets, reducing the maximum size of each packet to 54

bytes. After this change, we tested again the reception of tasks with size greater than 54

bytes and everything worked correctly, finishing the port to the Arduino Uno board. The

schematic representation of the new node is presented in Figure 7.3.
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Figure 7.3: SONAR node scheme - Arduino Uno
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7.3.2 Port effort

The effort to port all the available code to a new Arduino board with less memory capacity

was essentially related with the new connections and the limitation introduced by the

different speed when using SoftwareSerial communications. Table 7.2 present a brief

quantification of changes needed, in terms of lines of code, connections and libraries added.

Gateway Node

Added Changed Added Changed

Lines of Code 0 3 13 4
Libraries 0 0 2 2
Wire Connections 0 0 1 3

Table 7.2: Port effort quantification: lines of code, libraries, and wire connections

As described in the previous section, the biggest difficult associated with the port was the

connection scheduling, allowing all the hardware components to correctly communicate

with the others.

Although in this case we opted to port our solution to a similar platform with less memory

and UART pins, the easiness of the process suggest that the effort to port our prototype to

a completely different platform with similar capacities would reside mostly in discovering

hardware libraries for all the components and adjust some parameters to fit the platform

memory constrains.

7.4 Summary

In this chapter we presented a port of SONAR to the Arduino Uno platform. We described

in detail the creation of a simple hardware test tool, used to test all the hardware connec-

tions in the new board, as well as all the changes in the code to adapt the prototype to

the new board, with less SRAM memory capacity and only one available UART pin. To

test the port we used the same STL tasks presented in Chapter 6, leading to a set of errors

related with the SoftwareSerial Library. We then solved this issue and successfully ported

the system to Uno. We finish this chapter by trying to quantify the effort of this port,

analyzing the amount of code we needed to rewrite and the changes in the connections.



Chapter 8

Conclusions and Future Work

In this chapter we present the conclusions of this thesis as well as some ideas about future

work that can improve our architecture.

8.1 Conclusions

In this thesis we addressed the problem of providing to non-specialist users a framework

for programming, configuring and deploying a WSN in a seamless way. We presented

our solution to this problem, SONAR, a three-layered Publish/Subscribe architecture

implemented over a set of interconnected Web Services, describing the implementation

of each component that composes this layers.

The SONAR Data layer presents a new approach in the usage of Virtual Machines to

develop WSN, since it allows dynamic reprogramming and debugging of the tasks running

in the nodes, as well as intranode multitasking. To manage the running tasks, each node

comes with a pre-installed operating system to manage memory and schedule tasks along-

side with the virtual machine to run tasks. The use of a virtual machine associated with

a domain specific language provides application portability and dynamic reprogramming

of WSN. Moreover, given the fact that the data layer is based on a virtual machine, an

important feature is related with the portability of this approach across WSN, that needs

to be as simple as possible.

To prove the portability of our prototype, we have ported it from a node based in the
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Arduino Mega2560 to a node based in th Arduino Uno, which presents significantly more

memory constrains. We described all the porting process and quantified the amount of

code rewritten.

To finish the study of our prototype, we studied the impact of using a virtual machine and

an operating system in terms of hardware resources and energy consumption, two important

factors in a WSN. We created a set of tests in which we connected a multimeter and an

oscilloscope to the Mega2560 nodes, measured the energy consumption and the execution

time of running tasks with our approach and compared it with a similar implementation

done using the Arduino native language.

After finishing the evaluation of the impact, the data we gathered in the tests allowed

us to conclude that this approach presents a small memory footprint on the nodes: we

easily fitted 8 running tasks in a board with just 8kB of SRAM, leaving enough space to

increase the number of running tasks. In the Uno board, we fitted 4 running tasks in a 2kB

SRAM. About the computational overhead introduces by the usage of the virtual machine

and operating system, the tests led us to conclude that the biggest overhead between the

execution of tasks written in STL and Arduino (native language) is reached in tasks that

are purely computational, in a factor of about 4.5. All the remainder of the tests presented

a far more modest ratio, with access to sensors and actuators around 3 times slower and

radio transmissions about 2 times slower. All of this overheads were already expected due

to the fact that we are running byte-code on top a virtual machine rather than native code

generated and optimized from C++.

The take away message from these experiments is thus:

• we fit in the available memory even without optimization (we use standard libs) and

in small devices;

• we have little computational overhead;

• we are far more simple to program with;

• we can simply reprogram networks at minimal energy cost, with no flashing.

The work developed under this thesis led to the submission of an article called ”Towards

Out-of-the-Box Programming of Wireless Sensor-Actuator Networks” [40] to the conference

”18th IEEE International Conference on Computational Science and Engineering”.
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8.2 Future Work

There are a set of features we are currently working to add in our prototype.

First we want to extend our language so it can support the usage of arrays and some

aggregation primitives. The possibility of adding data aggregation within a deployment is

an important feature to reduce the energy consumption of the overall network. Coupled

with this feature comes the need to change the communication model inside the Data layer,

allowing each node to send the sensed data to another node of the network, rather than

only to the gateway.

In order to minimize the energy consumption of the network, we are studying a new

approach in the way our nodes receive new tasks. The current state of our prototype

assumes a communication model where the administrator can submit a task to his deploy-

ment anytime, producing immediate changes in the running tasks. The real-time changes

produced by the addition of a new task is allowed by the fact that the XBee antennas

in each node are constantly listening to new messages, disabling the possibility to put

them in a sleep state. This approach is very useful in applications where time is a critical

component, making possible to apply changes in the network at any moment and receiving

the data in a small period of time since the changes have been submitted. Shifting this

working model to an approach where the application is more flexible in the time it takes

to receive the new tasks and apply the changes to the deployment, we can significantly

save energy by putting the XBee antennas in a sleep state, programming it to periodically

wake up to verify if new tasks were added to the network. In this approach, the gateway

would become more complex, being responsible for queuing the new tasks added by the

administrator, as well as the information about which nodes have already waked up and

received this task. At the same time, it would allow us to introduce a deeper sleep of state

in the nodes, saving even more energy.
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Appendix A

Code Blocks

In this Appendix we present the similar implementation of the tasks presented in Chapter 6.

All the examples are using the same libraries used in our prototype, which significantly

reduce the amount of code written in each example.
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Arduino Code A.0.1 Arduino Sensors and Radio Test Program

#i nc lude ” L i b r a r i e s /RTC/RTC. h”
#i nc lude ” L i b r a r i e s /SHT15/SHT15 . h”
#i nc lude ” L i b r a r i e s /Radio /Radio . h”

#def ine SHTx DATA PIN 7
#def ine SHTx CLOCK PIN 6

v o l a t i l e bool wake = f a l s e ;
SHT15 s h t 1 5 ob j ;
SendBuf s e n d b u f f e r ;
f l o a t s e n s o r v a l u e s [ 2 ] ;

void setup ( ) {
a t t a c h I n t e r r u p t (3 , wakeAlarm , FALLING ) ;

s h t 1 5 ob j (SHTx DATA PIN , SHTx CLOCK PIN ) ;
r a d i o : : g e t my add r e s s ( ) ;

t im e t t ime = r t c : : t ime ( ) ;
r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void loop ( ) {
s e n s o r v a l u e s [ 0 ] = s h t 1 5 ob j . getTemperature ( ) ;
s e n s o r v a l u e s [ 1 ] = s h t 1 5 ob j . ge tHumid i ty ( ) ;

s e n d b u f f e r = r a d i o : : new send bu f ( r a d i o : : myaddress , 1 , 2 , s e n s o r v a l u e s ) ;
r a d i o : : s end da ta ( s e n d b u f f e r ) ;

r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void wakeAlarm ( ) {
wake = t r u e ;

}

void s l e e p ( ) {
wake = f a l s e ;

s e t s l e e p mod e (SLEEP MODE IDLE ) ;
s l e e p e n a b l e ( ) ;

p owe r a d c d i s a b l e ( ) ;
p ow e r s p i d i s a b l e ( ) ;
p ow e r t im e r 0 d i s a b l e ( ) ;
p ow e r t im e r 1 d i s a b l e ( ) ;
p ow e r t im e r 2 d i s a b l e ( ) ;
p ow e r tw i d i s a b l e ( ) ;

s l e ep mode ( ) ;
s l e e p d i s a b l e ( ) ;

p ow e r a l l e n a b l e ( ) ;
}
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Arduino Code A.0.2 Arduino Radio 64 bytes Program

#i nc lude ” L i b r a r i e s /RTC/RTC. h”
#i nc lude ” L i b r a r i e s /Radio /Radio . h”

v o l a t i l e bool wake = f a l s e ;
SendBuf s e n d b u f f e r ;
f l o a t r a d i o v a l u e s [ 1 6 ] ;

void setup ( ) {
a t t a c h I n t e r r u p t (3 , wakeAlarm , FALLING ) ;

r a d i o : : g e t my add r e s s ( ) ;

f o r ( i n t i =0; i <16; i++) {
r a d i o v a l u e s [ i ] = 2 . 0 ;

}

t im e t t ime = r t c : : t ime ( ) ;
r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void loop ( ) {

s e n d b u f f e r = r a d i o : : new send bu f ( r a d i o : : myaddress , 1 , 16 , r a d i o v a l u e s ) ;
r a d i o : : s end da ta ( s e n d b u f f e r ) ;

r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void wakeAlarm ( ) {
wake = t r u e ;

}

void s l e e p ( ) {
wake = f a l s e ;

s e t s l e e p mod e (SLEEP MODE IDLE ) ;
s l e e p e n a b l e ( ) ;

p owe r a d c d i s a b l e ( ) ;
p ow e r s p i d i s a b l e ( ) ;
p ow e r t im e r 0 d i s a b l e ( ) ;
p ow e r t im e r 1 d i s a b l e ( ) ;
p ow e r t im e r 2 d i s a b l e ( ) ;
p ow e r tw i d i s a b l e ( ) ;

s l e ep mode ( ) ;
s l e e p d i s a b l e ( ) ;

p ow e r a l l e n a b l e ( ) ;
}
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Arduino Code A.0.3 Arduino Sensors Test Program

#i nc lude ” L i b r a r i e s /RTC/RTC. h”
#i nc lude ” L i b r a r i e s /SHT15/SHT15 . h”

#def ine SHTx DATA PIN 7
#def ine SHTx CLOCK PIN 6

v o l a t i l e bool wake = f a l s e ;
SHT15 s h t 1 5 ob j ;

void setup ( ) {
a t t a c h I n t e r r u p t (3 , wakeAlarm , FALLING ) ;

s h t 1 5 ob j (SHTx DATA PIN , SHTx CLOCK PIN ) ;

t ime t t ime = r t c : : t ime ( ) ;
r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void loop ( ) {
f l o a t t empe ra tu r e = sh t 1 5 ob j . getTemperature ( ) ;
f l o a t humid i t y = sh t 1 5 ob j . ge tHumid i ty ( ) ;

r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void wakeAlarm ( ) {
wake = t r u e ;

}

void s l e e p ( ) {
wake = f a l s e ;

s e t s l e e p mod e (SLEEP MODE IDLE ) ;
s l e e p e n a b l e ( ) ;

p owe r a d c d i s a b l e ( ) ;
p ow e r s p i d i s a b l e ( ) ;
p ow e r t im e r 0 d i s a b l e ( ) ;
p ow e r t im e r 1 d i s a b l e ( ) ;
p ow e r t im e r 2 d i s a b l e ( ) ;
p ow e r tw i d i s a b l e ( ) ;

s l e ep mode ( ) ;
s l e e p d i s a b l e ( ) ;

p ow e r a l l e n a b l e ( ) ;
}
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Arduino Code A.0.4 Arduino Computation Test Program

#i nc lude ” L i b r a r i e s /RTC/RTC. h”

v o l a t i l e bool wake = f a l s e ;
bool s t a t e = t r u e ;

void setup ( ) {
a t t a c h I n t e r r u p t (3 , wakeAlarm , FALLING ) ;

t ime t t ime = r t c : : t ime ( ) ;
r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void loop ( ) {
f l o a t x = 0 . 2 ;
f l o a t k = 4 . 0 ;

i n t i =0;
wh i l e ( i <1000) {

x = k ∗ x ∗ ( 1 . 0 − x ) ;
i ++;

}

r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void wakeAlarm ( ) {
wake = t r u e ;

}

void s l e e p ( ) {
wake = f a l s e ;

s e t s l e e p mod e (SLEEP MODE IDLE ) ;
s l e e p e n a b l e ( ) ;

p owe r a d c d i s a b l e ( ) ;
p ow e r s p i d i s a b l e ( ) ;
p ow e r t im e r 0 d i s a b l e ( ) ;
p ow e r t im e r 1 d i s a b l e ( ) ;
p ow e r t im e r 2 d i s a b l e ( ) ;
p ow e r tw i d i s a b l e ( ) ;

s l e ep mode ( ) ;
s l e e p d i s a b l e ( ) ;

p ow e r a l l e n a b l e ( ) ;
}
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Arduino Code A.0.5 Arduino Actuator Test Program

#i nc lude ” L i b r a r i e s /RTC/RTC. h”

v o l a t i l e bool wake = f a l s e ;
bool s t a t e = t r u e ;
i n t l e dP i n = A5 ;

void setup ( ) {
a t t a c h I n t e r r u p t (3 , wakeAlarm , FALLING ) ;
pinMode ( l edP in , OUTPUT) ;

t ime t t ime = r t c : : t ime ( ) ;
r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void loop ( ) {
i f ( s t a t e ) {

d i g i t a lW r i t e ( l edP in , HIGH ) ;
}
e l s e {

d i g i t a lW r i t e ( l edP in , LOW) ;
}
s t a t e = ! s t a t e ;

r t c : : a larm ( t ime + 5 ) ;
s l e e p ( ) ;

}

void wakeAlarm ( ) {
wake = t r u e ;

}

void s l e e p ( ) {
wake = f a l s e ;

s e t s l e e p mod e (SLEEP MODE IDLE ) ;
s l e e p e n a b l e ( ) ;

p owe r a d c d i s a b l e ( ) ;
p ow e r s p i d i s a b l e ( ) ;
p ow e r t im e r 0 d i s a b l e ( ) ;
p ow e r t im e r 1 d i s a b l e ( ) ;
p ow e r t im e r 2 d i s a b l e ( ) ;
p ow e r tw i d i s a b l e ( ) ;

s l e ep mode ( ) ;
s l e e p d i s a b l e ( ) ;

p ow e r a l l e n a b l e ( ) ;
}


