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Abstract 

 

One of the main issues that industries should try to prevent is customers’ dissatisfaction 

caused by tardy jobs, since it means loss of sales and other financial inconvenients, as 

well as loss of goodwill. It is also proven that the weight of each job should be taken 

into account due to the fact that every job has its own associated priority. This 

investigation considers these two factors and presents algorithms for a permutation 

flowshop scheduling problem with a weighted squared tardiness objective which 

includes a comparison between linear and quadratic constructive heuristics and the 

application of three improvement methods in the QATC and the QWMDD rules, after 

concluding that these rules have the best performances. Overall, this study proves that 

the quadratic heuristics outperform their linear counterpart and that the application of 

the improvement methods results in improvements of over 40%.  

 

Keywords: permutation flowshop, weighted squared tardiness, dispatching rules, 

scheduling 
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Chapter 1 - Introduction 

 

1.1 Motivation 

In various sectors, but especially in industries, a quite large variety of jobs has to go 

through different operations on a number of different machines. Scheduling problems 

have been studied for several years due their major importance in various industries; 

among its most important goals are meeting due dates and avoiding delay penalties. 

A flowshop can be defined as a conventional manufacturing system in which machines 

are arranged in the order in which operations are performed on jobs and the operation 

sequence is the same for all jobs (Parthasarathy and Rajendran 1998). The machines are 

set up in a series, and whenever a job completes its processing on one machine, it joins 

the queue at the next. A particular case of this sequencing type is a permutation 

flowshop which does not allow bypassing, i.e. the order of the jobs has to be the same 

on all machines. 

There are two very important factors that this study takes into account: job priority 

(weights) and squared tardiness. On one hand (Valente and Schaller 2012) proved that 

heuristics which take in consideration the quadratic tardiness have a better performance 

than the heuristics developed for the linear problem, since it gives more importance to 

the jobs that are more tardy, avoiding large delays and situations where most of the 

tardiness occurs in a small group of jobs . On the other hand, (Vepsalainen and Morton 

1987) showed that a strategic weight should be considered in order to reflect different 

job priorities. These two factors represent customer’s dissatisfaction, loss of future 

sales, and rush shipping costs, among others. 

In what regards the type of procedure, this work focuses on dispatching rules. First, this 

is often the only method that can find solutions for large instances in adequate 

computational times. Also, dispatching rules and their priority indexes are often used in 

real life scheduling systems. Furthermore, the solution provided by these rules is also 

used as the starting point for some improvement methods, such as local search 

procedures or metaheuristics. 
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1.2 The Problem  

This study considers a permutation flowshop scheduling problem with weighted 

quadratic tardiness costs. Formally, the problem can be stated as follows. 

A set             of   independent jobs have to be processed on a set   

          of   machines. All jobs follow the same route through the machines, and it 

is assumed that the processing order of the jobs is the same for all machines, so the 

production environment is the so-called permutation flowshop. The machines are 

continuously available from time zero onwards, and preemptions are not allowed. 

Job      , requires a processing time     on machine      , and has a weight    

and a due date   . Let     denote the completion time of job       on machine 

     . Furthermore, let the job sequenced in position   be denoted by     and recall 

that        , since all machines are available at time zero. Then,                   

and                               , for            . Finally, and for 

convenience, let the completion time of job  , that is, the time at which job   finishes 

processing on the last machine, also be denoted by   , so       . 

For a given schedule, the tardiness of job   is defined as                . The 

objective is then to find a schedule that minimizes the sum of the weighted squared 

tardiness values      
  

   . 

Let   be the current partial schedule, that is, the sequence of jobs that are scheduled so 

far. Also, let       be the completion time of job     if   is scheduled at the end of 

sequence  . Let       be the slack of job     if   is scheduled at the end of sequence 

 , where               . Additionally, let       be the current availability time of 

machine   under schedule  . For convenience, the current availability time on the first 

machine will also be denoted by  , so        . 

Let               be the total time (total processing time plus any eventual forced 

idle time) between the start and finish of job     if   is scheduled at the end of 

sequence  . Also, let       be the average, over all jobs    , of the       values. 
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Let                        be the tardiness of job     if   is scheduled at the 

end of sequence  . 
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1.3 Structure 

As previously explained, this dissertation aims to study different heuristics for a 

permutation flowshop scheduling problem with weighted squared tardiness. The 

remainder of this work is organized as follows. 

Chapter 2 summarizes the scientific articles that had been presented over the last 

decades. Mainly, they introduce solutions for a single machine scheduling and linear or 

squared earliness and tardiness, and were extremely useful for this particular 

investigation, since they can be easily adapted for it. 

Chapter 3 presents all the heuristic procedures considered in the study, such as the 

constructive dispatching rules and the improvement methods applied to improve the 

solutions generated by these dispatching heuristics. 

Chapter 4 presents the computational results. First, the quadratic heuristics will be 

compared with their linear counterparts; the ones with an inferior performance will not 

be considered further. Secondly, the remaining heuristics will be compared with those 

that do not have both a linear and a quadratic version. Additionally, some improvement 

methods (multiple sequence version, NEH procedure and local search) will be taken in 

consideration in order to find an upgraded version of the best procedures found 

previously. The best procedures and its upgrade will also be compared. 

Finally, Chapter 5 will summarize all the work done, comparing the various heuristics 

examined and concluding about the best procedure that should be use in real life 

situations, highlighting the most important conclusions. It will also provide some 

suggestions for future research. 
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Chapter 2 – Literature review 

 

The authors know of no other works about weighted quadratic tardiness in a 

permutation flowshop scheduling problem. However, there are some studies considering 

these measures for a single machine (which can be easily applied in more complex 

problems) as well as the sum of linear earliness and tardiness in single machines and 

permutation flowshop scheduling problems. 

In order to find a schedule that minimizes the sum of the weighted squared tardiness, 

(Valente and Schaller 2012) proposed some heuristics for scheduling in a single 

machine regarding forward and backward scheduling. In the case of forward 

dispatching rules, their study considered the best performing rules in the literature 

(WMDD, ATC and AR) for the linear problem and their quadratic version (QWMDD, 

QATC and QAR). The backwards dispatching rules were take into account for 

comparison purposes. 

This study shows that the quadratic version of the rules outperform better than their 

linear counterparts. Also, it proved that the backward scheduling heuristics perform 

much better compared to the forward scheduling heuristics. This makes sense if we take 

into account that the backward procedure chooses between the tardy jobs first, 

contrarily to the forward scheduling, in which jobs can be quite early in the first 

iterations. 

(Valente and Schaller 2012) concluded that backwards scheduling heuristics are 

efficient and effective and that can give a quick result for large instances with good 

results close to the optimum. 

(Schaller and Valente 2012) presented a branch-and-bound algorithm to apply in a 

single machine sequencing problem with the objective of minimizing the sum of 

weighted squared tardiness. Also, in this study methods to increase the efficiency of an 

optimal branch-and-bound algorithm are developed. 

When branching occurs and new nodes are created, a lower bound on the sum of 

weighted squared tardiness that would be obtained by the completion of the partial 
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sequence corresponding to those nodes is calculated. If the lower bound is less than the 

lowest sum of weighted squared tardiness found so far for complete sequences and the 

node does not represent a complete sequence, the node is retained for additional 

branching. If the lower bound is less that the incumbent value and all the jobs have been 

sequenced in the branch ending with the node (the node represents a complete 

sequence), then the incumbent value is updated to equal the lower bound, the sequence 

is recorded and the node is eliminated (Schaller and Valente 2012). If the lower bound 

is greater that the incumbent value, the node is eliminated. The algorithm proposed uses 

a depth first strategy, i.e. the algorithm chooses for branching the node at the lowest 

level of the tree, breaking the connection choosing the node with the least lower bound. 

This study, which took into account different number of jobs, degrees of tightness and 

ranges of due dates, proved that the proposed dominance conditions significantly 

improved the efficiency of the branch-and-bound algorithm. It was also shown that 

problems with up to 40 jobs can be solved in a practical amount of time; the same 

occurred for larger problems if due dates were not very tight. 

A genetic algorithm to minimize total earliness and tardiness in permutation flowshops 

was proposed by (Schaller and Valente 2013), where the chromosomes were randomly 

created using EDD for one chromosome and NEH for another chromosome. This 

algorithm applied a selection operator (n-tournament) in which the individual with the 

lowest total earliness and tardiness, between a percentage of individuals, is chosen for 

the mating process. This procedure takes in consideration that the best parents have 

more jobs copied to their progenitors, and consequently, might lead to better children. 

The heuristic presented by (Schaller and Valente 2013) was tested in different problem 

sizes and it generated better solutions, when compared with other algorithms. 

There are other important investigations that should be mentioned due to their relevance 

for the scheduling problem here in study, especially the studies which take into account 

weighted versions of some well-known dispatching rules. 

(Vepsalainen and Morton 1987) made a weighted version of the COVERT rule, first 

introduced by Carroll (1965), and defined a new rule called Apparent Tardiness Cost 

(ATC), which has been mentioned in the literature countless times. The COVERT 



 

7 
      

priority rule represents the expected tardiness cost per unit of imminent processing time, 

or cost over time; the ATC trades off job’s urgency against machine utilization. 

With this study, (Vepsalainen and Morton 1987) concluded that weighted COVERT is 

often much better than simple rules such as EDD (Earliest Due Date), FCFS (First 

Come-First Served) and WSPT (Weighted Shortest Processing Time), and the ATC rule 

outperforms COVERT consistently. They also considered that the weights criterion 

sums the economic performance of the rules, i.e. inventory holdings, rush shipping, 

customer badwill, among others. 

On one hand, this study shows that the ATC rule is robust since it ranks first in all load 

conditions, and, on the other hand, that the COVERT rule is reliable in congested shops 

and with tight due dates. 

(Ow and Morton 1989) introduced introduced two new rules (LIN-ET and EXP-ET) for 

a new search method called Filtered Beam Search and compared it with some already 

existing rules. 

Beam Search is a heuristic search method that, without backtracking, searches β 

candidate solution paths in parallel (the beamwidth), and saves only β paths at each 

stage. In the filtered method, the evaluation of the best at each stage is done with a 

heuristic that passes some number of nodes, up to αβ (α is the filterwidht), to another 

that selects up to β nodes from them. 

Adjacency is a necessary condition for an optimal schedule and is based on the 

assumption that a globally optimal schedule must also be locally optimal so that no 

improvement can be gained by a pairwise interchange of adjacent jobs. 

Accordingly to (Morton et al 1984), a locally optimal sequence is defined as one that 

cannot be improved by interchanging the positions of adjacent pairs of jobs. Local 

optimality is a necessary but not sufficient condition for global optimality. 

LIN-ET is a linear priority rule derived after (Morton et al 1984)’s rule; it estimates the 

priority of a job by taking into account its impact on the next   jobs. 
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In this study, they also considered EXP-ET, which is a combination of two other 

functions and substitutes an intermediate function of LIN-ET: one reflects a priority that 

focuses on the tardiness cost of a job as its slack becomes smaller; and other illustrates 

the situation when the slack is large and the early cost dominates. 

This paper examined both heuristics and search methods for the single machine 

early/tardy problem. Overall, EXP-ET showed a better performance than LIN-ET. The 

priority function EXP-ET appears to be quite accurate in that when used to schedule 

jobs using the dispatch method, relatively good schedules are obtained. 

(Parthasarathy and Rajendran 1998) proposed heuristics based on simulated annealing 

(SA) with the objective of minimizing weighted mean tardiness of jobs in flowshops 

and cells; their procedure involves two phases: the first one is the determination of a 

seed sequence and the second is the improvements of this seed sequence using a 

simulated annealing algorithm. The novelty in their algorithm is two new perturbation 

schemes: Random Insertion Perturbation Scheme (RIPS) and Curtailed Random 

Insertion Perturbation Scheme (CRIPS). 

This study, based on computational evaluation, shows that the proposed simulated 

annealing heuristics have a superior performance than the existing ones for problems of 

scheduling in flowshops and manufacturing cells. Also, the proposed  heuristics have 

good results when job with different relative weights for tardiness are considered. 

(Kanet and Li 2004) compared the performance of several rules in a weighted tardiness 

scheduling problem. They also developed a weighted version of the Modified Due Date 

(MDD), developed by Baker and Bertrand (1982), and modified some well-known rules 

for this problem. WMDD is a combination of WSPT and a weighted remaining 

allowance (WRA), i.e. it minimizes weighted tardiness when all jobs are tardy and gives 

preference to jobs with larger tardiness weight and less slack. 

This study proved WMDD and ATC (once again) to be statistically superior when 

compared with WCOVERT, WRA and WSPT, taking in account unrestricted, 

proportional and agreeable weights; another advantage of the WMDD rule is its 

simplicity over ATC and WCOVERT (which ranked third place). 
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(Hasija and Rajendran 2004) developed a simulated annealing algorithm to minimize 

the total tardiness in flowshops, considering a JIBIS (job-index-based-insertion-scheme) 

to improve the sequences, which consists in inserting each job in all the possible 

positions; this scheme always finds a solution that is better or equal than the seed 

sequence. 

In this study two perturbation schemes are proposed: JSB (job-shift-based) and PSS 

(probabilistic-step-swap). On the first scheme, a job in the seed sequence is chosen 

based on a probabilistic function and is inserted either to the right or to the left of its 

original position; on the second one, a new sequence is generated first from the seed 

sequence by probabilistically swapping jobs next to each other and then by 

probabilistically swapping jobs farther away. 

At the finishing point, the ten best sequences are subjected to the JIBIS with the purpose 

of reaching the global minimum around those points of local minima. 

This proposed proposed heuristic when compared with the Armentano and Ronconi 

(1999)’s tabu search and the Parthasarthy and Rajendran (1998)’s simulated annealing 

heuristic showed superior performance. 

(Ruiz and Stützle 2008) considered the minimization of the makespan and the 

minimization of the total weighted tardiness and presented two Iterated Greedy 

algorithms for flowshop problems. One is called IG_RS and it interacts over a greedy 

construction heuristic (NEH); this procedure has a destruction phase in which some jobs 

are removed from the current sequence, and it has also a subsequent construction phase 

in which the heuristic is applied to reconstruct the sequence, reinserting the jobs that 

were removed. The other one also incorporates an extension phase that applies local 

search and is called IG_RS(LS). The results showed that these two algorithms have a 

very good performance and were simple to apply in real-world environments. 

A WMSPT (Weighted Minimum Slack Shortest Processing Time) rule was proposed by 

(Osman et al 2009); it is a parameter-free heuristic that combines WSPT and WMS 

(Weighted Minimum Slack) rules. This dispatching rule schedules jobs one at a time 

taking into account a priority ranking index calculated for the remaining unscheduled 

jobs. 
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The authors showed that WMSPT is a very competitive rule proving to be the most 

effective and efficient procedure among those that were tested.  Furthermore, this rule 

captures the best characteristics of WMS and WSPT and is very easy to implement, 

since it does not have any parameter to estimate. 

The most recent paper found, (M'Hallah 2014), takes into account the minimization of 

earliness and tardiness for a permutation flowshop that uses a Variable Neighbourhood 

Search and a Variable Neighbourhood Descent to find a good sequence of jobs. 

The Variable Neighbourhood Search moves from its current local sequence when it 

discovers a better solution or when it stagnates; this algorithm thoroughly changes the 

neighbourhood it is exploring to search for a near-global minimum or to escape from 

local minima. It consists of two loops: the inner loop returns a local optimal at each 

iteration; the outer loop is a multiple restart of the inner loop. 

The Variable Neighbourhood Descent searches a neighbourhood to find a local 

optimum and every time it does not find a better solution it enlarge the neighbourhood 

until it does not find a better local optimum. 

Both procedures prove to be efficient and effective. 
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Chapter 3 – Heuristic Procedures 

 

This section presents all the heuristic procedures considered in the current study. First, 

there is a description of the dispatching rules and then three improvement methods will 

also be described: multiple sequence heuristics, NEH and, finally, local search 

 

3.1 Dispatching rules 

A dispatching rule is a rule that prioritizes all the jobs that are waiting for processing on 

a machine. The prioritization scheme may take into account the job’s attributes and the 

machine’s attributes, as well as the current time. Whenever a machine has been freed, a 

dispatching rule inspects the waiting jobs and selects the job with the highest priority. 

The heuristics were chosen according to the existent literature, which considers those 

dispatching rules as the best performing procedures for the linear problem, as well as 

modified versions of these procedures, suitably adapted to the quadratic tardiness 

objective. All these heuristics are forward scheduling procedures, that is, the selected 

job at a given iteration is added to the end of the current partial sequence. 

The priority indexes of the heuristics are given in Table 1. 

The earliest due date (EDD) rule is one of the earliest sequencing rules, and is 

commonly used for scheduling problems with due dates; it schedules the jobs in non-

decreasing order of their due dates   . Equivalently, the EDD rule select, at each 

iteration, the job with the largest value of the priority index            . 

The earliest weighted due date (EWDD) rule schedules the jobs in non-decreasing order 

of their weighted due dates      . Identically, the EWDD rule selects, at each iteration, 

the job with the largest value of the priority index               . 

In the modified due date (MDD) heuristic, at each iteration we select the job with the 

minimum value of the modified due date                               
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               . This rule selects, at each iteration, the job with the largest value of 

the priority index        :          

 

      
          

 

     
         

 . 

In the weighted weighted modified due date (WMDD) heuristic, at each iteration we 

select the job with the minimum value of the weighted modified due date 

                                                      . Equivalently, 

the WMDD rule selects, at each iteration, the job with the largest value of the priority 

index         : 

          

  

      
          

  

     
         

 . 

The weighted shortest processing time (WSPT) rule schedules the jobs in non-

increasing order of the ratio         . 

The minimum slack (SLK) rule chooses, at each iteration, the job with the minimum 

slack               , and the minimum slack per required time (SLK/P) selects, at 

each iteration, the job with the minimum value of the ratio between the slack and the 

total required time, that is, the job with the minimum                      . 

The weighted minimum slack / shortest processing time (WSLK_SPT) rule selects, at 

each iteration, the job with the minimum value of the weighted slack or weighted 

processing time, as appropriate, that is, it selects the job with the minimum ratio 

                   . Equivalently, the WSLK_SPT rule selects, at each iteration, the 

job with the largest value of the priority index             : 

              

  

      
              

  

      
         

 . 
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The apparent tardiness cost (ATC) dispatching rule chooses, at each iteration, the job 

with the largest value of the priority index        : 

         

  

      
          

  

      
      

     

      
          

 . 

The AR dispatching rule provides the best results for the weighted objective; it chooses, 

at each iteration, the job with the largest value of the priority index       : 

        

  

      
          

  

      
 

      

            
         

 . 

The parameter   provides the ATC and the AR heuristics with a look ahead capability 

and it is related with the number of competing critical jobs, that is, it takes into account 

the number of jobs which will become tardy in the next few iterations. 

The previous heuristics are suited for the linear problem. However, several of these 

procedures can be modified, in order to adapt them to a quadratic setting, as it follows. 

The quadratic weighted shortest processing time (QWSPT) rule schedules the jobs in 

non-increasing order of                          . The QWSPT is equivalent, in a 

quadratic setting, to the WSPT, which means that the quadratic heuristics, normally, 

substitute the WSPT for the QWSPT in their priority indexes. 

In the  quadratic weighted modified due date (QWMDD) heuristic, at each iteration we 

select the job with the largest value of the priority index          : 

           

  

      
                         

  

     
               

 . 
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The quadratic quadratic weighted minimum slack / shortest processing time 

(QWSLK_SPT) rule selects, at each iteration, the job with the of the priority index 

             : 

               

  

      
                             

  

      
               

 . 

The quadratic apparent tardiness cost (QATC) dispatching rule chooses, at each 

iteration, the job with the largest value of the priority index         : 

          

  

      
                         

  

      
            

     

      
          

 . 

The QAR dispatching rule chooses, at each iteration, the job with the largest value of 

the priority index        : 

         

  

      
                         

  

      
       

      

            
         

 . 

The   parameter, as previously mentioned, represents the number of critical jobs, that 

is, jobs that are in danger of becoming tardy. In this work, a job is considered critical if 

its slack is positive, but less or equal than                 
        , where   is a 

parameter specifically chosen by the user. If, at any iteration, no job is critical according 

to this definition,   is then set equal to 0.5, since this value proved to provide good 

results in previous studies. 
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3.2 Improvement Methods 

Based on the computational results presented on Chapter 4, two heuristics were chosen 

to be improved: QATC and QWMDD. As previously mentioned, the improvement 

methods applied on both these dispatching rules were multiple sequence heuristics, 

NEH and local search. 

Instead of finding the best sequence regarding all   jobs in all   machines, the multiple 

sequence heuristics generates   sequences, one for each machine, and selects the best 

of them. The sequence generated during the iteration related to machine   uses data that 

is specific to that machine. 

The earliest apportioned due date (EADD) heuristic (Hasija and Rajendran 2004) 

obtains a sequence for each machine   by scheduling the jobs in non-decreasing order of 

their apportioned due dates    . The best of those   sequences is then selected. 

It calculates a due date for each job on each machine. Let     be the apportioned due 

date of job   on machine  . The due dates     are calculated as: 

                
 
      

and  

                       
 
              . 

The due date of job   on machine   is then obtained by allocating the original due date 

according to the accumulated sum of the processing times on the various machines. 

That is,     is calculated by multiplying    by the ratio between the sum of the 

processing times of job   up to and including machine   and the sum of the processing 

times of job   on all machines. Thus, on the final machine the apportioned due date will 

be equal to the original due date, that is       . 

The changes required in order to adapt the priority indexes of QATC and QWMDD to a 

multiple sequence setting are described in the next paragraphs. 
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Let        be the completion time of job    , on machine  , if   is scheduled at the end 

of sequence  . Also, let                   be the slack of job    , on machine  , if 

  is scheduled at the end of sequence  . Therefore, the slack of a certain job on a given 

machine is obtained by using the corresponding apportioned due date and completion 

time. In the multiple sequence versions, the general slack       is then replaced, in the 

priority index, by the machine–dependent slack       . 

Let      
         be a lower bound on the completion time of the last job on machine   

(that is, a lower bound on the makespan of machine  ), given the current schedule  . 

The machine makespan lower bound      
         is calculated as previously described 

for the final machine lower bound     
     , with the difference that, naturally, only the 

processing times on the machines up to and including machine   are considered. 

Therefore, the lower bound is calculated as if only the first   machines existed. The 

slack threshold parameter in the multiple sequence procedures is calculated as before, 

with the difference that the machine lower bound      
         replaces the final 

machine lower bound     
     , that is                 

           . 

Let                 be the total time (total processing time plus any eventual forced 

idle time) between the start of job     and its finish on machine  , if   is scheduled at 

the end of sequence  . In this version of the multiple sequence heuristics (QATC_M 

and QWMDD_M), the total time between the start and finish of a job       is then 

replaced, in the priority index, by the total time up to and including the current machine 

      . 

To summarize, the procedures QATC_M and QWMDD_M choose, at each iteration 

being performed while generating the sequence for machine  , the job with the largest 

value of the priority index             and             , respectively. These 

priority indexes are equal to 
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and 

              

  

       
                           

  

      
               

 , 

 

We remark that this version will return a sequence that is at least as good as the one 

generated by the corresponding single sequence heuristic. This is due to the fact that the 

solution obtained for the last machine is the same as the one generated by the single 

sequence procedure. Indeed, and for the last machine  , we have             , 

     
              

      and             . 

The second improvement method applied was the well-known NEH procedure 

developed in (Nawaz, Enscore Jr et al. 1983); this method is an insertion procedure 

which requires an initial sequence of jobs (in this case, the solution provided by the 

initial heuristic improved by multiple sequence method) to create another sequence, 

hopefully better than the original one. 

During the insertion phase, the jobs are considered in the order in which they appear in 

the initial sequence or list. At each step, the currently considered job is tentatively 

inserted in each possible position of the currently partial sequence. The job is then 

inserted in the position which provides the best objective function value. 

In our implementation, the sequence resulting from the NEH procedure is kept if it is 

not worse than the initial sequence. Otherwise, the (better) initial sequence is retained. 

Since it can happen that some jobs finish early, and the sequences representing this 

cases have a cost equal to zero, it was important to choose a tie-breaking method. 

(Fernandez-Viagas and Framinan 2015) presented several tie-breaking methods for an 

unweighted tardiness setting which can also be applied in an weighted quadratic 

tardiness scenario. The procedure chosen for this study is called Total Idle Time (IT1) 

since it was the one with the better performance, improving the NEH method in more 

than 25% while requiring similar computational time. This tie-breaking method is 
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extensively presented in (Fernandez-Viagas and Framinan 2015), but it can be briefly 

explain as follows: when there are two, or more, equal objective function values, it 

calculates the total idle time as a sum of the idle time for each machine   and chooses 

the minimum IT1; in this method the definition of idle time includes front delays (the 

idle time before the first job starts on a machine) and excludes back delays (the time 

between the finish time on a machine and the overall finish time). 

Finally, the last improvement method applied was a local search procedure that included 

both interchange and the insertion neighborhoods, with a first-improve strategy. First, 

all possible interchanges between pairs of jobs are first considered; an improving 

exchange is performed whenever it is detected, and this is repeated until no improving 

interchange is found. Then, all possible insertions (removing one job from its current 

position and inserting it in another position) are considered; again, an improving move 

is immediately performed, and this is repeated until no insertion can lead to a better 

objective function value. The process of performing interchanges followed by insertions 

is repeated until no further improvement is made. 
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Chapter 4 – Computational Results 

 

In this section, the computational experiments and results are presented. First, the set of 

test problems used to obtain the computational results is described and the preliminary 

tests that were performed in order to determine adequate values for the parameters 

required by some of the heuristics are presented. A comparison of the dispatching rules 

is then performed. Finally, the results of the best heuristics are compared with the 

results after the improvement methods are applied. 

 

4.1 Experimental design and parameter adjustment tests 

The computational tests were performed on a set of randomly generated problems, with 

various sizes in terms of both the number of jobs and the number of machines, and for 

multiple combinations of due date tightness and range. More specifically, the problems 

were generated as follows. 

In what regards the number of jobs, the following sizes were considered: 8, 10, 12, 15, 

17, 20, 25, 30, 40, 50, 75, 100, 200, 300, 400 and 500. For the machines, we considered 

problems with 5, 10 and 20 machines. For each job  , the processing times on the 

various machines     were generated from a uniform distribution over the integers 1 to 

100, while an integer weight    was obtained from a uniform distribution [1, 10]. 

Finally, for each job  , an integer due date    was generated from the uniform 

distribution                          , where    is an estimate of the 

makespan calculated using the lower bound proposed in (Taillard 1993),   is the 

tardiness factor and   is the range of due dates. Both the tardiness factor and the range 

of due dates parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0. 

For each combination of  ,  ,   and  , 50 instances were randomly generated. 

Therefore, a total of 1250 instances were generated for each problem size, where the 

size is given by both the number of jobs and the number of machines. 
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The procedures were coded in C++, compiled for 64–bit Windows, and executed on a 

personal computer with a Windows 7 64–bit operating system, an Intel Core i7 4770 

3.4G processor and 16GB RAM. 

The ATC, AR, QATC and QAR dispatching rules require a value for the parameter  , 

     . Extensive preliminary tests were performed in order to determine an 

adequate value of   for the single sequence heuristics. These tests were performed on a 

separate problem set that included instances with 15, 25, 50, 75, 100, 200, 300, 400 and 

500 jobs, and contained 5 instances for each combination of  ,  ,   and  . 

The values {0.00, 0.05, 0.10, 0.15, 0.20, …, 0.90, 0.95, 1.00} were considered for the 

parameter  . The ATC, AR, QATC and QAR dispatching rules were then applied to the 

instances on the smaller test set, and the objective function value was calculated for 

each considered value. These results were then analysed, and we selected a value that 

provided good performance across all instance types. The value of   was then set at 0.0, 

since it improved the objective function values between 17.88% and 27.27% among the 

other values analyzed. The same value was used for the improvement methods. 
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4.2 Comparisons of the heuristic procedures 

A comparison of the dispatching rules that specifically consider the quadratic objective 

with their linear tardiness counterparts is provided in Table 2. For each pair of quadratic 

heuristic and its linear counterpart, this table gives the mean relative improvement 

versus the worst result (%ivw) of the quadratic (%ivw_q) and the linear (%ivw_l) 

procedures, as well as the number of times each quadratic rule provides a solution that 

is better (btr), equal (eql) or worse (wrs) than the one provided by the corresponding 

linear procedure. The global line provides the mean for the variables %ivw_q and 

%ivw_l and the sum for btr, eql and wrs of the appropriate performance measure over 

all the instances for all problem sizes. 

The particular nature of the squared weighted tardiness problem motivated the use of 

the relative improvement versus the worst result performance measure, instead of the 

more usual relative improvement a procedure provides over another heuristic. Indeed, 

and particularly for instances with a low tardiness factor T and a high range of due dates 

R, the objective function value given by the heuristic procedures can be equal to 0, 

meaning that all jobs are completed on time. This is troublesome when the relative 

improvement is used, since division by 0 is undefined, and motivated the use of a 

different performance measure. 

More specifically, and for a given instance, the relative improvement versus the worst 

result of heuristic   , when compared with heuristics   ,   , … ,   , is calculated as 

follows. Let         and          be the best and worst objective function values 

obtained by all the   heuristic procedures, respectively. When                  , the 

relative improvement versus the worst result of heuristic    is set at 0. Otherwise, the 

relative improvement versus the worst result is calculated as 

                             , where       is the objective function value of 

heuristic   . This performance indicator thereby measures the relative improvement a 

given heuristic provides over the worst result obtained among all procedures being 

compared, and circumvents the division by 0 issue. 

Since the purpose of Table 2 is to analyse the performance of each quadratic procedure 

versus the corresponding linear heuristic, the %ivw_q and %ivw_l values given in this 
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table were calculated separately for each pair of quadratic heuristic and its linear 

counterpart. More particularly, and using the QAR and AR procedures as an example, 

these values were calculated as follows. The %ivw_q is the relative improvement QAR 

provides over the worst result among the QAR and AR heuristics. Similarly, %ivw_l is 

the relative improvement given by AR versus the worst result between QAR and AR. 

The same reasoning applies to the other pairs of quadratic heuristic and its linear 

counterpart. 

The results presented in Table 2 show that the heuristics that have been suitably adapted 

to the quadratic objective outperform their linear tardiness counterparts, which is to be 

expected. This table shows that the difference in performance is quite significant; 

indeed, the quadratic dispatching rules not only provide a much larger relative 

improvement versus the worst result, but they also obtain better (or equal) results for 

most, or in some cases actually all, of the test instances. Note that, although this table 

just illustrates some instances, the global line considers the values of all instances in 

each situation; the same happens with the other tables. 

Therefore, it is most certainly recommended to use heuristics that have been designed in 

order to take into account the quadratic tardiness objective, instead of simply relying on 

procedures originally developed for the linear problem. Thus, in the remainder of this 

section, the linear rules analyzed in Table 2 will no longer be considered. 

Similarly, Table 3 provides a comparison between the quadratic dispatching rules and 

the rules with no quadratic version available, using, once again, the mean relative 

improvement versus the worst result (%ivw). The avg line provides the mean of the 

%ivw of the appropriate performance measure over all the instances for all problem 

sizes. 

On average, Table 3 shows that the best performing heuristic is QATC, which provides 

better results for all number of machines consistently over all the other rules, followed 

by the QAR and the QWMDD heuristics. Since the results are very close between these 

three rules, this study focuses on two of them: QATC, for obvious reasons, and 

QWMDD, due to its simplicity and efficiency when compared to both QATC and QAR. 
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In order to identify how many times the QWMDD and the QATC heuristics provide a 

solution that is better (btr), equal (eql) or worst (wrs) than the one provided by other 

heuristic, Table 4 and Table 5 are presented, respectively. The sum line provides the 

total of cases in which each heuristic is better, equal or worse than the rule in analysis, 

over all the instances for all problem sizes. 

These two tables illustrate, in accordance with Table 3, that both rules outperform the 

others, and even though the QATC performs better than the QWMDD in more 

instances, they both perform equally for more than 50% of the tested instances. 

All the heuristics proved to be efficient and can be applied in an extensive dataset; even 

though the QATC, QAR, QWMDD and QWPT_WSLK_SPT rules require more 

computational effort, they still allow results in less than 0.05 seconds for large 

instances. 
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4.3 Comparison with improvement methods 

A comparison of the three improvement methods applied in the two best performing 

heuristics, the QATC and the QWMDD rules, is provided in Table 6. For both 

dispatching rules, this table gives the number of times each improvement method results 

in a better (btr) solution than the original one, as well as the mean relative improvement 

(imp_%) and the percentage in which it contributed to the total improvement 

(%_tot_imp). The global line provides the sum for the variable btr and the mean for all 

the others. 

Due to time restrictions, it was only possible to run the improvement procedures on 

instances with up to      . 

All three improvement methods gave good results, improving the inicial heuristic in 

more than 40%, being the NEH the one that contributed the most for the total 

improvement in both rules. The mean relative improvement of the multiple sequence 

heuristic decreases when the number of jobs increase, and the opposite happens with 

NEH and LS. 

The effect of the T and R parameters on the performance of these improvement methods 

is illustrated in Table 7 and Table 8 for the QATC and the QWMDD rules, respectively, 

for       and     . 

Even though, in both cases, the multiple sequence heuristic has an inconsistent 

performance, the NEH and the local search procedures have an excellent performance 

when      , and a near optimal result when       which decreases when the range 

is high, especially for the QATC rule. The multiple sequence heuristic is affected by the 

range: its performance is better when the range is low and decreases as the range 

increases; this effect is common to both rules. 

In order to compare both rules after the three methods were applied, Table 9 is 

presented. Once again, the %ivw was calculated for each heuristic, as well as the sum of 

instances where one rule was better, equal or worse than the other. 

Overall, Table 9 shows that the dispatching rule with the best improvement rates is the 

QATC_M_NEH_LS, but they both have similar results and, quite often, the same 
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improvement. Both heuristics perform better with a high number of jobs, in particular 

the QATC_M_NEH_LS when     or     . 

The effect of the T and R parameters on the performance of the two improved heuristics 

is illustrated in Table 10, for       and     . Table 10 shows that when       

these heuristics have a quite similar performance, in accordance with Table 7; the same 

happens for high levels of the range parameter. Thus, the two improved heuristics 

basically provide the same level of performance, in what regards solution quality. 

The runtimes presented in Table 11 prove that the QATC_M_NEH_LS and the 

QWMDD_M_NEH_LS require more computational effort than the first heuristics 

mentioned in this study, especially for large instances, but the time required is still 

reasonable. In particular, the multiple sequence and NEH improvements require very 

little additional computational time; indeed, it is the local search phase that is 

responsible for most of the extra runtime. Therefore, applying only the first two 

improvements is certainly a possibility for quite large instances, on which the local 

search procedure may require impractical times. 

Finally, the runtimes are similar for both the QATC_M_NEH_LS and the 

QWMDD_M_NEH_LS procedures, being the second heuristic faster when only the first 

two improvement methods are applied. Given that they also provided similar results in 

terms of solution quality, either of these heuristics can be selected, since they are quite 

close in terms of both effectiveness and efficiency. 
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Chapter 5 - Conclusions 

 

This investigation focused on heuristics for a permutation flowshop scheduling problem 

with weighted quadratic tardiness, due its relevance in many industries when trying to 

prevent customers’ dissatisfaction as well as financial inconvenients. 

On a set of randomly generated problems, with various sizes of number of jobs and 

machines, as well as multiple combinations of due date tightness and range, we 

compared some of the most well-known performing heuristics in the literature and 

applied improvement methods in two of the best performing rules among the ones that 

were analysed. 

For each pair of quadratic heuristic and its linear counterpart, the calculation of the 

mean relative improvement versus the worst result showed that the quadratic versions 

consistently outperform their linear counterpart; indeed, the heuristics suitably adapted 

to the quadratic objective provide better results in most of the test instances. Therefore, 

it is recommended to use heuristics that have been designed to take into account the 

quadratic tardiness objective. 

A comparison between the quadratic dispatching rules and the rules with no quadratic 

version available showed that the QATC, QAR and QWMDD are the best performing 

rules when compared with more simple heuristics; these three rules are around 50% 

better than the others and frequently have equal results between them. 

The improvement methods applied, namely, the multiple sequence heuristic, the NEH 

and the local search procedures, improved the QATC and the QWMDD by more than 

40%, with NEH contributing the most and the local search the least, despite its larger 

computational effort. However, and naturally, the local search could possibly have 

provided a larger improvement if either or both of the two previous improvement 

methods had not been applied. Both improved heuristics, QATC_M_NEH_LS and 

QWMDD_M_NEH_LS, have similar results regarding solution quality. Also, their 

runtimes are similar, so it is basically indifferent to use one rule or the other, since both 

are effective and efficient. 
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Regarding future research, one possibility consists in the application of metaheuristics 

to the considered problem. Indeed, metaheuristics usually outperform dispatching rules, 

and can usually be applied, within adequate runtimes, to medium size instances. The 

dispatching rules and improvement procedures given in this work can provide an initial 

solution, as well as improvements steps, to these metaheuristics. Another alternative is 

to add to the considered problem some features that are present in certain real life 

situations, such as different release dates or setups. Finally, the quadratic tardiness 

objective function could be applied to other production settings, such as open shops or 

job shops. 
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Table 1 – Dispatching rules 

Heuristic Priority Index 
EDD     

  

EWDD       

  

MDD  
                 

                 
  

  

WMDD  
                  

                  
  

  

WSPT          

  

SLK          

  

SLKP             

  

WSLK_SPT  
                      

                 
  

  

ATC  
                  

                                      
  

  

AR  
                  

                                         
  

  

QWSPT                           

  

QWMDD  
                                   

                        
  

  

QWSLK_SPT  
                                       

                         
  

  

QATC  
                                   

                                            

  

  

QAR  
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Table 2 – Comparison between quadratic heuristics and their linear counterpart 

    QAR vs AR QATC vs ATC QWMDD vs WMDD QWSLK_SPT vs WSLK_SPT QWSPT vs WSPT 

m n %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs 

5 10 11.73 3.99 770 45 435 5.04 91.78 71 0 1179 13.00 3.82 785 38 427 14.04 3.49 805 46 399 13.99 3.50 801 47 402 

 
25 20.14 1.57 1000 0 250 99.84 0.00 1248 2 0 21.69 1.38 1017 0 233 23.15 1.45 1034 0 216 23.78 1.35 1035 0 215 

 
50 25.85 0.70 1087 0 163 99.60 0.00 1245 5 0 28.38 0.52 1123 0 127 29.35 0.61 1128 0 122 30.55 0.55 1130 0 120 

 
75 29.67 0.36 1154 0 96 97.76 0.00 1222 28 0 32.05 0.30 1173 0 77 33.05 0.29 1166 0 84 34.68 0.28 1175 0 75 

 
100 31.53 0.29 1154 0 96 96.64 0.00 1208 42 0 34.20 0.20 1179 0 71 34.95 0.27 1183 0 67 36.89 0.26 1178 0 72 

 
300 33.71 0.20 1144 28 78 91.76 0.00 1147 103 0 39.78 0.11 1213 0 37 40.90 0.07 1222 0 28 44.34 0.04 1225 0 25 

  500 31.33 0.20 1099 73 78 89.12 0.00 1114 136 0 40.68 0.12 1197 2 51 42.05 0.05 1222 2 26 46.51 0.01 1241 0 9 

10 10 8.53 3.78 718 35 497 25.27 72.67 327 0 923 9.10 3.75 726 32 492 10.03 3.51 732 37 481 10.09 3.54 730 35 485 

 
25 14.52 1.41 958 0 292 100.00 0.00 1250 0 0 15.82 1.43 964 0 286 17.20 1.45 976 0 274 17.37 1.39 986 0 264 

 
50 20.40 0.67 1086 0 164 100.00 0.00 1250 0 0 21.88 0.61 1100 0 150 23.42 0.64 1101 0 149 23.60 0.60 1095 0 155 

 
75 23.05 0.46 1125 0 125 100.00 0.00 1250 0 0 25.28 0.38 1142 0 108 26.62 0.37 1143 0 107 27.15 0.37 1143 0 107 

 
100 26.20 0.34 1137 0 113 99.84 0.00 1248 2 0 28.19 0.27 1155 0 95 29.35 0.29 1159 0 91 30.35 0.31 1152 0 98 

 
300 33.58 0.10 1199 0 51 95.76 0.00 1197 53 0 36.28 0.05 1222 0 28 37.02 0.04 1226 0 24 39.42 0.06 1216 0 34 

  500 35.94 0.07 1206 2 42 93.20 0.00 1165 85 0 39.30 0.03 1232 0 18 40.11 0.00 1241 0 9 42.79 0.01 1241 0 9 

20 10 5.92 3.12 657 42 551 100.00 0.00 1250 0 0 6.17 3.12 659 41 550 6.57 3.10 673 37 540 6.57 3.10 673 37 540 

 
25 9.94 1.54 892 0 358 100.00 0.00 1250 0 0 10.62 1.55 910 0 340 11.34 1.57 913 0 337 11.41 1.57 909 0 341 

 
50 14.60 0.77 1034 0 216 100.00 0.00 1250 0 0 15.53 0.77 1029 0 221 16.97 0.77 1029 0 221 17.01 0.77 1025 0 225 

 
75 17.60 0.39 1106 0 144 100.00 0.00 1250 0 0 19.03 0.35 1127 0 123 20.23 0.39 1113 0 137 20.31 0.42 1109 0 141 

 
100 19.93 0.38 1119 0 131 100.00 0.00 1250 0 0 21.74 0.33 1128 0 122 22.84 0.36 1129 0 121 22.96 0.39 1119 0 131 

 
300 28.46 0.09 1189 0 61 99.92 0.00 1249 1 0 31.01 0.04 1214 0 36 31.96 0.04 1218 0 32 33.26 0.03 1219 0 31 

  500 32.42 0.03 1225 0 25 98.56 0.00 1232 18 0 34.84 0.02 1226 0 24 35.78 0.02 1233 0 17 37.69 0.02 1232 0 18 

global 19.31 1.44 15727 230 4043 89.62 7.29 18039 265 1696 21.28 1.39 16026 158 3816 22.31 1.33 16181 157 3662 23.15 1.32 16176 156 3668 
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Table 3 – Comparison between quadratic heuristics and heuristics with no quadratic versions 

    %ivw 

m n EDD EWDD MDD SLK SLKP QAR QATC QWMDD QWSLK_SPT QWSPT 

5 10 25.79 34.26 23.92 16.57 22.56 44.41 44.80 43.09 40.72 40.41 

 
25 29.76 32.38 19.82 24.71 30.30 50.42 51.53 48.51 43.06 40.55 

 
50 34.98 30.85 20.07 32.57 36.55 56.58 58.54 54.64 49.34 43.23 

 
75 38.71 30.84 21.49 37.36 40.79 60.50 62.32 59.04 54.43 46.72 

 
100 40.83 31.84 21.69 39.65 42.29 63.13 64.52 61.91 57.86 49.57 

 
300 49.28 33.95 24.93 48.81 50.44 69.80 70.46 69.87 68.08 58.78 

  500 51.71 34.83 25.63 51.40 52.57 71.54 72.18 71.80 70.59 61.48 

10 10 19.26 30.27 18.34 11.31 16.01 36.53 36.61 36.12 35.33 35.25 

 
25 23.23 33.48 11.72 19.67 22.78 44.55 44.95 43.33 40.36 39.50 

 
50 30.33 34.42 11.68 28.00 30.04 51.10 52.41 49.46 45.05 43.62 

 
75 34.73 34.60 13.15 33.43 35.30 54.68 56.24 52.87 47.60 45.43 

 
100 38.39 35.66 14.06 37.14 38.76 58.60 59.78 56.58 51.30 48.42 

 
300 48.43 36.81 19.86 48.04 48.93 68.06 68.99 66.77 62.95 57.40 

  500 51.86 37.96 22.14 51.61 52.37 71.59 71.98 70.68 68.01 61.80 

20 10 13.83 24.66 14.31 8.20 11.63 29.46 29.47 29.26 28.95 28.95 

 
25 17.55 30.66 6.44 14.26 16.73 38.05 38.15 37.71 36.47 36.46 

 
50 24.56 35.30 3.87 22.83 24.01 45.81 46.19 44.82 42.52 42.38 

 
75 29.44 36.43 6.22 28.12 29.14 49.84 50.53 48.50 44.89 44.51 

 
100 33.33 37.95 7.19 32.33 33.37 53.16 53.94 51.76 47.75 46.82 

 
300 44.61 39.53 12.72 44.10 44.73 63.48 64.88 61.73 57.09 54.47 

  500 48.96 39.45 15.71 48.63 49.15 67.75 68.71 65.99 61.84 57.97 

avg 30.74 33.14 15.93 27.27 30.23 50.46 51.18 49.43 46.39 43.85 
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Table 4 – Comparison between the QWMDD rule and all the other rules 

  
QWMDD vs 

  
 EDD EWDD MDD SLK SLKP QATC QAR QWSLK_SPT QWSPT 

m n btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs 

5 10 998 2 250 824 148 278 978 0 272 1087 0 163 1056 0 194 125 878 247 81 959 210 285 790 175 312 736 202 

 
25 1021 0 229 1055 2 193 1068 0 182 1055 0 195 1035 0 215 211 646 393 208 654 388 530 561 159 539 527 184 

 
50 1014 0 236 1142 0 108 1036 0 214 1024 0 226 1017 0 233 202 555 493 213 566 471 567 505 178 629 483 138 

 
75 996 0 254 1179 0 71 1022 0 228 990 0 260 989 0 261 206 533 511 236 545 469 594 503 153 677 479 94 

 
100 991 0 259 1193 0 57 1018 0 232 996 0 254 993 0 257 210 536 504 225 538 487 588 517 145 669 489 92 

 
300 979 0 271 1229 0 21 997 0 253 980 0 270 978 0 272 261 534 455 273 534 443 562 522 166 729 483 38 

  500 973 1 276 1231 0 19 994 1 255 975 1 274 972 1 277 252 540 458 289 540 421 547 527 176 733 470 47 

10 10 1063 0 187 746 155 349 1008 0 242 1132 0 118 1092 0 158 88 1040 122 57 1095 98 174 964 112 180 959 111 

 
25 1104 0 146 975 2 273 1149 0 101 1118 0 132 1103 0 147 162 774 314 161 794 295 386 688 176 392 671 187 

 
50 1078 0 172 1087 0 163 1121 0 129 1083 0 167 1085 0 165 179 659 412 197 665 388 477 610 163 517 585 148 

 
75 1028 0 222 1144 0 106 1088 0 162 1034 0 216 1035 0 215 177 610 463 207 615 428 541 547 162 568 537 145 

 
100 1021 0 229 1160 0 90 1082 0 168 1024 0 226 1029 0 221 231 559 460 224 577 449 557 525 168 589 522 139 

 
300 983 0 267 1229 0 21 1030 0 220 982 0 268 982 0 268 195 548 507 201 548 501 582 542 126 654 533 63 

  500 983 0 267 1236 0 14 1020 0 230 984 0 266 986 0 264 203 547 500 177 547 526 592 541 117 687 535 28 

20 10 1090 0 160 706 168 376 996 0 254 1162 0 88 1112 0 138 27 1177 46 24 1187 39 62 1153 35 62 1153 35 

 
25 1176 0 74 938 3 309 1219 0 31 1189 0 61 1182 0 68 118 951 181 108 960 182 266 853 131 266 851 133 

 
50 1135 0 115 1039 0 211 1208 0 42 1146 0 104 1140 0 110 160 769 321 168 779 303 397 703 150 389 699 162 

 
75 1104 0 146 1083 0 167 1168 0 82 1106 0 144 1108 0 142 191 680 379 193 687 370 457 646 147 464 642 144 

 
100 1097 0 153 1111 0 139 1158 0 92 1105 0 145 1099 0 151 171 651 428 183 653 414 485 636 129 510 628 112 

 
300 1015 0 235 1207 0 43 1094 0 156 1018 0 232 1016 0 234 168 548 534 216 548 486 570 546 134 613 546 91 

  500 984 0 266 1227 0 23 1076 0 174 988 0 262 990 0 260 169 550 531 167 550 533 606 550 94 650 550 50 

sum 50425 6 9569 49022 1867 9111 51597 2 8401 51740 3 8257 51002 4 8994 7605 36063 16332 7609 36919 15472 19923 33434 6643 21544 32595 5861 
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Table 5 – Comparison between the QATC rule and all the other rules 

  
QATC vs 

  
 EDD EWDD MDD SLK SLKP QAR QWMDD QWSLK_SPT QWSPT 

m n btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs 

5 10 1027 2 221 883 60 307 999 0 251 1110 0 140 1083 0 167 157 978 115 247 878 125 345 716 189 361 686 203 

 
25 1053 2 195 1051 0 199 1095 2 153 1089 2 159 1081 2 167 335 700 215 393 646 211 534 556 160 552 526 172 

 
50 1060 5 185 1124 0 126 1080 5 165 1070 5 175 1063 5 182 423 590 237 493 555 202 580 505 165 645 483 122 

 
75 1034 28 188 1179 0 71 1062 28 160 1037 28 185 1030 28 192 457 555 238 511 533 206 605 503 142 684 479 87 

 
100 1037 42 171 1178 0 72 1061 42 147 1041 42 167 1037 42 171 462 548 240 504 536 210 584 516 150 657 489 104 

 
300 1009 103 138 1201 0 49 1026 103 121 1009 103 138 1006 103 141 449 565 236 455 534 261 514 522 214 710 483 57 

  500 1010 136 104 1205 0 45 1026 136 88 1009 136 105 999 136 115 409 613 228 458 540 252 499 527 224 710 470 70 

10 10 1072 0 178 785 95 370 1021 0 229 1144 0 106 1101 0 149 55 1139 56 122 1040 88 202 909 139 207 907 136 

 
25 1129 0 121 983 0 267 1170 0 80 1145 0 105 1131 0 119 226 869 155 314 774 162 414 676 160 405 663 182 

 
50 1104 0 146 1079 0 171 1143 0 107 1101 0 149 1107 0 143 349 700 201 412 659 179 481 609 160 520 584 146 

 
75 1067 0 183 1142 0 108 1112 0 138 1066 0 184 1073 0 177 389 642 219 463 610 177 563 546 141 579 537 134 

 
100 1055 2 193 1144 0 106 1105 2 143 1057 2 191 1050 2 198 396 602 252 460 559 231 560 525 165 589 522 139 

 
300 1021 53 176 1221 0 29 1059 53 138 1015 53 182 1017 53 180 469 549 232 507 548 195 571 542 137 658 533 59 

  500 1016 85 149 1226 0 24 1049 85 116 1023 85 142 1016 85 149 448 549 253 500 547 203 554 541 155 670 535 45 

20 10 1096 0 154 727 140 383 997 0 253 1166 0 84 1119 0 131 9 1237 4 46 1177 27 84 1117 49 84 1117 49 

 
25 1178 0 72 942 1 307 1227 0 23 1199 0 51 1190 0 60 104 1059 87 181 951 118 277 847 126 278 845 127 

 
50 1153 0 97 1045 0 205 1221 0 29 1164 0 86 1164 0 86 241 846 163 321 769 160 416 700 134 411 696 143 

 
75 1125 0 125 1082 0 168 1189 0 61 1123 0 127 1126 0 124 305 735 210 379 680 191 468 646 136 468 642 140 

 
100 1116 0 134 1119 0 131 1172 0 78 1118 0 132 1114 0 136 341 672 237 428 651 171 507 636 107 526 628 96 

 
300 1054 1 195 1208 0 42 1111 1 138 1059 1 190 1059 1 190 484 553 213 534 548 168 608 546 96 631 546 73 

  500 1036 18 196 1225 0 25 1098 18 134 1042 18 190 1038 18 194 473 550 227 531 550 169 610 550 90 657 550 43 

sum 51682 798 7520 49145 1170 9685 52582 794 6624 52964 797 6239 52254 797 6949 13175 39059 7766 16332 36063 7605 20441 32776 6783 22192 32066 5742 
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Table 6 – Comparison between each improvement method for both the QATC rule and the QWMDD rule 

  
QATC QWMDD 

    M NEH LS 
tot_imp_% 

M NEH LS 
tot_imp_% 

m n btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp 

5 10 1031 17.90 42.95 1153 20.89 44.33 913 8.61 12.48 38.46 1042 18.52 43.39 1154 21.77 44.17 914 8.91 12.21 39.18 

 
15 992 15.68 33.00 1226 29.02 53.35 1140 13.86 13.57 44.85 1020 16.42 33.64 1230 29.90 52.99 1149 15.09 13.37 45.69 

 
25 909 13.34 24.79 1248 37.73 60.97 1223 22.27 14.08 51.41 961 14.23 25.87 1249 38.43 60.21 1234 23.71 13.92 52.14 

 
30 882 12.23 22.42 1247 40.61 64.72 1209 21.73 12.70 53.17 954 13.52 23.51 1249 40.98 63.59 1231 24.19 12.90 53.73 

 
50 727 7.90 14.97 1244 44.32 72.09 1180 23.08 12.54 54.69 785 9.77 16.76 1250 44.57 70.20 1237 28.73 13.04 55.45 

 
100 535 3.79 7.92 1207 44.35 77.98 1143 21.23 10.74 51.65 595 5.09 9.20 1250 47.56 79.53 1217 28.46 11.26 55.40 

  300 209 0.62 1.87 1147 39.18 81.06 1095 16.46 8.83 43.30 227 1.23 2.47 1250 46.92 88.56 1160 22.42 8.96 51.32 

10 10 1076 14.42 44.29 1149 14.78 43.65 887 4.44 11.90 29.67 1107 14.70 44.96 1145 14.90 43.13 892 4.66 11.75 29.97 

 
15 1126 14.27 37.48 1215 21.32 48.72 1126 8.64 13.79 36.80 1151 14.84 38.15 1216 21.37 47.92 1128 9.15 13.93 37.19 

 
25 1086 13.13 28.46 1249 30.95 56.69 1239 16.54 14.85 45.82 1121 13.64 28.84 1249 31.15 56.10 1240 17.21 15.06 46.16 

 
30 1069 12.37 25.89 1248 34.42 59.68 1245 19.85 14.44 48.64 1101 12.75 26.20 1248 34.47 59.27 1246 20.51 14.53 48.79 

 
50 973 9.37 18.26 1250 40.91 67.49 1247 25.19 14.26 52.97 1035 10.25 19.06 1250 41.09 66.61 1250 26.07 14.33 53.34 

 
100 807 6.74 12.13 1248 46.15 74.41 1228 28.67 13.29 55.92 860 7.08 12.29 1250 46.24 74.01 1250 31.27 13.70 56.30 

  300 555 2.55 5.40 1197 44.32 79.64 1141 23.20 10.73 50.66 639 4.39 7.26 1250 48.16 81.43 1238 31.89 11.31 55.12 

20 10 1146 10.31 43.92 1158 10.65 45.44 852 2.47 10.56 21.53 1145 10.58 44.32 1159 10.63 45.17 851 2.48 10.43 21.73 

 
15 1172 11.21 39.40 1213 14.38 48.06 1103 4.58 12.54 27.03 1178 11.65 39.98 1210 14.46 47.68 1103 4.65 12.34 27.40 

 
25 1167 10.54 30.22 1249 21.95 55.34 1238 8.20 14.44 34.64 1185 10.71 30.39 1249 21.99 55.03 1240 8.69 14.57 34.92 

 
30 1176 10.12 27.40 1248 24.47 57.92 1242 10.00 14.68 37.13 1178 10.27 27.58 1248 24.74 57.86 1242 10.18 14.55 37.36 

 
50 1104 8.47 20.03 1250 32.57 64.47 1250 16.40 15.49 44.55 1138 9.09 20.72 1250 32.54 63.72 1250 17.09 15.56 44.82 

 
100 958 6.34 13.06 1250 40.57 71.93 1250 24.23 15.01 50.85 1029 6.76 13.41 1250 40.43 71.21 1250 24.84 15.38 51.11 

  300 761 3.42 6.83 1249 46.70 79.90 1220 27.86 13.19 54.33 849 3.97 7.39 1250 46.50 78.93 1250 31.01 13.67 54.63 

global 39571 10.18 25.67 51004 30.83 60.63 47218 15.58 12.95 42.94 41221 10.85 26.34 51380 31.64 60.57 47942 17.45 13.04 43.94 
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Table 7 – Comparison between the improvement methods for       and     , 

for the QATC rule 

    M NEH LS 
tot_imp_% 

T R btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp 

0.2 0.2 41 15.50 17.60 50 69.32 68.50 50 46.19 13.90 86.42 

 
0.4 10 2.42 2.43 50 93.74 91.85 50 93.87 5.72 99.61 

 
0.6 8 2.78 2.78 50 99.66 96.91 41 82.00 0.31 100.00 

 
0.8 0 0.00 0.00 40 80.00 80.00 0 0.00 0.00 80.00 

  1 0 0.00 0.00 7 14.00 14.00 0 0.00 0.00 14.00 

0.4 0.2 39 8.59 14.53 50 43.39 71.03 50 15.89 14.44 56.65 

 
0.4 25 3.98 5.66 50 56.57 81.38 50 20.94 12.96 67.01 

 
0.6 3 0.19 0.23 50 71.08 86.81 50 37.05 12.96 81.70 

 
0.8 1 0.02 0.02 50 88.22 89.83 50 86.27 10.15 98.16 

  1 0 0.00 0.00 50 96.40 96.41 50 99.90 3.59 99.99 

0.6 0.2 49 7.68 18.23 50 30.65 69.57 50 7.80 12.20 41.06 

 
0.4 32 3.94 8.33 50 36.95 79.57 50 8.90 12.10 44.84 

 
0.6 18 1.36 2.64 50 40.95 81.93 50 12.96 15.43 49.31 

 
0.8 4 0.46 0.84 50 40.77 80.06 50 16.24 19.10 50.62 

  1 1 0.04 0.08 50 38.96 81.76 50 14.09 18.16 47.55 

0.8 0.2 49 5.76 18.58 50 22.24 70.62 50 4.35 10.80 29.92 

 
0.4 41 2.66 8.65 50 24.68 79.48 50 4.86 11.87 30.26 

 
0.6 27 0.93 3.04 50 24.87 84.49 50 4.85 12.47 29.17 

 
0.8 23 1.02 3.29 50 24.46 82.84 50 5.39 13.87 29.26 

  1 13 0.31 1.05 50 22.36 84.09 50 5.01 14.86 26.47 

1 0.2 44 2.08 8.89 50 18.29 81.36 50 2.68 9.76 22.14 

 
0.4 40 1.80 7.63 50 18.90 82.81 50 2.66 9.56 22.48 

 
0.6 31 0.95 4.47 50 17.77 84.68 50 2.74 10.85 20.79 

 
0.8 27 0.66 3.17 50 17.44 86.20 50 2.56 10.63 20.09 

 
1 29 0.55 2.74 50 16.27 84.75 50 2.83 12.50 19.08 

global 555 2.55 5.40 1197 44.32 79.64 1141 23.20 10.73 50.66 
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Table 8 – Comparison between the improvement methods for       and     , 

for the QWMDD rule 

  

M NEH LS 
tot_imp_% 

T R btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp 

0.2 0.2 40 17.26 19.40 50 69.36 66.38 50 48.86 14.22 87.14 

 
0.4 19 4.46 4.47 50 91.73 87.91 50 97.04 7.62 99.76 

 
0.6 18 5.47 5.47 50 98.76 93.35 50 100.00 1.18 100.00 

 
0.8 21 11.89 11.89 50 99.72 87.85 49 98.00 0.26 100.00 

  1 34 23.07 23.07 50 99.92 76.87 39 78.00 0.06 100.00 

0.4 0.2 46 11.10 18.54 50 43.29 66.44 50 17.24 15.02 58.30 

 
0.4 27 5.02 7.03 50 55.67 77.69 50 24.90 15.28 68.27 

 
0.6 12 1.88 2.16 50 69.96 82.12 50 45.10 15.73 83.59 

 
0.8 1 0.01 0.01 50 86.20 87.62 50 89.61 12.37 98.34 

  1 1 0.03 0.03 50 94.10 94.08 50 99.95 5.89 100.00 

0.6 0.2 47 7.66 18.19 50 31.05 69.73 50 7.78 12.08 41.35 

 
0.4 32 3.78 8.12 50 36.35 79.21 50 9.08 12.67 44.34 

 
0.6 13 1.53 2.91 50 40.31 80.61 50 13.65 16.48 49.26 

 
0.8 4 0.46 0.84 50 40.77 80.06 50 16.24 19.10 50.62 

  1 1 0.04 0.08 50 38.98 81.79 50 14.08 18.14 47.56 

0.8 0.2 48 5.06 16.48 50 22.85 73.33 50 4.13 10.19 29.78 

 
0.4 41 2.66 8.62 50 24.68 79.39 50 4.93 11.98 30.30 

 
0.6 27 0.93 3.04 50 24.87 84.49 50 4.85 12.47 29.17 

 
0.8 23 1.02 3.29 50 24.46 82.84 50 5.39 13.87 29.26 

  1 13 0.31 1.05 50 22.36 84.09 50 5.01 14.86 26.47 

1 0.2 44 2.08 8.89 50 18.29 81.36 50 2.68 9.76 22.14 

 
0.4 40 1.80 7.63 50 18.90 82.81 50 2.66 9.56 22.48 

 
0.6 31 0.95 4.47 50 17.77 84.68 50 2.74 10.85 20.79 

 
0.8 27 0.66 3.17 50 17.44 86.20 50 2.56 10.63 20.09 

 
1 29 0.55 2.74 50 16.27 84.75 50 2.83 12.50 19.08 

global 639 4.39 7.26 1250 48.16 81.43 1238 31.89 11.31 55.12 
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Table 9 – Comparison between the QATC and the QWMDD after the improvement 

methods are applied 

m n %ivw_QATC_M_NEH_LS %ivw_QWMDD_M_NEH_LS 

QATC_M_NEH_LS QATC_M_NEH_LS QATC_M_NEH_LS 

btr eql wrs 

QWMDD_M_NEH_LS QWMDD_M_NEH_LS QWMDD_M_NEH_LS 

5 10 0.43 0.35 28 1185 37 

 
15 1.23 1.03 114 1029 107 

 
25 1.78 1.65 198 858 194 

 
30 1.56 1.60 222 821 207 

 
50 1.66 1.40 236 758 256 

 
100 1.17 1.08 243 739 268 

  300 0.46 0.78 256 760 234 

10 10 0.07 0.14 16 1220 14 

 
15 0.46 0.73 55 1113 82 

 
25 1.74 1.93 171 904 175 

 
30 2.37 2.64 190 862 198 

 
50 2.79 2.81 229 771 250 

 
100 1.36 1.67 245 745 260 

  300 1.24 1.12 252 740 258 

20 10 0.01 0.01 3 1244 3 

 
15 0.09 0.14 23 1198 29 

 
25 0.43 0.53 95 1054 101 

 
30 0.72 0.66 137 997 116 

 
50 1.66 1.42 226 820 204 

 
100 2.60 2.63 254 733 263 

  300 1.91 1.21 318 707 225 

global 1.16 1.14 6443 39687 6370 
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Table 10 – Comparison between the QATC and the QWMDD after the improvement 

methods are applied, for       and      

T R %ivw_QATC_M_NEH_LS %ivw_QWMDD_M_NEH_LS 

QATC_M_NEH_LS QATC_M_NEH_LS QATC_M_NEH_LS 

btr eql wrs 

QWMDD_M_NEH_LS QWMDD_M_NEH_LS QWMDD_M_NEH_LS 

0.2 0.2 1.42 1.81 23 0 27 

 
0.4 8.77 8.63 27 1 22 

 
0.6 0.00 0.00 0 50 0 

 
0.8 0.00 0.00 0 50 0 

  1 0.00 0.00 0 50 0 

0.4 0.2 0.71 0.61 25 0 25 

 
0.4 1.17 1.09 25 0 25 

 
0.6 2.00 1.53 25 0 25 

 
0.8 7.57 7.29 26 0 24 

  1 7.69 4.62 5 41 4 

0.6 0.2 0.34 0.59 22 0 28 

 
0.4 0.40 0.57 23 0 27 

 
0.6 0.49 0.83 21 0 29 

 
0.8 0.00 0.00 0 50 0 

  1 0.00 0.00 1 49 0 

0.8 0.2 0.38 0.39 29 0 21 

 
0.4 0.00 0.07 0 49 1 

 
0.6 0.00 0.00 0 50 0 

 
0.8 0.00 0.00 0 50 0 

  1 0.00 0.00 0 50 0 

1 0.2 0.00 0.00 0 50 0 

 
0.4 0.00 0.00 0 50 0 

 
0.6 0.00 0.00 0 50 0 

 
0.8 0.00 0.00 0 50 0 

 
1 0.00 0.00 0 50 0 

global 1.24 1.12 252 740 258 
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Table 11 – Runtimes for each improvement method’s step for both the QATC and the QWMDD rules 

m n QATC QATC_M QATC_M_NEH QATC_M_NEH_LS QWMDD QWMDD_M QWMDD_M_NEH QWMDD_M_NEH_LS 

5 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
50 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 

 
100 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.15 

  300 0.00 0.01 0.08 5.71 0.00 0.01 0.07 6.12 

10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
30 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 

 
50 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 

 
100 0.00 0.01 0.01 0.27 0.00 0.00 0.01 0.28 

  300 0.01 0.05 0.16 10.54 0.00 0.03 0.15 11.24 

20 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
25 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 

 
30 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 

 
50 0.00 0.01 0.01 0.06 0.00 0.00 0.01 0.06 

 
100 0.00 0.03 0.04 0.55 0.00 0.02 0.03 0.57 

  300 0.02 0.21 0.44 21.45 0.01 0.14 0.38 22.19 

avg 0.00  0.01  0.03  1.16  0.00  0.01  0.02  1.22  
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