

MOBILE APPLICATION FOR BLOCKING SPAM

CALLERS

RUI MIGUEL TORRES DA COSTA RODRIGUES CARDOSO
DISSERTAÇÃO DE MESTRADO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
ÁREA CIENTÍFICA

M 2015

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mobile Application for Blocking Spam
Callers

Rui Miguel Torres da Costa Rodrigues Cardoso

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Supervisor: Ricardo S. Morla

Co-Supervisor: Muhammad A. Azad

26 January 2015

c© Rui Miguel Torres da Costa Rodrigues Cardoso, 2014

Abstract

VoIP (Voice over Internet Protocol) technology offers cheap telephony service and its openness can
lead it to denial of service and service abuse attacks from the malicious users. One such example
of such attack is the Spam over Internet Telephony (SPIT), which can be done by bulk calls and
messages sent by Telemarketers, prank callers, and advertisers. Some challenges emerge when
developing tools for SPIT detection. For example: the contents of a voice call are only disclosed
when it is answered; the time it takes to decide if the caller is spammer or not spammer must
be the small. The solution proposed by this dissertation to detect spam calls in a mobile phone
(designated as App from now onwards) uses the Caller-Rep algorithm. Caller-REP calculates the
reputation of the caller using Caller’s direct trust with their called people. The direct trust between
caller and callee is computed using a number of features that includes call-rate, call duration in
both directions and out-degree of the caller. The global reputation of the caller is then computed
using Eigen trust algorithm. The reputation of the caller is then used to distinguish spammers from
non-spammers. In this dissertation we focused on how mobile user collaborates with centralized
server to achieve the motives of collaborative spam detection. To this extent, a suitable protocol
was developed for the connection between the server and the mobile phone that is being used to
update server with trust values of each mobile users with the user he receives and made calls. The
centralized server aggregates the direct trust scores from participating users, computes the global
reputation of each user and decides the caller status by thresholding global reputation scores. The
App is user friendly and provides many value added features to the users. The whole work took
into account a cooperative information-sharing between users and the server providing each of
them with information (list of Direct Trust) for the construction of the blacklist.

i

Resumo

A tecnologia VoIP (Voice over Internet Protocol) oferece um serviço de telefonia de baixo custo e,
o facto de ser freeware, pode conduzir a estados de DoS (Denial of Service) bem como a ataques
por parte de utilizadores mal-intencionados. Um exemplo desses ataques é o Spam over Internet
Telephony (SPIT), podendo ser causado através de chamadas e mensagens em massa realizadas
por empresas de publicidade e telemarketing e hackers. Deste modo, alguns desafios surgem
aquando do desenvolvimento de ferramentas para detecção de SPIT. Por exemplo: o conteúdo de
uma chamada de voz é apenas divulgado quando esta é atendida; o tempo que leva para decidir se
um número é ou não spammer deve ser o mais curto possível. A solução proposta por esta dis-
sertação, para detectar chamadas de spam num telefone móvel, (designado como App a partir de
agora) usa o algoritmo Caller-Rep. Este algoritmo calcula a reputação do autor da chamada usando
a confiança direta que o mesmo tem com os seus contactos. A confiança direta entre o chamador e
o receptor é calculado usando uma série de parâmetros que incluem a taxa de chamadas, a duração
das chamadas em ambas as direções e o out-degree do chamador. A reputação global do chamador
é então calculada usando o algoritmo de confiança Eigen. A reputação do autor da chamada é en-
tão usado para distinguir os utilizadores spammers dos não-spammers. Nesta dissertação, é dado
especial interesse ao modo como o utilizador móvel colabora com o servidor centralizado para
dar origem a um sistema de detecção de chamadas de voz spam colaborativo. Neste sentido, foi
desenvolvido um protocolo adequado para a ligação entre o servidor e o telefone móvel para per-
mitir a atualização do servidor com valores de confiança de cada utilizador móvel. O servidor
centralizado agrega os valores de confiança direta dos utilizadores registados no sistema, calcula
a reputação global de cada utilziador e decide que utilizador é ou não spammer com base na sua
reputação. A App é de fácil utilização e oferece muitos recursos de valor acrescentado aos seus
utilizadores. Todo o trabalho realizado teve em linha de conta uma perspetiva de partilha de infor-
mação entre os diferentes utilizadores e o servidor, contibuindo, cada um deles, com informação
para uma construção colaborativa da lista de spammers.

iii

Agradecimentos

Ao meu professor e orientador Ricardo Morla pelas indicações dadas ao longo de todo o trabalho
desenvolvido e disponibilidade demonstrada na resolução de problemas que foram surgindo.

Ao Ajmal que sempre se demonstrou disponível para me atender e debater ideias, bem como
propor algumas soluções para alcançar certos objetivos.

A todos os meus amigos que sempre me ajudaram quando necessário.
Aos meus pais, irmãos, sogros e cunhados e toda a minha família que demonstraram sem-

pre um apoio incondicional ao longo do meu percurso académico e, em especial, ao longo da
realização desta dissertação.

À Adalgisa que sempre me apoiou e deu força ao longo deste trabalho e de todo o meu percurso
académico.

Rui Cardoso

v

Contents

Agradecimentos v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 1
1.3 Contribution . 2

2 Technical Background and Related Work 5
2.1 Technical Background . 5

2.1.1 VoIP . 5
2.1.2 Advantages of VoIP . 7
2.1.3 Network concerns for VoIP services . 7

2.2 VoIP Security Threats . 8
2.3 Spam over Internet Telephony (SPIT) . 8

2.3.1 SPIT Threats and Scenarios . 9
2.4 Android . 10

2.4.1 Brief History and Evolution . 10
2.4.2 Market Share . 12

2.5 Anti-Spit Overview . 12
2.5.1 Content-based approaches . 13
2.5.2 Access list-based approaches . 13
2.5.3 Challenge response-based approaches 13
2.5.4 Imposing additional costs on callers . 14
2.5.5 Extended call-setup based approaches 14
2.5.6 Social reputation-based approaches . 14

2.6 Stand-alone System Spam Detection . 15
2.7 Social network features for VoIP users . 16

2.7.1 In-degree and out-degree . 16
2.7.2 Call rate . 17
2.7.3 Call duration . 17

2.8 Caller-REP . 17
2.8.1 Why Caller-REP? . 17
2.8.2 Caller direct trust . 19
2.8.3 Caller global reputation . 19
2.8.4 SPIT caller detection . 20

vii

viii CONTENTS

3 Spam Blocker Architecture 23
3.1 Application Elements . 23

3.1.1 System Architecture . 23
3.1.2 Call flow . 24
3.1.3 Server Connection . 25

3.2 Constraints of the Android OS API . 25

4 Implementation and Evaluation 27
4.1 System Class Diagrams . 27

4.1.1 Mobile Application Class Diagram . 27
4.1.2 Server Class Diagram . 32

4.2 System Databases . 35
4.2.1 Mobile Database . 35
4.2.2 Server Database . 35

4.3 Use Cases . 36
4.3.1 Show Contacts . 36
4.3.2 Show Blacklist . 36
4.3.3 Show History . 37
4.3.4 Choose Settings . 38
4.3.5 Notification . 39

4.4 Performance Results . 41

5 Conclusions and Framework Proposal 43
5.1 Accomplished goals . 43
5.2 Framework proposal . 44

5.2.1 Direct Trust Module . 44
5.2.2 Server Module . 44
5.2.3 Share Module . 44

A Appendix 45
A.1 Laptop Specifications . 45
A.2 Mobile Phone Specifications . 45

List of Figures

1.1 Why using Mobile Application for Blocking Spam Caller? 2

2.1 Smartphone OS Market Share . 11
2.2 Caller-REP block diagram . 18

3.1 System Architecture . 23

4.1 Mobile Application Class Diagram . 28
4.2 CallLogsProcessing Class . 28
4.3 DatabaseHandler Class . 29
4.4 BlacklistDetails Class . 30
4.5 AddNumberToBlacklistDialog class . 30
4.6 ContactDetails class . 31
4.7 CellCallsService class . 32
4.8 SSLClient class . 32
4.9 Server side class diagram . 33
4.10 Server Graphical Interface . 34
4.11 Relational Model of the Mobile Application Database 35
4.12 Relational Model of the Server Database . 35
4.13 Main screen . 36
4.14 Contacts screen . 36
4.15 Main screen . 37
4.16 Blacklist screen . 37
4.17 Add contact to Blacklist dialog . 37
4.18 Blacklist with new entry . 37
4.19 Remove contact from Blacklist dialog . 37
4.20 Blacklist after removing . 37
4.21 Main Screen . 38
4.22 History screen . 38
4.23 History details . 38
4.24 Main Screen settings option . 39
4.25 Spam detection enabled . 39
4.26 Connect to the Server enabled . 39
4.27 Select synchronization interval . 39
4.28 Notification showed when the Blacklist is received 40
4.29 Connection to the server sequence diagram . 40
4.30 Memory used . 42
4.31 Storage size . 42

ix

List of Tables

2.1 OSI model adapted to the mobile VoIP network 5
2.2 Number of VoIP subscribers worldwide from the 3rd quarter of 2011 to the 2nd

quarter of 2013 (in millions) . 6
2.3 Estimated Fraud Losses due to Spamming by Region(in Millions $ USD) 9
2.4 Android OS evolution . 11
2.5 Android OS use by version . 12
2.6 Algorithm 1 - Reputation computation . 20
2.7 Algorithm 2 - Detecting SPIT Caller . 21

4.1 Blacklist searching time . 41
4.2 Server time to compute the Global Scores and retrieve the Blacklist 41
4.3 Bandwidth used when exchanging information with the Server 42

xi

Abreviations and Symbols

CFCA Communications Fraud Control Association

SPIT Spam Over Internet Telephony

SP Service Provider

OS Operating System

VoIP Voice over Internet Protocol

CDR Call Detailed Records

TCP Transmission Control Protocol

UDP User Datagram Protocol

RTP Real-time Transport Protocol

IP Internet Protocol

OSI Open Systems Interconnect

GSM Global System for Mobile Communications

UMTS Universal Mobile Telecommunications System

WCDMA Wideband Code Division Multiple Access

LTE Long Term Evolution

CRC Cyclic redundancy check

DoS Denial of Service

SIP Session Initiation Protocol

IETF Internet Engineering Task Force

SNMP Simple Network Management Protocol

IMS IP Multimedia Subsystem

BTS Base Transceiver Station

TLS Transport Layer Security

UI User Interface

App Mobile Phone Application

xiii

Chapter 1

Introduction

"Spam over Internet Telephony (SPIT) is a challenge and can become a major threat when tele-

phony completely shifts to VoIP"[7, p. 1].

The stand-alone spam detection systems can allow spammer to pass through the system lead

"due to their few recipient within the service provider"[8, p. 1]. A way to improve spamming

detection is to use a collaborative system where information can be exchanged among the service

providers. However, privacy issues can arise to "the collaborating entities and their end-users"[8,

p. 1].

Therefore, the following sections refer the motivation for this dissertation, the problem related

to it and its contribution to the existing spam calls detection systems.

1.1 Motivation

In the 2013 Global Fraud Loss Survey, made by the CFCA [1], it is referred that the telephone

fraud losses raised up to $46.3 Billion (USD) in 2013. Thus, it is urgent the creation of security

mechanisms capable of reducing those losses and to mitigate telephony frauds.

On the other hand, the VoIP "provide cheap telephony service" which can lead "telemarketers,

prank callers, and spammers" to "send bulk unsolicited calls"[6, p. 1, 4]. These calls can result

in several issues, such as: threat against callee account credit; missing important calls; vishing;

hijack of the network Equipment; mobile phone virus; negative perception about SP. These threats

are better explained in the chapter 2, section 2.3.

Other important aspect is the fact that there is no mobile applications available that use the

collaboration among their user for effective blocking of spammer.

1.2 Problem

Using the Caller-Rep algorithm, the data from numerous clients can be aggregated in order to

improve the voice spam detection.

1

2 Introduction

However, at this point, the CallerRep is constrained to voice operators, that is, it only works if

there is some sort of log of CDR (Call Detailed Records) from several clients to which the operator

can apply Caller-Rep.

Thus, the App tries to solve this problem providing to its users a way to share their data,

independently from the voice operator, in order to start a cooperative service with the main goal

of improving voice spam detection.

1.3 Contribution

After a research made in the Google Playstore, it was concluded that there is no applications

developed for the Android OS that make use of the reputation that a certain caller has with other

users in a network.

Therefore, the main contribution of the App is the fact that the blacklist is mainly constructed

by a centralized server using the Caller-REP algorithm to decide which caller is spam or not spam.

Other contribution is that the incoming spam calls are blocked, which contributes to minimize

the threats referred previously (see Fig. 1.1).

Figure 1.1: Why using Mobile Application for Blocking Spam Caller?

Throughout this report it will be described all the work done during the App development in

order to achieve the proposed goals.

In the chapter 2, we first discuss the challenge of blocking the spam calls and provide some

Technical Background on this subject.

Then in the chapter 3, it will be described the system architecture implemented and some

Android OS API limitations. This chapter can be used to better understand the way the data flows

throughout the system elements and how they communicate with each other.

1.3 Contribution 3

The Implementation and Evaluation of the App are presented in the Chapter 4. In this chapter,

we describe the System Class diagrams, the System Databases and some Use Cases related to the

main Mobile Application functionalities.

To finish this document, we have the chapter 5 which refers the accomplished goals and makes

a framework proposal that uses the Caller-REP algorithm and how it can be integrated in other

voice calls applications like Viber, Skype, among others.

Chapter 2

Technical Background and Related
Work

2.1 Technical Background

2.1.1 VoIP

As in an IP network, where messages are exchanged using datagrams, VoIP makes use of those

to exchange voice data between users. Therefore, it needs a TCP/IP network to work [21, 10, p.

15-19, p. 10].

So, the OSI model can be used to describe the mobile VoIP networking, with its seven layers:

Session, Presentation and
SIP

Application Layers

Transport Layer

TCP (reliable but slow)

UDP (less reliable but fast)

RTP (transfers audio between two or more endpoints)

Network Layer
Addressing scheme (IPv4, IPv6)

Data routing

Data Link Layer Quality of service functions (error check and CRC)

Physical Layer Radio links(GSM, UMTS/WCDMA or LTE)

Table 2.1: OSI model adapted to the mobile VoIP network

5

6 Technical Background and Related Work

In the following table, we can observe the continuous growth of the VoIP technology usage1

Quarter Subscribers number (in millions)

3rd ’11 131.73

4th ’11 135.37

1st ’12 140.31

2nd ’12 144.1

3rd ’12 147.69

4th ’12 151.53

1st ’13 155.17

2nd ’13 158.7

Table 2.2: Number of VoIP subscribers worldwide from the 3rd quarter of 2011 to the 2nd quarter
of 2013 (in millions)

2.1.1.1 SIP

An user, in order to make a VoIP call, must have an infrastructure that has some kind of protocol

to allow him to use the network, to which he is connected, to make that call. Thus, one of the most

used protocols is the Session Initiation Protocol (SIP).

This protocol is a standard defined by IETF and it works at the application-layer control and

is used to "establish, modify, and terminate multimedia sessions (conferences) such as Internet

telephony calls" [19, p. 9]. In a first moment, there is an exchange of SIP messages, between the

caller and the callee, to get the following informations:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in

communications;

User capabilities: determination of the media and media parameters to be used. [19,

p. 9]

Next step will be the:

Session setup: "ringing", establishment of session parameters at both called and call-

ing party. [19, p. 9]

During a call, the SIP can make the:

1Source: http://www.statista.com/statistics/236821/number-of-voip-subscribers-worldwide/

2.1 Technical Background 7

Session management: including transfer and termination of sessions, modifying ses-

sion parameters and invoking services. [19, p. 9]

The SIP User Agent (UA) and SIP Network Server are two entities that make part of the SIP

core network. Thus, they have different roles in the VoIP communications:

SIP UA: Is the user soft or hard phone responsible for initiating and accepting calls.

SIP Network Server: Manages signalling sessions among participating entities and has three

main functional components: the SIP Registrar, the SIP proxy server and SIP redirect server.

[8, p. 3]

The model adopted by SIP is the request and response for session management among com-

municating entities. So,

"the request messages are sent from the user to Registrar for registration, call request

for the start of new session, updating the existing session parameters, acknowledging

session establishment and terminating the existing sessions. Response messages are

used for providing the appropriate reaction to the request messages, depending on

the type of request message. The SIP network, in addition, also consists of other

supporting servers such as: a CDR server for storing Call Detailed Record of their

users call transactions, billing system for billing and presence servers for storing the

location and status of user." [8, p. 3]

2.1.2 Advantages of VoIP

Due to its nature, VoIP offers the cheapest way to make phone calls. Therefore, its wide adoption

in home and business networks has being grown. Since it is based on a IP network, a VoIP network

is simpler to build because the elements needed by it are already available, most of the times.

In business environment, there’s no need to invest in a dedicated infrastructure for voice-only

purpose and the one used for the network is enough to configure the VoIP service, allowing the

users to make VoIP calls.

Another advantage is that there is only one network to maintain. Therefore, the administrator

maintenance concerns rely on that network [21, p. 14].

2.1.3 Network concerns for VoIP services

With VoIP, data and voice have the same physical path. So, the VoIP infrastructure configuration

must be done carefully and there must be some sort of design guidelines in the data network

construction where it will work. Since it is an application that works in real time, the reliability

and stability of the overall system must be taken in account, because with an equipment or energy

failure the service can become unavailable [21, p. 14].

8 Technical Background and Related Work

Other aspect that is important in the VoIP usage is the security and privacy that must be pro-

vided to its users. Therefore, mechanisms and techniques to fight against possible VoIP network

threats must be provided.

2.2 VoIP Security Threats

VoIP security attacks can be divided in two kinds: active and passive attacks.

Active attacks are related to modifications to the VoIP infrastructure that results in some sort

of DoS. These kind of attacks can be achieved through the exploitation of the weaknesses of its

components.

These attacks can be accomplished by:

• Getting or uploading a VoIP hard phone configuration file - gets access to hard phone’s

settings and options or makes upload of an altered configuration file to make changes in the

settings of the phone or control it remotely;

• Exploiting weaknesses of SNMP - Gain access to hard phone’s configuration settings, if

SNMP is enabled and using SNMPv1 read and write community strings;

• Impersonating VoIP devices - Spoof legitimate gatekeeper, Registrar, Proxy Server [10, p.

113 - 126].

Passive attacks are those which involve disclosure of sensitive or private information or misuse

of the VoIP infrastructure to make unauthorized calls or flooding it with repeated calls.

The attacker can achieve his goals with, for example:

• VoIP phishing (vishing) - Fake phone number or phone destination to get private informa-

tion;

• Caller ID spoofing - posing by a legitimate phone number;

• Anonymous eavesdropping/call redirection - Either using Caller ID spoofing or a phishing

email;

• SPIT - Bulk advertisement through the VoIP network [10, p. 131 - 152].

2.3 Spam over Internet Telephony (SPIT)

SPIT is used to designate unwanted, automatically dialled, pre-recorded phone calls using VoIP

infrastructure. [7]. Therefore, there are some aspects, related to the nature of SPIT, to be taken in

account when fighting against it, such as:

• A voice call is done in real time;

• Its contents are only available when the call is established; [8, p. 3].

2.3 Spam over Internet Telephony (SPIT) 9

• There no distinguishing header for either SPIT or non-SPIT caller, therefore it can’t be used

to detect SPIT calls;

• The space required for a voice message can unable legitimate callers to use the resources

associated to their voice mailbox.

The estimated fraud losses due to Spamming by Region can be observed in the following

table2:

Region Losses (in millions)

Asia 70 000

South Pacific 20 000

Central and South America 20 000

North America 230 000

Western Europe 250 000

Eastern Europe 90 000

Africa 70 000

Middle East 50 000

Table 2.3: Estimated Fraud Losses due to Spamming by Region(in Millions $ USD)

2.3.1 SPIT Threats and Scenarios

SPIT has many scenarios of applicability, depending on the nature of the SPIT call, such as:

1. Threat against Callee account credit - loss of callee account due to call forwarding, roam-

ing and automatic call back service when receiving a value added service call, like an ad-

vertiser call;

2. Threat against missing important calls - when the subscriber voice mailbox is enable, a

spit call diverted to it can result in making that resource unavailable to the legitimate callers.

When unsolicited calls are in great number, the time to delete them from the voice mailbox

can be a "time consuming job"[8, p. 4], because the callee must listen everyone of them, for

a little bit of time, before deleting each one;

3. Vishing - hiding the identity or impersonating legitimate identities to get private information

leading to disclosure of callee private information;

4. Network Equipment Hijacking - when attacker gets access to a VoIP network element and

use it to send unwanted calls;
2Source: 2013 Global Fraud Loss Survey(CFCA[1])

10 Technical Background and Related Work

5. Mobile Phone Virus - the attacker sends virus through unsolicited communications, in-

order to, for example, destroy the operating system of the IP phone or steal the user contact

list.

2.4 Android

2.4.1 Brief History and Evolution

Android is an mobile operating system mostly used in smartphones and tablets.

However, with the new API 20 [2], there’s a new generation of devices emerging, such as:

wrist watches, Smart TVs and auto devices. [3, 4]

This mobile OS was founded by Andy Rubin, Rick Miner, Nick Sears and Chris White in Palo

Alto, California. Later, Google bought it in July 2005. Thus, in November 2007 they made an

public announcement that they were developing their first ’Google Phone’ built on top of a mobile

platform, Android, with a Linux based kernel.

According to Andy Rubin "Android is the first truly open and comprehensive platform for mo-

bile devices. It includes an operating system, user-interface and applications – all of the software to

run a mobile phone, but without the proprietary obstacles that have hindered mobile innovation"3.

Android was developed by Open Handset Alliance in aliance with others technology and mo-

bile leaders that includes: Motorola, Qualcomm, HTC and T-Mobile. Andy Rubin refers that

"Through deep partnerships with carriers, device manufacturers, developers, and others, we hope

to enable an open ecosystem for the mobile world by creating a standard, open mobile software

platform"3.

Therefore, "Android is a fully open and comprehensive platform ... that will give mobile

operators and device manufacturers freedom and flexibility to design products and programs"4.

In the Table 2.4 there are presented the several Android OS versions5 and their respective first

release dates.

3Source: http://googleblog.blogspot.pt/2007/11/wheres-my-gphone.html
4Source: http://www.ibtimes.com/evolution-android-os-g1-jelly-bean-697079
5Source: http://developer.android.com/tools/revisions/platforms.html

2.4 Android 11

Version Release date

Android 4.4W June 2014

Android 4.4 October 2013

Android 4.3 July 2013

Android 4.2 November 2012

Android 4.1 June 2012

Android 4.0.3 December 2011

Android 4.0 October 2011

Android 3.2 July 2011

Android 3.1 May 2011

Android 3.0 February 2011

Android 2.3.4 May 2011

Android 2.3.3 February 2011

Android 2.3 December 2010

Android 2.2 May 2010

Table 2.4: Android OS evolution

In the Fig. 2.1 and in the Table 2.5, it can be observed how the Android OS versions usage is

distributed:

Figure 2.1: Smartphone OS Market Share

The information available in the Table 2.4 is based on the "data collected during a 7-day period

ending on July 7, 2014"6.

6Source: http://developer.android.com/about/dashboards/index.html

12 Technical Background and Related Work

Version Codename API Distribution

2.2 Froyo 8 0.7%

2.3.3 - 2.3.7 Gingerbread 10 13.5%

4.0.3 - 4.0.4 Ice Cream Sandwich 15 11.4%

4.1.x

Jelly Bean

16 27.8%

4.2.x 17 19.7%

4.3 18 9.0%

4.4 KitKat 19 17.9%

Table 2.5: Android OS use by version

2.4.2 Market Share

According to the IDC Smartphone OS Market Share7 there has been a clearly growth of the An-

droid OS use, as IDC states that:

"Android proved once again it is positioned where the market is going by growing

its volume from the fourth quarter, something that doesn’t happen too often given the

smartphone market’s seasonality. Larger 5-7" Android devices grew to 84.5 million

in 1Q14, which was 36.2% of all Android shipments globally. Samsung leads in

the Android camp, while the rest of the pack is quickly being made up of Chinese

vendors. Huawei, Lenovo, Coolpad, Xiaomi, ZTE, and OPPO were all part of the top

10 Android vendors in the first quarter of 2014" (IDC, 2014 Q1).

2.5 Anti-Spit Overview

In real time communications, such as VoIP or mobile telephony, the detection of spam (is this

case spam calls) is much more difficult, because a real-time response is needed for the users call

requests, making the VoIP calls spam detection different from the email spam detection.

In RFC5039 [18] several approaches are shown to block SPIT callers, that can be divided into

two categories:

1. Methods based on content analysis of signaling messages and actual voice (trans-

parent to the caller and the callee);

2. Methods that require feedback from the caller or the callee about the spamming

nature of the call. [6, p. 5]

7Source: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2.5 Anti-Spit Overview 13

According to how the decision (if a call is or is not spam) is made, there can be two types of

methods:

1. Pre-acceptance - Decision is made before the call is answered;

2. Post-acceptance - Decision is made after the call is answered.

Based on the assumptions previously enumerated, several approaches emerged to fight against

spam calls, which the main characteristics and issues will be described in the following subsec-

tions.

2.5.1 Content-based approaches

This type of approaches has the principal aim to analyse the "semantics of SIP signaling messages

or the contents of the RTP stream" [6, p. 5], which can be done either in real time or in non-real

time.

Thus, when real-time voice processing is used that demands real-time signal processing, which

can lead to a deteriorated voice quality, due to the voice processing delay.

Another important aspect is that there is an issue related to privacy, because "contents are

encrypted and background noise is added to the speech" [6, p. 5] leaving the data vulnerable to

disclosure.

With content-based techniques there’s no additional information added to calls, so it becomes

hard to make the distinction between the SPIT caller and the non-SPIT one.

2.5.2 Access list-based approaches

A list of databases are used, in list-based approaches, to check the identities of VoIP users [15,

9] There is an use of blacklists, which store the users that must be blocked from calling, and

whitelists, containing the identities of the users allowed to make calls. This blocking method

requires frequent updates of both lists, to maintain its usability.

A third list can be used, usually called gray list. The first time a user, contained in the gray list,

tries to make a call that is not allowed. When he tries to do a second call, that is allowed whithin

a defined time window. Thus, this implies "multiple attempts to reach the callee" [6, p. 6].

Usually, this techniques can be combined with others [16, 17, 14].

2.5.3 Challenge response-based approaches

A Turing test can be used to distinguish human from machine calls, because the SPIT calls can

have its origin in automated machines. The use of this tests "is based on the fact that humans can

easily solve some problems which are impossible for the computer" [6, p. 6].

Although computer generated SPIT calls can be blocked using the Turing test approach, it

requires a lots of network and computational resources. This approach can annoy users with its

puzzles, because they must solve one in every call they make leading to a larger call setup time.

14 Technical Background and Related Work

2.5.4 Imposing additional costs on callers

This type of approaches, based on Payments at Risk [22], firstly takes off a small amount of money

from the caller account, then returns it, in a later step if the caller is proved to be legitimate.

The implications of this mechanism are:

1. Some sort of feedback from the callee or content processing is needed to make the final

decision;

2. There should be a balanced payment system.

Taking into account the first requisite, it is not easy to implement because callers are loath "in

providing feedback for every received call and content processing faces same limitation of content

based approaches" [6, p. 6].

Due to the different call setups, it is hard to design a payment system which is convenient to

each one of them.

2.5.5 Extended call-setup based approaches

This type of approach uses the proxy server that takes the following steps:

1. Accepts the call;

2. Disconnects the call;

3. Calls the caller back (he must be able to pick up the call).

However, some limitations can be appointed to this approach such as need of additional net-

work resources and increased call setup time.

2.5.6 Social reputation-based approaches

VoIP users are ranked according to the social relationship between each other. Thus, this is done

in two steps:

First step: calculate the trust value, "computed between any two users" [6, p. 6], which can be

done in two ways: either attributing positive or negative feedback to a caller [16, 17, 23, 12,

13] or calculating the average call duration of the calls made to a certain callee [20, 22];

Second step: calculate the global reputation, which provides "an indication of the spamming be-

haviour of a caller in the whole network". This reputation can "be computed from social

network features including node degree, local clustering coefficient, in-count degree, out-

count degree, reciprocity index etc" [6, p. 6].

Based on this steps, there are several social reputation-based methods, such as:

2.6 Stand-alone System Spam Detection 15

1. CallRank [20] - gets direct trust through average call duration; uses Eigen trust reputation

algorithm to get the global reputation. The higher the average call duration is, the higher is

the "trustworthy relation between caller and callee" [6, p. 6] and it is used to user reputation

across the network;

2. Semi-supervised clustering to callee feedback and to the distribution of SIP messages [23] -

groups callers into legitimate and non-legitimate clusters; this approach requires user feed-

back and changes to VoIP software.

3. Multi-stage SPIT detection system consisting of trust and reputation stages integrated with

black and white lists [16, 17] - computes the trust based on callee feedback, either negative

or positive. Bayesian inference is used to build the caller reputation.

4. Reputation based techniques in combination with other SPIT detection approaches [22, 7] -

multistage method and "interact with other stages for a final decision about the nature of the

caller" [6, p. 6].

5. Three SPIT detection techniques based on average call duration, degree distribution and

reciprocity index [11] - caller reputation among network users is calculated using the aver-

age call duration with a page-rank algorithm.

6. Two computers systems based on the entropy of the average call duration [12, 13] - system

number one distinguish SPIT from non-SPIT callers through Mahalanobis distance to call

duration and time of call. System number two detects misbehaving groups based on the

entropy of call duration at a group level.

7. Collaborative score-card framework [5] - used in IMS network to distinguish legitimate

caller from the non legitimate and is based on the exchange of score-cards of a caller within

the receiving domain, which are used to block or allow a call.

8. Multistage SPIT detection system [7] - the detection of the "SPIT caller in a transit VoIP

operator" [6, p. 7] is made using a feedback between several stages.

2.6 Stand-alone System Spam Detection

This kind of systems are widely used for detecting and blocking SPIT caller in a VoIP architecture.

They consist, generally, in the observation of local traffic or call patterns to decide if a call is or

isn’t spam.

The stand-alone systems can be implemented using two distinctive ways:

• Content based approaches - as the call contents are only available after call setup, is hard to

implement in a VoIP infrastructure. This needs real time speech processing and databases

containing spam speech contents which require expensive resources, making it hard to de-

ploy and not feasible;

16 Technical Background and Related Work

• Identity based approaches - requires callee feedback about the caller or caller’s call detailed

records to be analysed to calcualte the reputation of a certain caller.

Smart spammer can easily hack standalone systems because these systems don’t take in ac-

count the caller’s calling behavior, making the system "sensitive to the detection accuracy" [8, p.

5]. However, it can be more robust against spammer attacks "when implemented in the form of

multistage system" [8, p. 5].

2.7 Social network features for VoIP users

The CDRs are stored in a server and can have several information about a call, such as: IDs of

the caller and the callee, time and duration of the call, quantity of packets transferred in both

directions, which party disconnected the call, among others.

Thus, this CDRs can be used to model the caller-callee social network, which can be repre-

sented as a directed call graph G=(V,E).

Specific calling patterns are observed when legitimate VoIP callers make a call to his friends

or family members, which form his social network.

However, when a telemarketer or spam caller makes a call, their calling patterns and social

network are different from the legitimate callers. Therefore, these "social calling behaviors" [6, p.

7] can be used to gather information to identify spam callers.

To make the identification of a spam caller it will be used the social network features described

in the next three subsections.

2.7.1 In-degree and out-degree

• In-degree of a user - number of other unique users calling this user and is defined as follows:

In−Degree(Si) = ∑
j

Ei j (2.1)

• Out-degree of a user - number of unique users this user calls and is defined in the equation

2.2:

Out−Degree(Si) = ∑
j

Ei j (2.2)

Ei j "is one if user i has called user j at least once, and zero otherwise" [6, p. 7].

The following patterns can be observed:

• SPIT caller - makes lots of calls to a large number of unique callees but the answers he

receives are only few, leading to an unbalanced in/out-degree;

• Legitimate callers - get balanced in/out-degree because the number of calls they make and

receive are almost the same.

2.8 Caller-REP 17

However, using these in/out degrees in a isolated way may result in a low detection rate because

SPIT callers can often change their identities.

2.7.2 Call rate

Defined as the sum of the number of calls made or received by a caller that can be categorized as

in-call and out-call rates.

This rate reflects the behaviour of an user: "the higher the call rate, the more frequently a user

calls the same people" [6, p. 8]. On the other hand, "SPIT callers try to call as much people they

can" [6, p. 8], which "results in a small calling rate and non-repetitive behaviour" [6, p. 8].

2.7.3 Call duration

Defined as the "total duration of all calls made or received by the user" [6, p. 8], which can be

classified as in-call and out-call duration.

High duration calls are observed in calls made by legitimate callers "within their social groups"

[6, p. 8], while, out of their social groups" [6, p. 8], the duration is less.

The principal target of SPIT callers are new callees (previously unknown to them) and when

a callee receives a call from a SPIT caller, usually he doesn’t know the number, so he decides

"the nature of caller within the first few seconds of conversation" [6, p. 8], and disconnects the

call after those seconds. This leads to a short time of conversation, implying that the SPIT callers

are associated to a large number of short duration calls, which differentiates them from "socially

connected legitimate callers having large duration calls" [6, p. 8].

2.8 Caller-REP

2.8.1 Why Caller-REP?

Developing a SPIT detection system which blocks calls during the signaling phase and without

content analysis or user involvement can be challenging.

Because of the repetitive calling behaviour that a legitimate caller has with their friends and

family members (Bokharaei et al., April 2011), it is possible to determine the trust and reputation

"from the average call duration along with social network features" [6, p. 7], by using, in a

collective way, "the number of repetitive calls, the number of reciprocal calls, call duration in both

directions, and the number of unique callees" [6, p. 7].

So, in a first step, the direct trust is computed using "the number of outgoing partners, the

calling rate in both directions, and the total call duration in both directions" [6, p. 7]. On a second

step, the global reputation is calculated and "the caller is classified as legitimate or non-legitimate

using an automatic threshold approach applied to the caller reputation" [6, p. 7].

Caller-REP consists in, first, using "a combined set of caller’s social network features" [6,

p. 7], as described in the previous subsections, for computing direct trust between VoIP users.

18 Technical Background and Related Work

Second, the power iteration method is used to calculate the caller’s reputation. Third, in order to

make the final decision the 25th percentile values are used to compute an automatic threshold.

Caller-REP analyses the "importance of relationships between users and the behaviour of users

across the network" [6, p. 8]. Thus, it has three steps to categorize users as SPIT or non-SPIT:

1. "Extracts the social network of the caller from the CDR data and computes direct trust

between a user and their callees" [6, p. 8];

2. "Uses the power iteration algorithm for computing the caller’s reputation across the net-

work" [6, p. 8];

3. "Computes a threshold for the automatic classification of caller as SPIT and non-SPIT" [6,

p. 8].

The following figure represents the block diagram of Caller-REP.

Figure 2.2: Caller-REP block diagram

It is used the past interactions between a user and the others users to make his social network,

using the following features:

"Call Duration: Talk time of a user. CDSR is the sum of the duration of all the calls

made by user S to user R;

Call Rate: Number of calls made and received by the caller. CallRateSR is the num-

ber of calls user S made to user R;

Partners: Number of unique callees associated with each user in a network. POS is

the number of unique callee of caller S and PIS are the number of unique callers

calling caller S." [6, p. 8]

2.8 Caller-REP 19

Then, the callers direct trust is computed to all his partners, which is used to calculate the

callers global reputation and the automatic threshold.

In the next subsections are described how the caller direct trust, the caller global reputation

and the automatic threshold are computed.

2.8.2 Caller direct trust

"Direct trust between caller and the callee is the combination of the amount of time both users are

engaged in talking, the number of reciprocal calls between them, and the number of unique callees

of the caller" [6, p. 8-9]. This parameter measures the social relationship between a caller and a

callee.

It is important to refer that a "legitimate caller usually has strong social ties with a large number

of callees and weak ties with a few called callees" [6, p. 9]. However, a SPIT caller develops "weak

social ties with a large number of called callees" [6, p. 9].

Thus, the following features are used for "the computation of callers S direct trust score with

callee R", which can be observed in Equation (2.3):

1. The out-going number of partners of the caller, POS;

2. The number of out-going repetitive calls CallRateSR and their call duration CDSR;

3. The number of incoming calls CallRateRS and their call duration CDRS.

.
TrustSR =

CDSR×CallRateSR +CDRS×CallRateRS

POS
(2.3)

2.8.3 Caller global reputation

Caller global computation is computed after the callers direct trust, which represents "his reputa-

tion across the network" [6, p. 9]. This has an important role "when the callee receives a call from

an unknown caller and relies on the collaborative feedback of other callees that already interacted

with the caller" [6, p. 9].

Thus, the caller reputation across the network is based on the trust scores he has with the

callees, the higher the trust score is the higher is the reputation and the lower the trust score is the

lower is the reputation score.

Using the Algorithm 1, presented on the Table 2.6, it is possible to calculate the reputation of

a caller.

The matrix of normalized direct trust TSR between every pair of users (S,R) is the input of

this algorithm, while the output is "a global reputation vector G with a per-user reputation score

GS ∈ [0,1]" [6, p. 9].

20 Technical Background and Related Work

1: procedure GLOBAL REPUTATION OF ALL USERS

2: input← T (normalized direct trus matrix, with elements TSR)

3: out put← GR (Global reputation score vector, with wlements GRS)

4: precisionparameter← ε

5: Initalize reputation vector GR

6: GRS =
1

POS

7: while δ < ε do

8: GR← T ×GR

9: GR← GR
‖GR‖

10: gr←‖ GR ‖

11: δ ← gr−grprevious
gr

12: grprevious = gr

13: end while

14: end procedure
Table 2.6: Algorithm 1 - Reputation computation

Then, an iteration occurs and finishes only when the "convergence of the norm of the global

reputation vector ‖GR‖=
√

∑S GR2
S " [6, p. 9] is reached. In this iteration occur several steps:

1. Global reputation vector is updated (GR = T ×GR);

2. GR is normalized;

3. Norm gr is checked for convergence with previous norm grprevious

2.8.4 SPIT caller detection

Caller-REP uses a dynamic threshold learned from the set of reputation values. Therefore, the

dynamic threshold value is based on a percentile method that make use of the "set of computed

reputation scores of all callers" [6, p. 10] and corresponds "to the 25th percentile of this set" [6, p.

10].

The algorithm described on Table 2.7 is used to classify callers as SPIT or non-SPIT.

The value m represents the 25th percentile value of the global reputation which is computed

for each time window. The dynamic threshold is set based on the mean of the callers with global

reputation less than m (line 6).

2.8 Caller-REP 21

Callers are classified as legitimate 1 or non-legitimate -1 based on a following rule:

CallerS =

GRS > β threshold; 1

GRS < β threshold; -1

To "maximize true positive and true negative rates in a network with high SPIT or legitimate

traffic, Caller-REP can be implemented with a β parameter that is defined by the operator for

controlling false detection" [6, p. 10].

1: procedure SPIT DETECTION

2: input← Global Reputation(GR), with elements GRS

3: out put← SPIT(1) or non-SPIT(-1) detection vector, with elements SPITS)

4: operator−de f ined parameter← β (β = 1 if operator has no preference)

5: m←1st-quartile(GR)

6: threshold← mean(GR < m)

7: for All caller S do

8: if (GR[S]< β × threshold) then

9: Place Caller S in a SPIT list

10: else

11: Do Not Place Caller S in a SPIT list

12: end if

13: end for

14: end procedure
Table 2.7: Algorithm 2 - Detecting SPIT Caller

Using this type of SPIT detection implementation, that makes use of the social network fea-

tures like Caller-REP, there can be developed a system for SPIT detection independent from the

cellular/VoIP operator.

The application developed uses this approach in order to avoid operator constraints concerned

to the share of its information about spam callers. Therefore, it constructs the blacklist using the

social reputation that each user has among the other users in the system and doesn’t need to use

the operator list to do so or any information manually given by their users.

Chapter 3

Spam Blocker Architecture

3.1 Application Elements

The system developed is based on the Caller-REP SPIT detection described in section 2.4. How-

ever, it will handle only cellular calls.

In the next sections, it will be explained how the reputation is calculated, how the reputation

scores is exchanged between the system components, how a call is handled by the Android OS

and how a call is blocked by the application.

3.1.1 System Architecture

Fig. 3.1 shows the architecture of our proposed solution for detecting spams

Figure 3.1: System Architecture

23

24 Spam Blocker Architecture

Below I briefly describe the functionality of each device in context with collaboration and

spam detection.

3.1.1.1 Mobile Phones

Use the Android application to listen calls made or received, through the Android OS service,

and process the information related to them. Thus, when an incoming/outgoing call is received or

made, the application gets the phone number and gets duration of call from call logs when call get

disconnected. With this information, the App computes the Caller Direct Trust using the equation

2.3 and records the result into the private database. The Caller Direct Trust values are then sent to

the Server when a WiFi connection is enabled and the user connects to it.

3.1.1.2 Server

Server gets the direct trust values from the Mobile Phones (users), stores them in the server

database and organizes them into a matrix to compute the Caller Global Reputation using the

Algorithm 1 (See Table 2.6). Then, the list of spam callers is built based on the results got in the

previous step and using the Algorithm 2 (See Table 2.7). The caller spam list (blacklist) is sent

back to the users. The connection between the users and the server is made using a SSL socket.

All users contribute with Direct Trust values to compute the blacklist in a collaborative manner.

3.1.1.3 BTS

BTS permits the mobile phone to receive and make mobile calls through the connection 1.

3.1.1.4 Wifi AP

Wifi AP allows the mobile phone to send the Direct Trust file to the server and receive the updated

Blacklist from it through the connection 2 and 3.

In Fig. 3.1 it can be observed that there can be several users using the App and connecting to

the server to exchange their Direct Trust files. Thus, it’s important to refer that the system uses

those Direct Trust files to compute the Reputation Score that a certain callee has among the system

users. This Reputation Score is used to decide if that callee is or is not a spammer. The Blacklist

is made taking in account that decision and then distributed to the users connected to the system

server.

3.1.2 Call flow

In the following sections it will be described the App behaviour when the blocking feature is on

and off.

3.2 Constraints of the Android OS API 25

3.1.2.1 With Call Blocker

Firstly, it is created a service to listen to incoming/outgoing calls and the Blacklist is copied to an

hash table. Then, when a call is perceived, the hash table is checked to see if the callee is spammer

or not. If he is a spammer, he is blocked and the call is terminated. Otherwise, the call is allowed

to be established by the Android OS.

3.1.2.2 Without Call Blocker

Nothing is done and the Android OS handles the incoming/outgoing calls as usually.

3.1.3 Server Connection

In the next sections there will be explained how the data flows from the user to the server and

vice-versa.

3.1.3.1 From user to Server

When the user enables the connection to the Server, first the App checks if an Wi-Fi connection is

available. If there is one, then an SSL connection is created and the Direct Trust records file is sent

to the Server. Then, the Server processes the file, stores the Direct Trust values in its database, and

calculates the Global Reputation for the callees present in the file.

3.1.3.2 From Server to user

After computing the Global Reputation to each callee, the Server constructs the spammer list. This

list is retrieved back to the user through the same SSL connection.

3.2 Constraints of the Android OS API

There was found some constraints in the Android OS API, which influenced the way the App was

developed, which are:

1. Listen VoIP calls - the Android OS API does not permit to do it without having a SIP server

configured by the user;

2. Listen other Apps Voice Calls - The Android OS API doesn’t have a way to listen to voice

calls from other apps like Skype, Viber, or other communication app. But if there are ways

to do so, we didn’t find any in order to solve this problem.

Chapter 4

Implementation and Evaluation

4.1 System Class Diagrams

4.1.1 Mobile Application Class Diagram

The classes used to create the Mobile Application were divided into three packages. However,

only the one used to make the UI are represented here. Thus, the Fig. 4.1 contains all the classes

related to the UI. Since these classes make use of others contained in the other packages, those

will be explained when needed.

The MainActivity class represents the main screen that the user sees when the application

starts. This class makes the transition to the others UI screen classes. These transitions are repre-

sented by the Intent objects and the ImageButton objects allows the user to select each screen he

wants to go to.

The method onCreate() is used when an activity is launched and it is here where the objects

are created and initialized.

The method onCreateOptionsMenu() is used to display the Menu Options, which can be dif-

ferent on each activity.

The method onCreateOptionsItemSelected() is used to handle the option that was selected by

the user.

Since the classes BlacklistMain, ContactsMain and HistoryMain are also activities, the three

methods explained above were also used but not included in the class diagram.

In the first time the App is used, the Calls Log of the Android OS is processed to get the Direct

Trust to each contact recorded in that file. To do that, the MainActivity uses three methods:

1. loadContacts() - method from the DatabaseHandler class which is responsible to copy the

contacts recorded on the mobile phone to the App private database;

2. getContactsNotInPhone() - method from the DatabaseHandler class which is responsible to

copy the contacts not recorded on the mobile phone but recorded in the Call Log to the App

private database;

27

28 Implementation and Evaluation

Figure 4.1: Mobile Application Class Diagram

3. readAllHistoryFirstTime() - method from the CallLogsProcessing class that computes the

Direct Trust to all call records contained in the Calls Log;

The DatabaseHandler and CallLogsProcessing classes have different developed methods ac-

cording to each activity functionality. Thus, the methods needed for each activity will be refer-

enced throughout this subsection. The classes and their methods are represented in the figures 4.2

and 4.3.

Figure 4.2: CallLogsProcessing Class

Most of the functions related to the contact numbers information storing and reading are asso-

ciated to the DatabaseHandler class.

4.1 System Class Diagrams 29

Figure 4.3: DatabaseHandler Class

The CallLogsProcessing class has the main function of processing the Calls log of the Android

OS.

The class BlacklistMain permits the user to see which numbers are being blocked by the app.

The object that allows the listing of the blacklisted numbers is the blacklist. To get the infor-

mation to being listed, it is used the object callDB to access the app database calling the method

getAllBlackList(), which retrieves a list of BlacklistDetails objects. The BlacklistDetails class can

be viewed in the Fig. 4.4.

To allow the removal of an entry from the Blacklist, it was needed to create the BlackLis-

tAdapter class, which is responsible for the layout of each entry of the blacklist and to handle long

pressing touch on it. Thus, when the user decides to delete an entry, the callDB object calls the

method removeFromBlacklist() to delete it from the database. The user can add manually num-

bers to the blacklist. For that he must click the icon presented on the menu and showed by the

method onCreateOptionsMenu(). The addNumberDialog is an object of the class AddNumberTo-

BlacklistDialog which gives the user the dialog needed to insert the name and number he wants to

block. That class is represented by the Fig. 4.5.

30 Implementation and Evaluation

Figure 4.4: BlacklistDetails Class

This class has an interface that is implemented by the BlacklistMain activity to obtain the data

inserted by the user. Then, after the dialog disposal, the data is inserted to the database using the

callDB object by calling the method addToBlackList().

Figure 4.5: AddNumberToBlacklistDialog class

The ContactsMain activity lists not only the contacts that are in the mobile phone Contact List

but also the numbers that are only in the Call Logs of the Android OS. This decision was made

based on the fact that any number handled by the App should have a direct trust score. Thus, those

numbers should also be stored into the App database, making the App to have its own contact

records. Therefore, this activity displays all the numbers recorded in the database, providing the

following information to each entry: name, number, last time contacted and direct trust. The

contacts to display are stored in an ArrayList of objects of the class presented in the Fig. 4.6.

Then, the ContactListAdapter class is used to populate the ListView object (viewContacts)

with the contacts info.

The calls history considers only the calls made or received when the call detection is enabled.

Thus, the HistoryMain activity only displays those records. In this activity it was decided to use

fragments instead of separated activities because this allows "to modify the activity’s appearance

4.1 System Class Diagrams 31

Figure 4.6: ContactDetails class

at runtime and preserve those changes in a back stack that’s managed by the activity."1. This is an

advantage because the user can click an entry to see the history details of a certain number and go

back to the main screen without having long delays. Thus, this activity contains two fragments:

1. HistoryListFragment - displays the first information the user sees. It declares an interface

used to handle the user entry selection. This interface is implemented by the main activity

that retrieves the information captured by it to the next fragment.

2. HistoryDetailsFragment - displays detailed information about the entry selected by the user

in the previous fragment. Each row shows the date, duration and time of each call.

The method to gather the information to display in the HistoryListFragment is getCallsHis-

tory() and the one used by the HistoryDetailsFragment is getDetailsHistory(). Both fragments use

an Adapter to show the data obtained with those methods.

Finally, the Settings class is used by the user to enable or disable the calls detection and to

connect to the server to exchange the Direct Trust values with it and get the blacklisted numbers.

The classes used to make those functions work are represented by the Figs. 4.7 and 4.8.

To detect the incoming or outgoing calls, it was developed the CellCallsService class which

runs in background when the user enables the calls detection feature. To detect the calls, it was

needed the MyPhoneListener class to listen to phone state changes according to the type of calls

being received or made.

1Source: http://developer.android.com/guide/components/fragments.html

32 Implementation and Evaluation

Figure 4.7: CellCallsService class

To update the database with the new calls records, there were created two threads using

the classes PutInContactsRunnable and PutInHistoryRunnable. The first one has the purpose of

adding the call number to the database if it is not recorded, the second put a new record to the

database history table.

Figure 4.8: SSLClient class

The SSLClient class makes the connection to the server using the SSLSocket object to avoid

eavesdropping of the information exchanged. After sending the Direct Trust file, using the method

getTrustScoreFile which makes a copy of all Direct Trust values to a file, it is used the method

processBlacklistFile to copy the spammer numbers from the file received to the mobile database.

4.1.2 Server Class Diagram

In this section it will be explained the role of the Server in the overall system. Therefore, the class

diagram of the Server side is shown in the following figure:

4.1 System Class Diagrams 33

Figure 4.9: Server side class diagram

The ServerMain class is the UI that enables the system administrator to see the messages

exchanged between the server and the mobile phone (client) of the user (see Fig. 4.10).

When the Server is started a CreateServer object is instantiated in a singleton manner. This

guarantees that there is only one instance of the server. When a client connects to the Server, the

CreateServer object creates an ServerThread to each client that tries to connect. Each one of them

has an ServerProtocol object that is used to process the incoming messages from the client.

The connection to the server is made by an SSL socket. Thus, when a device is not registered

in the system, it is automatically registered because the connection can only be made by certified

users. This registration is made by the registerUser method of the object myDBCon instantiated in

the ServerProtocol class.

After receiving the Direct Trust file from the client, an object from the SPITEngineMain is

instantiated to calculate the Reputation of each caller and to decide if it is a spammer or not. Then,

this object retrieves a blacklist file with all spam callers determined by the Caller-REP Algorithm.

This file is send back to the connected client. After the exchange of the information between the

server and the client the connection is closed by the server.

34 Implementation and Evaluation

Figure 4.10: Server Graphical Interface

4.2 System Databases 35

4.2 System Databases

4.2.1 Mobile Database

The Mobile database was developed taking in account the information needed for the overall

system. Thus, its relational model is the following:

Figure 4.11: Relational Model of the Mobile Application Database

The Contacts table is the most important one, because is based on the columns incoming_total_time,

incoming_calls_counter, outgoing_total_time and outgoing_calls_counter that the Direct Trust

scores are calculated. Each time that a call is made or received, those values are updated. Thus,

there is no need to process the Calls Log to compute the Direct Trust each time a call is perceived,

avoiding long time processing to do such task.

The Call History table is where the call records are stored. This records are used to list the

incoming, outgoing or blocked calls in the HistoryMain activity.

4.2.2 Server Database

Figure 4.12: Relational Model of the Server Database

36 Implementation and Evaluation

On the server side, the database consists only in two tables (see Fig. 4.12). The purpose of

this database is to store the Direct Trust score of each number received from the users. Then,

this values are used to create the server Direct Trust file which is used to compute the Global

Reputation for every number stored in the database. Since each number can have different Direct

Trust scores among the system users, the Direct Trust score can be easily updated if the unique

record first_party-second_party exists, otherwise it is created a new entry on the direct_trusts table.

4.3 Use Cases

4.3.1 Show Contacts

1. The user is in the Main Screen and clicks the button Contacts (Fig. 4.13);

2. The contacts are listed showing the name, number, Direct Trust (if any) and last call date

and time (Fig. 4.14).

Figure 4.13: Main screen Figure 4.14: Contacts screen

4.3.2 Show Blacklist

1. The user is in the Main Screen and clicks the button Blacklist (Fig. 4.15);

2. The contacts are listed showing the name and number (Fig. 4.16);

3. If the user wants, he can:

(a) Add a number manually: Includes Add number to blacklist icon that when pressed

pop-ups a dialog (Fig. 4.17);

(b) Long press an item to remove a number from the Blacklist: Includes Remove number

from blacklist dialog (Fig. 4.19);

4.3 Use Cases 37

Figure 4.15: Main screen Figure 4.16: Blacklist screen

Figure 4.17: Add contact to Blacklist dialog Figure 4.18: Blacklist with new entry

Figure 4.19: Remove contact from Blacklist
dialog

Figure 4.20: Blacklist after removing

4.3.3 Show History

1. The user is in the Main Screen and clicks the button History (Fig. 4.21);

2. The calls history is listed showing the name, number, last call date and time and the Direct

Trust score (Fig. 4.22);

3. If the user wants, he can:

(a) Click on a list entry: Includes Show the number history details (Fig. 4.23);

38 Implementation and Evaluation

Figure 4.21: Main Screen Figure 4.22: History screen

Figure 4.23: History details

4.3.4 Choose Settings

1. The user is in the Main Screen and clicks option Settings on the top right corner (Fig. 4.24);

2. If the user wants, he can:

(a) Enable spam detection: Includes on/off switch (Fig. 4.25);

(b) Connect to the server:

i. Includes on/off switch (Fig. 4.26)

ii. Includes Select synchronization interval dialog (Fig. 4.27);

4.3 Use Cases 39

Figure 4.24: Main Screen settings option Figure 4.25: Spam detection enabled

Figure 4.26: Connect to the Server enabled Figure 4.27: Select synchronization interval

4.3.5 Notification

1. The user receives a notification when the blacklist is received (Fig. 4.28);

2. If the user wants, he can:

(a) Consult the blacklist: Includes selectable notification;

(b) Drop the notification: Includes Android OS dismiss option;

40 Implementation and Evaluation

Figure 4.28: Notification showed when the Blacklist is received

For a better understanding about the connection with the server, the next figure presents the

sequence diagram of that connection:

Figure 4.29: Connection to the server sequence diagram

4.4 Performance Results 41

4.4 Performance Results

There were made some performance tests to see which impact would the App have in the detection

of spam calls while getting an incoming call and how long it would take to connect to the server

and get the blacklist update.

The first results that will be shown are related to the time taken by the App to check if an in-

coming call is or is not a spammer and the call establishment delay. Those results can be observed

in the following table:

Blacklist Size 20 100 500 1000 10000

Searching time (in ms) 0 0 1 9 70

Call establishment delay time (in ms) 9 9 21 41 110

Table 4.1: Blacklist searching time

It was observed that even if the size of the spammers list (Blacklist) was bigger than 1000

entries, the time to search that list was less than one second. When the detection call is enabled by

the user, the blacklist records are copied from the database to an hash table. The values presented

in the previous table were obtained using this method. On the other hand, when it was used a

search directly from the mobile database the searching time did not diverge severely, for instance,

for a blacklist with 1000 records the search time was in the order of 0.011 seconds.

The next results are related to the connection between the client and the Server. To obtain these

time measures, there were made some random records in the Server database in order to simulate

different amounts of clients registered in the system. The times achieved are represented in the

Tab. 4.2.

Number of users 20 100 500 1000 10000

Client connection (seconds) 3.941 5.578 5.932 6.554 18.025

Blacklist Calculation (seconds) 0.064 0.405 0.643 1.294 11.894

Table 4.2: Server time to compute the Global Scores and retrieve the Blacklist

In the previous table, the Client connection refers to the time that it takes since its binding

with the server until it stops. Thus, the amount of time referred in the table takes into account the

sending of the Direct Trust file to the server, the storage of the records in the server database, the

Blacklist calculation and the Blacklist retrieval to the client.

The Blacklist Calculation values take in account the running of the SPIT Engine, which cal-

culates the Global-Rep of each number and decide which numbers are spammers.

42 Implementation and Evaluation

It can be observed that above the 1000 users there was an increase of the client time connection

and the Blacklist calculation. The possible cause of this is the weak processing power of the

machine were the server is running (See Appendix A).

The bandwidth needed by the App to send the Direct Trust file and the one needed by the

Server to retrieve the Blacklist was also measured. The Table 4.3 shows the results:

Size of the file (in lines) 20 100 500 1000 10000

Direct Trust (in KB) 0.527 3.123 16.188 42.220 303.133

Blacklist (in KB) 0.200 1.200 6.200 16.200 116.200

Table 4.3: Bandwidth used when exchanging information with the Server

We observed a small Bandwidth usage which means that the information exchanged doesn’t

affect the overall system performance, considering a maximum of 10000 lines for each file.

Finally, we checked how many memory did the App consume when the spam detection was

enabled and how much storage amount did it occupy when installed. This information can be

viewed in the Fig. 4.30 and 4.31, which were taken directly from the Android OS system settings

in the Apps option.

Figure 4.30: Memory used Figure 4.31: Storage size

The values observed were satisfactory and we realized that the App is really light in therms of

system memory usage.

In the Battery Settings option we didn’t find any reference to our App battery consumption

which can mean one of two things: the App doesn’t have a significant battery consumption when

enabled or its battery consumption is not displayed.

Chapter 5

Conclusions and Framework Proposal

During the development of this App and the overall system implementation there were few issues

related to to the implementation of some features. The constraints referred in the section 3.2 were

some of them which does not allow the App to detect VoIP calls and calls from others applications

such as Skype, Viber, etc. There was hurdle for getting call logs from these application because of

non-availability of common api. So in this Application only makes the detection of cellular calls

and the system was implemented taking in account the information gathered from those calls.

Another problem found was the way how the mobile phone should communicate with the

server and the implementation of that connection. At first, it was hard to make the connection

work due to the socket implementation and the way how it should be done. After fixing this

problem, the difficulty found was the use of certificates to make a secure connection between the

mobile phone and the server. This was due to the different types of certificates used by the mobile

phone and the server.

Despite the problems previously appointed, this dissertation was very helpful to understand

the Android OS API and to learn the Android API.

5.1 Accomplished goals

One of the goals achieved was the use of Caller-REP algorithm to determine if a certain number is

or is not a spammer using direct feedback from the user without involving service providers. This

algorithm allows the spam detection to be independent from the user and the operator.

The goal of making the blacklist using the Direct Trust scores of each callee was accomplished.

To do so, we developed a suited protocol to exchange those values with the Server and then it

computes the blacklist, retrieving it back to the user using a SSL connection.

The mobile phone uses that blacklist to block the incoming cellular calls, if the callee is in it.

One of the most important aspects of the App is the way that the Direct trust values are calcu-

lated, which are as follows:

1. When the App is first installed and used, the Calls history is processed to attribute the Direct

Trust to each callee that contacted the user;

43

44 Conclusions and Framework Proposal

2. When the spam detection is enabled in the Settings screen, the Direct Trust is updated when

a call is perceived.

It is based on the Direct Trust values that the blacklist is determined. Thus, there was extra

care while programming this part of the code to assure that this value was accurately computed

according to the system specifications.

Due to some improvements of the Android API, it were used some features only available for

newer versions of the Android OS. Thus, the App is compatible with versions higher than 4.2.

5.2 Framework proposal

The work done in this dissertation can be used as groundwork for other voice communication

mobile application (Skype, Viber) which can make use of some components developed, such as:

5.2.1 Direct Trust Module

Use the Direct Trust module to compute the Direct Trust score of each user contact. These values

can be shared among the users and must be sent to the server in order to make the decision of

which contact is spam or not.

It must be taken in account that each application can have different ways to identify their

users, so this module should be modified to handle different types of contact identity, in order to

be compatible with any application.

5.2.2 Server Module

This module should be used to store the Direct Trust Score sent by the users and to retrieve the

blacklist based on those values.

Thus, the server must be located in a way that every application can access to it and get the

blacklist.

It can be the Server that differentiates the several types of contacts ids, making to each ap-

plication its own database and processing the Direct Trust scores accordingly to each application

specifications.

5.2.3 Share Module

With this module, it’s intended to have a feature of sharing the blacklist among the users who

choose to have the spam detection enabled in their communication applications.

Thus, with this module the user can make his own blacklist and share it with the friends

registered in the spam detection system. This feature permits the user to share his blacklisted

numbers within his social network making this process more collaborative and those numbers can

even be used to form the server blacklist.

Appendix A

Appendix

A.1 Laptop Specifications

• Processor: Intel R© CoreTM i5 3337U @ 1.80 GHz

• Operating System: Windows 8.1

• Memory: DDR3L 1600 MHz SDRAM, 4096 MB

• Storage: 2.5" SATA3 500GB HDD 5400

• Wi-Fi Card: Qualcomm Atheros AR9485 Wireless Network Adapter 802.11n

A.2 Mobile Phone Specifications

• Network: GSM / CDMA / HSPA / LTE

• Display: True HD IPS+ capacitive touchscreen; 16M colors; 4.95 inches; 1080 x 1920

pixels

• OS: Android OS, v5.0 (Lolipop)

• Chipset: Qualcomm MSM8974 Snapdragon 800

• Processor: Quad-core 2.3 GHz Krait 400

• Wi-Fi Card: 802.11 a/b/g/n/ac

45

References

[1] http://www.cfca.org.

[2] http://developer.android.com/index.html.

[3] http://grepcode.com/file/repository.grepcode.com/java/ext/com.

google.android/android/1.5_r4/com/android/internal/telephony/

ITelephony.java.

[4] http://stackoverflow.com/.

[5] Schmidt A, Leicher A, Shh Y, Cha I, and Guccione L. Sender scorecards. IEEE Vehicular

Technology Magazine, pages 52 – 59, March 2011.

[6] M.A. Azad and R. Morla. Caller-rep: detecting unwanted calls with caller social strength.

Computers & Security, pages 219 – 236, November 2013.

[7] Muhammad Ajmal Azad and Ricardo Morla. Multistage spit detection in transit voip. Soft-

ware, Telecommunications and Computer Networks (SoftCOM), 2011 19th International

Conference on, pages 1–9, 2011.

[8] Muhammad Ajmal Azad and Ricardo Morla. Privacy-aware collaborative spit detection sys-

tem. Submitted to IEEE Transaction on Secure and Dependable Computing, 2011.

[9] Shin D, Ahn J, and Shim C. Progressive multi gray-leveling: a voice spam protection algo-

rithm. IEEE Network, pages 18 – 24, 2006.

[10] Himanshu Dwivedi. Hacking VoIP. No Starch Press, Inc., 555 De Haro Street, Suite 250,

San Francisco, CA 94107, USA, 2009.

[11] Bokharaei H, Sahraei A, Ganjali Y, Keralapura R, and Nucci A. You can spit, but you can’t

hide: spammer identification in telephony networks. 2011 IEEE INFOCOM, pages 41 – 45,

April 2011.

[12] Sengar H, Wang X, and Nichols A. Thwarting spam over internet telephony (spit) attacks on

voip networks. Quality of service (IWQoS), 2011 IEEE 19th international workshop, pages

1 – 3, June 2011.

47

http://www.cfca.org
http://developer.android.com/index.html
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/1.5_r4/com/android/internal/telephony/ITelephony.java
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/1.5_r4/com/android/internal/telephony/ITelephony.java
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.android/android/1.5_r4/com/android/internal/telephony/ITelephony.java
http://stackoverflow.com/

48 REFERENCES

[13] Sengar H, Wang X, and Nichols A. Call behavioral analysis to thwart spit attacks on voip

networks. Security and privacy in communication networks, serLecture Notes of the Institute

for Computer Sciences, Social Informatics and Telecommunications Engineering, pages 501

– 510, 2012.

[14] Ono K and Schulzrinne H. Have i met you before?: using cross-media relations to reduce

spit. 3rd International conference on principles, systems and applications of IP telecommu-

nications, pages 1–7, September 2009.

[15] Hansen M, Hansen M, Mller J, Rohwer T, Tolkmit C, and Waack H. Developing a legally

compliant reachability management system as a countermeasure against spit. Third annual

VoIP security workshop, 2006.

[16] Kolan P and Dantu R. Socio-technical defense against voice spamming. ACM Transactions

on Autonomous and Adaptive Systems, March 2007.

[17] Dantu R and Kolan P. Detecting spam in voip networks. The steps to reducing unwanted

traffic on the internet - USENIX Association, pages 31 – 37, July 2005.

[18] Jonathan Rosenberg and Cullen Jennings. The Session Initiation Protocol (SIP) and Spam.

RFC 5039, IETF, January 2008.

[19] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon Peterson,

Robert Sparks, Mark Handley, and Eve Schooler. SIP: Session Initiation Protocol. RFC 3261,

IETF, June 2002.

[20] Balasubramaniyan V, Ahamad M, and Park H. Callrank: combating spit using call du-

ration, social networks and global reputation. Fourth conference on email and anti-spam

(CEAS2007), pages 501 – 510, August 2007.

[21] Ted Wallingford. Switching to VoIP. O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472, USA, 2005.

[22] Rebahi Y, Sisalem D, and Magedanz T. Sip spam detection. International conference on

digital telecommunications, pages 68 – 74, August 2006.

[23] Wu Y-S, Bagchi S, Singh N, and Wita R. Spam detection in voice-over-ip calls through

semi-supervised clustering. 39th annual IEEE/IFIP international conference on dependable

systems and networks (DSN), pages 307 – 316, June 2009.

	Front Page
	Agradecimentos
	Contents
	List of Illustrations
	Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Contribution

	2 Technical Background and Related Work
	2.1 Technical Background
	2.1.1 VoIP
	2.1.2 Advantages of VoIP
	2.1.3 Network concerns for VoIP services

	2.2 VoIP Security Threats
	2.3 Spam over Internet Telephony (SPIT)
	2.3.1 SPIT Threats and Scenarios

	2.4 Android
	2.4.1 Brief History and Evolution
	2.4.2 Market Share

	2.5 Anti-Spit Overview
	2.5.1 Content-based approaches
	2.5.2 Access list-based approaches
	2.5.3 Challenge response-based approaches
	2.5.4 Imposing additional costs on callers
	2.5.5 Extended call-setup based approaches
	2.5.6 Social reputation-based approaches

	2.6 Stand-alone System Spam Detection
	2.7 Social network features for VoIP users
	2.7.1 In-degree and out-degree
	2.7.2 Call rate
	2.7.3 Call duration

	2.8 Caller-REP
	2.8.1 Why Caller-REP?
	2.8.2 Caller direct trust
	2.8.3 Caller global reputation
	2.8.4 SPIT caller detection

	3 Spam Blocker Architecture
	3.1 Application Elements
	3.1.1 System Architecture
	3.1.2 Call flow
	3.1.3 Server Connection

	3.2 Constraints of the Android OS API

	4 Implementation and Evaluation
	4.1 System Class Diagrams
	4.1.1 Mobile Application Class Diagram
	4.1.2 Server Class Diagram

	4.2 System Databases
	4.2.1 Mobile Database
	4.2.2 Server Database

	4.3 Use Cases
	4.3.1 Show Contacts
	4.3.2 Show Blacklist
	4.3.3 Show History
	4.3.4 Choose Settings
	4.3.5 Notification

	4.4 Performance Results

	5 Conclusions and Framework Proposal
	5.1 Accomplished goals
	5.2 Framework proposal
	5.2.1 Direct Trust Module
	5.2.2 Server Module
	5.2.3 Share Module

	A Appendix
	A.1 Laptop Specifications
	A.2 Mobile Phone Specifications

