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Abstract 

With a minimum human intervention, tasks can be made safer and the methodical inspection of 

facilities may become easier. 

And, in order to guarantee this minimum human intervention, mobile robots are a solution. 

Therefore, they must be truly autonomous and able to autonomously pinpoint their location, 

preferentially without the need to prepare or equip the navigation environment with artificial 

landmarks or beacons. 

This PhD thesis addresses strategies of localization of mobile robots, which can operate without 

environment preparation. Therefore, and to demonstrate this to be possible, two different approaches 

in different scenarios were developed. 

The first approach, simple landmark-based localization system, implemented in a Lego NXT, 

operates in a constrained and simpler scenario. This approach requires seeing smooth walls in a square 

shape path, thus enabling vehicle localization and navigation, only within a strict area. 

Furthermore, this approach was developed in a suitable way as to be used as a tool to teach 

concepts of mobile robots to undergraduate students during lectures. 

The second approach and scenario, three-dimensional map-based localization system, applied to a 

robotic platform called RobVigil, is much more realistic and has much less constraints. It enables 

navigation through structured indoor environments, using a 3D map of the building. This last approach 

focuses on the following two steps: 

1) Locating a vehicle, using the state of art Extended Kalman Filter applied to the Simultaneous 

Localization and Mapping problem (EKF-SLAM), using 2D data as lines for the representation of 

walls, doors or furniture, and invariant points (invariant with the displacement of the vehicle) 

representing corners and columns. Once the location has been pinpointed, it will then be possible to 

build and store the 3D map of the environment, with the help of a rotating Laser Range Finder placed 

in a servo motor (observation module).  

This step is performed within a controlled scenario, without dynamic objects or individuals 

travelling within the navigation area. It is a preparation, offline and time-consuming task with the 

purpose of obtaining a 3D map of the facility.  

2) Pinpoint the vehicle position during its normal operation, using 3D data and the map obtained 

in the step previously referred to in 1). The algorithm is now able to compare online (by matching), the 

observation module readings with the 3D stored map. 

The upper side of a building, above the normal height of a person (the headroom), including 

vertical walls and the ceiling, can be considered a static scenario for large periods of time. Using the 

static scenario, it is possible to pinpoint the vehicle position during its normal operation in a more 

robust manner, since there are no dynamic objects or people interfering in the acquired 3D data.  

The proposed algorithm improves the computational requirements and execution time, when 

compared with 2D and 3D SLAM, Particle Filter and algorithms of scan alignment, such as the 

Iterative Closest Point. 

This methodology of localization is discussed in this document as a solution to pinpointing the 

location of a differential wheel traction robot in dynamic and service environments, with low 

computational power requirements. 

Experimental results on the performance of the proposed method are also presented herein. The 

comparison between the matching localization algorithm using 2D and 3D data are shown, as well as 

the advantages of using three-dimensional data. 
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Resumo 

Existem tarefas que podem ser feitas de um modo seguro e com a mínima intervenção humana, 

tornando, por exemplo, a inspeção metódica no interior de edifícios mais fácil. Para tal, os robôs 

moveis são uma solução. Desta forma, estes devem ser verdadeiramente autónomos e capazes de 

calcular a sua localização no mundo, preferencialmente sem necessidade de se preparar ou equipar o 

ambiente com marcadores artificiais ou balizas. 

Assim, esta tese de doutoramento aborda estratégias de localização, aplicadas a robôs móveis, que 

operaram sem o auxílio de marcadores artificiais ou balizas. Para demonstrar que tais estratégias são 

possíveis, duas abordagens e soluções em cenários diferentes foram desenvolvidas.  

A primeira solução, localização simples baseada em marcos naturais (simple landmark-based), 

foi implementada num Lego NXT, e opera num cenário simples com restrições. Nesta abordagem, o 

robô necessita de visualizar paredes numa trajetória com forma em quadrado, possibilitando a sua 

localização e navegação numa área restrita. 

Para além disso, foi desenvolvida num modo adequado, visando a sua utilização no ensino, para 

alunos de graduação durante as aulas de Sistemas Robóticos Autónomos. 

A segunda solução, localização baseada em mapa tridimensional (three-dimensional map-based), 

é muito mais realista e possui muito menos restrições. Esta, possibilita a navegação em ambientes 

interiores e estruturados, usando o mapa tridimensional do edifício. Esta abordagem foca-se em duas 

fases essenciais: 

1) Localizar o veículo, usando o estado da arte acerca do Filtro de Kalman Estendido (Extended 

Kalman Filter com acrónimo EKF), aplicado ao problema de localização e mapeamento simultâneo 

(Simultaneous Localization and Mapping com acrónimo SLAM). Para tal, são usados dados 

bidimensionais, como é o caso de segmentos de reta para a representação de paredes, portas ou 

mobília; e pontos invariantes (invariantes com o movimento do veículo) representando cantos, 

esquinas ou colunas. Uma vez obtida a localização do veículo, é possível construir ao mesmo tempo o 

mapa tridimensional do edifício, com a ajuda de um tilting Laser Range Finder (LRF rotativo). 

Esta fase é executada com o ambiente controlado, sem objetos dinâmicos ou pessoas a circular 

dentro da área de navegação do robô. È uma fase de preparação, offline, que consome alguns recursos 

computacionais,  e com o propósito fundamental de obter e guardar o mapa tridimensional do edifício. 

2) Obter a posição do veículo durante a sua operação normal, usando dados 3D e o mapa obtido 

durante a fase anterior. O algoritmo de localização é agora capaz de, online, comparar (3D Matching) 

as leituras do Laser Range Finder rotativo com o mapa 3D guardado. Para tal, são apenas usados 

dados acerca da parte superior do edifício. 

A parte superior de um edifício, acima da altura normal de uma pessoa, incluindo paredes 

verticais e o teto, pode ser considerado um cenário estático durante longos períodos de tempo. Usando 

este cenário estático, é possível, a localização do veículo, durante a sua operação normal, de uma 

forma mais robusta, uma vez que não existem objetos dinâmicos ou pessoas a interferir nos dados 3D 

obtidos.  

O algoritmo de localização proposto é melhor em termos computacionais e tempo de execução 

necessários, quando comparado com 2D e 3D SLAM, Filtro de Partículas e algoritmos de alinhamento 

de scanner, como é o caso do Iterative Closest Point (com acrónimo ICP). 

Esta metodologia, é discutida neste documento, como solução para localizar um robô de tração 

diferencial, em cenários dinâmicos e de serviços, com baixos requisitos a nível computacional. 

Resultados experimentais, acerca da performance e precisão da abordagem three-dimensional map-

based, são apresentados. A vantagem de se usar dados 3D em vez de 2D no algoritmo de matching é 

mostrada. 
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1. Introduction 

The applications of mobile robots have not been sufficiently developed due, among other 

reasons, to difficulties concerning the localization task. Therefore, to be truly autonomous, 

they must be able to pinpoint their location inside dynamic environments, without preparation 

requirements.  

One of the fundamental characteristics of autonomy is also the ability of the vehicle to 

move without limitations, a factor that is often introduced by methods such as beacons, which 

define a maximum range for the navigation. 

The errors which occur while estimating the position of the vehicle, as a result of dead 

reckoning, are accumulative over time. The localization procedure using the dead reckoning 

information is incremental and uses the previous estimation of the position. This relative 

positioning leads to an increase of the error estimation without bounds.  

Nevertheless, the dead reckoning sensors, in particular the odometry, are the most 

common used sensors, to be used and fused as redundant information with more complex 

sensors and localization techniques. 

As stated by David A. Schoenwald, [1], the autonomous unmanned vehicles (AUVs)” (...) 

need to understand enough about their surroundings so that they can function with minimal or 

no input from humans. This implies the required sensors to be capable of seeing terrain (...)”. 

Sensors that can potentially help the dead reckoning in localization are the Laser Range 

Finders (LRFs) or the infrared sensors (IR). When compared to artificial vision (cameras) and 

ultrasound sensors, the LRF and IR offers more accurate readings and depth information 

without the need for other sensors. Also, they are a good solution for navigating in dark and 

smoky environments. 

With regard to computational requirements, the processing of the artificial vision’s 

images is clearly high when compared with the treatment of the LRF or IR data. Besides, the 

data rate of sensors as LRF or IR is higher than the artificial vision. 

Sometimes, it is not possible or convenient to prepare or equip the indoor environment, 

intended for vehicle navigation, with any kind of artificial landmarks or features, enabling an 

easier localization. In addition to the need of preparing the indoor environment, the use of 

active or passive beacons restricts the vehicle movements within the area covered by the 

beacon. 

The application of localization systems, which require the preparation of the indoor 

building and a certain setup time, in some situations, became impractical both in aesthetic and 

functional terms. Furthermore, the costs associated with the preparation of the environment 

cannot, most of the times, be considered negligible. 
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Therefore, it was convenient the development of indoor localization strategies, robust, 

reliable with the ability to correctly perform its function without the need for artificial 

landmarks or beacons. 

In order to fulfil this definition of autonomy, the fundamental goal, motivation and 

opportunity of this work, described in this PhD document, is the study and implementation of 

strategies of localization, which solve the problem of cumulative error when odometry is 

used, without the need for changing or preparing the environment with artificial landmarks or 

beacons. 

In this PhD thesis, first a simple landmark-based localization system is described, which 

uses smooth walls of a room for an efficient localization. This approach is only applicable in 

simple scenarios, when the vehicle navigates every time inside the same room, using the 

room's walls, with IR sensors above any interference (near the room ceiling). 

Therefore, afterwards, the research of this PhD thesis evolved to fulfil new and more 

complex requirements as a localization methodology capable of performing its function 

without the preparation of the environment, using the building infrastructure, without 

constraints and restrictions in terms of the navigation area, in more complex scenarios. This 

second approach is called, from now on, three-dimensional map-based localization. 

 

Concerning the simple landmark -based approach, the goals are the following: 

1) Implement the approach in a user-friendly robotic platform, with a reasonable price as, 

for instance, the Lego NXT. 

2)  This approach can be then considered a suitable platform to be used in the teaching of 

mobile robot concepts to undergraduate students. 

Regarding the three-dimensional map-based approach, the fundamental goals are: 

1) Make it possible for the vehicle to locate itself in an indoor environment, with the 

desired accuracy and autonomy. 

2) The approach should operate efficiently without the need to prepare the environment 

with artificial landmarks or beacons. 

3) The localization algorithm should be able to work correctly in dynamic and structured 

scenarios, such as: service scenarios, hospitals and department stores. 

4) The localization methodology should operate with low computational requirements, in 

computers with low computational power processors. 

5) The localization algorithm should work in any lighting conditions - dark, window 

sunlight or smoky environments. 

6) The approach should be economically viable, to be used as a localization system in a 

robotic platform.  

 

The first approach, simple landmark-based, only allows locating a robot in simple 

scenarios, with really restrictive constraints. A detailed explanation is presented in Chapter 4. 

The same algorithm was used to teach mobile robots concepts, to undergraduate students 

of the Faculty of Engineering of the University of Porto, Portugal. Aiming to improve the 

undergraduate students' knowledge and learning during the lectures on Autonomous Robotic 

Systems, the algorithm was implemented in a Lego NXT, since it is the ideal tool to be used 

in teaching, because it is an equipment easy to use, at a reasonable price.  
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At the webpage [2] there are videos and downloads on the simple landmark-based 

approach. 

The three-dimensional map-based approach is composed by the fundamental tasks: pre-

localization, mapping and localization. The entire localization methodology is presented in 

Chapters 5 to 9. 

It is applied to the RobVigil robot, described in Chapter 5. This is a surveillance robot, 

which navigates inside public facilities, i.e. dynamic environments, as department stores, 

hospitals (service scenarios), with high degree of autonomy. 

The robot RobVigil is a differential wheel traction vehicle, equipped with odometers and 

a Laser Range Finder, which, by using a servo DC motor, makes it possible to rotate in the tilt 

position, providing three-dimensional data. In this document, the rotating LRF solution 

developed, which uses a servo dc motor, will be referred to as the observation module. 

This localization methodology is sufficiently robust to be used in dynamic scenarios, 

autonomously follow inspection routes, without being affected by individuals or objects 

travelling in the navigation area, without environment preparation. 

The three-dimensional map-based approach uses the Simultaneous Localization and 

Mapping, to build a 3D occupancy grid of the navigation area, which is used later on, in a fast 

and online 3D Matching localization algorithm, during the robot normal operation. Therefore, 

this solution combines SLAM and Matching algorithms, using the best of both.  

The self-localization method three-dimensional map-based, presented in this document, 

focuses on the following two steps (see Fig. 1.1): 

 

Fig. 1.1 Strategy for building a map in the 3D space, aiming at normal operation using a 3D Matching algorithm. Three-
dimensional map-based localization system. 

I. Locating the vehicle, using a two-dimensional SLAM algorithm with extracted 

features through the observation module. Once the location has been pinpointed, it is possible 

to build and store the 3D map of the surrounding environment. This procedure (localization 

using 2D SLAM and three-dimensional mapping) is performed in a controlled scenario, 

without dynamic objects or people moving in the navigation area. This is a preparation task 

that can be performed offline and executed only once. Throughout the document, the 

procedure of pinpointing the location of the vehicle using the SLAM will be referred to as 

pre-localization, while the three-dimensional mapping task will be referred to as mapping. 

II. The stored 3D map makes it possible to pinpoint the location of the vehicle by 

comparing the 3D map and the observation module’s readings. This step is performed during 

the vehicle’s normal operation. The used data are 3D points acquired by the observation 

module on the upper side of a facility, which can be considered almost static (without 

dynamic objects moving). In this document, this task will be called localization. 



32          Chapter 1·Introduction 

 

The three-dimensional map-based localization algorithm presented herein, improves 

computational requirements comparatively to 2D and 3D Simultaneous Localization and 

Mapping (SLAM) algorithms. Furthermore, the time necessary to locate the robot is also 

reduced when compared to the Particle Filter and algorithms of matching using the 

consecutive scan alignment, such as the Iterative Closest Point (ICP) algorithms. 

Videos and downloads on the three-dimensional map-based localization methodology can 

be found at [3]. In this PhD document experimental results are presented, which validate de 

developed algorithms.  

1.1. Innovation and Scientific Contributions 

Regarding the simple landmark-based localization system, described in Chapter 4, the 

fundamental contribute was at the level of teaching. The approach was implemented as a 

suitable tool to be used in teaching, improving the knowledge and learning on mobile robots 

concepts, to undergraduate students, at the Faculty of Engineering of the University of Porto. 

This approach contributed to the scientific field by making undergraduate students more 

motivated to learn topics such as multi fusion sensor, using probabilistic methods, such as the 

Extended Kalman Filter, and more interested in further research on the Mobile Robots topic. 

Concerning the three-dimensional map-based approach, the contributes can be divided in 

two groups, the ones related to the pre-localization and mapping modules and the others 

related to the localization module. 

Regarding the pre-localization and mapping module the contributes are: 

1) Development of a solution for SLAM in 2D, using not only linear segments 

representing walls, doors or furniture, but also points, representing columns and corners. 

2) 3D mapping, which uses three-dimensional data, based on the 2D SLAM, which uses 

two-dimensional data. The 3D map is used during the normal operation of the vehicle. 

3) The pre-localization and mapping procedures are performed at the same time using a 

unique observation module, based on a Laser Range Finder. 

Regarding the localization module, the contributes are: 

1) Adaptation of a light computational matching algorithm described in [4] by M.Lauren 

et al., from 2D to the 3D space, using Laser Range Finder data, maintaining low 

computational requirements. 

2) Improvement of the fusion system between the matching algorithm described in [4] by 

M.Lauren et al. and odometry data, by using an Extended Kalman Filter. 

3) Only 3D data on the upper side of a building (almost a static scenario) is used, making 

localization more robust and reliable, when applied to dynamic scenarios. 

4) The localization methodology can be used with any observation module which 

acquires 3D data: Kinect, 3D camera (MESA), stereo vision or commercial 3D LRF. 

5) Development of a localization methodology that makes the robot RobVigil an 

economically practicable robotic platform. 

1.2. Document Structure 
The document structure can be divided as follows: Chapter 2 presents a revision on the 

state of the art related to this work.  
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In the Chapter 3, the two localization strategies developed in this PhD thesis are 

introduced: the simple landmark-based and three-dimensional map-based approaches.  

In the Chapter 4 the simple landmark-based approach is described. The three-dimensional 

map-based localization system, including the entire set of associated modules, are described 

from Chapters 5 to 9. 

Chapter 5 describes the robot platform, where the tests on the three-dimensional map 

approach, presented in this document, were performed. In this Chapter the robot called 

RobVigil is described in detail, and so are the observation module characteristics.  

In Chapter 6 the data detection and extraction algorithm is presented. This algorithm 

outputs 2D features through the data acquired with the observation module, which are used 

during the pre-localization procedure. 

Chapter 7 describes with detail the pre-localization process, performed only once, offline, 

as a preparation task.  

The pose of the vehicle obtained during the pre-localization process, described in Chapter 

7 allows building an occupancy grid representing the environment in the three dimensional 

space. This mapping is described in Chapter 8. 

Chapter 9 presents in detail the 3D matching algorithm of localization used during the 

localization process, online, during the vehicle normal operation. 

In Chapter 10, the results on the entire localization methodology of the three-dimensional 

map-based are presented. Also, an industrial positioning system was used as ground truth 

aiming to validate the localization procedure in different scenarios. 
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2. Literature Review and State of the Art 

The need for autonomous vehicles has been growing in society, in the military, in 

industry or in tertiary services, in the last few years. As a result, it is important to provide 

mobile robots with a higher level of autonomy. 

A higher level of autonomy implies equipping mobile robots with sufficient and helpful 

intelligence, enabling their perception on the surrounding environment and action upon it.  

In modern flexible production systems [5], material handling, storage and services can be 

performed by Autonomous Guided Vehicles (AGVs). The efficiency and effectiveness of 

production or service systems is influenced by the level of optimisation of the materials' 

movement within the plant. Therefore, the performance of the automatic transportation 

system is crucial to achieve a good overall performance in the production system. The 

document [6] offers an overview of the technologies and efforts for the AGV systems in 

handling and logistics, in warehouses and manufacturing plants. 

Fig. 2.1 shows a Kiva robot belonging to Kiva Systems and applied to material handling 

inside warehouses, as shown in Fig. 2.2. 

 
 

Fig. 2.1 Kiva robot from Kiva Systems. Fig. 2.2 Kiva Systems applied to material handling. 

The introduction of AGV systems and mobile robots increased the autonomy in 

manufacture and services, resulting in less human intervention and more capacity and 

efficiency throughout the entire service system. The development of autonomous vehicle 

systems aims to achieve a higher level of autonomy, standardisation and modularity.  

In inspection services and surveillance tasks, the success is directly related to the system's 

level of autonomy. If this inspection services and surveillance tasks are performed with 

autonomous vehicles, with minimum human intervention, a better performance in the 

execution of the task is then guaranteed, without "mistakes", and keeping the operator far 

from hazardous situations. 
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The modularity of these systems becomes possible more flexibility for technology 

integration and improves the industrial and service environment’s capacity for change.  

Also within civil and service contexts, the growth of the autonomy in robotics has enabled 

the building of robots which are applicable in our everyday life.  

The robot Roomba, shown in Fig. 2.3, is a differential drive robot with ultrasound 

sensors, which autonomously cleans the house floor. The robot Rovio, Fig. 2.4, is an 

omnidirectional drive robot, whose localization is possible with the use of beacons, allows the 

monitoring of small indoor environments, as private houses. 

  
Fig. 2.3 Cleaning robot Roomba from IRobot. Fig. 2.4 Robot Rovio from WowWee. 

2.1. Sensors and Techniques for Localization 

Different sensors and techniques for the localization of vehicles are described in [7]. 

These sensors and techniques are divided into absolute and relative localization. 

Using sensors and techniques of relative localization, the vehicle's position in the world is 

given by the sum of successive estimated position differences, leading to a position error that 

grows without bounds. 

The dead reckoning is considered relative localization. Using sensors to perform dead 

reckoning, the calculation of the vehicle's position, at the present time, is based on its previous 

position, in the sensor's speed and the elapsed time. This type of estimation leads, over time, 

to an increase of the error in the calculation of the position of the vehicle.  

Examples of dead reckoning sensors are: odometry, accelerometers, gyroscopes, inertial 

navigation sensors (INS) or inertial measurement units (IMU) and Doppler-effect sensors 

(DVL).  

Due to their high frequency rate, the dead reckoning sensors are commonly used as 

redundant measurements to support and fuse with more complex localization techniques or 

sensors, which provide increasingly better quantities of information. Examples include 

infrared sensors, ultrasound sonars, Laser Range Finders, artificial vision and techniques 

based on passive or active beacons (such as the triangulation or trilateration). 

To perform this fusion probabilistic methods are commonly used, such as the family of 

Kalman Filters (with special emphasis for the Extended and Unscented Kalman Filters) and 

the Monte Carlo localization algorithms, known generally as Particle Filters. 

Among the dead reckoning sensors and techniques, the most used is the odometry. Some 

of the problems that appear in the odometry, which cause error in the pose estimation to 

increase over time are: mechanical imperfections, different radius of wheels and poor 

calibration of odometry. 
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J. Borenstein and L. Feng [8], states that the errors in the odometry can be divided into: 1) 

systematic errors and 2) non-systematic errors. Therefore, in that same paper, they conducted 

an experiment called, the University of Michigan Benchmark (UMBmark), with the goal of 

measuring and correcting the most relevant sources of error in odometry. 

The accelerometer‘s output is proportional to the velocity variation. Integrating two times 

the sensor’s signal, it is possible to obtain the distance travelled. This processing leads the 

increasing of the accelerometer's uncertainty, particularly for smaller accelerations, once also 

the noise is integrated twice.  

Most accelerometers perform badly when applied to small accelerations and velocities. 

An informal study, developed at the University of Michigan, reveals that, when used in small 

accelerations, accelerometers have a bad signal/noise ratio, [7]. 

The output of the gyroscope is proportional to the variation of orientation in time. It 

produces information on the angular velocity of each sensor’s axis. However, much like the 

accelerometer, in order to obtain the angular rotation, the sensor’s signal must be integrated, 

which implies integrating the noise. 

Both, the accelerometers' and gyroscopes' outputs, have also the biases, which are 

integrated as well and are hard to estimate. However, there are accelerometer and gyroscopes 

with high precision; on the other hand, they are expensive, have larger dimensions and present 

high energy-consumption.  

An inertial measurement unit (IMU) comprises three gyroscopes and three 

accelerometers. Each accelerometer measures the linear acceleration, while each gyroscope 

measures the rotation velocity at each axis.  

The IMU inherits the problems and qualities from the accelerometer and the gyroscope, 

but there are high precision IMUs, even though they are expensive. The work presented by B. 

Barshan et al., [9], describes the application of an Extended Kalman Filter with an IMU, 

aiming to estimate the mobile robot’s location.  

The sensors that use the Doppler effect, Doppler Velocity Log sensors (DVL), compute 

the vehicle’s velocity in relation to the floor. This sensor requires the integration of the signal 

to obtain the distance travelled, as the inertial navigation sensors, [7].  

The position of the vehicle, when is used sensors and techniques of absolute localization, 

is estimated in the world referential at each instant of time. Examples are the attitude sensors 

and digital compasses. Some methods of absolute localization are based on passive or active 

beacons, as is example passive reflectors, acoustic beacons LBL (Long baseline), ULBL 

(Ultra long baseline) and SBL (Short Baseline) or the Global Positioning Systems (GPS or 

DGPS) [7].  

The attitude sensors and digital compass appear as auxiliary elements of the inertial 

measurement units (IMU). The attitude sensor operation is based on a magnetic field of the 

earth. Therefore, the compass is easily influenced by iron infrastructures, power lines and 

vertical disturbances during the vehicle’s motion. 

The triangulation and trilateration are two of the essential localization techniques based 

on active or passive beacons.  

In the trilateration, the vehicle position is computed after the measurement of the relative 

distance between the autonomous vehicle and beacons.  
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In the triangulation, the vehicle is localized, measuring the angle between the vehicle 

orientation and each beacon, [7] and [10]. In theory, only three beacons are required to 

localize any vehicle in space, either using trilateration or triangulation. Two Portuguese works 

that use triangulation as a method of absolute localization for a mobile robot are: [10] and 

[11]. 

Examples of active beacons are the acoustic beacons. Measuring the time of flight of 

acoustic signals, it is possible to identify the distance between the vehicle and the beacon. A. 

Matos and N. Cruz at the work [12], localize the Autonomous Underwater Vehicle Mares in 

underwater environments using acoustic beacons, see Fig. 2.5. 

The autonomous underwater vehicle, shown in Fig. 2.5 belongs to the robotic group 

ROBIS, of the INESC TEC in Porto, Portugal, in which the author of this thesis is member. 

 

Fig. 2.5 Autonomous Underwater Vehicle (AUV) Mares. 

Other examples of active beacons are the Global Positioning Systems (GPS) or the cricket 

sensor developed by MIT, [13]. The cricket sensor uses a combination of radio frequency and 

ultrasound sensors, to determine the distance of listeners (attached to mobile devices) in 

relation to their host devices, which are placed on walls or the ceiling, operating as active 

beacons. 

There are also other sensors, with quality and helpful information on the surrounding 

environment. Some examples of these type of sensors are: ultrasound sensors, infrared 

sensors, artificial vision and Laser Range Finder. 

The ultrasound sensor measures the time of flight of the sound using the propagation 

speed to compute the distance of objects. The distance obtained is accurate, although it can be 

noisy, suffer from signal attenuation (obstacles which are capable of absorbing sound) and 

from diffuse and specular reflection.  

A microcontroller generates a signal with a specific frequency, which is transmitted by 

the sonar’s emitter. The time, detected by the sonar’s receptor, between the signal emission 

and the signal arrival is counted and the distance of the obstacle is determined using the value 

of the velocity of propagation of the sound, [14]. 

The infrared sensors measure the distance to obstacles. An example of an IR sensor is the 

Sharp IR Range Finder, which offers high accuracy. It is small and easy to use, has low power 

consumption and a thin beam width. It is also economical, which is an important feature, [15]. 
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The Sharp IR Range Finder sensor emit infrared light to obstacles and measure the angle 

of the light that is reflected. The measured angle allows obtaining the distance from the 

obstacle. There are two types of IR sensors, the ones that give a binary output and are only 

able to detect the obstacle’s existence; and finally, the IR sensors with a analogue output 

value that is dependent on the proximity of objects.  

A camera stores at each capture instant the light information acquired by a receptor. 

After, the light information of each pixel, is transformed in the digital form, forming an 

image. The main types of cameras are divided according the receptor used, CCD or CMOS, 

[16]. 

A single camera provides only texture information, while stereo vision, two cameras in 

different points of the space, as the human eyes, obtains depth information as well. Therefore, 

the use of two cameras allows obtaining 3D instead 2D information. But the process of 

calibration in the stereo vision is a hard and complex task. Furthermore, the artificial vision is 

highly influenced with the light conditions. 

The robot in Fig. 2.6 uses artificial vision, a camera with a conical mirror, to have a 360º 

view about the field in the robotic soccer Middle Size League (MSL). This robot is one of the 

five belonging to the 5DPO team, the MSL's team of the GroundSys Group of the Faculty of 

Engineering of the University of Porto, [17]. The author of this PhD thesis is a member of this 

team. 

 

Fig. 2.6 Robotic Soccer Middle Size League (MSL) robot, belonging to the 5DPO team. 

Some of the sensors and localizing techniques lack in the huge error on the vehicle’s pose 

estimation or in the absence of helpful and sufficient information to pinpoint the vehicle 

location. Other sensors are more affected by the indoor environment and light conditions, 

such as artificial vision. Finally, other techniques, such as triangulation and trilateration, must 

use beacons; this requires the environment to be prepared [7]. 

2.1.1. Laser Range Finder 

A good choice, for localization and navigation is a Laser Range Finder to be used as 

observation module. Like the sonar, the Laser Range Finder makes it possible to map the 

environment and detect nearby objects. The advantages are that the Laser Range Finder can 

measure long distances and quickly, with an extremely narrow beam, with a precision of 

millimetres. Therefore, the Laser Range Finder is used to compute distances of objects in 
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order to obtain a high resolution image of the surrounding environment with a relative large 

range, [18]. 

The Laser Range Finder operation consists of: after taking a reading, the laser moves 

itself within a specific fraction from the total angular range, then another reading is taken. In 

the "dead zone" or "blind region", of the Laser Range Finder, it is not possible to take 

readings, typically due to the mechanical constraints, see Fig. 2.7. 

The Laser Range Finder specifications are: distance precision, angular resolution and 

frequency. The distance precision is related to the depth measurement and it is typically about 

1-3 mm. The angular resolution is the number of steps in the full possible angular gap. This 

specification normally exceeds 500 steps. The frequency refers to the repetition of the 

scanning. It is generally more than or equal to 10Hz. The minimum distance that can often be 

measured is of a few centimetres and the maximum distance can go from one metre to tens of 

metres, [18]. 

  

Fig. 2.7 Left: Laser Range Finder-Hokuyo-URG-04LX-UG01. Right: Laser Range Finder Scanning. 

Regarding other perception sensors and systems, the complexity and quantity of data 

obtained by a LRF is smaller when compared to optical vision. However, it is clearly higher 

when the sensors are ultrasound or infrared sensors.  

It is possible to outline some features of the camera and the Laser Range Finder sensors. 

Regarding the camera sensor: the camera images have a wide range; it has higher resolution; 

and colour information is available. Regarding the Laser Range Finder: it performs direct 

acquisition of 2D points; it has no computation overheads; it obtains a large amount of 2D 

points on surfaces; it has a short acquisition time; light conditions do not affect data 

acquisition; and finally, it is ideal for the description of irregular surfaces. 

The Hokuyo Automatic Co. commercialise cheaper two-dimensional Laser Range Finders 

with different distance and angular ranges with the robotic purpose. 

The SICK Sensor Intelligence is another company which commercialise Laser Range 

Finder solutions. An example is the Sick Nav350, shown in Fig. 2.8, a laser positioning 

system. This sensor is commonly applied to autonomous guided vehicles (AGVs). It provides 

the Laser Range Finder contour and reflectors detection. Some specific scenarios referred by 

the sensor’s developers are: truck loading, shuttle systems and autonomous systems using 

AGVs. 
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The sensor is able to detect high reflective reflectors, planar or cylindrical. The reflectors 

should be covered with a highly reflective film, see Fig. 2.9. 

The Sick Nav350 positioning system is capable to provide its self-localization, using a 

triangulation technique when it detects reflectors and if the reflectors, placed in the navigation 

area, are mapped and stored in the memory of the sensor. 

In addition to its large size, the Sick Nav350 is heavy and expensive, which is impractical 

to be used in service mobile robots or when the total cost is an important feature. 

  

Fig. 2.8. Sick Nav350. Fig. 2.9. Cylindrical Reflector used in localization. 

2.1.2. 3D Observation Module Based on a Laser Range Finder 

There are two fundamental types of three-dimensional observation modules. One uses 

triangulation, making the projection of laser light into a surface. With the help of artificial 

vision, when the relative position between the source of the laser light and the camera is 

known, it is possible to reconstruct in the three-dimensional space, the illuminated surface.  

This kind of observation module has a limited distance range, but high accuracy, tens of 

micrometres. A work performed by the author of this PhD thesis on the triangulation topic is 

described in the paper [19]. 

The other type uses the time-of-flight concept, i.e. rotating Laser Range Finders to 

acquire the three-dimensional data. This observation module has an higher distance range, 

tens of metres, and an accuracy in the order of the millimetres. It is in this last kind of 

observation modules, the 3D LRF, that this sub-section will focus. 

A unique scan do not allow to obtain the 3D representation about the environment. This is 

only possible with multiple 2D scans pointed in different directions. Therefore commonly, it 

is used a Laser Range Finder mounted in a movable platform. 

There are several three-dimensional commercial sensor solutions capable of perceiving 

the surrounding environment with high accuracy. Velodyne, Cyra Technologies, Zoller & 

Frlich, Callidus Precision Systems, SICK Sensor Intelligence, Schmersal EOT, Leica, Mensi, 

Riegl, OpTech and I-Site are all companies that commercialise 3D laser sensors. However, 

the price of this equipment still makes it inaccessible for many research groups. Therefore, the 

absence of a solution with a more accessible price has led some research groups to build their 

own Laser Range Finder sensors, using cheaper 2D Laser Range Finders placed on movable 

platforms, [20] to [29]. 
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The 3D LRF can be developed in an economical and feasible way, by taking a 2D Laser 

Range Finder and a movable or rotating unit. Using the corresponding mathematical 

transformations, the entire unit (2D LRF plus the movable or rotating platform) will allow to 

reconstruct the 3D surrounding in a non-expensive way. 

D. Klimentjew et al. [20] built two different three-dimensional LRF platforms based on 

the two-dimensional Laser Range Finder URG-04LX. These platforms were tested and 

approved as economical and feasible alternatives to the commercial three-dimensional Laser 

Range Finders. The built platforms consisted of: a pan and tilt unit with a LRF, and a robotic 

arm, with 6 degrees of freedom with the LRF in its end. Both solutions are smaller and lighter 

than commercial solutions. In terms of price, the built solutions are five to ten times cheaper 

than the commercial options.  

Paulo Dias et al. [21], considers that an optimal solution is to use a less expensive 2D 

Laser Range Finder, creating a sensor that can be used for 3D reconstruction at an affordable 

price.  

A portable 3D LRF, with an angular range of 360º, is presented in the work described by 

A. Zhang et al. [22]. Its cost is about one fifth the price of the commercialised 3D LRFs.  

To give the third dimension, the Laser Range Finder can be placed in two different 

positions: tilt (scanning horizontally) or pan (scanning vertically). Both of these approaches 

have already been developed by Surman et al., [23] and by Batavia et al. [24]. The 

fundamental difference between the two approaches is in the apex angle orientation and in the 

influence of moving objects in the reconstructed scenario. In the vertical scanning, the 

movement of objects and disturbances are less likely to appear between scans. However, the 

existence of sensed moving objects can be helpful for path-planning and obstacle avoidance, 

[25]. 

2.2. Localization and Mapping Related Work 

There are several works related to the localization of mobile robots using different 

methods, [10] to [12] and [30] to [33]. However, these works do not follow the research 

approach proposed in this PhD thesis. 

One example is the work of M. Veloso and J. Biswas, described in [33], which uses a 

prior knowledge on a map grid with Wi-Fi signatures of access points to estimate the location 

of the vehicle.  

The books [34] and [35] are important references in the topics of sensing the surrounding 

environment, controlling and locating mobile robots.  

The algorithms concerning the localization of Mobile Robots can be divided in two large 

areas: the matching algorithms and the Simultaneous Localization and Mapping algorithms 

(SLAM), which are capable to solve the problem of localization and mapping at the same 

time. 

In the matching algorithms the pose estimation is commonly fused with dead reckoning 

data, using for that purpose, probabilistic methods such as the Kalman and Particle Filters. 

There are matching algorithms that require prior knowledge on the navigation area. This 

prior knowledge can be on the environment map, artificial, natural landmarks or beacons. 

There are other type of matching algorithms, which compute the overlapping zone 

between consecutive observations, to obtain the vehicle displacement. One possible matching 
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algorithm to estimate the quantity of angular and linear displacement of a vehicle between 

two different and consecutive configurations, is the Iterative Closest Point (ICP). This type of 

matching, known as point to point matching, analyses the contribution of each point of the 

laser scan, in the cost function.  

The algorithm is composed by two fundamental steps, which are iterated until the solution 

convergence: the matching and optimising. The result is the distance between consecutive 

scans, corresponding to the vehicle configuration that minimises the cost function.  

The problem of this approach is the amount of data to be processed. The process of 

finding the correct correspondence between points (matching) is a difficult and time-

consuming task.  

Examples of works where the scan alignment is used to perform the registration between 

consecutive scans are the described in the papers [36] to [38].  

J. Minguez et al. [38], developed the metric-based ICP algorithm (MbICP), improving the 

standard ICP with a novel distance measure between corresponding points. This measure 

considers the translation and rotation displacements at the same time, in contrast to the 

standard ICP. This avoids two different minimisation problems and consequently reduces the 

computational cost. 

Lets Suppose the points    belonging to the previous scan. Lets also imagine that the 

vehicle displacement is represented by the transformation  . Therefore, all of the new points 

(     ) of the actual laser scan can be mapped in the previous laser scan using the   

transformation,              . The matching phase, compute the nearest and corresponding 

point of    in the    set of points. The difference of this step in the MbICP, proposed by J. 

Minguez et al. in [38] is the metric/distance used. 

Between consecutive scans, using the least square minimisation error, it is possible to 

compute the transformation   that leads to the minimum cost. If the cost function value 

resulting from the   transformation is sufficiently small, the convergence of the optimisation 

step ended. If not, the optimisation step is repeated with the new transformation equal to  , 

until reached the convergence end. The first iteration step is performed using the 

transformation provided by the odometry. 

The improvement presented in the metric-based ICP algorithm, makes it possible to 

achieve a faster convergence to the solution when compared with the standard ICP, with a 

decreased amount of time spent in each iteration.  

J. Minguez et al. in [38] conducted an experiment, where the MbICP was applied to a real 

robot, online in a cycle time of 200 milliseconds, imposed by the Laser Range Finder, which 

acquires 361 points. The displacement of the vehicle performed during this experiment is 

shown in Fig. 2.10. The algorithm execution time has not a maximum value and takes a mean 

of 76 milliseconds in each cycle time, to be executed in a Pentium IV 1.8GHz. 

In addition to the computational time spent, the ICP approach has another problem, 

sometimes there is no sufficient overlapping between two consecutive laser scans and it is 

hard to find a correct solution. The overlapping zone should obey specific constraints in order 

to achieve the correct solution. There are shapes, which turn out to be difficult in the 

registration and can lead to a poor calculation of the vehicle displacement. Some examples 

are: cones, cylinders, planes and spheres. 
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Fig. 2.10 Vehicle location using the MbICP method with a Laser Rang Finder. Image from [38].  

The work described by S. Zhang and G. Yan [39], introduces a 3D digitisation method 

which aims to calculate the next vehicle standpoint. This method guarantees a correct 

registration with the fewest possible number of overlapping points (to ensure correct matching 

and reduce the computational time). The approach presented can identify the minimum 

overlapping area which contains enough information for 3D registration. When the method 

detects smooth areas, the number of viewpoints increases to obtain larger overlapping zones. 

In non-smooth areas the number of viewpoints decreases, since a smaller overlapping is 

sufficient. 

In the algorithm described by S. H. Cho and S. Hong in [40], the global map is composed 

by a set of vertexes (invariant points with the vehicle displacement), representing the 

environment corners. To reach a specific goal in the space, the vehicle should cross a set of 

cells. At each grid (point in the map) the vehicle can see a set of vertexes that are helpful to its 

location.  

This work precisely describes the best way of finding and extracting the vertexes. After 

the matching between the vertexes on the map and the seen in the Laser Range Finder scan, it 

is possible to directly compute the robot’s position in the global referential. Each vertex is 

represented by a pattern of three elements, the distance to the next vertex, adjacency, which is 

equal to one if the vertex is connected with the next vertex by a linear segment, zero, if none; 

and the slant angle between two consecutive vertexes.  

This matching algorithm can be described as the following: first the list of vertex is 

obtained in the laser data; second, the list of vertex is obtained on map (expected vertexes). 

After, it is tried all the combinations between the two lists of vertexes. Using the pattern of 

each vertex, a set of conditions need to be obeyed to consider correspondence between 

vertexes. Finally, the combination between the two lists, which have the larger number of 

pairs, is used to obtain the vehicle orientation and position. 

Some drawbacks of the algorithm proposed by the authors S. H. Cho and S. Hong in [40], 

are: it is computationally complex to obtain the correspondences between the mapped 
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vertexes and the ones that are found on the laser data; it is necessary to have a previous map, 

how can it be obtained?; and finally, it is a complex algorithm to implement. 

To some authors, the concept of autonomous self-navigation in mobile robotics can be 

defined as: true autonomy comes from the capacity that the mobile vehicle has to navigate in 

unknown environments, building its own global map and simultaneously localizing itself 

inside the map (Simultaneous Localization and Mapping - SLAM). 

Thus, when an environment is well structured, as is example the majority of the indoor 

environments, it is possible to localize and map the environment at the same time. The most 

common solutions for the SLAM problem are: the Extended Kalman Filter applied to SLAM, 

known as EKF-SLAM and the Particle Filter applied to SLAM, known as FastSlam or the 

Rao-Blackwellized Particle Filter for grid mapping, [41]. 

A solution for a SLAM problem can build two different types of environment maps: a 

feature map of artificial or natural landmarks, such as linear segments representing walls, 

doors or furniture; or an occupancy grid map of occupied or free cells. The feature map is 

more intuitive and provides more quality and sensible information for human understanding. 

Furthermore, the feature map has less memory usage when compared with the grid map. 

The error in the vehicles' state estimation increases with the vehicle displacement. Each 

environment feature has an error of estimation (covariance) correlated with the previous 

mapped features and with the vehicle state. When previous features or map zones are seen in 

the environment, i.e. a closure loop occurs, the entire map together with the vehicle pose is 

corrected. 

The EKF-SLAM is a variant of the Extended Kalman Filter and uses only one state 

matrix representing the vehicle state and the landmarks of the feature map. This state matrix is 

increased every time a new feature is found. 

Nonetheless, the EKF-SLAM solution is computationally heavy, quadratic with a number 

of features  ,      . In dynamic or large scenarios, as service environments, the map can be 

increased continuously, thus becoming non-applicable when online performance is required. 

These aspects can be aggravated if the dimension of the space increases (3D instead 2D 

space).  

On the contrary, the FastSlam solution can be seen as a robot and a collection of   

landmarks estimation problems. Each particle has its pose estimative and tiny state matrices 

representing each landmarks of the feature map. The FastSlam has a lower computational 

complexity, when compared with the EKF-SLAM,         , with   particles and N 

landmarks. 

Important works solving the SLAM problem using the EKF-SLAM solution are [42] to 

[44]. On the contrary, important works that solve the simultaneous localization and mapping 

problem using the FastSlam approach are [45] to [48]. 

S. Thrun et al. [46] says that SLAM is the chicken and egg problem. Which came first? 

the map allowing the vehicle to localize itself or; the vehicle accurate localization, making it 

possible to map the environment. 

At this point, mapping when the position is well known is no longer a problem. This is 

also true for the opposite scenario; when the mapping is known, the position of the vehicle 

can be identified. When these two problems are solved at the same time it is called 

Simultaneous Localization and Mapping, SLAM. 
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Several localization algorithms accumulate errors during the displacement. In large indoor 

environments, when a closure loop appears (an area in the navigation environment already 

visited), they do not have the capacity to close the loop, correcting the entire set of vehicle 

positions and the map configuration, often acquired with a large amount of error. 

Other algorithms based on the Expectation and Maximisation approach (EM) correct the 

entire map when a closure loop is seen.  

The EM family of mapping algorithms consider all past locations, using probabilistic 

refinement during the map construction, [46]. But, each time an observation arrives, it is 

impossible in real-time to analyse all of the vehicle’s past locations and correct them to 

produce the actual measure that is consistent with the map. An EM algorithm can take hours, 

making it impractical for online applications. 

S. Thrun and D. Fox [46], developed an algorithm that uses the EM approach, without its 

entire power, to perform SLAM online and in large cycle environments. Using Particle 

Filters, samples are distributed around the estimation of position of the vehicle. According to 

the confidence in the pose estimation, the samples are spaced further apart or closer together. 

Using a gradient descendent maximisation algorithm on each sample, an approximation of the 

full posterior probability function is obtained. With the full posterior it is possible to obtain 

the best estimation of the vehicle position and update the map. 

Taking the incremental position of the vehicle using the more recent scan and odometry, 

it is possible to compute other pose estimation. When the difference between the two 

estimations is different of zero, it means that a shift of the vehicle position has occurred and 

then a previously mapped area appeared (closure loop). The entire set of vehicle poses in the 

loop need to be revised, to make the map consistent and increase accuracy in the vehicle pose 

estimative. 

Consequently, the localization in the space is obtained (using a 2D LRF in the horizontal) 

and the 3D space mapping is possible since the vehicle is well localized (using another 2D 

LRF, but in the vertical). But, the constructed 3D map is never used to locate the vehicle in its 

normal operation. 

In the following figures, obtained from the work described in [46], it is shown the 2D 

mapping using SLAM, Fig. 2.11, and the constructed 3D map using another Laser Range 

Finder, placed vertically, Fig. 2.12. 

The publication made by D. Hähnel, W. Burgard and S. Thrun [47], presents an algorithm 

to generate 3D models of indoor and outdoor environments. To obtain an accurate 3D 

environment model, a probabilistic scan matching is used to align the present scan with the 

previous scans. It is used a prior 2D map and it is performed the 2D probabilistic matching. 

However, as stated by the authors, the three-dimensional variants of the maps and probability 

functions, consume too much memory. Therefore, this approach is not applicable to 3D scan 

alignment. 

The goal of the work described by T. Yokoya et al. [48] is to localize the robot known as 

the "Parent" robot (which has a 3D LRF module), using a cooperative position system (CPS).  
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Fig. 2.11 Left: the raw mapped using odometry. Right: 
the map generated with the algorithm proposed by S. 

Thrun and D. Fox [46].  

Fig. 2.12 The 3D Map built after an accurate vehicle 
estimation in a 2D space. Image from [46] 

The "Parent" uses the measured relative position to other two robots, called by the authors 

as "Children". Once the correct localization has been obtained, the "Parent" is able to perform 

the 3D mapping in indoor or outdoor environments. In other words, the environment scan is 

only performed when the localization between the "Parent" and "Child" robots is accurate.  

The "Parent" and "Children" are shown in following left figure of Fig. 2.13, while the 

built 3D map is shown at the right figure of Fig. 2.13. 

  

Fig. 2.13 Left: Parent and Child robots. Right: three-dimensional generated map. Images from [48]. 

Once the initial position of the "Parent" in the world referential is known, the operation of 

the algorithm is similar to the following steps:  

1) Once the "Children" has moved, the cooperative position system localizes them in the 

world referential, computing the position of the each "Child" in relation to the "Parent".  

2) If the global position of the "Child" is known after the "Parent" displacement, it is 

possible to know the robot’s relative distance and the Parent’s new global position.  

3) When the new global position of the "Parent" is known with a higher level of accuracy, 

it is possible to perform the LRF scan and accurately map the unknown environment in the 

three-dimensional space. 

An advantage of this work proposed is that it allows transforming the Laser Range Finder 

data into a 3D map, either in indoor or outdoor environments. 

As the three-dimensional LRF is not used for localization, as it is only necessary in the 

environment mapping, a different method of localization is required (Cooperative Positioning 

System-CPS). The use of CPS for localization emphasises the need of another method and 

sensorial module to determine the relative position between vehicles. 
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Some of the disadvantages of the approach described in the paper are: it requires more 

than one robot; the cooperative movement is hard to perform, since the "Children" have 

always to be visible for the "Parent" robot; the path computation is a hard and time-

consuming task; and finally, the estimated position of the "Parent" is always a relative 

estimation, which leads to an increase in the estimation error. Therefore, the "Children" 

movement need to be as small as possible in order to minimise the error. 

T. Yokoya et al. [48], provide some values on the time spent during a real experiment, 

unfortunately, information on the used processor and the number of points acquired by the 

LRF is not presented. The algorithm is a time-consuming approach: 7 min. to scan the 

environment and transform the range image into voxel data; 3.5 min. to determine the next 

position of the "Parent" robot; and 8.5 min. to determine the next position of the "Children". 

During the experiment: "The Parent robot scanned 25 times and the child robots were 

displaced 4 times in this experiment. Total time is about 6[hr.]". 

The work described by K. Nishimoto et al. [49] proves that is possible to use the Hough 

Transform to solve the SLAM problem or estimate the robot pose. The mapping and 

localization is based on the extraction of candidates of planes applying a fast Hough 

Transform.  

The localization algorithm presented in this paper can be described as follows: 

1) Reduction of the Z component, representing the 3D points in a 2D space. 

2) Applying the Hough Transform in a 2D space, it is possible to find the correct 

parameters of vertical planes, computing the parameters of lines. 

3) In the case of slant planes, it is possible to see the points that form a polygon in the 2D 

projection. It is this set of points that should be tested to determine the plane equation. By 

using only three of these points, it is possible to obtain the parameterisation of the slant plane 

in spherical coordinates ( ,   and  ). 

After the vehicle displacement, the same plane in different configurations provides 

information on its rotation. Between two different configurations it is also possible to know 

the relation between the   and   vehicle coordinates in a 2D space. With two unknown 

variables (  and  ) and only one equation (relation between   and  ), another plane is 

required to estimate the complete vehicle location. 

The approach used here reduces the complexity of determining 3D planes using the 

Hough transform, when 3D data is reduced to the 2D space. Vertical planes are computed 

using the 2D Hough transform. Slant planes are directly computed when using three points of 

a polygon. 

However, when only planes are used in the localization, a lot of information is lost. A 

plane may represent, for instance, a wall. A wall has a lot of information that can be helpful in 

the vehicle localization: windows, holes or corners.  

If a plane represents the room’s ceiling, the use of its information will not be helpful in 

the vehicle localization. However, the fire sensors, pipelines or light supports, which there are 

on the ceiling, can provide a lot of useful information. 

Furthermore, other drawbacks appear when using this approach: the Hough Transform is 

computationally heavy and; since the detected planes and robot position are treated as 

deterministic variables, whenever a closure point appears (already seen area), the entire map 
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will not be corrected backwards. Therefore, during the mapping of large areas, the accuracy 

will decrease. 

In this work, the used computer in the calculation of the Hough Transform is Celeron 2.3 

GHz. The minimum time required to detect and extract information on the scenario shown at 

Fig. 2.14 is 45 seconds. In the following figure, Fig. 2.14, it is shown at bottom, the Hough 

Transform peaks to an particular case, with plans reconstructed on the image of top. 

 
Fig. 2.14 Reconstructed plans (top). Correspondence with the Hough Transform peaks (bottom). Image form [49]. 

Other works on the topic of mobile robots localization are [50] to [52]. S. Jia et al. at the 

works described in [50] and [51], show the localization and mapping method implemented in 

a 2D space, based on the combination of two stages: the occupancy grid which is used to 

construct an map-based on a LRF model and Bayes rules; and the EKF applied to the map is 

used to correct it and estimate the position of the vehicle. 

The occupancy grid step can be described as follows: 

1) Grid step: each cell is free, occupied or unknown. R is the distance measured by the 

Laser Range Finder. The map grid is updated according to the probability of being occupied 

given a certain observation, P(E/O) (Bayes rules). If the probability of being occupied is 

higher than 0.7, then the cell is labelled as occupied.  

2) Geometry step: remove obstacles and then separate the occupied cells in non-

connected zones. Each non-connected zone is then separated into sub-zones, representing a 

linear segment. The LSQ method is used to obtain the linear segment in each sub-zone. 

The second step, the EKF stage, is described as follows:  

1) Once the local map has been built in the two-dimensional space (linear segments), 

based on the geometry step, the EKF algorithm is helpful to estimate the robot’s pose and 

correct the map model.  

2) It is possible to modify the map using an interactive GUI. 

The work described by A. Rusdinar et al. [52], once again presents a solution for the 

localization and mapping of mobile robots in the two-dimensional space, using a LRF. But, in 

the 2D space the LRF readings are affected with the noise introduced by dynamic objects. It 

describes a Particle Filter that is used to solve the SLAM problem in indoor buildings. The 

robust mean (weighted average from a small window around the best particle) improves the 

performance and robustness of the vehicle pose estimation. 



50          Chapter 2·Literature Review and State of the Art 

 

The Particle Filter can be divided, fundamentally, into the following three steps: the 

prediction; the update; and finally the re-sampling.  

In the prediction step the particles' state is propagated with the robot kinematics model. 

During the update step, the weights of the particles are evaluated based on the last Laser 

Range Finder information. Finally, in the resample step, particles are chosen to survive 

according to their weight in the filter. 

An estimation of the robot’s state is obtained by the weighted sum of particles. Some 

methods of choosing the estimated position are: weight average, the best particle and robust 

mean. The robust mean is used to compute the position of the vehicle in the work described 

by A. Rusdinar et al. [52]. In this method, a small window centred in the best particle is used. 

The vehicle pose estimation is the weighted average of all particles in the window. 

The use of Particle Filters to estimate the position of the vehicle is a computationally 

heavy procedure, since the same three basic steps need to be applied to each particle 

(prediction, update and re-sampling). 

In the Experimental Results Chapter, sub-section 10.4.4, a deep discussion about the 

novelties of the three-dimensional map-based approach is made, comparing with some works 

and algorithms of the state of art. 

2.3. Base Papers and Books 

The book "Probabilistic Robotics" from S. Thrun et al. [34], is fundamental literature in 

the mobile robots topic, including localization, sensing, control, multi fusion sensors and 

resolution of SLAM problems.  

Also the book from S. S. Ge and F. L. Lewis [35], gives an important overview about the 

state of art concerning the mobile robots area. This book, also presents important literature 

about sensing the environment, control of mobile robots, localization, multi fusion sensors, 

SLAM applied to indoor and outdoor scenarios and finally, the application of mobile robots. 

Both these books, [34] and [35] were fundamental literature in the development of the 

work presented in this PhD thesis. 

The book from A. Gelb et al. [53], explains the fundamental theory underlying the 

Optimal Estimation topic: Kalman Filters, observation error modelling et cetera. This book 

were an important role in the developing work presented in this document. 

M. Lauer et al. [4] describe a matching algorithm performed in the two-dimensional space 

with artificial vision, to pinpoint the position of each robot of the Tribots team during the 

robotic soccer Middle Size League (MSL). This algorithm is called Perfect Match and is 

executed fast, with low computational power requirements. 

This algorithm compares the actual acquired data and the map about the MSL's field to 

estimate the robot pose in this specific scenario. The Perfect Match was also implemented in 

the robots of the MSL's team 5DPO, with improvements, where the author is member.  

In this paper M. Lauer et al. [4], compares the Perfect Match with the Particle Filter 

algorithm using 200 and 500 particles. The reached conclusion was that, the average spent 

time when using the Perfect Match, is 4.2 milliseconds, while when using a Particle Filter 

with 200 particles, the average spent time is about 17.9 milliseconds (four times higher). 

Furthermore, when using a Particle Filter with 500 particles, the average spent time is about 

48.3 milliseconds (ten times higher). The difference of the execution time is really relevant, 
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especially when is necessary to operate in real-time with high constraints in terms of period 

cycle. In this experiment, the used processor was the 1GHz Pentium. 

As mentioned in Chapter 1, the Localization module of the three-dimensional map-based 

approach is based on the paper described by M. Lauer et al. [4]. 

The development of this algorithm in the 5DPO team helped to make clear that this 

algorithm can be adapted and applied using laser data in the 3D space, performing 

localization in a simple, robust and non-expensive computational time way.  

Successful results such as [54] and [55], attempt to solve the problem of matching 

between different maps acquired by different robots. If different vehicles are performing the 

inspection in different zones of a building, the acquired maps should be merged to obtain a 

larger map. Therefore, different maps are merged without any previous knowledge about their 

linear and angular offsets. In order to reach this goal, the authors used the Random Walk 

algorithm to minimise the dissimilarity between the maps in the overlapping zone. The 

authors present an acceptance indicator that serves as last stage of acceptance for the solution 

achieved when the algorithm is applied. 

In the three-dimensional map-based approach, these documents, [54] and [55], are 

important as they contain the pseudo-code algorithm which is helpful when computing the 

distance matrices that work as a look-up table during the localization procedure. 

As well the gradient matrices are look-up tables in the procedure of localization. The 

book from R. C. Gonzalez and R. E. Woods [56], describes techniques for image processing. 

Among others, the Sobel and Prewitt filters are described in this book, which are helpful to 

obtain those gradient matrices. 

Regarding the Pre-Localization and Mapping procedure on the three-dimensional map-

based approach, the base documents are: [41], [43], [44], [57] to [59]. 

For the authors of [40], the Kalman and Particle Filters, applied to Simultaneous 

Localization and Mapping problems (SLAM) fail when false detection of features occurs. In 

fact, this is one of the greater challenges in the SLAM problem. 

However, there are already improvements and solutions for the data association problem 

in SLAM. Two solutions, which work together, are the individual and joint compatibility 

between the feature measured and the features that already exist in the map state.  

The individual and joint compatibility can use the Mahalanobis distance to find the 

corresponding feature, taking into account the accuracy of the obtained measure and the 

accuracy of the mapped feature. As is presented at the approach proposed in [41] and [58].  

Other approach to associate mapped features with found features in the actual set of 

readings, is proposed in [43]. In the developed pre-localization procedure, it is performed an 

association between an observed feature and a feature already belonging to the EKF, using an 

approach based on the work presented by Andrea Garulli et al. [43]. 

In the work described by L. Teslić et al [44], the linear segments are parameterised in 

polar coordinates, such as: distance to the origin ρ and the angle that the line has in relation to 

the x-axis (θ). Therefore, each linear segment parameter has noise associated that is modelled 

as Gaussian noise with a mean of zero and standard deviation    and   . 

In this paper, the linear segment parameters are computed using the classic Least Square 

Quadratic (LSQ) error method instead the orthogonal LSQ. The paper also describes how to 

compute the parameters' covariances using the classic LSQ. It essentially focuses on how to 
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generate output covariance matrices related to the environment lines. The classic LSQ is 

proved to be more efficient and to take less computational time than the orthogonal LSQ. 

The classical LSQ accuracy depends on the number of points while the orthogonal LSQ 

accuracy depends on the LRF noise model.  

L. Teslić et al. [44], proved that: the classic LSQ method, used to determine the linear 

segment parameters and output covariance matrices, has a lower variance. Since in this paper, 

the linear segments are computed together with the calculation of the respective parameters 

and the covariance matrix, they become a fundamental part of the work developed in this 

thesis, aiming to develop the SLAM algorithm using 2D data. 

The paper [57], compares methods for line extraction, applied to Laser Range Finder data 

for indoor mobile robots. The algorithms described and compared are: 1) Split-and-Merge; 2) 

Incremental Algorithm; 3) Line Regression; 4) Ransac; 5) Hough Transform; and finally 6) 

Expectation and Maximisation (EM). 

Some of the features of the algorithms outlined above are:  

1) The Split-and-Merge, Incremental and Line Regression, are much faster than the 

others; this is essentially due to: a) their nondeterministic nature and b) because they make 

use of the scan data that is a sequence of raw scan points. 

2) The Incremental algorithms are correct, since they have a very low number of false 

positives. The Split-and-Merge is better in true positive line detections. 

3) The Split-and-Merge and Incremental are the preferred methods used for indoor 

robotic localization and mapping. However, the Split-and-Merge is probably the most popular 

line extraction algorithm, due to its speed, accuracy and relative precision with the line 

parameters. 

4) RANSAC and EM produce a high number of false positive line detections. 

5) Algorithms as RANSAC, Hough Transform and EM are slower, however they 

produce more precise lines. 

The work described in [59] presents a particular and interesting approach to precisely 

determine the invariant points and the respective errors. The author modelled the error of a 

corner as a sum of two fundamental causes: 1) measurement process noise, i.e. error in the 

distance measurement. This error is modelled by the equation:         , where   is 

Gaussian noise with zero mean and standard deviation of   .   is Gaussian noise with zero 

mean and standard deviation   . 2) Quantisation error, that occurs in the start-end cluster. It is 

the error that is caused by the digitalisation of the laser scan. It is modelled as the maximum 

gap between two consecutive distance measurements. It is dependent on the scanner’s angular 

resolution, the distance measured and the angle that the line, which contains the corner, makes 

with the measurement vector. The angular error is modelled as Gaussian noise with zero mean 

and standard deviation   .  

The books and papers enumerated in this Chapter were a fundamental role in the 

developed work, which is described in this thesis document. These documents are addressed 

along this thesis, in the parts of respective interest. 
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3. Localization Strategies 

As described in Chapter 1, two different localization methodologies were implemented, 

with the fundamental goal of localize mobile robots without the need of prepare or equip the 

indoor environment with artificial landmarks or beacons: simple landmark-based and three-

dimensional map-based approaches. 

The localization strategies are sufficiently fast to run online in the respective platforms. 

Both approaches make use of natural landmarks and are applied to the same type of robot, a 

differential drive robot, but can be used in robots with other types of traction. 

Therefore, the kinematic model used in the simple landmark-based approach is used as 

well in the three-dimensional map-based approach, even applied to different robots. The 

association techniques and multi fusion sensor method (Extended Kalman Filter) used in the 

Lego's localization (simple landmark-based), is also used in the three-dimensional map-based 

localization methodology. 

The simple landmark-based approach is applied to a Lego NXT in a simple and 

constrained scenario. In this scenario the vehicle need to follow a square shape path and 

locate itself using walls at each side of the path. 

To do that, the Lego NXT uses the measurements of two IR Sharp sensors, to compute 

the distance and orientation of the robot in relation to those walls, whose positions are 

previously known. 

Furthermore, encoders in each wheel of the Lego NXT, are used to obtain odometry data. 

The odometry data is fused with the observation of the walls, allowing to compute the 

estimation of the robot pose. 

The strategy used for the Lego NXT and the implementation of this localization 

algorithm, is explained in detail in Chapter 4. Furthermore, this approach was developed in a 

suitable way, to be used to teach the Extended Kalman Filter and its application in mobile 

robots. As well in Chapter 4 experiments with undergraduate students are described. 

Although being a localization methodology with potentialities, the simple landmark-

based approach is only applicable in simple scenarios, as a square shape with walls at each 

side. 

Therefore, this PhD thesis evolved in the sense of develop a suitable localization 

approach, capable of pinpoint an indoor vehicle in more complex scenarios, without 

constraints, using for that, only the infrastructure of the building, without artificial landmarks 

or beacons. As already referred, this approach is called three-dimensional map-based. 

The three-dimensional map-based methodology uses the three-dimensional map of the 

surrounding environment to pinpoint the robot pose. This approach fulfil the requirements and 
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solves the problem described in the Chapter 1, performing the localization with the following 

two steps: 

1) Pre-localization and mapping: to obtain the three-dimensional map of an indoor 

environment; here it is intended to navigate with a vehicle equipped with an observation 

module capable to acquire three-dimensional data. 

2) Localization: to perform the vehicle self-localization; this is to be used online using a 

matching algorithm, in the three-dimensional space, between the present readings and the 

stored maps. 

These two different modules are performed offline and online, respectively, 1) pre-

localization and mapping; and 2) localization. 

 

Fig. 3.1 Localization methodology described in the document. 

As shown in Fig. 3.1, 1) Pre-localization aims to pinpoint the vehicle position, in a first 

stage, allowing the 2) Mapping procedure. In the mapping procedure, 2.1) Bayes Rules are 

applied in order to build the occupancy grid of the indoor environment.  

After obtaining the occupancy grid, the distance transform and the Sobel filters are 

applied to the previously obtained 3D map (occupancy grid). That way, 2.2) Creating 

Distance & Gradient matrices block computes the distance and the gradient matrices, which 

are necessary during the normal vehicle operation, on-line, 3) Localization. 

The procedure 1) Pre-localization, is explained in Chapter 7. The procedure and sub-

procedures 2) Mapping, 2.1) Bayes Rules and 2.2) Creating Distance & Gradient matrices are 
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described in the Chapter and sub-sections 8, 8.1 and 8.2, respectively. Finally, the 3) 

Localization is presented, in detail, in Chapter 9. 

3.1. Pre-Localization and Mapping Modules 
Lets imagine a situation where it is possible to have a controlled scenario and, during a 

certain time, there are no dynamic objects or individuals crossing the environment. During 

this time, called by author as preparation time, the scenario is static, allowing to move the 

vehicle, across rooms, corridors and halls, and acquiring data without any disturbance being 

introduced by dynamic objects. The data includes odometry and observation module readings. 

The offline SLAM procedure, represented in the Fig. 3.1 with the pre-localization block, 

can be applied using the data acquired during the preparation time. Once the SLAM has been 

applied, the 2D estimated map is used to determine the location of the vehicle. In summary, 

the application of the pre-localization procedure, works as an indoor "GPS", allowing to 

compute the vehicle pose. 

Finally, still offline and with the position of the vehicle obtained, the three-dimensional 

map can be built and the respective distance and gradient matrices are stored. This is 

represented in the Fig. 3.1 with the mapping block.  

These two procedures (pre-localization and mapping) will only be performed once. The 

stored distance and gradient matrices are used as look-up tables for the localization procedure, 

in the normal vehicle operation. 

The movement performed during the preparation time is not autonomous; it must be 

performed through the use of a remote control. The user that controls the vehicle should be 

able to navigate in zones of interest, which are the ones that have objects, walls and corners, 

to map. These zones are helpful in the robot’s self-localization. 

It was developed a rotating LRF (tilting LRF), called observation module, described in 

Chapter 5, which acquires three-dimensional points. Using this observation module, at each 

scan, it is possible to determine linear segments (walls, doors and furniture) [57] and points 

that are invariant with the vehicle displacement (corners and columns) [59]. The observation 

module, as will be explained with more detail in Chapter 5, comprises a servo DC motor, 

which enables the LRF rotation, acquiring points with coordinates        .  

In fact, the pre-localization phase, the SLAM procedure has two different steps:  

1) Initially, with the observation module fixed in the horizontal (tilting LRF in the 

horizontal), and controlling the vehicle with a joystick, the acquired data in the two-

dimensional space can be logged. The acquired points are reduced into linear segments and 

points allowing the application of the EKF-SLAM step to build a 2D feature map.   

2) After, with the observation module rotating, also controlling the vehicle with a 

joystick, 3D data can be logged to be applied with an EKF-Loc procedure, which only 

estimates the vehicle state, with the prior knowledge about the 2D feature map obtained in the 

EKF-SLAM step. The EKF-Loc procedure allows to locate accurately the vehicle pose, 

becoming possible the 3D mapping. 

In fact, it is necessary to create the feature map firstly, with an EKF-SLAM algorithm, 

without any prior knowledge about the surrounding environment. To do that, it is preferable, 

for a more accurate result, to use the maximum possible data, about the environment. This 

maximum possible data is obtained with the tilting LRF fixed on the horizontal. 
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Only after, with the prior knowledge about the 2D feature map, the vehicle can be 

accurately located and perform the 3D mapping. To do that, a simpler EKF (called EKF-Loc) 

is used, and the tilting LRF is in the rotating mode. Therefore, the acquired points need to be 

projected in the ground plan, allowing to apply the EKF-Loc step with linear segments and 

invariant points in the two-dimensional space, while the same points in the three-dimensional 

space allows the 3D mapping. 

Lets consider now the following assumption is assumed: in an indoor environment, when 

the scenario is controlled, i.e. without dynamic objects crossing the environment, the scenario 

is similar between the z coordinates:      and      metres, such is example a corridor as 

shown in Fig. 3.2. 

Lets consider the set of the points   acquired by the observation module with coordinates 

       . The projection in a 2D space of points   whose z coordinate is between      and 

     metres, constitute the set of data points    , with coordinates      , see Fig. 3.3.  

  

Fig. 3.2 Corridor, walls in the z coordinate gap of 
         metres to          metres. 

Fig. 3.3 Corridor (projection in a 2D space). 

The data detection and extraction module, described in the Chapter 6, take the set of 

points     and detect and extract information on features as walls, doors, furniture, corners 

and columns, which are used in the pre-localization procedure. The set of linear segments and 

invariant points found in     are called       and      , respectively. 

In summary, the sets       and       make it possible to pinpoint the vehicle position 

using the pre-localization and mapping the surrounding environment in the 3D space, at the 

same time, with the set of points  . 

Eight different scenarios were mapped in the three-dimensional space using pre-

localization and mapping procedures. The results are presented in Chapter 10.  

3.2. Localization Module 

The author belongs to the 5DPO team which participates in the Robotic Soccer Middle 

Size League (MSL) at the national and international RoboCup.  

In the MSL football games, most of the teams have robots with Omni-directional camera 

sensors which provide an image of the football field, see Fig. 3.4 left. A segmented image is 

obtained from the image processing and it is possible to separate the image in colours and 

associate the colours to objects, see Fig. 3.4 right: ball, obstacles, white lines and the green 

field. 

In the segmented image it is also possible to detect the transition between green-white and 

white-green, along the 360º camera field of view. Following a good calibration, these 
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transitions are transformed into point coordinates (2D points) of the field’s white lines. These 

points are helpful for robot localization. 

  

Fig. 3.4 Vision with a field of view of 360º (left), with the detection of green to white transitions. Segmented image 

on the right: green field (green), field lines (white), obstacles (black) and the ball (orange with circular form). 

The localization algorithm used in the robotic football league, by the robots of the 5DPO 

team, fuses with an Extended Kalman Filter, the odometry data and the result of the Perfect 

Match algorithm, described by M. Lauer et al. [4]. 

The Perfect Match algorithm is a time saver matching algorithm, which is robust and 

feasible, and has proven its value in the Robotic Soccer Middle Size League in RoboCup. 

Lets imagine now that the points of transitions are substituted by two-dimensional points 

obtained using an horizontal fixed Laser Range Finder. Furthermore, the field lines are 

substituted by LRF data obtained in the 2D plan that crosses the environment in the 

horizontal. Therefore, the same algorithm applied to the MSL, can be used to localize a 

mobile robot, equipped with a LRF, in indoor environments. 

But, the environment must be static for the algorithm to operate in a more robust way. 

Therefore, there is a problem with this approach: when using the LRF, all the obstacles appear 

(static or dynamic). The dynamic obstacles introduce a lot of perturbation in the algorithm. In 

this case, using data obtained with the horizontal fixed LRF, the algorithm will not work 

properly, since the environment is not static.  

However, the upper side of a room or corridor, including vertical walls and the ceiling 

above the normal height of a person (the headroom), can be considered almost a static 

scenario. This occurs because this area remains unchanged over long periods of time, i.e., 

objects are not frequently switched from one place to another. On the upper side of buildings - 

the static scenario - we can find walls, holes, ventilation or other types of air conditioned 

pipelines, windows, fire sensors and light supports. All of these "objects" are static 

infrastructure and helpful in the vehicle localization when a three-dimensional observation 

module is used.  

If it was constructed previously, by the pre-localization and mapping procedure, a three-

dimensional map of the static scenario, a 3D matching algorithm can be used to pinpoint the 

vehicle location, using the rotating Laser Range Finder data. 

Transitions Green-White
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The localization using the 3D matching algorithm is described in detail in Chapter 9. 

Results on the application of the localization procedure in eight different scenarios, are 

presented in Chapter 10. 
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4. Simple Landmark-Based Localization 

The simple landmark-based approach, applied to a Lego NXT robot (called LegoFeup), 

in a constrained and controlled scenario, is a first and simpler algorithm of localization, based 

on natural landmarks (smooth walls) that can be applied to some real environments. 

The Lego NXT kit has three servomotors and sensors for touch, sound, ultrasound and 

light. Furthermore, the kit has a fundamental component: the NXT brick that enables the 

development of the robot's software by using, for instance, RoboLab or Lejos JAVA for Lego 

Mindstorms [60]. In complex and longer programming tasks, such as in the implementation of 

a Kalman Filter, an object-oriented language such as JAVA for Lego Mindstorms is preferred. 

The LegoFeup, Fig. 4.1, is a differential vehicle, with two traction wheels and one free 

wheel. Each servomotor has an encoder capable of measure the number of turns of the 

corresponding wheel. It has two infrared sensors one at each extreme of the vehicle pointing 

for the side (IR Sharp [15]), which are able to measure distances relative to objects in the 

sensor's range (as walls). To implement this localization algorithm, the encoder's data together 

with the information of IR Sharp sensors was used. 

 

Fig. 4.1 LegoFeup. Lego NXT, brick, two IR SHARP sensors, two wheels (differential drive robot). 

If the LegoFeup navigates inside a particular area, describing a random or a predefined 

trajectory (for instance a square, rectangle or circle), when predicting its position based on 

odometry, using encoders on each wheel, the error of the estimative of the position of the 

vehicle will increase without limits. 

The LegoFeup has the ability to measure its distance and orientation with respect to 

landmarks (walls) every time that the landmark comes within the range of the infrared 

sensors. If there are white walls at known positions inside the area where the robot is 

navigating, its position can be corrected by implementing the Extended Kalman Filter (EKF) 
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as a probabilistic method. Therefore, in the routine of localization the vehicle position 

provided by odometry is corrected, using an EKF, every time a wall is seen. 

A particular scenario was used during the work described here (see Fig. 4.2). Four walls 

are at known positions forming a square. The        and        are parallel to the x axis, 

with    and     x coordinates, respectively, while the        and        are parallel to the 

y axis, with    and     y coordinates, respectively, as a square room. The trajectory that the 

LegoFeup should follow is a square-shaped path of length   . In this particular case, the white 

walls are at the first metre of each square side. 

  

Fig. 4.2 Scenario. Left: simulation scenario. Right: real scenario. 

The experiment was performed in a simulation scenario and in a real scenario (using the 

Lego NXT). The simulator SimTwo [61] used in the experiment takes into account collisions 

between rigid bodies and considers additive noise in sensor measurements, thus making it 

very realistic. The test in the simulation scenario is very important as a first validation. 

Although that, the use of a simulation scenario allows the test of algorithms, without the need 

of a real robot. 

Therefore, the simple landmark-based approach was first tested in the simulation 

scenario, Fig. 4.2 left, as first validation stage. After, in a transparent way, the same algorithm 

of localization was tested in a real scenario, Fig. 4.2 right, with successful results. 

4.1.  Algorithm Implementation 

The algorithm of localization, called LegoFeup loop can be divided into four different 

modules: I) the vehicle path "Control Module", II) the "Feature Association Module", III) the 

"Observation Module", provided by the IR sensors and finally, IV) the "Estimation Module", 

using the Extended Kalman Filter (EKF). The entire LegoFeup loop is shown in Fig. 4.3. 

The loop inputs are the value of the IR sensors and the number of pulses between two 

consecutive time steps,      and     . The sensor values are converted into distances,      

and    , using the characteristic curve of the IR Sharp sensors. 

If the distance value in both sensors is less than 30 centimetres it is considered that an 

observation was made. In that case, the observation is assigned to the correct feature (wall) 
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using the actual estimated state. Therefore, the observation               is generated by 

the "Observation Module" and passed to the "Estimation Module". 

If there are no an observation, the "Estimation Module" only performs the prediction step. 

When an observation about a wall is available, the update step is also performed after the 

prediction step, using for that the observation    generated by the "Observation Module". 

Finally, the estimated vehicle state, will be used in the "Control Module", which deliver 

to the robot, the intended velocities for each wheel, aiming that it follows the intended path. 

This approach has the fundamental goal of estimate the vehicle pose, the 2D coordinates 

        and the orientation relative to the x axis     . Along this chapter, the vehicle true 

pose is represented with the state    and state variables       and   . The estimated pose will 

be represented as    , with estimated variables         and    . 

 

Fig. 4.3 LegoFeup loop. The blue line represents the data flow. The black and bold line shows the process flow. 

4.1.1. Control Module 

The control module has the estimated state variables    ,     and     as inputs provided by 

the estimation module. The purpose of the module is to make the vehicle follow an intended 

path using the knowledge on the estimated state variables and a set of predefined routines: 1) 

"GoXYTheta", 2) "FollowLine". 
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The "GoXYTheta" routine allows the vehicle to reach a specific point in space, located at 

position XY, finishing with an orientation of Theta. Therefore, other routine inputs are the 

intended point XY and the desired final orientation.  

The aim of the "FollowLine" is that the Lego NXT follows a line trajectory. In the case of 

the "FollowLine" routine, the other inputs are the line that is intended to be followed and the 

direction of the line (two points on the line).  

Finally, the control module implements a "FollowPath" routine, where the basic routines 

described above are used to perform a path. An example of a path is shown in the Fig. 4.2 left. 

This path has a square shape and its sides are lines in the positive and negative directions   

and  . All of these routines have the linear and rotation intended velocities (     and     ) as 

outputs, which are afterwards converted into intended velocities for each wheel using the 

following expressions: 

           
      

 
            

      

 
 (4.1) 

where   is the distance between wheels and       and       are the intended velocities for 

each wheel. 

4.1.2. Association Module 

If the LegoFeup passes close enough to a wall that the infrared sensors are able to 

measure the distances, a new observation can be generated. Before generate the observation, it 

is necessary to assign the observation to the correct wall. In the case of the experimental work 

described in this chapter, the feature association module can be summarised by the diagram 

shown in Fig. 4.4. 

If the vehicle detected a wall when its estimative of the state is equal to an     and     

positives, the corresponding found wall is       . On the contrary, when the wall detection 

occurred when the vehicle estimated position is equal to     negative and     positive, the 

respective detected wall is the       . In the other side, if a observation of a wall occurred 

with the vehicle estimated position equal to     and     negatives, the corresponding detected 

wall is the       . Finally, the        can only be assigned to the new observation when, the 

vehicle estimated variables are:     positive and     negative. 

 

Fig. 4.4 Feature association module. 
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4.1.3. Observation Module 

The IR sensor used in this experiment, Sharp IR Range Finder, measures distances 

between 4 and 30 centimetres. The characteristic curve of the Sharp IR sensors is represented 

by the graph shown in Fig. 4.5, obtained using experimental acquired data. It can be seen that 

the distance value (in centimetres) is non-linearly dependent on the sensor’s analogue value. 

A candidate function that fits the sensor curve is given by the following expression: 

     
  

    
    (4.2) 

where   is the NXT read value and   is the distance.    is the constant of multiplication and 

   is the constant of linearisation. The constants   and   are the linear function constants. 

In this figure (Fig. 4.5), it is shown the real acquired values and the results of the best 

relation that makes it possible to compute the distance using the analogue value of the Sharp. 

The best relation was obtained by optimizing, on Matlab, the sum of the quadratic error 

between the real acquired values and the fitting function shown at equation (4.2). 

The corresponding parameters of the curve are shown in the following table, Table 4.1: 

  33.5409 

  0.0581 

   102 

   107 

Table 4.1 Parameters of the fitting curve, shown in equation (4.2), corresponding to the sensor Sharp IR Range Finder. 

 

Fig. 4.5 Real and fitted curve. 
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Using two IR sensors, it is possible to measure the distance    and the orientation 

       of the robot related to the feature wall, represented at Fig. 4.6. These measures are 

used to correct the vehicle position, since the true location of the wall is known à priori. The 

observation is given by the following equations: 

             
       

 
   (4.3) 

   
       

 
             (4.4) 

where    , and     are the inputs, measurements obtained with the IR sensors and   is the 

distance between the sensors, see Fig. 4.6. 

 

Fig. 4.6 Angle observed          and distance to the wall       

The error associated to the measurements    , and    , given by    
, is modeled as 

Gaussian noise (with zero mean and covariance    
). The observation noise vector is equal to: 

   
             (4.5) 

An experiment was conducted aiming to characterize the variance of the IR Sharp. The 

obtained results helped to realize that the sensors variance has a little and negligible 

dependence with the variation of the measured distance. 

The experiment consisted in, successively place a wall at a distance between 0.04 and 0.3 

metres in intervals of 0.02 metres, in relation to an fixed IR sharp sensor. To each distance, 

was taken three samples of 1000 measurements.  

The average of the quadratic difference between the true and the measured distances, in 

the three samples, for all the measurements acquired in the interval of 0.04 to 0.3 metres, is 

the variance considered for the IR Sharp sensor. The square root of the variance is equal to the 

standard deviation     
. 

The experimental value obtained for     
 is 0.001 metres. Therefore,    

 can be written 

as a constant matrix, equal to: 

   
       

  
       

  (4.6) 
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Due to the maximum range of the infrared sensors, every time that the distance measured 

in both the IR sensors is less than or equal to 30 centimetres, it is considered that an 

observation has been made. The observation model    is given by the following equations, 

depending on what wall the observation is corresponding: 

                       
  

  
  (4.7) 

                       
  

  
  (4.8) 

Therefore, the estimated observation module is obtained using the estimated state 

variables and can be written as follows: 

                         
   
   

  (4.9) 

                        
   
   

  (4.10) 

The observation,    can be written as the following equation, as function of the 

observation module: 

        (4.11) 

where   is the observation error, modelled as gaussian noise with zero mean and covariance 

equal to  . 

At each wall only two state variables can be observed. Therefore, the observation   , can 

be obtained with the use of the following equations: 

            
     

 

 
       

  (4.12) 

             
        

 
 

 
       

  (4.13) 

            
     

        
  (4.14) 

              
        

      
  (4.15) 

Therefore, using the observation vector   , the matrix   can be computed. The matrix   

is given at each time step with the following equation: 

  
   

    

   

   

    

 

 (4.16) 
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where the gradient of the observation in order to the measurements (    and    ) noise (   
), 

is given by the following equations: 

   

    

 

 
 
 
 
 
   

 

    

   
 

    

   
 

    

   
 

     
 
 
 
 

 

 
 
 
 
        

   

    
       

   

    

       

    
 

       

     
 
 
 
 

   

   

    

  

                            

 

             
 

 

             
  

(4.17) 

where   
  and   

  are, respectively, the first and second elements of the vector   . The variable 

       is equal to    when the observed walls are        or       . On the contrary, when 

the observed walls are        or       ,        is equal to  . The expressions of    and    

are equal to the following equations: 

   
 

 
            (4.18) 

    
       

 
             

 

            
 
 (4.19) 

4.1.4. Estimation Module 

The Extended Kalman Filter (EKF), as shown in Algorithm 4.1, consists of two steps that 

work in a cycle. First, the vehicle state and covariance is predicted (EKF prediction). Then, if 

there is a new observation, this is assigned to the correct feature and the vehicle state and 

covariance are corrected (EKF update). 

Algorithm 4.1 Extended Kalman Filter. 

LegoFeupCycle 
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The EKF is a Kalman Filter estimator in which the non-linear kinematic and observation 

models are transformed into linear models using the Taylor expansion to update the 

covariance (see chapter "Nonlinear Estimation" in [53]). 

The prediction step uses the kinematic model of the vehicle with odometry data to 

estimate, at each time step, the vehicle's new state. In this stage, it is computed the new 

estimative of the state and covariance matrix,            and          , respectively, 

using for that the previous          and        . 

In discrete time, the dynamics of the vehicle, can be described by its kinematic model that 

is based on the transition function. Therefore, the vehicle new state comes equal to: 

                             (4.20) 

where the transition function, based on the centred differences, is given by: 

                    

  

  

  

       

 
 
 
 
               

  

 
     

              
  

 
     

       
 
 
 
 

 (4.21) 

where the index         indicates the present time step, while       represents the previous 

time step. The term      is introduced here, aiming to decrease the error introduced by the 

discretization, [62].  

As shown in the following figure, Fig. 4.7, the vehicle displacement between consecutive 

time steps, as it moves forward is represented by   and the rotation by   . These variables are 

computed using the encoder data as described in the following Chapter 5, for the differential 

drive robot, the RobVigil. These variables can be represented with the following vector: 

           (4.22) 

  

Fig. 4.7 Vehicle kinematics. Forward distance and rotation travelled,   and   , between consecutive cycle times. 

The error in the odometry (  ), is modelled as Gaussian noise (with mean zero and 

covariance matrix equal to   ). The error    is represented by the vector: 

                (4.23) 



68          Chapter 4·Simple Landmark-Based Localization 

 

The estimated state after the prediction step is equal to the estimated transition function: 

                                (4.24) 

As the error in the odometry (  ), is modelled as Gaussian noise, i.e. with zero mean, the 

vector   
 
 is only constituted by zeros. Therefore, the new estimative of the vehicle state after 

the prediction step comes equal to: 

            

   
   
   

       

 
 
 
 
                

  

 
 

               
  

 
 

   
 
 
 
 

 (4.25) 

During the prediction step, the covariance matrix           is computed using the 

following expression: 

          
   
   

       
   
   

 

 
   
   

  

   
   

 

 (4.26) 

where the gradient of the vehicle's kinematics model in order to the noise on the odometry 

input  
   

   
 , is equal to the identity matrix. The gradient of the vehicle's kinematic model in 

order to the estimated state is equal to the following matrix: 

   
   

 

 
 
 
 
    

 

 
              

  

 
 

   
 

 
              

  

 
 

    
 
 
 
 

 

 (4.27) 

The prediction step, i.e. computation of           ,    and          , applied to 

differential robots is explained with more detail in the Chapters that describes the pre-

localization and the localization (Chapter 7 and 9). 

The state estimative (   ) update is carried out during every cycle when an observation is 

obtained, after applied the prediction step. The estimative of the state, after the update step is 

equal to the following equation: 

                                      (4.28) 

where        is the Kalman Gain and        the innovation. The innovation, 

depending on the observed wall (see equations (4.9) and (4.10) for    , and see equations 

(4.12) to (4.15) for   ), is given by the equation: 

              (4.29) 

The Extended Kalman Filter Gain is equal to the following expression (see Chapter 

"Nonlinear Estimation" in [53]): 
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 (4.30) 

where           the covariance matrix computed during the prediction step. The gradient 

of the observation model    in order to the state, 
   

   
, is equal to: 

   

   
 

 
 
 
 
 
   

 

   

   
 

   

   
 

   

   
 

   

   
 

   

   
 

    
 
 
 
 

  
     
   

  (4.31) 

where   
 
 and   

 
 are, respectively, the first and second elements of the vector   . When the 

walls that are seen are         , then     ,     . In the case of         , then     , 

    . The matrix   is computed using the equation (4.16). 

The covariance update is performed taking the following equation into account (see 

chapter "Nonlinear Estimation" in [53]): 

                      
   

   
             (4.32) 

where   the is the identity matrix with dimension 3x3. 

4.2.  Simulation and Real Scenario Communication 
Both scenarios, real and simulation, are able to exchange information with a host 

computer on which the LegoFeup Loop algorithm is running. The information exchanged is: 

1) the vehicle’s sensor measurements that goes from the scenario to the LegoFeup Loop 

algorithm (the encoder values of each wheel and the infrared distances); 2) in the opposite 

direction, from the LegoFeup Loop to the scenario, the velocity of each wheel calculated by 

the Control Module algorithm is sent,       and      . 

Fig. 4.8 shows the structure of communication between the EKF algorithm, the interface 

and the scenario. This figure also shows the transparent change between the real (Bluetooth) 

and simulation (UDP) scenarios. 

The user interface, as shown in Fig. 4.9, Fig. 4.10 and Fig. 4.11, makes it possible to 

"start" and "stop" the algorithm. This interface also makes it possible to "set" the EKF 

configuration: 1) the covariance matrix   ; 2) the sensor covariance    
; 3) the initial 

covariance; 4) the initial vehicle location; 5) the trajectory controller parameters, and finally 

6) the vehicle reference velocities. 

The interface was developed to show the Extended Kalman Filter variables: 1) the 

covariance matrix, 2) the covariance ellipse, 3) the vehicle's estimated position. The interface 

also shows the reference velocities at each vehicle's wheels       and       and the values of 

the infrared sensors,     and    . This interface communicates with the LegoFeup loop 

algorithm via UDP. The form, called "FEllipses", Fig. 4.11, shows the intended path, the 

vehicle’s estimated position and finally, the vehicle’s estimated orientation. It is also possible 

to see the covariance ellipse with a confidence of       (two times the standard deviation). 
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Fig. 4.8 Algorithm, communication and interface. 

  

Fig. 4.9 Main Screen - Configuration Tab. 
Fig. 4.10 Main Screen - here, the covariance in x, y and   

directions are plotted. 

 

Fig. 4.11 Main Screen - here, the vehicle position, angle and covariance ellipse is plotted. 



4.3·Application on Education          71 

 

4.3.  Application on Education 

Later, the simple landmark-based approach, applied to the simulation and real scenarios, 

was used to teach concepts of sensor fusion, navigation and probabilistic localization using 

EKFs, in the course of Autonomous Robotic Systems, at the Electrical and Computer 

Engineering curriculum, in the Faculty of Engineering of the University of Porto. 

There are other works describing the use of Lego Mindstorms in teaching programming, 

artificial intelligence and embedded systems to first-year engineering students [63] to [66], 

but none of them cover localization of a robot, based on an EKF.  

Behrens et al. [63], believe that no matter what students are taught and in how much 

detail they are taught, they will only learn when the lectures come home to them, as they are 

put in the engineer's role. 

Lego Mindstorms makes it possible to build embedded systems without any prerequisite 

knowledge, and to solve real problems with real constraints. S. H. Kim and J. W. Jeon [64], 

describe how freshmen engineers learn embedded systems using the Lego Mindstorms as a 

tool.  

S. Sharad [64], describes the architecture of the Lego Mindstorm NXT embedded system 

and its effectiveness when used to teach embedded systems and engineering concepts. 

In fact, the Lego Mindstorms are widely used in education and outreach activities as a 

way of teaching and simultaneously motivating students. However, they tend to be used only 

during the first years of the engineering curriculum. With the simple landmark-based 

approach, applied to teaching, is proposed an experiment to teach more complex topics, such 

as localization and estimation based on EKF, to older undergraduate students.  

Other work related with this approach is described by J. Gonçalves's PhD thesis , chapter 

6, [67], which uses IR Sharps sensors, in a small omnidirectional robot, aiming pinpoint its 

location using the walls of a maze.  

The success of the experiment realized with the students, aiming their better 

understanding of Kalman Filters applied to mobile robots, was the core of the inspiration for 

the published work on the IEEE Transactions on Education [68]. 

The developed approach was described in this paper, as an implementation of a Multi 

Sensor Fusion System, which using an Extended Kalman Filter (EKF) and an association 

module, performs the fusion between the odometry and the obtained observations. 

The experience of teaching undergraduate students was also described in this paper and it 

can also be used as a guide to undertake a pedagogical experiment involving the concepts of 

sensor fusion, navigation and probabilistic localization using an Extended Kalman Filter.  

In order to help undergraduate students understand the EKF concepts more clearly, the 

user interface at Fig. 4.9, Fig. 4.10 and Fig. 4.11 was used, allowing students to tune the filter, 

and observe the immediate effect on the Extended Kalman Filter’s behaviour. Therefore, this 

module provides students with the opportunity to learn about EKF operation, the importance 

of the covariance matrices, of the odometry and sensor noise, and how these affect the 

operation of the filter. 

The topic "Localization of Mobile Robots using an Extended Kalman Filter in a Lego 

NXT" was taught in three-hour lectures. During the first lecture the theoretical content was 
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presented including the theory underlying the Kalman Filter, including its mathematical 

formulation. 

The second and third lectures consisted of teaching the practical module, with students 

performing the experiment while working in pairs. During the first practical lecture, the 

students familiarised themselves with the LegoFeup tool and with the simulation scenario. 

After gaining an understanding of the algorithm\tool, an experiment in the simulation scenario 

was performed which was based on the presented guide. The third and last lecture finished the 

test by configuring the EKF as performed in the simulation scenario, but this time in the real 

scenario. The test was performed one group at a time.  

In the simulation scenario, Gaussian noise with zero mean and standard deviation equal to 

    
       metres was introduced in the Sharp IR sensor readings. In the simulation it is 

possible to select turn on or off the Gaussian noise introduced in the Sharp IR sensors.  

A Gaussian noise with zero mean and standard deviation of         metres for each 

metre travelled by the vehicle was introduced in the simulation scenario. Also a Gaussian 

noise with zero mean and standard deviation of          radians for each rotated radian 

was introduced. These errors simulate the error in the odometry that appears with the wheels’ 

radius changes and caused by the variation of the distance between wheels. These values are 

measured experimentally and proved to be close to the real behaviour of the vehicle.  

The experiment proposed to the undergraduate students consisted of the following steps; 

first in the simulation scenario: a) Executing a square trajectory based only on the odometry; 

b) Executing the same trajectory with direct localization, sensors’ covariance matrix     with 

very low values, based on the Sharp IR measurement without noise (turning "off" the noise); 

c) Adding Gaussian noise in the Sharp IR sensors’ readings (turning "on" the noise) and 

repeating the previous step; d) Putting the EKF's sensors’ covariance matrix    
 equal to the 

Gaussian noise introduced in the simulation scenario. Giving the odometry covariance matrix 

   a very low value and completing the same trajectory; e) Changing the value of the 

covariance matrix   , to a very high value and repeating the previous step; f) Using the 

results of the previous steps to tune the filter to the best solution for   . This last test and 

respective filter tuning should be kept and tested in the real scenario.  

The students were given instructions on how to perform each step. Each group delivered a 

report at the end of the lecture explaining their vehicle’s behaviour at each step, and justifying 

their conclusions. 

 The students should have concluded in step a) that the vehicle covariance should increase 

without bounds due to the absence of observations. The vehicle does not update or correct its 

position with the walls and, consequentially, it will be rapidly lost; in step b) that the user has 

a high level of confidence in the infrared sensor readings at the EKF filter, and the update is 

done directly with 100% confidence. At this stage the algorithm localizes the vehicle with 

success but only because the scenario is ideal, i.e. the Sharp IR measurements are obtained 

without noise; in c) that confidence in the infrared sensor readings at the EKF filter is high, 

and the update is done directly with 100% confidence. However, in this case the algorithm 

does not localize the vehicle correctly because the scenario in this step is not ideal, i.e., the 

infrared sensors have noise; in d) that the filter should not work since the sensors’ 

measurements are rejected because confidence in the odometry is high. Then the localization 
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is performed based only on the odometry; in e) that the simulated situation is similar to that of 

step b). Now, instead of having high confidence in the sensors, the user has really low 

confidence in the odometry when compared with the infrared sensors. This situation leads the 

filter to update the vehicle localization directly, with a confidence near to 100% when a wall 

is observed. 

Videos and theoretical content on the implementation of the experiment described here 

can be found in [2]. Furthermore, an application of the EKF algorithm can be downloaded 

with some tests that can be performed in the simulation scenario. The theory taught during the 

theoretical lecture is also available. 

4.4.  Results on Education 

The conduction of a student questionnaire indicated the impact that the use of the simple 

landmark-based approach had on the students’ understanding, during the Autonomous 

Robotic Systems course. Most of the students had heard about Kalman Filters, but had never 

implemented them and did not understand how they operated or what their purpose was. By 

the end of the course, most students had completed the fundamental goal; they understood the 

Extended Kalman Filter and the localization based on the EKF as a probabilistic method of 

making the fusion between the odometry and the Sharp IR observations.  

On the anonymous student survey, questions such as: "Are you now more interested in 

mobile robotics than before the lectures?", "Do you think that the experiment and the tutorial 

will be helpful for future studies on mobile robotics topic?" or finally, "Do you now 

understand, and feel capable of describing, the method of navigation and localization 

implemented?" received mostly positive answers.  

The non-anonymous reports delivered by each group at the end of the practical lectures 

were evaluated, and lead to the conclusion that the experiment was a success. The 

undergraduate students understood theoretical concepts based on a practical tool. According 

to the experimental guide presented in the previous sub-section, the reports showed a 

percentage of satisfactory answers, in each step of the experiment, as shown in Table 4.2. 

Answer 
Percentage of correct answers 

a) 90% 

b) 70% 

c) 80% 

d) 80% 

e) 80% 

Table 4.2 Percentage of correct answers plotted. 

At the end of the semester, the students sat a final exam for the course. The exam had 

three questions relating to the experiment and the Extended Kalman Filter applied to robot 

localization. By comparison with previous years' exams (where this tool was not used), the 

percentage of correct answers for this topic increased by about 20% with the introduction of 

the proposed tool in the Autonomous Robotic Systems lectures. Furthermore, analysing the 

correct answers highlights two aspects: consistency of reasoning and a correct visualisation of 
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the matter. These results prove that the method presented improves the students’ 

understanding. 
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5. Hardware Setup 

The robot platform used in the tests on the three-dimensional map-based approach, 

presented and developed during this PhD, was a differential wheeled traction vehicle, shown 

in Fig. 5.1, called RobVigil.  

5.1. Robotic Platform 

The main application of the RobVigil is the surveillance of public facilities as department 

stores, hospitals or others service scenarios. The use of a robot of this type, in these scenarios, 

allows systematic and uninterruptable inspection routines, with minimum human intervention.  

When using a robot with these characteristics, the watcher is then free to perform the 

simpler and safety task of supervise alarms and the different cameras streams, sent by the 

robot during its normal operation. 

Therefore, this vehicle has the fundamental goal of operating inside dynamic scenarios, 

with lots of people and dynamic objects crossing its navigation area. Then, it is convenient 

that the localization process only uses the headroom of a building (a static scenario), thus 

avoiding the influence of the disturbance introduced by dynamic objects. 

The robot RobVigil is a differential wheel traction robot, with two traction wheels and a 

free wheel. The robot has a Laser Range Finder placed in a servo DC motor, allowing to 

acquire three-dimensional data on the surrounding environment. The developed tilting Laser 

Range Finder is used for mapping and localization and it is placed on the top of the vehicle. 

   

Fig. 5.1. Left: the RobVigil robot equipped with the observation module. Middle: RobVigil robot in a surveillance task. 
Right: the robot without covering. The developed observation module can be seen on the top (vehicles head). 

Its features include a low power processor onboard PC (Mini ITX, EPIA M10000G with a 

processor of 1.0GHz) and a height of approximately 1.3 metres, with the observation module 
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(tilting LRF) placed on the top. The LRF has a maximum range of 5 meters, as shown in the 

following figure, Fig. 5.2. 

 

Fig. 5.2. RobVigil robot characteristics: 1.3 meters of height, the tilting LRF on the top with a range of 5 meters .  

Furthermore, the RobVigil is equipped with sensors to detect hazardous situations, like 

fires, floods, gas leaks or movement. It is also equipped with three surveillance cameras, 

including an omnidirectional, an high resolution and finally, a thermal camera. This 

equipment is necessary to perform the surveillance task.  

It also has ultrasound and infrared sensors around its body, allowing to navigate safely, 

while avoiding obstacles, during autonomous inspection routines. Besides, the robot has a 

communication interface and GUI interface, allowing the supervision of information as 

alarms and the different cameras in real time. The following figure, Fig. 5.3 shows the robot 

RobVigil onboard sensors and characteristics. 

 

Fig. 5.3. RobVigil Robot. Its features and sensors.  
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5.2. Tilting Laser Range Finder 
The 2D Laser Range Finder (LRF) – Hokuyo URG-04LX-UG01 – was used to perceive 

the surrounding environment. To obtain a three-dimensional sensor, a tilt platform was 

created based on the high resolution dc servo motor, the AX-12 Dynamixel Bioloid. The 

complete LRF solution is shown in Fig. 5.4. 

 

Fig. 5.4. The observation module developed. 

The AX-12 servo dc motor can rotate about 270º with a 0.29º of resolution. Its maximum 

speed is 114 rpm. The rotating platform created, made the LRF scanning in the horizontal 

possible, i.e. the tilt scanning. This allows the 2D laser to point downwards or backwards.  

With a sample rate of 100 milliseconds, at each scan, the LRF gives 769 points. About 

these 769 points, the detection range begins at point 44 and ends at point 725. Therefore, 

among the acquired 769 points, only 682 are on the surrounding environment and then only 

these points can be used. As the LRF’s angular resolution is of about 0.3516º, the 

corresponding range angle is of about 239.79º. The LRF rotation speed is fixed and equal to 

60 rpm. The maximum number of points that can be obtained in a scan, where the AX-12 

rotates at a velocity of 1 rpm, is 344250 points and its duration is 45 seconds. Furthermore, 

when the servo speed is 114 rpm, the total scanning duration is of about 0.39 seconds and the 

number of points reached is 3984.  

There is a transformation that takes the measurement of the LRF in polar coordinates and 

places it in the 3D space. The transformation is modelled as a set of homogeneous 

transformations (rotations and translations). 

The following figure, Fig. 5.5, represents the laser (L) and the measurement (D) frames. 

In this figure, one reading of the point   in polar coordinates       , represented with a blue 

point is also represented. The referential L is represented in green colour, while the referential 

D is represented in grey. 

The referential L has origin at the centre of the inferior base, with cubic shape, of the 

Laser Range Finder, represented in Fig. 5.5. The referential D has origin at the laser beam 

source. 

Therefore, the point   written in the coordinates of the referential D, represented as   , 

appears as a function of the laser's distance reading  , equal to: 
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(5.1) 

 

Fig. 5.5 Laser referential (L). Measurement Referential (D). Point P and reading acquired with the LRF (  and  ). 

The z axis of the referential L and D are coincident. The rotation of the yaw angle  , 

between the referential D, in relation to the laser referential L is represented by the matrix   
 , 

and is expressed in the referential L:  

  
   

          
         

   
  (5.2) 

The translation of the referential D, in relation to the referential L, also written in 

coordinates of the referential L, is expressed by the vector   
 , and is provided by the 

following expression: 

  
            

  (5.3) 

in which the distance      
 is represented in Fig. 5.5 in red colour. 

Therefore, the Cartesian coordinates of a point    in the referential L, are given by the 

following expression: 

     
       

  (5.4) 

The referential attached to the AX-12 shaft is shown in the figure Fig. 5.6 in blue colour. 

The figure shows the tilt and the laser (L) frames. 

The y axis of the tilt and laser frames are coincident. The rotation of the laser referential 

is performed around the    axis with the pitch angle ( ). This rotation is represented by the 

matrix   
    , and is expressed in the tilt referential coordinates: 

  
      

          
   

         
  (5.5) 

The translation of the laser frame, in relation to the tilt frame, is given by the vector   
    . 

This translation vector is written as coordinates of the tilt referential. 



5.2·Tilting Laser Range Finder          79 

 

  
                 

    (5.6) 

in which the distance value         
, is represented in red in Fig. 5.6. 

 

Fig. 5.6 Tilt referential (Tilt) in blue. Laser referential (L) in green. 

Therefore, a point in the laser referential can be represented in the tilt referential, using 

the following equation: 

        
          

     
(5.7) 

The Fig. 5.7 represents the vehicle referential (V) in brown. This referential is in the 

middle of the connection between the two traction wheels of the robot. The tilt referential is 

represented in blue. Finally, the red line shows the vector      
 .  

 

Fig. 5.7 Vehicle referential (V) at brown, attached to the vehicle odometry’s referential. Tilt referential (Tilt) in blue. 

The vector      
  represents the translation vector of the tilt referential, in relation to the V 

referential, expressed in coordinates of V. This vector can be expressed as the following 

equation: 
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  (5.8) 

A point in the tilt referential can be represented in the vehicle referential with the 

following expression: 

        
             

  (5.9) 

Finally, the entire transformation of the points    on the frame   to the vehicle 

referential (V), is obtained using the expression: 

        
    

       
          

    
       

       
    

          
  (5.10) 

As there is no rotation of the tilt referential, in relation to the vehicle referential, the 

matrix      
  is the identity matrix. 

Consider now that the vehicle is well located and its position in the world frame is known. 

Therefore, the point    corresponding to the measurement    can also be represented in the 

world frame. 

In Fig. 5.8 it is shown the vehicle referential (V) in brown and the world frame (W) in 

black. The vehicle x axis, placed in the origin of referential W is represented by a dashed 

brown vector.  

 

Fig. 5.8 Vehicle referential (V) in brown. World referential (W) in black. 

The translation vector between the vehicle and world frames, expressed in the coordinates 

of the world frame, is represented by the vector   
  and, in Fig. 5.8, is shown in red. This 

vector is equal to the following expression: 

  
        

     
    (5.11) 
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The vehicle pose estimation is equal to the vehicle referential position and orientation in 

relation to the world frame. Therefore, the position of the referential V, in the referential W, is 

equal to the vector   
 . 

The vehicle rotation    is the rotation of the referential V, in relation to the referential W, 

represented in the world frame by the matrix   
 . This rotation is performed around the    

axis and is equal to the following matrix: 

  
   

            
           

   

  (5.12) 

Therefore, the point    corresponding to the measurement   , can be written in the world 

referential, using the following expression: 

     
       

  (5.13) 

Finally, a measurement    can be re-written as a point    with the following equation: 

     
        

    
       

          
    

       
       

    
          

     
  (5.14) 

The translation vectors   
 ,   

     and      
  are fixed parameters on the observation module 

position on the robot. These values were carefully measured. The vector   
  and angle    is 

obtained with the vehicle localization algorithm, three-dimensional map-based approach, 

described in the following chapters of this PhD document. 

The Laser Range Finder has a built-in a laser beam rotating at a speed of 60 rpms. The 

laser rotates the full laser angle range (360º) in 100 milliseconds (the Laser Range Finder time 

cycle). After each rotation (360º), the LRF sends 769 measures. The first reading (   ) 

corresponds to the minimum yaw, Ψmin= -135.19º. The       reading corresponds to the 

maximum yaw, Ψmax=135.19º. The laser reading i has an angle Ψi, equal to the following 

expression: 

   
           

   
                    (5.15) 

At each laser sample rate there is a reading of the AX-12 present angle           and 

present speed           . Due the rotation of the AX-12 during the complete scan of the 

Laser Range Finder, the acquired readings will represent a curve as shown in Fig. 5.9. 

Therefore, the roll angle (  ) must be corrected for each reading i.  

The Hokuyo LRF is composed by a servo motor inside, which puts a laser beam in 

rotation, performing the entire scanning. Each entire rotation of the laser beam (360º), 

comprises 1024 steps. After each rotation of 1024 steps, the LRF sends only 769 measures, 

referent to the angles between Ψmin and Ψmax. The first reading, corresponding to the yaw 

angle Ψmin, has a corresponding step equal to: 

      
        

 
 (5.16) 
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Fig. 5.9 Curvature on the readings caused by the AX12-12 rotation. 

While the last reading, corresponding to the yaw angle Ψmax, as a corresponding step 

equal to: 

        
        

 
 (5.17) 

The reading i (   ) has a corresponding      . Therefore, the reading i has a corresponding 

step equal to the following expression: 

      
        

 
                     (5.18) 

As the Laser Range Finder has a sample rate of 100 milliseconds, the time between each 

laser step is equal to: 

       
   

    
           (5.19) 

The reading of the servo motor present speed,        , has units equal to rpms. The 

same speed but in radians/second can be computed using the following expression: 

             
           

  
                 (5.20) 

To synchronise the AX-12's angle with the data acquired by the LRF, the time between 

the last AX-12 data arrival and the LRF readings is counted and equal to    (seconds). 

Therefore, the AX-12 angle corresponding to the last step (1024), is equal to the last AX-12's 
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angle measurement,         (radians), plus the AX12's amount of rotation during the time 

  : 

                                            (5.21) 

in which the variable    represents the direction of rotation. 

Therefore, to synchronise each reading i, with the correct angle of the AX-12 servo 

motor, it is necessary to compute the angle corresponding to the      . The angle 

corresponding to the       is equal to       
 and is calculated by the difference between the 

angle of the full laser range        ; and the angle rotated by the AX-12 between the       

and the step 1024. Therefore, the angle corresponding to the      , the step of the reading i, is 

equal to: 

      
                                                    (5.22) 

But, it is desired to obtain the roll angle in accordance with the reading i (  ). Then, using 

the equations (5.18) and (5.22) the expression of   is equal to the following expression: 

                                                             (5.23) 

The last equation can still be re-written in a simpler way, using the equation (5.21), as 

shown in the expression: 

                                                                   (5.24) 

5.3. Odometry 
At each cycle time, the odometry data obtained, is computed through the acquired pulses 

of the odometer, at each traction wheel. The odometry data is represented by     and given 

by the following vector: 

       
  

  (5.25) 

in which   in metres and    in radians, represent the linear and angular displacement between 

two consecutive time steps. These values can be obtained through the following equations: 

  
     

 
 (5.26) 

   
     

 
 (5.27) 

in which    and    are the distance travelled by each wheel. The variable   represents the 

distance between the two traction wheels, as is shown in Fig. 5.10. 

The distance travelled by each wheel is given by the expressions: 

   
    

     
    

    

     
 (5.28) 
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in which      and      are the measurements of the odometers of each wheel, respectively 

(number of odometer pulses between consecutive time steps). 

 

Fig. 5.10 Linear displacement of each wheel and angular rotation between two different time steps. 

The variables      (pulses/metre) and      (pulses/metre), are constant values 

representing the number of odometer pulses per metre, travelled by each wheel. Therefore, the 

odometer constants       and       can be computed as follows: 

      
 

     
       

 

     
 (5.29) 

where   is the number of pulses of the odometer during a complete turn, while    and    are 

the radius values of each wheel, respectively.  

The value   is equal to the encoder number of pulses per wheel rotation. This value is 

known and is equal to 33792 pulses. 

Aiming to calibrate de odometry and compute the parameters   ,    and b, the following 

experiments were performed: 

1) Controlling the robot with the joystick, the vehicle moved forward, during 20 tests, 

travelling a distance of 5 metres. 

During these 20 tests, the travelled distances by each wheel were,         metres. 

The average of the number pulses in each wheel was             pulses and      

       pulses. Therefore, the radius    and   , were computed using the equations (5.28) 

and (5.29): 

   
 

    
    
  

    
 

    
    
  

 
(5.30) 

Resulting in the values of           metres and           metres. For simplicity 

reasons, it was assumed that:       
              

 
        metres. 

2) Again controlling the robot with a joystick, the vehicle rotated, during 25 tests, three 

turns around itself. During these 25 tests, the rotated angle was         radians. Using the 

previous computed values, for    and   , the average of the travelling distances    and    was 
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3.92 metres and -3.87 metres, respectively. Therefore, using the equation (5.27), the 

parameter b comes equal to 0.4133 metres. 

These experiments were performed in an unique type of floor, with the vehicle moving at 

a speed of 0.2 m/s, avoiding the slippage of its traction wheels. The floor was carefully 

marked aiming to measure the true translation and rotation of the vehicle with a maximum 

accuracy possible. 

J. Borenstein and L. Feng [8], suggest an experiment to correct and improve the values of 

  ,    and b, after performed the calibration of the odometry, such as it was done above. But, 

these parameters are influenced with a set of conditions and factors, which makes such 

correction a vain effort. Some of these factors are, for instance, the type of floor, the 

temperature, which, in the case of rubber wheels, has great influence in the wheels form, 

radius and middle contact point with the floor.  

Another two experiments were performed, aiming to estimate the error of the odometry in 

relation to reality. Again, in these experiments, the same conditions applied above are true 

(vehicle moving at a speed of 0.2 m/s and markers at the floor).   

 In these two experiments it is considered that the error associated to the distance travelled 

forward, is modelled as random noise, with a normal distribution (zero mean and standard 

deviation equal to     , proportional to the distance  , acquired by odometry). The    is the 

standard deviation percentage with units equal to metres/metres. Therefore, it is considered 

that the error in the distance travelled forward, is smaller or equal than     , with a certainty 

of 68.2%.  

It is also assumed that the error in the rotation of the vehicle is modelled as random noise, 

with a normal distribution (zero mean and standard deviation             , proportional 

to the distance   and angle   , measured by odometry). The parameters     and    are 

percentage standard deviations, with units equal to radians/metres and radians/radians, 

respectively. Then, it is assumed that the error of the angle estimative, using odometry, is 

lower than            , with an certainty of 68.2%.  

Therefore, with the following two experiments, it is intended to estimate the values of 

       and    in the following manner:  

1) Controlling the robot with a joystick, the vehicle moved forward for 20 times a 

distance of 5 metres. During each test, the odometry computed the travelled distance. The 

average of the ratio between the odometry estimative of the travelled distance and the real 

travelled distance (5 metres), allows obtaining the standard deviation   .  

Also, the average ratio between the estimated rotation using the odometry and the 

travelled distance in front (5 metres) allows determining    . The obtained results were 

   0.18264 metres/metres and     0.08961 radians/metres. 

2) Again controlling the robot with a joystick, the vehicle performed 20 times, 3 complete 

rotations. During each time it was computed, using the odometry, the amount of rotation. The 

average ratio between the rotation estimated with the odometry and the real (        

radians), makes it possible to compute the standard deviation     The obtained result 

was:    0.02819 radians/radians. 

The results obtained with the odometry calibration are summarised in the following table.  
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       0.4160  0.18264 0.08961 0.02819 

Table 5.1 Result values of the odometry calibration. 
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6. Data Detection and Extraction 

So as to perform the pre-localization of the three dimensional map-based approach, using 

the SLAM procedure and build a 2D feature map, the features on the environment have to be 

extracted through laser data. This chapter describes the Data Detection and Extraction 

process, aiming to find linear segments (representing walls, doors, furniture et cetera) and 

invariant points (representing corners or circular columns), in the vehicle frame. 

The tilting LRF, observation module, acquires P points in the 3D space, with coordinates 

       . Through the points   it is possible to obtain the set of points    , which are the 

projection in the two-dimensional space, of the points P with z coordinates higher than 

    metres and lower than     . The values of the parameters      and      are presented 

in the Chapter of results, Chapter 10. 

As the pre-localization is performed in a controlled scenario, without dynamic objects or 

people moving in the navigation area, the     points are used in the Data Detection and 

Extraction module, in order to obtain the linear segments and invariant points used in the pre-

localization. 

All the points and parameters used and presented in this Chapter are represented in the 

vehicle referential. Therefore, in this Chapter, the superscript index referring to the 

representation on the vehicle referential shall be omitted. 

6.1. Data Detection 
In the following paragraphs a set of important definitions are given. These definitions are 

crucial in the data detection algorithm described herein. 

 

Fig. 6.1 Measures    and  . 

Definition 1 The list of points     is represented with the vector                  .  

Definition 2 As shown in Fig. 6.1,      is a list of connected points, called "cluster", 

having as initial and final points   
  and   

 . 

Definition 3      is a list of connected points, called "linear segment", with extreme 

points   
  and   

 .  
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Definition 4       is a list of connected points, called "circular segment", with 

extreme points   
  and   

 .  

Definition 5 The value    is the perpendicular distance between   
        and the 

segment line, which connects   
  to   

 .  

Definition 6 The value   is the orientation difference between        
    

   and 

       
    

  , as represented in Fig. 6.1. In which        
    

   is the segment line that 

connects   
  and   

 , while the        
    

   is the segment line that connects the points   
  

and   
 . 

Definition 7 The cluster      can be considered a candidate for a linear segment or a 

set of candidates for linear segments. In Fig. 6.2, an example of a cluster representing a set of 

candidates for linear segments is     . On contrary the cluster      can be considered a 

circular segment candidate. In Fig. 6.2, an example of a candidate for a circular segment is the 

cluster     . 

Definition 8 We shall consider now the equation of a circular segment (circle) as the 

following, with parameters relatively to the vehicle frame: 

      
        

     (6.1) 

in which the point       
  is the circle’s centre coordinates in the vehicle referential, with 

radius  . The circle segment equation can be re-written to become a linear system: 

                  
    

       

                  
    

       

              

   

  
 

     
   

 
 

  (6.2) 

Therefore, the circle segment equation was transformed in a linear system, which can be 

re-written with the following expressions: 

       
  
    

 

  
  
    

 
         

     
   
     

         

   

   

     
    

 
  (6.3) 

                 (6.4) 

in which    and    are the coordinates of the point   
       .  

The classic Least Square Quadratic Error (LSQ) tries to find the best parameters       

defined in equation (6.3), which minimizes the following cost function: 

            
    

                  
    

      
 

 

   

 (6.5) 

Solving the linear system (6.4), using the classic Least Square Quadratic Error (LSQ), the 

parameters       are computed as follows: 
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       (6.6) 

Definition 9 The fitting error (variance) of a circular segment      
 , is computed as 

follows: 

     
   

              
 
          

 
 

 

 
   

   
 

(6.7) 

where   and   are the final and initial indexes of the cluster       
Definition 10 The cluster      is considered a circular segment (circle) if and only if: 

1) The matrix      
       is invertible. To determine if the matrix      

       is invertible, a 

test of its determinant, equal to           
       , is conducted so as known whether it is well 

conditioned; 

2) The radius parameter resulting from the solution of the equation (6.6) falls within the 

gap              . In which      and      are the minimum and maximum intervals that 

the circle’s radius can represent (depending on the radius of the circular columns in the 

scenario). 

3) The fitting error      
  is lower than the parameter         

 . 

Definition 11 If the entire set of the conditions on Definition 10 are not met, the 

cluster      is considered a candidate for a linear segment or a set of candidates for linear 

segments. 

6.1.1. Merge and Split 

The detection method is a Merge and Split algorithm, [57]. The algorithm described here 

has the advantage of extracting linear segments (from walls, doors or furniture) and invariant 

points (from corners or circular columns), at the same time. The algorithm is described in the 

following two steps: 

1) Merge: to the entire set of points     is tested if consecutive points    and      have an 

Euclidian distance lower than       . If this happens,    and      are merged in the same 

cluster. The merge result is a list of clusters     , as shown in Fig. 6.2. 

 

Fig. 6.2 Merge find clusters         and cicular segments         . 
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Through Definition 10 and Definition 11 each cluster      is classified as a circular 

segment or a set of linear segment candidates. To each cluster,     , classified as a set of 

linear segment candidates, the split phase is applied.  

Linear segment candidates are shown in Fig. 6.2 with Clr1, Clr2 and Clr3. A circular 

segment candidate is shown at Fig. 6.2 with Clr4. 

2) Split: each cluster     , classified as candidates for linear segments, the point   
        

is searched, whose    is the greatest.      is iteratively divided in clusters        
    

   and 

       
    

  , as represented in Fig. 6.1, while the following conditions are verified: 

i)    is greater than       . 

ii)   is lower than       . 

When the sub-cluster      ceases to be divided, it is considered a linear segment     . The 

result is shown in Fig. 6.3. 

 

Fig. 6.3  Split find linear segments         

6.1.2. Invariant Points Classification 

After applying the merge and split algorithm, the result is a list of linear segments      

and circular segments      with extremes equal to   
 
 and   

 
. 

The centre of the circular segments is considered an invariant point, since the centre of a 

circle is invariant with the vehicle displacement. 

In the case of a linear segment     , its extreme points are tested to determine whether 

these are invariant points. Consider the segments      and        with extreme points   
 
 and 

  
 
,   

   
 and   

   
, respectively. The points   

 
 and   

   
 have distance readings equal to   

 
 

and   
   

, respectively. The angle distance between them is     
     

, as shown in Fig. 6.4. 

The points   
 
 and   

   
 are considered invariant points, or not, according to the following 

conditions: 1) both,   
 
 and   

   
, are invariant points if their Euclidian distance is lower than 

    , therefore the resultant invariant point is the weighed average of   
 
 and   

   
; 2) if the 
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condition 1) is not met,   
 
 is an invariant point while   

   
 is not, when the following three 

conditions are met at the same time: 

i)   
 
 and   

   
 are lower than           (LRF range). 

ii)   
   

   
 
. 

iii)The angle     
     

 is below     . 

In Fig. 6.4 and Fig. 6.5, the detected linear segments are shown in blue and green colours. 

The invariant points are represented in a square shape. The ones which meet the condition 1) 

are in red. The others which meet the condition 2) are in brown.  

The result of the detection module is a set of linear segments     and invariant points    , 

whose parameters and covariance error are extracted in the data extraction module. 

 

Fig. 6.4 Invariant points in a squared red and brown shape. The ones which meet the condition 1) are in red. The others which 
meet the condition 2) are in brown.  

 

Fig. 6.5 Invariant points classification. The ones which meet the condition 1) are in red. The conditions defined above does 

not occur in the case of the points   
 
 and   

   
. 
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6.1.3. Results and Adjustable Parameters 

The Table 6.1 shows the parameters of the merge and split method (      , 

               ,       ). Table 6.2 presents the parameters of the invariant points classification 

method (    ,     ). 

                0,061                  0,061 

        
                           170 

Table 6.1 Parameters of the Merge and split method. 

              0,061 

        3,5 
Table 6.2 Parameters of the invariant points classification method. 

The parameters       ,        and      are equal to 0.061 metres. Considered together 

with the Laser Range Finder's angle resolution (0.35º) and its maximum distance range (5 

metres), the size of the arc between consecutive readings is given by the following equation: 

        

    
    

   
                (6.8) 

The distance between consecutive readings of the LRF will be lower than the arc  . 

Therefore, it was decided to consider the values                              

metres. 

The parameter        means the minimum angle between two clusters        
    

   and 

       
    

  , as represented in Fig. 6.1, need to be divided into two clusters. It is common 

sense that two clusters with a        angle, lower than 170º degrees are clusters representative 

of two different walls, i.e. linear segments. Therefore,            . 
Bearing in mind that in case of an invariant point, marked in brown, in Fig. 6.4, the points 

  
 
 and   

   
 are consecutive readings of the Laser Range Finder. Therefore, as the LRF has 

an angular resolution of 0.35º, the angle between the points is     
     

      . Therefore, the 

chosen value for      was ten times the LRF's angular resolution,          . 
The parameter         

  was tested in an interval of                    . The best 

behaviour was found when         
               . The best behaviour was considered 

when the algorithm detected the true circular segments (columns) as circular segments and the 

true linear segments as linear segments, by using logged data for three different scenarios, 

where circular columns and walls are found. 

The parameters presented at Table 6.1 and Table 6.2 proved to guarantee the best 

performance, while identifying correctly the entire set of present features, most of the times, 

using logged data for three different scenarios. The Fig. 6.6 and Fig. 6.7 show the result of the 

application of the Merge and Split algorithm with real data. The green lines are the detected 

linear segments. The green squares are invariant points, while the green circles are variant 

points. Finally, in Fig. 6.7, the red circles are columns. 

The invariant points are points whose position is invariant with the vehicle movement and 

which are used as a feature during the pre-localization. On the contrary, the variant points are 

moving points with the vehicle displacement. Those are not used in the pre-localization 

procedure. 
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Fig. 6.6 The Merge and Split method found linear 
segments (green). Invariant points represented with a 

green squared shape, while the variant points are 
represented with a green circled shape.  

Fig. 6.7 Application of the Merge and Split. To columns 
are found and represented in a red circled shape. 

6.2. Data Extraction 

After the linear segments and invariant points have been detected, it is necessary to extract 

information from them. As the linear segments and invariant points of corners or circular 

segments are used during the pre-localization stage, Chapter 7, in an Extended Kalman Filter 

applied in the SLAM problem, it is necessary to extract information on their parameters and 

the respective covariance matrices. 

The Least Square Quadratic error (LSQ) is used to obtain the linear segment parameters 

and covariances, as is described in [44]. The work described in [59] presents a particular and 

interesting approach to determining the invariant points and the respective errors with exact 

precision. 

6.2.1. Linear Segment Extraction 

Consider the linear segment        
 with points               , obtained by the tilting 

Laser Range Finder, with coordinates           , in the vehicle frame. The matrices      

and     , are equal to the following: 

              (6.9) 

      
     
   

 
 

 (6.10) 

The linear segment parameters in the Cartesian representation         , with slope   

and interception with the   axis equal to  , as shown in Fig. 6.8, are given by the vector: 

       
 
  (6.11) 

Therefore, the line parameters can be re-written as a linear system, depending on the 

matrix      and     , as presented in the following equation: 

             
 (6.12) 
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Fig. 6.8 Linear segment referring to the vehicle referential. 

As the system of the previous equation is a linear system, the classic Least Square 

Quadratic Error (LSQ) can be applied to find the best linear segment parameters. Thus, the 

previous equation can be re-written as follows, while allowing to obtain an estimation on the 

line parameters in the Cartesian form,     : 

    
          

            

          
      

  
    

      (6.13) 

The application of the LSQ in order to find the best fitting for the line parameters, 

minimises the following cost function: 

               
 

 

   

 (6.14) 

in which     is given by the equation           , using the estimation of the line parameters 

    . Therefore, it is possible to define the estimated matrix      : 

          
   

  
 
   

                     (6.15) 

The variance of the vector      is given by the following equation: 

          
    
   

 (6.16) 

in which   and   are the final and initial linear segment indexes, respectively, and      is given 

by the equation (6.14).  

The matrix      can be described as function of      using the Taylor expansion around 

the estimated vector      , as the following equation: 

                                                          (6.17) 
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Neglecting the higher order terms,      as function of      is given approximately by the 

equation: 

                                         (6.18) 

Therefore, the variance of     , defined as     , can be calculated with the expression: 

                                                       
 
    

                                             
 
    

         
   

                        
 
  

   
     

       
   

                          
 
   

   
    

       
   

              
  (6.19) 

in which      is the expected value of    . The gradient of      in order to the      is given by 

      and is equal to the function: 

      
     

     
 (6.20) 

Using the equation (6.13), the previous relation can be re-written as follows: 

           
      

       
  (6.21) 

Therefore, the variance matrix     , can be re-written as the following equations: 

          
      

  
     

                
      

  
     

  
 

  (6.22) 

          
      

  
           (6.23) 

The linear segment equations are initially computed in the Cartesian form, because, in this 

situation, the dependence between the parameters and the tilting LRF obtained points can be 

written as a linear system, (6.12). However, to use these parameters during the pre-

localization procedure, it is necessary to avoid the problem of the infinite slope  . Therefore, 

the linear segment needs to be transformed into a polar representation.   

The linear segment parameters, in the vehicle frame, in the polar form, are given by the 

vector and expression presented in the following two equations: 

      
 
 
  (6.24) 

                (6.25) 

in which   is the perpendicular distance relative to the origin of the vehicle frame and   is the 

angle between the perpendicular linear segment to the line and the    axis, as shown in Fig. 
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6.8. The generic point         is also represented in the figure. The parameter   is given with 

the expression: 

     
 

        
     

     
 

              
 
    

     
 

                       (6.26) 

The solution of the equation (6.26) is obtained when 
  

   
  , in which   is equal to the 

following equation: 

    
                  (6.27) 

The solution of 
  

   
   appears when    and    are equal to the following expressions: 

    
   

    
    

 

    
 (6.28) 

Therefore, using the equation (6.26) and (6.28), the perpendicular distance   appears 

equal to the equation: 

     
   

    
 
 

  
 

    
 
 

   

  
 

     
 (6.29) 

The angle parameter   is calculated as the following equation: 

        

 
    

 
   

    

    

         
 

 
  (6.30) 

Bearing in mind that the parameter   should be positive, the linear segment parameters in 

the polar form, represented by the matrix     , can be re-written as the following vector: 

     

 
 
 
 

   

     

       
       

 
  
 
 
 

 (6.31) 
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in which         represents the signal of  . In order to become the LSQ method well 

conditioned, all the points    of the linear segment are previously rotated with a angle of 

 
 

 
         , if the the following condition is met: 

                (6.32) 

This condition occurs in linear segments with a slope higher than one. Therefore, this 

operation becomes the linear segment’s slope lower than one, avoiding a high or infinite 

slope, making the LSQ application more accurate when determining the linear segments' 

parameters.  

When the estimation method of the classic LSQ is applied with the linear segment's 

points rotated with an angle of  
 

 
, at the final, the parameter   needs to be rotated with an 

angle of  
 

 
. 

Therefore, the variance of     , defined as      needs to be now written as a function of 

the variance     . The same deduction that results in the equation (6.19) allows computing the 

variance of     , as function of the variance     , as the expression: 

                   
  (6.33) 

The last equation can be simplified through the equation (6.23), specified in the following 

expression: 

               
      

        
           (6.34) 

in which       is the gradient of     , given by the following matrices: 

        

  

  
 
  

  
  

  

  

  

    

      

 
 
 
 
  

   

      
 
  

 

     

 

     
  

 
 
 
 

 (6.35) 

To sum up, the linear segment parameters in the polar form, in the vehicle frame, are 

computed through the equation (6.31), while the respective covariance matrix can be obtained 

through the equation (6.34): 

      
  

     

     
 
    

     

 
 
 
 
  

   

      
 
  

 

     

 

     
  

 
 
 
 

     
      

  

 
 
 
 
  

   

      
 
  

 

     

 

     
  

 
 
 
 
 

          (6.36) 



98          Chapter 6·Data Detection and Extraction 

 

6.2.2. Circular Segment Extraction 

The circular segment parameters computation was already described in sub-section 6.1. 

Solving the equations (6.3) and (6.4), by using the classic Least Square Quadratic Error 

(LSQ), minimising the equation (6.5),  the parameters       appears equal to the equation 

(6.6).  

Hence, as the expression of equation was deduced  (6.19), it is possible to state that the 

parameters of       have a covariance equal to      , given by the following equation: 

        
    

            
    

  (6.37) 

in which the gradient of      , equal to   
    

, in order to the       matrix, defined in equation 

(6.3), is given by the following expression: 

  
    

       
       

       
  (6.38) 

where       is defined also in equation (6.3). 

Therefore, the variance matrix       can be re-written as the following equation: 

            
       

             (6.39) 

On the other hand, the variance of      , equal to           , is expressed as a function of 

the cost function defined in the equation (6.5): 

            
     
   

 (6.40) 

in which   and   are the final and initial circular segment indexes, respectively.  

We shall now consider the computed parameters      , defined in the equation (6.3), 

written in new way, as in the following equation: 

                (6.41) 

in which       ,        and         
    

 . 

We shall define now the matrix of the circular segment parameters, equal to         : 

           
  

  

 
  

 
 
 
 
 
 
 

  

 
  

 

    
  

    
 

  
 
 
 
 
 
 

 (6.42) 

Therefore, the variance of         , defined as         , is calculated with the expression: 

                                 
  (6.43) 
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The gradient of          in order to the parameters of      , is given by the following 

expression: 

          

 
 
 
 
 
 
 
   

   

   

   

   

   

   

   

   

   

   

   

  

   

  

   

  

    
 
 
 
 
 
 

   

          
 

 
 

   
   

 
  

 
 

  

 

 

 

  (6.44) 

In brief, the circular segment parameters         , are obtained with the equation (6.42), 

while the respective covariance matrix is obtained as follows: 

          
  

    

     
     

         
 

 
 

   
   

 
  

 
 

  

 

 

 

       
       

   

   
   

 
  

 
 

  

 

 

 

 

 

           (6.45) 

6.2.3. Corner Extraction 

A corner   , is represented as an invariant point. The corner    is computed through the 

laser measurements     and   , represented in Fig. 6.9, as the following equation: 

 

            
          

          
  (6.46) 

Fig. 6.9 Reading parameters of the observation module. 

in which the measurement of    is affected with the distance and angle errors:     and    . 

The error of the distance measurement     is modelled with the linear equation: 
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            (6.47) 

in which    and    is modelled as Gaussian noise with zero mean and standard deviation 

equal to    and   , respectively. The error    is modelled as Gaussian noise with zero mean 

and standard deviation equal to   .  

The noisy measured point   , can be re-written as the following equations: 

                
          

          
    

                
                     
                     

  (6.48) 

Considering          ,           , the observed noisy point becomes: 

                
             
             

  (6.49) 

The estimated observed point,     can be computed using the following equation: 

       
     
     

  (6.50) 

Through the equations (6.49) and (6.50), the observed error        can be estimated and 

given by the expression: 

            
      
     

            
     
     

  (6.51) 

Using the definition of variance, the variance of   , can be computed as the following 

equation: 

                          
 
    

            
   

                
 
                          

          
     

                
 
                        (6.52) 

in which the matrices   ,    and    are given by the following expressions: 

    
      
     

  
      

     
 
 

     
     
     

  
     
     

 
 

     
      
     

  
     
     

 
 

 (6.53) 

     is the expectation value of    . The expectation values are given by:        , 

       ,         and     
     

 ,     
     

  and      
     

 , since   ,    and     are 

errors modeled as Gaussian noise with zero mean and covariances equal to   
 ,   

  and   
 , 
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respectively. As the errors       and    are uncorrelated, the expectation values of        , 

        and          are equal to zero. Therefore, these can be written by the following 

expressions: 

           
 
    

     
                  

     

           
 
    

   
    

  (6.54) 

                                    

                 (6.55) 

Finally, the observed feature    variance is equal to the following expression, trough the 

equations (6.52), (6.54) and (6.55): 

         
  

    

     
 
    

          
   

       
   

    
     (6.56) 

The experiments made in [59] are conducted using a Hokuyo URG LRF, the same used 

in the work described in this document. Therefore, the standard deviations   ,    and    , 

used in the experiments made in [59], were also used in this PhD work.                , 

      ,          . 
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7. Pre-Localization 

As in the normal operation of the vehicle, a 3D Matching algorithm is used, aiming to 

pinpoint its position in the world frame, and, as is described in Chapter of Localization 9, the 

gradients (x and y) and distance matrices are required. To compute these matrices, the 

occupancy grid is also required, in the three-dimensional space, on the environment. 

Therefore, in pre-localization, the vehicle needs to be able to localize itself, so that the 

mapping of the indoor building may be possible. To meet that condition, two possible 

solutions can be used. They are presented in the following figure, Fig. 7.1. The blocks in dark 

grey represent the pre-localization for both solutions. 

The crucial difference between these two solutions is in the initial phase: the first solution 

is applicable if there is a 2D map of the building (architectural plan), while the second 

solution, firstly builds the 2D feature map. Between these possibilities, the second was chosen 

as the final solution, as it will be explained below. 

 

Fig. 7.1  Possible strategies (darker grey blocks) for the pre-localization procedure. Left image: pre-localization with 
a 2D Matching algorithm. Right image: pre-localization with an EKF-SLAM/EKF-Loc algorithm. 
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In the first solution, a 2D Matching algorithm can be applied in the 2D space to perform 

the pre-localization. In order to do so, the architect´s map of the building can be used to 

obtain the distance and gradient matrices in x and y directions. 

The Fig. 7.1 left shows this strategy. But, in this solution, some drawbacks arise: 1) a 

preparatory step is necessary to obtain the distance and gradient matrices; 2) the preparation 

step is performed using the architectural plan of the building, which sometimes is not 

available, other times it is obsolete and does not contain the real detail of the building, 

resulting in a bad pre-localization behaviour; 3) on the other hand, it can be performed by 

measuring manually the indoor building, which introduces a source of error. 

Therefore, as it is intended, to obtain the building map with high degree of accuracy and 

without any stage of preparation, a second solution can be considered. This solution uses, 

during the pre-localization procedure, an EKF-SLAM/EKF-Loc algorithm, Fig. 7.1 right. 

Without any knowledge on the surrounding environment, the Simultaneous Localization 

and Mapping (SLAM) allows the vehicle to pinpoint its location inside the world frame and 

map the surrounding. For these reasons, the final methodology proposed for pre-localization 

is the use of the EKF-SLAM/EKF-Loc procedure. 

The EKF-SLAM procedure allows you to obtain, in a first stage, the 2D map on the 

surrounding environment. This map is a feature map with linear segments and invariant 

points. In a second stage, still offline, by applying a simpler Extended Kalman Filter with the 

vehicle state, using the map obtained during the EKF-SLAM stage, it is possible to localize 

the vehicle (EKF-Loc). The knowledge of the vehicle pose allows applying the next 

procedure, the mapping, Chapter 8. 

This redundancy of information (linear segments and invariant points) helps to improve 

the EKF-SLAM and EKF-Loc accuracy.  

Imagine that, during a certain period of time, a preparation time, the vehicle can navigate 

inside the environment which is intended to map, without dynamic objects crossing it. 

Initially, with the observation module fixed in the horizontal (tilting LRF in the 

horizontal), and controlling the vehicle with a joystick, the acquired data in the two-

dimensional space can be logged to be then applied during the EKF-SLAM procedure. The 

acquired points in the two dimensional space constitute the set of points    .  

The amount of data     are reduced into linear segments and invariant points, using the 

Detection and Extraction algorithm described in the Chapter 6, thus becoming possible to 

apply the EKF-SLAM step, as shown in the Fig. 7.2. 

 

Fig. 7.2 interface between the EKF-SLAM and EKF-Loc procedure and the Data Detection and Extraction Module. At black 
lines is shown the process sequence, while at blue line is show the data flow. 
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After, with the observation module, by rotating and using the prior knowledge on the 2D 

feature map, also controlling the vehicle with a joystick, 3D data can be logged to be then 

applied with the EKF-Loc procedure. 

In this last case, the points acquired by the tilting Laser Range Finder are projected in the 

two-dimensional space. The set of the points   acquired by the tilting LRF, with coordinates 

       , whose z coordinate is between      and      metres constitute the set of data 

points    , with coordinates     ), which are projected in the 2D space. Again, the set of 

points     are transformed into linear segments and invariant points, using also the Detection 

and Extraction algorithm, allowing the application of the EKF Loc algorithm. The vehicle 

position obtained in the EKF-Loc step and the set of points P with coordinates         are 

used during the mapping procedure. 

The values of the parameters      and      are presented in the Chapter of results, 

Chapter 10. 

7.1. Filter's State 
The nomenclature and state representation of the EKF-SLAM and EKF-Loc used in this 

Chapter shall be introduced in this sub-section. 

The Fig. 7.3 shows the world frame, with axis         and the vehicle frame        . 

The vehicle pose is represented by the vector           . The vehicle referential is in the 

middle between the two traction wheels of the robot, as described in Chapter 5. Therefore, the 

origin of the vehicle frame has coordinates, in relation to the world frame, equal to the vehicle 

2D position        , and rotation, also in relation to the world frame, equal to the angle   . 

When the Extended Kalman Filter is applied to a SLAM problem, the filter’s vector state 

is not fixed. In this case, the vector state is composed of the vehicle state    and by the map 

state   
 , both represented in the world frame. Therefore, the vector state of the filter, in the 

world frame, is equal to the following: 

   
  

  
   (7.1) 

 

    

  

  

  

  (7.2) 

Fig. 7.3 Absolute referential        . Vehicle’s referential        . Vehicle state   . 

The map vector state   
  is increased every time that a new feature is obtained. Since the 

features are walls, corners and columns, represented by linear segments and invariant points, 

the map state appears: 
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  (7.3) 

in which     
  is the vector state corresponding to the linear segments found in the 

environment.     
  is the vector state corresponding to the set of invariant points (corners and 

columns) in the navigation area. Therefore, the map state   
  can be represented by the 

following vector: 

  
        

       
      

       
    (7.4) 

in which   is the number of linear segment features.   is the number of invariant points. 

As can be seen in the Fig. 7.4, the generic linear segment j in the vehicle referential is 

represented with parameters   
  and   

 , by the vector: 

     
   

  
 

  
   (7.5) 

A linear segment j is kept in the state vector as shown in the following equation. The state 

     
  is the polar representation of a line, in which   

  is the perpendicular distance of the 

linear segment in relation to the world's referential origin. Parameter   
  is the angle between 

the absolute referential axis    and the perpendicular with the linear segment. See Fig. 7.4. 

 

     
   

  
 

  
   (7.6) 

Fig. 7.4 Absolute referential        . Vehicle’s referential        . Vehicle state   . 

Linear segment representing a wall, with state      
 . 

A corner or column j is represented in the vehicle referential, with Cartesian coordinates 

      
       

  . The observed state appears equal to: 
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   (7.7) 

The corner or a column j represented as a point in world frame, is expressed in the 

feature map vector   
 , as is shown in equation (7.8), with parameters     

  and     
 , in 

relation to the origin of the world referential as is shown in Fig. 7.5 and Fig. 7.6. 

     
   

     
 

     
   (7.8) 

  

Fig. 7.5 Point j representing a corner, with state      
 . Fig. 7.6 Point j representing a column, with state      

 . 

Furthermore the equation (7.1), of the filter’s vector state, can be re-written as follows: 

    

  

  

  

 

 

 
  

 

  
  

 

  
  

 

  
  

 

 
     
 

     
  

 

  
     
 

     
  

 

 

 

 (7.9) 

The estimation of the Filter's state is represented by vector   , composed of the following 

components: 

    
   
   

 
  (7.10) 

in which, the estimation of the vehicle state     is set up by the variables               and the 

estimative of the map vector state    
 , is represented by the following vector: 

   
         

        
       

        
    (7.11) 

The estimation of a linear segment j in the vehicle and world frames is represented by the 

following vectors, respectively: 
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  (7.12) 

While the estimation of a point j in the vehicle and world frames is represented by the 

vectors: 

      
   

      
 

      
         

   
      

 

      
    (7.13) 

A new feature is firstly stored in the list of unmapped features (the list of unmapped 

linear segments and the list of unmapped invariant points), until being observed a minimum 

number of iterations and consequently added in the map state vector     
  . This is performed 

to avoid or reduce the introduction of wrong features in the map vector. 

The minimum number of iterations required to introduce a new feature in the vehicle 

state is indicated bellow, sub-section 7.4, with the respective justification. 

Both lists are represented in the world frame. The list of unmapped linear segments is 

represented by the following vector: 

        
            

           
  

 
 (7.14) 

in which   represents the number of unmapped linear segments in the list and the state vector 

         
  is represented as the following: 

         
   

         
 

         
   (7.15) 

The list of invariant points is represented by the following vector: 

        
            

           
  

 
 (7.16) 

in which   represents the number of unmapped invariant points in the list, and the state vector 

         
  is represented as follows: 

         
   

         
 

         
   (7.17) 

Finally, an acquired linear segment, through the Data Detection and Extraction Module, 

described in Chapter 6, is called observed linear segment and is represented by the following 

vectors, in the vehicle and world frames:  

        
   

     
 

     
           

   
     

 

     
   (7.18) 

Also, the acquired invariant points, called observed points, also obtained with the Data 

Detection and Extraction Module, are represented in the vehicle and world frames as follows: 
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    (7.19) 

In the following sub-sections, it will be necessary to compute the estimation of linear 

segments in the vehicle frame       
 , through the estimation of the same feature but, in 

coordinates of the world frame       
 . The same occurs in the estimation of invariant points. 

Also, in the case of the observed features, they are obtained in the vehicle referential         
  

and         
 , and required to be transformed in the world referential:         

  and         
 . 

Therefore, these transformations will be explained in this introductive sub-section, to be 

used during the following sub-sections.  

In the case of the linear segment, there are two possible transformations that need to be 

distinguished when transforming the linear segment parameters from the vehicle to the world 

frame and vice-versa. These two situations depend on whether the vehicle is inside or outside 

of the inner zone defined by the linear segment      
 , represented in the figures in grey, Fig. 

7.7 and Fig. 7.8.  

Let us now define the situation when the vehicle is inside the inner zone, shown in Fig. 

7.7, it will be called as inner situation. On the contrary, when the vehicle is outside of the 

inner zone defined by      
 , as shown in Fig. 7.8, it will be called as outer situation. 

  

Fig. 7.7 Example of a inner situation. The inner zone is 
represented is grey. 

Fig. 7.8  Example of a outer situation. The inner zone is 
represented is grey. 

In the inner situation, the linear segment j written in the world referential coordinates can 

be transformed in the vehicle referential, with the following equation: 

     
   

  
         

         
 

  
    

  (7.20) 

In the outer situation, the previous equation need to be re-written as follows: 
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  (7.21) 

Therefore, this transformation can be generalized to both cases, through the expression: 

     
   

        
         

         
  

  
              

 

 

   (7.22) 

in which      is equal to -1 in the inner situation and 1 on the opposite situation. 

The linear segment j, written in the vehicle referential, can also be transformed in the 

world referential. In the inner situation, the transformation is performed with the following 

equation: 

     
   

  
          

              
     

  
    

  (7.23) 

In the outer situation, the previous equation is written as follows: 

     
   

   
          

                
       

  
      

  (7.24) 

Generalizing to both the cases, the transformation is equal to: 

     
   

       
          

              
 

 
          

              
 

 
 

  
              

 

 

  (7.25) 

Still about the linear segments, it is necessary to distinguish the inner and outer situations. 

Imagine that it is necessary to compute the linear segment, written in coordinates of the world 

frame, in coordinates of the vehicle frame. The equation of the linear segment      
  can be 

expressed as follows: 

  
         

         
  (7.26) 

in which    and    are the coordinates of a generic point of the linear segment represented 

in the world frame. Therefore, the linear segment      
  corresponds to an inner situation, as 

shown in Fig. 7.7, if the following condition is met. When this condition is not met, the linear 

segment      
 , corresponds to an outer situation, as shown in Fig. 7.8. 

  
         

         
  (7.27) 

Imagine now that we intend to write in coordinates of the world referential, the linear 

segment      
 , expressed in the coordinates of the vehicle. In this case, both situations, the 

inner and outer, are computed using equations (7.23) and (7.24). Afterwards, two solutions 

will be obtained, but only one will be considered the correct one. If the solution obtained with 
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equation (7.23) meets the condition (7.27), it will be the correct solution. On the contrary, if 

the solution of (7.24) does not meet the condition (7.27), it will be the correct solution. 

In the case of the invariant point, the transformation between its representation in the 

world frame and its representation in the vehicle frame, is expressed with the equation: 

     
   

       
                  

          

       
                  

          

  (7.28) 

On the contrary, the representation of a point in the world referential through its 

coordinates in the vehicle referential, can be expressed as follows: 

     
   

     
            

         

     
            

         

  (7.29) 

7.2.  EKF-SLAM Procedure Cycle 
In this sub-section will be detailed presented the EKF-SLAM cycle. Pseudo-code is used 

in this sub-section as way to describe the EKF-SLAM cycle, as shown in Algorithm 7.1. 

The EKF-SLAM cycle, is composed of four crucial steps: 1) the Kalman Filter Prediction 

stage; 2) the Association Module; 3) the Kalman Filter Update stage; and finally 4) the Delete 

Repeated Features Module.  

In the first step, the previous Filter's estimated state         and respective covariance 

      , are propagated using the odometry inputs.  

After, the association module compute the correspondences between the actual observed 

list of linear segments and invariant points,        and       , and the features estimated on 

the Filter's vector state          . These associations are retuned in the vectors      and 

    .  

The observed features with no association in the Filter's vector state           have a 

corresponding index in the association vectors      or      equal to -1. For those observed 

features, it is tried the association with the list of unmapped features, already defined as 

        
  and         

 . These correspondences are returned in the association vectors 

       and       . Again, the observed features with no association on the list of unmapped 

features have a corresponding index equal to -1, in the association vectors,        or 

      . 

These vectors (    ,     ,        and       ), are used in the following phase, the 

Kalman Filter Update stage. 

In the third stage, Kalman Filter Update, the state and covariance propagated by the 

odometry inputs           and         , is updated and the new Filter's state and 

respective covariance is computed,             and           . To do that, the 

observation and its estimation are computed with the knowledge of correspondences, in the 

vectors      and     . 

The entire set of features in the list of unmapped features, have a score value, which 

indicates, the number of times that each of those unmapped feature appeared. Therefore, the 

score is increased, for the features in the list of unmapped features, with an association in the 

vectors        and       . 
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The features with no association in the vectors     ,     ,        and        are 

introduced in the list of unmapped features, with a score equal to 1. 

Still about the Kalman Filter Update stage (third step of the EKF-SLAM), the features in 

the list of unmapped features with a score higher than a minimum value are added in Filter's 

vector state           and deleted from the list of unmapped features. 

Finally, during the fourth step, in intervals of                 iterations, the repeated 

features in the estimated state vector             are deleted. In the following sub-

sections this four stages will be explained in more detail. 

Algorithm 7.1 EKF-SLAM cycle. 

                              

     

                    

                                               

                   

                                                                      

                

                                

                                                 

                                                       

                                                                

                         

                                             

                                               

                                              

       

         

Along this Chapter the following nomenclature shall be used: the matrix          

represents the zero matrix with dimension        . The matrix          represents the 

identity matrix with dimension        . The matrix          represents a generic matrix A, 

with dimension        . 
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7.2.1. Kalman Filter Prediction Stage 

Every cycle, the odometry model predicts, by using odometry data (   ), the previous 

vector state         and covariance       , a new vector state           and covariance 

matrix         . 

In the prediction stage, only the vehicle state           , will be changed with odometry 

data, since the features, represented in the world referential will remain static. 

Aiming to model the vehicle’s kinematic model, the following transition function was 

used , considering the state       : 

                

 
 
 
 
 
 
 
                  

          
 

          
          

 
           

 
 
 
 
 
 

 (7.30) 

in which the vehicle kinematic model is given by the following expression, [62]: 

                   

 
 
 
 
                       

  

 
     

                      
  

 
     

              
 
 
 
 

 (7.31) 

The kinematic model’s error    was modelled as additive white noise, with Gaussian 

distribution, with an expected value equal to zero (     ) and covariance   . The white 

noise    is constituted by the error associated with the vehicle state: 

                (7.32) 

The estimation of the Filter's state after the Kalman Filter Prediction stage is obtained 

using the estimation of the previous state         and odometry data as shown in the following 

expression: 

                           

          

 
 
 
 
 
 
 
 
 
 
 
                         

  

 
 

                        
  

 
 

           

           
 

           

           
 

            
 
 
 
 
 
 
 
 
 
 
 

 (7.33) 
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To compute the prediction covariance it is necessary to use the following equation, as it 

can be seen in more detail in the book [53]: 

         
  

  
      

  

  

 

 
  

   
  

  

   

 

 (7.34) 

The covariance    increases with the estimated distance and rotation of the vehicle 

(  and   ): 

   

 
 
 
 
 
                 

  

 
     

 

  

                 
  

 
     

 

 

         
         

  
 
 
 
 
 

 (7.35) 

in which the standard deviations   ,    and     were determined as described in Chapter 5.  

When the vehicle moves 1 metre in front the estimated error on the odometry 

translational and rotational displacement is    and    , respectively. When the vehicle rotates 

1 radian, the estimated odometry error on the vehicle rotation is equal to   .  

Therefore, when the vehicle showed no movement, the kinematic model error, 

represented by   , is zero. In the other hand, the variance of the states     and     increase with 

the quadratic displacement of the vehicle in the x and y axis, respectively. The variance of     

increases with the quadratic translational and rotational displacement, as it can be seen in 

equation (7.35). 

The gradient of the transition model in order to the odometry error    is equal to the 

following matrix: 

    
 

  

   
   

    
                      

                            
  (7.36) 

The gradient of the transition model in order to the Filter's state can be obtained with the 

following expression: 

                 
  

  
   

                  
    

                          

                            
  (7.37) 

in which the gradient of the vehicle kinematic model   , in order to the vehicle state    is 

obtained with the following matrix: 
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 (7.38) 

7.2.2. Association Module 

The Data Detection and Extraction Module obtains a list of points        and linear 

segments       , relative to the vehicle referential. The linear segment list can be defined as 

the following expression: 

                
          

   (7.39) 

in which         
  is equal to the equation (7.18) and   is the number of observed linear 

segments. The point list can be defined as the following expression: 

                
           

   (7.40) 

in which         
  is equal to the equation (7.19) and   is the number of observed points 

(corners or columns). 

Both these lists, in the association module, need to be computed in the world frame, using 

the equations already described in sub-section 7.1. Therefore, the observed linear segment list, 

expressed in the world frame, can be represented by the following vector: 

                
          

   (7.41) 

The observed invariant points list, represented in the world referential, can be expressed 

as follows: 

                
          

   (7.42) 

Given a point list and a linear segment list in the world referential, the vehicle state 

           and the map state    
         can be updated by comparing the actual 

observations and the state stored in the Filter’s vector. Also, new features can be added to the 

Filter’s vector. To do so it is necessary to perform the association between those observed 

features and the estimated state vector or the list of unmapped features, as shown in the image 

of Fig. 7.9. 

Firstly, we test whether each observed feature (        
  or         

 )  from the lists 

      and      , has a correspondence in the map state vector    
 . These correspondences 

are returned in the vectors      and     . 

For the observed features with no association in    
 , i.e. with an index in      or      

equal to -1, depending if it is a linear segment or a point case, respectively, it is tested for 

associations with the list of unmapped features,         
  or         

 . In that case, the 

correspondences are returned in the vectors        and       . 

Both these association modules, represented in Fig. 7.9, are constituted with two crucial 

phases: 1) the test of the individual compatibility, which using a set of "gates", associate to 

each observed feature an corresponding candidate in the state vector or in the unmapped list 
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of features, respectively; 2) from the first step, can result observed features with the same 

associated candidate. To prevent the association of the same candidate to different observed 

features, the test of the joint compatibility is performed. 

 

Fig. 7.9 Association modules. Correspondence between the observed features and the estimated map state    
 . 

Correspondence between the observed features and the list of unmapped features. 

Trying with all the feature points in the map state vector, the pair          
        

   is 

individual compatible only if the following conditions are met: 

1) The Euclidian distance between         
  and       

  is lower than the adjustable 

parameter      
. 

2) The fusion value      between         
  and       

  is the smallest between the pairs 

that meet the condition 1), where      is given by the expression: 

       
      

          
 

      

 

 

  
     

          
 

      

 

 

 (7.43) 

The standard deviations       
 and       

 are the diagonal covariances, corresponding to 

the mapped invariant point       
 , in the covariance matrix  .  

After the application of the individual compatibility, each observed feature can be 

assigned with a mapped feature candidate, or with no association. The joint compatibility is 

tested, thus verifying if the same candidate is attributed in different observed features. In the 

positive cases, the better observed feature wins the candidate, while the others are assigned 

with no association. An observed feature wins the candidate if its fusion value      is the 

lower.   

Finally, the observed points assigned with no association are tested again to find pairs in 

the list of unmapped points          
 . To do that, it is performed the test of the individual 
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compatibility. Consider again the limit      
, the pair                    

   is associated 

only if the conditions are met: 

1) The Euclidian distance between         
  and          

  is lower than a limit      
. 

2) The previous computed Euclidian distance is the smallest between the pairs that meet 

the condition 1). 

After applied the individual compatibility, again, the joint compatibility is applied for the 

list of unmapped points         
 . 

We shall now consider the observed linear segment         
  and the mapped feature       

  

represented in the following figure, Fig. 7.10. Consider also, the projection of the observed 

linear segment in the mapped feature, equal to          
      . 

 
Fig. 7.10         

  in red.       
  in black. Projection of         

  in green. 

The size of the feature       
  is equal to      , while the size of the projected observed 

feature is equal to      . The overlapping rate value   , between         
  and       

  is 

computed in the following way: 

   
           

                 
 (7.44) 

The overlapping value will be equal to 2 when there is complete overlap. The value of    

is equal to 1 when there is no overlap. 

The disparity value       represents the distance between         
  and       

 . Consider 

the distance    and   , representing the distances between the first and last points of the 

observed linear segment         
  and its projection in       

 . The disparity value is computed 

as follows:  

     
 

     

 
 (7.45) 

Considering the adjustable values      
 and      

, the pair          
        

   is individual 

compatible only if the conditions are met: 

1) If the disparity value      
, between the estimated linear segment       

  and the 

observed is lower or equal than      
. 

2) If the angle distance,      
, between the angle   

  of       
  and the observed linear 

segment         
  is lower or equal than      

. 
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3) If there is a minimum overlap rate    equal to      , between the linear segments 

      
  and         

 . 

4) The fusion value     , between       
  and         

  is the smallest between the pairs 

that meet conditions 1), 2) and 3). In which      is determined with the following expression: 

     

     

      
 

     

      

 
      

 
 

      

 
 

  
 (7.46) 

Thus, a mapped linear segment       
  with a higher uncertainty in its parameters, i.e. 

higher        and       , has a lower fusion value to be paired with         
 . 

Such as it occurs with the point feature association, after the individual compatibility is 

applied, the different linear segments observed can be associated with the same mapped 

feature. Therefore, the joint compatibility is applied. When different observed linear segments 

have the same candidate, the one with a lower fusion value     , wins the candidate, while 

the others became with no association. 

Again, as it occurs with the association described for the invariant points, the observed 

linear segments assigned with no association are tested again to find pairs in the list of 

unmapped linear segments         
 . The association between an observed linear segment, 

with the state          
 , has similarities with the association described above. Therefore, the 

pair          
           

   is individual compatible if the conditions are met: 

1) If the disparity value      
, between the unmapped linear segment          

  and the 

observed is lower or equal than      
. 

2) If the angle distance,      
, between the angle       

  of          
  and the observed 

linear segment         
  is lower or equal than      

. 

3) If there are a minimum overlap rate   ,      , between the linear segments 

         
  and         

 . 

4) The fusion value,     , between          
  and         

  is the smallest between the 

pairs that meet  conditions 1), 2) and 3). The fusion value      is determined with the 

following expression: 

                 
 

  
 (7.47) 

Also after the individual compatibility is applied, in the association between the observed 

linear segments and the unmapped, the joint compatibility is tested. 

7.2.3. Kalman Filter Update Stage 

We shall now consider that the estimated state vector has M linear segments and N 

invariant points. The dimension of the state vector, enter in account with the estimation of the 

vehicle state    , is equal to (3+2N+2M), since the vehicle state has three associated variables 

and each features has two associated variables. 
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In this sub-section there will be an explanation on how the entire state vector is updated 

using the associated observed features to the map state vector    
        . Also it is 

explained how the features are introduced in the state vector.   

Through the test of compatibility explained in the previous sub-section, the observed 

features are associated with the ones that already exist in the estimated map vector    
 . We 

shall now consider the vectors      and     , obtained after the application of the association 

module. Through these vectors, it is possible to define the association pairs, between the 

estimated features and the observed:        
          

   and        
          

  . Consider also 

that the number of associations between observed linear segments and the estimated is G. The 

number of associations between the observed invariant points and the estimated is H. 

In the case of a linear segment, the observation model, is equal to      
  in the polar form, 

written in the vehicle coordinates: 

       
  

 

  
   (7.48) 

The estimated observation, in the case of the linear segment is equal to: 

        
   

 

   
 
           

             
         (7.49) 

By using the equation (7.22), the estimated observation in the case of the linear segment j, 

can be written in the following way: 

        
         

           
           

  

   
               

 

 

         (7.50) 

The observation of a linear segment can be written as the following expression: 

                    

       
  

     

  
     

  (7.51) 

in which       is the error associated with the observed feature         
 , modelled as Gaussian 

noise with zero mean (        ) and covariance matrix      . The error       is represented 

by the vector: 

       
   

   
  (7.52) 

The observation of a linear segment can be written in another way, as function of the 

observed feature: 
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  (7.53) 

The associated innovation to the estimated linear segment j, is equal to the following 

equation: 

                     

              
        

  (7.54) 

The gradient of the observation module       in order to the observation model noise 

      is equal to the identity matrix, while the gradient in order to the state vector, equivalent 

to the mapped linear segment j, is equal to       
  and is given by the equations: 

      
         

        
  

 
  (7.55) 

      
    

            
             

  

    
         (7.56) 

      
  

 

               
    

     
 

                 (7.57) 

  
    

     
 

                                 

  
         (7.58) 

The matrix of the covariance associated to the observation model’s error,  is given by the 

following expression: 

       
   

    
      

    
   

    

   (7.59) 

in which    
 and     

 are adjustable parameters whose values are given with the respective 

justification at the sub-section 7.4. The standard deviations    
 ,    

  and     
 are estimated for 

the observed linear segment j, as explained in the Data Detection and Extraction Module, with 

the equation (6.36). Therefore, the final innovation vector, of the linear segment features, 

considering all the observed linear segments, appears equal to: 

                          (7.60) 

The final gradient vector, in order to the Filter's state, can be written as the following 

expression:  

     
         

        
        

  
 

 (7.61) 

Finally, the resultant covariance matrix associated with the list of the observed features 

can be written as follows: 
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  (7.62) 

We shall now consider the case of the invariant point feature. The observation model of 

an invariant point j is equal to      
 : 

       
     
 

     
   (7.63) 

The estimation of the observation module corresponding to the mapped feature j is given 

by: 

        
     
 

     
            

             
         (7.64) 

Using the equation (7.28), the estimated observation in the case of an invariant point j, 

can be written in the following way: 

         
                     (7.65) 

         
                    (7.66) 

        
                 

                 
         (7.67) 

The observation of an invariant point can be written as the following expression: 

                    

       
     
     

     
     

  (7.68) 

in which the error       is the error associated with the observed feature         
 , modelled as 

Gaussian noise with zero mean (        ) and covariance matrix      . The error       is 

represented by the vector: 

       
   
   

  (7.69) 

The observation of the invariant point can be written in another way, depending on the 

observed point j: 

              
  (7.70) 
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The innovation associated with the estimated invariant point j is equal to the following 

equation: 

                     

              
        

  (7.71) 

The gradient of the observation module      , in order to the noise of the observed 

feature equal to      , is the identity matrix, while the gradient in order to the state vector, 

equivalent to the estimated point j, is equal to       
  and is given by the equations: 

      
         

        
  

 
  (7.72) 

      
    

                                

                                
         (7.73) 

      
  

 

                  

     
 

                 (7.74) 

     

     
 

  
            
             

         (7.75) 

The matrix of the covariance associated to the observation model’s error, is given by the 

following expression: 

       
   

    
      

    
   

    
   (7.76) 

in which    
 and     

 are adjustable parameters which value is presented and justified in the 

sub-section 7.4. The values    
 ,    

  and     
 are the covariances estimated for the observed 

invariant point j, as explained in the Data Detection and Extraction Module, through the 

equations (6.45) or (6.56), depending if the observed invariant point is corresponding to a 

column or a corner, respectively . 

Therefore, the final innovation vector, of the invariant point features, considering the 

associated observed invariant points, appears equal to: 

                          (7.77) 

The final gradient vector in order to the Filter's state can be written as the following 

expression:  

     
         

        
        

  
 

 (7.78) 

Finally, the resultant covariance matrix, associated with the list of the observed features 

can be written as follows: 



7.2·EKF-SLAM Procedure Cycle          123 

 

      
       

   
       

  (7.79) 

The total innovation can be obtained with the vector: 

                   (7.80) 

The total gradient in order to the noise of the observed features is the identity matrix, 

while the total gradient in order to the Filter's state is given by the following equation: 

          
      

    (7.81) 

The resultant covariance of the entire set of observed features is given by the following 

matrix: 

   
            

            

  (7.82) 

The Kalman Filter equations during the Update stage can be seen in more detail in [53]. 

In that way, the new vector state           , using the Extended Kalman Filter’s 

equations in the Update stage, appears equal to:  

                                    (7.83) 

in which        is the Kalman Filter’s Gain equal to: 

                  
                

    
  

 (7.84) 

Finally, the new covariance vector will appear equal to: 

                                      (7.85) 

Now, also in the Kalman Filter Update stage, there will be an introduction of the new 

features and the respective covariance in the Filter's map vector    
          , and in the 

covariance matrix           , respectively. 

The association model also returns the vectors        and       , which for the 

observed features with no association in     
 , have the correspondence in relation to the list of 

unmapped features. Trough these vectors it is possible to obtain the associated pairs, between 

the unmapped features and the observed:           
          

   and           
          

  . 

These vectors will be -1 for the observed features with no association in the list of unmapped 

features. 

In the case of an association, the score of the corresponding unmapped feature           
  

or          
 , is increased. If the score of the associated feature is higher than a value 

        , it is added to the map state vector    
  and deleted from the list of unmapped 

features.  
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If there are not a correspondence, then, the observation         
  or         

  is added to 

the list of unmapped features, as a potential new feature.  

Now, will be explained how the introduction of new features is done in the Extended 

Kalman Filter.  A linear segment as function of the parameters of an observed linear segment 

        
 , is represented by the following expressions, deduced in equation (7.25): 

     
        

                            
 

 
 (7.86) 

     
   

           
                 

            
 

     
 

           (7.87) 

in which the noise       is setup by the random noise     and    , modelled as Gaussian noise 

with expected value       , equal to zero and covariance      , defined at equation (7.59). 

The estimation of a linear segment as function of an observed linear segment         
  is 

computed as the following equation: 

      
          

   (7.88) 

      
       

                        
 

 
 (7.89) 

        
   

          
              

              
 

      
 

           (7.90) 

Therefore, when the observed linear segment j is added to the filter's state vector, because 

its score on the list of unmapped linear segments is higher than a value         , the new 

estimation of the state comes: 

                
       

  
       

  
        

       
  

       
  

 
 
 (7.91) 

The new covariance matrix appears equal to:  

                 
                 

  
   

   

                

      
 (7.92) 

The gradient of the estimation of a linear segment, in order to the state  , is equal to 

       
   and can be computed with the expressions: 

      
   

      
                

                                  
  (7.93) 

      
             

          
              

              
 

   
           (7.94) 

The gradient of the estimation of a linear segment, in order to the white noise      , is 

given by the following equations: 
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       (7.95) 

  
    

     
  

                   
              

 

  
           (7.96) 

In the case of an observed point, an invariant point, as function of the parameters of the 

observed invariant point         
 , can be written as follows. To do that the equation already 

deduced (7.29) is used: 

     
   

         
                     

              

         
                     

              

           (7.97) 

in which the noise       is setup by the random noise     and    , modelled as Gaussian noise 

with expected value       , equal to zero and covariance      ,defined at equation (7.59). 

The estimation of an invariant point as function of an observed         
  is equal to: 

      
          

    

      
   

        
                

           

        
               

           
           (7.98) 

Then, when it is added to the Filter's state vector, the new estimative of the state comes: 

                
      

  
      

  
     

  
      

  
        

  
 
 

(7.99) 

Therefore, the new estimative of the covariance matrix is given by the expression:  

                 
                 

  
      

                

      
 (7.100) 

The gradient of the observation module in order to the state   comes equal to: 

      
   

      
                

                                  
  (7.101) 

      
    

           
             

       

           
             

       
           (7.102) 

The gradient of the observation model in order to the noise     , is given by the following 

equations: 

     

       
              

  
    

       (7.103) 

  
    

       
             
            

           (7.104) 
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7.2.4. Delete Repeated Features Module 

The filter's vector state can have different features whose state is equal or similar. These 

features are repeated and one of them should be deleted.  

Periodically, in intervals of                 iterations (see Algorithm 7.1), the vector 

state is inspected aiming to find pairs of repeated features        
        

   or        
        

  , 

merging the repeated ones.  

To verify the association between features the individual compatibility need to be 

verified. The individual compatibility, used in this case is based on the works [41] and [58]. It 

is determined using the Mahalanobis distance.  

If the Mahalanobis distance is lower than   , the features        
        

   or        
        

   

should be considered a pair. The value assumed to   was      representing an association 

with an confidence level of 95%, [58]. 

The Mahalanobis distance between the feature i and feature j is computed using the 

following equations, where      represents the linear segment or invariant point case: 

                    
       

  (7.105) 

             
         

  (7.106) 

             
            

   (7.107) 

in which          
   and          

   are the corresponding covariance matrices of the features 

in the Filter’s covariance matrix  . These features are the pairs        
        

   or        
        

   

in the case of a linear segment or invariant point, respectively. 

Finally, the pair        
        

   will be associated and merged in only one linear segment, 

if there is an overlap between the two linear segments and the Mahalanobis distance meets the 

following equation. In the case of the pair of invariant points        
        

  , they are merged 

in only one feature, if the following equation is met. 

                
 
 (7.108) 

7.3. EKF-Loc Cycle 
As already said, after the EKF-SLAM procedure described at the previous sub-section, it  

is applied, still offline, the EKF-Loc cycle, aiming the vehicle accurate localization using the 

2D feature map, previously computed. The crucial difference between the EKF-SLAM cycle 

and the EKF-Loc cycle is the fact that in the last the state vector is only constituted by the 

vehicle state: 

          
  (7.109) 

Hence, in the EKF-Loc cycle the crucial goal is, using the features and the respective 

covariances, of the map previously built during the EKF-SLAM cycle, only estimate the 

vehicle state    . Therefore, contrary to the EKF-SLAM cycle, during the EKF-Loc cycle: 1) 
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the map previously built, is not updated; 2) new features are not added in the state vector; and 

3) features are not deleted from the map. 

All the matrices are computed as shown in the previous sub-section, with exceptions for 

the gradient matrices       
  and       

 , which are equal to       
   and       

  , computed as 

shown in the equations (7.56) and (7.73), respectively.  

7.4. Pre-Localization Parameters 

The Table 7.1 presents the parameters of the update step in the EKF-SLAM and EKF-Loc 

cycles used during the pre-localization, while the Table 7.2 shows the adjustable parameters 

of the association module  

The algorithm was tested with different values of    
,    

,    
 and    

 in the gap of 

          , in intervals of 0.01. The best performance was achieved for the values shown in 

the Table 7.1. The best performance was found, adjusting these parameters making up the 

pre-localization smother as possible.  

We shall now consider that the vehicle moves at a speed of 0.2 m/s, during the pre-

localization procedure. With a time cycle of 100 milliseconds, the vehicle will move a 

maximum distance        , between time cycles, equal to                       . 

Smother as possible means a localization without a variation of the vehicle position higher 

than three times the value of        , which is equal to             . 

The parameters      
,      

 and     are related with the association between linear 

segment features. As they are three validation gates, the values of Table 7.2 have a high 

degree of security. In indoor environments the walls, doors and furniture is disposed in 

rectangle angles, in the parallel and orthogonal.       
 is used to associate linear segments 

which are parallel, therefore it is also used to despite the association between orthogonal 

linear segments. Therefore the value of 90º/2 = 45º for the parameter      
 is a logical value.  

On the other hand the parameter      
, is used to despite the association between distant 

parallel linear segments, as is example the walls of a corridor. The distance between the walls 

of a corridor, where the vehicle passes, is at least 0.5 metres , the diameter of the vehicle's 

footprint. Therefore the value of      
 is 0.5 metres .  

It is considered that the overlap between two linear segments, allowing they association, 

need to be at least 0.25 metres . Only linear segments with at least 0.7 metres  are extracted 

from the raw data set. Therefore, it is only allowed the association between the observed 

linear segment         
  and the already mapped       

 , if the size of the projected         
  in 

      
 , is at least                times of the size of       

 . Therefore, the overlapping 

parameters is equal to        . 

The parameter      
 is used in the association of feature points. As, it is considered that at 

least an overlapping of 0.25 metres  is needed for the association of two linear segments, it is 

also considered that a distance of 0.25 metres should be the maximum distance between 

points, allowing their association. 

Finally, imagine a person walking in the navigation area, during the pre-localization, with 

at least 0.3 m/s of speed. This person will be "extracted" as an point or a linear segment 

feature. As this person is a dynamic "object", it is necessary to avoid its insertion in the state 
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vector. Therefore, MinScore should be such value that, after MinScore iterations, its distance 

in relation to the first appearance is higher than the          
      

      metres . 

Therefore MinScore can be computed using the following expression. 

                           (7.110) 

where           is equal to 100 milliseconds. Therefore, MinScore need to be higher than: 

         
   

       
              (7.111) 

The chosen value for MinScore was 20 iterations. 

Update 

   (mtres) 0.2 

   (radians/degrees) 0.26/15 

       (metres) 0.15 

Table 7.1 Parameters of the update in Pre-localization. 

Association 

     
(metres) 0.25      

(metres) 0.5 

     
(radians/degrees) 0.78/45    1.35 

         20 

Table 7.2 Parameters of association in Pre-localization. 
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8. Mapping  

After achieved the vehicle’s 2D location, using the pre-localization process, it is possible 

to create a 3D map of the surrounding environment (mapping).  

Therefore, the three-dimensional world is represented as follows: a map  , which is 

divided into cells    (cube shaped) forming an occupancy grid. The occupancy grid has 

maximum width (    ), length (    ) and height (    ). The resolution (   ) defines the 

size of each cell.  

The matrix   at each position in world referential            has two different values: 

the probability of being occupied,               , and its state, ('occupied', 'free' or 

'unknown'),               . 

The probability of the occupancy grid, needs to be filled using rules with the ability of 

highlight cells with high degree of certainty to be occupied. On the contrary, the rule must 

have the capacity of despite cells, whose probability to be occupied is lower.  

The Bayes Rules have the capacity to perform the mapping, thus meeting the 

characteristics described in the previous paragraph. The Bayes rules applied in the 3D 

mapping is described in the following sub-section (8.1). 

8.1.  Bayes Rules 

The probability that a cell    has of being occupied is defined as     . Therefore, 

       represents the probability that the cell has of being occupied if there is an observation 

corresponding to that cell   . On the contrary, the probability that a cell has of being occupied 

if there is no observation, is represented by        . 

The probability of the cell   , being observed if it is occupied, is represented by        . 

On the other hand, the probability of an observation when the cell is not occupied is equal to 

          These two last probabilities are characteristic of the LRF. 

In [50], experimental results are conducted using the Hokuyo URG-04LX-UG01, the same 

that was used in this work. During these experiments the values of             and 

              were found. The same probabilities of        and         were used in 

the work described in this document. 

At each sample , with the knowledge of the vehicle position, it is possible to obtain, in the 

world frame, a set of occupied cells   . Each cell    is corresponding to one laser scan point, 

with coordinates           , in the world referential. 

The coordinates of the cell               has a corresponding cell    in the 

occupancy grid, defined as  . 

For each measured occupied cell    is possible to obtain a set of cells called      , which 

contains the occupied cell   , represented in blue in Fig. 8.1 and the free cells, the ones inside 
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the range of reading  ,           represented at grey in Fig. 8.1. Therefore, the set       can 

be written as follows: 

                    (8.1) 

Thus, to each set of cells belonging to the      , it is necessary to compute:  

1) For the cell    corresponding to   , the probability to be occupied if there is an 

observation (      ). 

2) For all cells    corresponding to the ones considered free          , it is necessary to 

compute the probability of being occupied if there is no observation (       ).  

 

Fig. 8.1. Beam i. Occupied cell represented in blue (  ). Free cells represented in grey,          . 

Both these probabilities,        and        ), are computed using the following 

expressions: 

       
           

                         
 

(8.2) 

        
            

                           
 (8.3) 

The probabilities (8.2) and (8.3) are presented according to the Bayes rules,  in which 

             ,                  and                   . 

The probability      represents the previous probability of the cell   . The initial value 

of      in each cell is    , because those cells are also likely to be occupied or free. The 

initial state of each cell    is 'unknown'. Therefore, initially, all the cell   , will have a 

probability equal to                  , while the state will be equal to the label 

                       .  

The pseudo-code of Algorithm 8.1, describes the application of the Bayes Rules over the 

set of cells belonging to the      . The cells with a probability higher or equal than      

are classified as 'occupied' cells. On the contrary, the cells with probability lower than      

are considered 'free' cells.  

S. Jia et al. in the work [50], uses the probability of 0.7 as value for     . The same 

value was used, with good results, in the mapping process described in this Chapter, aiming 
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the 3D mapping of the surrounding environment. Thus, only the cells with probability higher 

than are considered 0.7 occupied, while the others are free. 

Algorithm 8.1 Application of the Bayes Rules over the set of cells belonging to the      . 

                          

                   

             

                          

                    

                      

                      

                   

                     

       

                           

                         

       

                     

       

        

8.2. Creating Distance and Gradient Matrices  

After obtained the occupancy grid  , in the three-dimensional space, through the 

application of the Bayes Rules, it is necessary to compute the distance and gradient matrices. 

The distance and gradient matrices are the core base of the localization 3D Matching 

algorithm described in the next Chapter, Chapter 9.  

In fact, these matrices, need to be pre-computed and stored in memory to be used during 

the localization process, in the vehicle normal operation. The pre-computation of the distance 

and gradient matrices guarantee a fast performance of the 3D Matching algorithm.  

The need and utility of these matrices will be described with more care in Chapter 9. At 

the moment its only important to refer that in this sub-section will be explained how to 

compute the distance and the gradient matrices through the already obtained 3D occupancy 

grid  . 

These matrices have equal dimension and resolution of the occupancy grid  : width 

(    ), length (    ), height (    ) and resolution (   ). 
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The distance matrix, represented by     , has at each coordinate position in the world 

frame           , the distance of the nearest 'occupied' cell, in the occupancy grid  . 

The gradient matrix      is computed in order to the   direction. This matrix represent 

the variation of      in each coordinate position           , with the variation of  . In a 

similar way , the gradient matrix     , contains the variation of      in the position 

          , but with the variation of  . 

The algorithm used to compute the distance matrix is described as follows:   

1) It is necessary to initialize the distance matrix. Therefore, it is visited all the cells    of 

 . The cells in   classified as 'occupied' cells, have a corresponding distance matrix value, 

equal to zero. The others,  classified as 'unknown' or 'free', have a corresponding value in the 

distance matrix equal to infinite, which is represented by a large number            

     .  

2) After initialized, the computation of the distance matrix is constituted by two sub-

steps:  

2.1) The first is performed visiting the distance matrix from the upper and left corner, 

updating the actual distance map position based on the previous neighbours. 

2.2) The second step is completed by updating the distance matrix, using the next 

neighbours, when each position of the distance map is visited, starting from the bottom 

and right corner. 

Considering the 3D space, the step 1) described above of the algorithm to compute the 

distance matrix (    ) is presented in the pseudo-code shown in Algorithm 8.2. The step 2) 

of this algorithm, as described above, is presented in the Algorithm 8.3. For more details  

about the Distance Transform see the works [54] and [55]. 

Algorithm 8.2 Distance transform applied to the occupancy grid  . Initialization of each cell. Step 

number 1). 
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Algorithm 8.3 Distance transform applied to the occupancy grid  . Step number 2). 
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Once the distance matrix (    ) was calculated, the gradients             are 

computed using the Sobel Filter. For more details about the Sobel Filter see the reference 

[56]. The gradient      is equal to the weighted average of      using a vertical Sobel 

operator of the equation (8.4). The gradient      is equal to the weighted average of      

using the horizontal Sobel operator of the equation (8.5). 

   
      
      
      

  (8.4) 

   
      
      
      

  (8.5) 

Therefore, for each point p with coordinates in the world referential            and 

with distance value equal to          ,  the neighbours are represented by the following 

matrix: 

          
      
     
      

  (8.6) 

The gradients for   and  , in the two-dimensional space, are calculated using the 

following expressions: 

             
             

 
 (8.7) 

             
             

 
 (8.8) 

To compute the x gradient     , in the three-dimensional space, to each cell of the 

gradient matrix, with coordinates           , it is applied the equation (8.9). The gradient 

in the y direction,      , is computed with the equation (8.10), applying it to each cell of the 

distance matrix. 

               
                                          

 
 (8.9) 

               
                                          

 
 (8.10) 
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9. Localization 

The three-dimensional map-based localization methodology implemented and presented 

in this document is divided into two crucial parts: 1) pre-localization and mapping, already 

described in Chapters 7 and 8; 2) localization.  

The localization part corresponds to the normal operation of the vehicle and it is 

performed using a 3D matching algorithm. The localization estimates the vehicle 2D position 

and orientation (  ,    and   ), performing a matching using data in the three-dimensional 

space, i.e. laser points with coordinates ( ,   and  ). 

Using a known 3D map, it is possible to build (offline) a matrix of distances. At each 

coordinate point, this matrix includes the distance to the closest occupied cell. It is also 

possible to compute the gradient matrices in the   and   directions, which represent the 

variation of the distance according these directions. The computation of these matrices is 

described in the sub-section 8.2. 

The gradient matrices help to obtain the convergence direction for the optimisation 

algorithm. These matrices are the core of the matching algorithm presented here since they are 

look-up tables, which reduces the need to perform calculations and decreases the execution 

time needed. These matrices are stored in memory to be used during the 3D matching 

algorithm. The optimisation algorithm used was the Resilient Back-Propagation (RPROP), 

which is a gradient descendent method [69].  

For an easier representation, the Fig. 9.1, Fig. 9.2 and Fig. 9.3 shows the two-dimensional 

distance and gradient matrices about a corridor. 

 

Fig. 9.1 Maps on a corridor where experiments were conducted. Distance Matrix. 

 

Fig. 9.2 Maps on a corridor where experiments were conducted. Gradient Matrix. Distance variation in direction y. 
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Fig. 9.3 Maps on a corridor where experiments were conducted. Gradient Matrix. Distance variation in direction x. 

The matching algorithm described in this document performed using 3D data, takes the 

vehicle from its previous estimated pose and finds the best matching in relation to the stored 

map. For that, the algorithm uses the actual set of data acquired by the observation module, 

minimizing the cost function defined in equation (9.13). 

As already referred the algorithm of localization presented here is based on the Perfect 

Match algorithm described by M. Lauer et al. [4]. 

This algorithm was implemented in the 5DPO team's robots to be used during the robotic 

soccer Middle Size League games. In this robots the algorithm uses a matching with 2D data 

acquired with omnidirectional vision. But, the Perfect Match algorithm was transformed to be 

used as localization process in the RobVigil. The three crucial alterations and improvements 

made were: 

1) Instead using artificial vision, which implies an heavy image pre-processing, it is used 

Laser Range Finder information, acquired with a tilting LRF called observation module. The 

use of this observation module, allows obtaining a huge amount of three-dimensional data, 

about the surrounding environment, without a heavy cost when pre-processing the raw data, 

to extract helpful information, as it occurs with the artificial vision. 

2) The vehicle's pose estimation is still done in the two-dimensional space, while the data 

used is about the three-dimensional, maintaining the low computational needs. The use of 

three-dimensional data in this work has an advantage, since it allows the use of the headroom 

map (upper side of a building - above 1.8 metres ), which remains equal during large periods 

of time, and can be considered static, to perform the algorithm of localization.  

The objective is the robot operation inside indoor buildings as service facilities (for 

instance shopping malls), with lot of people "travelling". When the upper side of a building is 

used, the 3D matching will reach a better performance, since the acquired data is not affected 

with the persons that are crossing the navigation area.  

3) Finally, M. Lauer et al. [4] uses a stochastic weighted averaging method (which is a 

simplified Kalman filter) to merge the vehicle's pose estimation given by odometry and the 

Perfect Match algorithm. But the stochastic weighted averaging ignores the crossed variances 

(covariances) and therefore, despite the error dependence between the vehicle state variables  

(      and   ).  

Therefore, the localization algorithm proposed in this document, uses an Extended 

Kalman Filter (EKF), aiming to perform the fusion between the pose estimation given by 

odometry and the 3D Perfect Match. The EKF enters in account with the full covariance 

matrix and models in a better way the vehicle's error accumulated during its displacement. 

Furthermore, the EKF fusion is important to increase the precision and robustness of the 

localization algorithm described. A wrong 3D Perfect Match behaviour will not make the 
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localization to lose the vehicle's position tracking, since the fusion with odometry will avoid 

the jump of the vehicle's pose estimation. Also, the EKF operation, becomes the vehicle's 

localization estimation smother allowing a better trajectory control. 

The entire three-dimensional Matching algorithm is described with more detail in the next 

sub-section (9.1). 

The execution time needed in this localization algorithm is proportional to the number of 

points (data) used to perform the 3D Perfect Match. Therefore, the time spent in the 

localization algorithm, can be characterized and maximized, since it is possible to limit the 

number of the used points.  

9.1. Three-Dimensional Matching 

The 3D matching localization algorithm is described as the pseudo-code shown in 

Algorithm 9.1. The main cycle has three crucial stages: i) Kalman Filter Prediction; ii) 3D 

Perfect Match procedure. iii) Kalman Filter Update. The Kalman Filter equations can be seen 

in more detail in [53]. The three stages are detailed explained in the following three sub-

sections. 
Algorithm 9.1 3D Matching Localization Cycle. 

                    

                                                            

                                                            

                                                                          

9.1.1. Kalman Filter Prediction 

The Kalman Filter Prediction stage takes the previously estimated vehicle state          

and, using odometry, estimates the next vehicle state           . The real vehicle state is 

represented by the following vector, set up by variables       and    (2D coordinates and 

orientation in relation to the   direction), as shown in Fig. 7.3: 

           
  (9.1) 

The vehicle estimated state, along this chapter, will be represented as shown in the 

following  vector: 

               
  (9.2) 

Aiming to model the vehicle’s kinematic movement, the following transition function 

                   was used, [62]:  

                   

 
 
 
 
                       

  

 
     

                      
  

 
     

               
 
 
 
 

 (9.3) 
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in which the odometry input,    , is given for the following vector, composed by the 

variables   and   , which represent the estimated linear and angular displacements, 

respectively, calculated as described in equations (5.26) and (5.27), through the information 

acquired by the odometers: 

     
 
  

  (9.4) 

The kinematic model’s error   , was modelled as additive Gaussian noise with zero mean 

and covariance   . The vector   , represented as the following, is constituted by three errors, 

each one correspondent to the variables that are intended to estimate. 

                (9.5) 

As the noise error    is modelled as Gaussian noise with zero mean, then its expected 

value is zero       . The new vehicle estimated state, after the prediction stage, appears 

equal to the following equation: 

                              

           

 
 
 
 
                         

  

 
 

                        
  

 
 

            
 
 
 
 

 (9.6) 

The Kalman Filter Prediction stage, also uses the previous estimated covariance matrix 

        and computes the next,          . Therefore, the estimated covariance after the 

prediction stage,          , is given by the equation: 

          
   
   

       
   
   

 

 
   
   

  

   
   

 

 (9.7) 

To compute the prediction covariance, it is necessary to calculate the gradient of the 

model transition function                 : 

   
   

 

 
 
 
 
                   

  

 
 

                  
  

 
 

    
 
 
 
 

 (9.8) 

The gradient of the transition function   , in order to the noise   , equal to 
   

   
, is the 

identity matrix. Then, the new estimative of the covariance matrix can be re-written as 

follows: 



9.1·Three-Dimensional Matching          139 

 

          

 
 
 
 
                   

  

 
 

                  
  

 
 

    
 
 
 
 

       

 
 
 
 
                   

  

 
 

                  
  

 
 

    
 
 
 
 
 

    (9.9) 

The covariance    depends on the estimative of the vehicle’s distance and rotation (  and 

  ): 

   

 
 
 
 
 
                 

  

 
     

 

  

                 
  

 
     

 

 

         
         

  
 
 
 
 
 

 (9.10) 

When the vehicle moved 1 metre in front, the odometry, accumulated a translational and 

rotational error equal to    and    , respectively. When the vehicle rotates 1 radian, the 

odometry error on the estimation of the vehicle rotation is equal to   . These parameters were 

obtained as already described in Chapter 5. 

Therefore, when the vehicle had no movement, the kinematic model error, represented by 

  , is zero, as can be conclude with the equation (9.10). 

On the contrary, the variance of the states    and   , equal to         and        , 

increase with the quadratic displacement of the vehicle in the x and y axis, respectively. The 

variance of   , equal to        , increase with the quadratic translational and rotational 

displacement. 

Therefore, the Kalman Filter Prediction stage, can be summarized with the following 

equations. 

Algorithm 9.2 Equations of the Kalman Filter Prediction stage. 

                                       

                            

          
   
   

       
   
   

 

    

9.1.2. 3D Perfect Match 

The 3D Perfect Match procedure takes the vehicle’s state propagation provided by the 

Kalman Filter Prediction stage and performs the optimization routine described in the pseudo-

code depicted in Algorithm 9.3. This procedure has three crucial steps: 

i) Computing the gradient matrix:               ; 

ii) Optimization routine, Resilient Back-Propagation [69]:      ;  

iii) Compute the resultant second derivative, i.e. computation of the covariance matrix of 

the 3D Perfect Match:                 . 

The initial state of the vehicle to be used in the 3D Perfect Match algorithm is given by 

the vehicle pose propagated by the Kalman Filter Prediction stage:                  . 
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The state vector        is step up by the variables       ,        and       , which has 

a direct correspondence with the vehicle state variables   ,    and   . 

The first two steps,            and      , are continuously iterated until the 

maximum number of iterations           is reached. The last and third step is performed 

only once, after obtained the result of the vehicle state.  

At each iteration, the list of points obtained by the tilting Laser Range Finder, represented 

in the vehicle frame       , passed as parameter, need to be computed in the world 

referential using the previous state of the 3D Perfect Match algorithm. 

Algorithm 9.3  3D Perfect Match Cycle. 

                                         

                  

        

                      

                
         

                                    

                                   

        

                                      

Each point           has coordinates in the robot referential equal to    
    

    
  . The 

correspondence of this point in the world referential, was already explained in Chapter 5. 

Nevertheless, lets remember this relation.           has coordinates    
    

    
  , which are 

given by the following expression: 

 

  
 

  
 

  
 

   

      

      

      

    
   

  
 

  
 

  
 

  (9.11) 

in which the   
  matrix represents the rotation of the vehicle in relation to the world 

referential, expressed in the world referential: 

  
   

                    
                   

   

  (9.12) 

The         and the    matrices were used to compute the gradient matrix about the 

cost function, corresponding to the list of points       . This gradient is used by the RPROP 

step, to obtain the direction of minimization of the cost function. 

The cost function of the list of points of the Laser Range Finder scan         , is 

determined with the following equations: 
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  (9.13) 

in which    is representative of the      and cost function values, which correspond to the 

point          , with coordinates    
    

    
   .   is the number of points in the list of 

three-dimensional points       . 

The cost function    was designed to achieve a behaviour similar to the quadratic error 

function for the case of small values of    , neglecting points with large values of    

(outliers). In order for the cost function to meet the condition         , when the distance 

of the point           is equal or higher than 1 metres ,           , the value of    used 

in the work described in this document was   metre. 

The gradient of the cost function, in order to the state        is given by the following 

expression: 

                     

       
  

       

  

       

  

       
 
 

   

        
   

       

 

   

 
   

       

 

   

 
   

       

 

   

 

 

   

       
   

    

   
    

  
 

 

   

 
   

       

   

       

   

       
 
 

   

       
   

    

   
    

  
 

 

   

   

       
 (9.14) 

The partial derivative vector 
   

       
 is obtained using the following expression: 

   

       
  

   

   
  

   
 

       
 
   

   
  

   
 

       
 
   

   
  

   
 

   
 

   

   
  

   
 

       
 

 

 (9.15) 

Using the equations presented at (9.11) and (9.12), the following expressions can be 

written: 
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    (9.18) 



142          Chapter 9·Localization 

 

   
 

       
             

              
  (9.19) 

in which      
    

    
   and      

    
    

   are the gradient values of the pre-computed 

and stored gradient matrices, at the position    
    

    
  , in the world frame. Therefore, the 

vector components on equation (9.15) can be re-written as the following expressions: 

   

       
      

    
    

   (9.20) 
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   (9.22) 

Enter in the consideration that, the matching error is a measurement about how far the 

actual estimative of vehicle pose (      )  is, from the true one, i.e. it measures the distance 

that the list of points       is from the obstacles on the 3D occupancy grid. In summary, the 

matching error computation can be performed applying the equation (9.13). The gradient 

matrix about the cost function in order to the vehicle state is given by a vector shown in the 

following expression: 

       
   

    

   
    

  
 

 

   

 
 
 
 
      

    
    

  

     
    

    
  

 
     

    
    

  

     
    

    
  

 

 

  
                    

                   
  

  
 

  
  

 
 
 
 
 

 (9.23) 

After computing the gradient matrix, it is possible to apply the RPROP algorithm to each 

vehicle state variable. The algorithm takes the previous state of the vehicle, equal to        

and estimates a new position for the vehicle, which is used in the next iteration.  

Below it is done the explanation of the optimization algorithm RPROP. This explanation 

will be done for the estimation of the state variable       . But the RPROP algorithm, is 

applied for the estimation of the others state variables,         and       , in a similar way, 

as it is presented in the pseudo-code of the Algorithm 9.4. 

If the actual gradient        is different from zero then the following steps are 

performed: 

1) If the product                 is lower than zero, it means that the algorithm 

already passes a local minima, and then the direction of the convergence need to be inverted. 

In that case the actual step        
 will be lower than the previous, aiming to decelerate the 

convergence to find the nearest local minimum: 

       
        

        
         

         (9.24) 
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2) If the product                 is higher than zero, it means that the algorithm is 

still converging to the local minima, and then the direction of the convergence should be 

maintained. In that case, the actual step        
 will be higher than the previous, aiming to 

accelerate the convergence: 

       
        

        
         

    (9.25) 

3) If the actual gradient       , is higher than zero, it means that the cost function  , is 

increasing in the positive direction of       . Therefore, the previous value of       , should 

be decreased with the actual step        
, as is shown in the equation: 

                     
 (9.26) 

4) On the contrary, if the derivative is lower than zero, the cost function  , is decreasing 

in the positive direction of       . In this case, the present value of        should be 

obtained, adding to its previous value, the actual step        
, as shown in the following 

equation: 

                     
 (9.27) 

Algorithm 9.4  Resilient Back-Propagation algorithm. For each variable that is intended to estimate,       ,        and 

      , the same algorithm runs in a parallel way. 
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The limitation of the number of iterations in the 3D Perfect Match routine makes it 

possible to guarantee a maximum time of execution for the algorithm. Therefore, as it is 

intended to operate online, it is necessary to ensure that this maximum time is lower than the 

observation module cycle time (100 milliseconds).  The following experiment was conducted 

aiming to guarantee the convergence of the RPROP in the 3D Perfect Match algorithm to a 

solution, with a minimum number of iterations.  

The values        
 ,        

 ,        

 ,        
 ,        

 ,        

  and the initial value of the 

steps        
        

        
 are empirical and adjustable parameters. These parameters of 

the RPROP algorithm were tested in the intervals        
 ,        

 ,        

          ;        
 , 

       
  and        

           ; and finally        
        

         
           . The best 

performance, i.e. a lower number of iterations needed for the 3D Perfect Match find a close 

solution from the true one, in the large majority of the times, was achieved to        
  

       
         

        ,        
         

         

         and        
 

       
      metres  and        

      radians.  

It is considered that, a close solution from the true state of the vehicle is obtained when, 

that solution has an distance error smaller than 4 centimetres, which is the resolution of a cell 

of the distance and gradient matrices. To be a close solution, also it is needed, that the angle 

error between the true and the estimated solution is smaller than 0.04 radians. 

In this experiment, the initial vehicle pose starts with a distance error equal to eight times 

the resolution of a cell (32 centimetres) and an angle error of 90 degrees.  For the large 

majority of the cases, the estimated position reached the close solution in less than 10 

iterations. On the contrary, in the few cases where the solution not reached the close pose, it 

was sufficient close to be achieved in the following cycle. Thus, the number of maximum 

iterations,         represented in the Algorithm 9.3, was ten iterations.  

Therefore, with  this configuration for its parameters, the RPROP algorithm, is able to 

find a close solution in 10 iterations, with an initial distance error smaller or equal than eight 

times the resolution of a cell and an initial angle error smaller or equal than 90 degrees. 

The number of ten iterations in the RPROP routine guaranteed a maximum execution 

time of 17 milliseconds, to obtain the vehicle position, using the robot platform (Mini-ITX pc 

on board), described in the Chapter 5, with 682 points of the tilting Laser Range Finder. The 

results related with this execution time are presented on the experimental results chapter. 

To completely perform the 3D Perfect Match stage, it is necessary to calculate the second 

derivative. The analysis of the second derivative allows finding an error classification for the 

3D Perfect Match solution. 

For an actual set of LRF data, if the cost function   has a perfect distinctive minimum, 

the second derivative 
   

       
  is higher. On the contrary, when for those points the cost 

function   is flat, and there are not a distinctive minimum, the second derivative is low. 

Therefore, a higher second derivative represents situations where the confidence in the 

solution obtained by the 3D Perfect Match algorithm should be higher. In the other hand, a 

lower second derivative of the cost function, represent cases where the confidence is lower. 
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Therefore, the 3D Perfect Match covariance matrix represent the error, i.e. the confidence, 

that there are in the solution reached by the 3D Perfect Match algorithm. This covariance is 

given by the following matrix: 

       

 
 
 
 
 
 
 
 
 
 
 

   

 
   

       
  

  

 
   

 
   

       
  

 

  
  

 
   

       
  

 
 
 
 
 
 
 
 
 
 
 

 (9.28) 

As can be conclude with the expression (9.28), an higher second derivative decreases the 

variance value and then increase the confidence in the solution obtained by the 3D Perfect 

Match when estimating       ,        and       . On the contrary, a lower second 

derivative, increase the variance, decreasing the confidence in the estimated variables. 

The parameters of the covariance matrix     and    are normalization values achieved 

empirically. The algorithm was tested with different values of     and    in the gap of 

           . The best performance was achieved by the values:          and 

       .  Here, the best performance was found, adjusting the parameters     and   , 

making the 3D Matching algorithm smother as possible, when it is performed the fusion, in 

the Update stage, between this 3D Perfect Match solution and the state obtained during the 

Prediction stage.  

We shall now consider that in the localization  procedure, the vehicle moves at a 

maximum speed of 0.4 m/s. With a time cycle of 100 milliseconds, the vehicle will move a 

maximum distance        , between time cycles, equal to                       . In 

this situation, smother as possible means a localization without a variation of the vehicle 

position lower than two times the value of        , which is equal to             . 

To compute the second derivative, the previously defined cost function, (9.13),is replaced 

by the quadratic cost function (9.29). This occurs in order to ascertain which cost function is 

positively definite for all laser scan points. The cost function is given by: 

   
 

 
  

  

  
 
 

 (9.29) 

The second derivatives of the total cost function are given by the vector: 
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 (9.30) 

The second partial derivative vector 
    

       
  of the cost function for       ,        and 

      , relatively to point  , is given by:  

    

       
   

    

       
  

    

       
   

   

       
 
 

    
    

       
   (9.31) 

in which 
   

       
 is shown in equation (9.22), while the other derivatives are given by: 
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   (9.34) 

Finally the covariance matrix,       , can be re-written as the following matrix: 

       
 

  
  

 
 
 
 
 
 
 
 

   

      
    

    
  

  

 
   

      
    

    
  

 

  
  

 
   

       
 
 

    
    

       
  

 
 
 
 
 
 
 

 

   

 
(9.35) 

9.1.3. Kalman Filter Update 

The Kalman Filter Update stage combines the estimated state using the odometry and the 

3D Perfect Match procedure,            and       , respectively. The Kalman Filter 

equations can be seen in more detail in [53].  

The observation model    in the update stage is equal to the vehicle state   : 

            
  (9.36) 
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Therefore, the estimated observation is equal to the present estimation of the vehicle state, 

propagated during the Kalman Filter Prediction stage,           : 

                
           

                (9.37) 

Furthermore, the observation of the vehicle state can be written as the following 

expression: 

         (9.38) 

in which   is white noise, modelled with a Gaussian distribution with zero mean (    ) and 

covariance matrix  . Therefore, in the update stage the observation is equal to the state 

obtained after the application of the 3D Perfect Match: 

          (9.39) 

Hence, the innovation of the Kalman Filter V      is equal to: 

                 

                         (9.40) 

In this stage, the propagated covariance matrix, using odometry           and the 

covariance matrix provided by the 3D Perfect Match procedure       , are used to determine 

the Kalman Filter Gain       . 

As the observation    is equal to       , the error covariance matrix  , is equal to the 

covariance matrix obtained during the 3D Perfect Match,       . Therefore, the Kalman 

Filter Gain is given by the following expression: 

                
   

   

 

 
   

   
         

   

   

 

 
   

  
      

   

  

 

 

  

 (9.41) 

The gradient of the observation model, equation (9.36), in order to the vehicle state    

and the observation noise  , 
   

   
 and 

   

  
 respectively, are identity matrices. Therefore, the 

previous equation can be re-written as follows: 

                                  
   (9.42) 

Therefore, after the update stage the new estimated state is given by the expression: 

                                      (9.43) 

The new covariance matrix, decreases with the following equation: 

                                   (9.44) 
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where      is the square identity matrix with the dimension 3x3. 

The Kalman Filter Update stage can be summarized with the following equations. 

Algorithm 9.5 Equations of the Kalman Filter Update stage. 
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10. Experimental Results 

The final methodology for the three-dimensional map-based approach is composed of: 1) 

pre-localization and mapping; and finally 2) localization. About this approach three papers 

were published [70] to [72]. 

The results presented in this chapter are about the application of the entire methodology 

(pre-localization and mapping, localization) in eight different indoor scenarios. Some videos 

about the tested entire methodology, inside these scenarios can be accessed in the webpage of 

the PhD thesis presented in this document, [3]. Press's videos and news about these 

demonstrations can also be find in this webpage. 

Three of these scenarios were inside the Faculty of Engineering of the University of Porto 

(FEUP). The RobVigil project was also demonstrated in public facilities. These public 

demonstrations are the others five environments where the entire methodology was tested. 

These eight scenarios can be described as follows: 1) the floor -1 of the Department of 

Electrical and Computers Engineering of the FEUP, known as building I; 2) the faculty 

teacher’s garage; 3) the main corridor of the FEUP, known as building B; 4)  the multipurpose 

pavilion of Guimarães (“pavilhão multiusos de Guimarães”), during the competition of the 

FreeBots, in the Portuguese National Festival of Robotics, the “Robótica 2012”, [73], which 

took place between 11th and 15th of April; 5) a corridor of the INESC-TEC building in the 

first floor, during the UTM unit demonstration, in 3 of April of 2012, [74]; 6) "Fórum do Mar 

2013" fair, which happened in the Exponor, Porto, during May of 2012, in the days 10,11 and 

12, [75]; 7) the shopping gallery of the enterprise centre "Lionesa" in Matosinhos, during the 

day of 5 of July; and finally 8) the lobby space at the "reitoria" of the University of Porto, at 

28 of September of 2012, during the night of the Europeans researchers.  

10.1.  How to Setup the Localization for Operation in a New Scenario 
Imagine that the vehicle will operate in a new indoor scenario and it is necessary to setup 

the localization for its correct operation. This sub-section will describe how this setup is 

made.  

For the setup of the localization for a new scenario, it is necessary follow the next guide, 

presented in the following table, Table 10.1. 

In the pre-localization the used values for      and      (minimum and maximum z 

coordinates), as defined in Chapter 3 and Chapter 7, were 0.2 and 1.8 metres, respectively. 

The angle      represented in the following figure, Fig. 10.1 is the minimum rotation of 

the tilting LRF during the EKF-Loc phase. Since during this phase, only linear segments with 

a minimum size of 0.7 metres  are used, the projection in the horizontal of any linear segment, 

should have a minimum size of 0.7 metres. As the vehicle height is 1.3 metres ,      is equal 

to the following expression: 
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       (10.1) 

Stage Phase Description 

1
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 EKF-

SLAM 

-Controlling the vehicle with joystick, a log of data (odometry and LRF 

points) is saved with the vehicle moving at 0.2 m/s and the observation 
module fixed in the horizontal.  

-Offline, the EKF-SLAM runs and is obtained a 2D feature map of linear 

segments and invariant points. 

EKF-Loc 

-Controlling the vehicle with joystick a log of data (odometry and LRF 

points) is saved with the vehicle moving at 0.2 m/s and Laser rotating at 10 

rpm, between of      and     .  

-Offline, the EKF-Loc runs and it is obtained the vehicle pose. 

2
)M

a
p

p
in

g
 

Bayes 
Rules 

The same log, used in the previous phase, together with the obtained vehicle 

pose, allows obtaining the occupancy grid of the environment, in the three-

dimensional space. 

Distance 
Transform 

Using the final occupancy grid and the distance transform, it is obtained the 
3D distance matrix. 

Sobel Filter 
Using the Sobel Filters over the distance matrix it is possible to create the 

3D gradient matrices in order to x and y directions. 

3
)L

o
ca

li
za

ti
o
n

 

Normal 

Operation 

The stored look-up tables (distance and gradient matrices in the three-
dimensional space) are used during the 3D matching localization algorithm. 

The vehicle navigates autonomously between goal points, with an average 

speed of 0.4 m/s, with the laser rotating at 10 rpm, between of      and 

    , using only the static scenario (upper side of a building- above 1.8 

metres ) to pinpoint itself position. 

Table 10.1 How to setup the Localization for a new scenario. Brief description of each phase. 

It is intended, during the EKF-Loc phase, to have data about the upper side of a building. 

Therefore the angle      should be 90º. 

The angles      and      are represented in the following figure, Fig. 10.2. The value of 

     represents the minimum angle of the tilting LRF during the localization. Since, only data 

of the headroom is used (above 1.8 metres of height),      is computed in the following way: 

           
       

        
  

(10.2) 
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Fig. 10.1 Linear segment projection on the horizontal need to have at least 0.7 metres.      follows this rule. 

The laser range finder range is         , equal to 5 metres. Therefore,      can be 

computed as follows: 

           
   

 
     (10.3) 

Finally, the angle      depends if the information of the ceiling is or not helpful for the 

3D matching algorithm. If the ceiling has helpful information,      should be 90º. On the 

contrary      should be computed as the following equation: 

           
             

        
  (10.4) 

in which,           represents the building height. 

 

 

Fig. 10.2      and      representation. 
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10.2. Pre-Localization Results 
The pre-localization is a computationally time consuming task. However, as this 

procedure is performed only once and offline, the computational time is not a problem.  

If the vehicle pose is known while the observation module is acquiring data about the 

surrounding environment, it is possible to build the occupancy grid, the distance and gradient 

matrices, as described in the Chapter of Mapping (8), which are used during the vehicle 

normal operation, as described in Chapter of Localization (9). 

In the pre-localization procedure the EKF-SLAM stage becomes possible to obtain the 

feature map, with linear segments and invariant points, about the environment which is 

intended to map. The use of this feature map, allows applying the EKF-Loc stage.  

In this sub-section, several feature maps about the eight scenarios described above are 

shown. Together with these feature maps are shown the architectural plan about the building. 

As it is possible to see in some situations the architectural plan is obsolete or it does not 

capture the entire characteristics and details when comparing with the feature map. 

The following figure, Fig. 10.3, shows the architectural 2D plan of the scenario 1) and 

Fig. 10.4 shows feature map obtained with the application of the EKF-SLAM.  This scenario, 

is inside the Department of Electrical and Computers Engineering of  FEUP and is constituted 

with a corridors, hallways and a laboratory, occupying a total of                

The figure of the feature map, Fig. 10.4, shows the mapped invariant points in small red 

points. The mapped linear segments are represented in red linear segments. The black and 

continuous line represents the vehicle trajectory applying the EKF-SLAM cycle. In blue and 

dotted line, it is possible to see the trajectory of the vehicle using odometry only. Through the 

comparison of the trajectories can be seen that the localization achieved with odometry is 

completely inconsistent, while the vehicle position computed during the EKF-SLAM 

procedure is correct. 

 

Fig. 10.3 Architectural plan of the scenario 1). The solid black shows the zone where the pre-localization was applied. 1,2,3 
and 4 are the divisions of the map. 
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Fig. 10.4 2D map obtained with the application of the EKF-SLAM procedure. A square area of 60 metres x 60 metres. 

The two trajectories shown at Fig. 10.5 are about the same data, used during the EKF-

SLAM and the EKF-Loc stages. The black and continuous line represents the vehicle 

trajectory in the EKF-SLAM cycle. In blue and dotted line, it is possible to see the trajectory 

of the vehicle in the EKF-Loc using the feature map previously built by the EKF-SLAM 

filter. 

 

Fig. 10.5 EKF-SLAM procedure trajectory Vs EKF-Loc trajectory. 
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The difference between the trajectories happens due the continuous map’s correction, in 

the EKF-SLAM cycle, which happens in the map vector, when there are a closure loop. When 

applied the EKF-Loc, the map remains static, therefore it produces a different trajectory. This 

continuous corrections makes necessary to apply the EKF-Loc after obtained the feature map 

of the EKF-SLAM, aiming a more accuracy in the estimation of the vehicle pose. 

The map of Fig. 10.4 is constituted with 219 features, 117 invariant points and 102 linear 

segments. The map was obtained with a total distance travelled of 367 metres . A map with 

this dimension introduces a lot of features in the Extended Kalman Filter, which became the 

EKF-SLAM impracticable to operate online. In this case, at each iteration,  with 219 features, 

the EKF-SLAM procedure spends about 3 seconds in an Laptop Intel Core 2 Duo 2.53GHZ. 

In fact, this is not a problem, since the pre-localization is performed only once and 

offline, as preparation stage to obtain the distance and gradients matrices used during the 

localization. Although, the absence of restrictions in terms of spent time during the pre-

localization and mapping procedures, when the entire map is divided, into smaller maps, the 

number of mapped features decreases, reducing the computational time spent. Besides that, 

when the EKF-SLAM procedure is applied in smaller maps, the vehicle travelled distance 

decreases, allowing an easier loop closure, increasing the accuracy of the final feature map. 

Thus, the map of Fig. 10.3, can be divided in smaller maps, as shown in numbers 1,2,3 

and 4. After applying the EKF-SLAM to each zone, allowing to obtain the respective feature 

maps, shown in figures: Fig. 10.6 to Fig. 10.9. The mapping procedure can be applied 

individually to each smaller map. 

A particular hard map to be mapped is the corridor represented at Fig. 10.3 with the 

number 4. This corridor has little information along its translational direction. The tilting LRF 

has a small range and therefore, it is not able to "see" the start and the end of the corridor 

every time. Furthermore, this corridor has little information about the connectivity to the rest 

of the map. There are a small passage between the maps marked with the number 3 and 4 in 

the Fig. 10.3, which becomes hard, to represent correctly, the relation between them. The 

relation between these two maps, 3 and 4 , should be orthogonal. As it is possible to see in 

Fig. 10.4, the resultant relation is lightly different of 90 degrees.  

 

 

Fig. 10.6 Map 1. Features:52; points:27 and linear 
segments:25. 25 metres x 25 metres of square area. 

Fig. 10.7 Map 2. Features:74; points:35 and linear segments:39. 
Corridor with 25 metres length. 
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Fig. 10.8 Map 3. Features:50; points:28 and linear 

segments:22. Area of                . 
Fig. 10.9 Map 4. Features:75; points:44 and linear segments:31. 

Corridor with about 50 metres. 

Therefore, applying the pre-localization in smaller maps, as is the case of this corridor, 

can produce more accurate results. The feature map, in the Fig. 10.9, about this corridor is 

notoriously more accurate, when compared with the same corridor in the Fig. 10.4. At the 

final, the 3D occupancy grids obtained individually for each of these maps, can be merged 

since the relative position between the 3D occupancy grids are well known. 

In the following figures, Fig. 10.10, Fig. 10.11 and Fig. 10.12, are shown parts of the 2D 

map obtained after the EKF-SLAM procedure application, in the buildings defined as 

scenarios 2) and 3). The entire occupancy grid about these scenarios, 2) and 3), are shown in 

the following sub-section, the Fig. 10.28 and Fig. 10.30. 

In the particular case of the scenario 2), the features represented in the map of Fig. 10.10, 

are composed essentially by invariant points about circular columns. Also, this scenario is 

particularly hard to map, since there are less information to be used. 

 

Fig. 10.10 A part of the scenario defined as scenario 2). Features:33, points:19, linear segments:14. Area of 20 metres per 60 
metres. 

 

 
Fig. 10.11 A part of the scenario defined as scenario 3). 

Features:37, points:23,  linear segments:14. Corridor with 
30 metres of length. 

Fig. 10.12 A part of the scenario defined as scenario 3). 
Features: 53, points: 38, linear segments: 15.Area of 30 

metres x 30 metres. 



156          Chapter 10·Experimental Results 

 

With regard with the scenario 3), it is the main corridor of the FEUP. This corridor has lot 

of information, walls, columns and corners. Therefore, it proved to be ideal for the application 

of the pre-localization procedure. 

Other scenario where this methodology was tested, was in the multipurpose pavilion of 

Guimarães (“pavilhão multiusos de Guimarães”), scenario referred above as 4). The 

architectural plan, Fig. 10.13, shows the zone that was mapped, identified with black solid 

colour. The resultant feature map, obtained after the EKF-SLAM procedure can be seen in 

figure Fig. 10.14. 

This scenario is a corridor with a length of about 60 metres. This corridor was chosen to 

be used as navigation scenario during the public demonstration, in the Free-Bots competition, 

which happened in the "Festival Nacional de Robótica", in the city of Guimarães, in 2012. 

This corridor has lot of helpful information to be used in the EKF-SLAM filter. It has 

square columns, which proved to be really helpful, for the building of the feature map. 

  

Fig. 10.13 Architectural plan of the (“pavilhão multiusos de 
Guimarães”), scenario 4). The rectangle in black solid colour, is 

representative of the zone where the pre-localization was 
applied. 

Fig. 10.14 2D map obtained with the application of the 
EKF-SLAM procedure, scenario 4). Features:120; 

points:53 and linear segments:67. A corridor with a length 
of 60 metres. 
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About the scenario defined above as 5), the Fig. 10.15 shows the building architectural 

plan. At black solid colour it is represented the mapped zone. The obtained feature map, after 

the application of the EKF-SLAM, during the pre-localization, is shown at Fig. 10.16.  

This scenario is the main corridor of the INESC Porto. It is constituted by the building 

entrance, the elevators access and the reception desk. This corridor has a lightly curvature on 

its walls, as indicated in the Fig. 10.15. This curvature was successfully modelled in the 

feature map. Furthermore, this scenario has lot of information, has circular column, corners, 

walls, entrances and in halls to be used the EKF-SLAM and EKF-Loc stages. 

 

Fig. 10.15 Architectural plan of the INESC TEC building, first floor, scenario 5). 

 

Fig. 10.16 2D map obtained with the application of the EKF-SLAM procedure, scenario 5). Features:81; points:42 
and linear segments:39. A corridor with a length of 25 metres. 

The following two figures are about the scenario defined as 6). Fig. 10.17 shows the 

architectural plan about the Exponor building. The zone painted in solid black is the space 

chosen for the public demonstration. The other figure, Fig. 10.18 shows the result of the 

application of the EKF-SLAM in this scenario. 
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In the particular case of this scenario, it was difficult to achieve successful results during 

the EKF-SLAM. This scenario is really open and has distant features. For example, the 

distance between the two circular columns, indicated in Fig. 10.18, is higher than ten metres . 

As the tilting LRF has a small range of 5 metres, when the vehicle is between the columns, 

there are zones where it is completely "blind", since it is not capable of "see" anyone of the 

existing columns or other features.  

Therefore, during the pre-localization procedure, it was necessary to have particularly 

care with the trajectory performed by the vehicle, aiming its displacement inside areas with 

reachable and helpful data. 

 

 

Fig. 10.17 Architectural plan of the mapped part in the 
"Fórum do Mar" fair, inside the Exponor building 

(Matosinhos), scenario 6). 

Fig. 10.18 2D map obtained with the application of the 
EKF-SLAM procedure, scenario 6). Features:45; points:21 

and linear segments:24. A corridor with a length of 25 
metres.. 

The following figure, Fig. 10.19, is the architectural plan of the shopping gallery inside 

the enterprise centre "Lionesa", defined above as the seventh scenario. Particularly this 

scenario, has lot of people walking. Therefore, the mapping was made during the night. The 

other figure, Fig. 10.20, shows the obtained feature map, when applied the EKF-SLAM. 

  
Fig. 10.19 Architectural plan of a gallery 

shopping, inside the enterprise centre "Lionesa" 
(Porto), scenario 7) The solid black colour was 

the mapped area. 

Fig. 10.20 2D map obtained with the application of the EKF-SLAM 
procedure, scenario 7). Features:42; points:22 and linear segments:20. 

Square area of 30 metres x 30 metres. 
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This last scenario is well-structured and also proved to be the ideal kind of scenario to 

apply the entire mapping methodology. As it can be seen by the architectural plan, the Fig. 

10.19, this corridor forms an "L" word. As this scenario is a shopping gallery, it has glass 

windows/walls, allowing to see the stores inside, which only the feature map has the ability of 

obtain, as shown in Fig. 10.20. In fact, the architectural plan is not capable of capture the 

entire detail, that the feature map is. 

With respect to the 8th scenario, the reitoria's lobby of the University Porto, the 

architectural plan is shown at Fig. 10.21. The feature 2D map was obtained with success and 

is shown at the Fig. 10.22. 

This scenario has lot of details, which were really helpful to the EKF-SLAM and EKF-

Loc phases. As it is possible to see at Fig. 10.22, the resultant feature map is composed of a 

huge number of linear segments and invariant points. Again, this feature map is capable of 

capture details that are not represented in the architectural plan. 

 

 

Fig. 10.21 Architectural plan of the reitoria lobby 
of the University Porto, scenario 8). The solid 

grey colour was the mapped area. 

Fig. 10.22 2D map obtained with the application of the EKF-
SLAM procedure, scenario 8). Features:70; points:33 and linear 

segments:37. Square area of 25 metres x 25 metres. 

The correctness and accuracy of these feature maps are really important. The EKF-Loc 

uses this maps to obtain the vehicle pose, which is used for the 3D mapping. Therefore, an 

higher accuracy of the feature map, will also correspond to an higher accuracy in the 3D 

occupancy grids. As the 3D map of the building is used in the vehicle normal operation, 

during the localization procedure, to perform the 3D matching algorithm, an higher 

correctness and accuracy of the 3D occupancy grids will result in an higher accuracy in the 

estimation of the vehicle pose, during the localization procedure. 

Therefore, these phases are related in terms of correctness and accuracy. In fact, accurate 

localization results, will correspond to accurate and successful results achieved during the 

pre-localization and mapping. In the sub-section of localization results 10.4, it will be proved 

the accuracy of the obtained feature maps. 
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10.3. Mapping Results 
The next figure, Fig. 10.23, shows the mapping performed without any treatment to the 

observation module’s data. The white points in Fig. 10.23 (images on the left and on the right) 

are the set of points  , with coordinates        . In summary, the white points are the raw 

data   obtained with the observation module without applying the Bayes rules. 

In the image on the left, only odometry is used as a localization method. The mapping 

process becomes inconsistent as a result of the error which occurs while estimating the 

position. Therefore the resultant map is a wrong representation of the indoor building that is 

intended to map. 

 

Fig. 10.23 Image on the left: mapping with odometry. Image on the right: mapping with the EKF-Loc stage algorithm 
(pre-localization procedure). 

On the contrary, when the pre-localization algorithm is used as method of localization, 

the mapping is consistent, as shown in Fig. 10.23, image on the right.  

The following figure, Fig. 10.24 shows the location where tests were conducted, while 

Fig. 10.25 is representative of the mapping performed in this scenario, applying the Bayes 

rules in the raw data  . The figure is representative of the occupancy grid, with limits equals 

to:                                 and               , with a resolution of  

               . 

 
 

Fig. 10.24 Location where the tests were 
conducted. Corridor at the Faculty of 

Engineering of the University of Porto, Portugal. 

Fig. 10.25 Map grid built using Bayes rules. 



10.3·Mapping Results          161 

 

Therefore, the cell points printed (in red or white) correspond to the cells where the 

probability of being occupied is greater than or equal to 0.7. In this figure, the red points 

correspond to the cells with   coordinates higher than 1.8 metres . 

Furthermore, the red points are representative of the zone of the map used during the 

vehicle normal operation, in the localization procedure, considered the upper side of a 

building, remaining static during large periods of time.  

Along this Chapter, the entire set of 3D occupancy grids that are presented will follow the 

same rule: the red points represent the upper side of the building (with z coordinate above 1.8 

metres). 

10.3.1. 3D Occupancy Grid Maps 

As already referred, the entire methodology described in this PhD thesis, was exhaustive 

tested in the real robot (RobVIgil), in eight scenarios. Therefore, the pre-localization and 

mapping were performed in the eight different scenarios, allowing the localization and 

navigation in environments with large indoor sizes.  

The 3D occupancy grid about the first scenario is shown in figure Fig. 10.26. The 

occupancy grid is shown with different perspectives of view. 

 

 

  

 

 

Fig. 10.26 3D Occupancy grid of the scenario defined as 1). Different perspectives of view. 

This scenario has a square area of about 60 metres x 60 metres. It is constituted with 

corridors, one laboratory room, one lobby and two coffee zones. In this scenario there are 

continuously people travelling and crossing the vehicle navigation area.  
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In this scenario the ceiling has helpful information to be used when estimating the vehicle 

pose, using three-dimensional data. Some examples are: air conditioned tubes, hall entrances, 

light supports, windows et cetera. 

The following figure, Fig. 10.27, represents the architectural plan about the scenario 2). In 

this plan, in solid black, is represented the zone where the pre-localization and mapping was 

applied. The other figure, Fig. 10.28, shows the obtained occupancy grid, with different 

perspectives of view.  

The area of this scenario is about 60 metres x 60 metres. It is an open scenario, 

constituted essentially by circular columns with a diameter of about 0.3 metres. It is in 

continuous changing, with cars entering and living the garage. The ceiling of this garage is 

composed of a matrix with cube shape, as it is possible to see in the occupancy grids 

represented below. This matrix is helpful information for the vehicle location, using the 3D 

matching algorithm in the localization procedure. 

 
 

Fig. 10.27 Architectural plan of the scenario defined as 2) 
Feup teachers’ garage. The black solid colour represents 

the zones which had been mapped. 

 

  

Fig. 10.28 3D Occupancy grid of the scenario defined as 2). With circular columns. Different perspectives of view. 
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The third scenario is represented with the following figures, Fig. 10.29 and Fig. 10.30. 

The Fig. 10.29, shows the 2D map about the scenario 3). In solid black, are the zones where 

the pre-localization and mapping were applied. The occupancy grids shown in the Fig. 10.30, 

are about the same scenario, but represented in different perspectives. 

 

 

Fig. 10.29 2D map of the scenario defined as 3) students’ corridor 
B. The black solid colour represents the zones which had been 

mapped. 

 

 

 

Fig. 10.30 3D Occupancy grids of the scenario defined as 3). Different perspectives of view.  

This scenario has about 300 metres of length. It is the main corridor of the Faculty of 

Engineering of the University of Porto. It is a large corridor, with about 5 metres on its width 

and height. It is also constituted with circular columns. As it is the main corridor of FEUP, 

which actually has about 8 thousands of students, it is a really dynamic scenario, with an 

enormous number of students crossing it per day.  

These three scenarios have enormous areas, but the pre-localization and mapping were 

applied in smaller areas of the buildings, resulting in smaller occupancy grids. Therefore, 

these smaller occupancy grids were merged aiming to obtain the bigger maps, i.e. occupancy 

grids, which are shown in this Chapter. This merging allowed the localization of the vehicle, 

during its normal operation, in these enormous maps. 

The occupancy grid, in different perspectives of view, about the fourth scenario, is shown 

in figure Fig. 10.31. This corridor is about 60 metres long of length, 6 metres of width and 

height. It has lot of information in transversal and translational directions as is example of 

square columns.  

As the mapping happened during the Portuguese National Festival of Robotics, "Robótica 

2012", a lot of people were continuously crossing the environment that was intended to map. 
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Therefore, the pre-localization and mapping procedures were performed during the night, 

becoming the scenario complete controlled, without people or dynamic objects crossing it. 

  
  

 

 

Fig. 10.31 3D Occupancy grids of the scenario defined as “pavilhão multiusos de guimarães”. Different perspectives of 
view. 

The fifth scenario is represented by the 3D occupancy grids shown at the following 

figure, Fig. 10.32. This scenario is a small 25 metres long corridor with four columns. As it 

can be seen by presented 3D occupancy grids, this scenario have halls' entrances and circular 

columns, which really helpful for the vehicle location. 
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Fig. 10.32 3D Occupancy grids of the scenario defined as 5. Different perspectives of view. 

The occupancy grid, represented in different perspectives of view, about the scenario 

defined above as 6), is shown in the Fig. 10.33. This is a small corridor with about 25 metres  

of length and circular columns, as can be seen in the following images. In this scenario, there 

are areas, where, due the small distance range of the tilting Laser Range Finder, the vehicle is 

not able to "see" helpful information for its localization. Therefore, in this scenario, the 

vehicle should follow a trajectory, where it is capable of acquire helpful data, to be used on its 

localization. 

  

Fig. 10.33 Occupancy grids of the scenario defined as Exponor building during the "Fórum do Mar", scenario 6). 
Different perspectives of view. 

The occupancy grid in the three-dimensional space, about the scenario defined above as 

scenario 7), the shopping gallery of the enterprise centre "Lionesa", in different perspectives 

of view, is shown in the following images, Fig. 10.34. 
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Fig. 10.34 3D Occupancy grids of the scenario defined as 7). Different perspectives of view. 

This scenario was tested during a public demonstration. The environment is a gallery 

shopping, with people walking continuously. The mapped area has a square shape of 60 

metres per 60 metres . The gallery has two corridors, forming the "L" word. The building 

ceiling has an height of about 5 metres and in certain zones has more, becoming impossible to 

be detected with the used Laser Range Finder, the hokuyo URG-UG01, which has a distance 

range of 5 metres . 

The occupancy grid about the scenario defined above as 8), where this localization 

methodology was tested in a public demonstration, is shown at the following figure. This 

scenario has a square shape of 30 metres x 30 metres. 

  

Fig. 10.35 3D Occupancy grids of the scenario defined as reitoria's lobby, scenario 8). Different perspectives of view. 

In certain zones, the reitoria's lobby, has about six metres of height. In other zones, it is 

impossible the tilting Laser Range Finder to see the ceiling, because this building has about 

seven metres or more of height. 

The walls of this building have lot of details and corners to be used in the localization, as 

it can be seen in the 3D occupancy grid presented below. Although being an environment 



10.3·Mapping Results          167 

 

with some movement and people walking during the day, the pre-localization and mapping 

procedures were applied with log data acquired during an afternoon. 

10.3.2. Distance and Gradient Matrices 

After obtained the occupancy grid about the upper side of a building, as is example the 

three dimensional occupancy grids presented in the last sub-section, it is possible to apply the 

distance transform, as described in the sub-section 8.2, to compute the distance matrix of the 

mapped building,      . 

Furthermore, after computed the distance transform, the Sobel filters, as described in the 

sub-section 8.2, are applied to obtain the gradient matrices, in both the directions   and  , 

     and     , respectively. 

These three matrices, the distance and gradients, are in the three-dimensional space and 

are stored in the memory, to be used during the localization algorithm, as described in 

Chapter 9. As already refereed these three matrices are the base core of the 3D Perfect Match 

algorithm, used during the vehicle normal operation. The use of pre-computed matrices 

becomes the localization algorithm really fast allowing to be used on-line. 

The Fig. 10.36 shows a slice of the 3D distance matrix when the z coordinate is 1.8 

metres,              . As can be seen in the figure, the darker zones are corresponding to 

cells whose distance to obstacles (as walls, corners, columns, ceiling, doors et cetera) is 

closer. The lighter zones, in the Fig. 10.36, are representative of cells which are more distant 

from obstacles. The Fig. 10.37 shows a slice of the 3D gradient matrix in the   direction, 

when the z coordinate is 1.8 metres ,              . On the contrary, the Fig. 10.38 shows a 

slice of the 3D gradient matrix in the   direction, when the z coordinate is 1.8 metres , 

             . These matrices are about the occupancy grid shown in Fig. 10.25. 

 
Fig. 10.36 Distance matrix slice in the height of 1.8 metres.              . 

 
Fig. 10.37 Gradient matrix slice, in the   direction, to the height of 1.8 metres.              . 

 
Fig. 10.38 Gradient matrix slice, in the   direction, to the height of 1.8 metres.              . 
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With these matrices, shown in Fig. 10.37 and Fig. 10.38, it can be seen that the darker 

zones are representative of cells where the distance matrix decrease with the positive variation 

of   or  , respectively. On the contrary, the lighter zones are corresponding to cells where the 

distance matrix increase with the positive variation of   or  , respectively. 

In this sub-section, the following figures are demonstrative of the distance and gradient 

matrices about different scenarios. Since, it is hard to represent the entire three-dimensional 

matrix of distances and gradients, only it is shown a slice, when the z coordinate is equal to 

1.8 metres. The distance and gradients shown in this Chapter are equalized matrices, 

therefore, the lower value is represented in black, on the contrary, the higher value is 

represented in white. 

  

Fig. 10.39 Occupancy grid of part of the scenario 2) 
Fig. 10.40 Distance matrix slice in the height of 1.8 metres, 

             . It  is about the map of Fig. 10.39. 

  

Fig. 10.41 Gradient matrix slice, in the   direction, in the 

height of 1.8 metres,              . It is about the 

occupancy grid presented in Fig. 10.39. 

Fig. 10.42 Gradient matrix slice, in the  direction, to the 

height of 1.8 metres.              , about the occupancy 

grid presented in Fig. 10.39. 

 

 

Fig. 10.43 Occupancy grid of part of the scenario 3). 
Fig. 10.44 Distance matrix slice for the height of 1.8 metres, 

about  the occupancy grid presented in Fig. 10.43. 
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Fig. 10.45 Gradient matrix slice for the x direction, in the 
height of 1.8 metres. About the occupancy grid of Fig. 10.43. 

Fig. 10.46 Gradient matrix slice for the x direction, in the 
height of 1.8 metres. About the occupancy grid of Fig. 

10.43. 

 

 

Fig. 10.47 Occupancy grid of part of the scenario 7) 
Fig. 10.48 Distance matrix slice in the height of 1.8 metres. 

             , about the occupancy grid of Fig. 10.47. 

  

Fig. 10.49 Gradient matrix slice for the x direction, in the 
height of 1.8 metres. About the occupancy grid of Fig. 

10.47. 

Fig. 10.50 Gradient matrix slice for the x direction, in the 
height of 1.8 metres. About the occupancy grid of Fig. 

10.47. 

10.4. Localization Results 

The 3D Matching algorithm takes an average execution time of 12 milliseconds to find 

the optimal solution, running in a Mini ITX, EPIA M10000G with a 1.0GHz processor, with 

682 points of the tilting Laser Range Finder. This is very fast comparatively to the ICP, 

SLAM 2D or SLAM 3D algorithms. Therefore, it can be executed online, with a cycle period 

of 100 milliseconds imposed by the observation module sample rate. The execution time of 

the localization algorithm is detailed explained in the sub-section 10.4.4. Also a comparison 

with other works in the literature is done in this sub-section. 

Other quality of the localization algorithm proposed here, with given proves in many 

exhaustive tests, are the no need of prepare the environment, with for example artificial 
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landmarks placed in the navigation scenario, using only odometry and the tilting LRF 

(observation module).  

This algorithm of localization is only applied in structured indoor environments as the 

scenarios presented in the previous sub-section, 10.3.1.The localization algorithm execution 

time is independent of the size of the scenario. Therefore, the localization is able to be 

executed online in scenarios with any dimensions, as opposite to SLAM algorithms. To do 

that, it is necessary the three-dimensional distance and gradient matrices about the entire 

building. 

It is also needed a pc with the necessary onboard memory to perform the loading of these 

matrices. A scenario with a square shape of            and an height of         , as is 

example the scenario defined as 2), Fig. 10.28, represented in a resolution of 0.04 metres, will 

require the following memory for the three matrices (distance and gradients): 

                  
            

     
         (10.5) 

in which      is the height when the upper side of the building starts and is equal to 1.8 

metres, since the points of   whose   coordinate is above 1.8 metres  constitute the set of data 

points    , with coordinates       ), which are used during the matching localization 

procedure. As each component of the matrices is an float, the number of bytes (        ) is 

equal to 4. Therefore, the previous equation can be re-written as follows: 

           
           

     
           

                        (10.6) 

In some situations, aiming a better usage of the pc's memory, a map can be divided in 

smaller maps, whose relation between them is well known. For example, consider the map 

with an configuration as the one defined as the scenario 7), shown in Fig. 10.34, whose shape 

is like an "L". This map is inside a square of 60         of area. But, the navigation area is 

much more smaller than 60         (it is only inside the "L"). Therefore, inside this square 

shape with an area equal to 60        , there is a dead zone, occupying unnecessary 

memory, that will not be used for the vehicle localization algorithm, since vehicle cannot 

navigate in that zone of the map. Therefore, it is preferable to divide such map in two, one for 

each leg of the "L" and therefore, economize on the memory needed to navigate in a scenario 

like that. 

The algorithm of localization was exhaustively tested in the eight scenarios described 

above. The robot is able to navigate in each of this scenarios, in a complete autonomous way, 

between waypoints. The robot RobVigil has a GUI interface, called "rondas", that allows an 

user to pre-define surveillance routines, to be executed by the robot in an autonomous way. 

The GUI interface "rondas" is shown in Fig. 10.51. In this case the loaded map is the 

corresponding to scenario described at the beginning of this Chapter as 1). The red squares 

represent the waypoints that the vehicle is intended to cross. Between waypoints, the 

trajectory intended is shown with a green line. 
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In the eight scenarios defined above, were made public demonstrations and exhaustive 

tests. These demonstrations and tests were made with the vehicle performing completely 

autonomous surveillance routines, pre-defined with waypoints marked by an user. 

Therefore, to each of these eight scenarios, the GUI interface "rondas" uses the 

architectural plan of the building. To perform autonomous surveillance routines, to each of 

these scenarios, it was necessary to compute a relation between the architectural plan and the 

map used by the robot to perform its localization, based on the three-dimensional map-based 

approach. For each of the eight scenarios a relation was established based only in the scale 

and the translational and rotational offsets between the maps. This fact, proves the correctness 

of the maps obtained during the pre-localization and mapping phase. 

 

Fig. 10.51 GUI interface "rondas". It shows the architectural plan. The marked waypoints are shown in red. The green line 
shows the trajectory that it is intended to follow. 

The following table, Table 10.2 summarizes the set of public demonstrations and tests 

performed in the eight scenarios. In these tests, the vehicle performed during consecutive 

hours surveillance routines in a completely autonomous way. It should be highlighted the 

success that the robot had, during these public demonstrations. News about the RobVigil 

appeared on the Portuguese television channels: RTP1, SIC and TVI. Also in the "Exame 

Informática" Magazine and in the "Jornal de Notícias" newspaper, interviews about the robot 

and public demonstrations performed, were shown.  

Between the public demonstrations presented in the following table, it should be 

highlighted the demonstrations at the Engineering weekend, during the festival of "Robótica 

2012", during the "Fórum do Mar" fair at the Exponor, the demonstration in the UTM unit 

day at the INESC Porto building; and finally the demonstration during the Europeans 

Researchers night, at the "Reitoria" of the University of Porto. In these demonstrations the 

vehicle performed during consecutive hours, surveillance routines, even in the presence of lot 

of curious people around it. 
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Scenario 
Demo/Test 

Duration 
Event 

1 

One morning "Exame Informática" Magazine 

One morning News on the RTP1 . 

One Afternoon Engineering weekend. 

Months Exhaustive debugging tests 

2 Two mornings Exhaustive debugging tests 

3 Two mornings Exhaustive debugging tests 

4 

Four days "Robótica 2012" 

One morning FreeBots competition "Robótica 2012" 

5 One Afternoon UTM unit day at the INESC Porto building 

6 Three days "Fórum do Mar" at Exponor 

7 One Afternoon Shopping gallery of the enterprise centre "Lionesa" 

8 One night "Reitoria" of the University of Porto, Europeans Researchers night. 

Table 10.2 Demonstrations and exhaustive tests performed by the robot during events and debugging tests.  

The following figures show the vehicle trajectory (position) during experimental tests 

performed in these eight scenarios. During this experimental tests the speed of the robot was 

0.4 m/s. 

In figures, Fig. 10.52 to Fig. 10.59, at yellow is shown the vehicle localization obtained 

using the 3D Matching localization algorithm, which pinpoint the vehicle position with 

success. In green is shown the vehicle position computed only using the odometry. As can be 

seen in the entire set of tests, the odometry trajectory ever diverges from the correct obtained 

with the 3D Matching algorithm. 

This trajectories were made using remote control (joystick) aiming to test the localization 

robustness. The sudden curves and loops, which are possible to see in the previous images, 
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were made purposely to test the robustness of the 3D Matching localization algorithm. As it is 

possible to see also, on the images, the vehicle operated correctly in all the trajectories. 

 

Fig. 10.52 The trajectory of the vehicle, Start-End-Start-End, in the scenario 1). In yellow the correct position (3D 
Matching). In green the odometry position. In the left image the 3D map is seen overhead. In the right image it is seen 

underneath. 

 

Fig. 10.53 The trajectory of the vehicle, Start-1-2-3-4-5-6-End, in the scenario 2). In yellow the 3D Matching's position. In 

green the odometry. In left, the image is seen overhead. In the right image it is seen underneath. 

 

Fig. 10.54 The trajectory of the vehicle, Start-1-End with loops at the middle, in the scenario 3). In yellow the 3D 
Matching's position. In green the odometry. Different perspectives of the trajectory. 
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Fig. 10.55 The trajectory of the vehicle, Start-1-End, in the scenario 4). In yellow the 3D Matching's position. In green the 
odometry. Left: the entire occupancy grid is shown. Right, only the bottom part (white, below 1.8 metres) is shown. The 

red part is used for vehicle localization (3D Matching). 

  

Fig. 10.56 The vehicles position during the trajectory , 

Start-1-2-End, in the scenario 5) is shown in yellow, 
through the localization obtained using the 3D Matching. 

In green the odometry trajectory.  

Fig. 10.57 The trajectory of the vehicle, Start-1-End, in the 

scenario 6). In yellow the 3D Matching's position. In green 
the odometry. Only the bottom part of the occupancy grid 

(below 1.8 metres) is shown with white points. 

 

Fig. 10.58 The vehicle's trajectory, Start-1-2-3-4-End, in the scenario 7). In yellow the 3D Matching's position. In green 
the odometry. Different perspectives of the trajectory. 
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Fig. 10.59 The vehicle's trajectory from the label Start to the label End, in the last scenario 8). In yellow the 3D Matching's 

position. In green the odometry. Different perspectives of the trajectory. 

10.4.1. Reference Localization System Sick Nav350 

The Sick Nav350 is a laser positioning system developed and commercialized by the Sick 

Sensor Intelligence. This sensor is applied in autonomous guided vehicles (AGVs) with 

reflectors placed in the navigation area. Some specific scenarios referred by the sensor’s 

developers are: truck loading, shuttle systems and autonomous systems using AGVs. The 

Nav350 sensor and a reflector are shown in figures: Fig. 2.8 and Fig. 2.9. 

The Nav350 allows RS-232 or Ethernet communication, it weighs approximated 2.4 Kg 

and is mechanical robust. The sensor is able to detect high reflective reflectors, planar or 

cylindrical. The reflectors should be covered with a high reflective pellicle provided by the 

sensor’s developers. 

Some of features of the Sick Nav350, which are important to highlight are: 1) it is able to 

measure at a maximum of 40 reflectors; 2) the angle sensor’s field of view is 360º; 3) the 

sensor is able to detect reflectors between 0.5 metres to 70 metres; 4) it rotates with a 

frequency of 8Hz; 5) it uses the reflectors to output its self location; 6) a location position is 

available with a sample rate of about 125 milliseconds, with an accuracy of 4 millimetres to 

25 millimetres, depending of the distance and relative position between reflectors, that should 

be carefully configured; 7) the sensor also provides, the contour of the surrounding scenario, 

in a range distance of 70 metres and with an angular accuracy of 0.1 degrees; finally, 8) it is 

an expensive sensor. 

The sensor has a protocol of communication, which allows sending to it, odometry data, 

acquired by the vehicle’s odometers and; with an frequency of 8Hz obtain its self location in 

the absolute referential; the reflectors positions, in Cartesian or polar coordinates, in relation 

to the sensor referential; and finally the surrounding environment contour (distance and angle 

of each beam), also in relation to the sensor referential. 

Aiming to compare the accuracy of the localization algorithm based on the 3D Matching 

presented in this PhD document, described in Chapter 9, with the Nav350, experimental tests 

were performed. 

Therefore, in the three first scenarios, described in the beginning of this Chapter, the 

localization result in the three-dimensional map-based approach, was compared with the 
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localization provided by the Sick Nav350. To perform this comparison, was developed a GUI 

with a communication interface, using Ethernet and the Nav350 protocol. Also six cylindrical 

reflectors were constructed and placed along the scenarios, allowing the Nav350's self 

location. 

The reflectors were constructed considering the following considerations, referred by the 

sensor’s developers: 1) cylindrical reflectors need to be seen in any angle (should be 

cylindrical); 2) the reflectors should be covered with a reflective tape, provided together with 

the sensor, which has an high reflectance; 3) the cylindrical reflectors should have a minimum 

diameter, equal to 80 millimetres; 4) the size of the reflectors should be at least 500 

millimetres, when is intended to be seen at a minimum distance of 30 metres. 

Also several considerations should be taken in account during the reflectors distribution 

along the navigation area. To a precise location the Nav350 in any position should see 4 to 5 

reflectors, but 3 are sufficient to compute its self location. The minimum distance to avoid 

confusion or bad association between reflectors is 300 millimetres. The reflectors should not 

be in positions where there are overlapping, between them. Finally, the reflectors should not 

be placed symmetrically in the scenario. 

In the first scenario, defined above as 1), there are a corridor whose floor is a grid with 

known dimensions. Therefore, the ground truth is only available in this corridor; and for that 

reason it was chosen to carry out a characterization of the Nav350 self localization algorithm. 

Therefore, if the Nav350 true position is well known, i.e. the ground truth           and 

     can be calculated using the corridor floor grid, the accuracy of the Sick Nav350 can be 

characterized. 

The following figure, Fig. 10.60, shows one reflector and the Sick Nav350, placed on the 

robot RobVigil. In the Fig. 10.61, it is shown the corridor referred in the previous paragraph, 

where the red boxes highlight the presence of reflectors. 

  

Fig. 10.60. Vehicle, observation module, Sick Nav350 
and reflector. 

Fig. 10.61. First scenario where tests of accuracy were 
performed. 

In the next sub-section, it will be done a characterization of the accuracy of the 

localization algorithm proposed here, in relation to the Nav350. This characterization together 

with the accuracy characterization of the Sick Nav350 in relation to the GND, allows 
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achieving the final objective of characterize the accuracy of the localization algorithm 

proposed here, in relation to the GND. 

The error distance    and the angle error    
, between the reference position (   ) and 

the estimated position of the vehicle are given by:  

       
     

      
            

         (10.7) 

    
         (10.8) 

in which the variables           and      are the ground truth (reference positions), 

obtained and       and    are the vehicle estimated variables. 

The Table 10.3 represents the average and standard deviation of the errors    
,    

,    
 

and   , between the Nav350 self localization algorithm and the ground truth. 

    
      

 Localization 

   
             

             
                       

    
     -0.00006 0.0026 0.003 0.011 

     
           0.006 0.015 0.0037 0.017 

                                                                       

Table 10.3 Results of the average and standard deviation of    and   . Nav350 localization system referenced to ground 

truth data.  

Considering Gaussian, the error between the Nav350 localization and the ground truth, 

with the analysis of the Table 10.3, can be said that the angle error    
 is in the interval 

                 radians, with a certainty of 95.4%. The distance error is in the 95.4% of 

the cases in the interval equal to           metres. 

10.4.2. 3D Matching Accuracy Characterization  

After characterized the error of the Nav350 localization system it is possible characterize 

the error of the 3D matching algorithm in the three scenarios already described. In the worst 

case, the error of the 3D matching algorithm in relation to the GND can be computed with the 

following equation: 

    
          

        
          

     
       (10.9) 

in which        
          

 is the error between the localization algorithm, proposed in this PhD 

work, and the Nav350 localization system. The error     
       is representative of the the 

Nav350 positioning system with reference to the ground truth, already presented in the Table 

10.3. The error     
          

, is the error between the 3D Matching algorithm of localization 

and the ground truth. 

Consider the error between the Nav350 and the ground truth as a Gaussian distribution. 

Consider the error between the 3D matching localization and the Nav350 positioning system 

also Gaussian. In that way, using the equation (10.9), the resultant error between the 3D 
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matching localization algorithm and the ground truth, is also a Gaussian distribution, with an 

estimative equal to the following equation: 

     
          

         
          

      
       (10.10) 

and standard deviation given by the expression: 

    
          

          
          

 
 
      

       
 
 (10.11) 

Due the absence of more reflectors (there are only six available reflectors in the 

laboratory), the accuracy tests were made only in a part of each of these three scenarios. 

Each scenario, as already referred, has big dimensions (the first and the second scenarios 

have a square shape with size 60 x 60 metres , while the third scenario has 300 metres of 

length). To perform the accuracy tests in the entire dimension of each scenario, there are 

necessary a lot of reflectors. Therefore, as only six reflectors are available, the accuracy test 

was made in smaller parts of each scenario. 

The Fig. 10.62 shows the results in the first scenario, in which the green circles are 

representative of the reflectors used by the industrial location sensor Nav350. The black line 

is the Nav350 trajectory, while the blue line is the trajectory estimated by the localization 

algorithm described and proposed in this thesis. 

 
Fig. 10.62. Estimated location with reference with the Sick Nav350 position. The vehicle position represented at black is 

obtained with the Nav350. The blue vehicle trajectory is the estimated location. The green six circles are the artificial 
landmarks, i.e. reflectors placed by the scenario. The corridor has 25 metres long and 6 metres wide. 

As can be seen, in Fig. 10.62, the estimation of the position (blue line) is close to the 

reference, Nav350 self location (black line). 

The followed trajectory begins in the start, goes to the point 1, 2  and ends in the end, as 

shown in Fig. 10.62.  

The error between the localization algorithm proposed in this PhD thesis and the Nav350 

positioning system is considered Gaussian. Therefore, with the analysis of the Table 10.4 it 

can be conclude that with an certainty of 95.4% (       ), the angle     
  and distance      

errors are into the intervals                radians and         metres , respectively. 

With the analyses of the Table 10.3 and Table 10.4 the new Table 10.5 can be computed. 

The Table 10.5 represent the error between the 3D matching localization system and the 

ground truth. The average of the error in this table is given by the sum of the average errors of 

Table 10.3 and Table 10.4, as shown in equation (10.10). The resultant standard deviation is 

computed using the equation (10.11). 
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Localization 

   
             

             
                       

    
     -0.0284 -0.0118 0.0062 0.0957 

     
           0.088 0.055 0.026 0.10 

                                                               

Table 10.4 Results of the average and standard deviation of    and   . Comparison between the 3D matching the Nav350. 

Thus, the Table 10.5 helps to realize that in the 95.5% (two times the standard deviation) 

of the cases, the 3D matching localization errors,    
 and   , are inside the intervals, 

               radians and          metres , respectively. 

    
          

 Localization 

   
             

             
                       

    
     -0.028 -0.009 0.009 0.107 

     
           0.088 0.057 0.026 0.101 

                                                                

Table 10.5 Results of the average and standard deviation of    and   . Comparison between the 3D matching and GND. 

As can be seen trough Fig. 10.63 to Fig. 10.66, the x position error is ever lower than 20 

centimetres. The y position error is ever lower than 15 centimetres, while the   error is ever 

time lower than 0.1 radians and in almost the times lower than 0.05 radians. 

 
Fig. 10.63   variable in function to the travelled distance. The vehicle estimated position     is represented in red, while 

in blue is shown the Nav350’s   position. 

 
Fig. 10.64    variable in function to the travelled distance. The vehicle estimated position    is represented in red, while in 

blue is shown the Nav350’s   position. 



180          Chapter 10·Experimental Results 

 

 
Fig. 10.65   variable in function to the travelled distance. The vehicle estimated position    is represented in red, while in 

blue is shown the Nav350’s   position. 

 
Fig. 10.66 Error curves between the 3D matching localization and the Nav350 positioning system estimation. 

The Fig. 10.67 shows the comparison results in the second scenario defined at the 

beginning of this Chapter. As can be seen in Fig. 10.67 the localization’s position estimation 

(blue line) is close to the reference, Nav350's self location (black line). The trajectory begins 

in the start point, and goes to the points 1, 2, 3, 4 and 5. The end of the trajectory is 

represented in Fig. 10.67 by the end label. 

 
Fig. 10.67. Estimated location compared with the Sick Nav350 . The black line is representative of the Nav350 self 

location. The blue vehicle trajectory is the estimated location. The green six circles are the reflectors. Area of 25 
metres of length and 8 metres of width. 

In the Fig. 10.67, the green circles are representative of the reflectors used by the location 

sensor Nav350. The black circumferences are the columns in the scenario. 

The following table, Table 10.6, shows the error of localization between the 3D matching 

algorithm and the Nav350 positioning system. 
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Localization 

   
             

             
                       

    
     0.0062 -0.0057 0.0106 0.0847 

    
      0.087 0.036 0.024 0.091 

        [-0.17, 0.18] [-0.077, 0.066] [-0.037, 0.059] [0, 0.27] 

Table 10.6 Results of the average and standard deviation of    and   . Comparison between the 3D matching the Nav350 

localization positioning system. 

With the table analysis, it can be concluded that the distance and angle errors, between the 

two systems of localization, are into the intervals [0, 0.27] metres  and [-0.037, 0.059] radians, 

with a certainty of 95.4% (two times the standard deviation). 

The combination of the Table 10.3 and Table 10.6 generates the Table 10.7. This last table 

has the errors and standard deviations between the localization system proposed in this thesis, 

and the ground truth. The Table 10.7 results from the equations (10.10) and (10.11). 

    
          

 Localization 

   
             

             
                       

    
     0.00614 -0.0031 0.0136 0.0957 

    
      0.087 0.039 0.024 0.093 

        [-0.17, 0.18] [-0.081, 0.075] [-0.035, 0.062] [0, 0.28] 

Table 10.7 Results of the average and standard deviation of    and   . Comparison between the 3D matching and GND.  

Finally, with the table analysis, it can be concluded that the 3D matching errors    
 and 

  , are in the intervals [-0.035, 0.062] radians and [0, 0.28] metres , in the 95.4% of the cases. 

The Fig. 10.68 to Fig. 10.70 are demonstrative of the localization variables (3D matching 

in red and the estimation given with the Nav350 localization system in blue). The Fig. 10.71 

presents the error between the two localization systems. The x position error is ever lower 

than 20 centimetres. The y position error is ever lower than 15 centimetres, while the   error 

is in almost the times lower than 0.1 radians. 

 
Fig. 10.68   variable in function to the travelled distance. The vehicle estimated    is represented in red, while in blue is 

shown the Nav350’s   value. 
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Fig. 10.69   variable in function to the travelled distance. The vehicle estimated position    is represented in red, while in 

blue is shown the Nav350’s   position. 

 
Fig. 10.70   variable in function to the travelled distance. The vehicle estimated position    is represented in red, while in 

blue is shown the Nav350’s   position. 

 
Fig. 10.71 Error curves between the 3D matching localization and the Nav350 positioning system estimation. 

Finally, the results of accuracy of the third scenario, were also obtained, comparing the 

3D matching localization algorithm of the three-dimensional map-based approach and the 

industrial positioning system Nav350. 

As can be seen in Fig. 10.72, the localization position estimation (blue line) is close to 

that obtained with Nav350 self location (black line). The trajectory begins in the start and 

goes to the point 1, 2 and ends in the end, as shown in Fig. 10.72. 

It is shown, in the Table 10.8, the error of the 3D matching localization algorithm when 

compared with the Nav350 location as reference. The table helps to realize that the distance 

and angle errors,    and    
, considered Gaussian erros, are, in this scenario, with a certainty 

of 95.4%, inside the intervals [0, 0.19] metres  and [-0.059, 0.072] radians, respectively.  
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Fig. 10.72. Estimated location with reference with the Sick Nav350 position. The black vehicle position is 
representative of the Nav350 self location. The blue vehicle trajectory is the estimated location. The green six circles 

are reflectors placed by the scenario. The corridor has 25 metres long and 8 metres wide. 

       
          

 
Localization 

   
             

             
                       

    
     0.0047 0.0032 0.0069 0.0634 

    
      0.041 0.053 0.033 0.066 

        [-0.077, 0.087] [-0.10, 0.11] [-0.059, 0.072] [0, 0.19] 

Table 10.8 Results of the average and standard deviation of    and   . Comparison between the 3D matching the Nav350 

localization positioning system. 

Considering, as already referred, the error of the Nav350 positioning system related with 

the ground truth has a Gaussian distribution. Analogy, the error between the 3D matching 

localization and the Nav350 sensor is considered Gaussian. Therefore, the tables, Table 10.3 

and Table 10.8, when combined as shown by the equations (10.10) and (10.11), generate the 

Table 10.9.  

With the Table 10.9 analysis it is possible to conclude that the errors of distance and 

angle,    and    
, respectively, are inside the intervals of [0, 0.21] and [-0.057, 0.076] radians, 

with a certainty of 95.4% (equivalent to         ). 

    
          

 Localization 

   
             

             
                       

    
     0.0046 0.0058 0.0099 0.074 

    
      0.041 0.055 0.033 0.068 

        [-0.078, 0.088] [-0.10, 0.12] [-0.057, 0.076] [0, 0.21] 

Table 10.9 Results of the average and standard deviation of    and   . Comparison between the 3D matching and GND. 

The following figures, Fig. 10.73 to Fig. 10.75 are demonstrative of the lozalisation 

variables (3D matching at red and the estimation given with the Nav350 localization system 

in blue). The Fig. 10.76 presents the error between the two localization systems. The x 
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position error is ever lower than 15 centimetres. The y position error is ever lower than 15 

centimetres, while the   error is in almost the times lower than 0.1 radians. 

 
Fig. 10.73   variable in function to the travelled distance. The vehicle estimated position     is represented in red, while in 

blue is shown the Nav350’s   position. 

 
Fig. 10.74   variable in function to the travelled distance. The vehicle estimated position    is represented in red, while in 

blue is shown the Nav350’s   position. 

 
Fig. 10.75   variable in function to the travelled distance. The vehicle estimated position    is represented in red, while in 

blue is shown the Nav350’s   position. 

 
Fig. 10.76 Error curves between the 3D matching localization and the Nav350 positioning system estimation. 

With the results presented in this Chapter, about the localization accuracy in the three 

scenarios already described, it is possible to conclude that the distance error (  ) is lower than 
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0.31 metres in its worst case with a confidence of 95.4%, see Table 10.5. The angle error, 

equal to    
, is in the worst case lower than 0.076 radians, with a certainty of 95.4% (two 

times the standard deviation), see Table 10.9. 

The 3D matching localization accuracy varies according to the scenario features and 

structure. The three scenarios, although different, are well-structured scenarios. In these 

environments the localization based in 3D matching is sufficiently accurate to be used to 

pinpoint the vehicle localization during autonomous surveillance tasks, as is possible to see in 

videos at the webpage [3]. 

The performed experiments helped to realize as well some advantages of the proposed 

algorithm of localization, when compared with the Sick Nav350 positioning system. These 

advantages are: the observation module as described in Chapter 5, Hokuyo URG-04LX-UG01 

and AX-12 Dynamixel Bioloid, has a lower cost, is considerately lighter and, becoming it 

more suitable to be used in smaller and service robots as is the case of the RobVigil.  

10.4.3. Robustness of the Proposed Methodology 

Two crucial experiments were conducted in order to justify the advantages of: 1) using 

3D Matching during the vehicle’s normal operation comparatively to 2D Matching; 2) using a 

rotating LRF, instead a fixed LRF (in a vertical position) as observation module. The two 

experiments are described as follows:  

1) The 2D Matching algorithm was executed using the fixed observation module (LRF 

horizontally) and it was verified that it is not robust when dynamic objects appear. 

2) The advantage of using a rotating observation module was verified. The 3D Matching 

algorithm was executed using the fixed observation module (LRF vertically). The results were 

then compared with those obtained using the rotating LRF. 

Fig. 10.77 is representative of experiment 1). Therefore, Fig. 10.77 shows the matching 

performed by the 2D matching algorithm, with the fixed observation module (LRF 

horizontally). The black lines are the walls where the matching should be performed. The blue 

points represent the observation module points. 

 

Fig. 10.77 2D Matching with a dynamic object appearing (red rectangle). Image on the left: without a dynamic object. 
Image in the middle: with a person in front of the robot. Image on the right: final matching between the actual reading and 

the 2D Map. Matching is wrong due to the dynamic object. 

In the figure is shown an initial situation (image on the left) where matching is performed 

correctly. The image in the middle demonstrates a dynamic object appearing in the scenario, 

represented by the red box. The image on the right represents a final result after the 

appearance of a dynamic object. 

Throughout experiment 1) it was possible to conclude that 2D Matching is not robust 

when dynamic objects appear in the scene. As a result, matching is not correct and that is 

confirmed in Fig. 10.77 (image on the right). 
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On the other hand, as with the 3D matching algorithm only the upper side of the indoor 

environment is used (above 1.8 metres ), because dynamic objects are not common in that 

area, it operates correctly even in scenes with lot of people travelling.  

However, the 3D Matching algorithm is robust even when there are dynamic objects on 

the upper side of the indoor scenario. Imagine a tall object or person, more than 1.8 metres of 

high, crossing the vehicle’s navigation area. As previously described in Chapter 5, the 

observation module is an LRF placed in a rotating platform which makes it possible to obtain 

information on directions that are different from the directions in which the dynamic object 

appeared. 

Therefore, the rotating capacity of the observation module allows the 3D matching 

algorithm to perform the matching process in different areas of the map which are 

predominantly static. As a result, the localization process becomes more robust even when the 

vehicle navigates in dynamic scenarios. 

Fig. 10.78 and Fig. 10.79 are representative of experiment 2). Both figures demonstrate 

the performance of the 3D matching algorithm. However, Fig. 10.78 shows the matching 

result with the observation module placed vertically (LRF vertically). On the contrary, Fig. 

10.79 shows when the observation module is rotating. The blue points represent the 

observation module points used in the localization method, projected in the 2D space (points 

    projected in the 2D space). 

  

Fig. 10.78. Experiment conducted with a fixed observation 
module (LRF vertically). Image on the left: The performed 

3D matching. Image on the right: The inverse of the 

quadratic matching error. 

Fig. 10.79. Experiment conducted with the observation 
module rotating. Image on the left: 3D Matching. Image on 

the right: The inverse of the quadratic matching. 

The images on the right in Fig. 10.78 and Fig. 10.79 represent the inverse of the quadratic 

matching error, when the vehicle is in any position of the area represented in the figures. The 

lighter areas (red boxes) represent those places with lower matching errors. Therefore, these 

areas represent local minima of the cost function. 

In the experiment conducted and depicted in Fig. 10.78, the estimation of the    position 

is reliable as opposite to the    position (parallel to the corridor walls) and    angle. In this 

situation, there are plenty of local minima (red box) of the cost function along the    axis, 

which makes it more difficult to estimate the    and    values.  

In the experiment depicted in Fig. 10.79, estimating the positions of   ,    and    is 

equally reliable. In this situation, there is only a distinctive local minimum (red circle) of the 

cost function (see Fig. 10.79 right-hand side). 

Throughout experiment 2), it was possible to conclude that using a vertically fixed 

module provides a less reliable matching result in the direction parallel to the walls. 

The use of a rotating module provides a matching result that is equally reliable in all 

directions (  ,    and   ). This happens due the fact that the rotating observation module has 
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the ability to acquire more quality and different information which is helpful when estimating 

all the variables   ,    and   . 

In summary, with regard to 1) and 2), it is possible to say that: 1) the 2D Matching is not 

a good approach to locating the vehicle when the scenario is not static; 2) the 3D Matching 

algorithm is preferable due its feasibility and robustness when the scenario used is the upper 

side of a building (the more static scenario); 3) the 3D Matching should be conducted while 

the observation module is rotating (not fixed vertically) since the collected information is 

more helpful to estimate the vehicle’s position, which makes it a more reliable technique. 

10.4.4. Execution Time and Comparison with Other Algorithms 

Regarding the three-dimensional map-based approach, the localization algorithm 

described in this document, which is based on 3D matching, it has a consumption time whose 

maximum value depends on the number of points used in the matching algorithm. As the 

number of points acquired by the LRF is limited to 682 points, the maximum time spent in the 

localization algorithm is also limited. This limit time was measured and is equal to 17 

milliseconds. The average execution time is about 12 milliseconds. Both the maximum and 

mean time spent, are lower than the sample rate imposed by the observation module (100 

milliseconds), which allows the algorithm to be used online, with three-dimensional data, in 

the Mini ITX, EPIA M10000G with a processor of 1.0GHz. 

In the three-dimensional map-based approach the algorithm Perfect Match described by 

M. Lauer et al. [4], was adapted to operate in the three-dimensional space, with Laser Range 

Finder data, instead the use of artificial vision. The computational complexity and 

requirements of the Perfect Match was maintained, even using three-dimensional data. 

Since the computation time spent is not compromised, the experiment conducted by M. 

Lauer et al.  [4], which elects the Perfect Match as a faster algorithm when compared with the 

Particle Filter algorithm, remains valid. In this experiment, while the Perfect Match has a 

spent time of 4.2 milliseconds, the Particle Filter, using 200 and 500 particles, takes 17.9 

milliseconds (four times higher) and 48.3 milliseconds (ten times higher), respectively. 

Furthermore, the computational time spent (about 2 milliseconds in the 5DPO robots) 

with the artificial vision's image treatment was improved, since the used data, is acquired by 

the developed observation module, whose treatment consists in the simpler application of 

homogeneous transformations in the LRF's raw points, as described in Chapter 5. 

Finally, comparing with the localization method described by M. Lauer et al. [4], the 

localization procedure of three-dimensional map-based approach, described in this PhD 

thesis, was improved. It was applied the Extended Kalman Filter as multi fusion sensor 

system, aiming to join the odometry information and the three-dimensional Perfect Match 

result. 

Comparing the localization algorithm proposed and described in this PhD thesis with the 

ICP algorithms, it is faster and can be applied online in smaller cycle times, even when using 

a larger quantity of Laser Range Finder points. 

The MbICP algorithm described in [38], which already shows improvements to the 

standard ICP, takes an average time of 76 milliseconds to find the optimal solution, using 

only 361 Laser Range Finder points, in a sample rate of 200 milliseconds, in a Pentium IV 

1.8GHz. Furthermore, the approach proposed in this PhD thesis, has a limited time of 
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execution, depending on the number of the used points. In the ICP algorithms, the point to 

point match step is necessary to obtain the correspondence with the previous scan. Such step 

is not limited in the execution time and is widely dependent on the overlapping zone between 

consecutive scans. This overlapping zone influences also the quality of the reached solution. 

The use of three-dimensional data on the upper side of a building, increases the quantity 

and quality of the information, especially because it is almost static.  

Until the moment, the author did not find other works in the state of the art, which enter 

in account with the following considerations: the use of three-dimensional data together with 

a 3D map for the online localization of a robot; using only data on the static scenario of a 

building, making the localization more robust, even when navigating inside dynamic 

scenarios. 

Also it was not found other works where the SLAM problem in 2D space was solved with 

the intention of mapping the environment in the 3D space, using for that the same LRF (tilting 

LRF). Furthermore, any work was found, where the 3D mapping purpose is to use the 

resultant occupancy grid to localize a robot using three-dimensional data.  

Between the state of art works that were read by the author, which addresses the topic of 

SLAM, anyone uses data about invariant points from corners and columns simultaneously 

with linear segments. 

In contrast to the work described by S. Thrun et al. [46], in the pre-localization and 

mapping, only one Laser Range Finder (observation module) is used in this work. The single 

observation module is used to perform the pre-localization and mapping routines 

simultaneously. Furthermore, after, the map constructed in the 3D space is used locate the 

vehicle in its normal operation. 

Contrary to the work described in [47], the matching algorithm presented to pinpoint the 

location of a robot uses 3D data, enabling the three-dimensional scan to align with the 

previous map stored in memory. 

T. Yokoya et al. in [48] uses more than one robot and sensorial units to perform the three-

dimensional mapping of the surrounding. In this work, an approach was developed, which 

allows to: 1) locate the vehicle in a 2D space, in indoor environments; 2) map the surrounding 

environment, representing it in 3D models; 3) and locate the vehicle in a shorter amount of 

time, during its regular operation, enabling its online application.  

K. Nishimoto et al. [49] uses detected plans and the respective extracted information, 

through the Hough Transform, to pinpoint the vehicle position. Unfortunately, in an 

experiment the calculation of the Hough Transform in Celeron 2.3 GHz, takes a minimum 

time required of 45 seconds, becoming non-applicable when online performance is required. 

With the revision of literature it is possible to conclude the following: 

1) A lot of the work focuses on the topic of 2D SLAM in indoor environments. However, 

some drawbacks appear: non static environments are found and the SLAM solutions are 

computationally heavy, inapplicable online. 

2) The Iterative Closest Point algorithms are popular in the literature due to the simplicity 

of their operation, but they fail in the computing time. 

3) There is not an entire localization methodology, that treats the mapping and posterior 

localization of the vehicle in the three-dimensional space. 
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4) Furthermore, the found methodologies don't devote themselves, neither to problems 

about time spent in localization, the online applicability and the computational requirements, 

when 3D data are used; nor with the disturbance introduced in the acquired data by persons or 

objects travelling in dynamic scenarios. 

Finally experiments were made, aiming to compare the three-dimensional map-based 

approach and the most used algorithms for mapping (gmapping [76]) and localization (amcl 

[77]) from the platform ROS (Robot Operating System).  

The ROS platform provide a package of mapping called gmapping [76], which is based on 

the Rao-Blackwellized Particle Filter. Using this package, a 2D grid map was obtained as 

shown in Fig. 10.80. This grid map is about the corridor where, as presented in the previous 

sub-section, the first test of accuracy of the 3D Matching algorithm was made.  

 

 

Fig. 10.80. 2D map grid obtained using the gmapping package of ROS. 

Another ROS' package, the amcl, the adaptative Monte Carlo localization algorithm, uses 

the 2D map grid built by the gmapping package to locate the vehicle, using 2D data, with a 

Laser Range Finder on the horizontal.  In contrary, the approach presented here, the three-

dimensional map-based, uses the 3D map built during the pre-localization and mapping, and 

three-dimensional data acquired by a tilting LRF, to pinpoint the RobVigil pose online. 

The feature map obtained by the EKF-SLAM, about the same corridor is presented in Fig. 

10.7, while the correspondent 3D occupancy grid, is shown in Fig. 10.25. A slice about the 

distance and gradients matrices, corresponding to this 3D occupancy grid, are shown in Fig. 

10.36 to Fig. 10.38. 

An experiment was made, aiming to compare the execution time of the 3D Matching 

algorithm proposed here and the localization provided by amcl package. Also an experiment 

in the corridor defined above, was made aiming to compare the accuracy of the entire 

methodology three-dimensional map-based (pre-localization, mapping and localization) and 

the entire group gmapping and amcl packages. 

To perform these experiments, the same data of odometry and the same Laser Range 

Finder, the Hokuyo-URG-04LX-UG01, was used for both. The results were obtained in the 

same vehicle trajectory, executed in the same computer, the RobVigil's onboard pc (Mini 

ITX, EPIA M10000G with a processor of 1.0GHz). In the tests of accuracy, also the Nav350, 

was used as ground truth, such as described in the previous sub-section. 

The graphic represented in the following figure, Fig. 10.81, shows during 894 iterations 

the execution time of the 3D Matching algorithm at dashed line. In this graphic it is possible 

to see the average value at continuous blue line, equal to 11.8 milliseconds, with a maximum 

value of 17 milliseconds.  

The following graphic also shows, the execution time of the localization provided by the 

amcl package. With 1000 particles, the maximum execution time of the amcl package is 42 
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milliseconds. The average value of the execution time is 31.8 milliseconds. The execution 

time of the amcl package using 1000 particles, is higher when compared with the 3D 

Matching algorithm. Using 500 particles, the average execution time of the amcl package is 

similar to the 3D Matching algorithm proposed in this thesis. 

  
Fig. 10.81. Execution time of the localization phase (3D Matching algorithm). 

In the test of accuracy, the 3D Matching algorithm, reached similar results to the ones, 

presented in the Table 10.5. The average angle error is equal to 0.003 radians and average 

Euclidean distance error is 0.12 metres. The error of the angle and distance are with a 

certainty of 95.4% (two times de standard deviation), inside the intervals               

radians and          metres, respectively. 

The following table shows the results on the accuracy about the angle and distance errors, 

for the amcl package using 1000 and 500 particles. The obtained accuracy results proved that 

the approach of three-dimensional map-based is more accurate when compared to the 

operation of the group gmapping and amcl. For the best case, when using 1000 particles on 

the amcl, the average angle error is 2.3 times higher than the three-dimensional map-based 

approach proposed in this thesis, while the average error on the distance is 1.7 times higher. 

 

AMCL with 1000 particles AMCL with 500 particles 

   
                          

                       

    
     0.0073 0.209 0.012 0.221 

                                                                      

Table 10.10 Results of the average and standard deviation of    and    for the amcl package of ROS running with 500 and 

100 particles. 

Furthermore, the three-dimensional map-based approach, proposed here, uses three-

dimensional data about the upper side of the map, the static scenario, to compute its pose in a 

more robust way, even when applied in dynamic scenarios. 
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Conclusions 

A first and simpler localization approach has been developed, the simple landmark-based 

localization approach, which is a strategy of localization based on the walls of a square-

shaped room. This localization approach is constrained in terms of applicability and in terms 

of the vehicle navigation area. This approach was developed in a Lego NXT in a real and a 

simulation scenario, in a suitable way, allowing the applicability of this tool in the lessons of 

Autonomous Robotic Systems course at the Faculty of Engineering of Porto, so as to teach 

mobile robot concepts to undergraduate students. 

With regard to the simple landmark-based localization approach, some conclusions were 

obtained. This strategy of localization lacks in its applicability in different scenarios, mainly 

when is required an approach capable of performing its function without constraints in terms 

of navigation area.  

However, this localization approach, proved that it is possible to perform vehicle location 

using natural landmarks, with no need to prepare the environment.  

Another conclusion reached was that a localization approach like that, developed in a 

suitable robotic platform, as is the example of the Lego NXT, can be really helpful to teach 

and improve the undergraduate students' learning on the topic of mobile robots.  

The simple landmark-based localization approach resulted in a paper on an International 

Journal [68]. 

After, this thesis evolved to another approach, with a realistic applicability, without 

constraints in terms of navigation applicable to any indoor well-structured environment, this 

approach was called three-dimensional map-based.  

In this document, the entire and new three-dimensional map-based methodology of 

localization is proposed. This methodology features two crucial stages: firstly the setup 

preparation task (pre-localization and mapping) is performed, which enables the second, 

pinpointing the location of a vehicle online during the vehicle normal operation (localization). 

A tilting LRF solution was developed, called observation module, based on a low cost 2D 

LRF and a cheaper dc servo motor. This tilting LRF allows obtaining data in the three-

dimensional space. With a set of homogeneous operations it is possible to transform the 

distance measurements of the LRF into a point on the three-dimensional space. 

The pre-localization and mapping procedures are performed offline, with odometry and 

data from the observation module , logged when the vehicle is controlled with a joystick in a 

controlled scenario (without people or dynamic objects travelling). 

The pre-localization uses the EKF-SLAM solution to obtain a feature map, with linear 

segments and invariant points. Still, during pre-localization, the EKF-Loc stage is used to 

compute the vehicle pose, by using the previously obtained feature map. 
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 Therefore, the pre-localization works as an indoor "GPS", allowing to know the vehicle 

position, to be used during the mapping procedure. Through the knowledge on the vehicle 

pose, and by applying the Bayes Rules, the probability and occupancy grid of the surrounding 

environment is constructed in the three-dimensional space. 

The EKF-SLAM algorithm builds a feature map, which contains not only linear segments 

representing walls, doors or furniture, but also invariant points, representing columns and 

corners. This redundancy of information allows an improvement on the EKF-SLAM and 

EKF-Loc accuracy. 

The three-dimensional occupancy grid built allows creating, as well in the three-

dimensional space,  the look-up tables: distance and gradient matrices. These are inherited by 

the localization procedure from the pre-localization and mapping stage. 

Therefore, the localization procedure is a 3D Matching algorithm, which performs a 

matching in the three-dimensional space, using data acquired by the observation module and 

the 3D map known a priori, to compute the vehicle pose. 

Some important conclusions can be presented with regard to the three-dimensional map-

based approach, as described in the following paragraphs.  

The distance and gradient matrices are the core of the localization algorithm, since they 

are look-up tables whose content is pre-computed and used during the 3D Perfect Match 

algorithm. These matrices become the localization algorithm fast enough (average time of 12 

milliseconds), using 682 points of the tilting LRF, requiring low computational power. 

Therefore, this can be executed online in a low power processor, such as the Mini ITX, EPIA 

M10000G with a 1.0GHz processor. 

As the developed 3D Matching uses three-dimensional data, the upper side of the indoor 

environment (map above the height of a normal person - 1.8 metres  - headroom) can be used 

to performed the vehicle localization. The headroom of a building does not have furniture or 

people/dynamic objects travelling, thus remaining the same during long periods of time. That 

way, it can be called as a static scenario, making of the localization method described here, an 

algorithm with benefits in terms of robustness and feasibility. The three-dimensional map-

based approach works in well-structured mapped environments, with no need to prepare the 

environment with artificial landmarks.  

The entire set of tests and public demonstrations (a total of eight public demonstrations), 

performed in public facilities, helped to realize that this localization method proved to be 

sufficiently robust, even when applied in dynamic scenarios. The three-dimensional map-

based approach allowed vehicle navigation during interruptible and autonomous surveillance 

routines, in these demonstrations, even with lot of curious people around the robot.  

The observation module used is based on the LRF. However, any observation module 

capable of acquiring three-dimensional data can be used, such as the Kinect, the 3D camera 

(MESA), stereoscope vision or commercial 3D LRFs. 

It is also possible to conclude that, with the conducted experiments to characterize the 

accuracy of the localization, the error of the estimation on the pose of the vehicle, in relation 

to the ground truth is negligible, mainly when we consider the accuracy requirements required 

for the RobVigil navigation.  
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The developed localization methodology makes the RobVigil a cost-effective practicable 

platform, since it single cost is the tilting LRF (1000 Euros is the cost of the LRF Hokuyo and 

100 Euros is the cost of the DC Servo motor). 

The three-dimensional map-based approach resulted in three publications, two of them in 

conferences, [70] and [71], and the other one in an International Journal, [72]. The entire 

project had a lot of impact and projection in the Portuguese press. Some videos on press news 

and newspaper's covers, related to the RobVigil, can be seen on the webpage [3]. 

Finally, this thesis was integrated as a component of the project: "QREN-SI à 

Investigação e Desenvolvimento Tecnológico, projecto de I&DT Empresas em co-promoção - 

"RobotVigilante". 
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Future Work 

In the future, this work can evolve in three different topics and research lines. The first 

line of research is related with the rotation of the tilting Laser Range Finder. This task of 

rotation, is done with the fundamental goal of acquire more quantity and helpful information 

allowing a more accurate and robust localization. But such rotation, leads to an increase of the 

energy consumption due the servo motor's operation. Besides that, the servo motor's rotation 

leads to its own mechanical degradation. Therefore, ideally the tilting Laser Range Finder 

rotation should enter in account with the localization needs. The tilting LRF should rotate 

only when it is necessary to find zones where the acquired information is helpful for the 

vehicle location. 

The second line of research is related with the initial position of the vehicle. At the 

moment, in the methodology proposed on the second approach, the three-dimensional map-

based, the robot as no idea on its initial location. The initial position of the vehicle is given as 

a parameter, or otherwise, the vehicle can start a task or routine in the same initial and known 

position (like a docking station). In future, the task of pinpoint the initial position of the 

vehicle, allowing it to start in any initial pose, autonomously, can be studied and developed. 

In fact this work was already started, with some preliminary results, which were published on 

the paper [70]. 

Finally, the third line of research is related with the capacity of the localization algorithm 

to estimate also the vehicle's z coordinate, roll and pitch angles. In that way, will be possible 

the vehicle navigation through irregular floors, which includes inclined surfaces as is example 

ramps. A possible approach is the use of an IMU as sensor to perform dead-reckoning, instead 

or complementing the odometry, and the adaptation of the 3D Matching algorithm to estimate 

those state variables as well (vehicle's z coordinate, roll and pitch angles). 
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