
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Abstract 
In this paper, we explore two different retinal vessel segmentation 
methods for the reliable estimation of vessels caliber in retinal images in 
order to assess vascular changes as an aid for the diagnosis of the ocular 
manifestations of several systemic diseases, namely diabetic retinopathy 
and hypertensive retinopathy. 

1 Introduction 
Retinal vessels can be affected by many diseases. In conditions such as 
diabetic retinopathy, the blood vessels often show abnormalities at early 
stages [1], [2]. Changes in retinal blood vessels are also associated with 
hypertension and other cardio-vascular conditions [ 3 ], [ 4 ]. Retinal 
vessel dilatation is a well-known phenomenon in diabetes and 
significant dilatation and elongation of arterioles, venules, and their 
macular branches occur in the development of diabetic macular edema 
that can be linked to hydrostatic pressure changes [5].  

An automatic retinal image analysis could provide an immediate and 
objective classification of retinopathy. Within this context, the main 
challenges to the automatic analysis of blood vessel changes are to be 
able to accurately segment the blood vessels, to align the images 
(registration), to correct any global variations in illumination, to estimate 
vessel caliber and to find segments of blood vessels that have changed 
significantly. 

In this paper, most of our intention is on comparing two different 
segmentation methods and using these algorithms for vessel calibre 
estimation. The first method segments retinal vessels based on centerline 
detection and morphological reconstruction [6]. The second method uses 
2-D Gabor Wavelets and supervised classification for segmentation [7].  

2 Segmentation Methodologies 
Vessel segmentation algorithms are the critical components of 
circulatory blood vessel analysis systems. In this section, we review two 
different methods for segmenting retinal vessels. First we briefly review 
the method proposed by Mendonça and Campilho which is based on the 
combination of the detection of centerlines and morphological 
reconstruction [6]. After that we review the method proposed by Soares 
et al. which is based on classifying each pixel as vessel or non-vessel 
[7]. 

The first method in [6], follows a pixel processing-based approach. 
The initial step of vessel centerline detection combines local 
information, used for early pixel selection, with structural features, as 
the vessel length. Global intensity characteristics and local vessel width 
information are adaptively exploited in the subsequent vessel filling 
phase. This method has three phases. The first one, the pre-processing 
phase, the background is normalized by subtracting an estimation of the 
background obtained by filtering with a large arithmetic mean kernel 
and then thin vessels are enhanced. 

The next phase is the detection of centerline segment candidates. 
The first operation aiming at extracting vessel centerline pixels is the 
application of a set of directional differential filters sensitive to the main 
vessel orientations. The particular kernels in this work are first-order 
derivative filters, known as difference of offset Gaussian filters (DoOG 
filters), with prevailing responses to horizontal (0°), vertical (90°), and 
diagonal (45°, 135°) directions. From each image containing the 
selected set of candidate points in one specific direction, an initial 
collection of centerline segments is generated by a region growing 
process. Each centerline candidate segment is validated by comparing its 
intensity and length features with image dependent reference values. 

The third phase is vessel segmentation. For this purpose, a multi-
scale approach is followed, where a set of morphological operators with 

increasing structuring element size is used for generating several 
enhanced representations of the vascular network. 

In this method, the background normalized image is processed by a 
sequence of top-hat operators using circular structuring elements of 
increasing radius. The range of the radius of the structuring elements 
varies from 1 to 8 pixels, covering the overall range of vessel widths. 
The eight images at various scales are finally reduced to four, each one 
obtained as the average of the two responses of operators with 
consecutive radii. For each vessel enhanced image, a marker and mask 
images are obtained using threshold values derived from the intensity 
histogram of the non-null pixels; each one of these thresholds is defined 
as the highest intensity value such that the number of pixels with 
intensities above this limit is greater or equal to a predefined percentage. 

The final image with the segmented vessels is obtained by iteratively 
combining the centerline image with the set of images that resulted from 
the vessel segments reconstruction. In the first iteration, vessel 
centerline pixels are used as seeds for a region growing algorithm, 
which breed these points by aggregating the pixels in the reconstructed 
image derived from the top-hat operator with the smallest structuring 
element size. The aggregation of points is, as usual, conditioned by the 
connectivity restriction. In each of the subsequent three iterations, the 
reconstructed images corresponding to the vessels with increasing width 
are in turn used for extending the output of the previous region growing 
step. 

The second method was proposed by Soares et al. in [7]. In this 
method, each pixel is represented by a feature vector including 
measurements at different scales taken from the two-dimensional (2-D) 
Gabor wavelet transform. The resulting feature space is used to classify 
each pixel as either a vessel or non-vessel pixel. This is done using a 
Bayesian classifier with class-conditional probability density functions 
(likelihoods) described as Gaussian mixtures, yielding a fast 
classification, while being able to model complex decision surfaces. The 
first phase in this algorithm is preprocessing. In order to reduce false 
detection of the border of the field of view (FOV) by the wavelet 
transform an iterative algorithm was developed to remove the strong 
contrast between the retinal fundus and the region outside of the FOV. 

In the second phase, a set of features is extracted from the test 
images. For each pixel, five features are extracted. One is the green 
intensity and the others are four features obtained using 2-D Gabor 
wavelet at four different scales. The Gabor wavelet is capable of tuning 
to specific frequencies, thus allowing noise filtering and vessel 
enhancement in a single step. 

The third phase in this method is the training of the classifier. In this 
method supervised classification has been applied to obtain the final 
segmentation, with the pixel classes defined as C1={vessel pixels} and 
C2={non-vessel pixels}. The authors used a Bayesian classifier in which 
each class-conditional probability density function (likelihood) is 
described as a linear combination of Gaussian functions which is called 
Gaussian mixture model (GMM) classifier. For each class, given the 
number 

i
k of Gaussians, the 

i
k  Gaussian parameters and weights are 

estimated with the expectation- maximization (EM) algorithm. After 
defining the classifier, it is possible to segment vessels by classifying 
each pixel in the test images using the 5-feature vector. 

3 Evaluation and vessel calibre measurement 
results 
For evaluating these methods, the DRIVE database was selected. This 
database consists of 40 images (seven of which present pathology), 
along with manual segmentations of the vessels. The 40 images have 
been divided into training and test sets, each containing 20 images. The 
images in the training set were segmented by one observer, while 
images in the test set were segmented by two observer, resulting in sets 
A and B. The observers of sets A and B produced similar segmentations. 
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Performance is measured on the test set using the segmentations of set A 
as ground truth. The segmentations of set B are tested against those of 
A, serving as a human observer reference for performance comparison. 

In the first phase of evaluation, we trained the Soares method with 
20 images in the training set using the open source MATLAB scripts, 
which are available on their website [8]. The estimation of the GMM 
parameters for one million random vessel and non-vessel pixels as 
training samples for k=20 takes too much time and it also needs huge 
amount of memory. By reducing the number of samples to 300,000 and 
k=5, it takes 5 hours. The segmentation time for the test images in both 
methods was less than 1 minute but it should be mentioned that the 
method proposed by Mendonça and Campilho does not have a training 
phase.  

To facilitate the comparison between these two retinal vessel 
segmentation algorithms, we have selected the segmentation accuracy as 
performance measure. The accuracy is estimated by the ratio of the total 
number of correctly classified pixels (sum of true positives and true 
negatives) by the number of pixels in the image FOV. Other important 
measures are sensitivity and specificity, which are indicators of the 
number of properly classified pixels, respectively in the true positive and 
true negative classes. Sensitivity is also known as true positive fraction, 
while the true negative fraction, which stands for the fraction of pixels 
erroneously classified as vessel points, is associated with specificity. 
Table 1 shows the result of this comparison. As we can see in this table 
the method proposed by Mendonça and Campilho has better accuracy 
when compared with the other method. The segmentation results of 
these methods can be seen in Figure 1. 

In the second phase of evaluation, we selected 100 coordinates 
inside the vessels (5 points in each test image) and determined the 
vessels caliber on the segmentation results (the corresponding binary 
images) of both methods.  

In order to obtain an estimation of vessel caliber, we calculate the 
distance transform of binary results of the vessel segmentation methods. 
This transform computes the Euclidean distance transform of the binary 
images and labels each pixel of images with the distance between that 
pixel and the nearest non-vessel pixel. After that, for each coordinate, 
we find the value of distance transform. The vessel diameter value is 
calculated by duplicating the result of the distance transform minus one. 

Table 2 shows the average of relative error of vessel caliber 
measurement based on first human observer. For more comparison and 
better accuracy, we also calculate the relative error in different cases: 1) 
in all of selected points, 2) only in points where the difference between 
vessel caliber for the two human observers is less than two pixels 3) the 
difference is less than one pixel, 4) equal caliber in both human observer 
results. As we can see in table 2, the method proposed by Mendonça has 
a smaller relative error when compared with the Soares method. 

 

Table 1: Performance of vessel segmentation methods   

Method Average 
Accuracy 

True positive 
fraction 

False positive 
fraction 

2nd Human observer 0,947 0,776 0,027 
Mendonça [6] 0,945 0,744 0,025 

Soares [7] 0,940 0,752 0,031 

Table 2: Relative error of vessel calibre measurement 

Method Case 1 Case 2 Case 3 Case 4 
Number of points 100 66 52 39 

2nd Human observer  33% 9% 5% 0 
Mendonça [6]  32% 26% 29% 28% 

Soares [7]  40% 32% 37% 39% 

4 Conclusion 
We provided a review of two retinal vessel segmentation methods and 
compared their performance. One of the methods follows a pixel 
processing-based approach and the other one is based on supervised 
classification. As a result of an overall comparison, the method proposed 
by Mendonça and Campilho has better performance in measuring the 
retinal vessel caliber and also in the detection and segmentation of thin 
vessels. As can be seen in Figure 1, most of the thin vessels in Soares 
method are not segmented. Also Soares method needs training and it 
takes a lot of time for training the classifier. 
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Figure 1: (a) Original color fundus image. (b) Manual segmentation 
by human observer. (d) Segmentation result by Mendonça method 
[6]. (d) Segmentation result by Soares method [7].  
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