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Resumo

Esta tese visa o estudo da localização de FACTS (Flexible Alternating Current Transmission Sys-
tems) em redes de transmissão de energia, dando-se uma atenção especial à localização de transfor-
madores esfasadores. São propostos dois modelos distintos para localizar este tipo de equipamento
tendo por base sistemas de geração puramente convencionais ou sistemas constituídos por geração
convencional e eólica. Neste último caso é adoptada uma formulação baseada em programação
estocástica de forma a garantir a localização óptima de FACTS perante cenários incertos de vento.

Com vista à resolução do problema referido são utilizadas duas meta-heurísticas: EPSO (Evo-
lutionary Particle Swarm Optimization) e um novo método identificado como DEEPSO (Differ-
ential Evolutionary Particle Swarm Optimization). O DEEPSO é apresentado como um modelo
híbrido baseado no EPSO e no DE (Differential Evolution). É efectuada uma comparação entre
o comportamento dos dois métodos no problema da localização óptima de transformadores es-
fasadores, tendo-se observado uma clara superioridade do DEEPSO sobre o modelo clássico do
EPSO.

Apresentam-se também os resultados obtidos para a localização óptima de FACTS numa rede
de teste, IEEE 24-bus Reliability Test System, considerando diferentes cenários de carga e de
vento, com vista à validação dos modelos propostos. Os resultados obtidos são coerentes, confir-
mando a consistência dos modelos desenvolvidos. A localização dos transformadores esfasadores
foi efectuada com sucesso nas diversas simulações, tendo estes um papel importante na diminuição
dos cortes de carga e de geração eólica, garantindo a minimização dos custos de investimento.
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Abstract

This thesis discusses the optimal location of Flexible Alternating Current Transmission Systems
devices in electric power transmission networks with a particular focus on the location of Phase
Angle Regulating transformers. Throughout this document two different models to optimally lo-
cate the devices are proposed in order to be able to perform the optimizations in both systems with
purely conventional generation and with mixed conventional and wind generation. A formulation
based on stochastic programming is adopted in order to ensure the optimal location of FACTS
when dealing with uncertain wind scenarios.

Two distinct heuristic methods are evaluated for this specific problem, the Evolutionary Par-
ticle Swarm Optimization, EPSO, and a new method called Differential Evolutionary Particle
Swarm Optimization, DEEPSO. The DEEPSO algorithm is presented as a new hybrid between
EPSO and Differential Evolution. A comparison between the performance of EPSO and DEEPSO
is made, where DEEPSO shows consistent superiority over the classical EPSO in the optimal
Phase Angle Regulating location problem.

Results are presented for a realistic power network, IEEE 24-bus Reliability Test System,
where a multiple load and wind scenarios approach is considered in order to validate the proposed
models. These results show that the models have been correctly developed. The Phase Angle
Regulating transformers have been properly placed in the simulations carried out, presenting as an
important contribution in reducing both load and wind generation curtailments, while minimizing
investment costs.

Keywords: Differential Evolutionary Particle Swarm Optimization; Evolutionary Par-
ticle Swarm Optimization; FACTS location; PAR location; Stochastic optimization; Wind
power.

iii



iv



"Excellence is doing a common thing in an uncommon way."

Albert Einstein
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Chapter 1

Introduction

Transmission networks are being pushed to their thermal limits as a consequence of the significant

changes that have been observed in electrical power systems over the last few years. The expan-

sion of transmission infrastructures has become a delicate matter, due to several reasons, namely

political and environmental affairs. More than ever, transmission networks need to be explored as

efficiently as possible to guarantee a reliable operation of power systems.

As a solution to overcome some of these problems, the application of Flexible Alternating

Current Transmission Systems (FACTS) can assume an important role. These are power electron-

ics devices able to act on different parameters of the network, enhancing transmission networks

controllability with considerable operational advantages such as increased security and reduced

operation costs, among others.

Specifically, the utilization of Phase Shifting Transformers (PST) or Thyristor-Controlled

Phase Shifting Transformers (TCPST) in overloaded mashed three phase transmission networks to

control active power flow, allows the power to be shifted from overloaded lines to lines with avail-

able capacity, reducing the eventual need to curtail load. Furthermore, in power systems with high

levels of wind power, the installation of such devices may significantly contribute to an increased

wind power penetration, ensuring the maximization of wind generation.

The considerable capital cost of FACTS devices makes their cost-effective utilization impera-

tive and the careful analysis of their location a topic of great importance. The appropriate location

of FACTS is a complex combinatorial problem, differently defined according to the goals to be

achieved, as well as the types of devices considered.

The objective of this thesis is to propose a methodology to optimize the location of FACTS

devices in transmission networks, with a special attention for the optimal location of PST and

TCPST. In order to achieve this goal, a meta-heuristic based model is used to find the suitable

location of FACTS in power networks. Additionally, an extension to the proposed model, based

on stochastic programming, is developed in order to optimize the location of FACTS devices in

systems with wind power integration. Included in this research work is the development of a tool

to implement and validate the proposed models, so that the optimal location of PST on realistic

power networks can be performed.
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Chapter 2

State of the Art

2.1 Electric Power Transmission Networks

Historically, the electricity sector has been a regulated monopoly operated by a single large utility

owning generation, transmission and, most of the times, distribution. Although electric utility in-

dustry has been operating in a vertically integrated environment, with bundled electricity services,

this was not the most efficient way to operate power systems. Vertically integrated utilities had no

incentives to operate efficiently since they could recover their costs anyway [1].

Since the nineties, electric power industry has been undergoing significant changes, with coun-

tries such as Chile, Norway, England, Wales and Argentina being pioneers in industry restructur-

ing [1]. This reorganization resulted in the unbundling of the electricity sector throughout a

deregulation process, with generation, transmission and distribution becoming independent activ-

ities. Competition among generators became a reality, while transmission networks remained a

monopoly subject to regulation by public authorities. Different stages of deregulation process are

ongoing in different countries all over the world, each of them having its own particularities, but

all aiming to move towards a more competitive, efficient and reliable electricity market.

Consequently, transmission systems require non-discriminatory open access to transmission

infrastructure, increasing technical requirements of transmission networks [2]. Transmission grids

have been planned to withstand specific levels of power flow that may be significantly modified

under open access to electricity markets, leading to increase of unexpected power exchanges and a

more intensive usage of existing transmission lines [3, 4]. Additionally, electrical load is expected

to grow worldwide. Even if in some developed countries electrical consumption has stabilized

or even decreased, as it is happening in some European countries, there are several developing

countries with a significant economic growth that is reflected in increased levels of electrical load

[3].

Moreover, the widespread concern about greenhouse gas emissions, a likely cause for global

warming, is creating the need of generating electric power from clean energies. Following this

paradigm, renewable energy systems are being increasingly installed, with the connection of large

wind power plants to the grid. Connecting considerable quantities of renewable power to the

3
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network can result in major problems regarding transmission systems operation. Power from

renewable sources is not guaranteed since it depends on primary resources availability, with the

aggravating factor of being normally located in remote places, where transmission infrastructures

are weak.

Under this scenario, some transmission lines are being operated closer to their stability and

thermal limits, increasing the risk of congestion, resulting in overload of transmission lines. As a

consequence, the need to install new transmission lines emerges, in order to increase transmission

capacity and ensure proper transmission services. However, due to political and environmental

issues, construction of new transmission lines is an extremely difficult and expensive task, follow-

ing highly bureaucratic processes that can take several years to be resolved. Therefore, efficiency

improvement of existing transmission lines can be the most pragmatic way to minimize congestion

problems, postponing the construction of new transmission infrastructures.

Facing times of great changes, electric power transmission networks are now dealing with new

challenges, which need to be carefully managed, in order to keep high standards of electric power

delivery, while considering other important external factors such as environmental issues.

Transmission 
Networks

Electricity Sector
Deregulation 

Electrical 
Consumption 

Growth 

Renewable 
Energies

Transmission 
Lines Overload

Transmission 
Networks Expansion

Existing Networks 
Efficiency Improvements

Present and Future Challenges

Network Impact

Possible Solutions

Figure 2.1: Transmission networks: present and future challenges.
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2.2 Flexible Alternating Current Transmission Systems

Formerly, insufficient transmission capability was an issue generally handled by building new

transmission lines, which has proven to be a very costly, time-consuming and questionable strategy

[5]. It is now clear that an improved control of transmission networks to alleviate overloaded lines

and, consequently, postponing the expansion of transmission grids, is a more feasible strategy.

Following that principle, some new concepts have emerged in order to allow an improved

power flow control. Electromechanical devices such as tap-changing and phase-shifting trans-

formers as well as switched inductors or capacitor banks have been extensively used [6]. Applica-

tion of these equipment can result in many benefits such as active and reactive power flow control

and voltage regulation. Additionally, re-dispatching generator units has also been a very common

action to avoid congestion problems.

However, significant changes have been observed in operation of transmission networks. The

implementation of electromechanical devices and rescheduling of generators may not be the most

efficient actions. On one hand, in an unbundling electricity market, production reallocating is not

a feasible action since it does not secure the maximum level of competition among producers. On

the other hand, even though electromechanical devices served well the needs of electricity supply

industry for long time, they are sometimes inefficient [3, 7]. They are slow equipment, with a

very restrict switching frequency, once they tend to wear out rapidly, and need a high level of

maintenance resulting in high associated costs [3].

In parallel with the restructuring of electrical power industry, significant technological im-

provements have been made in the field of power electronics which led to the development of a

new and revolutionary technology to enhance transmission networks controllability. Known as

Flexible Alternating Current Transmission Systems (FACTS), this equipment is gradually replac-

ing electromechanical devices, filling the main gaps present in those devices, such as slowness and

wear. FACTS have high control capabilities, allowing a fast and efficient way to act on network

parameters.

2.2.1 FACTS Concept

Flexible Alternating Current Transmission Systems were firstly introduced by Hingorani in 1988,

USA [8]. Thereafter, significant improvements have been made in this field, turning FACTS into

solid state technology devices, which have already been installed in several circumstances with

great results, making their potential widely recognized by power systems community.

Depending on the type of technology, FACTS devices can act on one or more of the main

transmission networks parameters. They allow control of terminal bus voltage, line impedance

and phase angle difference between the transmission line ends. The choice of the parameters to be

controlled depends on the purpose of the control action. Control of active power can be done by

managing the line impedance or the voltage phase angle, whereas reactive power control depends

on the voltage magnitude parameter.
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Flexible Alternating Current Transmission Systems can be divided in three main categories,

according to the type of compensation: series controllers, shunt controllers and combined series-

shunt controllers. Within each category there are specific FACTS devices with its own particular-

ities that can be selected depending on the goals to be achieved [3].

Proper utilization of FACTS devices results in improved system operation, delaying the con-

struction of new transmission infrastructures, reducing environmental footprint and investment

costs [5]. Improved power flow control allows power to be shifted from overloaded lines to other

lines with available capacity, permitting a closer exploration of transmission lines to its thermal

limits. A proper power flow control can increase system loadability while enhancing system secu-

rity and reliability. FACTS devices can also play an important role in system stability improvement

and in voltage regulation. Furthermore, they may have a significant impact on system operational

costs, allowing an economical dispatch and loss minimization [9].

One of the main drawbacks of FACTS technology was the associated investment cost, but

with the increased utilization of solid state technology they are now (in most of the cases) a very

cost-effective solution.

2.2.2 Phase Shifting Transformers

Phase Shifting Transformers (PST) have been extensively used in transmission systems to pro-

vide active power flow control. Furthermore, taking advantages of recent developments in power

systems flexibility, PST are recently being coupled to power electronic devices, turning the use

of Thyristor-Controlled Phase Shifting Transformers (TCPST) an even more efficient device to

control transmission systems.

PST and TCPST can be crucial in resolving congestion problems in meshed transmission net-

works by appropriately controlling active power flow. As mentioned, the deregulation of electric-

ity markets, the need to increase the fraction of electrical power produced from renewable sources

and the increased demand of electricity are important factors responsible for the need to enhance

transmission networks capacity. Also, the unequal utilization of parallel transmission lines, dic-

tated by their different impedances, possibly resulting in the overload of one line and operation of

the other line bellow its nominal capacity, is an important limiter factor to an efficient exploration

of transmission lines. By controlling the amount and direction of active power exchanged over

transmission lines it is possible to avoid the mentioned problems, exploring lines closer to their

rated capacity.
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Active and reactive power (P,Q) over a transmission line are functions of three main network

parameters: voltage magnitude at both sending (Vs) and receiving (Vr) ends, line reactance (XL)

and voltage angle difference (θ ). Specifically, it can be determined by the following expressions:

P =
|Vs||Vr|

XL
sin(θ) (2.1)

Q =
|Vs||Vr|

XL
cos(θ − |Vs|

|Vr|
) (2.2)

By manipulating the stated parameters it is possible to control active power. However, acting

on voltage magnitude is an unattractive solution since it considerably influences reactive power.

Phase shifting transformers control active power by predominantly modifying the voltage angle

difference, θ .

A phase shifting transformer can be modeled as a reactance and a phase shift in series with

the transmission line where it is installed. The active power flowing through the line is altered

by adding a phase shift angle α . Changing the angle amplitude, within PST limits, enables the

control of the amount of active power transported over the line.

XPST XL

1:ejα
|Vs|∟ θ |Vr|∟ 0 

P

Figure 2.2: Equivalent circuit for Phase Shifting Transformer.

Depending on the type of technology PST can be classified in four different categories: direct

asymmetrical PST, direct symmetrical PST, indirect asymmetrical PST and indirect symmetrical

PST [10]. Direct PST consist on one three-phase core transformer, whereas indirect PST are

formed by two distinct transformers. Asymmetrical PST acts on both phase angle and amplitude

of the input voltage, while symmetrical PST only consents the control of the phase angle of the

input voltage, with the output and input voltages having the same amplitude [10]. Phase An-

gle Regulating (PAR) transformers are a special arrangement of PST, belonging to symmetrical

category, which will receive distinct attention throughout the present work.

All the introduced concepts concerning PST also apply to FACTS technology, specifically with

respect to Thyristor-Controlled Phase Shifting Transformers. TCPST are based on the technolo-

gies stated above with the addition of power electronics components. While in PST the phase shift

is mechanically controlled by acting on a variable tap that is tele-operated from a control station,

with TCPST it can be automatically adjusted by means of power electronics devices, resulting in

a faster and more efficient control of tap changes [10].
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2.2.3 Phase Angle Regulating Transformer Application

In order to obtain a better understanding of the influence of a PST of the type PAR in a meshed

power network, a simple example , designed to emphasize some of the benefits resulting from the

utilization of a PAR, is presented. A simple meshed transmission system is used, with three 230

kV buses, one thermal generator and a wind farm, with different operational costs, and a single

load:

Table 2.1: Power network data - PAR application.

Generator Capacity (MW) Cost ($/MW)
G1 500 100
G2 500 200

Line X (Ω) Capacity (MW)
1 15 200
2 7.5 400
3 7.5 400

Load (MW)
L1 500

G1

I

G2

II

III

Line 1

Line 2 230 kV

Line 3

L1

Figure 2.3: Power network configuration - PAR application.

Considering that 500 MW of wind power are available, it can be easily concluded that the most

economical way to operate the system above is by supplying the entire load by means of generator

G1 since it is cheaper than G2. However, this situation results in overload of line 1:
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Figure 2.4: Power flow - Line 1 overloaded.

By producing 500 MW in generator G1 the active power flow through line 1 is greater than

its rated capacity, which results in a technical problem due to overload. Obviously, the power

generated in G1 splits between lines 1 and 2 according to the respective impedance, with the

active power flowing in the meshed network accordingly to Kirchhoff’s law.

Without the installation of any PAR to control the active power flow transported over the

lines, the only way to supply the entire load without violating the capacity of line 1 is by re-

dispatching generators. In this case, the power generated in G1 should be as much as possible,

adjusting its production in order to explore line 1 to its rated capacity, thus ensuring the most

economical production. As previously mentioned, this is not a feasible solution in an unbundled

power system. It will result in higher operational costs, restricting generator G1 to produce at its

maximum capacity, leading to wind generation curtailment.

Figure 2.5: Power flow - Generation re-despatching - Line 1 at maximum capacity.

The situation above is the most economical system operation that ensures the maximum wind
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generation, without overload problems. However, it results in wind generation curtailment, with

generator G1 not being able to produce at its maximum capacity.

The use of a PAR is an alternative to the stated problem. The installation of such device in

line 2 will allow the operation of line 1 at its rated capacity by shifting the power flow transported

over line 1 to lines 2 and 3. This will enable the maximum production of generator G1 without

violating any of the constraints regarding transmission lines capacity and consequently minimizing

operational costs. The installation of a Phase Angle Regulating transformer, only acting on phase

angle difference and with no impact on voltage magnitude, is analyzed. Additionally, in order to

have a better visibility of its impact, the PAR impedance is neglected.

-j3.25

Figure 2.6: Power flow - Impact of the implementation of a PAR transformer in line 2.

The implementation of a PAR transformer injecting an angle of approximately -3.25 degrees

allows the maximum wind power penetration. Moreover, this solution results in a reduction of the

operational cost by 30000 $, when comparing with the solution of re-dispatching generators.

2.3 Location of FACTS Devices

An appropriate location of FACTS devices, when considering the installation of such equipment

in transmission grids, is of extreme importance. Those imply considerable investment costs and

should be used as cost-effectively as possible. Unquestionably, FACTS devices can reduce invest-

ment costs when comparing with the expansion of transmission networks [11]. Furthermore, they

allow a more flexible operation with higher security and reduced operational costs.

However, finding the suitable placement and sizing of FACTS is a complex and challenging

task. The allocation of several FACTS in a transmission network can result in adverse interactions

between them, a question of great importance that makes the optimal location of FACTS a critical

topic.

Different factors can be taken into account in the optimal installation and sizing of FACTS

devices. Implementation of this equipment in transmission networks can have different purposes,
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and, depending on that, different strategies may be adopted. The following factors can be consid-

ered in the allocation of FACTS controllers: increase system loadability, increase system security,

reduce transmission system losses, reduce investment costs and reduce operational costs.

There are several publications concerning the location of FACTS in which different optimiza-

tion methods are applied. Also, the authors of the different works aim to achieve the optimal

location of FACTS devices based on different criteria. In the following paragraphs the most rele-

vant contributions in this field are briefly described, highlighting the main extracted conclusions,

making a summarized literature survey.

In [12], Paterni et al. have used a Genetic Algorithm (GA) to optimally locate a given number

of phase shifters. The behavior of the phase shifters is studied, namely the influence they have on

one another. This model was successfully applied to a study network and to the French network.

The optimization was made in order to find the most economical production pattern by taking

advantage of phase shifters placement.

An optimal location of multi-type FACTS devices is presented in [3]. The authors rely their

study on a Genetic Algorithm to perform the optimization based on three parameters: location

of devices, their type and capacity. Simulations have been made on a 118 bus system, where the

system loadability was applied as a measure of system performance. Results have revealed that a

multi-type devices approach was a better solution than the single-type method.

The behavior of three distinct heuristic methods is evaluated by Gerbex et al. in [13] to opti-

mally locate multi-type devices in order to enhance power system security. Simulated Annealing

(SA), Tabu Search (TS) and Genetic Algorithms were the methods applied and led to similar re-

sults with TS and GA converging faster than SA to an optimal solution. The security margin of

the system was improved as the number of devices increases.

Dealing with a methodology based on a Genetic Algorithm, the work developed in [11],

conducted by Ippolito et al., identifies the optimal number and location of thyristor-controlled

phase shifters in order to maximize system capabilities, social surplus and comply with contractual

requirements in an open market. The model is validated by several simulations using the IEEE 30-

bus system. Once more, the authors of this publication claim that the simultaneous use of several

kinds of FACTS represent the most efficient solution to increase system loadability.

Singh and David [9] present a simple and efficient model for the optimal location of FACTS

devices for congestion management. A sensitivity-based approach has been developed where the

choice to allocate the devices was based on the reduction of the congestion cost. The success of

the proposed method is demonstrated by using a 5-bus system.

An evolutionary algorithm, specifically Evolution Strategies (ES), is used by the authors of

[7]. The optimal placement of FACTS controllers is the one that maximizes the system loadability

while maintaining the security margin within its limits. Results obtained through the IEEE 30-

bus system proved that ES algorithm is an adequate technique for solving complex numerical

optimization problems such as the one of the allocation of FACTS devices.

In [14] the optimal location of the devices aims to achieve an improved economic dis-

patch. The algorithm to find the appropriate location of FACTS is based on the decomposition-
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coordination method and the network compensation technique. The proposed approach has shown

to be very effective.

Lima et al. [4] used a Mixed Integer Linear Programming technique to find the number,

network location and settings of phase shifters that maximize loadability in large-scale systems.

The model developed turned out to be very efficient computationally and suitable for preliminary

loadability studies on large-scale systems. Presented results are for the IEEE 24, 118, 300 and

904-bus networks.

Particle Swarm Optimization (PSO) is also a very popular algorithm used to allocate controller

devices [2, 15]. It is used in [2] to optimally allocate FACTS devices with the objective of

achieving maximum system loadability and minimum cost of installation. Simulations performed

on IEEE 6 and 30-bus systems were successfully done for single and multi-type FACTS using

PSO.

In the paper published by Rashed et al. [15] authors compare the performance of PSO and GA

on the optimal location of Thyristor Controlled Series Capacitors (TCSC) to minimize the active

power losses in the power network. Both GA and PSO techniques showed to have good capabilities

in finding the optimal location and the best parameters of TCSC, although PSO converged faster

than GA.

A hybrid meta-heuristic is proposed in [16] to allocate FACTS devices. The method combines

Tabu Search with Evolutionary Particle Swarm Optimization (EPSO). It determines the optimal

allocation of devices with TS and evaluates the output variables of the devices with EPSO. This

technique was successfully applied to the IEEE 30-bus system. The method was also compared

with a TS-PSO strategy giving consistently better results.
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Table 2.2: Literature review.

Authors Type of Problem Objective Method
P.Paterni et

al. [12]
Optimal location of

phase shifters.
Find the most economical

production pattern.
Genetic Algorithm.

S. Gerbex et
al. [3]

Optimal location of
multi-type FACTS

devices.

Maximize system
loadability.

Genetic Algorithm.

L. Ippolito
and P. Siano

[11]

Optimal location of
thyristor-controlled

phase shifters.

Maximize system
capabilities, social
surplus and satisfy

contractual requirements.

Genetic Algorithm.

S.N. Singh
and A.K.
David [9]

Optimal location of
multi-type FACTS

devices.
Congestion management.

Sensitive-based
approach.

M.Santiago-
Luna et al.

[7]

Optimal location of
multi-type FACTS

devices.

Maximize system
loadability.

Evolution Strategies.

T. T. Lie and
W. Deng

[14]

Optimal location of
multi-type FACTS

devices.

Improve economic
dispatch.

Decomposition-
coordination.

F. G. M.
Lima et al.

[4]

Optimal location of
thyristor-controlled

phase shifters.

Maximize system
loadability.

Mixed Integer Linear
Programming.

M. Saravan
et al. [2]

Optimal location of
multi-type FACTS

devices.

Maximize system
loadability and minimize

cost of installation.

Particle Swarm
Optimization.

G. I. Rashed
et al. [15]

Optimal location of
thyristor controlled
series capacitors.

Minimize active power
losses.

Genetic Algorithm
and Particle Swarm

Optimization.
H. Mori and

Y. Maeda
[16]

Optimal location of
unified power flow

controllers.

Maximize transmission
capability.

Tabu Search and
Evolutionary Particle
Swarm Optimization.

The search for new methods to allocate FACTS devices has been intense during the past years.

There is a clear trend towards the utilization of heuristic methods to solve such a problem. Due

to its characteristics, meta-heuristics seem to be an appropriate tool to optimize the location of

FACTS in power networks, with several methods being successfully applied, as mentioned before.

In this work other methods will be tested and their behavior will be analyzed in detail. A new

algorithm is presented and its performance is compared with other methods.

During this literature review, a lack of documentation regarding the optimal location of FACTS

devices in systems with wind power penetration was detected. The integration of high levels of

renewable power is increasingly becoming a reality in power systems and it may considerably

influence the optimal location of FACTS devices. Having that in mind, in addition to testing

new methods, this work also has the objective of proposing a new model that allows a realistic
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optimization of the location of FACTS devices in systems with wind power generation.



Chapter 3

EPSO and DEEPSO Methods

Heuristic methods are optimization algorithms based on natural processes, commonly used to

optimize problems with high level of complexity, namely the ones with a combinatorial nature.

Meta-heuristics can be applied to resolve problems from different fields independently of the na-

ture of the variables involved [17]. In the specific case of power systems, meta-heuristics are an

important tool with extensive potential to solve several problems from daily operation to planning

studies. The dimension associated to such problems, as well as the need to obtain appropriate so-

lutions within a limited period of time, favors the application of meta-heuristics, which are being

more and more popular among the power systems research community.

The optimal location of FACTS is a complex combinatorial problem that qualifies for the

utilization of meta-heuristics. In the sections below a general description of the Evolutionary Par-

ticle Swarm Optimization (EPSO) and the Differential Evolutionary Particle Swarm Optimization

(DEEPSO) will be made. The application of these two methods to optimally locate FACTS de-

vices is explained, describing in detail the model developed to solve this optimization problem.

Results comparing the performance of the tested algorithms will be presented.

3.1 Evolutionary Particle Swarm Optimization

Evolutionary Particle Swarm Optimization is a method based on Evolutionary Algorithms (EA)

and Particle Swarms Algorithms (PSA), gathering the advantages of each one, so that an effective

meta-heuristic can be achieved [17, 18]. Evolutionary Algorithms simulate the evolution of indi-

vidual structures based on processes like selection, mutation and recombination, which allows the

survival of the individuals with better characteristics, from generation to generation, in order to

achieve the optimum value [19]. On the other hand, Particle Swarm Optimization (PSO) is based

on social behavior of animal swarms, flocks or schools, in which each particle moves in the search

space according to three different parameters: inertia, memory and cooperation [18].

EPSO then results in a PSO approach with self-adaptive evolutionary process acting on the

strategic parameters of the algorithm [18]. This hybrid method allows the attenuation of some of

the problems verified in PSO, considerably enhancing convergence possibilities.

15



16 EPSO and DEEPSO Methods

3.1.1 Evolutionary Algorithms - EA

Evolutionary Algorithms are inspired by Darwinist theories in an attempt to imitate biological evo-

lution mechanisms [17]. There are a variety of EA, with Evolution Strategies (ES), Evolutionary

Programming (EP) and Genetic Algorithms (GA) as three of the most popular ones. Besides their

differences, namely in the way they represent possible solutions of the problem (individuals), they

all share the general ideas present in Evolutionary Computation (EC).

Evolutionary Algorithms optimization methodology is based on the definition of an initial

population, composed by a set of elements randomly generated, usually called individuals, which

are possible solutions for the problem in question. Then, a reproduction procedure of the initial

population is executed, which alters it by means of a mutation or recombination process. Differ-

ent individuals of the population are evaluated by a fitness function, being subject to a selection

process where the general principle is the selection of the individuals with better fitness. This

technique is repeated generation after generation until a certain stop criterion is reached. Lastly,

the individual with best fitness is defined as the final solution of the problem.

Two basic variants of Evolutionary Algorithms can be identified based on the way they repre-

sent problem solutions: phenotypic representation and genetic representation. ES and EP are based

on phenotypic EC where the solutions of the problem are directly represented by its variables,

while GA are based on genetic representation of the solutions by means of binary chromosomes.

EA have a big potential for applications in the field of power systems and have been success-

fully used in many other areas [19]. With this type of methods, very complex problems can be

solved, resulting in good final solutions. However, using EA for large scale problems can have the

drawback of taking too long time. To avoid this, self-adaption models can be used, where both

individuals and some of the characteristics of the algorithms evolve, so that the whole process

becomes self learning about the most appropriate path to achieve the optimum value [18]. This

approach is normally very efficient, offering better chances to find the global optimum.

3.1.2 Particle Swarm Optimization - PSO

Particle Swarm Optimization (PSO) was firstly introduced by Kennedy and Eberhart [20] in 1995.

This optimization algorithm relies on social behavior of animals, based on a set of solutions,

identified as particles, to explore the search space. From one iteration to the following, each

particle Xi obeys to a movement rule which depends on a velocity term, which in turn depends on

three main factors known as inertia, memory and cooperation:

XNew
i = Xi +V New

i (3.1)

V New
i = Dec(t)wi0Vi +Rnd1wi1(bi−Xi)+Rnd2wi2(bg−Xi) (3.2)

The first term of VNew
i represents the inertia of the particle, making it to move in the direction

it had previously moved, which is affected by a function Dec(t) responsible to decrease the im-

portance of the inertia term during the course of the algorithm. The second term represents the
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memory of the particle, making its movement being attracted to the best point found by the particle

in its past life, bi. The last term denotes cooperation, with the particles exchanging information

to define the current best point found by the swarm, bg, and moving in that direction. The param-

eters wik are the weights of each term and Rndx are random numbers generated from an uniform

distribution in [0,1].

PSO proved to be an adequate method to make the swarm converge to an accurate optimum,

nonetheless it is extremely sensitive on an adequate tuning of the parameters, with the appropriate

definition of the weights wik being particularly important [18]. This is a delicate point of PSO,

since there is no specific rule to determine the weights value, being necessary to define those

external parameters recurring to a trial and error methodology in order to achieve the best possible

tuning of the algorithm.

3.1.3 Evolutionary Particle Swarm Optimization - EPSO

Evolutionary Particle Swarm Optimization puts together concepts from both EA and PSO. It was

firstly introduced by Miranda et al. [18], using the search capabilities of EA and the aptitudes

of PSO in exploring the search space around the optimum value [21]. Gathering the advantages

of both algorithms, EPSO has proven to be a very successful optimization algorithm, having very

interesting convergence properties. It has been successfully used to solve different problems in the

field of power systems [22, 21].

EPSO, as a hybrid algorithm, uses the same movement rule as PSO, where the swarm evolves

in the search space, with the particularity of the strategic parameters being defined according to a

self-adaptive evolution strategy procedure [18]. This method counters one of the main problems of

PSO, making EPSO in a successful self-tuning algorithm in which the definition of initial weights

is not as crucial as in the case of PSO [22].

In an EPSO algorithm, having a particle Xi, a new particle XNew
i is obtained by the following

rule:

XNew
i = Xi +V New

i (3.3)

V New
i = w∗i0Vi +w∗i1(bi−Xi)+w∗i2(b

∗
g−Xi) (3.4)

According to the expressions, and in opposition to what happens with PSO, the weights, w∗ik,

undergo mutation, which is defined by a random variable based on a Lognormal distribution with

mean equals to 0 and variance equals to 1:

w∗ik = wik[LogN(0,1)]τ (3.5)

Where τ is the learning rate of the algorithm, externally defined to control mutation ampli-

tudes. There is also an important difference between EPSO and PSO in the way they treat the

value bg, present in the cooperation term. In EPSO, the global best is randomly distributed based

on a Gaussian distribution in [0,1], N(0,1), and on a new weight, w∗i3, that should also be subject
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to a mutation process:

b∗g = bg +w∗i3N(0,1) (3.6)

The approach of EPSO consists of a replication process where each particle is replicated r

times, originating identical particles, followed by the mutation of the weights of each particle.

Then, a reproduction process of the particles is performed, based on the movement rule previously

described, generating a set of offspring. Each offspring is consequently evaluated by a fitness

function and selected based on its fitness, forming a new generation of particles. This process is

repeated for several generations until a certain stop criterion is reached [18].

In an attempt to increase convergence capabilities of EPSO, the adoption of a stochastic star

communication topology has been presented in [23] with proven improvements in the algorithm

behavior. The stochastic star communication topology consists on the introduction of a com-

munication factor P on the movement rule of EPSO, randomly controlled by a communication

probability p [23].

V New
i = w∗i0Vi +w∗i1(bi−Xi)+w∗i2P(b∗g−Xi) (3.7)

The communication factor P is represented by a diagonal matrix, composed by binary vari-

ables, which the correspondent value depends on the communication probability p. For all the

dimensions of a particle, the binary variables will have a value of 1 with a probability p and 0 with

a probability (1-p) [23]. Since the communication factor acts on the cooperation term of EPSO

equation, there is a probability (1-p) in which a certain dimension of a particle will not be aware

of the best particle found by the swarm [23].

The stochastic approach varies from a star arrangement, where p is equal to 1 and, conse-

quently, all the dimensions of a particle receive the information regarding the best global particle,

to a selfish version, where the communication probability is zero. An appropriate control of the ex-

change of information concerning the global best particle may avoid premature convergence [23].

In [23] it was shown that a proper definition of the communication probability value may result

in better convergence of EPSO when compared with the full star communication topology. Fur-

thermore, the stochastic star communication topology is extremely easy to implement, increasing,

even more, the potential of this approach.
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3.2 Differential Evolutionary Particle Swarm Optimization

The Differential Evolutionary Particle Swarm Optimization presents itself as new way to create a

hybrid method between Evolutionary Programming, Particle Swarm Optimization and Differential

Evolution. The new hybrid, denoted DEEPSO (DE-EA-PSO), is a variant of the EPSO algorithm

that keeps its self-adaptive characteristics but uses the concept of rough gradient from Differential

Evolution algorithms [24].

The concept of DEEPSO emerged from the advanced version of EPSO in which a communi-

cation probability among the particles is successfully included. Consequently, if some noise could

be positively added to EPSO search by embedding a DE operator in the procedure of generating

new particles, the search for the optimum could be possibly improved [24].

3.2.1 Differential Evolution - DE

The idea of Differential Evolution was proposed in [25], as a fast and general optimization

method, and it has motivated many other proposals for enhancements and variants. Considering

a population (swarm) of individuals (particles), the basic idea of DE is to produce a new solution

from an existing individual by adding some fraction of the difference between two other points, Xr1

and Xr2, randomly selected from the current population [24]. After generating a new population,

a recombination process ensures more diversity and a new population is defined as a consequence

of a selection procedure. This selection is elitist and one-on-one based, where parents compete for

survival directly with their single offspring [24].

Among all the different variants of DE, there is one of great interest, denominated DE2 in

[25], where a new individual is generated based on the following expressions:

XNew
i = Xi +V New

i (3.8)

V New
i = wi1(Xr1−Xr2)+wi2(bg−Xi) (3.9)

There are some similarities in the process by which DE and PSO generate new individuals. The

general idea of DE relies on the optimization of an objective function, sampling a local macro-

gradient by picking up two random individuals from the population, which is, in a way, what PSO

does, but picking up the current position and the particle past best [24].

3.2.2 Differential Evolutionary Particle Swarm Optimization - DEEPSO

The DEEPSO algorithm intends to join characteristics from EPSO and DE. DEEPSO is based on

EPSO sequence, but, in order to include some principles of DE, the memory parameter of the

movement rule is modified according to:

XNew
i = Xi +V New

i (3.10)

V New
i = w∗i0Vi +w∗i1(Xr1−Xr2)+w∗i2P(b∗g−Xi) (3.11)
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As stated, when considering DE, Xr1 and Xr2 correspond to two distinct individuals sampled

from the current population. However, further improvements have been made, leading to a new

proposal, preserving some basis of DE but closer to PSO. Firstly, the two particles, Xr1 and Xr2,

should be ordered depending on the function value associated to the two particles, such that, for

minimization:{
V New

i = w∗i0Vi +w∗i1(Xr1−Xr2)+w∗i2P(b∗g−Xi) i f , f (Xr1)< f (Xr2)

V New
i = w∗i0Vi +w∗i1(Xr2−Xr1)+w∗i2P(b∗g−Xi) i f , f (Xr1)> f (Xr2)

(3.12)

Then, the set of particles from which Xr1 should be sampled is enlarged. Instead of sampling

Xr1 only from the particles of the current generation, the set may be extended in order to include

all the historical past best particles. Lastly, in the DEEPSO method, Xr2 is defined as being equal

to Xi and only Xr1 is randomly selected [24].

Four distinct versions of DEEPSO can then result, based on the methodology stated above,

depending on how Xr1 is sampled:

• DEEPSO Sg (same generation): the particle Xr1 is sampled once from the current genera-

tion, with {Xr1,Xi} being ordered as in 3.12 [24].

V New
i = w∗i0Vi +w∗i1(Xr1−Xi)+w∗i2P(b∗g−Xi) (3.13)

• DEEPSO Sg-rnd: the same as previously, but with Xr1 being re-sampled in the current

generation for each component of V. In this case, Xr1 is calculated from a uniform recom-

bination of all the particles from the current generation [24].

• DEEPSO Pb (past bests): the particle br1 is sampled once from the set of historical past

best particles, bi [24].

V New
i = w∗i0Vi +w∗i1(br1−Xi)+w∗i2P(b∗g−Xi) (3.14)

• DEEPSO Pb-rnd: the same as previously, but with br1 being re-sampled in the set of his-

torical past best particles for each component of V. In this case, br1 is calculated from a

uniform recombination of all the historical past best particles [24].
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3.3 Location of FACTS Based on a Meta Heuristic

During the course of this work a software tool to optimally locate FACTS devices was developed.

It has been implemented in the MATLAB environment using a meta heuristic for such optimiza-

tion problem. In the following paragraphs the developed model will be detailed and the main

assumptions will be referred as well as properly justified.

It should be mentioned that this model is based on the EPSO and DEEPSO algorithms, mean-

ing that it is specifically adapted to those methods. However, it can be easily modified in order

to use other meta-heuristics. Even more, this model seeks the optimal location of Phase Shift-

ing Transformers and Thyristor-Controlled Phase Shifting Transformers, specifically of the type

Phase Angle Regulating Transformers. Obviously, it can be modified to locate other types of

FACTS devices by slightly changing some of its characteristics.

In the proposed model each particle of the swarm represents a possible solution to the location

problem. The length of a particle is defined by the number of candidate locations in the power

network where a PAR can be installed. Each component of the particle denotes the placement of a

PAR in a certain location, corresponding, in the case of a PAR transformer, to a certain line, as well

as the maximum angle the PAR may inject in that line. Thus, it is possible not only to represent

a suitable location of PAR transformers but also their dimensioning in terms of their maximum

angle.

α1
Max α2

Max αN-1
Max αN

Max ...... ...

Figure 3.1: Particle structure.

Given a set of N candidate locations to install a PAR, a particle will have a length of N and

each component i is a proposal for the maximum angle introduced by the device at location i,

αMax
i . Each possible solution is then evaluated by a fitness function which values two factors, the

capital cost of each PAR and the eventual need to curtail load.

The capital cost of a PAR is considered as being composed of a fixed cost plus a non-linear

variable cost which is a function of the maximum angle introduced by the PAR. This is a dis-

continuous function where there is a gap at the point corresponding to the non-installation of the

device, where the capital cost is, of course, null.
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Figure 3.2: Capital cost of each PAR.

Regarding the need to curtail load, it must be evaluated, for each possible solution, by solving

the power flow equations in all load scenarios considered. This leads to an optimal power flow

problem since it is also necessary to find the most appropriate generation pattern as well as the set

of angles values, corresponding to each PAR, in order to evaluate the possibility of avoiding load

curtailment.

The allocation and sizing of PAR transformers is, therefore, defined by the following mini-

mization:

min J =
N

∑
i=1

ui(A+B(αMax
i )2)+Penalties (3.15)

Where ui is a binary variable representing the installation of a PAR at location i, A and B are

the cost constants and αMax
i is the maximum angle introduced by the device at location i. The

penalty term will be included if the optimal power flow problem results in the need to curtail load.

It is also possible to evaluation several load scenarios by increasing the penalty term as the number

of scenarios with load curtailment rises.

In order to solve the optimal power flow problem for each possible solution it is necessary

to include the effect of the PAR in the power network, modelling its influence in the power flow

equations. The proposed model implements a DC Optimal Power Flow (OPF) to evaluate the

system performance. Although the DC OPF is a linearization of the AC OPF and consequently

a less accurate model, due to its simplicity it can be properly used for multiple power systems

calculations, needing low computational requirements.

The equivalent circuit adopted for a PAR is the one described in 2.2.2 , where the active power
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transported over a line with an installed PAR is given by:

Psr =
θsr−α

Xsr
=

θsr

Xsr
− α

Xsr
(3.16)

This is equivalent to have a power injection resulting from the utilization of the PAR, which

corresponds to connect an additional load on the sending bus, s, and an additional generation on the

receiving bus, r. In consequence, the influence of a PAR device can be directly represented in the

vector of bus active power injections, P, of the classic DC Power Flow formulation. Accordingly,

the matrix representation of the linear power flow can be easily adapted to include the impact of

PAR transformers:

PPST
s = −PPST

r = − α

Xsr
(3.17)[

P+PPST ] =
[
B′
]
[θ ] (3.18)

[θ ] =
[
B′
]−1 [P+PPST ] (3.19)

Where P+PPST stands for the vector of bus active power injections including the effect of

PAR transformers, B’ is the bus susceptance matrix and θ is the vector of bus voltage angles. This

formulation represents a very effective and simple method to model the effect of PAR devices in

the DC Power Flow equations, allowing the power flow model to be written as a function of α . To

solve the DC Optimal Power Flow problem, the constraints regarding the limits on generation and

on line flows as well as the limits on the PAR angles have to be considered. Using an optimization

tool it is possible to solve the DC OPF constrained as follows:

∑Pg j = PLoad (3.20)

PgMin
j ≤ Pg j ≤ PgMax

j (3.21)

FMin
k ≤ Fk ≤ FMax

k (3.22)

α
Min
i ≤ αi ≤ α

Max
i (3.23)

With Pg j being the power generated by the unit j, Fk the power flow through line k affected

by the eventual impact of PAR transformers and αi the angle introduced by the PAR at location

i. For such formulation the aim is only to evaluate if, for a certain placement of PAR devices, the

system is able to supply the entire load or if there is a need to curtail load. As stated before, if the

evaluated possible solution leads to load curtailment, then a penalty is applied in equation 3.15

since only solutions leading to no load curtailment are desirable.

However, in a more complex DC OPF model it is also possible to evaluate the quantity of load

curtailed by means of fictitious generators. In this case, the penalty applied to the fitness function

3.15 varies with the amount of load curtailed being representative of the cost for load curtailment.

The DC OPF model needs to be slightly modified:

min J = ∑PNSm (3.24)
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∑Pg j +∑PNSm = PLoad (3.25)

PgMin
j ≤ Pg j ≤ PgMax

j (3.26)

0 ≤ Pg j ≤ PLoad m (3.27)

FMin
k ≤ Fk ≤ FMax

k (3.28)

α
Min
i ≤ αi ≤ α

Max
i (3.29)

In this situation it is essential to define the objective function of the problem in order to mini-

mize the sum of the power not supplied on each load m, PNSm. Though this formulation allows the

quantification of the power not supplied for each possible solution, giving more information when

compared with the previous model, it requires considerable additional computational resources.

However, since this is a more accurate model, it was the one implemented in the developed tool.

The proposed EPSO/DEEPSO-based model described above to locate FACTS devices can be

outlined as follows:
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INPUT
. Set EPSO/DEEPSO parameters.
. Power network characteristics.
. Set N candidate locations to Install FACTS.

GENERATE INITIAL SWARM
. Particles length depending on the number 
of candidate locations.

EVALUATE SWARM
. Fitness Function – Capital cost of devices.





N

i

Max
ii BAuJ

1

2 ))(( 

START

DC OPTIMAL POWER FLOW
. Evaluate the need to curtail load.

Load 
curtailment?

PENALIZE FITNESS FUNCTION
Yes

REPLICATION, MUTATION AND 
REPRODUCTION OF THE SWARM

. Generate offspring.

No

EVALUATION PROCESS

EVALUATION OF OFFSPRING
. Apply the evaluation process as above.
. Fitness Function – Capital cost of devices.
. Evaluate the need to curtail load – DC OPF.
. Apply penalties if necessary.

SELECTION
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Figure 3.3: Proposed algorithm to optimally locate FACTS devices - EPSO/DEEPSO-based
model.
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3.4 EPSO vs. DEEPSO: Performance Comparison

Having implemented two different meta heuristics to optimally locate PAR transformers, this sec-

tion presents a detailed analysis of the behavior of the Evolutionary Particle Swarm Optimization

and all the different versions of the Differential Evolutionary Particle Swarm Optimization, doing

a thorough comparison between them. The results presented come from the application of the

developed tool to the IEEE 24-bus Reliability Test System. The characterization of this test sys-

tem will not be detailed in this section and no comments will be made to the solutions obtained

to optimally locate the devices, once the intentions are only to evaluate the performance of the

algorithms. Comments regarding these issues will be carried out in the succeeding chapters.

The strategic parameters of the algorithms (weights) were initially defined with the value of

0.5 for the inertia, memory and cooperation terms and 0.1 for the weight concerning the global

optimum. The learning rate (τ) was set as being equal to 0.25 and it was considered a swarm of

30 particles each of them representing a possible placement of PAR for 8 candidate locations in

the power network (particles length equal to 8). Those values have been defined based on a trial

error methodology in order to achieve a satisfactory performance for both EPSO and DEEPSO

methods.

Another important parameter of those methods is the communication probability which should

be appropriately defined. It has been proven that a stochastic star communication topology is of

extreme importance for the performance of the EPSO algorithm, leading to better convergence

capabilities. Since there is no rule of thumb to define the communication probability, once it

depends on the topology of the search space, different tests were performed in order to determine

its most appropriate value. For each different value of the communication probability and for each

of the different algorithms, 20 runs have been executed with a stop criterion of 100 generations,

where the algorithms are evaluated by its average error (AE) and root mean square error (RMSE):
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Figure 3.4: Average error and RMSE achieved for different communication probabilities.
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Figure 3.5: Average error and RMSE achieved for different communication probabilities - Com-
parison of different methods.

As expected, there is an important advantage in implementing the stochastic star communica-

tion topology. The most interesting values of the communication probability seem to be around

0.1 and 0.3 where the average error and the root mean square error are lower. This means that a

high restriction on the communication among the different particles in the swarm appears to be

favorable. From the graphics above it is also possible to notice some superiority in the perfor-

mance of two of the DEEPSO variants leading to lower error values (both AE and RMSE) than

the EPSO. For the best communication probability values, the minimum value of the average error

achieved by the EPSO is 1.1% while the DEEPSO Pb guarantees approximately half of that value,

0.56%, and the DEEPSO Pb-rnd hits the optimum value in all the 20 runs. This already represents
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a major breakthrough regarding the comparison of those methods, although some more detailed

and complete tests need to be done in order to guarantee the accuracy of these statements.

An extensive comparison between the classical EPSO and all the different variants of the

DEEPSO method has been performed. The presented results are for the simulation of 100 runs of

each algorithm with a stop criterion of 300 generations.
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Figure 3.6: Evolution of the average best fitness for 100 runs of EPSO and all DEEPSO variants.

From the graphics above, it is possible to observe the superiority of the DEEPSO Pb-rnd

algorithm over the others. The average value of the fitness function in this algorithm begins to

stand out from the others at the fifth generation, clearly having a more desirable value. For the

DEEPSO Pb-rnd the optimum value of the problem is reached for all the 100 runs, where the

latest (in terms of generations) optimum value is achieved at the generation number 108, meaning

that the algorithm has needed 108 generations to find the optimum value in all the 100 runs. The

DEEPSO Pb and the EPSO have demonstrated to have the second and third best capabilities in

finding the optimum value. In those two cases, the optimum value of all the 100 runs was reached

at generation number 176 and 222, respectively, which represents an increase of 63% and 106%

when comparing with the DEEPSO Pb-rnd. The DEEPSO Sg and Sg-rnd variants have the poorest

convergence capabilities, proving to have some difficulties in finding the optimum value. In such

cases, contrary to what was achieved by EPSO, DEEPSO Pb and DEEPSO Pb-rnd, the methods

were not able to find the global optimum in all the runs performed. The number of times the

optimal solution was discovered for each method is indicated in the following table:
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Table 3.1: Comparison between the different methods in finding the optimal solution.

EPSO DEEPSO Sg DEEPSO Pb DEEPSO Sg-rnd DEEPSO Pb-rnd
100% 96% 100% 83% 100%

The figure below displays the number of hits on the optimum value with varying number of

generations. The DEEPSO Pb-rnd has an extraordinary behavior, showing considerable supremacy

over all the other methods, reaching 96% of efficiency in finding the optimum only at 60 gener-

ations. The algorithms using the DE trick with particles in the same generation confirm their

poorest performance.
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Figure 3.7: Evolution of the number of hits on the optimum for 100 runs of EPSO and all DEEPSO
variants.

In terms of the average number of generations each algorithm needed to achieve the optimum,

as well as the associated variance, the algorithms behaved as follows:

Table 3.2: Mean value and variance achieved by the different methods for 100 runs.

Method Mean Value (µ) Variance (σ2)
EPSO 65.4 1895.1

DEEPSO Sg 109 5853.6
DEEPSO Pb 58.2 910.6

DEEPSO Sg-rnd 137.93 8896.9
DEEPSO Pb-rnd 37.3 273.8

The obtained values reinforce the consistency of the DEEPSO Pb-rnd method, which has not

only the best mean value regarding the number of generations needed to achieve the optimum but
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also the smallest variance. Once again, in second and third place it is possible to find the DEEPSO

Pb and EPSO algorithm, however they present considerably worse results than the DEEPSO Pb-rnd

variant.

Undoubtedly, the DEEPSO algorithm, specifically the variant DEEPSO Pb-rnd, has a far su-

perior performance than the others methods to solve this specific problem regarding the location

of FACTS devices. Above all, the DEEPSO Pb-rnd has proven to have better convergence capa-

bilities than the classic EPSO, showing that for some specific problems it can be advantageously

used.



Chapter 4

Wind Power on Location of FACTS
Devices

Production of energy from renewable resources is an alternative to the traditional thermal gener-

ation, having considerable associated advantages, namely environmental. Particularly, the inte-

gration of wind turbine generators in electric power systems became a reality, with a significant

increase of wind power penetration happening during the course of years. Traditional power sys-

tems, where generation systems were composed mainly by conventional units, are now being

replaced by modern systems with large amount of produced power coming from wind resources.

Under this context, the evaluation of power systems with high degree of wind power inte-

gration has to consider the intermittence associated to the wind resource which is responsible

for wind power variations, having an important impact on power systems operation. The output

power of wind turbines is extremely dependent on wind speed characteristic which has a prob-

abilistic behavior that should be properly modeled in order to consider the influence of wind in

power systems.

Due to the probability associated to the occurrence of a certain wind scenario, the location of

FACTS devices with wind power integration becomes a stochastic optimization problem. Having

that in mind, a simplified, realistic and computationally efficient model based on stochastic pro-

gramming is presented in order to include the impact of wind power integration on the optimal

location of FACTS devices. The proposed model should be seen as an extension of the one stated

in 3.3, where most of the considerations previously made are still applicable.

4.1 Wind Speed Model

Wind resource availability depends on geographical characteristics, varying from site to site, where

the wind speed fluctuates randomly with time. An appropriate probabilistic representation of

the wind speed is extremely important to accurately model the predictable output power from

wind turbine generators. Commonly, wind speed probability distributions are represented by a

Weibull distribution, which is widely accepted and recognized in the wind energy industry as an

31
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appropriate technique to represent wind speed variations. The Weibull probability density function

is given by the expression:

f (v) =
k
λ
(

v
λ
)k−1e(−

v
λ
)k

(4.1)

Where f(v) is the probability density of the wind speed v, k the shape parameter and λ the scale

parameter. To the vast majority of wind conditions the shape parameter varies from 1 to 3. With

an appropriate combination of the shape and scale parameters it is possible to accurately describe

the probabilistic characteristic of wind speed, allowing for the representation of different wind

scenarios. The following figure represents three different wind scenarios for a scale parameter of

7.5 m/s and different values of the shape parameter:
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Figure 4.1: Wind speed model - Weibull probability density function.

The Weibull cumulative distribution function is given by the integral of the Weibull probability

density function and allows the determination of the probability of occurrence of certain wind

speeds ranges. The Weibull cumulative distribution function is given by:

F(v) = 1− e(−
v
λ
)k

(4.2)

For the different wind scenarios presented above, the respective cumulative distribution func-

tions are the following:
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Figure 4.2: Wind speed model - Weibull cumulative function.

According to the values obtained in the cumulative distribution function it is possible to strat-

ify the Weibull probability density function in order to associate the respective probability of

occurrence to different wind speed ranges. In practice, the Weibull distribution is discretized and

distributed in a set of intervals, each of them representing a wind scenario, having an associated

probability of occurrence.

With a purely explanatory intention, a possible stratification of a wind scenario in five different

intervals (wind scenarios) is presented in the figure below, where each interval of wind speeds has

an associated probability of 0.2:
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Figure 4.3: Stratification of the Weibull probability density function.

As it will be explained further ahead, this approach is of extreme importance to evaluate the

power system behavior when having different wind conditions, allowing the development of a
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stochastic optimization model for the location of FACTS devices.

4.2 Wind to Power Model

An efficient model to estimate the electric power generated by a wind turbine at a specific site can

be determined by combining an accurate characterization of the wind speed, as presented before,

and the information regarding its power curve. A typical power curve of a wind turbine generator

as a function of the wind speed is presented below:
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Figure 4.4: Typical power curve of a wind turbine generator.

As it can be observed, the wind turbine generator has three different operation modes. The

wind turbine is designed to be shut down when the wind speed is less than the cut-in speed and

greater than the cut-out speed, in order to guarantee a proper preservation of the machine. In this

specific case, the cut-in and cut-out speeds are respectively 3 m/s and 30 m/s. Within the range of 3

m/s and 17 m/s, the cut-in and rated speeds, the power from the wind turbine varies proportionally

to the cube of the wind speed. The last mode of operation concerns the wind speed ranges between

the rated and cut-out speeds, where the turbine generates at its rated capacity.

Having defined the wind speed model as well as the power curve of a wind turbine, its output

power model can be obtained. The probability associated to a certain output power range will

correspond to the probability of occurrence of the wind speed range that originates that produced

power, accordingly to the power curve of the generator. This can be easily made if the wind speed

Weibull distribution is stratified as demonstrated in figure 4.3. However, in some cases, depending

on the numbers of intervals in which the density function of the wind speed is stratified, diverse

wind speeds intervals may originate the same electric power from the wind turbine. This may

happen for the wind speed ranges in which the wind turbine is supposed to be shut down or

producing at rated capacity. In those two cases, if there is more than one interval of wind speeds
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resulting in the same output power, the probability of the respective output power is obtained by

adding all the probabilities of occurrence of all the wind speed intervals.

The power generation model of a wind turbine with a power curve as presented in figure

4.4, considering a wind scenario corresponding to the figure 4.1 for k=2, is presented below. In

this specific case, the wind speed Weibull distribution is divided in eight intervals, with different

associated probabilities. The definition of the width of each interval was made considering the

power characteristic of the wind turbine, in order to have diverse output power intervals. This is

a very important detail, to guarantee the evaluation of a power system performance when dealing

with different values of wind power penetration, as it will be clearly explained in the following

section.
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Figure 4.5: Stratification of the Weibull probability density function - Wind to power model.

Table 4.1: Wind to power model - Predicted output power.

Wind Scenario Wind Speed - v(m/s) Power (P/PMax) - Pout(v) Probability
1;8 [0;3] U [30;>30[ 0 0.148
2 ]3;5[ ]0;0.076[ 0.211
3 [5;7[ [0.076;0.2285[ 0.223
4 [7;9[ [0.2285;0.489[ 0.182
5 [9;10[ [0.489;0.648[ 0.068
6 [10;11[ [0.648;0.799[ 0.053
7 [11;30[ [0.799;1[ 0.116

Therefore, the combination of the wind speed model with the output power curve of a wind

turbine allowed the determination of a simplified wind power model of a wind turbine generator.

Even though the stratification in figure 4.5 may appears to be strange, since the intervals have

different associated probabilities, this makes all the sense since the aim is to be able to achieve

a generation model that allows the stratification of different levels of wind power. As seen from
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table 4.1 it was possible to determine the predictable output power from a wind turbine, having

different intervals covering diverse levels of power.

4.3 Wind Power Integration Through Stochastic Programming

In the presence of wind power, the proper allocation of FACTS devices may have an important

impact in allowing an increase of wind power penetration in power systems. In the daily operation

of power systems, the need to curtail wind generation may arise in order to satisfy the network

constraints. This may result in the replacement of curtailed wind generation by conventional

generation, which has considerable associated costs. The increased cost of conventional generation

as well as the need to compensate wind producers for the wind generation curtailed lead to an

increased operational cost. Consequently, in a system with wind power, the location of FACTS

must seek not only the reduction of the need to curtail load, but also wind generation.

Considering the wind power modeled as explained above, 4.2, where the wind resource is

represented by a set of S wind scenarios stratified according to a Weibull distribution, associating

each scenario h with a probability value ph, a stochastic programming based model can be imple-

mented to properly evaluate each possible solution to locate FACTS devices in all the S scenarios.

By slightly adapting the fitness function presented in equation 3.15 is then possible to find an

appropriate location and sizing of PAR transformers in a system with wind power, where each

solution is evaluated according to:

min J =
N

∑
i=1

ui(A+B(αMax
i )2)+ k1(

S

∑
h=1

uh ph)+ k2(
S

∑
h=1

phPwch) (4.3)

The first term remains the same as in equation 3.15, referring to the cost of PAR installation.

The second term represents the need to curtail load for each wind scenario h; uh is a binary vari-

able expressing the need to curtail load for the wind scenario h and ph stands for the probability

associated to the wind scenario h. The last term expresses the need to curtail wind generation,

where Pwch is the quantity of wind power curtailed on wind scenario h. Constant values, k1 and

k2, introduce the penalties given to load and wind generation curtailment. Once the need to curtail

load has a worse impact on power systems than the need to curtail wind generation, in terms of

costs, the constant value k1 must have a considerably higher value than k2 in order to penalize

much more the solutions leading to load curtailment.

The DC OPF formulation also has to be adapted in relation to the one presented in 3.3, in

order to evaluate, for each possible solution, if and how much power must be curtailed and of what

nature: wind generation or load. The DC OPF has to be performed for all the S wind scenarios

considered. The constraints regarding the limits on generation and on line flow as well as the

limits on PAR angles still have to be considered as before, however the formulation of the problem

should ensure the maximum production of wind power. This means that the DC OPF objective

function aims the maximization of wind power, guaranteeing that the limits on wind generation

are defined accordingly to the predicted wind resource. Consequently, the DC OPF formulation
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can be expressed as follow:

max J = ∑Pgw f (4.4)

∑Pg j +∑Pgw f = PLoad (4.5)

PgMin
j ≤ Pg j ≤ PgMax

j (4.6)

PgwMin
f ≤ Pgw f ≤ PgwMax

f (4.7)

FMin
k ≤ Fk ≤ FMax

k (4.8)

α
Min
i ≤ αi ≤ α

Max
i (4.9)

Where Pgw f represents the power generated in wind generator f and all the other variables

have the meaning described in 3.3. The wind generation curtailed, Pwch, according to expression

4.3, can be easily obtained by comparing the wind power generated on each wind generator, Pgw f ,

with the minimum predictable wind power on each wind scenario. Obviously, if the output power

of a wind farm, Pgw f , is inferior to the minimum predictable output power, there is a need to

spill wind, and the wind generation curtailed can be approximately calculated by the difference

between those two values. The wind generation curtailed can then be estimated by adding all the

wind generation curtailed on each wind generator f, Pgw f .
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Figure 4.6: Wind generation curtailed calculation.

The DC OPF model presented above allows the determination of the need to curtail load, how-

ever the quantification of the load curtailed implies the inclusion of fictitious generators, exactly

as it was made in the proposed model in 3.3. The DC OPF formulation including the fictitious

generators has to consider the addition of a high constant value, B, in the objective function, in

order to avoid as much as possible, the load curtailment. This formulation should be given by:

max J = ∑Pgw f −B∗∑PNSm (4.10)
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∑Pg j +∑Pgw f +∑PNSm = PLoad (4.11)

PgMin
j ≤ Pg j ≤ PgMax

j (4.12)

PgwMin
f ≤ Pgw f ≤ PgwMax

f (4.13)

0 ≤ PNSm ≤ PLoadm (4.14)

FMin
k ≤ Fk ≤ FMax

k (4.15)

α
Min
i ≤ αi ≤ α

Max
i (4.16)

In this case, the fitness function to evaluate each possible solution should include the total

power not supplied, PNS, obtained by solving the DC OPF:

min J =
N

∑
i=1

ui(A+B(αMax
i )2)+ k1(

S

∑
h=1

phPNSh)+ k2(
S

∑
h=1

phPwch) (4.17)

The proposed EPSO/DEEPSO-based model to locate FACTS devices can be outlined as pre-

sented in figure 3.3, with the respective modifications on the evaluation process of each solutions

as explained above:
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Figure 4.7: Outline of the fitness function to evaluate each possible solution to locate FACTS
devices in a system with wind power.

The implementation of the proposed model to locate PAR transformers in a power system with

wind power is, undoubtedly, more complex than the one previously presented to locate the devices

in a system without wind power. For each single possible solution to locate PAR transformers

it is necessary to solve a more complex DC OPF problem and for numerous times, in order to

evaluate the system performance under different wind and load conditions. This may have an

important impact in terms of computational requirements and the performance of the algorithm to

allocate PAR transformers may be compromised, being potentially time-consuming. To overcome

those difficulties, some assumptions have been made in the proposed model aiming to increase the

computational efficiency of the developed tool, as described in the next paragraphs.

Hereupon, if the number of solved DC OPF could be substantially reduced, the application
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would become much more efficient. This implies, indispensably, the reduction of the number

of wind scenarios for which a solution is evaluated. If the evaluation sequence of each possible

solution is carefully defined in terms of the order by which each wind scenario is considered,

it may be possible, in some occasions, to understand the behavior of the system in all the wind

scenarios, only by evaluating some of them. The basic idea consists on the evaluation of a solution

under extreme wind scenarios, with highest and lowest predictable wind power penetration, to

assume the power system behavior under all the other intermediaries wind conditions. Based on

this assumption, the proposed model can be adjusted simply by adopting the following steps, in

order to achieve a faster and simpler method:

1. Firstly, the DC OPF problem should be solved considering the wind scenario with the high-

est predicted wind power. Two different solutions may result in terms of load curtailed:

1.1. There is a need to curtail load and no more DC OPF problems have to be performed

to consider the others wind scenarios. In this case, if the system is not able to supply

all the load when having the maximum generation available it is considered that it

will lead to load curtailment in any of the others wind scenarios. This is an extreme

situation, where the consideration of a single wind scenario is enough to understand

system behavior in all the others wind scenarios. This specific situation may result in

significant savings on the number of DC OPF problems solved.

1.1.1 Accordingly, the fitness of the solution under evaluation can be calculated and

the process goes back again to step 1 in order to evaluate the following possible

solution.

1.2. There is no load curtailment and forcibly more wind scenarios have to be considered.

However, it is important to evaluate the need to curtail wind generation. In this case,

it is essential to retain the wind power production on each wind generator since the

obtained values correspond to the maximum wind power that the system can withstand

and will be needed to estimate the wind power curtailed on others wind scenarios. The

process continues to 2.

2. The next step is to solve the DC OPF considering the wind scenario leading to the lowest

predictable wind power, in opposition to the one in 1. This allows the evaluation of the

system performance when the wind power penetration is minimal.

2.1. If the DC OPF does not result in load curtailment, no more wind scenarios have to

be considered. It is assumed that if the system is able to supply all the load when

having the highest and the lowest levels of wind power penetration, then it also leads

to no load curtailment under all the others intermediaries wind scenarios. In this case,

only by evaluating two wind scenarios (1 and 2) it is possible to estimate the system

behavior in all the others wind scenarios.

2.1.1. Still, it is necessary to calculate the wind generation curtailment in all the interme-

diaries wind scenarios not considered. Having the maximum level of wind power
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penetration that the system can withstand, obtained in 1.2, the wind curtailed on

each intermediary wind scenario can be estimated by comparing the minimum

predictable wind power penetration with that value.

2.1.1.1. The fitness of the solution under evaluation can be calculated and the process

goes back again to step 1 in order to evaluate the following possible solution.

2.2. However, if the DC OPF performed for the wind scenario with the lowest level of wind

power penetration results in load curtailment, it is necessary to sequentially evaluate

other wind scenarios, increasingly in terms of predicted wind power penetration, until

a wind scenario leading to no load curtailment is reached.

2.2.1. After achieving a wind scenario leading to no load curtailment, the same princi-

ples of 2.1., 2.1.1. and 2.1.1.1. should be applied.
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Chapter 5

Case Study

In this section the proposed models described throughout this document are applied to determine

the location of PAR transformers on a realistic power network. The models described have been

implemented in a tool developed in MATLAB environment, with the assistance of Gurobi, an

optimization tool, in order to accelerate some of the calculations performed. Different simulations

are carried out on a modified IEEE 24-bus Reliability Test System (RTS) in order to validate the

proposed models.

5.1 IEEE 24-bus Reliability Test System

The IEEE 24-bus Reliability Test System is a commonly adopted power network to perform dif-

ferent power system analysis. Some of its characteristics are now presented, as well as some of

the modifications and assumptions made in order to fit the problem of optimal PAR location.

The transmission system of the IEEE 24-bus RTS has two voltage levels, 138 kV and 230 kV,

containing a total of 38 lines and 24 buses. The total generation installed capacity is 3405 MW,

divided by 10 different buses. The annual load peak for the test system is 2850 MW allocated by

17 buses. Regarding the rated capacity of the transmission network, it was reduced by 45%, in

comparison with the standard network, in order to adequate the system to the optimal PAR location

problem. This adjustment aims the overload of the transmission system when having high load

levels, leading to the need of install PAR transformers.

Those are some of the characteristics of the modified IEEE 24-bus RTS used to test the models

developed, however specific changes may be held for some of the simulations performed. Further

information regarding this test system can be found in [26].
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Figure 5.1: IEEE 24-bus Reliability Test System.
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5.2 Phase Angle Regulating Data

Different possible locations to install PAR transformers were defined, as well as their associated

capital costs. The following data is considered in all the simulations performed:

Table 5.1: Capital costs of PAR transformers.

Location Number Line Location Capital Cost - A+Bα2
Max

A B
1 1-2 25 0.75
2 14-16 75 0.6
3 6-10 50 0.6
4 8-10 75 0.8
5 3-24 60 0.6
6 17-22 100 0.75
7 12-13 50 0.75
8 8-9 80 0.75

In some simulations only a limited number of possible locations to install PAR transformers

will be considered in order to enlarge the analysis carried out. In general, three different possible

situations are explored:

Table 5.2: Possible locations to install PAR transformers.

Possible Locations Line Location
2 1-2; 14-16
5 1-2; 14-16; 6-10; 8-10; 3-24

8
1-2; 14-16; 6-10; 8-10; 3-24;

17-22; 12-13; 8-9

Concerning the maximum angle injected by each PAR transformer on each location, it was

defined the installation of PAR transformers with the maximum angle injected being a multiple

of 5 degrees with a maximum possible value of 30 degrees. Moreover, the installation of a PAR

transformer with a maximum angle of αMax allows a variable phase shift within the range [−αMax;

αMax]. Different solutions to install a PAR transformer were taken into account:

Table 5.3: Solutions to install PAR transformers in power network.

Maximum Angle - α2
Max Variable Phase Shift Range

0 0
5 [-5; 5]

10 [-10;10]
15 [-15; 15]
20 [-20;20]
25 [-25; 25]
30 [-30;30]
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5.3 Single Load Scenarios

Several simulations have been done considering different single load scenarios in order to opti-

mally locate and size the PAR transformers in the IEEE 24-bus RTS, which is composed only by

conventional generation. The load scenarios evaluated are a result from a proportional growth of

all the individual loads relatively to the load base case. The following load scenarios were studied:

Table 5.4: Load scenarios considered for the optimal PAR location.

Load Factor Total Load (MW)
1 2850

1.1 3135
1.15 3277.5
1.17 3334.5
1.19 3391.5

The optimal location of PAR transformers was performed for three different situations to al-

locate the devices, where two, five and eight possible locations have been taken into account,

accordingly to table 5.2. The following results were obtained:

Table 5.5: Optimal PAR location - 2 possible locations.

Load
Factor

Total Load
(MW)

Number
of Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

PNS
(MW)

1 2850 0 - - 0 0
1.1 3135 1 1 5 43.75 0
1.15 3277.5 2 1; 2 5; 5 133.75 0
1.17 3334.5 2 1; 2 5; 5 133.75 19.66
1.19 3391.5 1 2 5 93.64 51.08

Table 5.6: Optimal PAR location - 5 possible locations.

Load
Factor

Total Load
(MW)

Number
of Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

PNS
(MW)

1 2850 0 - - 0 0
1.1 3135 1 1 5 43.75 0
1.15 3277.5 2 1; 2 5; 5 133.75 0
1.17 3334.5 3 2; 3; 5 5; 5; 5 233.77 5.31
1.19 3391.5 1 2 5 93.64 51.08
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Table 5.7: Optimal PAR location - 8 possible locations.

Load
Factor

Total Load
(MW)

Number
of Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

PNS
(MW)

1 2850 0 - - 0 0
1.1 3135 1 1 5 43.75 0

1.15 3277.5 2 1; 2 5; 5 133.75 0
1.17 3334.5 4 2; 3; 5; 6 10; 5; 5; 5 393.7 0
1.19 3391.5 3 2; 5; 6 5; 5; 5 283.75 41.5

The outcomes are quite illustrative and the allocation of PAR transformers appears to be cor-

rectly carried out, showing coherent placements. In all the three different situations considered to

possibly locate PAR transformers, the number of devices to be installed increases with the load

factor, for load scenarios without load curtailment. As the load increases, the transmission net-

work becomes stressed and transmission lines get overloaded. This leads to the need to install

PAR transformers in order to avoid overload of the transmission network by re-routing active

power flow through other lines, allowing a closer exploration of transmission system to its rated

capacity. However, when having load curtailment, the number of devices to be installed may not

increase with the load factor, comparatively to load scenarios without load curtailment. This hap-

pens because of the fictitious generators model adopted, which will find the most appropriate place

to curtail load in order to minimize the capital cost of devices.

With respect to the load base case (load factor unitary) there is no need to install any PAR

transformer. For this load pattern the system is able to supply the entire load by properly dispatch-

ing generators units avoiding transmission system overload and, therefore, the installation of PAR

transformers is not considered. In load scenarios with a load factor of 1.1 and 1.15 the placement

of PAR transformers becomes essential to avoid load curtailment. The solutions obtained are the

same in all the three different situations, as expected, since the places where the devices are sup-

posed to be installed are available in the three cases. Lastly, the scenarios having a load factor of

1.17 and 1.19 lead to load curtailment in all the three situations, except for the load scenario 1.17

when considering 8 possible locations to install PAR transformers. In those two load scenarios it is

possible to observe better results when having 8 possible locations to install the PAR transformers.

As the number of possible locations to install PAR transformers increases, the number of devices

to be installed may also increase and the congestion of the transmission network may be reduced,

allowing the achievement of lower levels of power not supplied. Undoubtedly, the number of pos-

sible locations to install PAR transformers in a power network is of extreme importance, with a

higher possibility of reducing load curtailment when the number of possible locations to install

devices increases.
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Figure 5.2: Number of devices for different load factors - 8 possible locations.
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Figure 5.3: Capital cost of devices for different load factors - 8 possible locations.

Relatively to the capital cost of the devices, it increases with the number of devices installed,

which seems logical. As explained before, since the number of devices increase with the load

factor, the capital cost also increases.

Concerning the quantity of power not supplied, it is observed that it increases with the load

factor and decreases with the number of possible locations to install the devices. This is evident

for load factor 1.17, where for 8 possible locations there is no load curtailment, and for 5 and 2

possible locations the load curtailment is respectively 5.31 and 19.36 MW. For load factor 1.19

the quantity of power not supplied increases in all the three situations when comparing with the

scenario with a load factor of 1.17.
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Figure 5.4: Power not supplied for different load factors - 8 possible locations.

Even though some of the obtained results appear to be rather obvious they are essential to

validate the proposed model. The developed tool showed consistent results and the method applied

proved to be very effective in the optimal location of PAR transformers.

5.4 Multiple Load Scenarios

In the analysis performed above, the allocation and size of PAR transformers was done consid-

ering a single load scenario. However, when optimizing the installation of PAR transformers the

uncertainties regarding the load forecast may compromise the solution obtained. In a more re-

alistic approach a multiple load scenario should be considered, composed by several single load

scenarios, each of them having an associated probability of occurrence. In this section different

multiple load scenarios have been considered to optimal locate PAR transformers.

Three different multiple load scenarios have been analyzed, each of them having a total load of

3277.5, 3334.5 and 3391.5 MW, the same amount of load corresponding to the load factors of 1.15,

1.17 and 1.19. For each multiple load scenario, three different single load scenarios have been

considered, all of them having the same amount of load, however, differently distributed among

the different individual loads. One of the single load scenarios corresponds to a proportional

growth of the individual loads, the same as considered in table 5.4, while in the two others load

scenarios the load is more concentrated in buses 1 to 10 or in 13 to 24 buses. The following results

were achieved:
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Table 5.8: Optimal PAR location - 2 possible locations.

Total Load
(MW)

Number
of Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

PNS
(MW)

3277.5 2 1; 2 5; 5 133.75 3.59
3334.5 2 1; 2 5; 5 133.75 21.25
3391.5 2 1; 2 5; 5 133.75 52.34

Table 5.9: Optimal PAR location - 5 possible locations.

Total Load
(MW)

Number
of Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

PNS
(MW)

3277.5 3 2; 3; 5 5; 5; 5 230 0
3334.5 4 1; 2; 3; 5 5; 10; 10; 5 363.75 6.6
3391.5 2 2; 5 5; 5 165 51.08

Table 5.10: Optimal PAR location - 8 possible locations.

Total Load
(MW)

Number
of Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

PNS
(MW)

3277.5 3 2; 3; 5 5; 5; 5 230 0
3334.5 5 2; 3; 4; 5; 6 10; 10; 5; 10; 5 578.755 0
3391.5 4 2; 3; 5; 6 10; 5; 5; 5; 393.75 41.5

In general, the number of devices to be installed and the respective maximum angle have in-

creased when comparing with the equivalent (in terms of total load) single load scenario. The

multiple load scenario approach aims to reduce load curtailment in all the different single load

scenarios and, for that reason, the set of PAR transformers to be installed is enlarged. Different

load scenarios may lead to congestion in different points of the transmission network, which im-

plies the installation of PAR transformers in different places of the network. The levels of power

not supplied have also increased when comparing with the single load scenario analysis.
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Figure 5.5: Power not supplied for different load scenarios.

5.5 Multiple Load and Wind Scenarios

In a more complex analysis, the integration of wind power in the generation system is considered.

In this section, a multiple load and wind scenarios approach is adopted to optimally locate PAR

transformers. With the intention of making this analysis as much realistic and elucidative as pos-

sible, some more considerations have been made concerning the characteristics of the modified

IEEE 24-bus RTS. The capacity of the generation system was tripled, while the capacity of lines

14-16 and 17-22 was reduced by 72.5%. The changes applied to those two lines intend to create

congestion problems when integrating wind power in the system, as it will be seen further ahead.

The multiple load scenarios analyzed are exactly the same as previously, 5.4 , for a total load of

3277.5 MW. A different wind scenario represented by a Weibull distribution, as presented in figure

4.1, is considered for each of the three single load scenarios studied. The same wind scenario has

been assumed for all the wind generators.

A progressive increase of the wind power installed capacity was taken into account in order to

evaluate the optimal location of PAR transformers for different levels of wind power integration.

The conventional generation of the IEEE 24-bus RTS was replaced by wind generation as follows:
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Table 5.11: Wind power installed capacity for different simulated cases.

Total Installed
Capacity (MW)

Wind Generators
Location

Wind Power Installed
Capacity (MW)

Wind Power Installed
Capacity (%)

10215 18 720 7.05
10215 18; 22 1260 12.33
10215 16; 18; 22 1539 15.07
10215 15; 16; 18; 22 1926 18.85

By applying the stochastic model previously proposed, 4.3, the optimal location of PAR trans-

formers for a multiple load and wind scenarios approach has resulted in the following placements

and sizing:

Table 5.12: Optimal PAR location - 8 possible locations.

Load
(MW)

Wind Power
Capacity

(MW)

No.
Devices

Location
Number

Max. Angle
(Deg)

Capital
Cost ($)

Pwc
(MW)

PNS
(MW)

0 2 1; 2 5;10 178.75 - 0
720 2 1; 2 5;15 253.75 10.28 0

3277.5
1260 3 1; 2; 6 5; 15; 5 372.5 121 0
1539 4 1; 2; 6; 7 5; 15; 5; 5 441.25 123.96 0

1926 7
1; 2; 3; 5;

6; 7; 8
5; 15; 5; 10;

5; 5; 10
781.25 132.74 8.42

From the obtained results, it is clear that the increase of wind power installed capacity, and the

subsequent need to guarantee the maximum wind generation, has led to an increased number of

PAR transformers to be placed, as well as their maximum angle. Obviously, the need to reduce load

curtailment, especially when having low wind speeds, is also responsible for such increase. Since

the conventional generators have been replaced by wind generators, the number of conventional

units has been reduced. This results in more power being generated in each conventional unit,

when having a lack of wind resource, which may also result in overload of transmission lines,

leading to the need to install more PAR transformers.

Regarding the simulation without wind power, the optimal PAR location suggests the instal-

lation of two PAR transformers. In this case, the installation of PAR transformers aims to avoid

load curtailment, while minimizing investment costs. When a wind generator is introduced in bus

18, replacing a conventional generator, the PAR in location 2 increases its maximum angle, which

possibly results from the need to maximize wind generation. The case where the total installed

capacity of wind power is 1260 MW is rather illustrative. The inclusion of a wind generator on

bus 22 leads to the congestion of line 17-22 for high wind levels. As explained above, the capacity

of line 17-22 has been considerably reduced. This has led to its congestion when the wind gener-

ator on bus 22 is generating a considerable amount of power. In this case, as the wind generation

must be maximized, a PAR transformer must be introduced on line 17-22, which is precisely the
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location number 6. This alleviates line 17-22, changing the active power flow to line 21-22, en-

suring the maximization of wind power generation. In all the other cases, the number of devices

continues to increase as the wind power installed capacity increases. For the case with more wind

power installed capacity, the optimal PAR location requires the installation of 7 devices.

Unfortunately, the predictable wind generation curtailed, Pwc, has increased with the quantity

of wind power installed, suggesting that the possible locations to install PAR transformers are

not enough to avoid wind generation curtailment. However, nothing ensures that if more possible

locations to install PAR transformers were considered, the wind generation curtailed could be

reduced. Furthermore, for the case with more wind power installed capacity there is also the need

to curtail load. This is an expected outcome, since for low levels of wind resource there is a

considerable amount of wind power not available and the conventional generators are not enough

to ensure the supply of the entire load, without violating transmission capacity limits.
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Figure 5.6: Wind generation and load curtailed for different levels of wind power installed capac-
ity.

The stochastic method implemented to locate PAR transformers in a system with wind power

has been successfully applied, showing consistency in the results presented. The integration of

wind power has considerably influenced the optimal PAR location.
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Chapter 6

Conclusions

Two major achievements have been accomplished through the course of this thesis:

1. The development of a stochastic model suitable to allocate FACTS devices in systems with

wind power integration.

2. The confirmation of DEEPSO as a successful new hybrid method to optimize the location

of FACTS devices in power networks.

From the perspective of the models proposed, a significant contribution is given on the devel-

opment of stochastic models to locate FACTS devices. This research work led to the suggestion

of a stochastic programming based model to optimally locate FACTS devices in systems with

wind power penetration. The stochastic model allowed the optimal PAR location on a realistic

power network given a set of load and wind scenarios with associated probabilities of occurrence.

The exposed model has been effectively validated, giving consistent results for the optimal PAR

location.

New variants of DEEPSO were proposed and used in the optimal location of FACTS devices,

resulting in important progresses on the algorithmic field of this thesis. In the simulations per-

formed to optimally locate PAR transformers both EPSO and Pb variants of DEEPSO showed

good capabilities in discovering the optimal solution. However, the DEEPSO Pb-rnd variant has

led to a far better performance than the classical EPSO. This is an extremely important outcome,

showing that for some specific problems the DEEPSO algorithm may be favorably applied as an

alternative to EPSO.

Further research is needed to evaluate in depth the performance of DEEPSO, which appears

to have a better performance than EPSO in solving fixed-cost mixed integer problems, where a

deceptive landscape makes the achievement of the optimal solution very problematic.

6.1 Future Work

The work developed throughout this thesis is a contribution to future work aiming to study the lo-

cation of FACTS devices in transmission networks and also some of the methodologies proposed.
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Suggestions are now presented to develop new work taking as starting point the results presented

in this thesis:

- An important improvement on the work developed could be the adoption of an AC Optimal

Power Flow, replacing the DC Optimal Power Flow approach used in this work. This would

lead to a more complex methodology but could guarantee a more accurate model to locate

FACTS devices in power networks.

- The integration of hydro power plants with pumped storage in the proposed models could

have a big potential to develop a new model with a highly interesting industrial applica-

tion. In the stochastic model developed it was considered the spill of wind generation in

order to avoid overload of transmission network, however when dealing with hydro power

plants with pumped storage, there is the possibility of using the wind generation to store en-

ergy by pumping water on hydro plants, which may significantly change the power flow in

power networks, possibly affecting the optimal location of FACTS. This is a very interesting

approach, however it requires a significant development of the work performed.

- Regarding the heuristic methods adopted, further research need to be done on the application

of DEEPSO algorithm. This new method was successfully applied in this work, however

it is important to evaluate its behavior when solving other kinds of problems in other to

formulate a general opinion concerning the potential of DEEPSO.



Appendix A

Publications

A.1 "Differential Evolutionary Particle Swarm Optimization (DEEPSO):
a successful hybrid"

The following paper was submitted to the "1st BRICS Countries & 11th Brazilian Congress on

Computational Intelligence" with a major contribution of the work developed in this thesis.
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Abstract — This paper explores, with numerical case studies, 
the performance of an optimization algorithm that is a variant of 
EPSO, the Evolutionary Particle Swarm Optimization method. 
EPSO is already a hybrid approach that may be seen as PSO 
with self-adaptive weights or an Evolutionary Programming 
approach with a self-adaptive recombination operator. The new 
hybrid DEEPSO retains the self-adaptive properties of EPSO but 
borrows the concept of rough gradient from Differential 
Evolution algorithms. The performance of DEEPSO is compared 
to a well-performing EPSO algorithm in the optimization of 
problems of the fixed cost type, showing consistently better 
results in the cases presented. 
 

Index Terms — Evolutionary Particle Swarm Optimization, 
Differential Evolution, fuzzy clustering, unit commitment, PAR 
location. 

I. INTRODUCTION 

HIS paper presents a new approach to build a hybrid 
between Evolutionary Programming, Particle Swarm 
Optimization and Differential Evolution. The reason 

behind the search for hybrid algorithms is that each "pure" 
method exhibits some characteristics that push the search for 
the optimum in a globally right direction. However, each 
method also displays its own difficulties. The hope is that, by 
suitably blending methods, a more robust and general method 
may be derived. 

The work reported in this paper departed from an algorithm 
denoted EPSO, for Evolutionary Particle Swarm Optimization. 
The basic version of this algorithm was presented in 2002 [1] 
and introduced as a way "to join together the exploratory 
power of PSO (Particle Swarm Optimization) with the self-
adaptation power of Evolutionary Algorithms (EA) and have 
as a result the best of two worlds". The results obtained in 
competition with classical versions of PSO were indeed 
promising and this was demonstrated by several authors and in 
several publications. Early reports as well as more recent 
works [2]-[16] confirmed the quality and reliability of the 
algorithm as well as its good performance in a diversity of 
domains. 

The EPSO algorithm received further improvement and the 
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latest version is available from [17], where examples and a 
source code are made public. 

In a parallel path, the Differential Evolution concept (DE), 
early proposed in [18][19], has motivated many proposals for 
improvement and variants. A comprehensive survey may be 
found in [20]. In this survey, the allegations that DE is a fast 
and general optimization method for any kind of objective 
function are substantiated, although the authors caution 
against a hasty conclusion, reminding the reader of the No 
Free Lunch theorem. 

In particular, the attempts to generate a synergy of DE with 
PSO are well documented in this survey. Many of the 
proposed hybrid models adopt a form of alternate use of DE 
and PSO iterations or DE and PSO operators [21][22] or even 
some mixture of operators [23][24]. These references are just 
examples and not to be taken as exhaustive and the reader is 
directed to the survey referred to above for further examples. 

Self-adaptive versions of DE have been attempted also with 
many variations [25][26]. The pursuit for successful self-
adaptive schemes is justified by the desire to achieve some 
algorithmic form close to a non-parametric or parameter-free 
definition. This search is also the motivation behind the 
inception of the EPSO algorithm. 

The advanced version of the EPSO algorithm included the 
positive effect of a probability of communication among 
particles, implementing the scheme of the "stochastic star". Its 
success reinforced the idea that a degree of controlled random 
variation is beneficial to the search for the optimum. 
Therefore, one came up with the idea that some noise could be 
added to the EPSO search by embedding a DE operator in the 
global mechanism of the generation of new particles. 

This paper presents a new hybrid DE-EA-PSO, which will 
be denoted DEEPSO. As in many other cases, there is no 
deductive demonstration of superiority over other options but 
illustration by example. A didactic and a complex study case 
will be presented, in the domain of power systems, to put in 
evidence the strong points of the new approach. 

II. BASIC MODELS 

A. PSO as a recombination process 

The PSO – Particle Swarm Optimization [27] does not rely 
on a selection operator as its driving force: it depends on a 
movement rule that generates new individuals in space from a 
set of known alternatives, called a swarm (the same as 
population). Several variants have been proposed but the basic 
movement rule, producing a new individual X for iteration 
(k+1) is based on 

Differential Evolutionary Particle Swarm 
Optimization (DEEPSO): a successful hybrid 

Vladimiro Miranda, Fellow, IEEE and Rui Alves, Student Member IEEE 

T



 
 
 

2

 (k 1) (k) (k)  X X V  (1) 
where V is called the particle velocity  and is defined by  

 (k 1) (k) (k) (k)
i G( ) ( )     V AV B b X C b X  (2) 

where bG is best point so far found by the swarm and bi is the 
best past ancestor in the direct life line of the particle, with 

i b{ , i 1,..., no. particles} b P  forming the set of the historical 

past best ancestors of each particle. Of course, G bb P . 

The parameters A, B, C are diagonal matrices with weights 
defined in the beginning of the process. In a classical 
formulation, the parameter A is affected by a decreasing value 
with time (iterations), while the parameters B and C are 
multiplied by random numbers sampled from a uniform 
distribution in [0,1]. 

If we examine this scheme, we conclude that a new particle 
(k 1)X is formed as a combination of four other points: 

o Its direct ancestor (k)X  

o The ancestor of its ancestor (k 1)X  
o A (possibly) distant past best ancestor bi 
o The current global best of the swarm bG. 

We can give a different aspect to the movement rule: 

 (k 1) (k) (k 1)
i G(1 )       X A B C X AX Bb Cb  (3) 

In this expression, the sum of the parameters multiplying 
the four contributors to generate the offspring is equal to 1. It 
is therefore tempting to identify this expression with an 
intermediary recombination in EA with  = 4 and a special 
rule to determine who the parents are (they are not randomly 
selected). This means that we are considering an enlarged 
population including not only the active particles but also the 
immediate ancestors and the set of the past best ancestors. 

B. EPSO as an evolutionary adaptive recombination 

The idea behind the EPSO algorithm was to provide 
adaptive capability to this recombination operator. To achieve 
this, the parameters in (2) are subject to mutation and selection 
in order to try to achieve a higher progress rate. 

Given a population with a set of particles, the general 
scheme of EPSO became: 

REPLICATION ‐ each particle is replicated 
(cloned) r times [usually r = 1] 

MUTATION ‐ all r particles have their A,B,C 
parameters mutated 

REPRODUCTION ‐ each of the r+1 particles 
(original and clones) generate an offspring 
through recombination, according to the 
particle movement rule (2) or (3) 

EVALUATION ‐ the offspring have their fitness 
evaluated 

SELECTION ‐ by stochastic tournament or other 
selection procedure (among siblings), the best 
child from each ancestor survives to form a new 
generation ‐ every individual in the previous 
generation has one descendant. 

The mutation of a parameter w = A,B,C is ruled by 
multiplicative Lognormal random numbers such as in 

  )1,0(logN ww i
*
i or by additive Gaussian distributed 

random numbers such as in )1,0(N ww i
*
i  . The learning 

parameter ( or ) must be fixed externally. The 
recombination operator is defined by the set (A,B,C). The 
scheme results in an adaptive recombination operator. 

The EPSO algorithm was further improved in efficiency by 
the introduction of two additions. In early versions, it was 
shown that noise affecting the exact location of bG was 
beneficial, so a forth parameter or weight in the form of a 
diagonal matrix wG was introduced, such that  

 *
G G G(1 N(0,1)) b b w  (4) 

This weight is also subject to mutations of the kind referred 
to above, so it also enters in the self-adaptive model. 

Finally, in the most recent and efficient version, the 
Communication Factor P was introduced, creating a 
Stochastic Star communication topology among the swarm. 

The recombination (or movement) rule for EPSO becomes 

 (k 1) (k) (k)  X X V  (5) 

 (k 1) (k) (k) * (k)
i G( ) [ ( )]     V AV B b X P C b X  (6) 

P is a diagonal matrix affecting all dimensions of an 
individual, containing binary variables of value 1 with 
probability p and value 0 with probability (1-p); the p value 
(communication probability) controls the passage of 
information within the swarm and is 1 in classical 
formulations (this the star).  

This stochastic scheme conceptually oscillates between the 
star arrangement and a selfish version called cognitive model 
in [28], where no communication exists. In fact, the stochastic 
star causes that some components of the global best become 
"known" by a particle while other components are ignored, so 
that the production of a new particle is affected in different 
ways in its distinct dimensions. This favors the uncoupling of 
the evolution for all the dimensions. 

Experiments in a diversity of problems made it quite clear 
that one could achieve a fine tuning of the convergence of 
EPSO by adequately setting a value for p, the communication 
probability [13].  

 
Fig. 1. Rosenbrock function in 30 dimensions after 100000 fitness function 
evaluations – average and RMSE of achieved error values for 20 runs with 
EPSO, as a function of the communication probability p. 
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In many problems, p = 0.75 seems a very good option but in 
some problems a much lower value favors the convergence. 
Figure 1 from [13] illustrates the sharp tuning in error, 
achieved for p = 0.75 in the Rosenbrock function problem in 
30 dimensions (note the logarithmic scale). 

C. Differential Evolution 

The original idea behind DE, given a population (swarm)   
of individuals (particles, vectors), is to generate a new solution 
from an existing individual by adding some fraction of the 
difference between two other points Xr1 and Xr2 sampled from 
the population or swarm. Then, having a new population 
generated, some further recombination ensures more diversity 
and a selection procedure produces a new generation. This 
selection is elitists and one-on-one based, meaning that each 
parent competes for survival directly with its single offspring 
and the best is retained. 

There are many variations to this scheme. One interesting 
case is the one that was denoted DE2 in [18], DE/rand-to-
best/1 in [19] and DE/target-to-best/1 in [20], where the 
generation of a new individual may be written as 

 
(k 1) (k) (k)  X X V  (7) 

 
(k) (k)(k 1) * (k)

Gr1 r2( ) ( )    V B X X C b X
 (8) 

A notation slightly distinct from the usually seen in the DE 
literature is adopted here to enhance the similarities with (1) 
and (2), i.e. between DE and PSO in the process of generating 
new individuals. The canonic version of DE makes C = 0; the 
canonic DE/target-to-best/1 version makes B = C. 

Neglecting recombination, DE then proceeds with a parent 
selection (choosing the next generation from both the parent 
and offspring populations) of a special type – each parent 
competes only with its offspring – while PSO adopts in a way 
a trivial survivor selection (the next generation is chosen 
among the offspring only). 

EPSO has also a special survivor selection procedure where 
competition is established only among the direct descendants 
of each particle.  

III. THE DEEPSO ALTERNATIVE 

The DE scheme, in a way, makes a sample of a local macro-
gradient of the objective function by picking up two random 
individuals from the population. The same kind of sampling is 
produced by the PSO movement equation, but picking up the 
current position and the particle past best. So, it is natural to 
ask if the DE scheme would not work also when inserted in 
the PSO equation. 

Also, the DE scheme is usually based on fixed B parameter 
values in [0.1, 1]. One must refer that in [8] the authors 
claimed to have a self-adapting process for this parameter; 
however, its value would only change with a certain 
probability (0.1), remaining fixed most of the time, so it must 
be seen as a quite modest effort into self-adaptation. But the 
EPSO scheme is truly self-adaptive, so it is natural to wonder 
if the EPSO scheme would not work also when acting over the 
DE parameter. 

This reasoning led to the proposal of the model that will be 
denoted DEEPSO to clearly express its hybrid character. The 
DEEPSO algorithm is equal to the EPSO sequence; however, 
to grasp the flavor of DE, the following general equation 
should now express the movement rule: 

 (k) (k)(k 1) (k) * (k)
Gr1 r2( ) [ ( )]     V AV B X X P C b X  (9) 

where *
Gb  is given by (4). In (9), (k)

r1X  and (k)
r2X should be 

any pair of distinct particles, in principle belonging to the set 
PC of the particles in the current generation. But extensive 
testing led to an improved proposal, which regains back the 
spirit of PSO and also retains the spirit of DE. First of all, PSO 
relies on macro-gradients being sensed by a particle. So, these 
particles should be ordered such that, for minimization,   

 f( (k)
r1X ) < f( (k)

r2X ) (10) 

Then, one may enlarge the definition of which set must 
these particles be sampled from: this may be the set PC of 
particles from the current generation or the set Pb of historical 
past best particles. Finally, the DEEPSO model defines that  

(k)
r2X  equal to (k)X  so only (k)

r1X  is sampled. 

To complete the model, the sampling of (k)
r1X (= (k)

r1b ) 

among Pb may repeated for each component of V to be 

calculated. This means that one is, in fact, calculating (k)
r1X  

from a uniform recombination of all the particles in Pb. The 
equations regulating DEEPSO are, therefore, 

 (k 1) (k) (k)  X X V  (11) 

with (k)V  in 4 versions: 
1. DEEPSO Sg (sampling in the same generation):  

 (k) (k)(k 1) (k) * (k)
Gr1( ) [ ( )]     V AV B X X P C b X  (12) 

with { (k)
r1X , (k)X } ordered according to (10) and (k)

r1X

sampled once from the current generation. 

2. DEEPSO Sg-rnd: the same but with (k)
r1X re-sampled in 

the current generation for each component of V. 
3. DEEPSO Pb (sampling from the past bests):  

 (k)(k 1) (k) (k) * (k)
Gr1( ) [ ( )]     V AV B b X P C b X  (13) 

with { (k)
r1b , (k)X } ordered according to (10) and (k)

r1b sampled 

once from Pb . 

4. DEEPSO Pb-rnd: the same but with (k)
r1b re-sampled 

among Pb for each component of V. 
In the following sections, some examples will be presented 

to ilustrate the virtues of the DEEPSO scheme. 

IV. DEEPSO VS. EPSO 

A. Fuzzy clustering 

The first example concerns an application to fuzzy 
clustering with the fuzzy c-means algorithm [30]. It is an 
example of a continuous function where EPSO is expected to 
behave well. 

The fuzzy c-means algorithm minimizes the following 
function: 
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N C m 2

ij i ji 1 j 1
J u || ||

 
   X V  (14) 

where Xi is a member of the set of d-dimensional data, m is 
any real number greater than 1, uij is the degree of membership 
of Xi in the cluster j, Vj is the d-dimension center of the 
cluster, and ||*|| is any norm expressing the similarity between 
data and the centroids.   

A comparative test has been done in a 2-dimension problem 
depicted in Fig. 2. Fig. 3 makes it evident that the DEEPSO 
concept seems to bring value to the swarm optimization. It 
displays the value of the objective function (14), on an average 
of 20 runs, for three experiments, using a swarm of 8 particles, 
and with the best tuned parameters for each model: 
 

 
Fig. 2. Three clusters and the trajectory of the centroids during one run of the 
optimization process with EPSO. 

 
 EPSO with p = 0.1 (best value) 

 DEEPSO Sg-rnd as in (12), i.e. sampling (k)
r1X  in the 

current generation PC 
 DEEPSO Pb-rnd as in (13), sampling in the set of past 

bests of the particles Pb. 
This example is interesting because it convincingly argues 

for the advantage of sampling within the population instead of 
using the canonic PSO choice. 

 
Fig. 3. Value J of the fuzzy c-means function plotted against the number of 
generations for EPSO and 2 versions of DEEPSO. 

B. Unit commitment 

The problem of unit commitment in power systems is 
mathematically defined as a fixed cost problem or a mixed-
integer non-linear programming problem: given a set of 
generators and their generation cost curves, define which 
generators should be shut down and which should be in 

service and at which loading level, in order to minimize the 
overall cost (start up costs plus operation costs). 

Because of technical limits, the domain of a generator is not 
connected – there is a point (0,0) corresponding to generator 
shut down and then there is a gap until a point (Pmin, c(Pmin)) 
corresponding to the technical minimum of the machine. This 
general shape of the cost functions implies that the problem 
has a non-convex nature – therefore, many local optima may 
appear. 

An illustrative problem of this type was included in [31], 
where a preliminary suggestion for a DEPSO algorithm was 
formulated. The data are: 

o the number of generators – ngen = 5 
o the parameters of the cost function of each generator – 

this function is assumed to be a cubic polynomial, with 

4 parameters ai,  i=1 to 4: 3
3

2
210 PaPaPaaC   

where C is the generation cost in $/hour and P is the 
generator output in MW. 

o the technical minimum and maximum of each generator 
Pmin and Pmax. 

o the load, located at a single bus (transmission system 
neglected): L = 15 MW (see[31]). 

The objective is to minimize the sum of the costs for the 
five generators, noting that the domain of each variable is not 
continuous.  

The cost curves and technical limits are given as: 

Generator a0 a1 a2 a3 Pmin Pmax
g1 1 0,5 0,1 0,03 0 or 1 10 
g2 2 0,4 0,2 0 0 or 2 10 
g3 4 0,3 0,3 0 0 or 7 10 
g4 6 1,5 0,15 0 0 or 2 10 
g5 0 4 0 0 0 or 1 10 

 
The optimal solution is 

g1 g2 g3 g4 g5 Cost 
3.414 4.586 7 0 0 33.9068 

 
Adopting a swarm of 16 particles, in 100 trials with random 

initialization and 1000 iterations, the number of times the 
optimal solution was discovered is indicated in the following 
table: 

EPSO DEEPSO Sg-rnd DEEPSO Pb-rnd
46% 71% 81% 

 
The same conditions were kept for all experiments – namely 

initializing the weights with A = 0.1, B = C = 0.5, wG = 0.1,  
= 0.1 and p = 0.3. For less iterations or smaller populations, 
the same difference in performance was observed. 

This seems to confirm the superior performance of the 
DEEPSO versions, with advantage to DEEPSO Pbest. 

C. PAR/PST location and sizing in power grids 

A Phase Angle Regulating (PAR) transformer of a Phase 
Shifting Transformer (PST) is a special arrangement of power 
transformers used to control the flow of active power in 
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meshed three phase power system transmission grids. Because 
the power through a line is roughly proportional to the sine of 
the angle between voltages at the sending and receiving ends 
of a line, the control of such angle may re-route power through 
alternative paths in the system, preventing overloads and 
giving better use to the transmission capacity available. 

This comes at a high capital cost per device but it may be 
compensated by avoiding costly line reinforcements or 
allowing a more flexible operation with higher security and 
reduced operation costs. 

Given a set of load scenarios as well as wind power 
scenarios, a system operator may be faced with the need to 
curtail wind generation (at a cost) and replace it by 
conventional generation (at a cost) or, in more severe cases, to 
curtail load (at the highest cost of power not supplied). 
Instead, the suitable location of PAR transformers and their 
optimal dimensioning (in terms of the maximum angle they 
may inject in a line, admitting that they are of the variable 
phase shift type) may serve to reduce or eliminate such 
curtailment needs. 

The capital cost of each PAR may be modeled as being 
composed of a fixed cost plus a non-linear variable cost which 
is a function of the maximum angle that the PAR may inject. 
Some candidate locations in the power network must be 
specified and, in each location, a tentative device allocation 
may be defined. This forms a possible solution to the problem, 
which must be evaluated by solving the power flow equations 
in all scenarios considered and deciding if and how much 
power must be curtailed and of what nature: wind generation 
or load. 

Furthermore, each scenario may have a probability of 
occurrence associated. The problem becomes of the type of 
stochastic optimization. In the following paragraphs we will 
describe a model for this problem and its application to a 
realistic problem built around the IEEE RTS 24 bus system.                                                                                      

 
Fig. 4. Equivalent circuit for a PAR 

 
The equivalent circuit for a PAR is in Fig. 4. Its effect is to 

force to a power flow from node k to node m: 

  p m k m k m
pm

km km km km

( )
P

X X X X

          
     (15) 

So this is equivalent to having a series reactance Xkm plus a 
power injection which will be a load in node k and a 
generation in node m. This allows a network power flow 
model to be written, as a function of .  

Given a specific set of N candidate locations to install a 
PAR and considering a generation system composed only of 
conventional units, the allocation and sizing of PAR is defined 
by the following 

 
N Max 2

k i ii 1
min J u (A B( ) ) Penalties


     (16) 

where ui is a binary variable representing the installation of a 

PAR on  location i, A and B are cost constants and Max
i is 

the maximum angle introduced by the device at location i. The 
constraints are the usual power flow equations of the DC 
model, incorporating eq. (15), plus limits on generation and on 
line flows and limits on the PAR angles: 

 min max
i i i      (17) 

These constraints may be transformed into penalties, in eq. 
(16), when adopting a meta-heuristic as the solver. Finally, the 
penalty term will include if necessary the cost for load 
curtailment, which is usually modeled as fictitious generators 
by the loads with generation cost equal to the usually high cost 
of power not supplied. 

The objective function is further modified when in the 
presence of wind power, because there is also the possibility to 
spill wind (disconnect wind generation) if necessary, to assure 
the network security described by the constraints. This may be 
represented as a negative load which is supplied at the cost 
associated with wind curtailment (compensation to wind 
power producers).  

The wind power resource may be represented by a set of S 
scenarios stratified according to a Weibull distribution, 
associating each scenario k with a probability value pk. This 
allows a stochastic optimization model to be built where a 
solution is evaluated in all S scenarios: 

 
S

kk 1 k
min J p J


   (18) 

A chromosome for an EPSO algorithm will have a length of 

N and each component i is a proposal for max
i at location i.  

This model was applied to the IEEE RTS 24-bus test 
system[32], with 8 possible locations for PAR. This is a 
realistic power system; data have been adjusted to fit in the 
problem of optimal PAR location. A comparison among EPSO 
and DEEPSO variants is presented in Fig. 5 for 100 runs of 
each algorithm, with a swarm of 30 particles. 

The figure counts how many times each algorithm reached 
the optimum, in 100 runs, with varying number of generations. 
The DEEPSO Pb-rnd algorithm displays remarkable 
superiority: at 60 generations it had already reached a 96% 
efficiency in finding the optimum. In second place, we meet 
the DEEPSO Pb and the original EPSO algorithms with 
similar development. The algorithm using the DE trick with 
particles in the same generation lags definitely behind. 

 

 
Fig. 5. Number of hits on the optimum (y-axis) vs. number of generations (x-
axis) in 100 runs for EPSO and 4 DEEPSO variants. 
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V. CONCLUSION 

The examples shown, selected among many other tested by 
the authors, illustrate that a successful hybrid between the 
evolutionary particle swarm algorithm and the differential 
evolution algorithm concept, deemed DEEPSO, leads to better 
performance in the optimization of problems with a fixed-cost 
mixed-integer objective function. These problems display 
generally a deceptive landscape which makes it difficult to 
discover the optimal solution in many cases. 

The advantage of having an adaptive recombination scheme 
associated to the PSO logic had already been demonstrated. 
With the DEEPSO Pb-rnd formulation, one now suggests that 
the recombination scheme should be enlarged to the set of 
particle past bests with solid advantage. 
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A.2 "Stochastic Location of PAR in Power Networks with Wind Power"

The following long abstract is intended to be submitted to a power systems periodical.
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Abstract-- This paper presents a new model to locate PAR 

transformers in power systems with wind power integration. A 

stochastic programming based model is proposed to optimally 

locate PAR devices given a set of load and wind scenarios with 

associated probabilities of occurrence. The model is based on a 

heuristic method, and the performance of EPSO and DEEPSO is 

evaluated. 

A case study is presented where successful results are obtained 

on a IEEE 24-bus RTS, showing the accuracy of the developed 

model. The DEEPSO algorithm has proven to be a more efficient 

method than EPSO in this specific problem. 

 
Index Terms--Differential Evolutionary Particle Swarm 

Optimization, PAR location, Stochastic optimization, Wind 

power. 

I.  INTRODUCTION 

HASE Angle Regulating (PAR) transformers are effective 

devices in controlling active power flow in meshed three 

phase power networks and may be crucial in resolving 

congestion problems. The capital cost of each device is 

significant, but this can be balanced by delayed construction of 

new transmission infrastructures and improved system 

operation with increased security and reduced operation costs. 

 In the daily operation of power systems, a system operator 

may be forced to curtail wind generation in order to satisfy the 

network constraints. This may result in replacement of 

curtailed wind generation by conventional generation, with 

considerable incremental costs, due to the higher cost of 

conventional generation as well as to the need to compensate 

wind producers for the wind generation curtailed. Furthermore, 

in critical situations, the need to curtail load may arise, 

resulting in the highest associated costs of power not supplied. 

Given a set of load and wind scenarios, an appropriate 

location of PAR devices and their optimal sizing is of extreme 

importance to consent a more flexible operation of the system, 

allowing the system operator to minimize curtailment needs. 

In this paper, a stochastic model to optimally locate PAR 

transformers in power networks with wind power integration is 

proposed. The optimal location and sizing of these devices is 

achieved through the utilization of two distinct heuristic 

methods - EPSO and DEEPSO - with their relative 

performance being analyzed. 

II.  PHASE ANGLE REGULATING TRANSFORMERS 

Phase Shifting Transformers (PST) have been extensively 

used in transmission systems to provide active power flow 

control. A proper control of the amount and direction of active 

power exchanged over transmission lines may avoid 

congestion problems. 

The active power transported over a transmission line is a 

function of three main network parameters: voltage magnitude 

at both sending and receiving ends, line reactance and voltage 

angle difference. 

The Phase Angle Regulating transformer is a special 

arrangement of PST, which controls the active power by 

modifying the voltage angle difference. It can be modeled as a 

reactance and a phase shift in series with the transmission line 

where it is installed: 

XPST XL

1:ejα 
|Vs|∟ θ |Vr|∟ 0 

P

  Fig. 1.  PAR equivalent circuit. 

The active power flowing through the line can be altered by 

adding a phase shift angle α. Changing the angle amplitude, 

within PAR limits, enables the control of the amount of power 

transported over the line. 

III.  EPSO AND DEEPSO ALGORITHMS 

The utilization of heuristic methods to solve optimization 

problems with a combinatorial nature has been a common 

practice. The Evolutionary Particle Swarm Optimization 

(EPSO) and a new hybrid method identified as Differential 

Evolutionary Particle Swarm Optimization (DEEPSO) are 

proposed to optimize the location and sizing of PAR 

transformers in power networks. 

A.  Evolutionary Particle Swarm Optimization - EPSO 

The Evolutionary Particle Swarm Optimization puts 

together concepts from both Evolutionary Algorithms (EA) 

and Particle Swarm Optimization (PSO). It was firstly 

introduced by Miranda et al. [1], using search capabilities of 

EA and the aptitudes of PSO in exploring the search space 

around the optimum value [2]. This hybrid method has proven 

to be a successful optimization algorithm, having very 

interesting convergence properties. 

In the EPSO algorithm, considering a particle Xi, a new 

particle Xi
New

 is obtained by the following rule: 
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The first term of Vi
New

 represents the inertia of the particle, 

making it to move in the direction it had previously moved. 

The second term represents the memory of the particle, making 

its movement being attracted to the best point found by the 

particle in its past life, bi. The last term denotes cooperation, 

with the particles exchanging information to define the current 

best point found by the swarm, bg, and moving in that 

direction. The communication factor P introduces a stochastic 

star communication topology to randomly control the 

information exchanged within the swarm. The parameters w
*
ik 

are the weights of each term, that should be subject to a 

mutation procedure.  

 The approach of EPSO consists of a replication process 

where each particle is replicated r times, originating identical 

particles, followed by the mutation of the weights of each 

particle. Then, a reproduction process of the particles is 

performed, based on the movement rule previously described, 

generating a set of offspring. Each offspring is subsequently 

evaluated by a fitness function and selected based on its 

fitness, forming a new generation of particles. This process is 

repeated for several generations until a certain stop criterion is 

reached [1]. 

B.  Differential Evolutionary Particle Swarm Optimization – 

DEEPSO 

The Differential Evolutionary Particle Swarm Optimization 

presents a new way to create a hybrid between EPSO and 

Differential Evolution (DE). DEEPSO is based on EPSO 

sequence, keeping its self-adaptive characteristics, but uses the 

concept of rough gradient from DE [3]. Consequently, the 

memory term of the movement rule of DEEPSO is modified 

according to: 
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In a first version, closer to DE, Xr1 and Xr2, correspond to 

two distinct individuals sampled from the current population. 

However, further improvements have been made, leading to a 

new proposal, preserving some basis of the DE but closer to 

PSO. It defines the enlargement of the set of particles from 

which Xr1 should be sampled. Instead of sampling Xr1 only 

from the particles of the current generation, the set may be 

extended in order to include all the historical past best 

particles. Moreover, in the DEEPSO method, Xr2 is defined as 

being equal to Xi and only Xr1 is randomly selected [3]. 

Four distinct versions of DEEPSO can then result, based on 

the methodology stated, depending on how Xr1 is sampled: 

 DEEPSO Sg (same generation): the particle Xr1 is 

sampled once from the current generation [3]. 

)
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 DEEPSO Sg-rnd: the same as previously, but with 

Xr1 being re-sampled in the current generation for 

each component of V. In this case, Xr1 is 

calculated from a uniform recombination of all the 

particles from the current generation [3]. 

 DEEPSO Pb (past bests): the particle br1 is sampled 

once from the set of historical past best particles, 

bi [3]. 
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 DEPSO Pb-rnd: the same as previously, but with 

br1 being re-sampled in the set of historical past 

best particles for each component of V. In this 

case, br1 is calculated from a uniform 

recombination of all the historical past best 

particles [3]. 

C.  Particles Structure and Fitness Function 

Each particle of the swarm represents a possible solution to 

the PAR location problem. The length of a particle is defined 

by the number of candidate locations in the power network 

where a PAR can be installed. Every component of the 

particles denotes the placement of a PAR in a certain line, as 

well as the maximum angle the PAR may inject in that line. 

α1
Max α2

Max αN-1
Max αN

Max ...... ...
 

Fig. 2.  Particle Structure. 

Given a set of N candidate locations to install a PAR, a 

particle will have a length of N and each component i is a 

proposal for the maximum angle introduced by the device at 

location i, αi
Max

. Each possible solution is then evaluated by a 

fitness function which values three factors, the capital cost of 

PAR, the need to curtail wind generation and to curtail load. 

The capital cost of a PAR is considered as being composed 

of a fixed cost plus a non-linear variable cost which is a 

function of the maximum angle introduced by the PAR. 

Regarding the curtailment needs, they must be evaluated, for 

each possible solution, by solving the DC Optimal Power Flow 

(OPF) problem. 

The allocation and sizing of PAR transformers is, therefore, 

defined by the following minimization: 

windPenloadPen
N

i

Max

iBAiuJ 


 )

2

1
)((min      (6) 

Where ui is a binary variable representing the installation of 

a PAR in location i, A and B are the cost constants and αi
Max

 is 

the maximum angle introduced by the device at location i. The 

penalty terms will be included if the optimal power flow 

problem results in the need to curtail wind generation, load or 

both. 

IV.  PAR MODELLING ON DC OPF 

In order to evaluate the load and wind generation 

curtailment needs it is necessary to include the effect of a PAR 

in power networks, modelling its influence in power flow 

equations. Considering the equivalent circuit of a PAR, and the 

DC Power Flow formulation, the active power transported 

over a line with an installed PAR is given by: 
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This is equivalent to have a power injection resulting from 

the utilization of a PAR, which is a load on sending bus, s, and 

a generation on the receiving bus, r. In consequence, the 

influence of a PAR can be directly represented in the vector of 

bus active power injections of the classic DC Power Flow 

formulation, allowing the power flow model to be written as a 

function of α. 

The DC OPF should aim the minimization of wind 

generation and load curtailments for each possible solution. 

The evaluation of the load curtailed is possible to achieve 

through a fictitious generators based model. The constraints 

regarding the limits on generation and on line flows as well as 

the limits on PAR angles have to be considered. This will 

allow an appropriate quantification of the power not supplied 

and the wind generation curtailed for each possible solution, in 

order to apply the respective penalties in eq. 6. 

V.  WIND POWER INTEGRATION THROUGH STOCHASTIC 

PROGRAMMING 

The evaluation of power systems with high degree of wind 

power integration has to consider the intermittence associated 

to the wind resource, responsible for wind power variations. In 

order to evaluate the influence of the wind power in power 

systems performance, the probabilistic behavior of wind speed 

characteristic has to be properly modeled. 

Due to the probability of occurrence of a set of load and 

wind scenarios, the optimal PAR location with wind power 

integration becomes a stochastic optimization problem. 

A.  Wind Speed Model 

Wind resource availability depends on geographical 

characteristics, varying from site to site, where the wind speed 

fluctuates randomly with time. An appropriate probabilistic 

representation of the wind speed is extremely important to 

accurately model the predictable output power from wind 

turbine generators. Commonly, wind speed probability 

distributions are represented by a Weibull distribution, which 

is widely accepted and recognized in the wind energy industry 

as an appropriate technique to represent wind speed variations. 

 
Fig. 3.  Wind speed model – Stratification of Weibull distribution. 

Having the wind resource represented by a Weibull 

distribution it is possible to represent a set of S wind scenarios 

with an associated probability of occurrence. In practice, the 

Weibull distribution is discretized and distributed in a set of 

intervals, each of them representing a wind scenario, having an 

associated probability of occurrence, which can be calculated 

through the integral of the Weibull density probability 

function. This approach is of extreme importance to allow the 

evaluation of power system behavior when dealing with 

different wind conditions. 

B.  Wind to Power Model 

An efficient model to estimate the electric power generated 

by a wind turbine at a specific site can be determined by 

combining an accurate characterization of the wind speed, as 

presented before, and the information regarding its power 

curve. A typical power curve of a wind turbine generator is 

presented: 

 
Fig. 4.  Typical power curve of a wind turbine generator. 

Having defined the wind speed model as well as the power 

curve of a wind turbine, its output power model can be 

obtained. The probability associated to a certain output power 

range will correspond to the probability of occurrence of the 

wind speed range that originates that produced power, 

accordingly to the power curve of the generator. This can be 

easily made if the wind speed Weibull distribution is stratified 

as demonstrated. 

The power generation model of a wind turbine with a power 

curve as presented in figure 4, considering a wind scenario 

corresponding to the figure 3, is presented below: 

TABLE I 

WIND TO POWER MODEL 

Wind 

Scenario 

Wind Speed 

(m/s) 

Power 

(P/Pmax) 
Probability 

1;8 [0;3]  U [30;>30[ 0 0.148 

2 ]3;5[ ]0;0.076[ 0.211 

3 [5;7[ [0.076;0.2285[ 0.223 

4 [7;9[ [0.2285;0.489[ 0.182 

5 [9;10[ [0.489;0.648[ 0.063 

6 [10;11[ [0.648;0.799[ 0.053 

7 [11;30[ [0.799;1[ 0.116 

 

Therefore, the combination of a wind speed model with the 

output power curve of a wind turbine allowed the 

determination of a simplified wind power model of a wind 

turbine generator. 
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C.  Stochastic Programming Model 

Considering the wind power model as explained above, 

where the wind resource is represented by a set of S wind 

scenarios stratified according to a Weibull distribution, 

associating each scenario h with a probability value ph, a 

stochastic programming based model can be implemented to 

properly evaluate each possible solution in order to optimally 

locate PAR transformers in all the S scenarios. 

In eq. 6, the penalty terms should be applied taking into 

account the probability ph of each wind scenario: 





S

h
hPNShpkloadPen

1
)(1              (8) 





S

h
hPwchpkwindPen

1
)(2              (9) 

Where PNSh is the power not supplied and Pwch stands for 

the wind generation curtailed on wind scenario h. Constant 

values k1 and k2 introduces the penalties given to load and 

wind generation curtailment. The constant k1 should have a 

considerably higher value than k2 in order to penalize much 

more the solutions leading to load curtailment. 

VI.  CASE STUDY 

Different simulations have been carried out on the IEEE 24-

bus RTS in order to validate the proposed model as well as to 

compare the performance of the optimization algorithms 

applied to solve the optimal PAR location problem. 

A.  EPSO vs. DEEPSO 

An extensive comparison between the classical EPSO and 

all the different variants of the DEEPSO method has been 

performed. The presented results are for the simulation of 100 

runs of each algorithm. 
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Fig. 5.  Evolution of the number of hits on the optimum for 100 runs . 

The figure above displays the number of hits on the 

optimum value with varying number of generations. The 

DEEPSO Pb-rnd has a superior behavior, showing 

considerable supremacy over all the other methods, reaching 

96% of efficiency in finding the optimum only at 60 

generations. 

B.  Location of PAR 

A multiple load and wind scenarios approach was 

considered to optimally locate PAR transformers. A 

progressive increase of the wind power installed capacity was 

considered in order to evaluate the optimal location of PAR 

transformers for different levels of wind power integration. 

The following results were achieved: 

TABLE II 

OPTIMAL PAR LOCATION FOR 8 CANDIDATE LOCATIONS 

Load 

(MW) 

Wind 

Power 

Capacity 

(MW) 

No. 

Device 

Max. 

Angle 

(Deg) 

Capital 

Cost ($) 

Pwc 

(MW) 

PNS 

(MW) 

3277.5 

0 2 5;10 178.75 - 0 

720 2 5;15 253.75 10.28 0 

1260 3 5;15;5 372.5 121 0 

1539 4 
5;15;5;

5 
441.25 123.96 0 

1926 7 

5;15;5;

10;5;5;

10 

781.25 132.74 8.42 

 

From these results, it is clear that the increase of wind 

power installed capacity, and the subsequent need to guarantee 

the maximum wind generation, has led to an increased number 

of PAR transformers to be placed, as well as their maximum 

angle injected. 

VII.  CONCLUSIONS 

The stochastic method implemented to locate PAR 

transformers in a system with wind power has been 

successfully applied, showing consistent results. The 

integration of wind power had considerable influence the 

optimal PAR location. 

Furthermore, a new heuristic method has shown great 

potential, specifically the DEEPSO Pb-rnd, proving to have 

better convergence capabilities than the classic EPSO, 

showing that for some specific problems the DEEPSO method 

can be advantageously used. 
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