

HEURISTICS FOR A PERMUTATION FLOWSHOP

SCHEDULING PROBLEM WITH WEIGHTED

SQUARED TARDINESS

by

Maria Raquel Carvalho Costa

Dissertation for Master in Modelling, Data Analysis and Decision Support Systems

in Optimization

Advised by

Jorge Valente

Jeffrey Schaller

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143391752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Biographical introduction of the candidate

Raquel Costa was born in Viana do Castelo in 1989.

In 2010, she concluded her bachelor in Economics in Universidade do Minho and, in

the same year, she started her career as a customer’s care specialist in a well-known

Portuguese telecommunication company.

Seeking for more knowledge, the candidate applied for the Master in Modelling, Data

Analysis and Decision Support Systems in order to expand her capabilities in the job

market.

Raquel Costa is an avid reader and enthusiastic traveller and currently works as a

bankruptcy manager.

ii

Abstract

One of the main issues that industries should try to prevent is customers’ dissatisfaction

caused by tardy jobs, since it means loss of sales and other financial inconvenients, as

well as loss of goodwill. It is also proven that the weight of each job should be taken

into account due to the fact that every job has its own associated priority. This

investigation considers these two factors and presents algorithms for a permutation

flowshop scheduling problem with a weighted squared tardiness objective which

includes a comparison between linear and quadratic constructive heuristics and the

application of three improvement methods in the QATC and the QWMDD rules, after

concluding that these rules have the best performances. Overall, this study proves that

the quadratic heuristics outperform their linear counterpart and that the application of

the improvement methods results in improvements of over 40%.

Keywords: permutation flowshop, weighted squared tardiness, dispatching rules,

scheduling

iii

Table of Contents

Biographical introduction of the candidate .. i

Abstract ………………………………………………………………………….. ii

List of tables ……………………………………………………………………... iv

 Chapter 1 - Introduction …………………………………………………………. 1

1.1 Motivation …………………………………………………………. 1

1.2 The problem ……………………………………………………….. 2

1.3 Structure …………………………………………………………… 4

 Chapter 2 - Literature Review …………………………………………………… 5

 Chapter 3 - Heuristic Procedures ………………………………………………… 11

3.1 Dispatching rules …………………………………………..………. 11

3.2 Improvement methods ……………………………………………... 15

 Chapter 4 - Computational Results ……………………………………………… 19

4.1 Experimental design and parameter adjustement tests 19

4.2 Comparisons of the heuristic procedures .. 21

4.3 Comparison with improvement methods ………………………….. 24

 Chapter 5 - Conclusions …………………………………………………………. 26

 Appendix - Tables ……………………………………………………………….. 28

 References ……………………………………………………………………….. 40

iv

List of tables

Table 1 – Dispatching rules …………………………...………………………………….. 29

Table 2 – Comparison between quadratic heuristics and their linear counterpart 30

Table 3 – Comparison between quadratic heuristics and heuristics with no quadratic

versions .. 31

Table 4 – Comparison between the QWMDD rule and all the other rules……… 32

Table 5 – Comparison between the QATC rule and all the other rules 33

Table 6 – Comparison between each improvement methods for both the QATC rule and

the QWMDD rule .. 34

Table 7 – Comparison between the improvement methods for n=300 and M=10, for the

QATC rule ... 35

Table 8 – Comparison between the improvement methods for n=300 and M=10, for the

QWMDD rule ……………………………………………….. 36

Table 9 – Comparison between the QATC and the QWMDD after the improvement

methods are applied ...………………………………………….. 37

Table 10 – Comparison between the QATC and the QWMDD after the improvement

methods are applied, for n=300 and M=10 ...…………………… 38

Table 11 – Runtimes for each improvement method’s step for both the QATC and the

QWMDD rules…………………………………………………… 39

1

Chapter 1 - Introduction

1.1 Motivation

In various sectors, but especially in industries, a quite large variety of jobs has to go

through different operations on a number of different machines. Scheduling problems

have been studied for several years due their major importance in various industries;

among its most important goals are meeting due dates and avoiding delay penalties.

A flowshop can be defined as a conventional manufacturing system in which machines

are arranged in the order in which operations are performed on jobs and the operation

sequence is the same for all jobs (Parthasarathy and Rajendran 1998). The machines are

set up in a series, and whenever a job completes its processing on one machine, it joins

the queue at the next. A particular case of this sequencing type is a permutation

flowshop which does not allow bypassing, i.e. the order of the jobs has to be the same

on all machines.

There are two very important factors that this study takes into account: job priority

(weights) and squared tardiness. On one hand (Valente and Schaller 2012) proved that

heuristics which take in consideration the quadratic tardiness have a better performance

than the heuristics developed for the linear problem, since it gives more importance to

the jobs that are more tardy, avoiding large delays and situations where most of the

tardiness occurs in a small group of jobs . On the other hand, (Vepsalainen and Morton

1987) showed that a strategic weight should be considered in order to reflect different

job priorities. These two factors represent customer’s dissatisfaction, loss of future

sales, and rush shipping costs, among others.

In what regards the type of procedure, this work focuses on dispatching rules. First, this

is often the only method that can find solutions for large instances in adequate

computational times. Also, dispatching rules and their priority indexes are often used in

real life scheduling systems. Furthermore, the solution provided by these rules is also

used as the starting point for some improvement methods, such as local search

procedures or metaheuristics.

2

1.2 The Problem

This study considers a permutation flowshop scheduling problem with weighted

quadratic tardiness costs. Formally, the problem can be stated as follows.

A set of independent jobs have to be processed on a set

 of machines. All jobs follow the same route through the machines, and it

is assumed that the processing order of the jobs is the same for all machines, so the

production environment is the so-called permutation flowshop. The machines are

continuously available from time zero onwards, and preemptions are not allowed.

Job , requires a processing time on machine , and has a weight

and a due date . Let denote the completion time of job on machine

 . Furthermore, let the job sequenced in position be denoted by and recall

that , since all machines are available at time zero. Then,

and , for . Finally, and for

convenience, let the completion time of job , that is, the time at which job finishes

processing on the last machine, also be denoted by , so .

For a given schedule, the tardiness of job is defined as . The

objective is then to find a schedule that minimizes the sum of the weighted squared

tardiness values

 .

Let be the current partial schedule, that is, the sequence of jobs that are scheduled so

far. Also, let be the completion time of job if is scheduled at the end of

sequence . Let be the slack of job if is scheduled at the end of sequence

 , where . Additionally, let be the current availability time of

machine under schedule . For convenience, the current availability time on the first

machine will also be denoted by , so .

Let be the total time (total processing time plus any eventual forced

idle time) between the start and finish of job if is scheduled at the end of

sequence . Also, let be the average, over all jobs , of the values.

3

Let be the tardiness of job if is scheduled at the

end of sequence .

4

1.3 Structure

As previously explained, this dissertation aims to study different heuristics for a

permutation flowshop scheduling problem with weighted squared tardiness. The

remainder of this work is organized as follows.

Chapter 2 summarizes the scientific articles that had been presented over the last

decades. Mainly, they introduce solutions for a single machine scheduling and linear or

squared earliness and tardiness, and were extremely useful for this particular

investigation, since they can be easily adapted for it.

Chapter 3 presents all the heuristic procedures considered in the study, such as the

constructive dispatching rules and the improvement methods applied to improve the

solutions generated by these dispatching heuristics.

Chapter 4 presents the computational results. First, the quadratic heuristics will be

compared with their linear counterparts; the ones with an inferior performance will not

be considered further. Secondly, the remaining heuristics will be compared with those

that do not have both a linear and a quadratic version. Additionally, some improvement

methods (multiple sequence version, NEH procedure and local search) will be taken in

consideration in order to find an upgraded version of the best procedures found

previously. The best procedures and its upgrade will also be compared.

Finally, Chapter 5 will summarize all the work done, comparing the various heuristics

examined and concluding about the best procedure that should be use in real life

situations, highlighting the most important conclusions. It will also provide some

suggestions for future research.

5

Chapter 2 – Literature review

The authors know of no other works about weighted quadratic tardiness in a

permutation flowshop scheduling problem. However, there are some studies considering

these measures for a single machine (which can be easily applied in more complex

problems) as well as the sum of linear earliness and tardiness in single machines and

permutation flowshop scheduling problems.

In order to find a schedule that minimizes the sum of the weighted squared tardiness,

(Valente and Schaller 2012) proposed some heuristics for scheduling in a single

machine regarding forward and backward scheduling. In the case of forward

dispatching rules, their study considered the best performing rules in the literature

(WMDD, ATC and AR) for the linear problem and their quadratic version (QWMDD,

QATC and QAR). The backwards dispatching rules were take into account for

comparison purposes.

This study shows that the quadratic version of the rules outperform better than their

linear counterparts. Also, it proved that the backward scheduling heuristics perform

much better compared to the forward scheduling heuristics. This makes sense if we take

into account that the backward procedure chooses between the tardy jobs first,

contrarily to the forward scheduling, in which jobs can be quite early in the first

iterations.

(Valente and Schaller 2012) concluded that backwards scheduling heuristics are

efficient and effective and that can give a quick result for large instances with good

results close to the optimum.

(Schaller and Valente 2012) presented a branch-and-bound algorithm to apply in a

single machine sequencing problem with the objective of minimizing the sum of

weighted squared tardiness. Also, in this study methods to increase the efficiency of an

optimal branch-and-bound algorithm are developed.

When branching occurs and new nodes are created, a lower bound on the sum of

weighted squared tardiness that would be obtained by the completion of the partial

6

sequence corresponding to those nodes is calculated. If the lower bound is less than the

lowest sum of weighted squared tardiness found so far for complete sequences and the

node does not represent a complete sequence, the node is retained for additional

branching. If the lower bound is less that the incumbent value and all the jobs have been

sequenced in the branch ending with the node (the node represents a complete

sequence), then the incumbent value is updated to equal the lower bound, the sequence

is recorded and the node is eliminated (Schaller and Valente 2012). If the lower bound

is greater that the incumbent value, the node is eliminated. The algorithm proposed uses

a depth first strategy, i.e. the algorithm chooses for branching the node at the lowest

level of the tree, breaking the connection choosing the node with the least lower bound.

This study, which took into account different number of jobs, degrees of tightness and

ranges of due dates, proved that the proposed dominance conditions significantly

improved the efficiency of the branch-and-bound algorithm. It was also shown that

problems with up to 40 jobs can be solved in a practical amount of time; the same

occurred for larger problems if due dates were not very tight.

A genetic algorithm to minimize total earliness and tardiness in permutation flowshops

was proposed by (Schaller and Valente 2013), where the chromosomes were randomly

created using EDD for one chromosome and NEH for another chromosome. This

algorithm applied a selection operator (n-tournament) in which the individual with the

lowest total earliness and tardiness, between a percentage of individuals, is chosen for

the mating process. This procedure takes in consideration that the best parents have

more jobs copied to their progenitors, and consequently, might lead to better children.

The heuristic presented by (Schaller and Valente 2013) was tested in different problem

sizes and it generated better solutions, when compared with other algorithms.

There are other important investigations that should be mentioned due to their relevance

for the scheduling problem here in study, especially the studies which take into account

weighted versions of some well-known dispatching rules.

(Vepsalainen and Morton 1987) made a weighted version of the COVERT rule, first

introduced by Carroll (1965), and defined a new rule called Apparent Tardiness Cost

(ATC), which has been mentioned in the literature countless times. The COVERT

7

priority rule represents the expected tardiness cost per unit of imminent processing time,

or cost over time; the ATC trades off job’s urgency against machine utilization.

With this study, (Vepsalainen and Morton 1987) concluded that weighted COVERT is

often much better than simple rules such as EDD (Earliest Due Date), FCFS (First

Come-First Served) and WSPT (Weighted Shortest Processing Time), and the ATC rule

outperforms COVERT consistently. They also considered that the weights criterion

sums the economic performance of the rules, i.e. inventory holdings, rush shipping,

customer badwill, among others.

On one hand, this study shows that the ATC rule is robust since it ranks first in all load

conditions, and, on the other hand, that the COVERT rule is reliable in congested shops

and with tight due dates.

(Ow and Morton 1989) introduced introduced two new rules (LIN-ET and EXP-ET) for

a new search method called Filtered Beam Search and compared it with some already

existing rules.

Beam Search is a heuristic search method that, without backtracking, searches β

candidate solution paths in parallel (the beamwidth), and saves only β paths at each

stage. In the filtered method, the evaluation of the best at each stage is done with a

heuristic that passes some number of nodes, up to αβ (α is the filterwidht), to another

that selects up to β nodes from them.

Adjacency is a necessary condition for an optimal schedule and is based on the

assumption that a globally optimal schedule must also be locally optimal so that no

improvement can be gained by a pairwise interchange of adjacent jobs.

Accordingly to (Morton et al 1984), a locally optimal sequence is defined as one that

cannot be improved by interchanging the positions of adjacent pairs of jobs. Local

optimality is a necessary but not sufficient condition for global optimality.

LIN-ET is a linear priority rule derived after (Morton et al 1984)’s rule; it estimates the

priority of a job by taking into account its impact on the next jobs.

8

In this study, they also considered EXP-ET, which is a combination of two other

functions and substitutes an intermediate function of LIN-ET: one reflects a priority that

focuses on the tardiness cost of a job as its slack becomes smaller; and other illustrates

the situation when the slack is large and the early cost dominates.

This paper examined both heuristics and search methods for the single machine

early/tardy problem. Overall, EXP-ET showed a better performance than LIN-ET. The

priority function EXP-ET appears to be quite accurate in that when used to schedule

jobs using the dispatch method, relatively good schedules are obtained.

(Parthasarathy and Rajendran 1998) proposed heuristics based on simulated annealing

(SA) with the objective of minimizing weighted mean tardiness of jobs in flowshops

and cells; their procedure involves two phases: the first one is the determination of a

seed sequence and the second is the improvements of this seed sequence using a

simulated annealing algorithm. The novelty in their algorithm is two new perturbation

schemes: Random Insertion Perturbation Scheme (RIPS) and Curtailed Random

Insertion Perturbation Scheme (CRIPS).

This study, based on computational evaluation, shows that the proposed simulated

annealing heuristics have a superior performance than the existing ones for problems of

scheduling in flowshops and manufacturing cells. Also, the proposed heuristics have

good results when job with different relative weights for tardiness are considered.

(Kanet and Li 2004) compared the performance of several rules in a weighted tardiness

scheduling problem. They also developed a weighted version of the Modified Due Date

(MDD), developed by Baker and Bertrand (1982), and modified some well-known rules

for this problem. WMDD is a combination of WSPT and a weighted remaining

allowance (WRA), i.e. it minimizes weighted tardiness when all jobs are tardy and gives

preference to jobs with larger tardiness weight and less slack.

This study proved WMDD and ATC (once again) to be statistically superior when

compared with WCOVERT, WRA and WSPT, taking in account unrestricted,

proportional and agreeable weights; another advantage of the WMDD rule is its

simplicity over ATC and WCOVERT (which ranked third place).

9

(Hasija and Rajendran 2004) developed a simulated annealing algorithm to minimize

the total tardiness in flowshops, considering a JIBIS (job-index-based-insertion-scheme)

to improve the sequences, which consists in inserting each job in all the possible

positions; this scheme always finds a solution that is better or equal than the seed

sequence.

In this study two perturbation schemes are proposed: JSB (job-shift-based) and PSS

(probabilistic-step-swap). On the first scheme, a job in the seed sequence is chosen

based on a probabilistic function and is inserted either to the right or to the left of its

original position; on the second one, a new sequence is generated first from the seed

sequence by probabilistically swapping jobs next to each other and then by

probabilistically swapping jobs farther away.

At the finishing point, the ten best sequences are subjected to the JIBIS with the purpose

of reaching the global minimum around those points of local minima.

This proposed proposed heuristic when compared with the Armentano and Ronconi

(1999)’s tabu search and the Parthasarthy and Rajendran (1998)’s simulated annealing

heuristic showed superior performance.

(Ruiz and Stützle 2008) considered the minimization of the makespan and the

minimization of the total weighted tardiness and presented two Iterated Greedy

algorithms for flowshop problems. One is called IG_RS and it interacts over a greedy

construction heuristic (NEH); this procedure has a destruction phase in which some jobs

are removed from the current sequence, and it has also a subsequent construction phase

in which the heuristic is applied to reconstruct the sequence, reinserting the jobs that

were removed. The other one also incorporates an extension phase that applies local

search and is called IG_RS(LS). The results showed that these two algorithms have a

very good performance and were simple to apply in real-world environments.

A WMSPT (Weighted Minimum Slack Shortest Processing Time) rule was proposed by

(Osman et al 2009); it is a parameter-free heuristic that combines WSPT and WMS

(Weighted Minimum Slack) rules. This dispatching rule schedules jobs one at a time

taking into account a priority ranking index calculated for the remaining unscheduled

jobs.

10

The authors showed that WMSPT is a very competitive rule proving to be the most

effective and efficient procedure among those that were tested. Furthermore, this rule

captures the best characteristics of WMS and WSPT and is very easy to implement,

since it does not have any parameter to estimate.

The most recent paper found, (M'Hallah 2014), takes into account the minimization of

earliness and tardiness for a permutation flowshop that uses a Variable Neighbourhood

Search and a Variable Neighbourhood Descent to find a good sequence of jobs.

The Variable Neighbourhood Search moves from its current local sequence when it

discovers a better solution or when it stagnates; this algorithm thoroughly changes the

neighbourhood it is exploring to search for a near-global minimum or to escape from

local minima. It consists of two loops: the inner loop returns a local optimal at each

iteration; the outer loop is a multiple restart of the inner loop.

The Variable Neighbourhood Descent searches a neighbourhood to find a local

optimum and every time it does not find a better solution it enlarge the neighbourhood

until it does not find a better local optimum.

Both procedures prove to be efficient and effective.

11

Chapter 3 – Heuristic Procedures

This section presents all the heuristic procedures considered in the current study. First,

there is a description of the dispatching rules and then three improvement methods will

also be described: multiple sequence heuristics, NEH and, finally, local search

3.1 Dispatching rules

A dispatching rule is a rule that prioritizes all the jobs that are waiting for processing on

a machine. The prioritization scheme may take into account the job’s attributes and the

machine’s attributes, as well as the current time. Whenever a machine has been freed, a

dispatching rule inspects the waiting jobs and selects the job with the highest priority.

The heuristics were chosen according to the existent literature, which considers those

dispatching rules as the best performing procedures for the linear problem, as well as

modified versions of these procedures, suitably adapted to the quadratic tardiness

objective. All these heuristics are forward scheduling procedures, that is, the selected

job at a given iteration is added to the end of the current partial sequence.

The priority indexes of the heuristics are given in Table 1.

The earliest due date (EDD) rule is one of the earliest sequencing rules, and is

commonly used for scheduling problems with due dates; it schedules the jobs in non-

decreasing order of their due dates . Equivalently, the EDD rule select, at each

iteration, the job with the largest value of the priority index .

The earliest weighted due date (EWDD) rule schedules the jobs in non-decreasing order

of their weighted due dates . Identically, the EWDD rule selects, at each iteration,

the job with the largest value of the priority index .

In the modified due date (MDD) heuristic, at each iteration we select the job with the

minimum value of the modified due date

12

 . This rule selects, at each iteration, the job with the largest value of

the priority index :

 .

In the weighted weighted modified due date (WMDD) heuristic, at each iteration we

select the job with the minimum value of the weighted modified due date

 . Equivalently,

the WMDD rule selects, at each iteration, the job with the largest value of the priority

index :

 .

The weighted shortest processing time (WSPT) rule schedules the jobs in non-

increasing order of the ratio .

The minimum slack (SLK) rule chooses, at each iteration, the job with the minimum

slack , and the minimum slack per required time (SLK/P) selects, at

each iteration, the job with the minimum value of the ratio between the slack and the

total required time, that is, the job with the minimum .

The weighted minimum slack / shortest processing time (WSLK_SPT) rule selects, at

each iteration, the job with the minimum value of the weighted slack or weighted

processing time, as appropriate, that is, it selects the job with the minimum ratio

 . Equivalently, the WSLK_SPT rule selects, at each iteration, the

job with the largest value of the priority index :

 .

13

The apparent tardiness cost (ATC) dispatching rule chooses, at each iteration, the job

with the largest value of the priority index :

 .

The AR dispatching rule provides the best results for the weighted objective; it chooses,

at each iteration, the job with the largest value of the priority index :

 .

The parameter provides the ATC and the AR heuristics with a look ahead capability

and it is related with the number of competing critical jobs, that is, it takes into account

the number of jobs which will become tardy in the next few iterations.

The previous heuristics are suited for the linear problem. However, several of these

procedures can be modified, in order to adapt them to a quadratic setting, as it follows.

The quadratic weighted shortest processing time (QWSPT) rule schedules the jobs in

non-increasing order of . The QWSPT is equivalent, in a

quadratic setting, to the WSPT, which means that the quadratic heuristics, normally,

substitute the WSPT for the QWSPT in their priority indexes.

In the quadratic weighted modified due date (QWMDD) heuristic, at each iteration we

select the job with the largest value of the priority index :

 .

14

The quadratic quadratic weighted minimum slack / shortest processing time

(QWSLK_SPT) rule selects, at each iteration, the job with the of the priority index

 :

 .

The quadratic apparent tardiness cost (QATC) dispatching rule chooses, at each

iteration, the job with the largest value of the priority index :

 .

The QAR dispatching rule chooses, at each iteration, the job with the largest value of

the priority index :

 .

The parameter, as previously mentioned, represents the number of critical jobs, that

is, jobs that are in danger of becoming tardy. In this work, a job is considered critical if

its slack is positive, but less or equal than
 , where is a

parameter specifically chosen by the user. If, at any iteration, no job is critical according

to this definition, is then set equal to 0.5, since this value proved to provide good

results in previous studies.

15

3.2 Improvement Methods

Based on the computational results presented on Chapter 4, two heuristics were chosen

to be improved: QATC and QWMDD. As previously mentioned, the improvement

methods applied on both these dispatching rules were multiple sequence heuristics,

NEH and local search.

Instead of finding the best sequence regarding all jobs in all machines, the multiple

sequence heuristics generates sequences, one for each machine, and selects the best

of them. The sequence generated during the iteration related to machine uses data that

is specific to that machine.

The earliest apportioned due date (EADD) heuristic (Hasija and Rajendran 2004)

obtains a sequence for each machine by scheduling the jobs in non-decreasing order of

their apportioned due dates . The best of those sequences is then selected.

It calculates a due date for each job on each machine. Let be the apportioned due

date of job on machine . The due dates are calculated as:

and

 .

The due date of job on machine is then obtained by allocating the original due date

according to the accumulated sum of the processing times on the various machines.

That is, is calculated by multiplying by the ratio between the sum of the

processing times of job up to and including machine and the sum of the processing

times of job on all machines. Thus, on the final machine the apportioned due date will

be equal to the original due date, that is .

The changes required in order to adapt the priority indexes of QATC and QWMDD to a

multiple sequence setting are described in the next paragraphs.

16

Let be the completion time of job , on machine , if is scheduled at the end

of sequence . Also, let be the slack of job , on machine , if

 is scheduled at the end of sequence . Therefore, the slack of a certain job on a given

machine is obtained by using the corresponding apportioned due date and completion

time. In the multiple sequence versions, the general slack is then replaced, in the

priority index, by the machine–dependent slack .

Let
 be a lower bound on the completion time of the last job on machine

(that is, a lower bound on the makespan of machine), given the current schedule .

The machine makespan lower bound
 is calculated as previously described

for the final machine lower bound
 , with the difference that, naturally, only the

processing times on the machines up to and including machine are considered.

Therefore, the lower bound is calculated as if only the first machines existed. The

slack threshold parameter in the multiple sequence procedures is calculated as before,

with the difference that the machine lower bound
 replaces the final

machine lower bound
 , that is

 .

Let be the total time (total processing time plus any eventual forced

idle time) between the start of job and its finish on machine , if is scheduled at

the end of sequence . In this version of the multiple sequence heuristics (QATC_M

and QWMDD_M), the total time between the start and finish of a job is then

replaced, in the priority index, by the total time up to and including the current machine

 .

To summarize, the procedures QATC_M and QWMDD_M choose, at each iteration

being performed while generating the sequence for machine , the job with the largest

value of the priority index and , respectively. These

priority indexes are equal to

17

and

 ,

We remark that this version will return a sequence that is at least as good as the one

generated by the corresponding single sequence heuristic. This is due to the fact that the

solution obtained for the last machine is the same as the one generated by the single

sequence procedure. Indeed, and for the last machine , we have ,

 and .

The second improvement method applied was the well-known NEH procedure

developed in (Nawaz, Enscore Jr et al. 1983); this method is an insertion procedure

which requires an initial sequence of jobs (in this case, the solution provided by the

initial heuristic improved by multiple sequence method) to create another sequence,

hopefully better than the original one.

During the insertion phase, the jobs are considered in the order in which they appear in

the initial sequence or list. At each step, the currently considered job is tentatively

inserted in each possible position of the currently partial sequence. The job is then

inserted in the position which provides the best objective function value.

In our implementation, the sequence resulting from the NEH procedure is kept if it is

not worse than the initial sequence. Otherwise, the (better) initial sequence is retained.

Since it can happen that some jobs finish early, and the sequences representing this

cases have a cost equal to zero, it was important to choose a tie-breaking method.

(Fernandez-Viagas and Framinan 2015) presented several tie-breaking methods for an

unweighted tardiness setting which can also be applied in an weighted quadratic

tardiness scenario. The procedure chosen for this study is called Total Idle Time (IT1)

since it was the one with the better performance, improving the NEH method in more

than 25% while requiring similar computational time. This tie-breaking method is

18

extensively presented in (Fernandez-Viagas and Framinan 2015), but it can be briefly

explain as follows: when there are two, or more, equal objective function values, it

calculates the total idle time as a sum of the idle time for each machine and chooses

the minimum IT1; in this method the definition of idle time includes front delays (the

idle time before the first job starts on a machine) and excludes back delays (the time

between the finish time on a machine and the overall finish time).

Finally, the last improvement method applied was a local search procedure that included

both interchange and the insertion neighborhoods, with a first-improve strategy. First,

all possible interchanges between pairs of jobs are first considered; an improving

exchange is performed whenever it is detected, and this is repeated until no improving

interchange is found. Then, all possible insertions (removing one job from its current

position and inserting it in another position) are considered; again, an improving move

is immediately performed, and this is repeated until no insertion can lead to a better

objective function value. The process of performing interchanges followed by insertions

is repeated until no further improvement is made.

19

Chapter 4 – Computational Results

In this section, the computational experiments and results are presented. First, the set of

test problems used to obtain the computational results is described and the preliminary

tests that were performed in order to determine adequate values for the parameters

required by some of the heuristics are presented. A comparison of the dispatching rules

is then performed. Finally, the results of the best heuristics are compared with the

results after the improvement methods are applied.

4.1 Experimental design and parameter adjustment tests

The computational tests were performed on a set of randomly generated problems, with

various sizes in terms of both the number of jobs and the number of machines, and for

multiple combinations of due date tightness and range. More specifically, the problems

were generated as follows.

In what regards the number of jobs, the following sizes were considered: 8, 10, 12, 15,

17, 20, 25, 30, 40, 50, 75, 100, 200, 300, 400 and 500. For the machines, we considered

problems with 5, 10 and 20 machines. For each job , the processing times on the

various machines were generated from a uniform distribution over the integers 1 to

100, while an integer weight was obtained from a uniform distribution [1, 10].

Finally, for each job , an integer due date was generated from the uniform

distribution , where is an estimate of the

makespan calculated using the lower bound proposed in (Taillard 1993), is the

tardiness factor and is the range of due dates. Both the tardiness factor and the range

of due dates parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0.

For each combination of , , and , 50 instances were randomly generated.

Therefore, a total of 1250 instances were generated for each problem size, where the

size is given by both the number of jobs and the number of machines.

20

The procedures were coded in C++, compiled for 64–bit Windows, and executed on a

personal computer with a Windows 7 64–bit operating system, an Intel Core i7 4770

3.4G processor and 16GB RAM.

The ATC, AR, QATC and QAR dispatching rules require a value for the parameter ,

 . Extensive preliminary tests were performed in order to determine an

adequate value of for the single sequence heuristics. These tests were performed on a

separate problem set that included instances with 15, 25, 50, 75, 100, 200, 300, 400 and

500 jobs, and contained 5 instances for each combination of , , and .

The values {0.00, 0.05, 0.10, 0.15, 0.20, …, 0.90, 0.95, 1.00} were considered for the

parameter . The ATC, AR, QATC and QAR dispatching rules were then applied to the

instances on the smaller test set, and the objective function value was calculated for

each considered value. These results were then analysed, and we selected a value that

provided good performance across all instance types. The value of was then set at 0.0,

since it improved the objective function values between 17.88% and 27.27% among the

other values analyzed. The same value was used for the improvement methods.

21

4.2 Comparisons of the heuristic procedures

A comparison of the dispatching rules that specifically consider the quadratic objective

with their linear tardiness counterparts is provided in Table 2. For each pair of quadratic

heuristic and its linear counterpart, this table gives the mean relative improvement

versus the worst result (%ivw) of the quadratic (%ivw_q) and the linear (%ivw_l)

procedures, as well as the number of times each quadratic rule provides a solution that

is better (btr), equal (eql) or worse (wrs) than the one provided by the corresponding

linear procedure. The global line provides the mean for the variables %ivw_q and

%ivw_l and the sum for btr, eql and wrs of the appropriate performance measure over

all the instances for all problem sizes.

The particular nature of the squared weighted tardiness problem motivated the use of

the relative improvement versus the worst result performance measure, instead of the

more usual relative improvement a procedure provides over another heuristic. Indeed,

and particularly for instances with a low tardiness factor T and a high range of due dates

R, the objective function value given by the heuristic procedures can be equal to 0,

meaning that all jobs are completed on time. This is troublesome when the relative

improvement is used, since division by 0 is undefined, and motivated the use of a

different performance measure.

More specifically, and for a given instance, the relative improvement versus the worst

result of heuristic , when compared with heuristics , , … , , is calculated as

follows. Let and be the best and worst objective function values

obtained by all the heuristic procedures, respectively. When , the

relative improvement versus the worst result of heuristic is set at 0. Otherwise, the

relative improvement versus the worst result is calculated as

 , where is the objective function value of

heuristic . This performance indicator thereby measures the relative improvement a

given heuristic provides over the worst result obtained among all procedures being

compared, and circumvents the division by 0 issue.

Since the purpose of Table 2 is to analyse the performance of each quadratic procedure

versus the corresponding linear heuristic, the %ivw_q and %ivw_l values given in this

22

table were calculated separately for each pair of quadratic heuristic and its linear

counterpart. More particularly, and using the QAR and AR procedures as an example,

these values were calculated as follows. The %ivw_q is the relative improvement QAR

provides over the worst result among the QAR and AR heuristics. Similarly, %ivw_l is

the relative improvement given by AR versus the worst result between QAR and AR.

The same reasoning applies to the other pairs of quadratic heuristic and its linear

counterpart.

The results presented in Table 2 show that the heuristics that have been suitably adapted

to the quadratic objective outperform their linear tardiness counterparts, which is to be

expected. This table shows that the difference in performance is quite significant;

indeed, the quadratic dispatching rules not only provide a much larger relative

improvement versus the worst result, but they also obtain better (or equal) results for

most, or in some cases actually all, of the test instances. Note that, although this table

just illustrates some instances, the global line considers the values of all instances in

each situation; the same happens with the other tables.

Therefore, it is most certainly recommended to use heuristics that have been designed in

order to take into account the quadratic tardiness objective, instead of simply relying on

procedures originally developed for the linear problem. Thus, in the remainder of this

section, the linear rules analyzed in Table 2 will no longer be considered.

Similarly, Table 3 provides a comparison between the quadratic dispatching rules and

the rules with no quadratic version available, using, once again, the mean relative

improvement versus the worst result (%ivw). The avg line provides the mean of the

%ivw of the appropriate performance measure over all the instances for all problem

sizes.

On average, Table 3 shows that the best performing heuristic is QATC, which provides

better results for all number of machines consistently over all the other rules, followed

by the QAR and the QWMDD heuristics. Since the results are very close between these

three rules, this study focuses on two of them: QATC, for obvious reasons, and

QWMDD, due to its simplicity and efficiency when compared to both QATC and QAR.

23

In order to identify how many times the QWMDD and the QATC heuristics provide a

solution that is better (btr), equal (eql) or worst (wrs) than the one provided by other

heuristic, Table 4 and Table 5 are presented, respectively. The sum line provides the

total of cases in which each heuristic is better, equal or worse than the rule in analysis,

over all the instances for all problem sizes.

These two tables illustrate, in accordance with Table 3, that both rules outperform the

others, and even though the QATC performs better than the QWMDD in more

instances, they both perform equally for more than 50% of the tested instances.

All the heuristics proved to be efficient and can be applied in an extensive dataset; even

though the QATC, QAR, QWMDD and QWPT_WSLK_SPT rules require more

computational effort, they still allow results in less than 0.05 seconds for large

instances.

24

4.3 Comparison with improvement methods

A comparison of the three improvement methods applied in the two best performing

heuristics, the QATC and the QWMDD rules, is provided in Table 6. For both

dispatching rules, this table gives the number of times each improvement method results

in a better (btr) solution than the original one, as well as the mean relative improvement

(imp_%) and the percentage in which it contributed to the total improvement

(%_tot_imp). The global line provides the sum for the variable btr and the mean for all

the others.

Due to time restrictions, it was only possible to run the improvement procedures on

instances with up to .

All three improvement methods gave good results, improving the inicial heuristic in

more than 40%, being the NEH the one that contributed the most for the total

improvement in both rules. The mean relative improvement of the multiple sequence

heuristic decreases when the number of jobs increase, and the opposite happens with

NEH and LS.

The effect of the T and R parameters on the performance of these improvement methods

is illustrated in Table 7 and Table 8 for the QATC and the QWMDD rules, respectively,

for and .

Even though, in both cases, the multiple sequence heuristic has an inconsistent

performance, the NEH and the local search procedures have an excellent performance

when , and a near optimal result when which decreases when the range

is high, especially for the QATC rule. The multiple sequence heuristic is affected by the

range: its performance is better when the range is low and decreases as the range

increases; this effect is common to both rules.

In order to compare both rules after the three methods were applied, Table 9 is

presented. Once again, the %ivw was calculated for each heuristic, as well as the sum of

instances where one rule was better, equal or worse than the other.

Overall, Table 9 shows that the dispatching rule with the best improvement rates is the

QATC_M_NEH_LS, but they both have similar results and, quite often, the same

25

improvement. Both heuristics perform better with a high number of jobs, in particular

the QATC_M_NEH_LS when or .

The effect of the T and R parameters on the performance of the two improved heuristics

is illustrated in Table 10, for and . Table 10 shows that when

these heuristics have a quite similar performance, in accordance with Table 7; the same

happens for high levels of the range parameter. Thus, the two improved heuristics

basically provide the same level of performance, in what regards solution quality.

The runtimes presented in Table 11 prove that the QATC_M_NEH_LS and the

QWMDD_M_NEH_LS require more computational effort than the first heuristics

mentioned in this study, especially for large instances, but the time required is still

reasonable. In particular, the multiple sequence and NEH improvements require very

little additional computational time; indeed, it is the local search phase that is

responsible for most of the extra runtime. Therefore, applying only the first two

improvements is certainly a possibility for quite large instances, on which the local

search procedure may require impractical times.

Finally, the runtimes are similar for both the QATC_M_NEH_LS and the

QWMDD_M_NEH_LS procedures, being the second heuristic faster when only the first

two improvement methods are applied. Given that they also provided similar results in

terms of solution quality, either of these heuristics can be selected, since they are quite

close in terms of both effectiveness and efficiency.

26

Chapter 5 - Conclusions

This investigation focused on heuristics for a permutation flowshop scheduling problem

with weighted quadratic tardiness, due its relevance in many industries when trying to

prevent customers’ dissatisfaction as well as financial inconvenients.

On a set of randomly generated problems, with various sizes of number of jobs and

machines, as well as multiple combinations of due date tightness and range, we

compared some of the most well-known performing heuristics in the literature and

applied improvement methods in two of the best performing rules among the ones that

were analysed.

For each pair of quadratic heuristic and its linear counterpart, the calculation of the

mean relative improvement versus the worst result showed that the quadratic versions

consistently outperform their linear counterpart; indeed, the heuristics suitably adapted

to the quadratic objective provide better results in most of the test instances. Therefore,

it is recommended to use heuristics that have been designed to take into account the

quadratic tardiness objective.

A comparison between the quadratic dispatching rules and the rules with no quadratic

version available showed that the QATC, QAR and QWMDD are the best performing

rules when compared with more simple heuristics; these three rules are around 50%

better than the others and frequently have equal results between them.

The improvement methods applied, namely, the multiple sequence heuristic, the NEH

and the local search procedures, improved the QATC and the QWMDD by more than

40%, with NEH contributing the most and the local search the least, despite its larger

computational effort. However, and naturally, the local search could possibly have

provided a larger improvement if either or both of the two previous improvement

methods had not been applied. Both improved heuristics, QATC_M_NEH_LS and

QWMDD_M_NEH_LS, have similar results regarding solution quality. Also, their

runtimes are similar, so it is basically indifferent to use one rule or the other, since both

are effective and efficient.

27

Regarding future research, one possibility consists in the application of metaheuristics

to the considered problem. Indeed, metaheuristics usually outperform dispatching rules,

and can usually be applied, within adequate runtimes, to medium size instances. The

dispatching rules and improvement procedures given in this work can provide an initial

solution, as well as improvements steps, to these metaheuristics. Another alternative is

to add to the considered problem some features that are present in certain real life

situations, such as different release dates or setups. Finally, the quadratic tardiness

objective function could be applied to other production settings, such as open shops or

job shops.

28

Appendix

Tables

29

Table 1 – Dispatching rules

Heuristic Priority Index
EDD

EWDD

MDD

WMDD

WSPT

SLK

SLKP

WSLK_SPT

ATC

AR

QWSPT

QWMDD

QWSLK_SPT

QATC

QAR

30

Table 2 – Comparison between quadratic heuristics and their linear counterpart

 QAR vs AR QATC vs ATC QWMDD vs WMDD QWSLK_SPT vs WSLK_SPT QWSPT vs WSPT

m n %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs %ivw_q %ivw_l btr eql wrs

5 10 11.73 3.99 770 45 435 5.04 91.78 71 0 1179 13.00 3.82 785 38 427 14.04 3.49 805 46 399 13.99 3.50 801 47 402

25 20.14 1.57 1000 0 250 99.84 0.00 1248 2 0 21.69 1.38 1017 0 233 23.15 1.45 1034 0 216 23.78 1.35 1035 0 215

50 25.85 0.70 1087 0 163 99.60 0.00 1245 5 0 28.38 0.52 1123 0 127 29.35 0.61 1128 0 122 30.55 0.55 1130 0 120

75 29.67 0.36 1154 0 96 97.76 0.00 1222 28 0 32.05 0.30 1173 0 77 33.05 0.29 1166 0 84 34.68 0.28 1175 0 75

100 31.53 0.29 1154 0 96 96.64 0.00 1208 42 0 34.20 0.20 1179 0 71 34.95 0.27 1183 0 67 36.89 0.26 1178 0 72

300 33.71 0.20 1144 28 78 91.76 0.00 1147 103 0 39.78 0.11 1213 0 37 40.90 0.07 1222 0 28 44.34 0.04 1225 0 25

 500 31.33 0.20 1099 73 78 89.12 0.00 1114 136 0 40.68 0.12 1197 2 51 42.05 0.05 1222 2 26 46.51 0.01 1241 0 9

10 10 8.53 3.78 718 35 497 25.27 72.67 327 0 923 9.10 3.75 726 32 492 10.03 3.51 732 37 481 10.09 3.54 730 35 485

25 14.52 1.41 958 0 292 100.00 0.00 1250 0 0 15.82 1.43 964 0 286 17.20 1.45 976 0 274 17.37 1.39 986 0 264

50 20.40 0.67 1086 0 164 100.00 0.00 1250 0 0 21.88 0.61 1100 0 150 23.42 0.64 1101 0 149 23.60 0.60 1095 0 155

75 23.05 0.46 1125 0 125 100.00 0.00 1250 0 0 25.28 0.38 1142 0 108 26.62 0.37 1143 0 107 27.15 0.37 1143 0 107

100 26.20 0.34 1137 0 113 99.84 0.00 1248 2 0 28.19 0.27 1155 0 95 29.35 0.29 1159 0 91 30.35 0.31 1152 0 98

300 33.58 0.10 1199 0 51 95.76 0.00 1197 53 0 36.28 0.05 1222 0 28 37.02 0.04 1226 0 24 39.42 0.06 1216 0 34

 500 35.94 0.07 1206 2 42 93.20 0.00 1165 85 0 39.30 0.03 1232 0 18 40.11 0.00 1241 0 9 42.79 0.01 1241 0 9

20 10 5.92 3.12 657 42 551 100.00 0.00 1250 0 0 6.17 3.12 659 41 550 6.57 3.10 673 37 540 6.57 3.10 673 37 540

25 9.94 1.54 892 0 358 100.00 0.00 1250 0 0 10.62 1.55 910 0 340 11.34 1.57 913 0 337 11.41 1.57 909 0 341

50 14.60 0.77 1034 0 216 100.00 0.00 1250 0 0 15.53 0.77 1029 0 221 16.97 0.77 1029 0 221 17.01 0.77 1025 0 225

75 17.60 0.39 1106 0 144 100.00 0.00 1250 0 0 19.03 0.35 1127 0 123 20.23 0.39 1113 0 137 20.31 0.42 1109 0 141

100 19.93 0.38 1119 0 131 100.00 0.00 1250 0 0 21.74 0.33 1128 0 122 22.84 0.36 1129 0 121 22.96 0.39 1119 0 131

300 28.46 0.09 1189 0 61 99.92 0.00 1249 1 0 31.01 0.04 1214 0 36 31.96 0.04 1218 0 32 33.26 0.03 1219 0 31

 500 32.42 0.03 1225 0 25 98.56 0.00 1232 18 0 34.84 0.02 1226 0 24 35.78 0.02 1233 0 17 37.69 0.02 1232 0 18

global 19.31 1.44 15727 230 4043 89.62 7.29 18039 265 1696 21.28 1.39 16026 158 3816 22.31 1.33 16181 157 3662 23.15 1.32 16176 156 3668

31

Table 3 – Comparison between quadratic heuristics and heuristics with no quadratic versions

 %ivw

m n EDD EWDD MDD SLK SLKP QAR QATC QWMDD QWSLK_SPT QWSPT

5 10 25.79 34.26 23.92 16.57 22.56 44.41 44.80 43.09 40.72 40.41

25 29.76 32.38 19.82 24.71 30.30 50.42 51.53 48.51 43.06 40.55

50 34.98 30.85 20.07 32.57 36.55 56.58 58.54 54.64 49.34 43.23

75 38.71 30.84 21.49 37.36 40.79 60.50 62.32 59.04 54.43 46.72

100 40.83 31.84 21.69 39.65 42.29 63.13 64.52 61.91 57.86 49.57

300 49.28 33.95 24.93 48.81 50.44 69.80 70.46 69.87 68.08 58.78

 500 51.71 34.83 25.63 51.40 52.57 71.54 72.18 71.80 70.59 61.48

10 10 19.26 30.27 18.34 11.31 16.01 36.53 36.61 36.12 35.33 35.25

25 23.23 33.48 11.72 19.67 22.78 44.55 44.95 43.33 40.36 39.50

50 30.33 34.42 11.68 28.00 30.04 51.10 52.41 49.46 45.05 43.62

75 34.73 34.60 13.15 33.43 35.30 54.68 56.24 52.87 47.60 45.43

100 38.39 35.66 14.06 37.14 38.76 58.60 59.78 56.58 51.30 48.42

300 48.43 36.81 19.86 48.04 48.93 68.06 68.99 66.77 62.95 57.40

 500 51.86 37.96 22.14 51.61 52.37 71.59 71.98 70.68 68.01 61.80

20 10 13.83 24.66 14.31 8.20 11.63 29.46 29.47 29.26 28.95 28.95

25 17.55 30.66 6.44 14.26 16.73 38.05 38.15 37.71 36.47 36.46

50 24.56 35.30 3.87 22.83 24.01 45.81 46.19 44.82 42.52 42.38

75 29.44 36.43 6.22 28.12 29.14 49.84 50.53 48.50 44.89 44.51

100 33.33 37.95 7.19 32.33 33.37 53.16 53.94 51.76 47.75 46.82

300 44.61 39.53 12.72 44.10 44.73 63.48 64.88 61.73 57.09 54.47

 500 48.96 39.45 15.71 48.63 49.15 67.75 68.71 65.99 61.84 57.97

avg 30.74 33.14 15.93 27.27 30.23 50.46 51.18 49.43 46.39 43.85

32

Table 4 – Comparison between the QWMDD rule and all the other rules

QWMDD vs

 EDD EWDD MDD SLK SLKP QATC QAR QWSLK_SPT QWSPT

m n btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs

5 10 998 2 250 824 148 278 978 0 272 1087 0 163 1056 0 194 125 878 247 81 959 210 285 790 175 312 736 202

25 1021 0 229 1055 2 193 1068 0 182 1055 0 195 1035 0 215 211 646 393 208 654 388 530 561 159 539 527 184

50 1014 0 236 1142 0 108 1036 0 214 1024 0 226 1017 0 233 202 555 493 213 566 471 567 505 178 629 483 138

75 996 0 254 1179 0 71 1022 0 228 990 0 260 989 0 261 206 533 511 236 545 469 594 503 153 677 479 94

100 991 0 259 1193 0 57 1018 0 232 996 0 254 993 0 257 210 536 504 225 538 487 588 517 145 669 489 92

300 979 0 271 1229 0 21 997 0 253 980 0 270 978 0 272 261 534 455 273 534 443 562 522 166 729 483 38

 500 973 1 276 1231 0 19 994 1 255 975 1 274 972 1 277 252 540 458 289 540 421 547 527 176 733 470 47

10 10 1063 0 187 746 155 349 1008 0 242 1132 0 118 1092 0 158 88 1040 122 57 1095 98 174 964 112 180 959 111

25 1104 0 146 975 2 273 1149 0 101 1118 0 132 1103 0 147 162 774 314 161 794 295 386 688 176 392 671 187

50 1078 0 172 1087 0 163 1121 0 129 1083 0 167 1085 0 165 179 659 412 197 665 388 477 610 163 517 585 148

75 1028 0 222 1144 0 106 1088 0 162 1034 0 216 1035 0 215 177 610 463 207 615 428 541 547 162 568 537 145

100 1021 0 229 1160 0 90 1082 0 168 1024 0 226 1029 0 221 231 559 460 224 577 449 557 525 168 589 522 139

300 983 0 267 1229 0 21 1030 0 220 982 0 268 982 0 268 195 548 507 201 548 501 582 542 126 654 533 63

 500 983 0 267 1236 0 14 1020 0 230 984 0 266 986 0 264 203 547 500 177 547 526 592 541 117 687 535 28

20 10 1090 0 160 706 168 376 996 0 254 1162 0 88 1112 0 138 27 1177 46 24 1187 39 62 1153 35 62 1153 35

25 1176 0 74 938 3 309 1219 0 31 1189 0 61 1182 0 68 118 951 181 108 960 182 266 853 131 266 851 133

50 1135 0 115 1039 0 211 1208 0 42 1146 0 104 1140 0 110 160 769 321 168 779 303 397 703 150 389 699 162

75 1104 0 146 1083 0 167 1168 0 82 1106 0 144 1108 0 142 191 680 379 193 687 370 457 646 147 464 642 144

100 1097 0 153 1111 0 139 1158 0 92 1105 0 145 1099 0 151 171 651 428 183 653 414 485 636 129 510 628 112

300 1015 0 235 1207 0 43 1094 0 156 1018 0 232 1016 0 234 168 548 534 216 548 486 570 546 134 613 546 91

 500 984 0 266 1227 0 23 1076 0 174 988 0 262 990 0 260 169 550 531 167 550 533 606 550 94 650 550 50

sum 50425 6 9569 49022 1867 9111 51597 2 8401 51740 3 8257 51002 4 8994 7605 36063 16332 7609 36919 15472 19923 33434 6643 21544 32595 5861

33

Table 5 – Comparison between the QATC rule and all the other rules

QATC vs

 EDD EWDD MDD SLK SLKP QAR QWMDD QWSLK_SPT QWSPT

m n btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs btr eql wrs

5 10 1027 2 221 883 60 307 999 0 251 1110 0 140 1083 0 167 157 978 115 247 878 125 345 716 189 361 686 203

25 1053 2 195 1051 0 199 1095 2 153 1089 2 159 1081 2 167 335 700 215 393 646 211 534 556 160 552 526 172

50 1060 5 185 1124 0 126 1080 5 165 1070 5 175 1063 5 182 423 590 237 493 555 202 580 505 165 645 483 122

75 1034 28 188 1179 0 71 1062 28 160 1037 28 185 1030 28 192 457 555 238 511 533 206 605 503 142 684 479 87

100 1037 42 171 1178 0 72 1061 42 147 1041 42 167 1037 42 171 462 548 240 504 536 210 584 516 150 657 489 104

300 1009 103 138 1201 0 49 1026 103 121 1009 103 138 1006 103 141 449 565 236 455 534 261 514 522 214 710 483 57

 500 1010 136 104 1205 0 45 1026 136 88 1009 136 105 999 136 115 409 613 228 458 540 252 499 527 224 710 470 70

10 10 1072 0 178 785 95 370 1021 0 229 1144 0 106 1101 0 149 55 1139 56 122 1040 88 202 909 139 207 907 136

25 1129 0 121 983 0 267 1170 0 80 1145 0 105 1131 0 119 226 869 155 314 774 162 414 676 160 405 663 182

50 1104 0 146 1079 0 171 1143 0 107 1101 0 149 1107 0 143 349 700 201 412 659 179 481 609 160 520 584 146

75 1067 0 183 1142 0 108 1112 0 138 1066 0 184 1073 0 177 389 642 219 463 610 177 563 546 141 579 537 134

100 1055 2 193 1144 0 106 1105 2 143 1057 2 191 1050 2 198 396 602 252 460 559 231 560 525 165 589 522 139

300 1021 53 176 1221 0 29 1059 53 138 1015 53 182 1017 53 180 469 549 232 507 548 195 571 542 137 658 533 59

 500 1016 85 149 1226 0 24 1049 85 116 1023 85 142 1016 85 149 448 549 253 500 547 203 554 541 155 670 535 45

20 10 1096 0 154 727 140 383 997 0 253 1166 0 84 1119 0 131 9 1237 4 46 1177 27 84 1117 49 84 1117 49

25 1178 0 72 942 1 307 1227 0 23 1199 0 51 1190 0 60 104 1059 87 181 951 118 277 847 126 278 845 127

50 1153 0 97 1045 0 205 1221 0 29 1164 0 86 1164 0 86 241 846 163 321 769 160 416 700 134 411 696 143

75 1125 0 125 1082 0 168 1189 0 61 1123 0 127 1126 0 124 305 735 210 379 680 191 468 646 136 468 642 140

100 1116 0 134 1119 0 131 1172 0 78 1118 0 132 1114 0 136 341 672 237 428 651 171 507 636 107 526 628 96

300 1054 1 195 1208 0 42 1111 1 138 1059 1 190 1059 1 190 484 553 213 534 548 168 608 546 96 631 546 73

 500 1036 18 196 1225 0 25 1098 18 134 1042 18 190 1038 18 194 473 550 227 531 550 169 610 550 90 657 550 43

sum 51682 798 7520 49145 1170 9685 52582 794 6624 52964 797 6239 52254 797 6949 13175 39059 7766 16332 36063 7605 20441 32776 6783 22192 32066 5742

34

Table 6 – Comparison between each improvement method for both the QATC rule and the QWMDD rule

QATC QWMDD

 M NEH LS
tot_imp_%

M NEH LS
tot_imp_%

m n btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp

5 10 1031 17.90 42.95 1153 20.89 44.33 913 8.61 12.48 38.46 1042 18.52 43.39 1154 21.77 44.17 914 8.91 12.21 39.18

15 992 15.68 33.00 1226 29.02 53.35 1140 13.86 13.57 44.85 1020 16.42 33.64 1230 29.90 52.99 1149 15.09 13.37 45.69

25 909 13.34 24.79 1248 37.73 60.97 1223 22.27 14.08 51.41 961 14.23 25.87 1249 38.43 60.21 1234 23.71 13.92 52.14

30 882 12.23 22.42 1247 40.61 64.72 1209 21.73 12.70 53.17 954 13.52 23.51 1249 40.98 63.59 1231 24.19 12.90 53.73

50 727 7.90 14.97 1244 44.32 72.09 1180 23.08 12.54 54.69 785 9.77 16.76 1250 44.57 70.20 1237 28.73 13.04 55.45

100 535 3.79 7.92 1207 44.35 77.98 1143 21.23 10.74 51.65 595 5.09 9.20 1250 47.56 79.53 1217 28.46 11.26 55.40

 300 209 0.62 1.87 1147 39.18 81.06 1095 16.46 8.83 43.30 227 1.23 2.47 1250 46.92 88.56 1160 22.42 8.96 51.32

10 10 1076 14.42 44.29 1149 14.78 43.65 887 4.44 11.90 29.67 1107 14.70 44.96 1145 14.90 43.13 892 4.66 11.75 29.97

15 1126 14.27 37.48 1215 21.32 48.72 1126 8.64 13.79 36.80 1151 14.84 38.15 1216 21.37 47.92 1128 9.15 13.93 37.19

25 1086 13.13 28.46 1249 30.95 56.69 1239 16.54 14.85 45.82 1121 13.64 28.84 1249 31.15 56.10 1240 17.21 15.06 46.16

30 1069 12.37 25.89 1248 34.42 59.68 1245 19.85 14.44 48.64 1101 12.75 26.20 1248 34.47 59.27 1246 20.51 14.53 48.79

50 973 9.37 18.26 1250 40.91 67.49 1247 25.19 14.26 52.97 1035 10.25 19.06 1250 41.09 66.61 1250 26.07 14.33 53.34

100 807 6.74 12.13 1248 46.15 74.41 1228 28.67 13.29 55.92 860 7.08 12.29 1250 46.24 74.01 1250 31.27 13.70 56.30

 300 555 2.55 5.40 1197 44.32 79.64 1141 23.20 10.73 50.66 639 4.39 7.26 1250 48.16 81.43 1238 31.89 11.31 55.12

20 10 1146 10.31 43.92 1158 10.65 45.44 852 2.47 10.56 21.53 1145 10.58 44.32 1159 10.63 45.17 851 2.48 10.43 21.73

15 1172 11.21 39.40 1213 14.38 48.06 1103 4.58 12.54 27.03 1178 11.65 39.98 1210 14.46 47.68 1103 4.65 12.34 27.40

25 1167 10.54 30.22 1249 21.95 55.34 1238 8.20 14.44 34.64 1185 10.71 30.39 1249 21.99 55.03 1240 8.69 14.57 34.92

30 1176 10.12 27.40 1248 24.47 57.92 1242 10.00 14.68 37.13 1178 10.27 27.58 1248 24.74 57.86 1242 10.18 14.55 37.36

50 1104 8.47 20.03 1250 32.57 64.47 1250 16.40 15.49 44.55 1138 9.09 20.72 1250 32.54 63.72 1250 17.09 15.56 44.82

100 958 6.34 13.06 1250 40.57 71.93 1250 24.23 15.01 50.85 1029 6.76 13.41 1250 40.43 71.21 1250 24.84 15.38 51.11

 300 761 3.42 6.83 1249 46.70 79.90 1220 27.86 13.19 54.33 849 3.97 7.39 1250 46.50 78.93 1250 31.01 13.67 54.63

global 39571 10.18 25.67 51004 30.83 60.63 47218 15.58 12.95 42.94 41221 10.85 26.34 51380 31.64 60.57 47942 17.45 13.04 43.94

35

Table 7 – Comparison between the improvement methods for and ,

for the QATC rule

 M NEH LS
tot_imp_%

T R btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp

0.2 0.2 41 15.50 17.60 50 69.32 68.50 50 46.19 13.90 86.42

0.4 10 2.42 2.43 50 93.74 91.85 50 93.87 5.72 99.61

0.6 8 2.78 2.78 50 99.66 96.91 41 82.00 0.31 100.00

0.8 0 0.00 0.00 40 80.00 80.00 0 0.00 0.00 80.00

 1 0 0.00 0.00 7 14.00 14.00 0 0.00 0.00 14.00

0.4 0.2 39 8.59 14.53 50 43.39 71.03 50 15.89 14.44 56.65

0.4 25 3.98 5.66 50 56.57 81.38 50 20.94 12.96 67.01

0.6 3 0.19 0.23 50 71.08 86.81 50 37.05 12.96 81.70

0.8 1 0.02 0.02 50 88.22 89.83 50 86.27 10.15 98.16

 1 0 0.00 0.00 50 96.40 96.41 50 99.90 3.59 99.99

0.6 0.2 49 7.68 18.23 50 30.65 69.57 50 7.80 12.20 41.06

0.4 32 3.94 8.33 50 36.95 79.57 50 8.90 12.10 44.84

0.6 18 1.36 2.64 50 40.95 81.93 50 12.96 15.43 49.31

0.8 4 0.46 0.84 50 40.77 80.06 50 16.24 19.10 50.62

 1 1 0.04 0.08 50 38.96 81.76 50 14.09 18.16 47.55

0.8 0.2 49 5.76 18.58 50 22.24 70.62 50 4.35 10.80 29.92

0.4 41 2.66 8.65 50 24.68 79.48 50 4.86 11.87 30.26

0.6 27 0.93 3.04 50 24.87 84.49 50 4.85 12.47 29.17

0.8 23 1.02 3.29 50 24.46 82.84 50 5.39 13.87 29.26

 1 13 0.31 1.05 50 22.36 84.09 50 5.01 14.86 26.47

1 0.2 44 2.08 8.89 50 18.29 81.36 50 2.68 9.76 22.14

0.4 40 1.80 7.63 50 18.90 82.81 50 2.66 9.56 22.48

0.6 31 0.95 4.47 50 17.77 84.68 50 2.74 10.85 20.79

0.8 27 0.66 3.17 50 17.44 86.20 50 2.56 10.63 20.09

1 29 0.55 2.74 50 16.27 84.75 50 2.83 12.50 19.08

global 555 2.55 5.40 1197 44.32 79.64 1141 23.20 10.73 50.66

36

Table 8 – Comparison between the improvement methods for and ,

for the QWMDD rule

M NEH LS
tot_imp_%

T R btr imp_% %_tot_imp btr imp_% %_tot_imp btr imp_% %_tot_imp

0.2 0.2 40 17.26 19.40 50 69.36 66.38 50 48.86 14.22 87.14

0.4 19 4.46 4.47 50 91.73 87.91 50 97.04 7.62 99.76

0.6 18 5.47 5.47 50 98.76 93.35 50 100.00 1.18 100.00

0.8 21 11.89 11.89 50 99.72 87.85 49 98.00 0.26 100.00

 1 34 23.07 23.07 50 99.92 76.87 39 78.00 0.06 100.00

0.4 0.2 46 11.10 18.54 50 43.29 66.44 50 17.24 15.02 58.30

0.4 27 5.02 7.03 50 55.67 77.69 50 24.90 15.28 68.27

0.6 12 1.88 2.16 50 69.96 82.12 50 45.10 15.73 83.59

0.8 1 0.01 0.01 50 86.20 87.62 50 89.61 12.37 98.34

 1 1 0.03 0.03 50 94.10 94.08 50 99.95 5.89 100.00

0.6 0.2 47 7.66 18.19 50 31.05 69.73 50 7.78 12.08 41.35

0.4 32 3.78 8.12 50 36.35 79.21 50 9.08 12.67 44.34

0.6 13 1.53 2.91 50 40.31 80.61 50 13.65 16.48 49.26

0.8 4 0.46 0.84 50 40.77 80.06 50 16.24 19.10 50.62

 1 1 0.04 0.08 50 38.98 81.79 50 14.08 18.14 47.56

0.8 0.2 48 5.06 16.48 50 22.85 73.33 50 4.13 10.19 29.78

0.4 41 2.66 8.62 50 24.68 79.39 50 4.93 11.98 30.30

0.6 27 0.93 3.04 50 24.87 84.49 50 4.85 12.47 29.17

0.8 23 1.02 3.29 50 24.46 82.84 50 5.39 13.87 29.26

 1 13 0.31 1.05 50 22.36 84.09 50 5.01 14.86 26.47

1 0.2 44 2.08 8.89 50 18.29 81.36 50 2.68 9.76 22.14

0.4 40 1.80 7.63 50 18.90 82.81 50 2.66 9.56 22.48

0.6 31 0.95 4.47 50 17.77 84.68 50 2.74 10.85 20.79

0.8 27 0.66 3.17 50 17.44 86.20 50 2.56 10.63 20.09

1 29 0.55 2.74 50 16.27 84.75 50 2.83 12.50 19.08

global 639 4.39 7.26 1250 48.16 81.43 1238 31.89 11.31 55.12

37

Table 9 – Comparison between the QATC and the QWMDD after the improvement

methods are applied

m n %ivw_QATC_M_NEH_LS %ivw_QWMDD_M_NEH_LS

QATC_M_NEH_LS QATC_M_NEH_LS QATC_M_NEH_LS

btr eql wrs

QWMDD_M_NEH_LS QWMDD_M_NEH_LS QWMDD_M_NEH_LS

5 10 0.43 0.35 28 1185 37

15 1.23 1.03 114 1029 107

25 1.78 1.65 198 858 194

30 1.56 1.60 222 821 207

50 1.66 1.40 236 758 256

100 1.17 1.08 243 739 268

 300 0.46 0.78 256 760 234

10 10 0.07 0.14 16 1220 14

15 0.46 0.73 55 1113 82

25 1.74 1.93 171 904 175

30 2.37 2.64 190 862 198

50 2.79 2.81 229 771 250

100 1.36 1.67 245 745 260

 300 1.24 1.12 252 740 258

20 10 0.01 0.01 3 1244 3

15 0.09 0.14 23 1198 29

25 0.43 0.53 95 1054 101

30 0.72 0.66 137 997 116

50 1.66 1.42 226 820 204

100 2.60 2.63 254 733 263

 300 1.91 1.21 318 707 225

global 1.16 1.14 6443 39687 6370

38

Table 10 – Comparison between the QATC and the QWMDD after the improvement

methods are applied, for and

T R %ivw_QATC_M_NEH_LS %ivw_QWMDD_M_NEH_LS

QATC_M_NEH_LS QATC_M_NEH_LS QATC_M_NEH_LS

btr eql wrs

QWMDD_M_NEH_LS QWMDD_M_NEH_LS QWMDD_M_NEH_LS

0.2 0.2 1.42 1.81 23 0 27

0.4 8.77 8.63 27 1 22

0.6 0.00 0.00 0 50 0

0.8 0.00 0.00 0 50 0

 1 0.00 0.00 0 50 0

0.4 0.2 0.71 0.61 25 0 25

0.4 1.17 1.09 25 0 25

0.6 2.00 1.53 25 0 25

0.8 7.57 7.29 26 0 24

 1 7.69 4.62 5 41 4

0.6 0.2 0.34 0.59 22 0 28

0.4 0.40 0.57 23 0 27

0.6 0.49 0.83 21 0 29

0.8 0.00 0.00 0 50 0

 1 0.00 0.00 1 49 0

0.8 0.2 0.38 0.39 29 0 21

0.4 0.00 0.07 0 49 1

0.6 0.00 0.00 0 50 0

0.8 0.00 0.00 0 50 0

 1 0.00 0.00 0 50 0

1 0.2 0.00 0.00 0 50 0

0.4 0.00 0.00 0 50 0

0.6 0.00 0.00 0 50 0

0.8 0.00 0.00 0 50 0

1 0.00 0.00 0 50 0

global 1.24 1.12 252 740 258

39

Table 11 – Runtimes for each improvement method’s step for both the QATC and the QWMDD rules

m n QATC QATC_M QATC_M_NEH QATC_M_NEH_LS QWMDD QWMDD_M QWMDD_M_NEH QWMDD_M_NEH_LS

5 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02

100 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.15

 300 0.00 0.01 0.08 5.71 0.00 0.01 0.07 6.12

10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

50 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03

100 0.00 0.01 0.01 0.27 0.00 0.00 0.01 0.28

 300 0.01 0.05 0.16 10.54 0.00 0.03 0.15 11.24

20 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

30 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

50 0.00 0.01 0.01 0.06 0.00 0.00 0.01 0.06

100 0.00 0.03 0.04 0.55 0.00 0.02 0.03 0.57

 300 0.02 0.21 0.44 21.45 0.01 0.14 0.38 22.19

avg 0.00 0.01 0.03 1.16 0.00 0.01 0.02 1.22

40

References

Fernandez-Viagas, V. and J. M. Framinan (2015). "NEH-based heuristics for the

permutation flowshop scheduling problem to minimise total tardiness." Computers &

Operations Research 60(0): 27-36.

Hasija, S. and C. Rajendran (2004). "Scheduling in flowshops to minimize total

tardiness of jobs." International Journal of Production Research 42(11): 2289-2301.

Kanet, J. J. and X. M. Li (2004). "A weighted modified due date rule for sequencing to

minimize weighted tardiness." Journal of Scheduling 7(4): 261-276.

M'Hallah, R. (2014). "An iterated local search variable neighborhood descent hybrid

heuristic for the total earliness tardiness permutation flow shop." International Journal

of Production Research 52(13): 3802-3819.

Nawaz, M., E. E. Enscore Jr and I. Ham (1983). "A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem." Omega 11(1): 91-95.

Ow, P. S. and T. E. Morton (1989). "The Single-Machine Early Tardy Problem."

Management Science 35(2): 177-191.

Parthasarathy, S. and C. Rajendran (1998). "Scheduling to minimize mean tardiness and

weighted mean tardiness in flowshop and flowline-based manufacturing cell."

Computers & Industrial Engineering 34(2): 531-546.

Ruiz, R. and T. Stützle (2008). "An Iterated Greedy heuristic for the sequence

dependent setup times flowshop problem with makespan and weighted tardiness

objectives." European Journal of Operational Research 187(3): 1143-1159.

41

Schaller, J. and J. M. S. Valente (2012). "Minimizing the weighted sum of squared

tardiness on a single machine." Computers & Operations Research 39(5): 919-928.

Schaller, J. and J. M. S. Valente (2013). "A comparison of metaheuristic procedures to

schedule jobs in a permutation flow shop to minimise total earliness and tardiness."

International Journal of Production Research 51(3): 772-779.

Taillard, E. (1993). "Benchmarks for basic scheduling problems." European Journal of

Operational Research 64(2): 278-285.

Valente, J. M. S. and J. E. Schaller (2012). "Dispatching heuristics for the single

machine weighted quadratic tardiness scheduling problem." Computers & Operations

Research 39(9): 2223-2231.

Vepsalainen, A. P. J. and T. E. Morton (1987). "Priority Rules for Job Shops with

Weighted Tardiness Costs." Management Science 33(8): 1035-1047.

