
i

Faculdade de Engenharia da Universidade do Porto

Mobile Context-Aware Multimedia Application

Rui Pedro Ferreira Pinto

PROVISORY VERSION

Thesis dissertation carried out under the Master in Electrical and Computers
Engineering, Major in Telecommunications, Electronics and Computers

Supervisor: Maria Teresa Andrade (PhD)

June 2013

iii

© Rui Pinto, 2013

v

Resumo

O contexto das comunicações multimédia tem evoluido significativamente nas últimas

décadas, originando uma enorme difusão de vários formatos de conteúdos e novas tecnologias

nos dispositivos usados pelos clientes. O uso de dispositivos móveis, como por exemplo, o

smartphone, associado ao acesso á Internet tornou-se ubíquo, possibilitando o consumo de

conteúdos multimédia associado ás nossas rotinas diárias. Estes dispositivos podem ser

bastante diferentes entre si, em termos de hardware, poder computacional, sistema

operativo e software instalado. Existe igualmente bastante diversidade em relação ao

conteúdo multimédia, pois este pode ser composto por diferentes combinações (imagem,

áudio, video, texto, gráficos, animações, etc), com uma grande variedade de formatos de

codificação á disposição e um largo intervalo de possíveis valores para bit rate, resoluções

espaciais e temporais, qualidade e até dimensões adicionais (2D versus 3D).

Neste cenário de heterogenidade, é difícil encontrar um dispositivo móvel capaz de

descodificar e reproduzir todas as possíveis variações do conteúdo com igual nível de

qualidade. Para além disso, as expectativas dos consumidores tem vindo a aumentar, exigindo

serviços personalizados ás suas necessidades e preferências, sem ter em consideração o

dispositivo que está a usar, as condições da rede a que está sujeito ou as características do

ambiente fisico em que se encontra.

 O principal objectivo desta dissertação é estudar e desenvolver soluções para esse

desafio eficientemente, adaptando os conteúdos multimédia consoante a informação de

contexto, respondendo dinamicamente a diferentes soluções, consições e restrições.

Com base no estudo realizado anteriormente no âmbito do estado da arte sobre technologias

e protocolos existentes, um sistema cliente-servidor foi proposto para desenvolvimento,

oferecendo a clientes Android um serviço de streaming adaptável de conteúdos multimédia. A

solução adotada usa a recente norma MPEG-DASH para adaptar dinamicamente o bit rate dos

conteúdos multimédia enviados pelo servidor para o cliente, de acordo com as condições de

rede, nomeadamente a largura de banda disponível. Para além disso, um agente de contexto

a correr no cliente recolhe informações de vários sensores que integram o dispositivo Android

usado. Essas informações serão usadas para caracterizar o meio ambiente e decidir se uma

adaptação de conteúdos é desejável para maximizar a qualidade de experiência do cliente.

vii

Abstract

The field of multimedia communications has evolved tremendously in the last decade,

leading to a widespread of multiple content formats and client devices' technology. The use

of mobile terminals, such as smartphones, together with Internet access have become

ubiquitous, enabling the consumption of multimedia content associated to most of our daily

routines.

These multimedia-enabled mobile devices can be very different from each other in

terms of hardware, computational power, operating system and software installed. There is

also a great heterogeneity in relation to the multimedia content itself, which can be

composed of different combinations of diverse media (image, audio, video, graphics,

animation, text, etc.), with a great variety of encoding formats available to choose from and

large range of possible values for bit rate, spatial and temporal resolutions, quality or even

additional dimensions (2D versus 3D).

Within this heterogeneous scenario, it is hard to find a mobile phone capable of

decoding and presenting all possible content variations with the same quality level.

Additionally, the expectations of consumers have risen, now demanding personalized services

matching their needs and preferences, regardless the type of terminal being used, the

conditions of the available network connection or the characteristics of the surrounding

natural environment.

The goal of this dissertation was to study and develop solutions to that challenge in

an efficient way, adapting the multimedia content considering the usage context, responding

dynamically to different situations, conditions and restrictions.

Based on the study conducted on relevant existing technologies and protocols at the forefront

of the state-of-the-art, a client-server system was proposed and developed, offering to

Android clients a transparent and adaptable multimedia streaming service. The adopted

solution makes use of the emergent standard MPEG-DASH to dynamically adapt the bit rate of

the streamed media according to the network availability. Additionally, a context agent

running on the client, collects information from varied built in sensors of the Android

smartphone to characterize the surrounding environment and decide if further adaptation is

desirable to maximize the quality of experience of the user.

ix

Acknowledgments

I would like to express my gratitude to my supervisor Maria Teresa Andrade for her

guidance along the development of this project.

Thanks to all my good friends and family for the support and motivation in these past

years of my academic life.

xi

Contents

Resumo ... V

Abstract .. VII

Acknowledgments .. IX

Contents .. XI

List of figures .. XIV

List of tables ... XVI

Abbreviations and symbols ... XVII

Chapter 1 ... 1

INTRODUCTION .. 1

1.1 - MOTIVATION ... 2

1.2 - MAIN GOALS ... 2

1.3 - DOCUMENT STRUCTURE .. 2

Chapter 2 ... 5

TECHNOLOGIES FOR MULTIMEDIA ADAPTABLE APPLICATION... 5

2.1 - USAGE CONTEXT INFORMATION .. 5

2.2 - TECNOLOGIES AND PROTOCOLS FOR STREAMING ... 9

2.3 - CONCLUSIONS.. 18

Chapter 3 .. 21

ANDROID API .. 21

3.1 - ANDROID DEVELOPMENT ... 21

3.2 - ANDROID SENSORS ... 30

Chapter 4 .. 33

MPEG-DASH ... 33

4.1 - DASH GENERAL OPERATIONS .. 33

4.2 - MPD .. 34

4.3 - MEDIA CONTENT ... 41

4.4 - MEDIA CODING .. 45

4.5 - USE CASES AND FUTURE WORK .. 49

Chapter 5 .. 51

SYSTEM ARCHITECTURE AND IMPLEMENTATION ... 51

5.1 - SERVER SIDE ... 52

5.2 - CLIENT SIDE ... 58

Chapter 6 .. 75

TESTS AND CONCLUSION ... 75

6.1 - TESTS ... 75

6.2 - DIFFICULTIES AND TROUBLESHOOT... 84

6.3 - FUTURE WORK .. 86

6.4 - REVISION OF WORK .. 87

References .. 89

xiii

List of Figures

Figure 1 - CC/PP Profile example. ... 6

Figure 2 - UAProf example. ... 7

Figure 3 - UED example. ... 8

Figure 4 - Generic configuration of a streaming system. .. 10

Figure 5 - Server-Client system, using a traditional streaming protocol. 11

Figure 6 - Server-Client system using a progressive download protocol. 12

Figure 7 - Server-Client system, using an adaptive streaming protocol. 13

Figure 8 - HLS basic configuration. .. 14

Figure 9 - Index file example. .. 15

Figure 10 - Smooth Streaming File Format. .. 16

Figure 11 - Smooth Streaming Wire Format. ... 16

Figure 12 - HTTP Dynamic Streaming. .. 18

Figure 13 - Add ADT Plugin on Eclipse. ... 24

Figure 14 - Browse SDK location on Eclipse. ... 24

Figure 15 – Download the latest SDK tools and platforms support using the SDK Manager. ... 25

Figure 16 - Project Creation on Eclipse. .. 26

Figure 17 - Android project general structure. .. 27

Figure 18 - Configure Vitamio on Android project. ... 29

Figure 19 - Manually build Vitamio's path on Android project. 30

Figure 20 - General MPEG-DASH system architecture. ... 33

Figure 21 - MPEG-DASH Profiles defined in ISO/IEC 23009. ... 34

Figure 22 – MPD example from an ISO Base media file format On Demand Profile............. 35

Figure 23 - MPD example from ISO Base media file format Main Profile. 35

Figure 24 - MPD Hierarchical Data Model. .. 36

Figure 25 - XML simple example. .. 38

Figure 26 - MPD example of Full Profile with segment’s URL. 39

Figure 27 - MPD example of Full Profile with media ranges. 40

xv

Figure 28 - Packetized Elementary Stream simple example. 41

Figure 29 - Simple example of audio and video multiplexing. 42

Figure 30 - Simple MP4 file structure. .. 42

Figure 31- MPEG-2 TS segment files' directory. ... 43

Figure 32 - MP4 segments files' directory. .. 44

Figure 33 - DASH Client system architecture. ... 51

Figure 34 - Dynamic Web Project general structure. ... 53

Figure 35 - DASH Client structure. ... 59

Figure 36 - UML class diagram of Playback Initialization. ... 60

Figure 37 - UML collaboration diagram of Playback Initialization. 60

Figure 38 - Home layout. .. 61

Figure 39 - MovieList layout. ... 62

Figure 40 - movies.xml file structure. .. 62

Figure 41 - UML sequence diagram of Home and MovieList. .. 64

Figure 42 - ContentPreparation layout. .. 64

Figure 43 - UML sequence diagram of ContentPreparation. .. 67

Figure 44 - VideoPlayback layout. ... 68

Figure 45 - Available bandwidth using the download time of the segments. 76

Figure 46 - Available bandwidth using the download time of a 50Kb file......................... 76

List of Tables

Table 1 - Android API levels. .. 27

Table 2 - Average available bandwidth measures of different networks, using Wireshark
and the DASH Client with the 50Kb file method and the segments method. 77

Table 3 - Sound pressure level measures of different sound sources, using Noise Meter,
Decibelímetro - Sound Meter and the DASH Client. .. 78

Table 4 - Average brightness level measures of different lighting conditions, using DASH
Client with a 3.15MP and a 5MP camera. ... 80

Table 5 - Relationship of the MOS classification with the quality and impairment of the
media content. .. 82

Table 6 - MOS classification and CPU load of different video playbacks. 82

Table 7 - MOS classification and CPU load of different video streaming types. 82

xvii

Abbreviations and Symbols

Abbreviations (alphabetical order)

2D Two-dimensional space

3D Three-dimensional space

3GP Multimedia container format defined by the Third Generation Partnership

Project

A/V Audiovisual

ADT Android Development Tools

AVI Audio Video Interleaved

API Application Programming Interface

ARM Industry’s leading supplier of microprocessor technologies

CC/PP Composite Capability/Preference Profiles

CDN Content Delivery Network

CPU Central Processing Unit

DASH Dynamic Adaptive Streaming over HTTP

DIA Digital Item Adaptation

DCO Delivery Context Ontology

DRM Digital Rights Management

FLV Flash Video

GPAC Open Source Multimedia Framework

GPS Global Positioning System

H.264 Standard for video and audio compression

HD High-Definition

HDS HTTP Dynamic Streaming

HLS HTTP Live Streaming

HSDPA High-Speed Downlink Packet Access

HTML HyperText Markup Language

HTML5 Fifth revision of HTML standard

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

Hz SI unit for frequency

IDE Integrated Development Environment

IIS Internet Information Services

ISO International Organization for Standardization

ISO BMFF ISO Base Media File Format

JDK Java Development Kit

JPEG Joint Photographic Experts Group

JPEG 2000 Standard for image compression

JRE Java Runtime Environment

JVM Java Virtual Machine

Lux SI unit of luminance

M4V Video file format developed by Apple and is very close to the MP4 format

Mbps Mega bit per second

MIME Multipurpose Internet Mail Extensions

MKV Matroska Multimedia Container

MP Megapixel, term used to express the number of image sensor elements of digital

cameras

MP4 MPEG-4 Part 14

MPD Media Presentation Description

MPEG Moving Pictures Experts Group

MPEG-1 Standard for video and audio compression

MPEG-2 Standard for video and audio compression

MPEG-4 Standard for video and audio compression

MPEG-2 TS MPEG Transport Stream

MOV File format used natively by the QuickTime framework

MOS Mean Opinion Score

NAT Network Address Translation

NDK Native Development Kit

OMA Open Mobile Alliance

OS Operating System

OWL Web Ontology Language

Pa Pascal, derived unit of pressure

PDA Personal Digital Assistant

PES Packetized Elementary Stream

RDF Resource Description Framework

RGB Color space based on the RGB color model

RMVB RealMedia Variable Bitrate

RTMP Real Time Messaging Protocol

xix

RTSP Real Time Streaming Protocol

SDK Software Development Kit

TCP Transmission Control Protocol

TS MPEG Transport Stream

UAProf User Agent Profile

UDP User Datagram Protocol

UED Usage Environment Description

URL Uniform Resource Locator

VoD Video on Demand

WAP Wireless Application Protocol

WML Wireless Markup Language

WMV Windows Media Video

WTA Wireless Telephony Application

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

ZIP Popular archive file format that supports lossless data compression

Symbols

𝑥 Ambient light level

𝑅 Red component of the RGB color model

𝐺 Green component of the RGB color model

𝐵 Blue component of the RGB color model

𝑃 Sound pressure

𝑃0 Reference sound pressure

1

Chapter 1

Introduction

The project developed in this thesis is intended to study and develop solutions which

allow the delivery of adapted content based on different situations, conditions and

restrictions. As the title of this thesis suggests, it was developed a video player mobile

application. This player is integrated on a bigger system, together with an HTTP server. The

application was developed on Android platform.

Android is the operating system that is growing faster in the mobile OS business, millions

of new devices are being activated a month. Android phones are very popular because of the

choices it gives to the client. Imagine powerful phones, made by different manufactures,

which can run tens of thousands of applications, but fully customizable. Several manufactures

means that monopoly is not of just one company. This can be a good thing, because of the

rapid progress made, caused by their competition with each other. Contributions of the open-

source Linux community and more than 300 hardware, software and carrier partners, makes

Android phones more powerful and innovated every day. Besides that, his powerful

development framework gives developer everything he need to build best-in-class

experiences, letting him deploy his apps broadly to hundreds of millions of users across a

wide range of devices – from phones, to tablets and beyond.

Due to the huge terminal’s heterogeneity on software and hardware, as well as the

variety of network and environmental conditions, emerged the need to personalize the

service to each client. The special functionality of the video player developed is that it is

prepared to play content via adaptive streaming. The player collects usage context

information and uses it to adapt the video quality, for a better user experience. The video

adaptation consists on requesting different video qualities from the server, using HTTP

protocol for the requests.

Quality of experience is a subjective measure of the user experience with a service, in

this case, a video streaming playback. This end-to-end performance measure is very

important for video services, because many factors may highly affect the user experience,

2

such as network, CPU, environmental noise and brightness conditions. Usage context

information is the collection of measures made to evaluate these conditions. This information

is used to adapt the video, resulting in very little rebuffering, fast start time and good

experience for both high-end and low-end connections.

1.1. Motivation

Mobile technologies have revolutionized the way people make decisions and live their

daily routine. The future of computer technology rests in mobile computing with wireless

networking. Everybody will be connected to everybody, constantly exchanging data.

The next generation of smartphones is going to be context-aware. The phone will take

advantage of the growing availability of embedded sensors and data exchange abilities.

Biosensors will be used to send alerts of emergencies, is there is something wrong with our

body functionality, due to an accident. Physical sensors are now being used to locate the user

and measure the environmental conditions.

Nowadays, with this incredible flow of online multimedia content, the first natural step

is to take advantage of context-aware information to deliver the context the best way

possible. The work developed in this dissertation help understand a little better about the

power of using the device’s resources on a web service, to provide the best quality of

experience to everyone.

1.2. Main Goals

 Identification of the Android support sensors and other resources, which will be used

to measure the smartphone properties, network and environment conditions.

 Acquire and interpret usage context information.

 Develop a smartphone application to present video files based on an adaptive web

streaming.

 Develop a web server to store the files to be delivered to the client.

 Use different strategies to decide the best content form to deliver, based on the

context information collected.

 Be able to display the video using progressive download.

1.3. Document Structure

The present document is structured as follows:

3

 Chapter 1: Introduction: brief explanation about the following document and the

research, analysis and conclusion of the project developed.

 Chapter 2: Technologies for Multimedia Adaptable Application: description of the

research made about A/V content adaptation on a streaming session;

 Chapter 3: Android API: description of the Android API, the operating system that

supports the application developed;

 Chapter 4: MPEG-DASH: description and analysis of the functionalities offered by

MPEG-DASH, the protocol used to adapt the A/V content.

 Chapter 5: System Architecture and Implementation: description and analysis of the

project developed.

4

5

Chapter 2

Technologies for Multimedia Adaptable
Application

2.1. Usage Context Information

The multimedia content adaptation can be done using the context information of each

user. The goal is to adapt the content in a smart way, keeping track of the consumer

environment, including usage preferences, and automatically modify the content

characteristics to satisfy context variations.

2.1.1. Types of Contextual Information

There are several context characteristics to be aware of:

 Terminal capacities – types of decoders, processing, memory and storage capacity,

screen dimensions, etc.

 Environment characteristics – lighting conditions, noise level, etc.

 User preferences – favorite media type, content type, visual and auditory impairment,

languages/subtitles, etc.

 Network characteristics – bandwidth capacity, delays, errors, etc.

2.1.2. Representation of Contextual Information

2.1.2.1. CC/PP

A CC/PP profile [1-5] is a description of the terminal’s capacities and preferences of his

user. It is used to adapt multimedia content consumed in that terminal.

CC/PP is based in RDF, which is a model of metadata description used in web

resources.

A CC/PP profile is structured on a two level hierarchy: components and attributes.

Components are groups of related attributes, like the terminal hardware and software

properties. The attributes have values associated to them, used by the server to know the best

way to deliver media to the client.

6

2.1.2.2. UAProf

The UAProf [1-5] was defined by OMA. It’s based on CC/PP and is used by multimedia

servers to choose the best way to deliver the content to wireless terminals.

In opposition to CC/PP, UAProf defines a vocabulary to describe characteristics and

capacities of the wireless terminal. There are six components:

 HardwarePlatform – defines nineteen attributes related to the terminal’s model,

included the CPU and the manufacture. It’s also detailed information about the screen

and the user interaction, made by attributes related to the keyboard and audio output.

 SoftwarePlatform – defines twenty three attributes related to the information about

supported file types, preferred languages, operating system and installed software,

audio and video codecs and support for downloadable software.

 BrowserUA – describes information about the browser, HTML, XHTML and JavaScript

characteristics. This is important information when trying to access a web page.

 NetworkCharacteristics – defines four attributes related with network information, like

security and delay. It also has information about Bluetooth support.

 WapCharacteristics – describes information related to WAP, WML and WTA.

 PushCharacteristics – describes the behavior of pushed information to the terminal

without request. Defines information about maximum size character codification in

that information.

Figure 1 - CC/PP Profile example.

7

2.1.2.3. UED

UED [1-5] is defined on DIA, part 7 of the MPEG-21, standard of MPEG. DIA provide

several tools to allow the adaptation of Digital Items, defined on part 1 of the MPEG-21.

UED is based on XML and has a vocabulary organized in four categories:

 User Characteristics – Provide user information, usage preferences and history,

presentation preferences, accessibility characteristics like visual and auditory

impairments and location information, including the user’s movement.

 Terminal Capabilities – Provide information about the terminal such as codec

capabilities, content display and audio output capabilities, power/storage

characteristics, data input/output facilities, CPU capabilities and user interaction

possibilities.

 Network Characteristics – Provide the network static and dynamic properties. Static

properties can be the maximum capacity, the minimum guaranteed bandwidth the

network can provide, information about packets delivery and how errors are handle.

Dynamic properties describe currently bandwidth, error and delay.

Figure 2 - UAProf example.

8

 Natural Environment Characteristics – Describe physical environmental conditions

around the user such as time and location, noise and lighting conditions.

Figure 3 - UED example.

2.1.2.4. DCO

DCO [1-5] is based on OWL, providing a set of characteristics that describe the context in

which media resources are consumed:

 Supported audio, video and image formats. Colloquial names, MIME types, name and

version can be given.

9

 Usable display pixels, supported markups and location provider support.

 Information about the environment (network and location) and user.

 Information about the device’s hardware:

- Battery capacity, current level and whether it’s being charged;

- Bluetooth support;

- Built-in and extension memory;

- Cameras;

- Input/output character sets;

- Input devices;

- Network support;

- Number of soft keys which are programmable;

- CPU;

- Audio output support;

- Voice recognition support;

- Text input type.

 Information about the device’s software:

- Information about the user agent;

- Whether the delivery context provides support for Java;

- Operating system;

- Capabilities of the browser.

2.2. Technologies and Protocols for Streaming

2.2.1. Types of Streaming

Streaming allows multimedia content, such as data, audio and video to be delivered to

the user by a provider (server). A client media player decodes and presents the media while it

is being received. The reproduction starts before the transmission of the entire file is

complete.

10

Figure 4 - Generic configuration of a streaming system.

The streaming begins with the codification and the segmentation of the media or signal to be

transmitted on Internet. The media can be stored in hard drives and that presented or it can be

live, as the media is being produced and presented at the same time.

 The client receives the media and reorganizes the segments and packages before

introduced them on a buffer. The segments will then be presented, giving the illusion of

continuous reproduction. It has to be a compromise between the length of the buffer and the

transmission rate. More speed means that buffer length could be shorter. If the transmission is

to slow, the number of segments being stored in the file decreases more that the number of

segments being presented, to the point where is no more segments stored to be presented,

leading to re-buffering, stopping the media presentation while waiting for new segments.

 Streaming can be made in 3 different ways, Traditional Streaming, Progressive

Download and HTTP Adaptive Stream.

2.2.1.1. Traditional Streaming

Traditional Streaming use sessions to maintain a unique continuous data transmission,

different from the other approaches where there are several files to be transmitted, the media

data chunked into segments.

The media is coded in small packages and operates over UDP or TCP. It uses protocols

like RTSP, MMS and RTMP.

Unlike TCP, UDP don’t resend requests for missing packages but instead continue with

the rest of the file. It’s better to have a glitch on the media than the playback to stop while

waiting for missing data. The major disadvantage of UDP is various problems with firewalls and

proxies, blocking some packages and compromising the quality of the reproduction.

11

It can begin the playback at any point of the video or skip through it, it makes a lot

more efficient use of bandwidth, receiving only the part of the video that will actually be

watched and the video file is not stored on a viewer’s computer, discarding the data after being

played.

2.2.1.2. Progressive Download

Progressive Download deliveries the file over HTTP. It is a very simple bulk download of

data to the end user’s computer. A temporary copy of the file is then stored locally so that the

user can access the data every time without downloading it again.

It’s supported for most platforms and applications for multimedia content

reproduction, allowing playback and download to occur at the same time, before the file is

completed.

The major disadvantage of HTTP delivery is the inefficiency use of bandwidth as the

whole file is delivered despite being or not reproduced till the end.

Clients who support HTTP 1.1 can specify which part they want of the file and

download it, using Byte Range Requests.

Figure 5 - Server-Client system, using a traditional streaming protocol.

12

2.2.1.3. HTTP Adaptive Stream

Adaptive Stream is based on Progressive Download, delivering over HTTP and storing

locally a copy of the file. The difference is that the media stored is segmented in various

qualities and the client will request the best for his bandwidth and CPU capacity. The content is

then organized in a linear sequence for playback, adapting the media as long as it is being

played.

Figure 6 - Server-Client system using a progressive download protocol.

13

It has some advantages over Traditional Steaming:

 It doesn’t need a special streaming server, it uses HTTP caches/proxies, so the server

implementation is much cheaper. It takes only a simple web server for this.

 It can dynamically adapt to bad network conditions.

 It allows every user receive media with adequate quality for his network and CPU

capacities.

2.2.2. HTTP Adaptive Stream Protocols

2.2.2.1. Apple – HLS

HTTP Live Streaming [6] is a media streaming communications protocol based on HTTP,

created by Apple Inc. It supports live or pre-recorded audio and video.

Figure 7 - Server-Client system, using an adaptive streaming protocol.

14

HLS consists in 3 major parts:

 Server component

Responsible for taking input streams of media and encoding them digitally,

encapsulating them in a format suitable for delivery and preparing the encapsulated

media for distribution.

The encoder delivers the encoded media in an MPEG-2 Transport Stream over

the local network. The streaming will then be segmented.

The component responsible for streaming segmentation reads the Transport

Stream from the local network and divides it into a series of small media files of equal

duration. It also creates an index file containing references to the individual media

files. This index is used to track the availability and location of the media files. Media

segments are saved as .ts files (MPEG-2 Transport Stream files) and the index files are

saved as .M3U8 playlists.

 Distribution component

Responsible for accepting client requests and delivering prepared media and

associated resources to the client. It consists on a web server or a web caching system

that delivers the media files and index files to the client over HTTP.

 Client software

Responsible for determining the appropriate media to request, downloading the

content of the requests, and reassembling them, so that the media can be presented to

the user in a continuous streaming session.

It begins by fetching the index file, based on a URL identifying the stream,

which specifies the location of the available media files, decryption keys and any

Figure 8 - HLS basic configuration.

15

alternate streams available. For the selected stream, the client downloads each

available media file in sequence.

This process continues until the client encounters the #EXT-X-ENDLIST tag in the

index file. If this tag isn’t present, the index file is part of an ongoing broadcast. In this

case the client loads a new version of the index file periodically.

2.2.2.2. Microsoft – Smooth Streaming

Smooth Streaming [7] is an IIS Media Services extension that enables adaptive

streaming of media to clients over HTTP. The format specification is based on the MP4

file specification and standardized by Microsoft. It is divided in 2 parts:

 Disk file format – Defines the structure of the contiguous file on disk, enabling

better file management.

The basic unit of an MP4 file is called a “box”, which contains both data and

metadata.

The file starts with file-level metadata (‘moov’) that generically describes the

file, but the bulk of the payload is actually contained in the fragment boxes

that also carry more accurate fragment level metadata (‘moof’) and media

data (‘mdat’). Closing the file is an ‘mfra’ index box that allows easy and

accurate seeking within the file.

Figure 9 - Index file example.

16

 Wire format – Defines the structure of the chunks that are send by IIS to the

client.

When a player client requests a video time slice from the IIS Web server, the

server seeks to the appropriate starting fragment in the MP4 file and then lifts

the fragment out of the file and sends it over the wire to the client. This

technique greatly enhances the efficiency of the IIS Web server because it

doesn’t induce any re-muxing or rewriting overhead.

A typical Smooth Streaming media presentation consists of the following files:

 MP4 files containing video/audio

Figure 10 - Smooth Streaming File Format.

Figure 11 - Smooth Streaming Wire Format.

17

 Server manifest file – Describes the relationships between the media tracks, bit

rates and files on disk. Only used by the IIS Server, not by clients.

 Client manifest file – Describes the available streaming to the client: the

codecs used, bit rates encoded, video resolutions, markers, captions, etc. It is

the first file delivered to the client.

The first thing a multimedia player client requests from the server is the client

manifest file, which tells it which codecs were used to compress the content (to

initialize the correct decoder and build the playback pipeline), which bit rates and

resolutions are available and a list of then available chunks.

After receiving the client request, IIS Smooth Streaming looks up the quality

level (bit rate) in the corresponding server manifest file and maps it to a MP4 file

containing video/audio on the disk. It then figures out which fragment box corresponds

to the requested start time offset, extracts and sends it over the wire to the client as a

standalone file.

The server plays no part in the bit rate switching process. The client-side code

looks at chunk’s download times, buffer fullness, rendered frame rates and decides

when to request higher or lower bit rates from the server.

2.2.2.3. Adobe - HDS

Abode Flash Player 10.1 software introduces support for HTTP Dynamic Streaming

[8], enabling an adaptive-bitrate, protected streaming experience with common HTTP

servers, catching devices and networks, using a standard MP4 fragment format. HTTP

Dynamic Streaming supports both live and on-demand media content that adjusts to

the viewer connection speed and processing power, using standard HTTP protocol

infrastructures that can meet the demand for HD content on a massive scale.

 MP4 fragment-compliant files and manifest files are placed on an HTTP server

that is responsible for receiving fragment requests over HTTP and returning the

appropriate fragment from the file.

These fragments are downloaded and rendered by the Flash Player client. As the

streaming is played, ActionScript within Flash Player monitors the client’s bandwidth

and playback experience, switching requests to the appropriate bit rate file fragments,

improving playback performance.

 At the start of the streaming session, the media player downloads the manifest

file that provides all the information needed to play back the media, including

fragment format, available bit rates, Flash Access licence server location and metadata

information.

18

2.2.2.4. MPEG–DASH

MPEG–DASH is a technology developed by MPEG that enables high quality media

content streaming over the Internet, using the HTTP protocol. This is the most recent adaptive

stream protocol, putting together several features from the other related technologies (HLS,

HDS and Smooth Streaming). DASH was published as a standard (ISO/IEC 23009-1) in April 2012.

The work around DASH is almost complete, it is expected his full release until later

2013. This protocol is the one used in this project for streaming multimedia content, so check

Chapter 4 for a detailed characterization of MPEG-DASH.

2.3. Conclusions

For much of the past decade, it was quite difficult to do video streaming to a mobile

device. Wide bandwidth variability, unfavorable firewall configurations and lack of network

infrastructure support all created major roadblocks to streaming. Early, more traditional

streaming protocols, designed for small packet networks, were anything but firewall friendly.

Although HTTP progressive download was developed partially to get audio and video streams

past throw firewalls, it still didn’t offer true streaming capabilities.

Adaptive Streaming gives a better experience to the user compared with to traditional

streaming, because it can adjust the media to network conditions. Adaptive streaming is also much

Figure 12 - HTTP Dynamic Streaming.

19

more flexible, because it works over HTTP, so it doesn’t have firewall or proxies issues and doesn’t

need special media servers, like traditional streaming does.

On the other hand, content preparation on adaptive streaming can be sometimes complex, adding

storage costs and the bandwidth usage may not be as efficient as traditional streaming.

Despite being a technology developed by Apple Inc, Android (version 3+ or higher) natively

supports HLS. Android 3.0 Honeycomb was release on beginning of 2011 and it was the first Android

update for a tablet, so it had to support some adaptive streaming technology, because media

consumption on tablets is a big deal and at the time it doesn’t existed a standard technology.

In fact, HLS was proposed to the IETF for becoming standard in 2009, but no additional steps

appear to been taken towards that IETF standardization.

 In this dissertation, it was decided to use the MPEG-DASH protocol to provide the streaming

functionality. This choice was based on the fact that DASH is an open standard and is based on very

well-known technologies (namely, MPEG-2 and XML), besides the fact of being the most recent

alternative for supporting in a seamless way the adaptive streaming of audiovisual content in IP

networks. In fact, being one of the goals the development of a solution as universal as possible, to be

able to run on any type of mobile device, or at the expense of a small amount of effort for porting

the solution to different platforms, DASH seems to be the most adequate alternative. The fact that it

is to become an international standard approved by major standardization bodies, places DASH in a

very good position to be widely adopted by the industry on the years to come.

20

21

Chapter 3

Android API

In recent years it has been observed a huge increment in mobile technologies usage

such as smartphones, PDAs, tablets and notebooks.

Smartphones are the most complete technology for the user, because it puts together

on the same terminal, capacity for network connection, data synchronization with a computer,

contact phonebook and several sensors and input/output components.

Aside from its regular use as a phone, there are several additional applications with a large

variety of uses. These applications can be developed by regular users, becoming available to

everyone to download and use it easily.

There are a large variety of smartphones, with differences between them on the

hardware and software level. On the software level there are several operating systems:

Google – Android, Apple – IOS, Microsoft – Windows Mobile, Nokia – Symbian, Black Berry – RIM,

etc.

On the hardware level, there are a large variety of manufactures that use the same operating

system in their terminal. Therefore, is typical to find, for example, Android operating system

in terminals with very distinct characteristics between them, such as dimensions, image and

sound quality, memory availability and camera power.

So, it urges the need to do media content adaptation. Identifying the characteristics of

each smartphone, before media content adaptation, is very important for this process to be

possible, providing this way a better experience for the user.

3.1. Android Development

Android [11] is an operating system based on Linux with a Java programming interface.

It was created by the Open Handset Alliance, led by Google. It’s the most popular operating

system, used by a huge variety of terminals and, for being open source, it’s easy to develop

applications for this platform.

3.1.1. Developing Tools

3.1.1.1. Java

Java [9] is a class-based and object-oriented computer programming language. It was

released on 1995 by Sun Microsystems.

22

Java applications are typically compiled to bytecode that can run on any JVM

regardless of computer architecture (in Android, it is used Dalvik virtual machine). The

applications are compiled in bytecode that is interpreted by the JVM and transformed to binary

code on the application execution.

To use Java, end-users need JRE, which contains the parts of the Java SE platform

(latest release) required to run Java programs and JDK, which is intended for software

developers, including development tools such as the Java compiler, Javadoc, Jar and debugger.

End-users can also use a Web browser for Java Applets.

Java Applets are programs that are embedded in other applications, typically in a web

page. Java Servlets are applets that run on the server side. These Java EE components

generate responses to clients’ requests.

In this project it was used JRE 7 and JDK 1.7.0_15.

3.1.1.2. Eclipse

Eclipse [10] is a multi-language software development environment. It is used to

develop Applications in Java and, by means of various plug-ins, other programming languages.

The initial codebase originated from IBM VisualAge. In 2004 the Eclipse Foundation was created

(non-profit organization).

Eclipse is one of the most used IDE for Java based applications development and the

most used for Android applications development. For this, it uses the ADT plugin.

In this project, Eclipse Classic 4.2.2 was used to develop the Android application and

Eclipse IDE for Java EE Developers was used to develop the servlet on the server side.

Android development can be done using Netbeans as well as the command line, using a

text editor to edit Java and XML files, than use tools such as Java Development Kit and Apache

Ant to create, build and debug Android applications.

3.1.1.3. Android SDK

SDK is used to create new applications for the Android operating system. It includes a set of

development tools, including debugger, libraries, emulator, documentation, sample codes and

tutorials for the different Android API levels.

3.1.2. Installation and Configuration

Before starting with Android development, the reader needs to be sure he has the development

environment set up. This project was developed on a Windows 7 (64-bit) computer, so the

23

explanation will focus on how to install and configure the developing tools on Windows computers.

For other platforms, the reader should check the Android Developers page for more information.

1) Download the ADT Bundle, if the reader wants to quickly start developing apps. It includes the

essential Android SDK components and a version of the Eclipse IDE with built-in ADT. If the

reader is using already Eclipse or want to use another IDE, he may choose to download and

install first the Android SDK Tools and then the ADT Plugin for Eclipse.

 ADT Bundle - http://developer.android.com/sdk/index.html, click on the top right corner

button “Download the SDK – ADT Bundle for Windows”.

 Android SDK Tools - http://developer.android.com/sdk/index.html, open “USE AN EXISTING

IDE” on the bottom of the page and click in “Download the SDK Tools for Windows”.

The reader can also download these tools for other platforms. Browse to

http://developer.android.com/sdk/index.html, open “DOWNLOAD FOR OTHER PLATFORMS” and

choose the packages suitable for his platform.

2) If the reader downloaded the ADT Bundle, simply unpack the ZIP file, browse to Eclipse

directory and launch Eclipse. If the reader downloaded the SDK Tools only, to use with an

existing IDE, he needs to install SDK Tools. When setting up the ADT Plugin the reader will

need the name and location in which he installed the SDK on the system. So he must make

note of these paths for later use.

3) After SDK Tools installation, the reader needs to install and configure ADT Plugin for

Eclipse.

 Start Eclipse, then select Help>Install New Software and click Add.

 Enter “ADT Plugin” for the name, “https://dl-ssl.google.com/android/eclipse/” for the

Location and select OK. The reader can also use “http” instead of “https” is he has

trouble acquiring the plugin.

 Check the Developer Tools and click Next to see a list of the tools to be downloaded.

 Read and accept the license agreements and click Finish. If the reader gets a security

warning, ignore it by clicking OK.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

24

 When the installation completes, restart Eclipse.

 Once Eclipse restarts select Use existing SDKs in the “Welcome to Android

Development” window and specify the location of the Android SDK directory.

The reader can also go to Window> Preferences> Android, browse SDK location and

click OK.

4) Download the latest SDK tools and platforms using the SDK Manager.

 Launch the SDK Manager (.exe file at the root of the Android SDK directory).

The reader can also go to Window> Android SDK Manager.

Figure 13 - Add ADT Plugin on Eclipse.

Figure 14 - Browse SDK location on Eclipse.

25

 The reader must choose and install the components. He should install the latest Tools

packages, the Android Support Library (on the Extras folder) and the Android API

version he wants to support his future app (usually the latest one).

3.1.3. Android Project General Structure

3.1.3.1. Project Creation

A new Android project can be created from Eclipse with ADT or from the command line.

Since Eclipse was used to develop this project, the explanation will focus on how to do it in

Eclipse. For more information about using the command line, please check the Android

Developers page - http://developer.android.com/tools/projects/projects-cmdline.html.

 Select File> New> Project

 Select Android> Android Application Project, and click Next

 Enter the basic settings for the project: Application Name (title of the application launcher

icon); Project Name (title of the folder where the project is created); Package Name (title of

the initial package structure of the application); Minimum Required SDK (lowest version of

Figure 15 – Download the latest SDK tools and platforms support using the SDK Manager.

http://developer.android.com/tools/projects/projects-cmdline.html

26

the Android platform that the application supports); Target SDK (highest version of Android

with which the application will work), and click Next.

 The reader can uncheck “Create custom launcher icon” and “Create activity” to finish the

project creation or he can check the boxes to specify a launcher icon or create a default main

activity.

3.1.3.2. Project General Structure

Android projects get build into an .apk file that is installed into a device. It contains the

application source code and resource files, generated by default or created by the developer.

Android project comprise the following directories and files:

 src/ - All source code files, such as .java go here.

 bin/ - Output directory of the build. The final .apk file and other compiled resources go

here.

 jni/ - Contains native code sources developed using NDK.

 gen/ - Contains the java files generated by ADT, such as R.java.

 assets/ - Used to store raw assets files to be accessed by the application.

 res/ - Contains application resources, such as drawable files, layout files and string

values.

 libs/ - Contains private libraries.

 AndroidManifest.xml – Control file that describes the nature of the application and

each of its components. Is describes certain qualities about activities, services, intent

receivers and content providers. It also describes what permissions are requested, what

Figure 16 - Project Creation on Eclipse.

27

external libraries are needed, what device features are required and what API levels

are supported.

 project.properties – This file contains project settings, such as the build target.

3.1.4. API Levels

API level is an integer value that uniquely identifies the framework API revision offered

by a version of the Android platform. The framework API is used by applications to interact

with the underlying Android system.

Each successive version of the Android platform can include updates to the Android

application framework API that it delivers. Because most changes in the API are additive and

introduce new or replacement functionality, all other API parts from earlier revisions are

carried forward without modification.

Table 1 - Android API levels.

Platform Version Codename API Level

1.6 Donut 4

2.1 Eclair 7

2.2 Froyo 8

2.3 - 2.3.2 Gingerbread 9

2.3.3 – 2.3.7 Gingerbread 10

3.2 Honeycomb 13

4.0.3 – 4.0.4 Ice Cream Sandwich 15

4.1.x Jelly Bean 16

4.2.x Jelly Bean 17

Figure 17 - Android project general structure.

28

So, if the application developed is targeting the most recent API level, some functions it

implements may not work on older API level devices. On the other hand, the most recent API

level device will most likely run successfully functions of the old one.

Choosing an API level for an application development should take at least two things into

account:

1. Number of devices that can actually support the application. At the date the most

common Android version is Gingerbread [29], so if the target of the project is Ice

Cream Sandwich, Gingerbread devices won’t run it. This will be holding the

application to reach more devices.

2. Choosing a lower API level may support more devices, but gain less functionality for

the app. The user may also work harder to achieve features he could've easily

gained if a higher API level was chosen.

3.1.5. Vitamio

Vitamio [12] is an open multimedia framework/library for Android, with hardware

acceleration and renderer. It uses several open source projects, such as FFmpeg and

UniversalCharDet. FFmpeg provides a software decoder and demuxers for output. Vitamio

LGPLv2.1 is licensed under the FFmpeg code. UniversalCharDet is the encoding detector library

of Mozilla. Vitamio MPL is licensed under the UniversalCharDet to detect the encoding of

subtitle texts.

Vitamio supports RTSP, RTMP, HTTP progressive streaming and HLS streaming protocols.

It can play almost all popular video formats, such as MP4, MKV, M4V, MOV, FLV, AVI, RMVB, TS,

3GP, etc. Vitamio also supports the display of subtitle, external and embedded.

As far as Vitamio’s device support, he supports two kinds of ARM CPU: ARMv6 and

ARMv7, although several problems were documented in various devices. The ARM architecture

describes computer processors designed and licensed by ARM Holdings. According to the

company, this CPU architecture is used in 95% of smartphones.

This library is used in this project because it is a powerful tool to deal with multimedia

content, but it’s not a requirement for Android development to handle multimedia content.

The application can use for this the Android default tools.

It only supports playback and buffering of the file, but downloading the media content,

exporting or processing buffered files is not supported. So, this library was used to decode the

downloaded media content and play it.

29

 Download VitamioBundle (this is the Android library) -

https://github.com/yixia/VitamioBundle

 Download VitamioDemo (demo project), if the reader wants to test the library or he

doesn’t have his own project to bundle it - https://github.com/yixia/VitamioDemo

 UnZip and save VitamioBundle in the workspace folder of Eclipse, where it should be

also the reader’s project.

 Open Eclipse, File> Import> Existing Projects into Workspace and click Next.

 Browse the workspace directory and import the library (and the project, if wasn’t

already imported).

 On Eclipse, right click on the VitamioBundle >Properties> Android, check at the bottom

“Is Library” and click OK.

 Right click on the project, >Properties> Android, add at the bottom the Vitamio’s

library and click OK.

 If the Vitamio library is not presented on the last step, the reader needs to build the

path manually. Right click on the project, >Build Path> Configure Build Path…> Order

and Export, check the library’s project and click OK. Now try to do the step before this

one.

Figure 18 - Configure Vitamio on Android project.

https://github.com/yixia/VitamioBundle
https://github.com/yixia/VitamioDemo

30

Now that the library is bundle to the project, his use is the same as the default Android

commands to handle video and audio reproduction, with no need for separated plugins

download. The library components must be declared in the manifest file of the project.

3.2. Android Sensors

Android sensors [11] are used to measure a physical quantity, process the data input and

do something with it. There are many components in a smartphone used for processing external

environment data such as microphone for audio capture, camera for picture capture and GPS

for location related data input.

3.2.1. Motion Sensors

Motion sensors measure acceleration forces and rotational forces along three axes.

Android supports:

 Accelerometer

 Gravity sensor

 Gyroscope

 Linear accelerometer

 Rotation vector sensor

Figure 19 - Manually build Vitamio's path on Android project.

31

These sensors can indicate if the device is moving, using the accelerometer. If the user is

moving, this probably means that he could be moving outdoors and using a 3G network or he

could be moving indoors and the Wi-Fi signal strength will not be linear.

With the measures made with these sensors, the user can only assume that the network

connectivity won’t be linear and stable as it should be.

3.2.2. Environment Sensors

Environment sensors measure various environmental parameters, such as ambient air

temperature and pressure, illumination, and humidity. Android supports:

 Light sensor

 Pressure sensor

 Temperature sensor

 Humidity sensor

The light sensor can be very useful to measure lighting conditions. With these

measurements, it can be possible to calibrate the screen brightness, giving a better experience

to the user and it will do a better management of the device’s battery lifetime.

3.2.3. Position Sensors

Position sensors measure the physical position of a device. Android supports:

 Orientation sensor

 Proximity sensor

 Geomagnetic Field sensor

This kind of sensors can be useful in many ways.

The orientation sensor measures if the device is on the vertical position or in landscape.

With this information, the video resolution can be adapt to the current orientation of the

device. Normally it is used the landscape orientation for better viewing experience on a video

playback, but the user can reproduce the video with vertical orientation, urging the need for

resolution adaptation.

The proximity sensor is used, as default, to turn off the screen during a phone call. When

the user makes a phone call, this sensor will measure the proximity between the phone and the

user’s face/ear.

32

In video playback, the user can trigger some video features by simply putting a finger on

top of the sensor or approximate it to his face. A good feature would be zooming the video or

change subtitle’s size.

The Geomagnetic Field sensor can be used the same way as GPS, it returns the location

of the user. With this information, it can be identified if the user is in public places, which

probably means the use of unsafe public Wi-Fi networks or even places with poor Internet

connection.

3.2.4. Microphone

The microphone is used for audio input. With the audio input it could be measure the

environment noise level and in result, the volume of the playback could be adapted in function

of that noise measurement.

A headphone input must be checked first, because if the user has headphones,

probably the environment noise won’t matter and the volume doesn’t need to be changed.

3.2.5. Camera

The camera is used for image capture. The image, with the proper image processing

and analyses, can be used to identify a large variety of objects. It could identify faces, so if

there is more than one person in the room, there may be some concerns about privacy issues.

It can identify the lighting conditions, if doesn’t exist the light sensor on the device.

In can even identify cultural icons such as buildings, monuments or statues. So maybe

the user is watching a video near by the Eiffel Tower and the audio idiom can change to

French.

33

Chapter 4

MPEG-DASH

MPEG – DASH [13-18] is a technology developed by MPEG that enables high quality

media content streaming over the Internet, using HTTP protocol. The following figure

illustrates a simple streaming scenario between an HTTP Server and a DASH Client.

4.1. DASH General Operation

In Figure 20, the underlined components are the only ones specified by DASH. These

components are responsible for generate content and handle metadata, such as resources

location and format.

The content on the server is divided in two categories: segments and metadata file. The

segments contain the actual multimedia. They can be separated files or a single file with

multiple sub-segments.

The DASH client first obtains the metadata file and parses it to learn about the content

characteristics, such as media types, media-content availability, resolutions, minimum and

maximum bandwidth, accessibility features, media-components location on the network, etc.

Using this information, the DASH Client selects the appropriate encode alternative and starts

streaming the content by fetching the segments using HTTP GET requests.

Figure 20 - General MPEG-DASH system architecture.

34

Highlighted features:

 Supports on demand and live adaptive streaming

 Supports both ISO BMFF (MP4) and MPEG-2 TS.

 Codec agnostic.

 Efficient and easy use of existing CDNs, proxies, caches, NATs and firewalls.

 Control of entire streaming session by the client.

 Support of seamless switching of tracks.

 Segments with variable durations.

 Segment alignment indication to simplify switching and avoiding overlapping

fragments.

 Supports all DRM techniques specified in ISO/IEC 23001-7: Common Encryption.

 Allow sub-segments, retrieved by HTTP byte range requests.

 Supports trick modes for seeking, fast forwards and rewind.

4.2. MPD

4.2.1. Profiles

MPEG-DASH specifies six different Profiles. A Profile is a set of restrictions on

the offered Media Presentation related to encoding of the segments and the

source of the stream session (it could be live or on demand). These Profiles can be

used as permission for DASH clients that only implement the features required by

the profile to process the Media Presentation.

Figure 21 - MPEG-DASH Profiles defined in ISO/IEC 23009.

35

4.2.1.1. ISO Base media file format Profiles

There are three Profiles related to ISO based encoded files:

1. ISO Base media file format On Demand – intended to provide basic support for on

demand content, supporting large VoD libraries with minimum amount of content

management.

2. ISO Base media file format Live – optimized for live encoding and low latency delivery

of Segments consisting of a single movie fragment of ISO file format with relatively

short duration. Smooth Streaming content can be integrated with this profile.

3. ISO Base media file format Main – support for on demand and live content.

Figure 22 – MPD example from an ISO Base media file format On Demand Profile.

Figure 23 - MPD example from ISO Base media file format Main Profile.

36

4.2.1.2. MPEG-2 TS Profiles

There are two Profiles related to MPEG-2TS encoded files:

1. Main - Imposes little constrains on the Media Segment format for MPEG-2 Transport

Stream content. HLS content can be integrated with this profile, because both use

MPEG-2 TS as video content format.

2. Simple – A subset of the main profile. Poses more restrictions on the encoding and

multiplexing in order to allow simple implementation of seamless switching.

The previous Profiles simplify the content organization of the metadata file

according to the encoding of the segments. There is also the Full Profile that is the most

generalized Profile, supporting ISO Base or MPEG-2 TS media file format.

4.2.2. Hierarchical Model

MPD is a XML document compliant to DASH, used to save metadata information of

the media content. It describes different bit rate representations of the media

resources, enabling dynamic adaptive streaming over HTTP. The MPD file contains fully

qualified URLs to the segments and it expresses the relationship between these and the

corresponding representation.

Figure 24 - MPD Hierarchical Data Model.

37

Periods represent temporal intervals of the media content. Typically is used only one

Period with the entire media file duration, but it can be used more for better information

organization, if the movie’s length is high. Each Period consists of one or more Adaptation

Sets.

Adaptation Sets provide the information about one or more Content Component and its

various encoded alternatives. These are used to organize the information about different media

component types, such as video and audio. There could be only one Adaptation Set about video

and others about different audio tracks for that movie (used to watch the movie in more than

one idiom). The simplest form is only one Adaptation Set for video and audio together. Each

Adaptation Set includes multiple Representations.

Representations are encoded alternatives of the same media component, varying from

other Representations by bit rate, resolution, media component type, language, etc. For the

video adaptation in the playback to be possible, the same media content has to be encoded

with different parameters, such as bit rate for different video and audio quality and resolution

for different screen sizes. Each Representation is identified by an identification number and

includes a list of consecutive Segments of the media content.

Segments are the media stream chunks, result from splitting the media file and

organize the content information in small units. Segments are referenced by HTTP URL that

addresses their location on the server, to be accessed using HTTP GET requests.

4.2.3. File Structure

4.2.3.1. XML General Structure

XML is a markup language that defines a set of rules for encoding documents in a

format that is both human-readable and machine-readable. It is used to store, transport and

display data in a very simple way.

38

XML documents are text files, consisting entirely of characters. These characters

may be divided into markup and content. Strings that constitute a markup are generally

identified by the characters ‘<’ and ‘>’, in the beginning and in the end. Strings that

constitute content don’t.

The most common markup construct in a XML file is identified as a Tag. This

component that begins with ‘<’ and ends with ‘>’ exists in three forms: Start-tags, End-

tags and Empty-element tags.

Elements are components that start with a start-tag and end with a matching end-

tag, or consist only of an empty-element tag. All the characters between the tags consist

on the element’s content, which may include other elements called Child Elements.

 Attributes are markup constructs consisting of a name/value pair that exists

within a start-tag or an empty-element tag.

The XML example above describes a list of movies. <movies> is a Start-tag and

</movies> is his matching End-tag. Together they constitute the “movies” Element,

which include a list of “movie” Elements and witch one includes two other Elements,

identifying the name and year of production. The Element’s content is the string

between matching tags.

On the “movie” Element exists two attributes that characterizes the movie, namely

the Duration and the Gender.

Figure 25 - XML simple example.

39

4.2.3.2. Media Presentation Description

As said before, MPD is the designation of the metadata file used by DASH specification.

This file represents the metadata using XML language, according to the hierarchical model. The

MDP structure may vary according to the Profile chosen for encoding. In this project was used

the Full Profile, because it supports both media encoding types, so the explanation will focus

on this profile structure. Nevertheless, for other profiles, the elements and attributes are very

similar. From now on, MPD elements will be identified between ‘<>’ and attributes will begin

with ‘@’.

 <MPD> is the root element and stores general information such as profile identification

with @profiles, the duration of the entire media presentation with

@mediaPresentationDuration and if the MPD may be updated or not with @type

(“@type=dynamic” if updated and “@type=static” if not). There is other attributes that

may be present, if “@type=dynamic”, such as @availabilityStartTime to specify the

time that segments may become available and @minimumUpdatePeriod to control the

frequency at which a client checks for updates.

 <Period> is a child element of <MPD>. It has attributes such as @id for identification

and @duration to identify the length of that Period.

 <AdaptationSet> is a child element of <Period>. It is usually associated with it one or

more <ContentComponent>, to identify the content type with @contentType.

<AdaptationSet> has attributes such as @segmentAlignment and

Figure 26 - MPD example of Full Profile with segment’s URL.

40

@subsegmentAlignment, to allow non-overlapping decoding and presentation of

segments from different Representations, @bitstreamSwitching, to allow

concatenation of segments from different Representations results in conforming

bitstream, @maxWidth, @maxHeight, @par and @maxFrameRate for video resolution

information.

 <Representation> is a child element of <AdaptationSet>. It has a @id for identification,

@mimetype and @codecs for content encoding information, @width, @height,

@frameRate and @sar for video resolution information, @audioSamplingRate and

@bandwidth for content bit rate information and @startWidthSAP to use the

presentation time and position in segments at which random access and switching can

occur.

 <BaseURL> to identify the URL of the index segment or, in other cases, it is used

@sourceURL from the <RepresentationIndex>.

 <SegmentList> is the parent element of several <SegmentURL> that uses @media to

identify the segment URL or @mediaRange. @indexRange is used to identify the

intervals of bytes used for a partial HTTP request. If byte range was used,

<Initialization> is used to specify the range of the index segment.

Figure 27 - MPD example of Full Profile with media ranges.

41

4.3. Media Content

Media content is digital information intended to be delivered to an end-user/audience.

The content is compressed and stored in a server. Next it will be transported, decompressed

and presented by the client. For this are used codecs and containers.

Codecs are responsible for compression and decompression of the media content. This

is done to reduce the content size that will be transported in a transmission not 100% reliable

and stored in limited memories. Later is decompressed and presented. The most popular

codecs are MPEG-1, MPEG-2, WMV and H.264.

Containers are used for the content transportation (stream over Internet) and storage.

Once the media data is compressed into suitable formats and reasonable sizes, it is packaged in

containers to be transported to the end user. They are like “boxes” used to hold a variety of

different codecs. The most common are QuickTime, MP4, MPEG-2 TS, Matroska, WebM and

Flash.

4.3.1. Container Formats

MPEG–DASH uses MPEG2-TS and MP4 as containers for the streaming of the media

content. Because of DASH and the fact that it is an international standard, it is expected that

video distributers will change the use from their current streaming specification to DASH.

MPEG2-TS is used in HLS and MP4 is used in HDS and Smooth Streaming. So, to make

this change easier, DASH supports both container formats, allowing the reutilization of the

encoded media content.

4.3.1.1. MPEG2-TS

MPEG2-TS is specified in MPEG-2 Part1, Systems. The content is packaged in a PES, the

basic unit of data, structured with a header and a payload. The header contains information

about the package, such as synchronization and packet identifier, and the payload contains the

data content, such as video, audio content and metadata, which is not separated from the

actual media data.

Figure 28 - Packetized Elementary Stream simple example.

42

4.3.1.2. MP4

MP4 is a standard specified as a part of MPEG-4, based on the ISO base media file

format defined in MPEG-4 Part 12 and JPEG 2000 Part 12 which in turn was based on the

QuickTime file format.

The content is packaged in boxes or atoms, the basic unit of data. On contrary of the

MPEG-2 TS, there are different kinds of boxes, distinguished by their content:

 ftyp – describes the file type and compatibility of the MP4. It is always

present at the beginning.

 moov – contains all the descriptive and technical metadata, to allow the

player to use appropriate codecs for the various elementary streams, identify

them correctly, etc. The movie box itself contains a movie content header

(mvhd) and description of elementary streams (trak).

 mdat – contains the multiplexed media data, raw audio and video information

and timed-text elements that are decoded based on a movie box’s

information.

Figure 29 - Simple example of audio and video multiplexing.

Figure 30 - Simple MP4 file structure.

43

4.3.2. Segmentation

Before being requested, the media content must be prepared and stored on a server.

As mentioned before, the media content must be segmented to be streamed, using HTTP

Adaptive Stream.

The content is encoded into multiple quality levels and each one of those is segmented

into equal sized segments. Now this segmentation can result into multiple separated segment

files or into just one segment file with multiple sub-segments.

4.3.2.1. Separated Segments

In this method, the media content is segmented into separated segment files. These

files are stored in a server waiting to be requested. The client needs to do an HTTP request to

retrieve them, using the URL specified on the MPD of their location.

This is the layout of a MPEG-2 TS after being segmented into 10 separated segments.

The .six file at the beginning is the Initialization Segment, used to initialize the media for

playback. This file contains the media stream access points, marked frames within the

streaming, allowing the segment switching on the playback. If no Initialization Segment is

present, then each media segment is self-initialized.

In case the content is encoded as a MP4 file, the Initialization Segment is an .mp4 file

instead of a .six and the media segments are .m4s instead of .ts, as shown in the next image.

Figure 31- MPEG-2 TS segment files' directory.

44

4.3.2.2. Single Segment

The media content may be segmented into a single segment file. This method is used to

better organization of the segments in the segment folder. For example, if the file has 1 hour

duration and is segmented into chucks of 1 second long, the end result will be 3600 segments.

With this method, the file is segmented internally into sub-segments. Each sub-segment

is retrieved using partial HTTP requests. An URL specification will be replaced by a byte media

range, constituted by the initial byte and the end byte, marking respectively the beginning and

the end of the pretended sub-segment. Partial HTTP requests are only possible using HTTP/1.1.

The result is a single file, .ts if MPEG2-TS or .mp4 if MP4. The file contains all the

segments, including the Initialization Segment, which is identified the same way as the other

by a byte range interval.

4.3.3. Reproduction

After being received by the Dash Client, the media content will be played. The Dash Client

has to request the content, one segment at a time, and concatenate them into a file, that will

be played.

First it will request the Initialization Segment and then the media segments. If the

Initialization Segment isn’t present at the beginning, the media player won’t have the access

points of the stream for the playback of the whole file to be possible.

The segments are downloaded and saved into a cache file. The cache will begin playback as

soon as reaches a minimum amount of data, defined by the developer. The requested files

should be of low quality to minimize the download time and start the playback as fast as

possible.

Figure 32 - MP4 segments files' directory.

45

After playback as started, the Dash Client will continue to request the following media

segments of the stream and save them in the cache that is being played. So, if the playback

reaches a certain frame that were not yet downloaded into the cache, the playback will stop.

That’s the reason that before requesting the segment, the Dash Client must find out what’s the

best quality to prevent crashing the playback.

The Dash Client has to run parallel processes to retrieve some context information (usually

Internet characteristics and terminal capacities) and come up with the bandwidth availability

at that time. Next, it will compare this value with the @bandwidth value of every

<Representation> and choose one representation according to the following conditions: the

@bandwidth value has to be lower that the available bandwidth and the highest of all lower

values.

4.4. Media Coding

4.4.1. FFmpeg

FFmpeg [19] is a tool for handling multimedia data using various libraries. FFmpeg is

developed under GNU/Linux, but can be compiled under most operating systems. This project

is made of several components:

 ffmpeg is a command-line tool to convert one video file to another.

 ffserver is an HTTP and RTSP multimedia streaming server for live broadcasts.

 ffplay is a simple media player.

 ffprove is a command-line tool to show media information.

 libswresample is a library containing audio resampling routines.

 libavcodec is a library containing all the FFmpeg audio/video encoders and decoders.

 libavformat is a library containing demuxers and muxers for audio/video container

formats.

 libavutil is a helper library containing routines common to different parts of FFmpeg.

 libpostproc is a library containing video post processing routines.

 libswscale is a library containing video image scaling and color space/pixel format

conversion routines.

 libavfilter is the substitute for vhook which allows the video/audio to be modified or

examined between the decoder and the encoder.

In this project, FFmpeg was used to encode audio and video with different bit rates and

mux them in different containers (MP4 and MPEG-2 TS).

4.4.1.1. Installation

46

FFmpeg is a multi-platform tool. Windows 7 (64 bits) was the chosen operating system

to run it. So, the explanation about the installation and usage of FFmpeg will focus on the

chosen platform. If the reader wants to know more about installation on other platforms, he

should go to http://www.ffmpeg.org/download.html.

1. Download the FFmpeg Windows builds from

http://ffmpeg.zeranoe.com/builds/.

2. Decompress the file, open the resulting folder, enter on bin directory and

remember this file path.

3. Open the Windows Command Line and specify the previous file path.

4. Type ffmpeg-h to execute the FFmpeg help menu and confirm that FFmpeg is

operational.

4.4.1.2. Usage

FFmpeg is a command line tool, so Windows Command Line were used to run some

commands. Each command contains specific parameters for the action pretended to take

place. In this case, audio and video of a MP4 file were encoded with different bit rates. After

that the output file is transcoded to other format, MPEG2-TS according to DASH specification.

1. Encode audio and video of a MP4 file

 ffmpeg -i input_file.mp4 -vcodec libx264 -vprofile baseline -preset slow -b:v 50k -

maxrate 50k -bufsize 100k -vf scale=iw/3:-1 -acodec libvo_aacenc -b:a 96k

output_file.mp4

2. Transcode MP4 file into MPEG2-TS

 ffmpeg -i input_file.mp4 -vcodec copy -acodec copy -vbsf h264_mp4toannexb

output_file.ts

FFmpeg reads from an input file, specified by –i option, and writes to an output file,

specified by a plain output filename. As a general rule, options are applied to the next

specified file, so beware of the options order. Exceptions of this rule are the global options,

which are specified always in the beginning (None used in this case).

- -i input_file.mp4: reads from a MP4 input_file.

http://www.ffmpeg.org/download.html
http://ffmpeg.zeranoe.com/builds/

47

- -vcodec libx264: specify x264 as video codec. If the option copy is used, FFmpeg

will not encode the video again, just use the same codec on file transcoding.

- -vprofile baseline: specify the H.264 profile as baseline for highest compatibility

with Android devices.

- -present slow: specify the speed of the encoding, in this case slow. A slower speed

will provide a better compression and achieve a better file quality.

- -b:v 50k: specify the average video bit rate, in this case 50Kbps. This can be used

in combination with –maxrate and –bufsize to prevent some of the swings and

simulate a constant bit rate.

- -vf scale=iw/3:-1: specify the video resolution in scale with the original video.

What this do is downsize by a factor of 3 the video width and automatically choose

the right video height, maintaining the video proportions. It can be used a simpler

option, typing –s width x height.

- -acodec libvo_aacenc: specify aac as audio codec. If the option copy is used,

FFmpeg will not encode audio again, just use the same codec on file transcoding.

- -b:a 96k: specify the average audio bit rate, in this case 96Kbps.

- -vbsf h264_mp4toannexb: This filter allows a MP4 file to be transcoded to a

MPEG2-TS file.

4.4.2. MP4Box

MP4Box [20] is the multimedia packager available in GPAC, an open source multimedia

framework for research and academic purposes, being developed by Telecom ParisTech as part

of the research work of the multimedia group. MP4Box can be used for performing

manipulations on several multimedia files, encoding/decoding presentation languages,

performing encryption and attaching metadata to streaming sessions and preparation of HTTP

Adaptive Streaming content.

In this project, MP4Box was used to generate content conformant to the MPEG-DASH

specification.

4.4.2.1. Installation

GPAC can be installed on multiple platforms and his latest stable release is version

0.5.0. Ubuntu 12.04 was used to install GPAC, so the explanation will focus on its installation

and usage for this platform. If the reader wants to know how to do it for other platforms, he

can check http://gpac.wp.mines-telecom.fr/downloads/.

Use Ubuntu’s Terminal and type the following commands:

1. Get the source code:

http://gpac.wp.mines-telecom.fr/downloads/

48

 sudo apt-get install subversion

 svn co https://gpac.svn.sourceforge.net/svnroot/gpac/trunk/gpac gpac

2. Get the dependencies:

 sudo apt-get install make pkg-config g++ zlib1g-dev firefox-dev libfreetype6-

dev libjpeg62-dev libpng12-dev libopenjpeg-dev libmad0-dev libfaad-dev

libogg-dev libvorbis-dev libtheora-dev liba52-0.7.4-dev libavcodec-dev

libavformat-dev libavutil-dev libswscale-dev libxv-dev x11proto-video-dev

libgl1-mesa-dev x11proto-gl-dev linux-sound-base libxvidcore-dev libssl-dev

libjack-dev libasound2-dev libpulse-dev libsdl1.2-dev dvb-apps libavcodec-

extra-53 libavdevice-dev libmozjs185-dev

3. Compile:

 cd gpac

 ./configure

 Make

 sudo make install

4.4.2.2. Usage

MP4Box is a command line tool, so the reader needs to open Ubuntu’s Terminal and

type the command for the specific action he wants to perform. According to the pretended

action, the command can have different parameters. In this case, the content was generated in

two forms:

1. Separated Segments:

 MP4Box -dash dur -segment-name name input_file

2. Single Segment:

 MP4Box -dash dur -rap input_file

- -dash dur: produce segments with duration dur, expressed in milliseconds.

- -segment-name name: generate each segment in a dedicate file named

name%d.ext, being is a numeric counter and ext is the file’s extension.

- input_file: name of the file to be segmented. It can be a MP4 (.mp4) or MPEG2-TS

file (.ts).

Note that the underlined text refers to the values of the parameters.

49

After the command is typed, the process will generate the segmented content and the

MPD file associated. The MPD generated corresponds to the Full Profile. There are clearly

differences in <SegmentURL> on both MPDs: one identifying the segment URL with @media and

the other identifying the media range interval with @mediaRange.

4.5. Use Cases and Future Work

MPEG-DASH is still premature. Although it is on the break of his fully release, it’s still a

work in progress, putting together contributes of many institutions. There is not must

information about it, especially about advanced topics.

It’s not difficult to develop a dash client and generate his content, if the application sticks

to basic functionalities. MPEG-DASH supports simple and advanced use cases. The simple ones

can be gradually extended to become more complex and advanced. Some advanced topics are:

 Dynamic ad-insertion;

 Delivery of other multimedia content besides video and audio, such as 2D, 3D,

animation, graphics, multiview, subtitles and text;

 Support of multiple languages and different audio configurations.

The next steps for MPEG-DASH are:

1. Complete the standardization work

– Formal approval of all specifications

– Conformance, interoperability and reference software

2. Towards deployments:

- Generate guidelines, white papers, test content and software

- Promotional efforts

- Combine it with browsers, the web and HTML5

3. Migration Scenarios:

- Most generated content and production equipment of the previous

specifications of HTTP Adaptive Stream can be reused: HLS and Smooth

Streaming content are suitable for DASH MPEG-2 TS Main Profile and ISO

BMFF Live Profile, respectively.

- Manifest files can be converted to MPD format: XML conversion from m3u8

and Smooth Streaming manifests or deployment of other manifests in

parallel as the MPD.

50

51

Chapter 5

System Architecture and Implementation

The project developed consists on a video streaming service for Android clients, using

MPEG-DASH as protocol to generate and deliverer media content. The system is constituted by

two different major modules, the Server side, which consists on a simple HTTP web server, and

the Client side, which consists on an Android application.

Figure 33 - DASH Client system architecture.

52

5.1. Server Side

As seen before, MPEG-DASH specifies how media content is generated and how metadata is

handled. The media and metadata files are stored into a regular web server. His job is to

receive requests, made by a client, for the media and metadata files and send them to be

consumed. The media quality is chosen by the client before the request, so the server just has

to receive requests and send the files requested.

Java Servlet API is a protocol by which a Java class may respond to requests. A Servlet is a

Java class that conforms this API. The Servlet is used to communicate over any client-server

protocol, often used with HTTP protocol. To deploy and run a Servlet, a Web Container must

be used. This container is the component of a web server that interacts with the Servlets.

5.1.1. Technologies

In this project, the web server is constituted by a Servlet, which is managed by Apache

Tomcat, an open source web server and a Servlet container developed by Apache Software

Foundation. To work with Tomcat, a Java based IDE was used, namely Eclipse.

5.1.1.1. Eclipse & Apache Tomcat

Eclipse IDE for Java EE Developers was used to develop the servlet on the server side.

On contrary of Eclipse Classic 4.2.2, the EE version includes web tools and therefore, is used to

develop web applications.

Apache Tomcat [21] has different versions available for different versions of the Servlet

specifications. Version 7 is the latest stable version, implementing Servlet 3.0 specifications.

In this project was used Apache Tomcat 7 with Eclipse IDE for Java EE Developers.

5.1.1.2. Installation

1. Go to http://www.eclipse.org/downloads/ and download Eclipse IDE for Java EE

Developers.

2. Go to http://www.coreservlets.com/Apache-Tomcat-Tutorial/tomcat7-files/tomcat-

7.0.34-preconfigured.zip and download Apache Tomcat 7.

3. Unzip both files.

4. Start Eclipse, R-click on the Servers tab at bottom (if the reader doesn’t see the

Servers tab, he can add the tab via Window-> Show View-> Servers) ->New -> Server -

> Apache -> Tomcat v7.0.

http://www.eclipse.org/downloads/
http://www.coreservlets.com/Apache-Tomcat-Tutorial/tomcat7-files/tomcat-7.0.34-preconfigured.zip
http://www.coreservlets.com/Apache-Tomcat-Tutorial/tomcat7-files/tomcat-7.0.34-preconfigured.zip

53

5. On Server runtime environment click on Add… and browse to the folder where the

reader unzipped Tomcat previously. He should now see “Tomcat v7.0 Server at

localhost” listed under the Servers tab at the bottom.

6. R-click on “Tomcat v7.0 Server at localhost” and choose Start to run Tomcat. Open

http://localhost/ and the reader will see the Tomcat welcome page.

7. If a 404 error message appears instead of the welcome page, it probably comes from

Tomcat. This happens because Eclipse forgets to copy the default apps (Root,

examples, etc) when it creates a Tomcat folder inside the Eclipse workspace. The

reader needs to do this manually:

-Navigate to the folder where he unzipped Tomcat -> webapps and copy the

ROOT folder.

- Navigate to the Eclipse workspace folder -> .metadata and search for

“wtpwebapps”

- R-click on the wtpwebapps folder and past the ROOT folder. Say yes if asked

to merge/replace folders/files.

- Reload http://localhost/ to see the Tomcat welcome page.

5.1.2. Dynamic Web Project

Now that Tomcat is ready to go, the reader can use his machine to build Web pages

dynamically. He has to create a Dynamic Web Project to run the java files to manage the

server Servlet. He can also manage stored files he wants to be available online, in this case

video and metadata files. To create the project the reader has to:

8. Go, on Eclipse, to File-> New-> Other -> Web -> Dynamic Web Project

9. Choose a Project name and click Finish (I this case it is DASHServer)

10. R-click on “Tomcat v7.0 Server at localhost” -> Add and Remove, add the created

Project to configure it on the server and click Finish. If Eclipse asks to switch to the

Java EE Perspective answer yes.

Figure 34 - Dynamic Web Project general structure.

http://localhost/
http://localhost/

54

Locations:

 Java Resources: src/testPackage/ – This folder contains the java files that control the

Servlet. It is recommended to store these files inside a package and never to use the

default package.

11. R-Click on Java Resources/src -> Package

12. Choose a name, in this case testPackage, and click Finish

 DASHServer/Web Content/ - This folder contains web files, such as HTML, JavaScript,

CSS, JSP, etc. The user can create these files and even sub directories in this folder. In

this project, there was no need for web file creation, so the directory has the default

files and folders.

13. R-Click on Web Content -> New->File, choose Web Content location and a file name

and click Finish

14. R-Click on Web Content -> New->Folder, choose Web Content location and a folder

name and click Finish

 DASHServer/Web Content/WEB-INF/ - This folder contains a XML file (web.xml) that is

optional with Servlets 3.0, but required in 2.5 and earlier. In this project this file will

be used.

 Servers – This folder is created when Tomcat was configured earlier. There was no need

to change any of the default files in it.

5.1.3. Servlet

The Servlet [22] job is to read data sent by the client, generate the results and send data

back to the client. This Servlet does in fact nothing more that obtaining an InputStream of the

desired resource/file and writing it to the OutputStream of the HTTP response along with a set

of important response headers.

1. First the Servlet needs to be initialized, validating the base path to get all the

resources from. In this project the resources were stored in

 public void init() throws ServletException {

 // Get base path (path to get all resources from) as init parameter.
 this.basePath = "/Users/PC/workspace/SERVER/repositorio/";

 // Validate base path.
 if (this.basePath == null) {
 throw new ServletException("FileServlet init param 'basePath' is required.");
 } else {
 File path = new File(this.basePath);
 if (!path.exists()) {
 throw new ServletException("FileServlet init param 'basePath' value '"
 + this.basePath + "' does actually not exist in file system.");
 } else if (!path.isDirectory()) {
 throw new ServletException("FileServlet init param 'basePath' value '"
 + this.basePath + "' is actually not a directory in file system.");
 } else if (!path.canRead()) {
 throw new ServletException("FileServlet init param 'basePath' value '"
 + this.basePath + "' is actually not readable in file system.");
 }

55

‘/Users/PC/workspace/SERVER/repositorio/’.

2. Then the head request will be processed in to separated ways: only the header

(without the content) and with content.

3. The request file is validated, checking his existence, location and URL. For files

catching, resume and range the headers should be processed as well.

protected void doHead(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Process request without content.
 processRequest(request, response, false);
 }

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Process request with content.
 processRequest(request, response, true);

 }

protected void doHead(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Process request without content.
 processRequest(request, response, false);
 }

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Process request with content.
 processRequest(request, response, true);

 }

56

 private void processRequest
 (HttpServletRequest request, HttpServletResponse response, boolean content)
 throws IOException
 {
 // Validate the requested file --

 // Get requested file by path info.
 String requestedFile = request.getPathInfo();

 // Check if file is actually supplied to the request URL.
 if (requestedFile == null) {
 // Do your thing if the file is not supplied to the request URL.
 // Throw an exception, or send 404, or show default/warning page, or just ignore it.
 response.sendError(HttpServletResponse.SC_NOT_FOUND);
 return;
 }

 // URL-decode the file name (might contain spaces and on) and prepare file object.
 File file = new File(basePath, URLDecoder.decode(requestedFile, "UTF-8"));

 // Check if file actually exists in filesystem.
 if (!file.exists()) {
 // Do your thing if the file appears to be non-existing.
 // Throw an exception, or send 404, or show default/warning page, or just ignore it.
 response.sendError(HttpServletResponse.SC_NOT_FOUND);
 return;
 }

 // Prepare some variables. The ETag is an unique identifier of the file.
 String fileName = file.getName();
 long length = file.length();
 long lastModified = file.lastModified();

 String eTag = fileName + "_" + length + "_" + lastModified;

// Validate request headers for caching ---

 // If-None-Match header should contain "*" or ETag. If so, then return 304.
 String ifNoneMatch = request.getHeader("If-None-Match");
 if (ifNoneMatch != null && matches(ifNoneMatch, eTag)) {
 response.setHeader("ETag", eTag); // Required in 304.
 response.sendError(HttpServletResponse.SC_NOT_MODIFIED);
 return;
 }

 // If-Modified-Since header should be greater than LastModified. If so, then return 304.
 // This header is ignored if any If-None-Match header is specified.
 long ifModifiedSince = request.getDateHeader("If-Modified-Since");
 if (ifNoneMatch == null && ifModifiedSince != -1 && ifModifiedSince + 1000 > lastModified) {
 response.setHeader("ETag", eTag); // Required in 304.
 response.sendError(HttpServletResponse.SC_NOT_MODIFIED);
 return;
 }

 // Validate request headers for resume --

 // If-Match header should contain "*" or ETag. If not, then return 412.
 String ifMatch = request.getHeader("If-Match");
 if (ifMatch != null && !matches(ifMatch, eTag)) {
 response.sendError(HttpServletResponse.SC_PRECONDITION_FAILED);
 return;
 }

 // If-Unmodified-Since header should be greater than LastModified. If not, then return 412.
 long ifUnmodifiedSince = request.getDateHeader("If-Unmodified-Since");
 if (ifUnmodifiedSince != -1 && ifUnmodifiedSince + 1000 <= lastModified) {
 response.sendError(HttpServletResponse.SC_PRECONDITION_FAILED);
 return;

 }

57

4. Now a response is prepared and initialized. This response consists on sending the

file parts to the client.

 // Validate and process range ---

 // Prepare some variables. The full Range represents the complete file.
 Range full = new Range(0, length - 1, length);
 List<Range> ranges = new ArrayList<Range>();

 // Validate and process Range and If-Range headers.
 String range = request.getHeader("Range");
 if (range != null) {

 // Range header should match format "bytes=n-n,n-n,n-n...". If not, then return 416.
 if (!range.matches("^bytes=\\d*-\\d*(,\\d*-\\d*)*$")) {
 response.setHeader("Content-Range", "bytes */" + length); // Required in 416.
 response.sendError(HttpServletResponse.SC_REQUESTED_RANGE_NOT_SATISFIABLE);
 return;
 }

 // If-Range header should either match ETag or be greater then LastModified. If not,
 // then return full file.
 String ifRange = request.getHeader("If-Range");
 if (ifRange != null && !ifRange.equals(eTag)) {
 try {
 long ifRangeTime = request.getDateHeader("If-Range"); // Throws IAE if invalid.
 if (ifRangeTime != -1 && ifRangeTime + 1000 < lastModified) {
 ranges.add(full);
 }
 } catch (IllegalArgumentException ignore) {
 ranges.add(full);
 }
 }

 // If any valid If-Range header, then process each part of byte range.
 if (ranges.isEmpty()) {
 for (String part : range.substring(6).split(",")) {
 // Assuming a file with length of 100, the following examples returns bytes at:
 // 50-80 (50 to 80), 40- (40 to length=100), -20 (length-20=80 to length=100).
 long start = sublong(part, 0, part.indexOf("-"));
 long end = sublong(part, part.indexOf("-") + 1, part.length());

 if (start == -1) {
 start = length - end;
 end = length - 1;
 } else if (end == -1 || end > length - 1) {
 end = length - 1;
 }

 // Check if Range is syntactically valid. If not, then return 416.
 if (start > end) {
 response.setHeader("Content-Range", "bytes */" + length); // Required in 416.
 response.sendError(HttpServletResponse.SC_REQUESTED_RANGE_NOT_SATISFIABLE);
 return;
 }

 // Add range.
 ranges.add(new Range(start, end, length));
 }

 }

58

5.2. Client Side

In the client-server relationship, the Client is the one who performs the requests and

receives data from those requests, send by the Server. This specific Client is an Android

application, which requires Internet connection to be able to perform HTTP Adaptive

Streaming, using MPEG-DASH as protocol.

MPEG-DASH doesn’t specify anything about the Client side. As long as it can interpret the

protocol correctly, the DASH Client could be developed for any platform. And because it is not

fully released, other tools beside the recommended ones could be used to generate the

// Send requested file (part(s)) to client --

 // Prepare streams.
 RandomAccessFile input = null;
 OutputStream output = null;

 try {
 // Open streams.
 input = new RandomAccessFile(file, "r");
 output = response.getOutputStream();

 if (ranges.isEmpty() || ranges.get(0) == full) {

 // Return full file.
 Range r = full;
 response.setContentType(contentType);
 response.setHeader("Content-Range", "bytes " + r.start + "-" + r.end + "/" + r.total);

 if (content) {
 if (acceptsGzip) {
 // The browser accepts GZIP, so GZIP the content.
 response.setHeader("Content-Encoding", "gzip");
 output = new GZIPOutputStream(output, DEFAULT_BUFFER_SIZE);
 } else {
 // Content length is not directly predictable in case of GZIP.
 // So only add it if there is no means of GZIP, else browser will hang.
 response.setHeader("Content-Length", String.valueOf(r.length));
 }

 // Copy full range.
 copy(input, output, r.start, r.length);
 }

 } else if (ranges.size() == 1) {

 // Return single part of file.
 Range r = ranges.get(0);
 response.setContentType(contentType);
 response.setHeader("Content-Range", "bytes " + r.start + "-" + r.end + "/" + r.total);
 response.setHeader("Content-Length", String.valueOf(r.length));
 response.setStatus(HttpServletResponse.SC_PARTIAL_CONTENT); // 206.

 if (content) {
 // Copy single part range.
 copy(input, output, r.start, r.length);
 }

59

content. These other tools could be used as long as it can generate the content according to

DASH specifications.

It was developed an Android application that simulates a simple VoD client that uses

MPEG-DASH as protocol for the video streaming. The Client has access to a list of movies

available in the Server for streaming. He can choose a video and it will start playing as soon as

possible.

5.2.1. Project Structure

The project developed consists of three different stages: Playback Initialization, Video

Playback and Usage Context Information. Each stage is represented by packages. Each package

contains the classes that play a direct role in his functionality. Additionally, there is one more

package, Auxiliar Classes, which contains the classes that play an indirect role in all other

classes mentioned before.

The first stage is the Playback Initialization, on which the application establishes a

connection to the Server, download and parse the metadata and prepare the initial media

content to be played.

The second stage is the Video Playback, where the application plays downloaded

content and download new one to be played.

The third stage is Usage Context Information, on which context information is collected

while the media content is being played.

5.2.2. Playback Initialization

Figure 35 - DASH Client structure.

60

The Playback Initialization is very important, mainly because of the metadata parse

and the media content preparation. Without the metadata it would be impossible for the

application to know here the video segments are located. This package is constituted by three

major activities: Home, MovieList and ContentPreperation.

Figure 36 - UML class diagram of Playback Initialization.

Figure 37 - UML collaboration diagram of Playback Initialization.

61

1. Home

This activity is the home screen of the application. The client is presented with the

choice of continue with the application or visit the website of the project. The last choice will

open the default browser of the Android device. If the client chooses to continue the

application, it will be redirect to the next activity, MovieList.

The activity starts to check is there is Internet connection on the device. If so, it will

connect to the server, by requesting the metadata file, movies.xml, which is used to build the

MovieList activity.

To check if the device has Internet connection and to establish connection to the

Server, the code bellow can be used. If there isn’t a valid Internet connection, a dialog box will

appear to inform the client. The application won’t let the user do anything until he has a valid

connection. The same will append if he has Internet connection, but he can’t reach

movies.xml, which most likely means that the Server is down.

// Check connection to Internet ---

 public boolean isConnectingToInternet(){
 ConnectivityManager connectivity = (ConnectivityManager)
_context.getSystemService(Context.CONNECTIVITY_SERVICE);
 if (connectivity != null)
 {
 NetworkInfo[] info = connectivity.getAllNetworkInfo();
 if (info != null)
 for (int i = 0; i < info.length; i++)
 if (info[i].getState() == NetworkInfo.State.CONNECTED)
 {
 return true;
 }
 }
 return false;

 }

Figure 38 - Home layout.

62

2. MovieList

 This activity uses a ListView to present a list of available movies on the server to be

streamed. The information presented results from parsing movies.xml. Information such as

movie name, duration, gender, segment length, movie metadata and poster location are

presented to the client.

// Check connection to Server ---

URL url = new URL("http://"+IP+"/DASHServer/file/movies.xml");
 HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();
 httpConn.setInstanceFollowRedirects(false);
 httpConn.setRequestMethod("HEAD");

 httpConn.connect();

Figure 39 - MovieList layout.

Figure 40 - movies.xml file structure.

63

The activity downloads the movies.xml file and parses it to display his content on the

screen. When the client selects an entry from the list, it will be given a choice to request the

total length of the content or use partial requests. Either case, the client is redirected to the

next activity, ContentPreparation.

To download the movies.xml the application makes a request to the Server and

receives a response. The following code can be used for a simple XML file request-response

process.

To parse it the application gets the value of an element with a specific name and save

both on a HASH-MAP.

// Download movies.xml ---
 public String getXmlFromUrl(String url) {
 String xml = null;
 Document doc = null;

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 try {
 // defaultHttpClient
 DefaultHttpClient httpClient = new DefaultHttpClient();
 // HttpPost httpPost = new HttpPost(url);
 HttpGet httpGet = new HttpGet(url);

 HttpResponse httpResponse = httpClient.execute(httpGet);
 HttpEntity httpEntity = httpResponse.getEntity();
 xml = EntityUtils.toString(httpEntity);

 DocumentBuilder db = dbf.newDocumentBuilder();
 InputSource is = new InputSource();
 is.setCharacterStream(new StringReader(xml));
 doc = db.parse(is);

 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 return doc;

 }

// Save data from movies.xml ---
NodeList nl = doc.getElementsByTagName(KEY_MOVIE);
 // looping through all item nodes <item>
 for (int i = 0; i < nl.getLength(); i++) {
 // creating new HashMap
 HashMap<String, String> map = new HashMap<String, String>();
 Element e = (Element) nl.item(i);
 // adding each child node to HashMap key => value
 map.put(KEY_ID, parser.getValue(e, KEY_ID));
 map.put(KEY_NAME, parser.getValue(e, KEY_NAME));
 map.put(KEY_LEN, parser.getValue(e, KEY_LEN));
 map.put(KEY_GEN, parser.getValue(e, KEY_GEN));
 map.put(KEY_MP4, parser.getValue(e, KEY_MP4));
 map.put(KEY_TS, parser.getValue(e, KEY_TS));
 map.put(KEY_IMA, parser.getValue(e, KEY_IMA));
 map.put(KEY_DESC, parser.getValue(e, KEY_DESC));

 // adding HashList to ArrayList
 menuItems.add(map);

 }

64

3. ContentPreparation

This activity results from the selection of a movie from the list. It displays movie

information, such as name, duration, gender, segment length and the movie poster. This

information is displayed while the application prepares the movie for playback. A progress bar

is also shown to represent the time it takes for this preparation. The application must:

Figure 41 - UML sequence diagram of Home and MovieList.

Figure 42 - ContentPreparation layout.

65

 Download the correct MPD file of the movie selected.

 Parse the MPD information.

 Download a few seconds of movie data.

 Save the data into a cache.

When the cache file is ready, the client is redirect to Video Playback activity and start

the playback. The initial data downloaded acts as a buffer. His length is big enough to be able

to start the media content playback and small enough to start the playback as fast as it can.

The buffer’s length in this case is 5 seconds.

The methods used for download and parse movies.xml are used on the MPD files as

well. The parsing is a little trickier, because it doesn’t have a linear structure as movie.xml

does. This parsing results on HASH-MAPs for Adaptation Sets, Representations and URLs of the

media segments. The tag name of the HASH-MAP is the respective element’s attribute and the

value is the attribute’ value.

// Store segments into a temporary file -------------------------
public static File FillCache(ArrayList<String> strArray2, File c, String name) throws IOException{
 File bufferedFile = null;

 bufferedFile = File.createTempFile(name, ".dat");
 File tmpFile = null;
 String[] stockArr = new String[strArray2.size()];
 stockArr = strArray2.toArray(stockArr);

 for (int i=0; i<strArray2.size(); i++) {

 tmpFile = com.getDataSource(stockArr[i],c);
 Log.v(TAG, "getdatasource:"+i);

 bufferedFile = moveFile(tmpFile, name);
 }
 float bytesRead = tmpFile.length();

 Log.v(TAG, "Writting on cache complete");
 return bufferedFile;

 }

// Parse and save MPD content related to Adaptation Set element -------------------------
HashMap<String, String> ADA = new HashMap<String, String>();
 NodeList n2 = doc.getElementsByTagName("Period");

 NodeList n3 = doc.getElementsByTagName("AdaptationSet");
 NodeList n5 = doc.getElementsByTagName("Representation");
 NodeList n7 = doc.getElementsByTagName("RepresentationIndex");
 NodeList n9 = doc.getElementsByTagName("SegmentList");

 NodeList n10 = doc.getElementsByTagName("SegmentURL");

Element e2 = (Element) n2.item(0);

 getTagValue(e2,"dB");
 Element e3 = (Element) n3.item(0);
 getTagValue(e3,"ts");

 ADA.put("duration",PERduration);
 ADA.put("bitstreamSwitching",ADAbitstreamSwitching);
 ADA.put("segmentAlignment",ADAsegmentAlignment);
 ADA.put("subsegmentAlignment",ADAsubsegmentAlignment);

ADA.put("maxWidth",ADAmaxWidth); ADA.put("maxHeight",ADAmaxHeight);

66

First a temporary .dat file needs to be created. Then, the application has to request

the segments and download them into a cache file, using the getDataSource method. Finally,

the moveFile method creates an exact copy of the temporary file and appends it to

bufferedFile. This file is the actual file being played and it will be appended more data to it

every time FillCache is called. To use partial requests, retreiveSegmentContent is called to an

InputStream.

// Get data from segment files -------------------------
public File getDataSource(String path, File temp) throws IOException {
 System.out.println("Path:"+path);

 URL url = new URL(path);
 URLConnection cn = url.openConnection();
 cn.connect();
 InputStream stream = cn.getInputStream();

 if (stream == null)
 throw new RuntimeException("stream is null");

 String tempPath = temp.getAbsolutePath();
 FileOutputStream out = new FileOutputStream(tempPath);

 byte buf[] = new byte[1024];
 do {
 int numread = stream.read(buf);
 if (numread < 0){
 break;}
 out.write(buf, 0, numread);
 } while (true);
 try {
 stream.close();
 out.close();
 } catch (IOException ex) {
 Log.e(TAG, "error: " + ex.getMessage(), ex);
 }

 return temp;

// Request segment using byte range -------------------------
private InputStream retreiveSegmentContent(String specificURL, int startByte, int endByte) {
 HttpClient httpClient = new DefaultHttpClient();
 HttpGet getSegment = new HttpGet(specificURL);
 System.out.println("bytes=" + startByte + "-" + endByte);
 getSegment.addHeader("Range", "bytes=" + startByte + "-" + endByte);
 InputStream content = null;
 HttpResponse response = httpClient.execute(getSegment);
 HttpEntity entity = response.getEntity();
 Log.d(TAG, "Status code: " + response.getStatusLine().getStatusCode());
 content = entity.getContent();
 return content;
 }

67

5.2.3. Video Playback

Video Playback is where the user can actually watch the movie. This stage is

constituted by only one activity, which specifies a VideoView to display the downloaded media

content. Besides that, is in this activity that the methods for usage context information are

called. They actually run in parallel threads alongside with the video playback.

Figure 43 - UML sequence diagram of ContentPreparation.

68

 The activity is called the moment the content preparation is done. After the cache file

is open for playback, the application must continue downloading the next movie segments. It

uses the same process as before: download, save on a temporary file and copy the content into

the file that is being played. If the cache doesn’t get filled as fast at download new content,

the reading of the file content will come to an end and the playback will stop.

 Control which segment has to be downloaded next, to maintain the order of movie

segments, can be done with the counter Next_Seg. In the beginning, Next_Seg equals the last

segment stores in the cache on the preparation stage. From that point forward, it will

increment every time that the next segment needs to be downloaded, until it reaches the total

count of movie segments.

Figure 44 - VideoPlayback layout.

// Control segment count -------------------------
private void begin(final boolean first) throws IOException, InterruptedException {
 int seg_ini = Integer.parseInt(seg_dur);
 System.out.println("seg_ini: "+seg_ini);
 if(first){
 Next_Seg = seg_ini;
 }else{
 Next_Seg ++;
 }
 System.out.println("Next_Seg: "+Next_Seg);
 try {
 downloadingMediaFile = SegmentManager.CreateCache();
 startStreaming(urls,SegmentManager.ReturnID(),1,Next_Seg);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();

 }

69

5.2.4. Usage Context Information

Usage Context Information, as the name indicates, is the stage where context

information is collected. Based on this information, the application takes some action to adapt

the video playback. The context information is collected from many sources, relying on Android

sensors and resources to do the job.

There are many strategies to collect this kind of information, there isn’t the right or

wrong way, but there is a better and a worst way. Obviously, if the measures need to be

precise, more complex methods will be used and the device performance will decrease. The

strategies used were the ones which returned good results for want the application needed to

do, without compromising to much the device’s performance.

5.2.4.1. Network Conditions

Network conditions are actually the major factor to adapt the video playback. It’s

awful when the user is watching a streaming session and the playback stops to rebuffer every

time the available bandwidth of the network is too low to download the video file.

Every time that a segment needs to be downloaded, the application calculates the

current available bandwidth. The value calculated is used as the reference of the maximum

bandwidth that the segment to be downloaded can have.

The application compares every bandwidth of every representation with the maximum

bandwidth and selects the closest value, without surpass the calculated value. The selected

representation is then used in the request segment process.

 // Get the data content all store in cache -------------------------
public void startStreaming(final ArrayList<HashMap<String, String>> urls2, final String rep, final int
num_Seg, final int count_Seg) throws IOException {

 if(!cache_ready){

 mediaUrl = SegmentManager.FillArray(urls,num_Seg,count_Seg, FillURL);
 cache_ready = true;
Log.v(TAG, "Cache ready "+cache_ready);

 }else{

 SegmentManager.FillCache(mediaUrl,downloadingMediaFile,cacheName);
 Log.v(TAG, "FillCache Complete ");
 cache_ready = false;
Log.v(TAG, "Cache ready "+cache_ready);

}

70

5.2.4.2. Noise Conditions

A noisy environment, when the use is trying to watch a streaming session without

headphones, can ruin the whole experience. The user may try guiding himself from subtitles,

but his perception of the movie is not as great as it should be.

At the beginning of playback, a new thread startRe is called. This class accesses the

device’s microphone and starts a new audio recording. In this recording, the maximum

amplitude of the file is retrieved 10 times separated by 200ms of each other, and then stop

recording. This process is repeated 10 times, separated in equal intervals, until the end of the

playback.

 // Get all representations IDs and respective bandwidth -------------------------
public static void Retrive(final ArrayList<HashMap<String, String>> Representacoes, final String
NumReps) {

 String bandwidth = "";
 int numreps=Integer.parseInt(NumReps);//System.out.println("numreps"+numreps);
 String[] reps = new String[numreps];
 int[] Reps = new int[numreps];
 long[] Bands = new long[numreps];

 for(int i=0;i<numreps;i++){
 String aux = Integer.toString(i+1);
 reps[i] = aux;
 Reps[i] = i+1;
 for (HashMap<String, String> map : Representacoes){

 if(map.get("id").equals(reps[i])){
 bandwidth = map.get("bandwidth");
 Bands[i] = Long.parseLong(bandwidth);
 }}

 // Compare bandwidths and select the correct representation ID ----------------
private static void compareBand(int[] reps, long[] bands) {
 long nearest = -1;
 float bestDistanceFoundYet = Integer.MAX_VALUE;

 for (int i = 0; i < bands.length; i++) {
 if (bands[i] == Float.parseFloat(Bandwidth)) {
 ID = Integer.toString(reps[i]);
 } else {
 float d = Float.parseFloat(Bandwidth) - bands[i];
 if (d < bestDistanceFoundYet && d>0) {
 nearest = bands[i];
 bestDistanceFoundYet = d;
 ID = Integer.toString(reps[i]);
 }}}

71

To calculate the noise level from the audio recording, the application gets the

maximum amplitude of the audio recording and returns the value in dB.

To change the volume of playback, the application needs to compare the current

measure to the one made before. If the noise level increased, ‘int lev = 1’ and the application

will increase the audio playback, else ‘int lev = 2’ and the application will decrease the audio

playback. This is done if the buttons for volume up and volume down of the device weren’t

used, because if they were in fact used, means that the user wants to adjust audio volume

manually.

5.2.4.3. Brightness Conditions

The device’s screen brightness is important to the user experience and should be

adapted according to environment light conditions. On a sunny day, is the user is outside with

 // Calculate noise level from audio recording ----------------
public double getNoiseLevel() {
 Log.d("SPLService", "getNoiseLevel() ");
 double x = mRecorder.getMaxAmplitude();
 x2 = EMA_FILTER * x +(1.0 - EMA_FILTER) * x2;
 double pressure = x2/51805.5336;

 // Log.d("SPLService", "x="+x);
 double db = (20 * Math.log10(pressure / REFERENCE));
 Log.d("SPLService", "db="+db);
 if(db>0)
 {
 return db;
 }
 else
 {
 return 0;
 }
}

 // Change volume of playback ----------------
public static void changeVolume(int lev, AudioManager audio) {

 if(lev==1){

 if(!Vol_Up && !Vol_Down){
 audio.adjustStreamVolume(AudioManager.STREAM_MUSIC,
 AudioManager.ADJUST_RAISE, AudioManager.FLAG_PLAY_SOUND);
 Log.i("Audio Raise", "");
 }
 }

 if(lev==2){

 if(!Vol_Up && !Vol_Down){
 audio.adjustStreamVolume(AudioManager.STREAM_MUSIC,
 AudioManager.ADJUST_LOWER, AudioManager.FLAG_PLAY_SOUND);
 Log.i("Audio Lower", "");
 }

 }

72

his phone, he has to increase the screen brightness otherwise he will have trouble seeing what

is presented. On the other hand, if he is in a very dark room, there is no need to have a very

bright screen. He may cause discomfort to his eyes and the battery’s life time will decrease.

So, screen brightness adaptation happens to be a big deal when it comes to give the

best user experience possible during video playback.

Some Android devices incorporate a light sensor that detects the level of brightness in

the surrounding room. When it comes to screen brightness adaptation, this sensor should be

used. If the device doesn’t have one, an alternative method can be used, which call on the

device’s camera. If the device has no camera, then brightness adaptation won’t be able using

this application.

If a light sensor exists on the device, an Event Listener will be trigger every time the

light conditions change and get the application measures the current brightness value. Next,

the application converts that value to a value between 0 and 1 (by dividing by the maximum

value that can be measure) and set the resulting value as the screen value to be.

If a light sensor doesn’t exist, the application tries to use the camera for this.

Manipulating the camera API can be a little tricky. First of all, the camera simple doesn’t work

// Check if there is a light sensor and a camera ----------------
Sensor lightSensor = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
if (lightSensor == null){

if (!getPackageManager() .hasSystemFeature(PackageManager.FEATURE_CAMERA)) {

System.out.println("No Camera in this device");

} else{
preview = new Preview(this);
 ((FrameLayout) findViewById(R.id.preview)).addView(preview);
System.out.println("Camera preview ON");
}
}else{
max = lightSensor.getMaximumRange();
sensorManager.registerListener(lightSensorEventListener, lightSensor,
SensorManager.SENSOR_DELAY_NORMAL);

}

 // Light sensor event listener----------------
 public void onSensorChanged(SensorEvent event) {
 if(event.sensor.getType()==Sensor.TYPE_LIGHT){
 currentReading = event.values[0];

 float light = currentReading/max;//0-1

 WindowManager.LayoutParams params =

 getWindow().getAttributes();
 params.flags |= LayoutParams.FLAG_KEEP_SCREEN_ON;
 params.screenBrightness = light; //0-1
 getWindow().setAttributes(params);

 }}

73

if a preview screen isn’t shown to the user. So, using the camera on background wasn’t

something that the Android developers considered when they developed this API. That’s why it

was created a fake FrameLayout to display the preview. The fake preview was resized to 1x1,

so the user can see it on the screen, even though it is there.

A picture will be taken or a video record will start triggered only by user interaction.

Automatic trigger didn’t work. So, to trigger the camera, the user presses the menu button of

the device, as seen in the code below.

When a picture is taken, the application saves the picture in the sdcard and calls the

checkLight method that will analyze the picture.

// Take picture if the menu button is pressed ----------------
case KeyEvent.KEYCODE_MENU:
 Log.d(TAG, "onClick ready");
 preview.camera.takePicture(null, null, jpegCallback);

 return super.onKeyDown(keyCode, event);

// Save picture taken ----------------
public void onPictureTaken(byte[] data, Camera camera) {

 FileOutputStream outStream = null;
 String path = String.format("/sdcard/%d.jpg", System.currentTimeMillis());

 outStream = new FileOutputStream(path);
 outStream.write(data);
 outStream.close();
 Log.d(TAG, "onPictureTaken - wrote bytes: " + data.length);

 checkLight(path);

 camera.startPreview();
 Log.d(TAG, "onPictureTaken - jpeg");
}};

// Analyze picture taken ----------------
private void checkLight(String _path) {
BitmapFactory.Options options = new BitmapFactory.Options();
Bitmap bitmap = BitmapFactory.decodeFile(_path, options);

int photoW = options.outWidth; int photoH = options.outHeight;
int A, R = 0, G = 0, B = 0; int r,g,b; int pixel;

 // scan through all pixels
 for(int x = 0; x < photoW; ++x) {
 for(int y = 0; y < photoH; ++y) {
 // get pixel color
 pixel = bitmap.getPixel(x, y);
r = Color.red(pixel); g = Color.green(pixel); b = Color.blue(pixel);
R=R+r; G=G+g; B=B+b;
 }}
R= R/(photoW * photoH); G= G/(photoW * photoH); B= B/(photoW * photoH);
double E1 = 0.241*R*R; double E2 = 0.691*G*G; double E3 = 0.068*B*B;
double brightness= Math.sqrt((E1)+(E2)+(E3))/255.0f;

System.out.println("brightness(0-1): "+brightness);

 WindowManager.LayoutParams params =

 getWindow().getAttributes();
 params.flags |= LayoutParams.FLAG_KEEP_SCREEN_ON;
 params.screenBrightness = (float) brightness; //0-1
 getWindow().setAttributes(params);

 Log.d(TAG, "Brightness changed"); }

74

To analyze the picture taken, the application converts it to a bitmap and gets the

width and height to be able to scan through all pixels. The application saves the quantity of

red, green and blue of each pixel and uses these values to calculate the brightness of the

picture. The value calculated is used to set the screen brightness the same way as before with

the light sensor.

5.2.4.4. Object Detection

As said before, object detection can be important in many ways: if the camera detects

a world famous building, this will denunciate our location at that time. This information may

be used to change the audio or the subtitles of the video to another language. As long as the

picture taken is saved and the Android API allows this, the photo can be used to do all kinds of

image processing for countless purposes.

It was used FaceDetector.Face class of Android that detects faces on a picture. This is

interesting, because it can be used if there are any issues about privacy or other related with

more than one person in the room.

The application counts the number of faces detected in the photo taken. If there are

one or more faces, the application can take action for privacy issues (not

implemented).

// Face detection ----------------
public void setFace(Bitmap bitmap, int photoW, int photoH) {
 FaceDetector fd;
 FaceDetector.Face [] faces = new FaceDetector.Face[MAX_FACES];
 int count = 0;

 fd = new FaceDetector(photoW, photoH, MAX_FACES);
 count = fd.findFaces(bitmap, faces);

 if(count >0){
 //Take action for privacy issues
 }
 Log.d(TAG, "Faces detected= "+count);
}

75

Chapter 6

Tests and Conclusion

6.1. Tests

The following tests were used to evaluate the performance of the developed algorithms

and the overall video playback. The performance is appraised by objective and subjective

measurements.

The tests were done using a LG Optimus One (P500) [26], Android version 4.2.2 and CPU

version ARMv6, 600 MHz single core and primary camera with 3.15MP, 3G network data speed

HSDPA 7.2 Mbps. This is the default device used to run the tests.

6.1.1. Network Conditions

The bandwidth consumption on a network can easily increase, if there are a lot of

other machines using the network at same time. This means that the available bandwidth will

decrease. The tests toke place on FEUP’s network, during a work day, and in a home network

with a 30Mbps connection speed. On contrary of FEUP’s network, the home network has very

little parallel bandwidth consumption, because there are no more users using the same

network.

To estimate the available bandwidth it is downloaded a text file with 50 Kb located on

the server. The ratio between the file size and the time it takes to download it is an

approximation of the available bandwidth at that current time. The result can be more

accurate if this file size increases. But, if the file size is too big, it will affect the result,

because the download is consuming more bandwidth that is supposed to, decreasing the

available bandwidth.

76

So, other method used for this measurement consists on using the last segment

downloaded instead of a 50 Kb text file. The difference between the two methods is that the

segments differ in size from each other. They can go from 25 Kb, such as the segments with 2

seconds duration and minimum bit rate, to 4 Mb, such as segments with 12 seconds and

maximum bit rate.

Other important aspect is the fact that the Server is running in the same network as

the DASH Client. Accessing the Server from an external network would require VPN connection.

This way, the packages won´t make network hops to travel between Server and Client,

meaning the download time will be lower and the available bandwidth could be higher than the

actual network throughput.

Analyzing the three curves, it’s clear that the 3G Network, despite being the network

that reaches higher results for available bandwidth, is the one who has a more irregular

behavior. This makes it the best network to simulate an environment with a lot of variation.

Segments Transferred

Files Transferred

Figure 45 - Available bandwidth (Kbit/s) using the download time of a 50Kb file,
transferred 10 times.

Figure 46 - Available bandwidth (Kbit/s) using the download time of a movie’s segments. The movie was
divided in 63 separated segments.

A
va

ila
b

le
 B

an
d

w
id

th
 (

K
b

it
/s

)

A
va

ila
b

le
 B

an
d

w
id

th
 (

K
b

it
/s

)

77

Table 2 - Average available bandwidth measures of different networks, using Wireshark and

the DASH Client with the 50Kb file method and the segments method.

Available

Bandwidth

(Average)

50 Kb file

(Wireshark)

Segments

 (Wireshark)

50 Kb file

(DASH Client)

Segments

 (DASH Client)

Home Network 370 Kbit/s 235 Kbit/s 9852 Kbit/s 4960 Kbit/s

FEUP Network 304 Kbit/s 376 Kbit/s 942 Kbit/s 683 Kbit/s

3G Network 258 Kbit/s 892 Kbit/s 9340 Kbit/s 5239 Kbit/s

Comparing the average available bandwidth of all three networks, there are a lot more

available bandwidth in the Home Network and 3G Network, compared to the FEUP Network.

This proves that FEUP Network has a higher usage, making it the best network to simulate an

environment with higher bandwidth consumption.

As for the “50 Kb file” method versus “Segments” method, the first one presents the

highest results for available bandwidth. Considering that these measures have a “gain”, caused

by the shortage of the download time, due to the server sharing the same network as the

client, I assume that the second method’s measures are more realistic.

The Wireshark measurements where done in the Server side while the Client was

running the tests. Comparing the Wireshark measures and the DASH Client’s measurements,

the first one returns much lower results. While DASH Clients’ measurements uses only one file

exchange, between Server and Client, to calculate the available bandwidth, Wireshark uses the

whole network traffic to do the same calculation. This explains the lower results. However it

doesn’t explain irregularity of the results of the two applications. The network who has the

highest/lowest measures using the DASH Client should be the same using Wireshark.

6.1.2. Noise Conditions

The noise measurements were done in different room conditions, to simulate different

sound pressure levels. Two high rated applications on the Android Market were also used to

compare the measures.

78

Table 3 - Sound pressure level measures of different sound sources, using Noise Meter,

Decibelímetro - Sound Meter and the DASH Client.

Source of Sound Sound

Pressure

Scale

Sound

Pressure

Level (dB)

Noise

Meter

(JINASYS)

[24]

Decibelímetro

– Sound Meter

(Smart Tools

co.) [25]

DASH

Client

Hear damage (over

long-term exposure)

__ 85 dB __ __ __

Traffic at a busy

roadway

Very High 80 – 90 dB 58.2 dB 71 dB 69.16 dB

Passenger car High 60 – 80 dB 50.5 dB 67 dB 60.6 dB

TV (set at home

level) at 1m

Normal 55 – 65 dB 45.7 dB 58 dB 54.2 dB

Normal conversation Low 40 – 60 dB 42.8 dB 56 dB 52.6 dB

Very calm room Very Low 20 – 30 dB 24.9 dB 41 dB 33.4 dB

Auditory threshold at

1Khz

__ 0 dB __ __ __

To calculate the sound pressure level in dB it was used discrete values, calculating the

average of several intercalated measures using the equation (1.1), where 𝑃 is the sound

pressure and 𝑃0 is the reference sound pressure:

 𝑃

 , (1.1)

 The sound pressure 𝑃 is calculated using the maximum amplitude from the audio

recording. The reference 𝑃0 equals 𝑃 , which is the auditory threshold. This value is

the threshold of hearing, corresponding to a sound pressure level of 0 dB.

From the analysis of the measures made, the DASH Client return similar values when

compared with the other two applications used for testing. In general the values returned

represent well the sound pressure level of the respective source of sound.

The difference between the measures of the two market applications used for testing is

a good prove that noise measurement using smartphone it´s not very accurate, mainly because

of the algorithms used, hardware differences of the microphones and CPU power. The

applications may compute the FFT of the audio file instead of using equation (1.1) or even use

variations of it. Maybe the two algorithms are calibrated for different types of microphones.

79

Finding the sound pressure level from smartphone audio recording and change the

playback volume accordingly can be tricky for three main reasons:

1. The microphones built in different devices have different characteristics and

calibrations, so different devices can be more or less sensitive to sound measures,

returning different values, despite the same sound pressure of the same sound

source.

2. The microphones in these devices were designed for a specific frequency range,

namely the voice frequency. This range occupies the spectrum from 300 Hz to 3

KHz. The recording will be limited to this range, leading to possible errors in the

measurements.

3. During a video playback, a main source of noise can be the speaker of the same

device, because it is so close to the microphone. So, if other noise sources in the

room don’t vary their noise level, the only changes that the microphone will

capture are the ones from the speaker.

This way, the system can enter an infinite loop. Because the playback volume

raises if the noise level increases, if the only source of noise is the device’s

speaker, the microphone will detect an increase on the noise level every time the

volume raises and responds to that with another volume raise. The same thing

appends if the volume decreases.

To prevent this infinite loop from happen, instead of comparing a measure with the one

immediately before, the application could simply take a measure and see where it fits on the

sound pressure scale. According to the result, it would set the playback volume if it was too

high or too low.

But, this solution has problems too, because different devices will return different results. One

device can return 50 dB of sound pressure and other one, in the same conditions can return 80

dB.

6.1.3. Brightness Conditions

Ambient light level is measure in lux (lumen per square meter). Lux readings are

directly proportional to the energy per square meter that is absorbed per second. Human

perception of light levels is not so straightforward, because our eyes are constantly adjusting

and changing that perception. However, this perception can be simplified by creating ranges of

interest, with known upper and lower thresholds.

80

If a logarithmic scale is used on the lux ranges, the relation between these ranges and

the associated lighting step will be roughly linear. The ranges can be normalized using equation

(1.2), where 𝑥 is the measurement luminance measurement in lux:

 (𝑥)

⁄ , (1.2)

The DASH Client uses the light sensor or, if the device hasn’t one, the camera to make

measures of lighting levels. When using the camera, the resulting picture is analyzed on

background. The perceived brightness of an image, using RGB color space, can be calculated

using several different formulas. It was used equation (1.3) that relates the weighted distances

in a 3D RGB space, where R, G and B are the number of red, green and blue pixels,

respectively:

 √(𝑅 𝐺 𝐵) , (1.3)

To normalize the value, the result is divided by 255, which is the maximum value of

each color depth.

For better understanding, RGB color space could be imagined as a cube, where each of

the three colors is an axis. In one corner there is black (RGB 0,0,0) and in the other corner

there is white (RGB 255,255,255). So, if the color is close to black than it should be darker. The

coefficients of each color are used to give different weight to each axis, because some colors

are brighter than other.

Table 4 - Average brightness level measures of different lighting conditions, using DASH Client

with a 3.15MP and a 5MP camera.

Lighting

Condition

Lighting

step

Lux Light

Normalized

(Average)

DASH

Client

(3.15MP

Camera)

DASH

Client

(5MP

Camera)

Pitch Back 1 0 – 10 lux 0% – 20%

(13.98%)

1.35% 1,46%

Very Dark 2 11 – 50

lux

21% – 33%

(29.54%)

14.90% 15.06%

Dark

Indoors

3 51 – 200

lux

34% – 46%

(41.94%)

19.53% 28.48%

Dim Indoors 4 201 – 400

lux

47% - 52%

(49.54%)

26.45% 32.63%

Normal

Indoors

5 401 –

1000 lux

53% - 60%

(56.90%)

30.98% 43,66%

81

Bright

Indoors

6 1001 –

5000 lux

61% - 73%

(69.54%)

30.45% 46.06%

Dim

Outdoors

7 5001 –

10000 lux

74% - 80%

(77.50%)

31.27% 48.98%

Cloudy

Outdoors

8 10001 –

30000 lux

81% - 89%

(86.02%)

38.05% 50.12%

Direct

Sunlight

9 30001 –

100000

lux

90% - 100%

(96.26%)

40.01% 52.67%

To compare and analyze the results, a Samsung Galaxy Ace S5830 [27] was used, built

in with a 5MP primary camera. The results have improved, using a 5MP camera, because the

photo taken is represented with more pixels, meaning that objects on the picture are better

represented and the brightness calculation will return a better value.

The overall results show that the brightness calculated is not within the range in the

specified lighting condition, the measurements are too low. Although, the results are steady,

changing accordingly with the lighting step.

Using the camera for measuring the lighting conditions is not an efficient process. The

camera consumes a lot of resources from the device. Besides, holding and releasing the camera

must be done on specific stages of the “taking picture” algorithm. If a picture is taken before

the camera is released, an error will occur and the whole application will shut down.

Furthermore, the measurements may vary according to hardware differences on the camera’s

devices.

6.1.4. Video Playback

In this section, the usage context information methods are used during media playback,

to evaluate their performance when integrated in the overall system. The media playback

without using the methods mentioned before and the original media playback, using the

default streaming process of Android were also used for performance tests.

This performance was evaluated objectively, using an option from Android operating

system, which gives a feedback of the CPU usage, and subjectively, collecting the opinion of a

few users, when asked to compare the different streaming sessions.

Android uses Linux load averages to show the user the amount of computational work

that the device performs. The result is the amount of load on a CPU and not the load level of

the CPU utilization. Strangely, CPU usage on Android devices is almost always near 100%. This

is a good thing, because it means that all important processes are running on the background.

82

The load averages are represented by three numbers, representing averages over

progressively longer periods of time (one, five and fifteen minutes). So, higher numbers means

a problem or an overloaded device. The CPU load of the default device for testing before

running the application was 8.52, 7.13, 3.58. MOS is generated by the averaging the results of

people’s opinion.

Table 5 - Relationship of the MOS classification with the quality and impairment of the

media content.

MOS Quality Impairment

5 Excellent Imperceptible

4 Good Perceptive but not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying

Table 6 - MOS classification and CPU load of different video playbacks.

Video Playback CPU Load MOS

Playback only 9.38, 8.42, 5.44 2

Playback + Network Conditions 10.21, 9.06, 6.88 2

Playback + Noise Conditions 10.23, 9.35, 6.22 2

Playback + Brightness Conditions 11.01, 9.56, 8.57 1

Playback + All the above 11.41, 9.97, 8.77 1

Table 7 - MOS classification and CPU load of different video streaming types.

Streaming Type CPU Load MOS

Original Video 9.32, 8.55, 5.54 2

Full Range – Segment: 2s 10.21, 9.06, 6.88 2

Partial Range – Segment: 2s 10.12, 9.22, 7.99 2

Full Range – Segment: 5s 11.16, 9.83, 8.37 2

Full Range – Segment: 7s 10.96, 10.24, 8.75 1

Full Range – Segment: 10s 10.35, 10.25, 8.9 1

Full Range – Segment: 12s 11.11, 10.59, 9.32 1

83

Analyzing the CPU load measures, higher results are observed, if the playback is done

using the algorithms to collect the usage context information. This is caused by an increase of

parallel threads running on the CPU. This behavior repeats itself if the streaming uses bigger

segment file sizes. Because the files are bigger, the threads to request and download these

files will take longer to finish. There will be a bigger accumulation of other threads, waiting to

be processed, leading to an increase of CPU load.

About the quality of experience during the video playback, there are some

considerations to be aware:

1. Synchronization of audio and video

All different playbacks and streaming types tested had problems with synchronization

of audio and video. The gap between the two will increase if the file is bigger, due to

higher segment length or if the segment quality increases. To minimize this problem’

effects, the best streaming type to use is with the lowest segment length. On the other

hand, if the playback only contains segments with the lowest bit rate, the synchronization

problems won’t be as bad, but this will deteriorate the quality of experience.

A Samsung Google Nexus S [28], with a more recent and powerful CPU than the default

device, encounter the same problem under the equal playback conditions. Although, the

resulting gap was actually smaller than the one obtained previously.

2. Playback only versus Playback + Usage Context Information

The most important context information used for video playback adaptation is the

information about network conditions. The bit rate of the segment to be requested must be

smaller than the available bandwidth at that time, to avoid rebuffering. Without these

measurements, the application won’t be able to adapt the video playback. The other methods

are less important, because they adapt properties of the device, such as volume and screen’s

brightness. So, they improve the quality of experience but not the quality of the video

playback, because the segments downloaded will have all the same bit rate.

3. Original Video versus DASH Streaming

The behavior of the original video playback was expected to be this way. Because the file

was encoded for progressive download to be able, the playback was a quick start. The video

quality doesn’t change, so if the bit rate is too high related to the available bandwidth, the

playback will have a lot of glitches and rebuffering.

The DASH streaming fixes the glitches problem, but on the other hand, it doesn’t maintain

a continuous video quality. The quality may vary from being very good (2Mbps bit rate) on one

second to being very poor (50Kbps bit rate) on the next one. These sudden changes occur

because of the irregular behavior of the available network.

84

Sometimes the video playback may pause briefly, especially in the beginning, because the

library assumes that the cache file being played had reached the end, even if it doesn’t. The

cache file was to be reopened again and start the playback in the same position where he left.

Because of the synchronization problem, this pause can take a few seconds. The audio stops,

but the image is still being presented for a few seconds. Then the cache file will be reopened.

These few extra seconds wouldn’t exist if there wasn’t a synchronization problem, so the pause

will behave more as a glitch. Because video is being adapted, this playback pause problem only

occurs at the beginning or, if the file length is too big, one or two more times during playback.

6.2. Difficulties and Troubleshoot

During the development of this project, some difficulties were encountered. Some of

them were resolved, other weren’t.

1. Retrieve information from MPD file

The metadata file that contains all the information about the media segments is

retrieved in the beginning of the playback. The information in the file needs to be easily

accessed in all the classes that play a role in the segment request process.

To make this information global on the application, in the beginning a database was

used. To access the information, the application needed to simply do a query to the database.

These approach turn out to be inefficient, because the process was very slow. The bigger the

MPD file, the slower the process was. The metadata can easily reach thousands of lines if there

are many different representations and, if the movie file is too long, each representation would

have a large number of segments.

This issue was resolved using, instead of a database, Array Lists and HashMaps, which

turn out to be the best solution. Hash Maps are a data structure consisting of a set of keys and

values in which each key is mapped to a single value. Each MPD element was associated with a

Hash Map and the respective attributes were associated to the keys.

Because several elements of the same type may exist, such as <representation> for

example, several Hash Maps representing that element were organized into an Array List. To

retrieve the information, the application accesses the associated Array List and specifies the

element and attribute.

2. Library to decode the streaming

Vitamio was the library chosen to play the video content. This library is based on

FFmpeg and used the same way as the Android default video player, but this time with

amplified capacities and more functionalities.

85

Android version >= 3.0 supports HLS streaming, meaning the default video player

supports .ts files reproduction and progressive streaming. The problem is that progressive

streaming has to be done manually, because the application need to control dynamically which

segments have to be requested, alongside with the video presentation.

So, Vitamio was used to be able to do this. Some problems with Vitamio were:

 Finding the library

To be able to write the segments to a file and reproduce it at the same time, a lot of

technologies were tested but all without success, except Vitamio.

The Android default player was limited, so an external player available in the Android

Market would be an option. But, this way, all the functionalities of the player couldn’t be fully

controlled. So, there was the need to develop a video player instead of using an existing one.

FFmpeg was the next possible solution. With this library, the application would be able

to manipulate the video presentation. Because FFmpeg is written in C and C++ (native-code can

be helpful so it canbe possible to reuse existing code libraries with these languages), to

integrate this library in the project, NDK had to be installed and configured. The project would

have regular java files and native code files, called from the java code, to access the library

methods.

So FFmpeg would be an excellent solution, but very complex to build. To start, the

installation and configuration of NDK was not trivial at all, especially since Windows platform

were used. Second of all, it required some time studying how to manipulate the libraries

methods and how to use them. Vitamio library was discovered a few days after configuring NDK

to use FFmpeg.

Vitamio is the foundation of VPlayer Video Player, one of the most popular Android

video players and itself is based on FFmpeg. So I could install this library, without having to

install NDK or develop any native code, and take advantage of FFmpeg capacities in a very

intuitive way.

 Problems with different versions of devices CPU

Vitamio is a great library, but the current full released version has some issues related

with some CPU architectures, such as ARMv6. The default device for tests was an ARMv6

device. So the streaming is working, but the video quality is really bad, because the audio and

video are not in phase along the presentation. The audio is playing at normal speed, but the

image is really slow, almost like a slow motion.

This won’t be an issue if the upgraded version of the library, Vitamio4.0, which is not

full released yet.

86

 Play MP4 files

Although MPEG-DASH supports both .ts and .mp4 files, the most common video files used

are MP4. MP4 is a superior format than MPEG2-TS [23]. According to Timothy Siglin, in two

decades of existence, little has changed in that timeframe for basic MPEG2-TS capabilities.

MP4 files as benefits such as content/metadata separation, independent track storage, trick-

play modes, backwards compatibility, seamless streaming splicing and integrated DRM.

The problem is that MP4 files could not be played. The content was encoded with

different parameters, but none would work. The streaming of MP4 files require that the

“moov” atom must be placed before the media content to be downloaded from the server first.

And strangely, the same MP4 files could be played with Android default player.

Maybe when FFmpeg encodes the files, it places this atom at the end of file, and for this

reason, not suitable for streaming. Maybe the parameters used for encoding are not supported

by Android.

6.3. Future Work

Several suggestions of possible expansions to the work here described are presented:

1. Live streaming

The developed DASH client doesn’t support live streaming. The DASH protocol allows this,

using a live profile. The system developed would need to support:

 MPD parsing for live content on the Client side. The algorithm developed to parse the

MPD file and to request the segments are not suited for live content.

 Live content generation on the Server side. It is required a video recorder device

connected to the Server. The Server must be able to receive the content and encode it

right away, to be available to send to the client when requested.

2. Other platforms

The DASH client was developed only as an Android application. Versions for other operating

systems, such as Apple – IOS, Microsoft – Windows Mobile, Nokia – Symbian and Black Berry –

RIM can be a possibility in the future.

Another important platform would be a web based application. The recent HTML5 protocol

allows media reproduction. This feature would be used to display the media files, controlled

using JavaScript. In fact, DASH is being developed with the intent to be used with HTML5

media reproduction capacity. This way, the technology will go global, targeting much more

users, because they only need a browser that supports DASH. Besides, they can use it in any

machine with Internet connection, not just their phone.

87

3. Vitamio’s library update

The DASH Client uses Vitamio3.0 to reproduce video content. This version has known

problems with different CPUs. There are a lag between audio and image display.

Vitamio4.0 is expected to be fully released later this year. This version would not have any

problem with different CPU devices and will support many new features that can be used for a

better user experience.

4. Context Information

New usage context information sources could be used to give a better user experience:

 Object and Face Detection

The DASH client supports face detection, but it really doesn’t do anything with that

information. This can be used to detect if there is more than one person in the room. Maybe

the user doesn’t want other people to watch what he is watching for some reason, so privacy

issues must be considered. In fact, in the future the application could use face detection

together with face recognition, displaying the content only for the intended user.

 CPU Usage

More resources used to collect the usage context information means more CPU usage. The

application would run more threads in parallel and this leads to more CPU memory

consumption.

This CPU usage can be an issue, because if the memory consumption is too high, video

playback can be compromised. So, measure CPU memory usage can be an important feature.

If the memory consumption is too high, the application would kill threads used to control

the camera or the microphone. If that wasn’t enough, the application would request segments

with a lower frame rate, meaning fewer frames per second to be processed by the CPU.

6.4. Revision of work

The project developed consists on a prototype for a web video streaming service such as

VoD. This prototype is used to study different solutions to increase the quality of experience of

the user.

The system developed is constituted by a web Server, the service provider and a

smartphone application to request the service. The web Server stores the files to be delivered

after their request by the user. The smartphone application is for Android devices. It functions

like a video player, using a streaming protocol, MPEG-DASH, to adapt the video content.

To display the video, the application follows a progressive streaming strategy, using

Vitamio library, to be able to control which content form should be requested next.

88

To adapt the video content, the application uses different strategies to decide the best

content form to deliver. For this it uses context information collected from Android sensors and

resources. It uses available bandwidth to decide the quality of the content to be requested;

noise conditions, using the microphone measures, to decide the volume level of playback;

brightness conditions, using the light sensor or camera measures, to decide the brightness level

of the screen; phone position, using the orientation sensor, to match the video resolution with

the screen resolution; face detection, using the camera, to make a decision if there are privacy

issues.

The application does what it supposes to do. It adapts the video using the available

bandwidth measures, avoiding the constant glitches observed on the original video playback.

The volume and screen brightness adaptation works well, although it can become annoying, if

some measures doesn´t reflect correctly the real conditions, because of the different devices

used.

The subjective evaluations don’t correspond to the objective ones, because of the

secondary effect of the overall functionalities. I’m talking mainly of the synchronization

problem on the video playback. This results on a poor quality of experience, which is the

opposite of what was expected to reach with this project. But, between the playback of the

original file and the DASH streaming, although it is bad, the quality of experience actually is

better with the second one.

89

References

[1] “Investigation Report on Universal Multimedia Access”, Eiji Kasutani, January 2004.

[2] Composite Capabilities/Preference Profiles. Available on

http://www.w3.org/Mobile/CCPP/. Access on January 2013.

[3] “A Survey on Delivery Context Description Formats – A Comparison and Mapping Model”,

Christian Timmerer, Johannes Jabornig, Hermann Hellwagner, Department of Information

Technology (ITEC), Klagenfurt University Austria, February 2010.

[4] “Evaluation of Usage Environment Description Tools”, Robbie De Sutter, Frederik De

Keukelaere, Rik Van de Walle.

[5] “Experiences in Using CC/PP in Context-Aware Systems”, Jadwiga Indulska, Ricky Robinson,

Andry Rakotonirainy, Karen Henricksen.

[6] HTTP Live Streaming Overview. Available on

http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual

/StreamingMediaGuide/Introduction/Introduction.html. Access on October 2012.

[7] IIS Smooth Streaming Technical Overview. Available on http://www.microsoft.com/en-

us/download/confirmation.aspx?id=17678. Access on October 2012

[8] HTTP Dynamic Streaming on the Adobe Flash Platform. Available on

http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_

ue.pdf . Access on October 2012.

[9] The Java Tutorials. Available on http://docs.oracle.com/javase/tutorial/. Access on April

2013.

[10] Eclipsepedia. Available on http://wiki.eclipse.org/Main_Page. Access on April 2013.

[11] Android Developers. Available on http://developer.android.com/index.html. Access on

April 2013.

[12] Vitamio. Available on http://www.vitamio.org/en/. Access on March 2013.

[13] “The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, Anthony Vetro,

2011.

[14] “Adaptive Streaming of Audiovisual Content using MPEG DASH”, Truong Cong Thang,

Quang-Dung Ho, Jung Won Kang, Anh T. Pham, 2012.

[15] “A Test-Bed for the Dynamic Adaptive Streaming over HTTP featuring Session Mobility”,

Christopher Muller, Christian Timmerer.

[16] “Guidelines for Implementation DASH264 Interoperability Points”, DASH Industry Forum,

January 2013.

[17] “Implementation of DTS Audio in Dynamic Adaptive Streaming over HTTP (DASH)”, dts,

2012.

[18] ISO/IEC 23009-1, “Information technology – Dynamic adaptive streaming over HTTP

(DASH)”, 2012.

[19] FFmpeg Documentation. Available on http://ffmpeg.org/documentation.html. Access on

May 2013.

[20] MP4Box General Documentation. Available on http://gpac.wp.mines-

telecom.fr/mp4box/mp4box-documentation/. Access on May 2013.

[21] Apache Tomcat. Available on http://tomcat.apache.org/. Access on March 2013.

http://www.w3.org/Mobile/CCPP/
http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html.
http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html.
http://www.microsoft.com/en-us/download/confirmation.aspx?id=17678
http://www.microsoft.com/en-us/download/confirmation.aspx?id=17678
http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf
http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf
http://docs.oracle.com/javase/tutorial/
http://wiki.eclipse.org/Main_Page
http://developer.android.com/index.html
http://www.vitamio.org/en/
http://ffmpeg.org/documentation.html
http://gpac.wp.mines-telecom.fr/mp4box/mp4box-documentation/
http://gpac.wp.mines-telecom.fr/mp4box/mp4box-documentation/
http://tomcat.apache.org/

90

[22] Servlet Essentials. Available on http://www.novocode.com/doc/servlet-essentials/.

Access on March 2013.

[23] “Unifying Global Video Strategies: MP4 File Fragmentation For Broadcast, Mobile and Web

Delivery”, Timothy Siglin, 2011.

[24] Noise Meter - JINASYS. Available on

https://play.google.com/store/apps/details?id=com.pjw.noisemeter&feature=search_resul

t#?t=W251bGwsMSwyLDEsImNvbS5wancubm9pc2VtZXRlciJd. Access on June 2013.

[25] Decibelímetro – Sound Meter - Smart Tools co. Available on

https://play.google.com/store/apps/details?id=kr.sira.sound&feature=search_result#?t=W2

51bGwsMSwyLDEsImtyLnNpcmEuc291bmQiXQ. Access on June 2013.

[26] LG Optimus One. Available on http://www.gsmarena.com/lg_optimus_one_p500-

3516.php. Access on June 2013.

[27] Samsung Galaxy Ace S5830. Available on

http://www.gsmarena.com/samsung_galaxy_ace_s5830-3724.php. Access on June 2013.

Access on June 2013.

[28] Samsung Google Nexus S. Available on

http://www.gsmarena.com/samsung_google_nexus_s-3620.php. Access on June 2013.

[29] Android Developers Dashboards – Platform Versions. Available on

http://developer.android.com/about/dashboards/index.html. Access on June 2013.

http://www.novocode.com/doc/servlet-essentials/
https://play.google.com/store/apps/details?id=com.pjw.noisemeter&feature=search_result#?t=W251bGwsMSwyLDEsImNvbS5wancubm9pc2VtZXRlciJd
https://play.google.com/store/apps/details?id=com.pjw.noisemeter&feature=search_result#?t=W251bGwsMSwyLDEsImNvbS5wancubm9pc2VtZXRlciJd
https://play.google.com/store/apps/details?id=kr.sira.sound&feature=search_result#?t=W251bGwsMSwyLDEsImtyLnNpcmEuc291bmQiXQ
https://play.google.com/store/apps/details?id=kr.sira.sound&feature=search_result#?t=W251bGwsMSwyLDEsImtyLnNpcmEuc291bmQiXQ
http://www.gsmarena.com/lg_optimus_one_p500-3516.php.%20Access%20on%20June%202013
http://www.gsmarena.com/lg_optimus_one_p500-3516.php.%20Access%20on%20June%202013
http://www.gsmarena.com/samsung_galaxy_ace_s5830-3724.php.%20Access%20on%20June%202013
http://www.gsmarena.com/samsung_google_nexus_s-3620.php
http://developer.android.com/about/dashboards/index.html

	Title Page
	Resumo
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abbreviations and Symbols
	Chapter 1 - Introduction
	1.1 - Motivation
	1.2 - Main Goals
	1.3 - Document Structure
	Chapter 2 - Technologies for Multimedia Adaptable Application
	2.1 - Usage Context Information
	2.2 - Technologies and Protocols for Streaming
	2.3 - Conclusions
	Chapter 3 - Android API
	3.1 - Android Development
	3.2 - Android Sensors
	Chapter 4 - MPEG-DASH
	4.1 - DASH General Operation
	4.2 - MPD
	4.3 - Media Content
	4.4 - Media Coding
	4.5 - Use Cases and Future Work
	Chapter 5 - System Architecture and Implementation
	5.1 - Server Side
	5.2 - Client Side
	Chapter 6 - Tests and Conclusion
	6.1 - Tests
	6.2 - Difficulties and Troubleshoot
	6.3 - Future Work
	6.4 - Revision of Work
	References

