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Resumo 
  

 A Endoderme Definitiva (DE) é uma das três camadas germinativas formadas 

durante a gastrulação e origina o tubo digestivo primitivo e os orgãos a este 

associados. Durante o desenvolvimento, cada região do tudo digestivo primitivo é 

caracterizada por motivos de expressão distintos que determinam a localização exacta 

onde os diferentes orgãos deverão surgir ao longo do eixo antero-posterior. Ao mesmo 

tempo, o tubo digestivo primitivo também é especificado ao longo to eixo dorso-ventral, 

e a maioria dos orgãos surgem ventralmente. O mecanismo que leva à formação do 

eixo dorso-ventral no tubo digestivo primitivo é ainda mal compreendido. No tubo 

neural este processo foi extensivamente estudado e é descrito como um equilibro 

entre a expressão de Bone Morphogenetic Protein (BMP)4 - dorsalmente - e de Sonic 

Hedgehog (SHH) - ventralmente. Para além disso, diversos estudos indicam que 

sinalização pela BMP é necessária para a formação de alguns orgãos ventrais 

associados ao tubo digestivo primitivo. Tendo isto em conta, propomos que a via de 

sinalização da BMP poderá ser responsável por conferir identidade ventral ao tubo 

digestivo.  

 Neste projecto, caracterizamos um ratinho mutante previamente gerado pelo 

nosso grupo, em que CreERT2 é expressa sobre o controlo do promotor de Sox17. Este 

fator de transcrição é expresso na DE antes da formação do tubo digestivo primitivo. 

Após a caracterização, o ratinho foi utilizado para inativar condicionalmente a via de 

sinalização da BMP no tubo digestivo, através de inativação dos receptores principais 

da BMP. Os resultados preliminares estão geralmente de acordo com outros estudos 

que se focaram no papel da BMP na formação do tubo digestivo e orgão adjacentes. 

Para além disso, os resultados sugerem que a via de sinalização da BMP é essencial 

para a formação de orgãos ventrais como os pulmões e o primórdio pancreático 

ventral, algo que não foi previamente descrito. 

 

 

Palavras chave: Endoderme definitiva, eixo dorso-ventral, BMP, Sox17  
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Abstract 
  

 The definitive endoderm (DE) is one of three germ layers segregated during 

gastrulation and it gives rise to the primitive gut tube and all associated organs. During 

development, each region of the primitive gut tube is characterized by unique 

expression patterns that determine the precise locations where organs emerge along 

the anterior-posterior axis. At the same time, the primitive gut is also patterned along 

the dorsal-ventral axis, with most organs emerging on the ventral side of the gut. 

Dorsal-ventral patterning is still poorly understood in the gut tube. In the neural tube, 

dorsal-ventral patterning is well described as a balance between expression of Bone 

Morphogenetic Protein (BMP)4 - dorsally - and Sonic Hedgehog (SHH) - ventrally. 

Furthermore, several distinct studies indicate that BMP is required in the formation of 

some of the ventral gut organs. Taking this into consideration, we theorized that BMP 

signalling could be a general cue providing ventral identity to the gut tube.  

 In this study, a mouse line previously generated by our group is characterized in 

which CreERT2 is expressed under the control of the promoter of Sox17. This 

transcription factor is expressed in definitive endoderm cells at a very early stage, 

previous to primitive gut formation. Thereafter, this mouse line is used as a tool in order 

to conditionally inactivate the BMP pathway in the DE, by knocking out its main 

receptors. Preliminary data are generally in accordance with previous observations 

made for the role of BMP in gut patterning and organ formation. Furthermore, we find 

BMP signalling to be essential for the formation of ventral organs like the lungs and the 

ventral pancreas, which had not been reported previously.  

 

 

Key words: Definitive endoderm, Patterning, BMP, Sox17 
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Glossary 
AIP - Anterior Intestinal Portal 

Alk - Activin-like kinase 

Alk2 - Activin A receptor type I, or ACVRI 

Alk3 - BMP receptor 1A, or BMPR1A 

Alk6 - BMP receptor 1B or BMPR1B 

AP - Anterior-Posterior 

BMP - Bone Morphogenetic Protein 

BMPR1A - BMP receptor 1A, or Alk3 

BMPR1B - BMP receptor 1B, or Alk6 

CIP - Caudal Intestinal Portal 

DE - Definitive Endoderm 

DV - Dorsal-Ventral 

ExE - Extraembryonic Ectoderm 

SHH - Sonic Hedgehog 

SOX17 - Sex determining region Y box 17 

VE - Visceral Endoderm 
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Figure 1.1. Gastrulating mouse embryo. The embryo is 

enveloped by the VE which is divided into extraembyonic 

(ExVE, white) and embryonic (EmVE, yellow and green). 

The ExVE gives rise to the yolk sac while the EmVE may 

take part in gut tube formation. The extraembryonic 

ectoderm (ExE, grey) locates proximally and the epiblast 

distally. The epiblast is constituted by prospective 

ectoderm (blue), mesoderm (red) and endoderm (green). 

The primitive streak locates in the posterior region of the 

epiblast. Orange - prechordal plate; Light grey - 

extraembryonic mesoderm.       

Introduction 
 

 The ability to generate specific cell types that can develop into tissues or even 

functional organs holds the promise to treat a long array of health issues while 

eliminating some of the major problems currently associated with organ transplantation. 

Currently, engineered tissues are also being used to generate models for drug testing 

or for studying disease emergence and progression6,7. Organ formation is 

characterized by a vast intricacy in signalling pathways and architecture that is difficult 

to replicate. In order to efficiently recapitulate tissue and organ development in vitro, we 

must first understand how specific signalling pathways orchestrate organogenesis in 

vivo, by studying the developing embryo. 

 In this study, we aim at understanding the general principles that lead to the 

formation of different organs from the endoderm, focusing on the role of the BMP 

pathway. 

 

 1.1. Formation of the Primitive Gut Tube 
 The organism is derived from three primary germ layers. The ectoderm gives 

rise to the epidermis and the nervous system8; the mesoderm differentiates into 

connective tissues, the muscles, the vasculature and the hematopoietic system9; the 

definitive endoderm (DE), also called endoderm, forms the digestive tract and 

respiratory system, as well as their associated organs5. The three germ layers are 

specified during gastrulation, which starts at around 6 days and a half post-fertilization 

(E6.5) in mice. At this point, the embryo comprises a bilaminar cup-shaped epithelium 

where an outer visceral endoderm (VE) layer encapsulates the proximally positioned 

extraembryonic ectoderm (ExE), and the distally positioned epiblast that will go on to 

form the actual embryo (Figure 1.1). 
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Figure 1.2. Gut tube closure and turning. Endodermal, mesodermal and 

ectodermal layers are respectively shown in yellow, red and blue. Mouse 

embryos (E8.0, 8.5 and 9.0) are pictured. In mouse, a crescent-shaped fold 

appears in the endoderm at the level of the tip of the neural tube and moves 

posteriorly (AIP) as indicated by arrows. A similar fold later arises at the very 

posterior end of the embryo and moves anteriorly (CIP). Convergence of these 

folds is facilitated by the turning of the embryo (big arrows). A - anterior; P - 

posterior; D - dorsal; V - ventral. 

Gastrulation starts when epiblast cells ingress locally in the posterior region of the 

epiblast - the primitive streak - emerging as nascent mesoderm. The newly formed 

mesenchymal layer locates between the inner epiblast cells and the outer visceral 

endoderm (VE). The last cell population to emerge from the primitive streak constitutes 

the DE (reviewed in Nowotschin and Hadjantonakis 10). Early cell labelling studies, 

combined with molecular marker analysis indicated that DE cells displace the VE cells 

into the extraembryonic domain, where these form the yolk sac. However, recent 

studies suggest that some VE cells persist in the DE layer and even participate in 

primitive gut tube formation11,12. 

 At the end of gastrulation, the DE constitutes a sheet of cells on the external 

surface of the mouse embryo. Over the next 24 hours embryonic tissues are 

rearranged forming the primitive gut tube, surrounded by the mesoderm. The 

movements involve the invagination of the DE in two different sites, one anterior at the 

anterior intestinal portal (AIP) and one posterior at the caudal intestinal portal (CIP) 

forming two dead end tubes which thereafter extend 

caudally and rostrally, respectively, meeting in the midgut 

region. During this process the cells on the lateral sides of 

the DE migrate toward the ventral midline of the gut tube 

while the medial part of the DE roughly forms the dorsal 

wall of the primitive gut tube. The closure of the primitive 

gut tube is associated with axial turning, which gives to the 

embryo its characteristic fetal shape (Figure 1.2). 

 

 1.2. Patterning of the Primitive Gut Tube  
 While the gut tube is closing, regions of the gut are specified along the anterior-

posterior (AP) axis into the different DE-derived organs. The rigorous organization 

pattern along the AP axis is orchestrated by reciprocal inductive signals between the 

endoderm and the surrounding mesoderm. Initially, broad domains can be identified by 
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expression of Hhex, Sox2, and Foxa2 transcription factors in the anterior half of the 

embryo opposed to the expression of Cdx1, Cdx2, and Cdx4 in the posterior half. 

These transcription factors are critical for regional foregut and hindgut identity, 

respectively. Already at this stage the two domains show distinct developmental 

potential and respond differently to subsequent signalling from the mesoderm. For 

example, graded levels of FGF signalling from the anterior foregut induce distinct fates. 

The highest levels induce the expression of Nkx2.1 in the future lung and thyroid 

progenitors, moderate doses activate liver progenitor fate, and lower levels promote the 

expression of Pdx1 specifying the pancreas and the duodenum. BMP activity is also 

present as a decreasing signal from the anterior side of the embryo. The effect of BMP 

signalling on gut patterning will be reviewed in the next sections. Eventually, these 

defined territories undergo morphogenesis, resulting in complex organs (reviewed in 

Zorn and Wells 5). 

 The primitive gut tube is also patterned along the dorsal-ventral (DV) axis. Most 

organs emerge on the ventral side of the gut, with the exception of the dorsal pancreas 

and the parathyroids13,14. However, it is not known if general dorsalizing or ventralizing 

morphogens exist in mammals, although BMP4 has been shown to have a ventralizing 

effect in Xenopus animal cap15.  

 

 1.3. BMP Signalling 
  BMPs were first identified for their capacity to induce ectopic bone formation16. 

Since then, they have been shown to be involved in pleiotropic morphogenetic 

processes (reviewed in Wagner, et al. 17). Similarly to other members of the TGFβ 

superfamily, BMPs are large dimeric proteins synthesized and folded in the cytoplasm 

as inactive precursors. After being activated by proteolytic cleavage (e.g. Furin is 

required for BMP4 activity18), their functional C-terminal part is released into the 

extracellular compartment where it can signal to target cells by binding to receptor 

subunits Type I and Type II serine/threonine protein-kinase. Once the multimeric 

complex is formed, Type II receptors transphosphorylate Type I receptors which in turn 

phosphorylate the downstream receptor regulated R-Smad proteins - Smad1, Smad5, 

Smad8. Phosphorylated R-Smads associate with the co-mediator Smad4 and migrate 

to the nucleus, where they activate the expression of their target genes19,20 (Figure 

1.3). 
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Figure 1.3. Cascade of BMP 
signalling. BMP dimers bind to 

serine/threonine kinase receptors 

type I and II. Upon ligand binding, 

type II receptors transphos-

phorylate type I receptors. The 

latter phosphorylate members of 

the Smad family of transcription 

factors. These Smads are 

subsequently translocated to the 

nucleus, where they activate 

transcription of target genes. 

 

  

 

 More than 30 ligands are able to activate BMP signalling. They are structurally 

related and can be further subdivided into subgroups. Two of them, Bmp2 and Bmp4, 

diverged from a common ancestral gene and encode closely related proteins21.  

 Bmp4 and Bmp2 are both expressed in the extraembryonic tissues, although 

Bmp2 expression is predominant. In the embryo, Bmp2 is strongly expressed in the 

cardiac crescent at E7.25. Like Bmp2, Bmp4 expression is observed in the heart but it 

is restricted to the inflow and outflow tracts. Both are expressed at E9.0 in the dorsal 

neural tube. During the gut tube closure at E7.25, Bmp2 is strongly expressed in the 

closing anterior gut tube, while being notably absent from the open gut region. 

Thereafter, Bmp2 is almost undetectable in the midgut and the foregut at the exception 

of the liver primordium at E9.0. On the contrary Bmp4 is expressed in the thyroid 

primordium. At E10.5, Bmp4 is also strongly expressed in the lung bud mesenchyme 

and on the right dorsal side of the gut tube, along the stomach and pancreas22. 

Although both ligands show some functional redundancy, knocking out one or the other 

leads to different phenotypes. Bmp4 null embryos phenotype is background 

dependant. The formation of the mesoderm may be severely impaired due a 

gastrulation defect and the embryos die at the start of gastrulation (E6.5), whereas 

other mouse strains survive until early organogenesis (E9.5)23. On the contrary, Bmp2 

knockout mice are able to gastrulate, they die at around E8.5 due to amnion/chorion or 

heart development defects24. 
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 1.4. Bmp receptors: Alk2, Alk3 and Alk6 
 The abundance of ligands in the BMP family is not matched by similar numbers 

of receptors. Thus the BMP pathway has highly promiscuous ligand-receptor 

interactions. Two Type I receptors - BMPR1A;ALK3 and BMPR1B;ALK6 - are known to 

translate signals from BMP2/421. BMP4 has also been reported to bind to Type I A 

activin receptor ActR-I;ALK2 in the visceral endoderm (VE), although this pathway 

leads only to the activation of SMAD1/5 and not SMAD825. This difference in the 

activation pattern of R-Smads by ALK3 and ALK6 or ALK2 is translated into distinct 

biological responses26.  

 In contrast to the localized expression patterns of BMP ligands, expression of 

BMP receptors is widespread during early embryonic mouse development. Alk3 and 

BmpRII are expressed in most tissues throughout development. Alk6 expression starts 

later during development, after the gastrula stage. It is first observed at E7.5 in the AIP 

and is later expressed along the endoderm and in the liver primordium at E9.0. This 

expression pattern is maintained until E10.5, albeit at lower levels22,27. Alk2 is 

expressed in pre-gastrulating and gastrulating embryos, mostly in extra-embryonic 

tissues (VE, chorion, amnion), and later, at E10.5, it is expressed in the head 

mesoderm as well as in the endocardium28. 

 Mice lacking Alk6 show only mild skeletal defects in the adult29. However, 

mouse embryos lacking Bmp4, Alk3, or BmprII are arrested at gastrulation, and 

mesoderm does not form23,30,31. 

 

 1.5. BMP signalling in patterning of the gut tube 
 Very little is known about how the DE-derived organs acquire their positions 

along the DV axis in mammals. During organ specification when the DE still forms a 

sheet, the morphogens giving this information, if any, should first be positioned along 

the medio-lateral axis and after, the gut tub is closed, along the DV axis. Contrary to 

the endoderm, this process is well characterized in the ectoderm and seems to be a 

conserved system across vertebrates and insects, where antagonistic secreted factors 

determine first medial or lateral identity and later dorsal or ventral identity. For example, 

BMP4 orthologs found in fly and in vertebrates share similar functions and mechanisms 

for medio-lateral and later DV patterning in the ectoderm32. In mice, opposing gradients 

of sonic hedgehog (SHH) and bone morphogenetic protein (BMP) signalling are 

involved. BMP signalling is necessary to form laterally the non-neural ectoderm or 

surface ectoderm which becomes thereafter located dorsally in the neural tube. After 
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the neural tube is closed, the roof plate situated dorsally becomes a new organizing 

centre that produces BMPs which induce a dorsal fate in the  interneurons present in 

the dorsal side of the neural tube (reviewed in Liu and Niswander 33). 

 In the endoderm, several studies describe a role of BMP in the formation of 

some ventral organs all along the anterior-posterior axis (Figure 1.4). The thymus, 

which emerges on the ventral domain of the thymus-parathyroid primordium, is 

severely reduced when BMP signalling is inhibited by Noggin, an antagonist of BMP. 

Besides, it does not reach its final destination in the mediastinum34. Conversely, the 

presence of BMP4 in the dorsal domain where the parathyroid originates, reduces the 

expression of the parathyroid specific marker Gcm235. BMP4 is necessary for the 

formation of the trachea in the ventral foregut 36. The oesophagus does not form in 

absence of Noggin, a BMP antagonist. If BMP signalling is disrupted after lung 

specification, lung development is delayed and less branches are formed 37In the 

absence of BMP4, the liver development is also delayed. In E9.5 mutant embryos, the 

hepatic epithelium did not yet bud contrary to their WT littermates 38. Moreover, in vitro 

specification of hepatocytes from ESC-derived DE cells requires the presence of 

BMP439. More globally, Xenopus ectodermal explants adopt a ventrolateral endodermal 

fate when Bmp4 is overexpressed 15. 

 

  
 These observations prompt the hypothesis that in mouse BMP signalling is a 

global cue that initially induces lateral identity to the DE and after gut tub closure, 

ventral identity forming a mirror-image of ectodermal and neural tube patterning. For 

the DE, BMPs secreted by the mesoderm would induce cell fate in the lateral regions of 

the DE which progressively join at the midline to form a tube. After gut closure, BMP 

Figure 1.4. Primitive gut and associated organs. At E10.5 all organs associated to the gut tube have started to 

develop with a strict organization along the AP and DV axis.  
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Figure 1.5. Mirror DV patterning in the neural tube and the gut tube. A. BMP is expressed in the lateral mesoderm 

(red) and secreted and patterns lateral ectoderm, while SHH secreted by the notochord (red dot) patterns medial 

ectoderm (blue). B. During the dorsal folding of the neural tube, the lateral ectoderm becomes the dorsal non-neural 

ectoderm (skin) and medial ectoderm forms the neural tube. In the neural tube, BMP starts being secreted in the roof 

plate (yellow) and patterns the dorsal region of the neural tube, opposed by SHH in the ventral region. We hypothesize 

that concurrently, BMP secreted in the mesoderm patterns lateral DE (orange) while SHH secreted in the notochord 

may pattern medial DE. C. The gut tube folds in a mirror image to the neural tube and thus lateral tissues end-up 

ventrally in the tube.  After ventral closure, SHH secreted by the notochord may pattern the dorsal region of the primitive 

gut tube and BMP secreted in the mesoderm may pattern the ventral region. BMP secretion may form a medio-lateral 

and later dorsal-ventral gradient. Black arrows - BMP signalling; Blue arrows - neural tube closure; Orange arrows - gut 

tube closure. D - Dorsal; V - Ventral; M - Medial; L - Lateral. 

would act on the ventral side of the tube. Therefore, BMP signalling would be required 

for the ventral identity of the gut (Figure1.5). 

 

 

  

 However, the requirement of BMP signalling during gastrulation precludes 

further study during endoderm patterning. In order to explore the role of BMP in DV 

patterning of the gut tube, a time and tissue specific inactivation of the pathway is 

necessary. For example, in the respiratory tract, conditional inactivation of the BMP 

pathway was previously achieved by inactivating its two well characterized receptors - 

Alk3 and Alk6 in the future lung epithelium after organ specification37. Our aim was to 

inactivate it in the endoderm.  

 

 1.6. Sox17 Expression 
 The SRY (sex determing region Y)-box 17 (SOX17) is a transcription factor 

belonging to the Sox protein family. Sox proteins share similar DNA binding properties, 
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however individual Sox proteins appear to regulate specific sets of target genes in vivo 

due to restricted patterns of expression and in combination with specific cofactors 

interactions. Sox proteins are key players in the regulation of embryonic development 

and determination of cell fate (reviewed in Lefebvre, et al. 40).  

 SOX17 is first expressed at the blastocyst stage between E3.25 and E4.5, in a 

salt and pepper pattern, where it promotes the primitive endoderm cell fate over the 

epiblast fate41. Subsequently, it is also expressed in the visceral endoderm around 

E6.0-E6.5 42. SOX17 is dynamically expressed in the DE, forming a temporal and 

spatial wave of expression from the anterior to the posterior region of this tissue. At 

first, expression is detected in the anterior end of the primitive streak at E7.0, which 

coincides with the time of ingression of future anterior DE cells. By E8.0 SOX17 is 

observed in the prospective posterior gut, while its expression in the foregut is already 

reduced. Its expression in the hindgut shuts down around E9.0. SOX17 is a key player 

in the definitive endoderm development as it is necessary for its specification42,43. After 

E9.0, SOX17 expression is observed in the hemogenic endothelial cells (ECs), which 

are of mesodermal origin44. SOX17 is then necessary for definitive hematopoiesis and 

the maintenance of the hematopoietic stem cell pool, both at the fetal and neonatal 

stages1,45. Notably, at around E9.5, SOX17 is again expressed in the ventrolateral 

region of the most posterior foregut, where the bile duct and gall bladder originate, and 

persists until at least E15.546. Based on this expression pattern, it appears that Sox17 

may be used as a driver to target gene inactivation widely in endoderm. 

 

 1.7. The Cre Recombinase System  
 Cre (cyclization recombination) gene encodes a site-specific DNA recombinase 

of the bacteriophage P1 which is required for the circularisation of the phage DNA - a 

critical step in the bacteriophage life-cycle. The enzyme recognizes a specific 

sequence of 34-bp, termed loxP, and catalyses both intra and intermolecular 

recombination between two loxP sites. Cre–loxP mediated recombination between two 

directly repeated loxP sites excises all DNA sequences located within the two sites as 

a covalently bound circular molecule47. 

 The conditional deletion of a gene in mice (conditional knock-out) is achieved by 

excising with a Cre the gene flanked by two LoxP sites, also called floxed gene. The 

gene promoter driving Cre expression determines tissue or stage specificity. Temporal 

control of the onset of the mutation can be further achieved by using a Cre fused to a 

modified Estrogen Receptor (ERT2). CreERT2 is sequestered in the cytoplasm unless 

http://www.sciencedirect.com/science/article/pii/S0012160608001498#200024434
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tamoxifen, an estrogen analogue, is present and has been metabolically activated in 

the liver48.  

 Sox17 promoter has already been used to drive the expression of Cre 

recombinase in the endoderm and in the hemogenic endothelial cells1,49. As it is 

specifically expressed in the DE cells at a particular stage of development, it is possible 

to target these cells using a CreERT2 system. This strategy has already been 

confirmed by generating a Sox17CreERT2 mouse line50. 

 Another Sox17CreERT2 line has contemporarily been developed in our laboratory. 

The Cre recombinase fused to an estrogen receptor has been targeted to the Sox17 

locus disrupting the gene after the second exon, in contrast to the previously published 

line (Figure 1.6) (Marine Rentler-Courdier-Kraus, unpublished data).  

 

 

 

Figure 1.6. Diagram of the Sox17 locus, targeting vector, Sox17LCA allele, CreERT2 exchange cassette, 
Sox17GFPCre(þHygroR), and Sox17CreERT2 allele. A targeting vector for the mouse Sox17 gene was 

constructed where the sequence including exons 3–5, which contains the coding region of Sox17, was replaced 

with a puromycin resistance-D-thymidine kinase fusion gene (puDTK) and an EM7-driven kanamycin resistance 

gene (KanR) flanked by lox66 (open triangle) and lox2272 (black triangle) sites. The GFPCre exchange cassette 

was flanked by lox71 (gray triangle) and lox2272 sites and contained a phosphoglycerol kinase-driven hygromycin 

resistance gene (HygroR) flanked by flippase recognition target sites (open circles). This prepares the locus to easy 

replacement by any insertion and was previously used to insert a CreGFP fusion1. Following exchange into 

Sox17LCA-containing mouse embryonic stem cells by recombinase-mediated cassette exchange (RMCE), mice 

containing the Sox17CreERT2-(þHygroR) allele, were bred with FLPe-expressing transgenic mice, thereby 

generating the final Sox17CreERT2 allele. Abbreviations: DT-A, Diphtheria toxin A; LA, long arm; LCA, loxed 

cassette acceptor; SA, short arm. 
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 1.8. General Aims and Strategy 
 Prior evidence suggests a role of the BMP pathway in the formation of several 

ventral endodermal organs. We hypothesised that BMP signalling acts as global 

ventralizing factor in the gut, mirroring its action in the neural tube where it is necessary 

for dorsal identity (Figure 1.3). 

 In the present study, we characterized the Sox17CreERT2 mouse line that was 

previously generated in our lab in order to determine the most reliable way to induce 

recombination in the DE without affecting the other tissues.  

The newly characterized mouse line was then used to inactivate the BMP signalling 

pathway in the DE by deleting Alk3 using the Sox17CreERT2, in an Alk6 null background. 

The outcome of the inactivation has been thoroughly analysed by whole mount 

imaging. For this purpose, efficient labelling of dorsal and ventral endoderm organ 

primordia was established. 
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Materials and Methods 
 

2.1. Mouse breeding and genotyping 
 The Sox17CreERT2 allele was maintained within an ICR background for 

experiments. Mice with the Rosa26YFP, Alk3flox or Alk6- allele were previously 

described29,30,51 . The mating scheme used in order to obtain BMP pathway mutants is 

described in Table 2.1, along with the ratios of each genotype obtained in the progeny 

and the designations attributed for simplicity. Mice were housed at the University of 

Copenhagen. The Dyreforsøgstilsynet approved the mouse housing and experiments. 

 Midnight before a vaginal plug was observed was considered as the time of 

fertilization (E0). Pregnant females received an intraperitoneal injection of warmed 

tamoxifen (Sigma) dissolved in corn oil at a concentration of 10mg/mL, with a 25 gauge 

needle. Each female was weighed before injection and the volume of injected 

tamoxifen was calculated accordingly. To collect the embryos at the different time 

points (E9.5, E10.5, E12.5), the females were euthanized by cervical dislocation and 

the embryos were dissected out of the uterus in PBS. A part of the yolk sac was 

removed and used for genotyping. The embryos were fixed in PFA 4% (Sigma) for 2 

hours on ice with shaking.   

 

Table 2.1. Breeding scheme for BMP mutants 

Parent 2 Alleles Parent 1 Alleles 
Alk3fl Alk6 + Sox17 + Alk3fl Alk6 - Sox17 + 

Alk3fl Alk6+ Sox17CreERT2 

 
Alk3fl/fl Alk6+/+ Sox17CreERT2/+ 

 
Alk3fl/fl Alk6+/- Sox17CreERT2/+ 

1/8 1/4 
Alk3 KO Hz 

   

Alk3fl Alk6- Sox17CreERT2 
Alk3fl/fl Alk6+/- Sox17CreERT2/+ Alk3fl/fl Alk6-/- Sox17CreERT2/+ 

1/4 1/8 
Hz dKO 

   

Alk3fl Alk6+ Sox17+ 
Alk3fl/fl Alk6+/+ Sox17+/+ Alk3fl/fl Alk6+/- Sox17+/+ 

1/8 1/4 
WT Alk6 +/- 

Alk3fl Alk6- Sox17+ 

 
Alk3fl/fl Alk6+/- Sox17+/+ 

 
Alk3fl/fl Alk6-/- Sox17+/+ 

1/4 1/8 
Alk6 +/- Alk6 KO 
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 PCR genotyping was performed on tail tip genomic DNA and embryonic tissue 

after lysis in 100µL PCR direct tail buffer (Viagen) containing 2,5µL 20,6 mg/mL 

Proteinase K (Roche) overnight at 55ºC, followed by Proteinase K heat inactivation for 

45 min at 85ºC. Each PCR reaction contained 2 to 4 µL of genomic DNA digestion 

solution, 5 µL of 5x Green GoTaq buffer (Promega), 1 µL of 5mM dNTPs (Thermo 

Fisher Scientific), 1 µL of 10 µM primer stock (Table 2.1), 0,2 µL of 5u/µL GoTaq 

enzyme (Promega) and miliQ to a final volume of 25 µL. All primers were ordered from 

Integrated DNA Technologies.   

 

Table 2.2 Genotyping Primers 

Locus Primers 
Annealing 

temperature 
Cº 

product size 
WT mutant 

Sox17 5'-TGCCAC GACCAAGTGACAGC-3' 58 no 
product 700 

5'-CCAGGTTACGATAT AGTTCATG-3' 

Rosa26 
5'- AAAGTCGCTCTGAGTTGTTAT-3 

58 600 300 5'-GCGAAGAGTTTGTCC TCAACC-3' 
5'-GGAGCGGG AGAAATGGATATG-3' 

Alk3 
5'-GCAGCTG CTGCTGCAGCCTCC -3' 

50 350 600 
5'-TGGCTACAATTTGTCT CATGC-3' 

Alk6 
5'-CCCAAGATCCTACGT TGTAA-3' 

62 150 230 5'-GAGTGGTTACAACAAGATC AGC A-3' 
5'-GCCCTGAATG AACTGCA GG-3' 

 

 Electrophoresis gels were prepared with 2% ultra pure agarose (Thermo Fisher 

Sci.) in TAE 1x (in house) containing 0,003% ethidium bromide (Thermo Fisher Sci.). In 

each well, 6 µL of the PCR reaction was loaded as well as a 1kb DNA ladder 

(Thermofisher Scientific). The gels were submitted to 80mV voltage on a standard 

power pack p25 (Biometra) for roughly 20 min and imaged with a molecular imager 

(GelDoc XR+, BioRad). 
 

2.2. Immunofluorescence 

2.2.1. Immunofluorescence on sections - General protocol 
 Fixed embryos were thoroughly washed with PBS (1.8 mM KH2PO4, 10 mM 

Na2HPO4, 137 mM NaCl, 2.7 mM KCl pH7.4)a and incubated in a solution of 0.12M 

                                                 
 
a Steps where the temperature is not mentioned were performed at room temperature. 
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phosphate buffer 15% sucrose (Merck) (sucrose) overnight at 4ºC for cryoprotection. 

Fresh sucrose solution was added for 30 min, followed by 0.12M phosphate buffer 15% 

sucrose 7.5% gelatin (Sigma) (gelatin) at 38ºC for 30 min. The embryos were embeded 

in a gelatin block and the block set at 4ºC for 15 min. The gelatin blocks were then 

unmolded. They were frozen at -65ºC for 1 min. The blocks were stored at -80ºC until 

use. Sections of 7μm thickness were obtained using a cryostat (CM1959 Leica) at -

24ºC. The cryosections were stored at -20ºC on Superfrost Plus Slides slides 

(ThermoFisher). The general protocol forimmunofluorescence on sections 

consisted of a drying step of 5 min , followed by rehydration with tris buffer (50 mM Tris 

pH 7.5, 150 mM NaCl) 0,01% triton (TBST), permeabilization with tris buffer 0,25% 

triton (Applichem), washing with TBST 3x5 min and blocking with 10% donkey serum 

(Sigma) in TBST for 1 hour. All primary antibodies (see Table 2.1) were diluted in 

blocking solution and the sections covered by the antibody solution were incubated 

overnight at 4ºC. The sections were then washed with TBST 3x15 min and the 

respective secondary antibodies (See table 2.2) were diluted in blocking solution and 

centrifuged for 10 min at 21000 rcf, at 4ºC. Secondary antibodies and DAPI (Sigma) 

were incubated for an hour, after which the slides were again washed with TBST 3x15 

min. The slides were mounted with 50% glycerol (Sigma) solution in PBS and kept at 

4ºC until imaging. All images were acquired with either a wide field (DM5500B, Leica) 

or a confocal (LSM 780, Zeiss) microscope.  

 

2.2.2. Antigen Retrieval 
  In some cases, antigen retrieval was performed after the washes 

following the permeabilization steps. The slides were equilibrated for 5 min in 10mM 

trisodium citrate buffer pH6 and warmed gradually from 65ºC to 95ºC in an automated 

epitope recovery device (PT module, Lab vision). This temperature was maintained for 

20 min after which it went down to 65ºC.The slides were then washed 3x5 min with 

TBST and the rest of the immunofluorescence was carried out as usual. 

  

2.2.3. Antibody Stripping 
 Antibody stripping was performed in order to allow sequential staining with two 

antibodies derived from the same species. After the first immunofluorescence, the 

sections were washed in TBST and incubated for 1 hour at 60 ºC in a solution of 62,5 

mM Tris-HCl (Sigma), 2% SDS (Sigma) and 0,8% β-mercaptoethanol (Sigma)52. The 
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slides were then washed extensively in running tap water for 10 min, rinsed in 95% 

ethanol (Merck) followed by milliQ water and by TBST. The general protocol was 

continued from this step on. When Tyramide Signal Amplification kit (Thermo Fisher 

Sci.) is used in the first round of staining, both antibody stainings can be imaged at the 

same time. 

 

1.2.4. Phosphatase Assay 
 In order to ensure specificity of the pSMAD1/5/8 antibody to the phosphorylated 

form of this protein a phosphatase assay was performed. After permeabilization and 

washes in TBST, the sections were washed 2x2 min in milliQ water and rinsed in 

TBST. Each slide was treated with a solution of Lambda Phosphatase (New England 

Biolabs) prepared according to the manufacturer's instructions, for 2 hours at 37ºC. 

After the treatment, the slides were washed 2x5 min in milliQ water followed by 5 min in 

TBST. The general protocol was carried on from this point. 

 

1.2.5. Wholemount Immunofluorescence 
 Fixed embryos were thoroughly washed with PBS and gradually dehydrated to 

Methanol (Sigma) with sequential dilutions (50%Methanol in PBS, 100%Methanol in 

PBS) for at least 15 min each. These embryos were stored at -20ºC. 

 The embryos were incubated in a solution of 16% DMSO (Sigma) and 5% H2O2 

(Sigma) in methanol overnight at 4ºC. The samples were rehydrated to PBST. Blocking 

solution - PBS 0,5% Tween (Sigma) (PBST) containing 1%BSA (Roche) - was added 

and incubated for 8 hours or overnight. Primary antibodies were diluted in blocking 

solution and incubated for 40 to 48 hours at 4ºC. Primary antibodies were washed with 

PBST extensively all day or overnight at 4ºC and secondary antibodies were added 

diluted in blocking solution and incubated for 40 to 48 hours at 4ºC. Secondary 

antibodies were washed with PBST extensively all day or overnight at 4ºC and finally 

the samples were gradually dehydrated to methanol with sequential solutions 

(Methanol 50%, 100%) for at least 15 min each. All steps of the protocol were carried 

out over mild agitation using a rocking platform. These samples were stored at -20ºC 

until imaging. Before imaging by confocal microscopy, samples were cleared in 33% 

Benzyl Alcohol (Merck) 66% Benzyl Benzoate (Merck) (BABB) overnight and mounted 

in depression slides. All wholemount immunofluorescence samples were scanned on a 

confocal (SP8, Leica) microscope. After imaging, samples were again stored in 
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methanol at -20ºC, until further experiments. All image processing and analysis was 

performed on Imaris 8.1 software.  

 

Table 2.3. Primary Antibodies 

Targeted antigen Origin Sections Wholemount Supplier 

CD31 rat 1/50 n.aa 550274 Becton Dickinson 
E-CAD rat 1/200 n.a U3254 Sigma 
GCM2 rabbit 1/200 1/500 ab64723 Abcam 
GFP chick 1/1000 1/1000 ab13970 Abcam 

HLXB9 rabbit 1/1000b 1/1500 ab26128 abcam 
INS guinea pig 1/200 n.a A0564 Dako 

NKX2.1 mouse 1/200 1/500 PA0100 Biopat Im. 
PITX2 rabbit 1/500 1/1000 PA1020 Capra Science 

PROX1 goat n.a 1/500 homemadec 
PROX1 rabbit 1/100 n.a AF2727 R&D Systems 

pSMAD1/5/8 rabbit 1/200 n.a 9511 Cell Signaling 
SOX2 rabbit 1/200 n.a AB5603 Chemicon 

 

 

Table 2.4. Secondary Antibodies 

Against Origin Conjugated Sections and 
wholemount Supplier 

chick donkey Al488 1/800 Thermo Fisher Sci. 
goat donkey Al568 1/1000 Thermo Fisher Sci. 
goat donkey Al488 1/1000 Thermo Fisher Sci. 

guinea pig goat Al568 1/800 Thermo Fisher Sci. 
mouse donkey Al568 1/1000 Jackson IR 
mouse donkey Al488 1/1000 Thermo Fisher Sci. 
rabbit donkey HRPd 1/100 Jackson IR 
rabbit donkey Al488 1/200 Jackson IR 

rat donkey Al647 1/500 Jackson IR 
 

                                                 
 
a n.a. non applicable 
b Antigen recovery was performed in this case 
c Gift from Tatiana Petrova 
d Tyramide Signal Amplification kit used for detection 
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Results and discussion 
 

 3.1. Characterization of the new Sox17CreERT2 line 
 A Sox17CreERT2 mouse was previously generated in our lab by Marine Rentler-

Courdier. In order to generate the Sox17CreERT2 ES cell line, the coding sequence of a 

CreERT2 fusion protein was targeted after the second exon of Sox17 disrupting the 

gene. From this ES cell line, a mouse line was generated (unpublished data). The main 

difference between this mouse strain and the one reported by Engert (2013) is that the 

Sox17 gene is disrupted in the mutant allele.  

 Sox17 is expressed transiently in different tissues. Recombination will therefore 

occur in the cells that are expressing Sox17 if the activated form of tamoxifen is 

present as it is required for the translocation of the CreERT2 to the nucleus. In order to 

evaluate tamoxifen induced cell recombination in this new CreERT2 line, heterozygous 

mice were crossed with the Rosa26YFP/YFP (R26) Cre reporter mice51. In their progeny, 

yellow fluorescent protein (YFP) is expressed after Cre-mediated excision of the loxP-

flanked stop cassette from the ubiquitously expressed Rosa26 locus, allowing the 

detection of the recombined cells. Different injection time points with variable doses 

were investigated in order to reach the maximum recombination efficiency in the DE 

with little effect on the vasculature and the yolk sac.  

 We initially chose to activate Cre by tamoxifen injection at E7.5 (Figure 3.1), 

when expression of Sox17 is mostly restricted to the DE42,53. In order to get a 

homogenous recombination rate among litters, the dose of injected tamoxifen is 

function of the weight of the pregnant female and expressed as the amount of 

tamoxifen per 10g of mice (mg/10g).  

Another critical point was the age of the tamoxifen solution. Indeed, oil solubilized 

tamoxifen is unstable. However, its degradation also coincides with a reduced toxicity. 

Indeed, it was possible to harvest E12.5 embryos which received 0.7mg/10g of 

tamoxifen at E7.5 with a tamoxifen solution was older than 3 months (n=1). With this 

setting, most of the cells in the gut endoderm as well as in the endoderm derived 

organs expressed YFP (Figure 3.1 - A-C). Concomitantly, no recombined cells were 

found in the yolk sac epithelium (Figure 3.1 - D) and only few in the vasculature (Figure 

3.1 - E - white arrow), indicating that at the time of injection Sox17 expression was 

almost limited to the DE, with only few cells of mesodermal origin being Sox17+.. 

 On the contrary, when attempting to repeat the experiment, it was observed that 

injection of the same dose of freshly prepared tamoxifen was lethal (n>5). Since it 
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cannot be excluded that the outcome on the recombination will be more variable due to 

the partial tamoxifen degradation, further injections were performed with fresh 

tamoxifen, solubilized less than three days-old prior to injection.  Nevertheless, the 

previous experiment showed that the time window of injection targeted mostly DE cells. 

 Since tamoxifen injection of 0.7mg/10g was lethal for the litter, most probably 

due to cardiac developmental defects, lower doses of tamoxifen were used. A 

tamoxifen injection of 0.6mg/10g was found to be the highest dose administered at 

E7.5 that does not cause high rates of developmental delay and malformation followed 

by abortion. At E9.5  the number of recombined cells was variable across different 

litters, and never higher than 30% when 0.6mg/10g or 0.5mg/10 were injected (n=5 

combining 0.5mg/10g and 0.6mg/10g) (Figure 3.2). The recombination variability may 

be caused by the lower dose of tamoxifen as a critical amount is necessary for Cre 

Figure 3.1. Recombination rates in E12.5 embryos after administration of out of date tamoxifen at E7.5. (A-D) 

Immunofluorescence for E-Cadherin and GFP on sections of Sox17CreERT2/+ RosaYFP/+ E12.5 embryos shows the 

recombination when old tamoxifen is injected at E7.5. Around 70 to 90% of the gut endoderm highlighted by E 

Cadherin (red) were recombined and expressed YFP detected by the GFP antibody as exemplified in the trachea and 

esophagus (A), the pancreas (B) and the midgut (C). Only few GFP positive cells were observed in the yolk sac 

epithelium (red) (D). (E) Immunofluorescence for CD31 and GFP on sections of Sox17CreERT2/+ RosaYFP/+ E12.5 

embryos shows rare event of recombination in the endothelial cells expressing CD31 (red) when old tamoxifen is 

injected at E7.5. Nuclei are counterstained with DAPI (blue). Abbreviations: es - esophagus; tr - trachea; vp - ventral 

pancreas; mg - midgut. Scale bar - 100 µm. 

 



FCUP 
Role of the BMP Pathway in Definitive Endoderm Patterning 

27 

 
 
 

 
 

activation and by the dynamic expression of Sox17. But also, considering the rapid shift 

in Sox17 expression, it is likely that even small discrepancies in the time of tamoxifen 

injection will result in the recombination of different groups of cells. Sox17 expression is 

first found in the prospective foregut (E7.0) and gradually shifted until it is only found in  

the prospective hindgut (E9.0)42. In line with the dynamic expression pattern, it was 

observed that often more cells were recombined in the posterior region of the gut than 

in the foregut (Figure 3.2 A-C), which indicates that the DE cells of the foregut were no 

longer Sox17+ at the time of Cre activation. 

 According to the previous experiment, an earlier injection than E7.5 would be 

needed in order to induce recombination in the prospective foregut cells. Preliminary 

experiments in the lab have shown that injection of 0.7mg/10g at E6.5 leads to high 

recombination rate (around 90%) in the whole gut at E9.5 but results in embryonic 

lethality since no embryo survived after E10.5 (unpublished data). It is noteworthy that 

the tamoxifen solution used for this experiment was not fresh. Therefore, a strategy 

Figure 3.2. Recombination rates in E9.5 embryos after administration of tamoxifen at E7.5. (A-C) 

Immunofluorescence for E-Cadherin and GFP on sections of Sox17CreERT2/+ RosaYFP/+ E9.5 embryos shows the 

recombination when tamoxifen is injected at E7.5 with a dose of 0,5 mg/10g or (D) a dose of 0,6 mg/10g. Few cells of 

the gut endoderm highlighted by E Cadherin (red) were recombined and expressed YFP detected by the GFP 

antibody. Often, more cells were recombined in the posterior region gut as exemplified in the hindgut compared to the 

foregut (A and C). Nuclei are counterstained with DAPI (blue). Abbreviations: es - esophagus; tr - trachea; vp - ventral 

pancreas; mg - midgut. Scale bars - 100 µm. 
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combining lower doses of tamoxifen (0.4mg/10g) injected at two different time points 

was undertaken in order to improve the recombination in Sox17+ DE cells and the 

viability of the embryos. Using this approach, we observed that between 70 to 90% of 

the cells in the gut endoderm were recombined both at E9.5 (n=2) and E12.5 (n=4). For 

example, most of the cells in the liver primordium were recombined at E9.5 (Figure 3.3 

- B) and high recombination rates in the pancreas were observed at E12.5 (Figure 3.3 - 

E). The recombination in the vasculature might be caused by the presence of 

tamoxifen metabolites long after injection. The precise length of time that tamoxifen 

continues to induce recombination is highly variable depending on the dose and mode 

of administration54,55. Nevertheless, the low rates of recombination observed in the 

vasculature (~1%) in this experiment would be unlikely to interfere when analysing DE  

 

 

Figure 3.3. Recombination rates in E9.5 and E12.5 embryos after administration of tamoxifen twice, at E6.5 
and E7.5. (A-C) Immunofluorescence for E-Cadherin and GFP on sections of Sox17CreERT2/+ RosaYFP/+ E9.5 embryos 

shows the recombination when tamoxifen is injected at E6.5 and E7.5 with a dose of 0,4mg/10g/day. Around 70 to 

90% of the gut endoderm cells highlighted by E Cadherin (red) were recombined and expressed YFP detected by 

the GFP antibody as exemplified in the foregut (A), the liver primordium (B) and the hindgut (C). (D-F) 

Immunofluorescence for E-Cadherin and GFP on sections of Sox17CreERT2/+ RosaYFP/+ E12.5 embryos shows the 

recombination when tamoxifen is injected at E6.5 and E7.5 with a dose of 0,4mg/10g/day. Around 70 to 90% of the 

gut endoderm highlighted by E Cadherin (red) were recombined and expressed YFP detected by the GFP antibody 

as exemplified in the esophagus and main bronchi (D), dorsal pancreas (E) and the midgut (F). Nuclei are 

counterstained with DAPI (blue). Abbreviations: br - bronchi; es - esophagus; dp - dorsal pancreas; mg - midgut. 

Scale bars - 100 µm.  
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lineage-restricted conditional mutants. This double injection strategy was found to be 

the most effective and reliable way to induce DE specific Cre activity with this new 

Sox17CreERT2 line.  

 After E9.0, Sox17 expression is found on a subset of endothelial cells of the 

blood vessels, including the dorsal aorta45. When Sox17 is no longer expressed in the 

DE, it is re-expressed in the ventrolateral region of the most posterior foregut, where 

the bile duct and gall bladder originate46. In order to verify the ability of the Sox17CreERT2 

line to recombine cells in these tissues, 0.7mg/10g of tamoxifen were administered at 

E10.5 and the embryos harvested at E14.5 (n=2), when the organs and vasculature 

are mainly formed. We observed that many endothelial cells in the vasculature were 

recombined, e.g in the dorsal aorta (Figure 3.4 - A-C). Furthermore, recombined cells 

were found in the bile duct, in accordance with Sox17 expression (Figure 3.4 - D-F). 
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It has been shown that Sox17 is still expressed at E9.0 in the ventral 

pancreas50. However, none of the pancreatic cells expressed YFP indicating that by 

E10.5, Sox17 is no longer expressed in this organ (Figure 3.5). 

 After birth, SOX17 is essential for the regulation of insulin secretion in beta-

cells. Mice lacking Sox17 during pancreas organogenesis are more susceptible to 

develop diabetes56. Although no mature beta cells are present at E10.557, there are 

some cells co-expressing insulin and glucagon. They were not GFP positive at E14.5 

indicating that neither the progenitors of beta cells nor the glucagon/insulin double-

positive cells express Sox17 at E10.5 (Figure3.5). 

 

Figure 3.4. Recombination rates in E14.5 embryos after administration of tamoxifen at E10.5. (A-C) 

Immunofluorescence for GFP (green, single channel image (A)) and CD31 (gray, single channel image (B)) on 

sections of Sox17CreERT2/+ RosaYFP/+ E14.5 embryos shows the recombination when tamoxifen is injected at 

E10.5. Very high numbers of recombined cells were observed in the vasculature. (D-F) Immunofluorescence for 

GFP (green, single channel image (D)) and E-Cadherin (gray, single channel image (E)) on sections of 

Sox17CreERT2/+ RosaYFP/+ E14.5 embryos shows the recombination when tamoxifen is injected at E10.5. Very high 

numbers of recombined cells were observed in the bile duct.. Nuclei are counterstained with DAPI (blue). 

Abbreviations: da - dorsal aorta; bd - dile duct. Scale bars - 100 µm. 
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 Overall, these experiments confirm that the new Sox17CreERT2 mouse line is 

inducible upon tamoxifen injection and expresses Cre in the expected cell types (Table 

3.1). Furthermore, we showed that recombination in the Rosa26 locus is very efficient 

in the endoderm when tamoxifen is administered at E6.5 and E7.5,  as in these 

conditions most cells in the endoderm expressed YFP. Recombination can also be 

induced in precursors of the vascular endothelial lineage as well as in the bile duct. The 

spatiotemporal induction of Cre in this line allows genetic lineage tracing of distinct 

Sox17+ populations, as well as tissue-specific gene edition.  

 As stated previously, the Sox17 gene is disrupted in this Sox17CreERT2 line. It 

has been shown that this haploinsufficiency may be an issue depending of the genetic 

background of the animals. In a C57BL/6 background, 90% of the Sox17+/- mice suffer 

perinatal lethality due to aberrant development of the liver, gallbladder and bile duct 

network. The same study reported that in the ICR background a mild phenotype of 

gallblader hypoplasia is observed  only in adults58. This new Sox17CreERT2 line is bred 

on an ICR background.  We did not observe obvious defects; the mice could reach 

adulthood and were fertile. However, when performing additional mutations this must 

be taken into account, as it may have an unpredictable effect. 

 On the other hand, this same characteristic raises the possibility to perform 

interesting experiments regarding the fate of Sox17 deficient cells, which has been only 

briefly explored to date59. 

 

Figure 3.4. Recombinantion rates in E14.5 pancreas after administration of 
tamoxifen at E10.5. (A-E) Immunofluorescence for GFP (green, single channel 

image (A)), insulin (red, single channel image (B)) and E-Cadherin (gray, single 

channel image (C)) on sections of Sox17CreERT2/+ RosaYFP/+ E14.5 embryos shows the 

recombination when tamoxifen is injected at E10.5.Insulin secreting cells (yellow 

arrows , magnification (E)) in the E14.5 pancreas were not recombined. Pannel (E) 

represents a magnification of the dashed area in (D). Nuclei are counterstained with 

DAPI (blue). Abbreviations: dp - dorsal pancreas. Scale bars - 100 µm.  
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Table 3.1. Summary of characterization of the Sox17CreERT2 line 

Time of Injection 
Cells recombined 

VE DE Vasculature 

 
E7.5 minimal variable, usually higher on 

posterior minimal 

E6.5-7.5 minimal yes (80-90%) minimal 

E10.5 none bile duct yes (~80%) 
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 3.2. Expression of molecular markers in the gut 
 To determine the effect of the absence of BMP signalling on the dorso-ventral 

patterning of the endoderm, the organ domain will be assessed at E10.5 using 

molecular markers. At this time point, morphological features are present only for some 

organs e.g. lungs, the pancreas and the liver. A series of organ-specific markers were 

selected based on their early expression in the different endoderm-derived organ 

domains (Table 3.1). The immunohistofluorescence protocol for every marker was 

optimized on E10.5 wild-type (WT) embryos both for whole-mount staining and on 

sections. The subsequent figures show the results of the optimization on sections. 

  

Table 3.2. Molecular markers expressed in the primitive gut and assessed 
in this study 

Molecular maker Region Onset of expression 
NKX2.1 thyroid, lungs, trachea 8.5 60 
SOX2 esophagus 9.561 

FOXN1 thymus 1162 
GCM2 parathyroid 9.562 
PROX1 liver 8.563 
HLXB9 dorsal gut, pancreas 8.064 

PITX2 caecum 1165 
 

 

 3.2.1. Nkx2.1 and Sox2 
 Nkx2.1 and Sox2 encode transcription factors that inhibit each other's 

expression. Therefore, their expression is mutually exclusive in different domains of the 

foregut. They are necessary for the proper formation of the trachea and the esophagus, 

respectively37,61. NKX2.1 is expressed in the ventral foregut endoderm as well as in the 

lungs and the thyroid, as was observed in E10.5 WT embryos (Figure 3.6). 

Wholemount stainings of the thyroid and lungs were also successful (Supplementary 

video 1 and 2). Complementary to the ventral expression of NKX2.1, high levels of 

SOX2 marked the dorsal foregut endoderm (Figure 3.7). SOX2 expression was also 

detected at lower levels in the main bronchi (Figure 3.7 - B, C). Indeed, this 

transcription factor has been shown to inhibit lung branching and its overexpression in 

the respiratory epithelium causes a severe reduction in the number of airways66. 
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 3.2.2. Gcm2 and Foxn1 
 The thymus and parathyroid glands originate from the same endodermal 

primordium and develop bilaterally, in the third branchial pouch. In the adult, the 

thymus is situated above the heart and is responsible for T cell production, whereas the 

parathyroids are found near the thyroid and regulate calcium homeostasis. By E9.5 the 

thymus and parathyroid start to be specified, but they cannot be morphologically 

Figure 3.7. SOX2 in WT E10.5 embryos. (A-C) Immunofluorescence for SOX2 (green) was performed on WT 

E10.5 embryonic sections. SOX2 is found in the esophagus. Trachea can be morphologically distinguished (white 

lines) (A) as well as the main bronchi (B, C). SOX2 is found at lower levels in the main bronchi (C). Nuclei are 

counterstained with DAPI (blue). Abbreviations: es - esophagus; tr - trachea; br - bronchi. Dorsal is towards the top 

and ventral towards the bottom. Scale bar - 100 µm. 

 

Figure 3.6. NKX2.1 in WT E10.5 embryos. (A-D) Immunofluorescence for NKX2.1 (green) was performed on WT 

E10.5 embryonic sections. NKX2.1 is found in the thyroid (A) in the trachea (B,C) and in the main bronchi (D). The 

esophagus can be morphologically distinguished and do not expressed NKX2.1 (B, C, D - yellow lines). Nuclei are 

counterstained with DAPI (blue). Abbreviations: th - thyroid; es - esophagus; tr - trachea; br - bronchi. Dorsal is 

towards the top and ventral towards the bottom. Scale bar - 100 µm. 
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distinguished at this point. GCM2 marks the dorsal region in the common primordium 

which later becomes the parathyroid (Figure 3.8), while Foxn1 is expressed in the 

ventral domain that originates the thymus. However its expression only starts at E11 

making it less suitable for this study62. Wholemount stainings of the parathyroid was 

also successful (Supplementary video 3). 

 
 

 3.2.3. Prox1 
 PROX1 is found in the liver, in both pancreatic buds and in the bile duct at 

E10.5 (Figure 3.9). Wholemount stainings of the liver, pancreas and bile duct with 

Prox1 were also successful (Supplementary video 4).  Expression in the liver domain 

starts at E8.5 and is first observed in the budding dorsal pancreas at E9.563.  

 

 

Figure 3.7. PROX1 in WT E10.5 embryos. (A, B) Immunofluorescence for PROX1 (green) was performed on WT 

E10.5 embryonic sections. PROX1 is found in the liver (A, B), the bile duct (A) and in the pancreatic buds, e.g. 

dorsal pancreatic bud (B). Nuclei are counterstained with DAPI (blue). Abbreviations: bd - bile duct; dp - dorsal 

pancreas; li - liver. Scale bar - 100 µm. 

 

Figure 3.7. GCM2 in WT E10.5 embryos. Immunofluorescence for GCM2 (green) 

was performed on WT E10.5 embryonic sections. GCM2 is found in a small domain 

located dorsally on the third branchial pouch, where the parathyroid will develop. 

Nuclei are counterstained with DAPI (blue). Abbreviations: pt - parathyroid. Scale bar - 

100 µm. 
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 3.2.4. Hlxb9 
 HLXB9 is found all along the dorsal wall of the gut epithelium as well as in the 

dorsal pancreas (Figure 3.10). Hlxb9 is also expressed transiently in the ventral 

pancreas. After E10.5, only the differentiating beta-cells and the beta cells expressed 

Hlxb9 in the pancreas64.  Wholemount stainings of with hlxb9 were also successful 

(Supplementary video 5). 

 

 
 

 3.2.5. Pitx2 
 Pitx2 is expressed in the epithelium and the mesenchyme of the caecum 

primordium from E11.0. It is required for the formation of the caecum67. Commercial 

antibodies against PITX2 were tested on E10.5 embryos. However, the different tests 

did not give any conclusive results. This may result from PITX2 not yet being 

expressed at this stage or defective antibodies, hypotheses that were not yet tested. 

 

 3.2.6. Effectors downstream of BMP: pSMAD1/5/8 
 In order to monitor BMP pathway activity, we evaluated the presence of a 

downstream effector, the phosphorylated form of SMAD1/5/8 (pSMAD1/5/8. 

Figure 3.10. HLXB9 in WT E10.5 
embryos. (A, B) Immunofluorescence for 
HLXB9 (green) was performed on WT 

E10.5 embryonic sections. HLXB9 is found 

dorsally all along the gut endoderm. (A, B, 

C). HLXB9 was also found in the dorsal 

pancreatic bud (D). Nuclei are 

counterstained with DAPI (blue). Dorsal is 

towards the top and ventral towards the 

bottom. Abbreviations: bd - bile duct; dp - 

dorsal pancreas; li - liver. Scale bars - 100 

µm. 
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pSMAD1/5/8 immunoreactivity should be absent when BMP signalling is inactive. In 

wild-type E9.5 and E10.5 embryos, pSMAD1/5/8 was observed ventrally in the gut 

endoderm and in the surrounding mesoderm (Figure 3.11 - A, B). To assess the 

specificity of the antibody, a phosphatase treatment was performed; in this case no 

signal was detected in the ventral part of the gut and the surrounding ventral 

mesoderm (Figure 3.11 - C). 

 

3.2.7. Sequential immunofluorescence 
 Multiple antibodies presented in this section are generated in the same species 

(See Table 2.1 in Materials and Methods). Critically, both HLXB9 and pSMAD1/5/8 

antibodies were raised in rabbit. To circumvent this issue, we developed a strategy of 

sequential immunofluorescence. With this method, two rounds of immunofluorescence 

staining using antibodies raised in the same species are performed separated by a 

Figure 3.11. pSMAD1/5/8 in WT embryos and phosphatase treatment. (A, B) Immunofluorescence for 
pSMAD1/5/8 (green, single channel image (A, B, C)) was performed on WT E9.5 (A) and E10.5 (B) embryonic 

sections. pSMAD1/5/8 staining is found in the ventral region of the gut and the surrounding mesenchyme. (C) 

Phosphatase treatment followed by immunnofluorescence on sections for pSMAD1/5/8 (green) on E10.5 WT 

embryos. After treatment with phosphatase, no pSMAD1/5/8 staining is observed, which assures the antibody 

specificity. Nuclei are counterstained with DAPI (blue). Unspecific signals coming from the blood cells are evident in 

C. The gut epithelium is outlined. Dorsal is towards the top and ventral towards the bottom. Scale bar - 100 µm.  
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stripping procedure which removes the primary and secondary antibodies of the first 

staining. If a fluorescent precipitate, such as tyramide, is used to detect the first 

immunofluorescence, it is possible to visualize both signals at the same time as the 

stripping does not remove the precipitate Therefore, in the presented example, it was 

possible to image together HLXB9 and pSMAD1/5/8 signals (Figure 3.12).  
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Figure 3.12. pSMAD1/5/8 in a E10.5 embryo after stripping primary antibodies. (C, F, I) Immunofluorescence 

was performed for HLXB9 (red, single channel image (A, D, G)) on E10.5 embryonic sections using a tyramide dye. 

This was followed by antibody stripping and subsequent immunofluorescence for pSMAD1/5/8 (green, single 

channel image (B, E, H)). HlLXB9 is found in the esophagus (red), whereas pSMAD175/8 is found in the ventral gut 

region (green) (C, F,I). Nuclei are counterstained with DAPI (blue). Dorsal is towards the top and ventral towards the 

bottom. Abbreviations: fg - foregut; es - esophagus; tr - trachea. Scale bar - 100 µm.  
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3.3. Inactivation of the BMP pathway  
 Inactivation of the BMP pathway in the gut endoderm was achieved by 

conditionally inactivating Alk3 using the previously characterized Sox17CreERT2 mouse 

line, in a null background for Alk6. The pathway was thereby permanently inactivated in 

the progeny of the cells that expressed Sox17+ at the time of tamoxifen injection in the 

Sox17creERT2/+; Alk3fl/fl; Alk6–/–embryos (hereafter called dKO). As discussed previously, 

injection of tamoxifen at E6.5 and E 7.5 in the presented CreERT2 line causes 

widespread recombination of Sox17+ DE progenitor cells.  

 The inactivation of the pathway was achieved via the receptors and not through 

the ligands. Indeed, BMPs are present in both the endoderm and the surrounding 

mesenchyme. Their deletions may result in deleterious effects in the mesenchyme, 

impairing further analysis. Moreover, the receptors are less redundant than the ligands 

and deletion of both main receptors ALK3 and ALK6 are expected to avoid 

compensatory mechanisms due to their redundancy. 

 

 3.3.1. Inactivation of both receptors is lethal before E10.5 
 Unexpectedly, double knock-out (dKO) embryos did not survive until E10.5. The 

effect was not due to tamoxifen toxicity in this background since wild-type and 

heterozygote littermates were recovered in the expected ratios (Figure 3.13). A single 

dKO embryo was found, but wholemount analysis suggests that the inactivation of the 

pathway was likely not achieved in this litter, as none of the littermates presented 

abnormalities (see subsequent sections and data not shown). Early embryonic lethality 

is often associated with gastrulation defects. However, the pathway inactivation was 

induced by injecting tamoxifen after gastrulation has occurred excluding this 

hypothesis. Due to the time at which BMP inactivation was performed, we suspect that 

the absence of BMP signalling in the DE at this stage interferes with gut tube closure 

and embryonic turning, precluding further development. Interestingly, mice with the 

Sox17CreERT2/+; Alk3fl/fl; Alk6–/+ genotype (hereafter termed Hz) survived until E10.5, 

indicating that the presence of a single allele of Alk6 is sufficient to prevent the lethal 

phenotype observed in the dKO. It is noteworthy that ALK6 is first expressed in the AIP 

at E7.522 suggesting that the absence of BMP signalling in the AIP at around E7.5 

causes lethality. The AIP is the place where ventral gut closure begins, indicating that 

BMP signalling in the DE may be required for ventral closure of the gut. It is supported 

by the effect of the deletion of Furin, an enzyme responsible for activation of BMP418. 
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Furin knock-out embryos are unable to undergo ventral closure and axial turning68. 

However, it cannot be excluded that Alk6 compensates the absence of Alk3 in other 

parts of the endoderm where ALK6 is normally not required. To verify this hypothesis, 

the phenotype of dKO embryos should be analysed at earlier stages, such as E8.5. It 

would also be important to analyse the expression of ALK6 in the Hz embryos before 

E10.5 to evaluate putative compensatory mechanisms. 

 We proceeded to analyse the phenotype of Hz mutants by comparing it to wild-

type littermates, mainly through wholemount immunofluorescence. 

 

 
  

 3.3.2. Hz embryos have several organ development defects 
 Even though Hz embryos survived until E10.5, they harboured several 

developmental defects, indicating that lowering BMP activity in the gut is sufficient to 

disrupt appropriate endoderm-derived organogenesis (Figure 3.14). Moreover, we also 

noticed that the epithelium of the gut of the Hz mutant looked globally thinner and less 

compact (Figure 3.14, 3.15, 3.16). It may be due to a proliferation defect occurring in 

the primitive gut endoderm of the Hz mutant. Accordingly, the absence of BMP4 in the 

anterior foregut causes a proliferation defect without an increase of cell death36. The 

growth impairment may also be more global as the Hz embryos were smaller than their 

WT littermates. Thus, it will be important to assess the cell survival and proliferation at 

E10.5 and earlier to understand this defect. 

 All Hz embryos analysed by wholemount immunofluorescence (n=3) lacked 

expression of NKX2.1 (Figure 3.14). While the thyroid, the trachea and lungs were 

normal in wild-type embryos (Figure3.14 - A), they were not visible in their Hz 

littermates (Figure3.14 - B). Even though the presence of the thyroid domain was not 

Figure 3.13. Percentages 
of genotypes obtained 
overall (A) compared to 
the theoretical percenta- 
ges (B) at E10.5. The 

proportions of genotypes 

obtained were similar to 

those expected, with the 

exception of the dKO, 

which was lethal.   
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investigated with other markers or at a later time point when the primordium is formed, 

the data suggests that it will not form, since Nkx2.1 is critical for its development69. In 

order to closely observe the structure of the foregut in the Hz mutant, one embryo 

(n=1) was sectioned after wholemount staining. No lungs or trachea were observed 

(Figure 3.16 - D). The absence of trachea stained by NKX2.1 in the mutant agrees with 

the requirement of BMP4 for its development36. Previously, disruption of BMP signalling 

in the foregut after specification had been shown to cause defects in lung development. 

The lungs formed but were smaller and less branched37. However, the inactivation of 

BMP signalling was performed after specification contrary to our study, in which no 

lungs are observed suggesting that the BMP pathway is also necessary for lung 

specification. However, it will be important to analyse the mutant at earlier stages to 

confirm that BMP signalling is required for lung specification in addition to the 

maintenance of its identity. 

 

Figure 3.14. Three-dimensional projection of WT and Hz littermates, at E10.5. (A, B) Wholemount 

immunofluorescence for HLXB9 (green), NKX2.1 (red) and PROX1 (white) in E10.5 WT /A) and Hz (B) embryos 

after injection of tamoxifen at E6.5 and E7.5. In the WT, NKX2.1 is present in the thyroid and lungs; HLXB9 is 

present in the dorsal region along the whole gut tube as well as in both pancreatic buds; PROX1 is present in the 

liver, the gallbladder and in both pancreatic buds (A). In the Hz mutant no NKX2.1 was found; HLXB9 is still present 

dorsally in the gut tube, but the epithelium seems thinner and deformed; PROX1 is expressed only on the right side 

of the embryo (B - L|R panel); the ventral pancreas and gallbladder are not evident. PROX1 and HLXB9 are found 

overlapping dorsally (arrowhead) (B). The strong red signal seen in A is a result of antibodies eing trapped in the 

lumen of the gut tube.  Abbreviations: dp - dorsal pancreas; gn - galbladder; li - liver; lu - lungs; th - thyroid; vp - 

ventral pancreas; H - heart; L - left; R - right.  



FCUP 
Role of the BMP Pathway in Definitive Endoderm Patterning 

43 

 
 
 

 
 

At E10.5, PROX1 was expressed in the liver, in both pancreatic buds and in the 

gallbladder in WT embryos. Moreover, each structure was distinguishable 

morphologically and the liver already had its characteristic sinusoidal shape (Figure 

3.14 A). In the Hz mutant, none of the aforementioned structures was distinguishable 

(Figure 3.14 B). The position and the arrangement of the cells suggested that the 

majority of PROX1+ cells were hepatocytes, while the rest might have a dorsal 

pancreatic identity. Nevertheless, more markers should be used in order to assess the 

identity of the PROX1+ cells.  

Figure 3.15. . Comparison of foregut in the WT and Hz littermates at E10.5. (D, H) Immunofluorescence for HLXB9 

(green, single channel (A, E)), Prox1 (white, single channel (B, F)) and NKX2.1 (red, single channel (C, G)) on E10.5 

embryonic sections, after wholemount immunofluorescence. HLXB9 is found in the dorsal region of the gut in both WT 

and Hz littermates. Expression of HLXB99 is also observable in the neural tube and the notochord (A, E). NKX2.1 is 

found in the ventral region of the gut in the WT (G) but not in the Hz littermate (C). The overexposed signal in the gut 

lumen in H is an artefact of wholemount immunofluorescence. Nuclei are counterstained with DAPI (blue). The gut 

epithelium is outlined. Dorsal is towards the top and ventral towards the bottom. Abbreviations: fg - foregut; nc - 

notochord; nt - neural tube. Scale bars - 100 µm 
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PROX1+ domain was also drastically reduced. Its total volume was estimated in 

the Hz mutants and in their WT littermates (n=3) using the Imaris 8.1 software (Figure 

3.17). However, slight differences of the embryonic stage at the time of collection 

cause a high variation in the organ domain size, as organogenesis is fast evolving at 

these stages. Combined with the small number of cells (Figure 3.14 ) forming PROX1+ 

domain, it could explain why its  

volume might be 6 times higher in the largest compared to the smallest WT of different 

litters. For this reason the volume of PROX1 in the Hz mutant was normalized to the 

volume of its WT littermate (Figure 3.18). This analysis revealed that the total PROX1 

expression domain is significantly reduced in the Hz mutant. 

 

Figure 3.16. Comparison of lung and liver in the WT and Hz littermates at E10.5. (D, H) Immunofluorescence for 

HLXB9 (green, single channel (A, E)), PROX1 (white, single channel (B, F)) and NKX2.1 (red, single channel (C, G)) on 

E10.5 embryonic sections, after wholemount immunofluorescence. HLXB9 is found in the dorsal region of the gut in both 

WT an Hz littermates (A, E). NKX2.1 is found in the ventral region of the gut where the lungs are budding in the WT (G) 

but not in the Hz littermate (C). PROX1 is expressed both in the WT (F) and in the Hz littermates (B). In the WT different 

organs can be distinguished by morphological aspects (H - liver/gallbladder). In the Hz however the PROX1 domain is 

reduced and no evident morphological structures were observed. The overexposed signal in the gut lumen is an artefact 

of wholemount immunoflourescence. Nuclei are counterstained with DAPI (blue). The gut epithelium is outlined. Dorsal 

is towards the top and ventral towards the bottom. Abbreviations: gb - gallbladder; li - liver, lu - lungs. Scale bar - 100 µm 
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Figure 3.18. Total Prox1 volumes in the Hz 
embryos (% of WT littermate). The volumes 

obtained for the Hz mutants through surface 

rendering in the Imaris software were plotted 

normalized to the WT volumes (n=3). PROX1 

domains are significantly smaller in the Hz mutants 

than in the WT littermates. Orange - Litter 1; Green 

- Litter 2; Blue - Litter 3. *One sample t test p=0,01  

Figure 3.17. Surface rendering of prox1 
expression domain. The three dimensional 

PROX1 domains were isolated from the 

remaining three dimensional image (white, A, B). 

Using the Imaris 8.1 software surfaces were 

rendered based on PROX1 signal (green, C, D). 

The same settings were replicated for each 

surface simulation. 

 

 

Before ventral closure, the liver starts developing bilaterally in the lateral 

endoderm. Both primordia meet and form a single organ when the lateral endoderm 

migrates ventrally70. Interestingly, the putative liver observed in the Hz mutant was 

located on the right side of the embryo (Figure 3.14 B), suggesting that the 

specification process of the right and left liver primordia are differently affected by BMP 

signalling. Furthermore, the pre-cardiac mesoderm which is necessary for the 

specification of the hepatogenic endoderm also receives reciprocal signals from this 

tissue to further develop71. In the Hz mutant, the heart also appears smaller when 

visualized with PROX1 staining (Figure 3.14 B). It might be a consequence of lack of 

reciprocal signalling between the liver and the pre-cardiac mesoderm.   



FCUP 
Role of the BMP Pathway in Definitive Endoderm Patterning 

46 

 
 
 

 Remarkably, no ventral pancreatic bud was formed in any of the Hz embryos 

while the outcome of the alteration of BMP signalling on the dorsal pancreatic bud was 

variable. In one instance, the dorsal pancreas seemed completely absent based on 

PROX1 and HXLB9 staining. In another litter, there was no apparent budding but 

PROX1 and HLXB9 expression overlapped dorsally, in the prospective region of the 

dorsal pancreatic bud (Figure 3.14 B). Finally, in the third litter, a bud was observed, 

although it was underdeveloped compared to its WT counterpart (Figure 3.19 C, F). 

The variable dorsal pancreatic phenotype may be linked to a slight difference in the 

developmental stage of the embryos or to differences in recombination rates between 

litters. These data indicate that BMP signalling is probably required for the specification 

of the ventral pancreatic bud while the effect of BMP signalling on dorsal pancreatic 

bud is less clear but suggest it is required for pancreatic growth, as previously 

suggested in chick72. 

Figure 3.19. Comparison of dorsal pancreas in the WT and Hz littermates at E10.5. (C, F) Immunofluorescence 

for HLXB9 (green, single channel (A, D)) and PROX1 (white, single channel (B, E)) on E10.5 embryonic sections, 

after wholemount immunofluorescence. Overlapping domains of HLXB99 and PROX1 as well as the morphology, 

indicate that the dorsal pancreas is present both in the WT (F) and the Hz mutant (C). Nuclei are counterstained 

with DAPI (blue). Abbreviations: dp - dorsal pancreas. Scale bar - 100 µm 
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 The global dorsal molecular marker HLXB9 was expressed in the dorsal 

endoderm of both WT and Hz embryos. Although the size of the domain has not been 

quantified, it implies that the dorsal identity of the primitive gut tube remains unaffected.  

 In summary, the resulting phenotype shows that the inactivation of BMP 

signalling through the ALK3 receptor and partially through the ALK6 receptor disturbs 

the ventral patterning of the anterior foregut as well as the formation of several organs, 

including the dorsal pancreas. Globally, the gut epithelium of Hz mutants appears to be 

thinner and less shapely while the surrounding mesoderm did not seem affected by the 

alteration of BMP signalling, indicating that conditional deletion of Alk3 in the endoderm 

was successful. The heart developmental defect is likely associated to the lack of 

reciprocal signalling from the liver endoderm, since this organ is significantly reduced.  

   

 In this study we provide evidence that the disruption of BMP signalling in the 

endoderm after onset of gastrulation causes embryonic dead before E10.5. Uncovering 

the developmental defects that cause death in these embryos will provide further 

information on the role of BMP signalling in the endoderm during these stages. 

 Furthermore, the preliminary results on characterization of the Hz phenotype 

reveal that disturbance of BMP signalling in the endoderm results in global defects in 

the endoderm. To achieve a deeper understanding of the phenotype of the Hz mutants, 

several further experiments could be conceived. The extent of BMP signalling 

inactivation in the Hz mutant should be assessed by evaluating pSMAD1/5/8 levels in 

the gut, as described in section 3.2.6. This experiment would reveal to which extent 

endodermal cells have undergone recombination and the level of BMP signalling in 

other cells. Alternatively, a recombination reporter could be included in the breeding 

scheme. The analysis of other endoderm-derived organs is also required. Indeed the 

global ventralizing activity of BMP is unclear since the dorsal pancreatic bud is either 

hypoplastic or absent and HLXB9 domain does not appear to be extended ventrally. 

Therefore, in order to assess our hypothesis, it will be important to evaluate the 

presence of the other dorsal organ, the parathyroid, by analysing the expression of 

GCM2. In addition, a ventral posterior organ, the caecum, could be assessed by 

expression of Pitx2 in the Hz embryo, possibly by in situ hybridization. It will also be 

interesting to examine pancreatic specific markers, such as PTF1A or PDX1, in order 

to differentiate the liver, the pancreas and the gallbladder. Additional global markers 

like SOX2 (dorsal foregut) and Islet1 (global ventral in chick, Palle Serup unpublished 

data) might offer further insight into which targets are affected by BMP signalling. As 
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our analyses cannot rule out a defect in the maintenance of the identity of the 

endoderm-derived organs, the Hz mutants should also be studied at earlier stages. A 

part of the observed phenotype might be associated with a defect in the number of 

endodermal cells. Thus, the levels of endoderm proliferation and cell death in the Hz 

mutant should also be evaluated at an early stage such as E8.5. 
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Chapter IV 
Final Remarks 
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Final Remarks 
  

 BMP signalling is essential for many aspects of development, including 

mesoderm formation and ectoderm patterning. In the DE, several studies have 

identified roles of BMP signalling in the formation of ventral gut organs 34-38.  

 We proposed that BMP signalling acts as a global cue in ventral patterning of 

the DE (Figure 1.3). The findings presented in this study are in accordance with the 

hypothesis. However, many questions remain before it can be confirmed. For instance, 

BMP signalling may be essential for the initial invagination of the AIP as suggested 

previously73, or it may also be required for ventral migration of the lateral DE and 

consequent ventral closure of the gut tube. The role of BMP in organogenesis is also 

still unclear. Is it required for specification, proliferation, maintenance of identity? 

Perhaps it is required for distinct processes depending on the organ in question. 

Challenges in the future are to uncover new targets of BMP during endoderm 

development. Human Embryonic Stem cell derived endoderm could be used in order to 

identify which genes are downstream targets of BMP.  

 A global understanding of how BMP signalling acts during dorsal-ventral 

patterning of the DE will facilitate the development of more efficient protocols that 

better emulate the development of organs like the lungs, liver or the pancreas, bringing 

us one step forward into the exciting field of in vitro organogenesis74. 
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