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Abstract 

Image registration or alignment has been widely used in several problems of 

computational vision. Such alignment can be described as the process of transforming an 

image such that correspondent areas or features are optimally overlapped between the 

aligned and the template images.  

Plantar pressure images carry crucial information about plantar diseases and 

deformations and allow to infer about postural issues. Additionally, several other 

pathologies have been associated to the plantar pressure data as the chronic ankle instability 

and the diabetic peripheral neuropathy. Plantar pressure data is usually analysed by means 

of some parameters as the centre of pressure and the arch index. 

Image registration can be extremely useful in plantar pressure images helping to 

reduce the number of samples needed to extract reliable parameters, to compare images 

acquired in different times, devices or from different patients and also allowing a more 

efficient diagnosis. 

In this work, a principal axes (PA) based method is developed in order to address 

the spatial alignment of plantar pressure images. Afterwards, this method is integrated in a 

framework aiming to perform the alignment of image sequences both in time and space. 

This framework uses a dynamic programing based algorithm to match images from different 

sequences and then it establishes a polynomial temporal relationship between both 

sequences. The accuracy of the framework is accessed through the mean standard error 

calculation between the aligned and the template sequences. Additionally, control 

deformations are applied to the sequences in order to find the residual errors between 

original and re-aligned sequences. 

The PA based method presented fast computational processing speed but poor 

accuracy in the spatial alignment of real images. The framework obtained better accuracy 

in the intra-subject spatio-temporal alignment when using high degree polynomials 

(p<0.001) up to 10th degree. 

Finally, a correlation is sought between the average of the plantar pressure 

parameters (extracted from the various sequences) and the parameters extracted directly 

from a mean sequence of images (built from the spatio-temporal aligned sequences of the 

same subject). High correlations were found between both variables suggesting that using 

only one sequence of images obtained by the mean of the spatio-temporal aligned sequences 

is enough to extract reliable plantar pressure parameters. 

 

Keywords: plantar pressure; spatio-temporal alignment; mean sequence.  
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Resumo 

O alinhamento de imagem tem sido amplamente usado em vários problemas de 

visão computacional. Este alinhamento pode ser descrito como o processo em que uma 

imagem é transformada de forma a maximizar a sobreposição das áreas ou características 

correspondentes numa imagem modelo. 

As imagens de pressão plantar podem conter informação importante acerca de 

doenças ou deformações plantares e podem também permitir analisar a postura. Outras 

patologias tais como a instabilidade crónica do tornozelo e a neuropatia diabética periférica 

têm sido também associadas ao estudo da pressão plantar. Alguns dos parâmetros 

normalmente usados para analisar a pressão plantar são o centro de pressão e o arch index. 

O alinhamento de imagem pode ser útil quando usado em imagens de pressão 

plantar pois pode ajudar a reduzir o número de amostras necessárias para extrair parâmetros 

consistentes e para comparar imagens extraídas em diferentes momentos temporais ou por 

diferentes aparelhos de medição. Podem ainda permitir a comparação de imagens de 

diferentes pacientes e ajudar a tornar o diagnóstico mais eficiente. 

Neste trabalho é desenvolvido um método de alinhamento espacial de imagens 

baseado no alinhamento dos eixos principais. Este método é integrado num algoritmo de 

alinhamento espácio-temporal. Este algoritmo usa programação dinâmica para emparelhar 

imagens de diferentes sequências e depois estabelece relações temporais entre as 

sequências através de polinómios. A precisão do algoritmo é testada através do cálculo do 

erro médio padrão entre as sequências alinhadas e a sequência original. São ainda aplicadas 

deformações espaciais e temporais conhecidas em todas as sequências com o objetivo de 

calcular os erros residuais entre a sequência original e a sequência realinhada. O método 

baseado no alinhamento de eixos principais demonstrou ser computacionalmente rápido mas 

pouco preciso no alinhamento de imagens reais. O algoritmo de alinhamento espácio-

temporal obteve maior precisão usando polinómios de graus elevados (p<0.001). 

Por fim, é feita a média entre os parâmetros de pressão plantar extraídos 

individualmente de cada sequência. Os valores obtidos foram comparados com os valores 

dos parâmetros diretamente calculados a partir de uma sequência média construída através 

das sequências alinhadas no tempo e no espaço. Foram encontradas altas correlações entre 

os valores obtidos pelos dois métodos, o que pode indicar que o uso de apenas uma sequência 

de imagens (obtida através da média das sequências alinhadas) é suficiente para extrair 

parâmetros de pressão plantar consistentes. 

 

Palavras-chave: pressão plantar; alinhamento espácio-temporal; sequência média.  
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Chapter 1 - Introduction 

 
Image registration or alignment has been extensively used in medical image 

processing and analysis. The alignment is performed between a fixed and a moving image.  

The temporal alignment is also possible in sequences of images. The need for 

image alignment arises mainly from the cases where images of the same scene are acquired 

from different viewpoints or times, when images are acquired by different acquisition 

devices and when alignment between an image of a scene and an atlas is pretended (Zitová 

and Flusser, 2003). 

In this work, the alignment of plantar pressure images and sequences is focused. 

Firstly, it is convenient to understand why the alignment of plantar pressure images is 

important. Plantar pressure images carry crucial information about plantar diseases and 

deformations and allow to infer about postural issues. Additionally, several other 

pathologies have been associated with the plantar pressure data as the chronic ankle 

instability and the diabetic peripheral neuropathy.  

Image registration can be extremely useful in plantar pressure images helping to 

reduce the number of samples needed to extract reliable parameters, to compare images 

acquired in different times or devices and also to compare images from different patients. 

Moreover it enables a more efficient diagnosis. 
 

In this Thesis, techniques of spatial and temporal alignment of plantar pressure 

image sequences were developed. Using the aligned sequences (both in time and space) one 

hypothesis was considered: is the mean sequence of images (built from aligned sequences) 

equally reliable to extract plantar pressure parameters when comparing with the full set of 

sequences?  
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1.1 Motivation & Goals 

The main idea behind this project was the development of alternative techniques 

to use as a pre-alignment step of a framework found in literature. Thus the main goals were: 

 

 To understand algorithms applied to spatial and spatio-temporal alignment of 

plantar pressure images currently found in literature. 

 To create a fast spatial alignment algorithm based in features segmentation and 

matching. 

 To develop a fast temporal alignment algorithm to find an initial estimation of the 

temporal transformation values. Such procedure could be used as a pre-registration method 

to be integrated with a more robust subsequent step. 

 To analyse both methodologies and compare results. 

 To test the hypothesis that using a mean sequence of images is equally reliable than 

using the full dataset concerning some relevant parameters in plantar pressure 

studies. 

1.2 Contributions 

This Thesis contributed to increase the understanding on the problem of spatio-

temporal alignment of image sequences. 

Moreover it adds some knowledge and tools to the current research work in plantar 

pressure images: 

 

 Principal axes method is not an accurate solution to align plantar pressure 

images but it would be useful to align similar images (differing only by displacements and 

rotation). 

 

 Dynamic programing based algorithm is a good solution to establish 

matching between images from different sequences not only in plantar pressure images 

sequences but also in other problems. 

 

 High degree (up to 10th degree) polynomials can be an alternative smooth 

solution to describe usual temporal relations between images from different sequences. 
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 The developed temporal alignment framework is able to be used as a pre-

alignment method in order to allow a fast convergence of an optimization method performed 

in a final registration step. 

 

The final contribution of this work relies in the study of the reliability of building 

a mean representative sequence of images from an intrasubject dataset. 

 

1.3 Structure 

This Thesis follows the next structure: 

 

Chapter 2 – Plantar pressure data: This chapter seeks to demonstrate the 

importance of plantar pressure data analysis. Some acquisition techniques are enumerated 

and some plantar pressure parameters with relevance in this work are described.  

 

Chapter 3 – Plantar pressure images registration: In this chapter, an 

overview in image alignment methods is exposed. Feature and intensity based alignment 

methods are compared. Common steps in the alignment of images are described. Finally the 

works found in literature addressing plantar pressure images alignment are reviewed. A 

special focus is given to the studies in the origin of this work. 

 

Chapter 4 – Methodologies developed: Initially, the developed spatial 

alignment algorithm is described. Then, the tests used to access the accuracy of this method 

are detailed. The second part of this chapter is the spatio-temporal alignment algorithm 

description. Here the spatial algorithm is not described because it is the same described 

before. Only temporal alignment is reported. Again tests used to measure accuracy of spatio-

temporal alignment are detailed. Finally a mean sequence of images is built and compared 

with the original sequences by means of some relevant parameters in plantar pressure 

studies. 

 

Chapter 5 – Results and discussion: Results from the spatial alignment are 

presented and discussed independently of the results of spatio-temporal alignment. In 

addition, the correlations between values of the parameters extracted from the mean 

temporal sequence and from the original sequences are accessed. 
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Chapter 6 – Conclusions and future perspectives: This chapter revises 

the key conclusions in this work. Starting from the developed work, some improvements and 

future developments are suggested. 
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Chapter 2 – Plantar pressure data 

2.1 Introduction 

Plantar pressure measurements can help to understand foot dynamics and develop 

therapeutic footwear and orthoses for rehabilitation of some pathologies. In addition it can 

be an important tool in sports because studying biomechanics of walking and running helps 

to prevent injuries and to develop more adequate footwear and training techniques. 

Concerning the plantar pressure studies, the most common pathology found in 

literature is the diabetic peripheral neuropathy (DPN) but other pathologies have been 

studied in order to find relations with plantar pressure measurements. Some of these 

pathologies are listed below. Moreover, some important features of acquisition devices are 

introduced and examples of different equipments are shown. Relevant plantar pressure 

parameters are further described. 

2.2 Pathologies 

 Diabetic peripheral neuropathy (DPN): this pathology is a natural 

consequence of diabetes mellitus (DM) in most patients. DPN usually leads to foot 

deformities which cause increased pressure over the foot. Such increase in pressure is a 

main cause of foot ulceration (Waldecker, 2012). Bacarin et al. (2009) searched for a relation 

between plantar pressure abnormalities and the historic of ulceration in patients with DPN 

where ulcers were healed. This study is an example of the importance of the alignment of 

plantar pressure images. Image alignment can be useful when comparing images from 

different subjects, from the same subject collected at different times, and even from the 

same subject but acquired in different positions or collected by different acquisition 

devices. 
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 Chronic ankle instability (CAI): this pathology is characterized by the 

recurrence of lateral ankle sprains. It is a common problem in athletes and responsible of a 

decrease in the quality of life since 32% of the subjects with a casual ankle sprain evolve to 

the CAI (De Ridder et al., 2012). In Morrison et al. (2010), CAI was related with a more 

lateral plantar pressure distribution. 

 

 Functional hallux limitus: this is a common cause of the big toe pain. It can 

be characterized by an absence of motion of the first metatarsophalangeal joint during gait. 

Van Gheluwe et al. (2006) found significant relations between some plantar pressure 

parameters and the PF condition. 

 

 Plantar Fasciitis (PF): PF is an inflammatory state of the plantar fascia. This 

pathology is associated with an accentuated pain in the sole of the foot. In Ribeiro et al. 

(2012), no relation was found between PF and the plantar pressure pattern distribution in 

recreational runners.  

 

Additionally, other pathologies have been explored recently mainly by the 

companies developing plantar pressure measuring devices: 

 

 Chronic knee pain; 

 Chronic back pain; 

 Postural misalignments. 

 

Finding plantar pressure patterns and identifying potential problems helps to 

intervene effectively in: 

 

 Footwear: one of the main industries interested in the plantar pressure 

devices development is the shoe industry. Nowadays orthopaedic footwear is a very common 

solution to alleviate pain, compensate deformations and redistribute pressure mainly in 

subjects with pathologies such as the nominated above. 

 

 Orthotics: this a central field concerning neuromuscular and skeletal 

corrections. In orthotics, external devices called orthoses are developed. The lower limb 

orthoses are fulcral to stabilize gait, alleviate pain and correct deformities. To achieve that, 

the redistribution of foot pressure during gait is an important aspect.  

Plantar pressure studies are extensively used to find the best orthotses 

configuration and in many cases to detect orthoses failures. 
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2.3 Acquisition devices 

Acquisition of plantar pressure measurements is performed mainly by two types of 

devices: fixed platforms and in-shoe systems. All these devices are distinguished mainly by 

four features (Orlin and McPoil, 2000):  

 

 Resolution: it is defined by the number of sensors by area since the plantar pressure 

measuring devices are usually constituted by an array of discrete sensors. The resolution 

increases with the increase in the number of sensors.  

 

 Sampling frequency: this feature determines the temporal resolution of the system. 

Thus, the spatial frequency has to be carefully chosen according with the goal of the 

experiment. Obviously, if the experiment consists in analysing the plantar pressure pattern 

during running, the sampling frequency must be higher than in walking experiments. This 

feature is measured in samples by second (Hz). 

 

 Reliability: this parameter is associated with the error in the measuring device. It 

has been suggested that collecting 3 to 5 samples is enough to increase the reliability of the 

measurement (Hughes et al., 1991, Gurney et al., 2008) but each device has its own 

specifications and needs an individual study. Additionally, walking samples are necessarily 

different since the subjects has no uniform walking/running patterns. 

 

 Calibration: this procedure is fulcral to guarantee the validity and accuracy of the 

experiment data. Without calibration results may be sentenced to be meaningless. 

 

Fixed platforms and in-shoe systems have several vantages and drawbacks. The choice for 

an adequate system is always taken by the physician considering the goals of the study.  

 

1. Fixed platforms: the platform provides high-resolution measurements as well as a 

more accurate vertical force measurement (Orlin and McPoil, 2000). However, many steps 

are usually required which is an inconvenient in cases where the patient has a pathology as 

the DPN (with ulceration). Another evident problem is the alteration of the walking pattern 

by the patient. Commonly the patient has to perform some “walking adaptation” in the 

platform but there is always the possibility of an adulterated step because the patient 

adapts step to reach the platform. As example, two commercially available platforms are 

shown in Figures 2.1 and 2.2 together with some features highlighted by the manufacturing 

companies. 
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 RSscan 

 
 

Figure 2.1 – An example of a RSscan Footscan 
fixed platform (From footscanusa.com).  

Model: 

Footscan®(1m/500Hz plate). 

 

Main features: 

Number of sensors (max):  4096 

Sensor size: 5.08mm×7.62mm 

Measurement frequency:  500 Hz 

Sensor technology: resistive 

Pressure range: 0 – 200 N/cm2 

 

 

 

 Novel  

 

 
 

Figure 2.2 - An example of a Novel EMED-X 
fixed platform (From novelusa.com). 

Model: 

EMED® -X. 

 

Main features: 

Number of sensors (max):  6080 

Resolution: 1 or 4 sensors/cm2 

Measurement frequency:  400 or 100 Hz 

Sensor technology: capacitive 

Pressure range: 10 – 1270 kPa 

 

 

 

 

2. In-shoe systems: these systems are very important mainly in dynamic studies about 

footwear and orthotics development and surveillance. One of the main differences in 

relation to the fixed platforms is in the sensors. In-shoe sensors are usually less (lower spatial 

resolution) but they are more flexible. In spite of enabling the attachment in the shoe, such 

flexibility may facilitate the slip of the sensors array, compromising the accuracy of the 

results (Razak et al., 2012). In addition, the natural conditions of the foot as for instance 

the sweat can damage the sensors. As example, two commercially available in-shoe systems 

are shown in Figures 2.3 and 2.4. 
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 Novel: 

 

 

Model:  

Pedar®-X. 

 

Main features: 

Number of sensors (max):  256(1024) 

Scanning frequency:  20000 sensors/second 

Pressure range: 15-600 or 30-1200 kPa 

Sensor technology: capacitive 

 

 

 

 Tekscan: 

 

 
 

Figure 2.4 - Example of the Tekscan F-
scan in-shoe system (From tekscan.com). 

 

Model:  

F-scan®. 

 

Main features: 

Number of sensors (max):  960 

Measurement frequency:  165 Hz 

Resolution: 4 sensors/cm2 

Pressure range: 1 – 160 psi 

 

 

 

2.4 Parameters of interest 

Some parameters extracted from plantar pressure images have deserved more 

attention in several plantar pressure studies. Olin and McPoil (2000) point peak pressure, 

Figure 2.3 – Example of the Novel- 

 Pedar –X in-shoe system (From 
novel.de). 
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force and area as the main parameters in plantar pressure studies. Usually, force can be 

represented by the centre of pressure (COP) which is the point where the ground reaction 

force is applied (Roerdrink et al., 2006). Some of the parameters with interest in this work 

are described below. 

 

 Peak pressure (P): is the maximum pressure measured in a sequence of 

images during a step. Supposing that m is the width, n is the height and k is the number of 

images in a sequence, P is given by: 

 

𝑃 = 𝑚𝑎𝑥(𝑃𝑥,𝑦,𝑧), 𝑥 = 0, … , 𝑚 ; 𝑦 = 0, … , 𝑛; 𝑧 = 0, … , 𝑘.   (2.1) 

 

 Centre of pressure (COP): as said before, COP is the point of application of 

the ground reaction force in the time instant t. Usually it is represented in a 2D array where 

instantaneous COP positions are kept (Giacomizzi, 2011). Thus the COP trajectory during all 

experiment is observable in the 2D array. Basically COP coordinates are given by the 

weighted average (the weight is assumed by the pressure value Px,y) of all pixels in the 

image. Considering that all sensors in the array have the same area, COP is found by: 

 

 

�̅� =  
∑ ∑ 𝑃𝑥,𝑦×𝑥𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑥,𝑦
𝑚−1
𝑥=0

𝑛−1
𝑦=0

 ,         �̅� =  
∑ ∑ 𝑃𝑥,𝑦×𝑦𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑥,𝑦
𝑚−1
𝑥=0

𝑛−1
𝑦=0

    (2.2) 

 

The importance of COP monitoring in plantar pressure studies is well patent in the 

studies of Maribo et al. (2011) and Goryachev et al. (2011). Nevertheless, COP studies can 

be found in the most works relating pathologies and rehabilitation with plantar pressure 

data. 

 

 Arch index (AI): the AI is a measure of the height of the medial-longitudinal 

arch of the foot. Cavanagh et al. (1987) developed the AI concept as the ratio of the middle 

area of the foot by the area of whole foot excluding toes. Thus, AI is given by: 

 

 

𝑨𝑰 =  
∑ ∑ 𝑩𝒙,𝒚

𝒎−𝟏
𝒙=𝟎

𝒏−𝟏
𝒚=𝟎

∑ ∑ (𝑨𝒙,𝒚+ 𝑩𝒙,𝒚+ 𝑪𝒙,𝒚)𝒎−𝟏
𝒙=𝟎

𝒏−𝟏
𝒚=𝟎

,     (2.3) 

 

where Ax,y, Bx,y and Cx,y are the three areas of the divided foot as shown in Figure 2.5. 
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Figure 2.5 – In the left, the division of the foot in three areas (A, B, C) and the evident 

exclusion of the toes. In the right, the original footprint (From Xiong et al., 2010). 

 

According with Roy et al. (2012), the arch of the foot can be classified as indicated in Table 

2.1. 

 

 
Table 2.1 - AI classification levels. Cavus foot is the result of a high curvature whereas 
plan foot is consequence of the abscence of curvature. 

Cavus foot AI < 0.21 

Normal arch 0.21 ≤ AI ≤ 0.26 

Plan foot AI > 0.26 

 

 

 Modified arch index (MAI): the MAI is found in a similar way to the AI 

calculation. After divide the foot in the same three regions, the sum of pressures within 

each area is used instead the areas. Therefore, as in Chu et al. (1995) considering the 

pressure in the coordinates (x,y) inside area A, B or C (PAx,y, PBx,y and PCx,y, respectively), 

the MAI is obtained by: 

 

𝑴𝑨𝑰 =  
∑ ∑ 𝑷𝑩𝒙,𝒚

𝒎−𝟏
𝒙=𝟎

𝒏−𝟏
𝒚=𝟎

∑ ∑ (𝑷𝑨𝒙,𝒚+ 𝑷𝑩𝒙,𝒚+ 𝑷𝑪𝒙,𝒚)𝒎−𝟏
𝒙=𝟎

𝒏−𝟏
𝒚=𝟎

    (2.4) 

 

MAI has been quite used in clinical studies. An example may be found in Nakhaee 

et al. (2008) where MAI is calculated in order to find relationships between sports injuries 
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and the height of the medial longitudinal arch. In this study there is no strong correlation 

between both variables. 

 

2.5 Summary 

Plantar pressure measurements have been carried out in several studies related 

with gait and various pathologies as the diabetic peripheral neuropathy which has been 

strongly related with plantar pressure patterns change. The study of plantar pressure images 

has allowed to prevent or heal foot ulceration. Chronicle ankle instability, functional hallux 

limitus, plantar fasciitis, chronic knee pain, chronic back pain and postural misalignments 

are examples of other pathologies related with plantar pressure investigation. 

The importance of plantar pressure studies is well remarked in the development 

of orthopaedic and sports shoes as well as the orthoses. These special shoes and orthoses 

can alleviate the pain and correct deformations in the patients. 

There are two types of plantar pressure acquisition devices: in-shoe-systems and 

fixed-platforms. The main technical features distinguishing such devices are the resolution, 

sampling frequency, reliability and calibration. 

There are important parameters giving quantitative and qualitative information 

about the plantar pressure pattern. In this study, peak of pressure, centre of pressure, arch 

index and modified arch index are used. 

Frequently, the researcher is dealing with too much information to analyse and 

large variations (mainly between foot positions) in the different trials. It is important to 

simplify and maximize the information acquired in plantar pressure measurements in order 

to help the diagnosis/study of plantar pressure related pathologies. Thus, in this work, 

strategies are developed to accomplish these needs. 
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Chapter 3 – Plantar pressure images 
registration 

3.1 Introduction 

Nowadays, medical imaging is probably one of the most valuable tools in the 

medical diagnosis, surgery planning and evaluation. Several imaging techniques are available 

in the medical area, and a patient often performs more than one image exam to monitor or 

detect health problems. These exams may be from the same modality or from different 

modalities. Some of the most common are: X-ray, computed tomography (CT), computed 

tomography angiography (CTA), magnetic resonance imaging (MRI), magnetic resonance 

angiography (MRA), ultrasound (US), single-photon emission computed tomography (SPECT) 

and positron emission tomography (PET).  

Sometimes, the image analysis is very difficult to the physician and it depends 

greatly on his experience to mentally combine (or merge) data from different images or 

volumes. Many computational methods have been used in order to provide more efficient 

visualization and analysis of medical images like image segmentation, filtering, features 

enhancement, registration, fusion, etc. Image registration is an important tool because it 

allows finding common shapes and structures between images and establish 

spatial/temporal correspondences that facilitate complex tasks of image analysis.  

Image registration is commonly referred as the process of aligning two images or 

even temporal sequences of images on a common spatial/temporal coordinate system. In 

this work, the image/sequence used as template to perform registration is always 

designated as “fixed image/sequence” whereas the image/sequence to be aligned is called 

“moving image/sequence”.  

Some of the most important applications of image registration helping medical 

diagnosis are the combination (fusion) of data from images of same modality or different 

modalities; the search for differences in size and shape over a time range; the application 

on image-guided surgery and the comparison between the image from a patient and an 

image database or atlas (Hajnal et al., 2001).  
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The advantages of using image registration in clinical environment are evident. 

Instead of using avoidable images, the data provided can be combined in a minimum dataset 

containing only the relevant information exploited at a maximum point. Subsequently, the 

time per patient and overall monetary costs are decreased to the clinic. In addition, patients 

may be protected from excessive radiation exposure (by means of the reduction in the 

multiple imaging exams). 

 

In recent years, image registration has gained importance in plantar pressure 

images analysis. The alignment of such images is a difficult task because plantar pressure 

images are acquired with different step frequencies and foot positions since every person 

has a different gait and even the same person may have different gait along the time (see 

chapter 2). Consequently, an image from a sequence may not correspond to the image with 

the same index in another sequence. Additionally, the shape of the object and the 

intensities of the pixels vary in an unpredictable manner between images from different 

sequences. Thus, the registration may be useful finding spatial/temporal correspondences 

between steps from the same individual or different individuals and integrating their data 

in a meaningful way facilitating visualization.  

Frequently, the researchers are dealing with an important trade-off: the accuracy 

of the alignment against the processing time. In the particular case of the plantar pressure 

images, the accuracy is very important, but a real time processing would also be highly 

desirable for using in clinical applications (e.g. physiotherapy). 

3.2 Image registration techniques 

3.2.1 - Classification 

Registration methods may be divided according to different criteria. Maintz and 

Viergever (1998) suggested a classification based on nine subdivided criterions. Later, this 

classification was reduced to eight categories by Fitzpatrick et al. (2000). Those criterions 

are dimensionality, registration basis, geometrical transformation, domain of 

transformation, degree of interaction, optimization procedure, modalities, subject and 

object. A brief description of each criterion is presented below:  

 

 Dimensionality: usually medical images are in three-dimensional (3D) space, 

but sometimes they are bi-dimensional (2D). Additionally, it is possible to consider time as 
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a dimension in temporal sequences of images. Most common registration methods are 

classified as 2D/2D, 2D/3D, 3D/3D and 4D/4D.  

 

 Registration basis: this criterion considers the nature of the features used 

in the registration procedure. These features may be intrinsic or extrinsic relatively to the 

patient data. Extrinsic features are added to the patient facilitating their visualization by 

any imaging modality. As result, registration of acquired images is faster and less complex 

(Maintz and Viergever, 1998). Extrinsic features may be invasive or non-invasive (less 

accurate). In turn, intrinsic methods use only patient internal data as landmarks (anatomical 

or geometrical characteristics extracted from images), segmented structures (e.g. points, 

curves, surfaces) or features obtained from voxel properties.  

 

 Geometrical transformation: classification of registration techniques can 

also be made according with the mathematical model used to map points from an image to 

another. If lines are mapped onto lines, a projective transformation is occurring; when 

parallel lines are mapped onto parallel lines, it is considered affine transformation; if only 

rotations and translations are allowed (dimensions and angles are unaltered), it is called 

rigid transformation, and if lines are mapped to curves, an elastic or curved transformation 

is used.  

 

 The domain of the transformation is classified as global if all image data is 

used and local if only particular image features are used.  

 

 Degree of interaction: the registration algorithm may be automatic, semi-

automatic or interactive relatively to the user interaction. Ideally, the automatic procedure 

is preferable and many researchers have been developing automatic algorithms. Sometimes 

human interaction is desired because speed and accuracy may be increased.  

 

 Optimization procedure: the parameters used in the transformation can be 

found by direct computing or by maximizing or minimizing a function to iteratively find the 

optimum.  

 

 Modalities: registration can be achieved in monomodal (images from the 

same modality), multimodal (images from different modalities), modality to model 

(registration is performed between an image and a model) or patient to modality 

(registration is performed between an image and the patient himself) applications.  

 

 Subject: images may be from the same patient (intrasubject), from 

different patients (intersubject) or from a patient and a database built from many patients 

(usually referred as atlas).  
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 Object: categorization is also made according with the anatomic region 

involved in the registration procedure. Head (Ashburner, 2007; Christensen et al., 1994, 

Shen, 2007; Studholme et al., 1996) and pelvis (Shen, 2007) are some examples frequently 

found in literature. 

3.2.2 – Feature vs. Intensity based methods 

The main difference between feature and intensity based methods is the 

segmentation step in which relevant correspondent features are extracted from images. 

Thus, the first step in feature based methods is image segmentation.  

Image segmentation techniques are used to extract points or sets of points (pixels) 

with a particular interest from an image. Such points may be part of contours, lines, regions 

within an intensity range, etc. Image segmentation techniques have been widely used in 

medical images. Usually, these techniques are used to find features exposing pathologies in 

the images. Nevertheless, segmentation has been also used in image registration because 

finding correspondent features in different images allows to calculate a geometrical 

transformation to use in the matching of those images. In this case, a common approach to 

obtain easily identifiable features to facilitate segmentation is to use a stereotactic frame 

screwed to the skull of a patient or markers glued to the skin. However, such approach is 

obsolete and several new features segmentation techniques have been used helping image 

registration procedure. As example of segmentation relevance in image registration, in 

McLaughlin et al. (2002) blood vessels were skeletonized in 2D digital subtraction 

angiographies and in a 3D model of phase contrast magnetic resonance angiographies in 

order to establish matching and register 2D images with the 3D model. 

One possible approach to match those features is to define a cost matrix containing 

the distances or costs of each possible matching and then find the matching which minimizes 

the global cost. Based on this optimal matching, the geometric transformation between both 

images can be found by the least squares technique per example (Oliveira et al., 2009a). 

 

Intensity based methods do not use a segmentation step. Instead a similarity 

measure based in the intensity values of the images is optimized in an iterative procedure. 

Usually, in each iteration the geometric transformation is changed according with the 

optimization technique and then it is applied to the moving image. Thus, the new moving 

image is mapped to the new coordinates and the similarity measure is calculated. The 

objective is to minimize or maximize that similarity measure. Several different interpolation 

methods are used to resample the new image. 

An alternative solution can be the use of a hybrid method. These methods usually 

consist in a pre-registration procedure using a feature-based method followed by the 

improvement of the obtained geometric transformation by an intensity based method. 
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Another important difference between both techniques is the processing time. 

Usually, intensity based methods are more accurate but computationally heavy due the 

optimization algorithm. In turn, feature based methods are frequently fast but less 

accurate. It is important to evaluate the trade-off between pretended speed vs. accuracy 

in the choice of the method. 

3.2.3 – Geometrical transformation 

The choice for the geometrical transformation between images is very important.  

Basically, the geometrical transformation is a mapping function that maps the pixel 

coordinates from a “moving” image to a “fixed” image. The accuracy and the computational 

processing time of the registration algorithm depend crucially on the choice of the 

geometrical transformation. After this choice, the estimation of the mapping function is 

performed in order to find the most suitable values. In 1D, this mapping function may be 

conceptually described as: 

 

𝑇: 𝑥 ↦ 𝑥′ ⇔ 𝑥′ = 𝑇(𝑥)      (3.1) 

where T is the mapping function mapping x to x’. 

 

Some of the most common mapping functions in 2D space are presented below (an 

overview is depicted in Figure 3.1). 

Converting the pixel 2D coordinates to homogeneous coordinates, a transformation 

matrix can be used to represent the projective transformation and its subsets (affine, 

similarity and rigid). 

 

The projective transformation is useful to relate 3D anatomy with 2D images 

acquired from a patient (Fitzpatrick, 2000). Its representation in 2D space is given by: 

 

[
𝑥′
𝑦′
𝑤

] = [

𝑎11 𝑎12 𝑡𝑥

𝑎21 𝑎22 𝑡𝑦

𝑏1 𝑏2 1
] [

𝑥
𝑦
1

]     (3.2) 

 

where parameters a11, a12, a21 and a22 are representing deformations, tx and ty are 

representing translations, b1 and b2 give the projection point, w is a dependent parameter 

used to normalize pixel coordinates. 

In this approach, rotation, scale, shear, translation and perspective projection 

(conferred by non-zero values of b1 and b2) are transformed. The straightness of lines is 

kept. At least, four corresponding points are needed in both images. 

 

Affine transform is frequently applied to global models in which the transformation 

is valid to all image area, and can be represented in 2D as:  
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[
𝑥′
𝑦′
𝑤

] = [

𝑎11 𝑎12 𝑡𝑥

𝑎21 𝑎22 𝑡𝑦

0 0 1

] [
𝑥
𝑦
1

]     (3.3) 

 

In Equation 3.3, b1 and b2 (from Equation 3.2) are set to 0 (zero). 

This transformation keeps straightness of lines and their parallelism, but it may 

change the angles between them (Fitzpatrick, 2000). In this transformation, a minimum of 

three non-collinear corresponding points are needed between both images. 

The similarity transform is a sub-case of affine transform. Usually, it is applied 

globally. Considering rotation angle as θ, similarity transform can be represented in 2D space 

as: 

 

[
𝑥′
𝑦′
𝑤

] = [
𝑠. 𝑐𝑜𝑠(𝛳) −𝑠. 𝑠𝑖𝑛(𝛳) 𝑡𝑥

𝑠. 𝑠𝑖𝑛(𝛳) 𝑠. 𝑐𝑜𝑠(𝛳) 𝑡𝑦

0 0 1

] [
𝑥
𝑦
1

]   (3.4)  

 

This transform only performs scaling, rotation and translation. Thus, angles and 

curvatures are preserved. This mapping function needs a minimum of two control points 

from both images (Zitová and Flusser, 2003). As obvious, if more corresponding points are 

used, the accuracy can be raised and the computing time can be reduced. 

The rigid transform (also known as Euclidian transform) is a subset of the similarity 

transform. In 2D space, it is defined as: 

 

[
𝑥′
𝑦′
𝑤

] = [
𝑐𝑜𝑠(𝛳) −𝑠𝑖𝑛(𝛳) 𝑡𝑥

𝑠𝑖𝑛(𝛳) 𝑐𝑜𝑠(𝛳) 𝑡𝑦

0 0 1

] [
𝑥
𝑦
1

]   (3.5) 

 

In this approach, angles between lines, length between points and areas are held; 

only rotation and translations occur. This transformation is computed from a minimum of 

two corresponding points in both images. Rigid transform is preferentially used in 

registration of rigid structures and in the pre-registration step as initial approximation 

(Oliveira and Tavares, 2012a).  

 

The curved transformations are frequently used in medical images registration 

(Oliveira and Tavares, 2012a). In fact, it is reasonable to say that this transformation, also 

known as elastic or deformable, is more adequate for most studies related with medical 

images because non-rigid deformations in almost all structures of the body are possible. 

Some of the most used curved transformations in the last years have been based on splines. 

Generally, in splines-based methods, after finding the corresponding points from both 

images (the fixed and the moving images) a spline is used to establish correspondences. 
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Spline-based methods may interpolate or approximate the displacement of the 

corresponding points allowing to map their locations in the target image. 

Some of the most popular splines are the thin plate splines (Rohr et al., 2001) and 

the B(asis)-splines (Mattes et al., 2003; Oliveira and Tavares, 2012b; Rueckert et al., 1999). 

 

 

Figure 3.1 - Representation of 2D geometric transformations applied to an "Original" 

square. 

 

Thin plate splines (TPS) is a global transformation, because if a corresponding point 

is changed, all other points are also changed (Crum et al., 2004; Oliveira and Tavares, 2012). 

It belongs to the radial basis functions family. Thus, B-splines based transformations may be 

considered as local transformations. B-Splines are from the free-form deformation (FFD) 

class since they deform an object by changing a mesh of control points.  The number of 

degrees of freedom and the consequent computational cost are highly dependent of the 

control points mesh dimensions (Rueckert et al., 1999). Another common approach are the 

polynomial functions of a degree higher than one (Oliveira and Tavares, 2012a). 

3.2.4 – Similarity measures 

Similarity measures assess how much two images overlap. There are similarity 

measures more suitable for intensity-based registration methods, more appropriate for 

feature-based registration methods or even for both classes of registration methods. 

A similarity measure based on pixel intensity differences is the sum of squared 

differences (SSD) or the normalized sum of squared differences that is given by: 

Figure 3.1 - Representation of 2D geometric transformations applied to an "Original" 
square 
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𝑆𝑆𝐷 =
1

𝑁
∑ [𝐴(𝑥) − 𝐵(𝑇(𝑥))]2𝑁−1

𝑥=0     (3.6) 

 

where N is the number of pixels of all the image, or just from a region of interest of the 

image, A(x) is the intensity of image A in position x and B(T(x)) is the intensity of 

corresponding point in image B estimated by the transformation T(x). This similarity measure 

is commonly used in intensity-based methods and assumes that the corresponding points 

should have similar intensities (Oliveira and Tavares, 2012a). This assumption has a 

drawback: SSD measure is very sensitive to the Gaussian noise, i.e. to pixels with large 

intensity differences. The optimum is achieved to the minimum value of SSD. As this method 

assumes approximate intensity values between the same structures, it is only adequate for 

monomodal registration. In order to minimize the sensitivity to the Gaussian noise, the sum 

of absolute differences (SAD) may be used: 

 

𝑆𝐴𝐷 =
1

𝑁
∑ [𝐴(𝑥) − 𝐵(𝑇(𝑥))𝑁−1

𝑥=0 ]    (3.7) 

 

In a study of Hoh et al. (1999), SAD is compared against another similarity measure, 

the stochastic sign change – SSC, applied in the rigid registration of PET images. 

 

Another similarity measure widely used in intensity-based registration methods is 

the cross-correlation (CC): 

 

𝐶𝐶 =
∑ (𝐴(𝑥)−�̅�).(𝐵(𝑇(𝑥))−�̅�)𝑁−1

𝑥=0

√∑ (𝐴(𝑥)−�̅�)2.𝑁−1
𝑥=0 ∑ (𝐵(𝑇(𝑥))−�̅�)2𝑁−1

𝑥=0

   (3.8) 

 

where N, A(x) and B(T(x)) are the same parameters defined for SSD, and �̅� and �̅� are the 

mean of all intensities in the pixels of image A and B, respectively. In this approach, 

corresponding pixels have a linear intensity relationship; as such, it is more adequate for 

monomodal registration. A high cross-correlation is desirable with the aim of finding the 

optimum.  

 

Mutual information (MI) has been an extensively used similarity measure in the last 

years. It is based in information theory and reveals how much information an image contains 

about a second one (Oliveira and Tavares, 2012a; Rueckert et al., 1999). This measure 

considers probabilistic relationships between intensities, and its value is obtained from the 

entropies of the intensity distribution: 

 

𝑀𝐼 = 𝐻𝐴 + 𝐻𝐵 − 𝐻𝐴𝐵    (3.9) 

 



Chapter 3 – Plantar pressure images registration 

 

 

21 

where HA and HB represent the Shannon’s entropy of the pixels in image A and B, 

respectively, and HAB represents their joint entropy, which is achieved by a joint histogram. 

These entropies are obtained by: 

 

𝐻𝐴 = − ∑ 𝑃𝑖𝑙𝑜𝑔𝑃𝑖
𝑁−1
𝑖=0     (3.10) 

 

𝐻𝐵 = − ∑ 𝑃𝑗𝑙𝑜𝑔𝑃𝑗
𝑁−1
𝑗=0     (3.11) 

 

𝐻𝐴𝐵 = − ∑ ∑ 𝑃𝑖𝑗𝑙𝑜𝑔𝑃𝑖𝑗
𝑁−1
𝑗=0

𝑁−1
𝑖=0    (3.12) 

 

where Pi and Pj are the probability of intensity i to appear in target image and the probability 

of intensity j to appear in moving image, respectively. Pij is the joint probability of both 

intensities occurring at the same position. The MI has a maximum if the images are correctly 

aligned. 

The normalized mutual information (NMI) model was developed to minimize the 

overlap problem of MI (Studholme et al., 1999): 

 

𝑁𝑀𝐼 =
𝐻𝐴+𝐻𝐵

𝐻𝐴𝐵
      (3.13) 

 

Unlikely SSD and CC, MI-based methods are proper for multimodality registration 

since there are no direct relations between intensities. MI may also be used in monomodality 

registration. 

3.2.5 – Optimization 

The optimization procedure changes the parameters from the transformation 

model in order to maximize/minimize the similarity measure. This is an iterative approach 

where the initial transformation is gradually improved until there is no possibility to obtain 

a better value to the similarity measure. One of the greatest challenges in image registration 

is to avoid local optimums because optimization algorithms may converge to non-global 

optimums which lead to poor registration results. A common approach to minimize this 

problem is the multiresolution scheme. In this scheme, images are registered at low 

resolution and the transformation obtained is used as starting approach for a next 

registration at higher resolution. This is a hierarchical approach. In order to obtain the low 

resolution images, a low-pass filter can be used to smooth large peaks of intensity. Thus, 

the multiresolution scheme allows a faster convergence, and it decreases the probability of 

converging to local optimums. 
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One of the most used optimization methods is the iterative closest point (ICP) (Besl 

and McKay, 1992). This method is useful in matching optimization since matching and 

geometric transformation can be simultaneously sought in feature-based methods (Oliveira 

and Tavares, 2012a). Matching is a needed step in feature-based methods in order to 

establish correspondences between features extracted from the images to be registered. 

Therefore, these features are aligned in image registration procedure. ICP is an algorithm 

which iteratively searches for the minimum distance between pairs of control points. 

Usually, transformation parameters are estimated iteratively until a stopping criterion. As 

a conceptual example, it can be considered a surface with a set of points pj and a model 

surface X in another image. ICP algorithm iteratively searches for the minimum value of: 

 

𝑑(𝑝𝑗 , 𝑋) = min(||𝑥 − 𝑝𝑗||)     (3.14) 

 

where d is the distance between pj and the closest point x in the model surface. 

Other optimization methods used to maximize or minimize a similarity measure 

have been intensively explored in the last years. Some of these methods are Powell’s 

Method, Downhill Simplex Method, Steepest Gradient Descent and the Conjugate Gradient 

Method. These methods are well detailed in Press et al. (2007). 

3.2.6 – Interpolation 

The interpolation process arises from the necessity of finding new intensity values 

of pixels when they are mapped to new positions by a transformation. Frequently, nearest 

neighbour or bilinear interpolation are satisfactory methods. However, more accurate 

methods may be necessary. Usually, there is a convolution between the image and an 

interpolator kernel. Some of the other interpolator kernels are: quadratic splines, cubic B-

Splines, Gaussians and truncated sinc functions (because sinc functions have infinite extent). 

The nearest neighbour interpolator basically assigns the nearest pixel intensity value to the 

pixel being interpolated. Frequently, the nearest neighbour interpolator is avoided because 

of the high probability of artefacts occurrence in the resultant image. The choice for an 

adequate method is highly dependent of the desired trade-off between accuracy and 

computational cost. A review of some interpolation methods is performed in Thévenaz et 

al. (2000), and in Lehmann et al. (1999) several interpolation methods are compared. 

3.2.7 – Accuracy evaluation 

Image registration methodologies need to be evaluated according with their 

accuracy. Typically, accuracy is not easy to assess because errors may be hidden during the 

registration process or even undistinguishable from natural differences of the input images. 

There are three typical errors which can affect final result: localization error (due to 
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inaccurate detection of control points (CPs) [corresponding features]); matching error 

(resulting from false matches in correspondences found between CPs) and alignment error 

(due to wrong choices in transformation model or its parameters). Obviously, the simplest 

approach to evaluate the accuracy is the visual evaluation by an expert. The mean square 

error (MSE), a statistical measure, may be applied to the CPs to assess the alignment error 

between them. Another method consists on using target registration error (TRE) which is the 

displacement between a pair of CPs after registration. TRE is given by: 

 

𝑇𝑅𝐸 = 𝑎 − 𝑇(𝑏)      (3.15) 

 

 

where a is a point from image A and T(b) is the corresponding point in image B after 

transformation. Those points should have some anatomical significance.  

Fiducial registration error (FRE) is another possible measure for registration errors. 

Fiducial points are reliable corresponding point pairs for registration purposes. In order to 

determine fiducial points within a distinct feature (fiducial feature), a fiducial localization 

is needed. The error resulting from incorrect fiducial localization is known as fiducial 

localization error (FLE). The fiducial registration error (FRE) quantifies the misalignment 

caused by FLE when fiducial points are aligned in the registration process. FRE is given by: 

 

 

𝐹𝑅𝐸 = 𝑎𝑖 − 𝑇(𝑏𝑖)     (3.16) 

 

 

where ai is a point from the fiducial feature i in image A and T(bi) is the corresponding point 

from the same fiducial feature in image B after transformation. 

The difference between FRE and TRE is that in TRE corresponding points with 

clinical or anatomical relevance are used, while FRE uses corresponding points from easily 

visible structures that can have clinical interest or not. The clinical relevance of TRE is an 

advantage of this measure. Both TRE and FRE are applied only in rigid registration 

methodologies (Fitzpatrick et al., 1998). Frequently, FRE is also represented as a root mean 

square of the distance between corresponding points: 

 

 

𝐹𝑅𝐸 =
√∑ [𝑎𝑖−𝑇(𝑏𝑖)]2𝑤𝑖

2𝑁
𝑖=1

𝑁
     (3.17) 
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where N is the total number of fiducial features and wi is an optional weighting factor used 

to give different influence to each fiducial feature i in the total measurement of FRE. The 

weighting factor is useful because fiducial features may not be equally reliable. 

Another approach is to compare the results from an image registration method 

under evaluation against a gold-standard method. If no gold-standard method exists, the 

comparison has to be made with a different method and if the results are similar there is 

high probability of high accuracy (it is a qualitative measure). A consistency test is also used 

and consists on the assumption that rigid registration from image A to B produces the same 

results when the same transformation model is applied from B to A (Crum et al., 2004). 

3.3 Plantar pressure images and sequences 
alignment  

3.3.1 – Spatial Alignment 

Harrisson and Hillard (2000) and Tavares et al. (2000) accomplished the first 

studies in plantar pressure images registration. In the first, images are aligned by the 

principal axis method whereas in Tavares et al. (2000), the plantar pressure images are 

matched using finite elements modelling (FEM) techniques applied together with a modal 

matching method. Later, modal matching and FEM methods were also used in plantar 

pressure images in the works of Bastos and Tavares (2004) and Pinho and Tavares (2004).  

In Pataky et al. (2008b), seven different rigid-body methods for intrasubject 

plantar pressure image registration are compared. In this study, it was found that manual 

registration can be an acceptable solution when averaged across raters since no significant 

difference was found between this method and the global methods optimizing a similarity 

measure (MSE, Probability-weighted variance, mutual information (MI) and exclusive-or 

(XOR)). In addition, the principal axes (PA) method was the faster method but achieved 

poorer results than the previously referred methods. 

 

An improvement in plantar pressure images registration was accomplished in the 

work of Oliveira et al. (2009a). This work presents a feature based method where feet 

contours are segmented and then points from these contours are matched through a dynamic 

programming based algorithm (Figure 3.2). The main contribution of this work was the high 

decrease in the computational speed of the algorithm since there was just a small increase 

in mean-MSE values comparing with the best results of the previous work of Pataky et al. 
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(2008b).  In Oliveira et al. (2009b) only points from contours with high affinity are considered 

in order to avoid wrong matches between points without correspondence. 

In Oliveira et al. (2010), pedobarographic images are registered using phase 

correlation and cross correlation methods in the frequency domain. The major claim in this 

work is the improvement of accuracy and robustness comparing with the results of the 

contour based method presented in Oliveira et al. (2009a, 2009b). In addition, the low 

processing time is preserved. Another vantage of this algorithm is the robustness in the 

presence of Gaussian noise. 

In Oliveira and Tavares (2012c), five different registration methodologies are 

compared in terms of accuracy, robustness and computational speed. The alignment based 

in the contours matching was the fastest but achieved the worst accuracy whereas the best 

accuracy was obtained for the algorithms using the optimization of a similarity measure 

based in Powell’s method. Considering that this optimization was performed after a pre-

registration step, in addition to the higher accuracy, the algorithm also showed low 

processing time since the geometric transformation estimated in the pre-registration step 

was very close to the optimal solution. 

 

 

Figure 3.2 – In the left are the fixed and moving image. In the middle the extracted 
contours are shown. The right image represents the matching between the contours. 

(From Oliveira et al., (2009a)). 

 

In Oliveira et al. (2012d), the importance of plantar pressure images alignment is 

very pronounced. In this work, an automatic foot classification algorithm is developed 

(Figure 3.3). The alignment of the images is performed by the cross-correlation algorithm 

of Oliveira et al. (2010). The automatic classification algorithm allows to distinguish images 

of the left and the right foot. Additionally, arch index and modified arch index are 

automatically measured and no significant difference is found between these automatic 

measurements results and the traditional measurements results. This algorithm also showed 

high robustness to data from different sources (EMED and Footscan systems). 
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Figure 3.3 – Algorithm developed in Oliveira et al. (2012d) to calculate AI and MAI. In 
the left is the original image. In the second square the image was rescaled, aligned and 
the pressure was normalised. In the third square the toes are removed and in the last 
square, the foot (without toes) is divided into different foot regions. (From Oliveira et 

al. (2012d)). 

3.3.2 – Spatio-temporal Alignment 

More recently, the temporal alignment of plantar pressure image sequences has 

been studied. The pioneering study of Oliveira et al. (2011b) showed the advantages of the 

spatio-temporal alignment. In this work, the spatial alignment is performed by using the 

cross-correlation maximization method followed by an optimization of a similarity measure. 

In turn the temporal alignment was performed concurrently by using polynomial functions 

up to 4th degree. The temporal alignment algorithm has a pre-alignment stage and an 

optimization stage. In the pre-alignment stage, a linear relationship is established between 

images indexes from both sequences considering that the first and last images from the fixed 

sequence correspond to the first and last images of the moving sequence. Then, the 

optimization is performed simultaneously with the spatial optimization by the Powell’s 

based method with line optimization by Brent’s method. 

In addition, the temporal optimization scheme used two approaches: one where 

first and last images of fixed sequence must correspond to the first and last images of the 

moving sequence (“constrained” optimization) and another where there are no dependences 

between parameters (“unconstrained” optimization). The main findings were the better 

results obtained by 2nd, 3rd and 4th degree comparing with the linear temporal transformation 

when aligning real images sequences. In addition, the constrained optimization produced 

worst results comparing with unconstrained optimization. 

 

In a more recent study (Oliveira and Tavares, 2012b), B-Splines were used instead 

of polynomials. B-Splines showed better accuracy than polynomial functions referred in 

previous work.  



Chapter 3 – Plantar pressure images registration 

 

 

27 

3.4 Summary 

Image registration or alignment has been an important tool helping in medical 

image analysis and processing. There are two common procedures used in image alignment: 

feature based methods and intensity based methods. Usually, the first step in feature based 

methods is the image segmentation. Such procedure allows to extract important common 

features from “fixed” and “moving” images. These features are then matched and a 

geometrical transformation (found through established matching) is employed in the moving 

image. In turn, the intensity based methods use a similarity measure between image pixels 

intensities and then optimizes iteratively the values of the geometrical transformation 

between both images. A common approach is to use a combination of a feature based 

method with an intensity based method in an approach known by “hybrid registration”. The 

image resampling is often performed by an interpolation kernel which is chosen according 

with the accuracy/computational processing speed trade-off.   

Any developed alignment methodology should be validated. This requirement is 

achieved using an accuracy measurement technique. Two possible solutions used to measure 

the accuracy of the alignment are the calculation of a similarity measure value or the 

fiducial registration error. 

Plantar pressure images alignment has been extensively developed. Such 

investigation started with the works of Harrisson and Hillard (2000) and Tavares et al. (2000). 

Meanwhile, relevant studies in plantar pressure images alignment were realized. A contour 

matching based method was used in Oliveira et al. (2009b) and a Fourier based method was 

proposed in Oliveira et al. (2010) in order to align peak pressure images. Recently, the 

temporal alignment of plantar pressure image sequences was also proposed in Oliveira et 

al. (2011b) and Oliveira and Tavares (2012b). In Chapter 4, an alternative solution to the 

spatio-temporal alignment of plantar pressure image sequences is presented. Additionally, 

the reliability of using such methodology to build a mean sequence of images is also accessed 

by a procedure described in Chapter 4. 
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Chapter 4 – Methodologies developed 

4.1 Introduction 

In this work, the spatio-temporal alignment of plantar pressure image sequences 

was addressed. The study was divided in two parts: firstly, the spatial alignment is studied 

alone aiming to find the accuracy and processing speed of just the spatial alignment 

independently of the temporal alignment. In the second part, the accuracy and processing 

speed for the developed spatio-temporal algorithm were assessed. The algorithm for the 

spatio-temporal alignment has three steps: firstly the spatial alignment is made between 

the peak pressure images built from the fixed and moving sequences, then the temporal 

alignment is done between those sequences and finally, the spatial alignment is refined by 

a new optimization of the rigid transformation values. 

In all experiments the first step was the establishment of a region of interest (ROI). 

ROI is defined as the minimum area containing plantar pressure data in both peak pressure 

images. ROI is important to increase computational speed since unnecessary calculations 

are avoided.  

Whenever possible, data used in other studies were used to allow comparisons. 

 

The implementation of all algorithms was performed in C++ using Microsoft Visual 

Studio 10 in a PC notebook with an Intel® Core™2 Duo CPU T7250 2GHz processor, 3GB of 

RAM and running Windows 7.  

Dataset and all steps of spatial and spatio-temporal alignment are described in 

detail in this chapter. 

 

The accuracy was statistically accessed by Statistical Package for Social Sciences 

(SPSS) 21.0 using two-sided t-tests. 
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4.2 Dataset 

All image sequences used in this work are the same used in Oliveira et al. (2011b) 

and Oliveira and Tavares (2012b). So, a total of 156 image sequences were used. These 

images were collected from 26 individuals. Each individual performed 6 trials (3 for each 

foot) in order to increase the reliability of samples since a minimum of three to five 

measurements are advised in plantar pressure measurements (Hughes et al., 1991). 

By image sequence, it should be understood a sequence of images acquired during 

a step of an individual. All sequences were acquired at a frequency rate of 25 frames per 

second using an EMED system (AT model from Novel, Germany). Other main features of this 

device are the pressure sensibility of 5 kPa, the resolution of 2 sensors/cm2 and a pressure 

range between 10 and 1270 kPa. 

Individuals were 7 men and 19 women. Men had mean age of 18.4±0.5 years old, 

weight of 68.6±6 kg and height of 1.73±0.07 m. In turn, women had mean age of 20.4±2.3 

years old, weight of 58.3±6.3 kg and height of 1.64±0.05 m. The individuals were selected 

according with no history of relevant deformities or disabilities affecting gait. In order to 

increase the comfort with the experimental devices and procedures, the individuals walked 

over the plantar pressure measuring device several times. Further details about acquisition 

procedure can be found in Oliveira and Tavares (2012b) and Oliveira et al. (2011b). 

4.3 Spatial registration 

4.3.1 – Peak pressure image building 

In order to perform spatial registration of image sequences, a representative 

image from each one is built. It is assumed that the subject has a uniform step meaning that 

there is no displacements or rotations between foot images in the same step. That fact 

makes sense because typically from the moment that someone places the heel on the 

platform, foot follows a uniform direction over the full step. 

Then, assuming a usual step, each representative image must have relevant 

information about each pixel over the full set of images. Maximum intensity is the parameter 

used to achieve that requirement. Thus, each resultant image contains the maximum 

pressure measured at each pixel along the entire sequence. Representing a sequence of 

images by T(x, y, i), and a peak pressure image by PP(x,y), one has: 
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𝑃𝑃(𝑥, 𝑦) = max(𝑇(𝑥, 𝑦, 𝑖)) , 𝑖 = 0, … , 𝑠𝑖𝑧𝑒 − 1    (4.1) 

 

where (x,y) are the pixel coordinates, i is the temporal coordinate of the sequence and size 

is the number of images in the sequence. 

Spatial registration is performed using the resultant images. Other image features 

can be used to obtain representative images from sequences such as the mean over each 

pixel. However, there are many studies using peak pressure images (Oliveira and Tavares, 

2012b, 2012c; Oliveira et al., 2011b). This fact is very important since it allows comparing 

results knowing that there is no influence of representative image calculation methodology.  

4.3.2 – Principal axis registration 

The principal axis method has been widely used in spatial alignment of 2D images. 

This method does not require to find correspondences between images. Instead, it can find 

the angle and displacements in both images using directly features of image or whole the 

input data.  

Here, the first step is centroids calculation. Considering a peak pressure image 

PP(x,y) with height n and width m, centroids are given by: 

 

 

�̅� =  
∑ ∑ 𝑃𝑃(𝑥,𝑦)×𝑥𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑃(𝑥,𝑦)𝑚−1
𝑥=0

𝑛−1
𝑦=0

 ,         �̅� =  
∑ ∑ 𝑃𝑃(𝑥,𝑦)×𝑦𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑃(𝑥,𝑦)𝑚−1
𝑥=0

𝑛−1
𝑦=0

    (4.2) 

 

 

Aiming to find angles between principal axes, eigenvectors of peak pressure 

images are calculated. Thus, finding eigenvectors requires eigenvalue decomposition of the 

covariance matrix (C): 

 

 

𝐶 =  [
𝑃𝑃𝑥𝑥 𝑃𝑃𝑥𝑦

𝑃𝑃𝑦𝑥 𝑃𝑃𝑦𝑦
]            (4.3) 

 

where: 

 

 𝑃𝑃𝑥𝑥 =
∑ ∑ 𝑃𝑃(𝑥,𝑦)×(𝑥− �̅�)2𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑃(𝑥,𝑦)𝑚−1
𝑥=0

𝑛−1
𝑦=0

             (4.4) 

 

 

 𝑃𝑃𝑥𝑦 =
∑ ∑ 𝑃𝑃(𝑥,𝑦)× (𝑥− �̅�)× (𝑦− �̅�)𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑃(𝑥,𝑦)𝑚−1
𝑥=0

𝑛−1
𝑦=0

                (4.5) 

 



Alignment of plantar pressure image sequences 

 

 

32 

 𝑃𝑃𝑦𝑦 =
∑ ∑ 𝑃𝑃(𝑥,𝑦)×(𝑦− �̅�)2𝑚−1

𝑥=0
𝑛−1
𝑦=0

∑ ∑ 𝑃𝑃(𝑥,𝑦)𝑚−1
𝑥=0

𝑛−1
𝑦=0

              (4.6) 

 

and PPyx = PPxy. 

Hence, considering the square matrix C, its eigenvalues are the roots calculated 

from the characteristic equation (4.7). Knowing that C is a 2×2 matrix, there are 2 roots in 

the characteristic equation meaning 2 eigenvalues. So, to each eigenvalue there is an 

associated eigenvector. Letting the eigenvalues be represented by λ and the identity matrix 

by I, the characteristic equation comes: 

 

det(𝐴 −  𝜆𝐼) = 0     (4.7) 

 

Assuming that (A – λI) is singular, there is a non – zero solution to: 

 

(𝐴 −  𝜆𝐼) 𝑥 = 0      (4.8) 

 

so that x is the eigenvector of A. Simplifying eq.4.8:  

 

A 𝑥 = 𝜆𝑥       (4.9) 

 

Should be noted that x gives only the vector direction and not the magnitude. To 

the current purposes in this work, such information is enough. 

Finally, the angle between principal axes of both peak pressure images is 

calculated using the inner product of vectors x1 and x2: 

 

 

𝜃 =  cos−1 (
𝑥1.𝑥2

‖𝑥1‖‖𝑥2‖
)    (4.10) 

 

 

Translation in x-axis and y-axis of the moving image in relation to the fixed image 

is calculated by the difference between them centroids after rotate moving image in θ 

radians.  

After getting the angle and translations between images, a rigid transformation is 

applied to the moving image because only intra-subject alignments are performed. 

Additionally, shape deformations were not desired. 
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4.3.4 – Optimization method 

The optimization method employed in spatial alignment is the same used in 

Oliveira et al. (2011b) and Oliveira and Tavares (2012b). Thus, a brief description is done 

here. The full description of the algorithm can be found in Press et al. (2007). 

The algorithm used here is based on Powell’s method with line optimization by 

Brent’s method. 

The concept of Powell’s method employed in this work can be briefly described by 

Figure 4.1. 

 

 

 
 

 

4.3.5 – Accuracy assessment 

4.3.5.1 – Using MSE between images 

Considering that each individual performed three trials for each foot, there are 

three peak pressure images (one by sequence) by foot. Thus, two alignment procedures are 

performed by each foot from each individual giving a total of 112 alignments. 

Define an initial set of search 
directions:  ui = ei where i = 
1,…,N and ei are the basis 
vectors. 

NO 

YES 

Stopping 

criterium? 

Keep a start position P0 = 
(p1u1 + p2u2 + p3u3 + … + pNuN). 

 

Vary Pi-1 till reach the 
minimum along direction ui 
where (i=1,…,N). The new 
estimate is Pi. 
 

New directions are defined as 
ui  ui+1 where i=1,…,N-1 and 
uN = PN  P0. 
 

Vary PN till reach the 
minimum along direction uN. 

The new estimate is P0. 

End 

Figure 4.1 – Flowchart representing the behavior of Powell’s based 
alghorithm. 
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MSE is used as a measure of accuracy between the peak pressure images in each 

alignment. After the spatial alignment, MSE is calculated between the aligned (moving) 

image and the fixed image. As stated before, the smaller the MSE value, the better the 

spatial alignment. Notice that this MSE measure is calculated only in the pixels with non – 

zero values in order to allow comparisons with works from other authors.  

MSE values are calculated for three distinct alignment procedures: 

 

 Using principal axis method considering different intensities in centroids 

calculation (real image); 

 

 Using principal axis method but considering a binary image in centroids 

calculation, i.e.,  pixels intensity greater than zero were equalized to one whereas the 

remaining pixels remain zero; 

 

 Using principal axis method (considering binary intensities) to perform pre-

registration and then refining the found transformation values through optimization based 

in Powell’s method combined with Brent’s line optimization method. The similarity measure 

minimized in this optimization is the MSE (over all pixels of the image). Additionally, image 

resampling during optimization procedure is performed by bi-linear interpolation. 

  

4.3.5.2 – Using control deformations 

 

A known deformation is applied to all 156 peak pressure images. This deformation 

is used as a gold-standard deformation since after the alignment between original image 

and deformed image, both are compared by means of the residual errors (RE). RE is 

calculated as: 

 

𝑅𝐸 = ∑ ∑ (√(𝑇(𝑥) − 𝑇′(𝑥))2 + (𝑇(𝑦) − 𝑇′(𝑦))2)𝑀−1
𝑥=0

𝑁−1
𝑦=0    (4.11) 

 

where T is the known control transformation and T’ is the transformation found by the 

alignment procedure. Basically, RE is the sum of squared differences between pixels 

positions mapped by T and estimated by T’. 

 

As in Oliveira and Tavares (2011), the control deformation is designed using the 

values of Table 4.1. Unfortunately, reliable comparisons between the results of both works 

are not allowed since datasets are quite different. 
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Table 4.1 – Spatial control deformation parameters. 

Rotation angle (α) 12° 

Translation in x-axis (Tx) 2.5 pixels 

Translation in y-axis (Ty) -3.2 pixels 

 

 

Again, RE values are calculated for the alignment using principal axis method 

considering real pixel intensities, considering binary intensities and also the alignment using 

the principal axis method (using binary intensities) as pre-alignment tool and a final 

improvement with the optimization based on Powell’s method.  

 

4.4 Spatio - temporal registration 

4.4.1 – Sequence expansion 

 
In order to perform a better matching between images from different sequences, 

the moving sequence is “expanded” by trilinear interpolation. This expansion allows to 

obtain a higher sampling frequency. In the experimental dataset used, the standard 

frequency of acquisition (f) was 25 images per second giving a period (T) of 40ms between 

two images, so the number of images per second is posteriorly increased by a multiplication 

factor m: 

 

 

𝑓 =  
𝑚

𝑇
            (4.12) 

 

 

Additionally, if the first image of the moving sequence (M) has the best match with 

the second or higher image of the fixed sequence (F) (Figure 4.2) means that a frame with 

data temporarily before the initial frame in the moving sequence is needed.  

For this purpose, an initial set of frames is linearly extrapolated in the sequence. 

Notice also that an equal number of images is linearly extrapolated at the end of the 

sequence by the same reason. 
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Figure 4.2 – Representation of a hypothetical problem when images are not 
extrapolated before the first image and after the last images. In this case, the 

matching algorithm gives a worst global matching because it forces a wrong match 
between the first and last images of both sequences. 

 

 

As inferred through Table 4.2, if a moving sequence has 20 frames, the expanded 

sequence would have (20 × m) + m frames. Sequence expansion is an important step because 

the best matching between images is made, the better the curve (described by a polynomial 

function) fits data. 

 

 
Table 4.2 - Example of sequence expansion using m=3. If the original sequence has 3 
images, the new (expanded) sequence would have 3 × 3 + 3 = 12 images. 

Original sequence index Expanded sequence index 

- −1 

- −  2
3⁄  

- −  1
3⁄  

0 0 

- 
 1

3⁄  

- 
 2

3⁄  

1 1 

- 1 +  1
3⁄  

- 1 +  2
3⁄  

2 2 

- 2 +  1
3⁄  

- 2 +  2
3⁄  
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4.4.2 – Cost matrix 

 
Matching between images from different sequences has to be performed taking 

into account a parameter quantifying similarities between features or intensities of images 

from both sequences. Here, the main interest is to maximize/minimize the total matching 

cost depending of the used measure. So, assuming a moving sequence M and a fixed 

sequence F, a cost matrix is designed containing the individual costs to match each image 

of M with each image of F. If the aim is to minimize the total matching cost value, in the 

end of the matching process, the sum of the individual costs is minimal. The individual 

matching cost is represented by cij along this work.  

In a first approach, the Euclidian distance between the images centroids (from 

different sequences) was used as measure of individual cost. However, MSE was used lately 

instead. MSE was preferred over the Euclidean distance between centroids because results 

were much better. Thus, each cell of cost matrix has a value given by eq. 4.13, where N and 

M are width and height of the images respectively, considering that all images have the 

same size. 

 

 

𝑀𝑆𝐸𝑖𝑗 =  
1

𝑁×𝑀
 ∑ ∑ [𝐹(𝑥, 𝑦, 𝑖) − 𝑀(𝑥, 𝑦, 𝑗)]2𝑀

𝑦
𝑁
𝑥       (4.13) 

 

 

By each cost matrix corresponding to the matching between sequences, MSE is 

calculated i × j times (i is the total number of images in sequence F whereas j is the total 

number of images in sequence M). 

4.4.3 – Dynamic programming 

 

Matching between images from different sequences is performed by an algorithm 

based on dynamic programming developed and described by Oliveira et al. (2009b) and 

Oliveira and Tavares (2008). 

Originally, that algorithm was developed to align contours preserving their 

absolute and relative orders. Main advantages of this algorithm comparing with common 

used algorithms like Hungarian Method are the low processing time and the avoidance of 

cross matches. An example of contours matching using this algorithm is depicted in Figure 

4.3. 

If a contour is defined by points {0, 1, 2, 3, 4, 5, 6, 7, 8}, the sequence {8, 0, 1, 2, 

3, 4, 5, 6, 7} is the same contour. Thus, in the first case, the points of the sequence are 
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monotonously increasing. Adopting the definition of Oliveira and Tavares (2008), it is said 

that the first sequence preserves absolute order. The second sequence does not preserve 

the absolute order but only the relative order.  

 

In this work, the algorithm is applied only to monotonous increasing sequences 

(the step images are always increasing in time). By this reason the concept of relative order 

is not meaningful here and the algorithm was modified in order to avoid unnecessary 

calculations. Indexes from two different images sequences can be viewed as two distinct 

“opened contours” where the circular matching is impossible. After finding the cost matrix 

this algorithm minimizes the global cost given by the sum of individual matching costs. 

 

 

 

 
Figure 4.3 – Matching between two different contours with different number of points 

using the algorithm of dynamic programming (From Oliveira and Tavares, 2008). 

 

 

Consider the indexes of two hypothetical image sequences T and S: 

 

 

𝑇 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, 

 

𝑆 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

 

 

If the two sequences have the same number of images, then the first image of 

sequence T has necessarily to correspond to the first image of sequence S, the second to 

the second and so on. However, if the size of both sequences is different, more matching 

possibilities are allowed.  

Knowing that the absolute order has to be kept, index 0 of sequence T can be 

matched with index 0, 1 or 2 of S. If index 0 of T is matched with index 1 of sequence S, 

then index 1 of T can only be matched with index 2 or 3 from sequence S. In order to know 
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the number of images of S available to be matched with an image of T, the state variable s 

is used. Thus between T and S there are three matching hypothesis, s = 3.  

Oliveira and Tavares (2008) defined a function fk(s) used to find the minimum cost 

of matching points 0,1,…,k of a sequence when each image has s matching possibilities. 

Thus, for each k the function fk(s) is calculated s times.  

The main steps of the algorithm are shown in Figure 4.4. Considering sequences T 

and S, a table with 9 columns (k=9) and 3 rows (s = 11-9+1) is built. Values of fk(s) are 

calculated as in Table 4.3. 

In the example of Table 4.3, starting by the cell in (9, 3) position, a reverse search 

is performed in order to find the matching of minimum global cost. Firstly, the cell 

corresponding to the state containing the minimum value is chosen in the last column, then 

the same procedure is done to the next columns. If the minimum value is in the second row, 

in the next column only the values of first row and second row are compared. Supposing 

that cell in position (8, 2) is selected, a matching between images 7 of sequence T and 8 of 

sequence S is established. 

 

 

 

 
 

Figure 4.4 – Sequential steps of the dynamic programming algorithm. 

 

 

 

Read cost matrix and find 
sequences size [S size (n) is 
always bigger than T size (m)]. 

Starting by the the minimum 
overall cost (position (m, s) in the 
built table) perform an inverse 
search in order to find the 
minimum value in each column. 

Each selected cell corresponds to 
a matching between k of 
sequence T and k + s – 1 of 
sequence S.  

Calculate all f
k
(s) and keep values 

in a table (with m columns and s 
rows). 
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Table 4.3 – Example of fk(s) calculation for the sequences T and S. 

f1(1) = c11 f2(1) = c22 + f1(1) ….…  …  

f1(2) =  

minimum{c11, c12} 

f2(2) =  

minimum{f2(1),c23 + f1(2)} 

… 

f1(3) =  

minimum{c11, c12, c13} 

f2(3) =  

minimum{f2(1), f2(2), c24 + f1(3)} 

f9(3) =  

minimum{f9(1), f9(2), c9,11 

+ f8(3)} 

 

 

4.4.4 – Curve fitting 

 
After establishing correspondences by dynamic programming, a polynomial was 

employed to create a mathematical relationship between images indexes from both 

sequences. Polynomial coefficients were estimated by the least squares technique.  

Thus, polynomials of different degrees were used in order to approximate a curve 

passing near all points previously found. Polynomials have the advantage of enabling to 

create a “smooth” curve, avoiding high time steps between images data (data gaps) and 

sometimes minimizing the adverse effect of less correct matches.  

The degree of the polynomial has to be chosen carefully because high order 

polynomials are more prone to instability (Figure 4.5).  

The most important condition concerning the polynomials usability in temporal 

alignment is that the index i+1 must be higher than i for both sequences. This means that 

inflection points are not desirable at all in the polynomial curve because time is never 

decreasing. Consequently, the curve has to be a strictly increasing function. 

 

After finding polynomial coefficients by the least squares technique, images of the 

new sequence are interpolated. Thus, to each image of the fixed sequence, a new image of 

the moving sequence is interpolated.  

The new index i’ of the moving sequence is estimated by the polynomial which can 

be generically represented as: 

 

 

𝑖′ = 𝑐0 + 𝑐1𝑖 + 𝑐2𝑖2 +  𝑐3𝑖3 + 𝑐4𝑖4 + 𝑐5𝑖5 + ⋯ + 𝑐𝑛𝑖𝑛    (4.14) 

 

where n is the polynomial degree,  c1, c2, …, cn are the coefficients found previously, i is the 

index of an image in the fixed sequence and i’ is the index of a new image (in the moving 

sequence) to interpolate. 
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Figure 4.5 – Comparison between two different high degree polynomials when fitting 
the set of found matchings. Whereas 10th degree polynomial fits well the matched 

points the 14th degree polynomial shows instability. 

 

 

Polynomials up to 10th degree are tested. From this degree, curve instability is 

observed (example in Figure 4.5). 

4.4.5 – Accuracy assessment 

Two different solutions are used in order to compare accuracy of the alignment as 

in Oliveira et al. (2011b) and Oliveira and Tavares (2012b). These methods were chosen to 

allow comparisons with the results of both works.  

4.4.5.1 – Using MSE between image sequences 

MSE over non – zero pixels is used as a measure of accuracy between real sequences 

of images. Thus, after the spatio-temporal alignment of the moving sequence, MSE is 

calculated as described before between the aligned (moving) sequence and the fixed 

sequence. It should be remarked that the smaller the MSE value, the better the spatio-

temporal alignment. 

 

Polynomials between 4th and 10th degree are used to align all sequences. 

Additionally, for each degree, the moving sequence is previously expanded by a 

multiplication factor between 2 and 8. Thus, MSE is calculated 7 (degrees) × 112 (alignments) 

× 7 (m factor) giving a total of 5488 times. 
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4.4.5.2 – Using Control deformations 

 

Two known temporal deformations are applied to all the 156 sequences, aiming to 

allow comparisons with Oliveira and Tavares (2012b). The temporal control deformations 

used are presented in Table 4.4. 

 

 
Table 4.4 – Temporal control deformations used. i represents the image index in original 
sequence whereas i’ represents the image index in deformed sequence. 

Linear 𝑖′ = 1.15𝑖 

Curved 𝑖′ = 0.9𝑖 + 2 sin(𝑖 + 3) 

 

 
Additionally, a rotation of -15° is applied to all image sequences by a rigid 

transformation in order to spatially deform sequences. 

After aligning sequences, the obtained and the control transformations are 

compared by means of the residual errors. Results are given as mean temporal error and 

mean spatial error which are the average of the differences between image indexes and 

pixel positions, respectively.  

4.5 Plantar pressure parameters extraction 

4.5.1 – Overview 

 

One of the objectives of this work was to show the influence of the spatio-temporal 

alignment in common plantar pressure parameters. In the Thesis of Tábuas (2012) the 

following findings are pointed:   

 

 The parameters extracted from a mean image (calculated from the peak 

pressure images which are built from the spatially aligned sequences) are strongly correlated 

with the average of the parameters directly extracted from each peak pressure image 

(without alignment). 

 

 The choice for the fixed image in the alignment method does not influence 

significantly the values of the extracted parameters. 
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Here, instead of a mean peak pressure image, a mean sequence of images is 

created. Then the peak pressure image is extracted from this representative sequence. In 

addition, not only the spatial alignment is employed but also the temporal alignment. 

 

The plantar pressure related parameters considered in this work are the COP, the 

peak of pressure, the AI and MAI. All values are found by the framework proposed by Oliveira 

et al. (2012d). 

 COP is calculated in relation to the foot axis and the foot limit. The foot axis is 

determined as in Chu et al. (1995) and the posterior limit is given by the position of the 

closest point to the inferior limit of the image (Figure 4.6). Thus, a longitudinal axis is 

defined perpendicularly to the foot axis (red) and passing through the found point. Then, 

COP position relatively to the foot axis is calculated. This variable is negative if is located 

in the medial part of the foot (relatively to the foot axis). Previous assumptions are also 

valid to the maximum pressure pixel calculation. COP coordinates are obtained by the 

Equation 2.2 and maximum pressure pixel is found by Equation 2.1. 

 

 

Figure 4.6 – Representation of COP values calculation. The red line is the foot axis and 
the green point outside the foot is the COP position. As COP is located in a medial 

position relatively to the foot axis, its value is negative. (Computed using the 
framework presented in Oliveira et al.(2012d)). 

 

With the purpose of finding AI and MI values, some image processing is needed. 

Firstly, the input image is rescaled and centred to acquire similar dimensions to a template 

image. The next step is the spatial alignment of this last image with the template image. 

After pixels pressure normalisation, the foot is classified as left or right. Afterwards the toes 

are removed from the image and the foot is divided in three areas. In addition, the foot 
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length is calculated. When the classified foot is divided in the three areas AI and MAI are 

calculated by equations (2.3) and (2.4), respectively. As pointed before, such procedure is 

performed by the framework presented in Oliveira et al. (2012d) and it is generically 

illustrated in Figure 3.3. 

 

4.5.2 – Dataset 

 
In order to compare a set of image sequences with a mean sequence, two stages 

are followed: 

 

A. Parameters are extracted directly from each sequence. Then, the average 

between parameters of the same foot from the same individual is calculated. Notice that 

the left and right foot are compared independently. 

 

B. All sequences are aligned by the spatio-temporal framework described in 

this work. The first sequence of each foot is used as fixed sequence to the alignment. The 

spatial alignment is performed using the PA method to estimate initial values for a rigid 

geometric transformation. Then these values are optimized by the framework described in 

Chapter 4.3.4.The temporal alignment uses the 10th degree polynomial with m = 5. Linear 

interpolation is the preferred resampling method. 

Then, a mean sequence (meanSeq) of n aligned sequences of images (G1, G2, …, Gn) is 

built:  

 

𝑚𝑒𝑎𝑛𝑆𝑒𝑞(𝑥, 𝑦, 𝑧) =  
∑ ∑ ∑ [𝐺1(𝑥,𝑦,𝑧)+ 𝐺2(𝑥,𝑦,𝑧)+⋯+ 𝐺𝑛(𝑥,𝑦,𝑧)]𝑥=𝑖−1

𝑥=0
𝑦=𝑗−1
𝑦=0

𝑧=𝑘−1
𝑧=0

𝑛
   (4.15) 

 

Finally, a peak pressure image is calculated from meanSeq and the pretended 

parameters are found in this image. 

 

The average and the standard deviation of all parameters were computed using 

Microsoft Excel 2013. 

 

Pearson correlation coefficient (PCC) and Intraclass correlation coefficient (ICC) 

were assessed between results obtained by the approaches A and B.  

The PCC measures the linear dependence between two different variables. The 

PCC values can be classified as in Table 4.5. 
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Table 4.5 – Classification of PCC values. 

PCC ≤ 0.25 Poor correlation 

0.25 < PCC ≤ 0.50 Reasonable correlation 

0.50 < PCC ≤ 0.75 Good correlation 

PCC > 0.75 High correlation 

PCC = 1 Total correlation 

 

In turn, ICC quantifies the consistency between measurements of the same 

quantity. ICC is generically classified as in Table 4.6. 

 

 
Table 4.6 – Classification of ICC values. 

ICC < 0.4 Poor reliability 

0.4 ≤ ICC < 0.75 Reasonable reliability 

ICC ≥ 0.75 High reliability 

 

 

Pearson correlation coefficient and the Intraclass correlation coefficient were 

computed using Statistical Package for the Social Sciences (SPSS) 21.0. 

4.6 Summary 

Principal axes based methods are used in this work aiming to perform spatial 

alignment between peak pressure images (built from each sequence). Considering a rigid 

geometrical transformation between both images, the rotation angle is calculated between 

the principal axes of the objects and the translations are calculated by the differences 

between the centroids of the fixed and rotated images. Three different methods are 

employed: principal axes method over real pixels, principal axes over binary pixels and 

principal axes over binary pixels followed by an optimization procedure. The accuracy is 

accessed by MSE calculation in real images alignment and RE calculation in the alignment of 

deformed images (by a known rigid transformation) with the original images. 

In the spatio-temporal alignment, the first step is the spatial alignment of peak 

pressure images using the principal axis method followed by the optimization framework. 

Then, a cost matrix is built quantifying the MSE between different frames of both sequences. 

A matching algorithm based on dynamic programming is used in order to establish the 
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matching of minimum global cost and finally polynomials of different degrees are used to 

establish a relationship between images of both sequences. The polynomial coefficients are 

found by the least squares technique. Previously, the number of images in the input 

sequences is increased in order to achieve a better matching and avoid polynomial 

instability. Finally, the spatial transformation is refined by a new optimization step.  

The accuracy is accessed by the MSE calculation in the real image sequences 

alignment. In addition, linear and curved temporal deformations together with a spatial 

rotation are applied in all image sequences. The mean spatial and temporal errors are 

calculated between original and aligned sequences after the deformation. 

Mean images (average between images with the same index) are built from the 

aligned sequences resulting in a mean sequence. Peak pressure pixel, COP, AI and MAI are 

calculated for the mean sequence and also for each original sequence (in this case, the 

mean of these parameters is performed for each foot of each individual). Then, intraclass 

correlation coefficient and Pearson correlation coefficient are accessed between 

parameters values found by both methods. 

In Chapter 5, results of the described methodologies are presented and discussed. 
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Chapter 5 – Results and discussion 

5.1 Spatial alignment 

5.1.1 – MSE assessment 

Results of the spatial alignment with the three used methods are shown in Figure 

5.1. Here, the accuracy is given by the mean MSE values over all the aligned peak pressure 

images extracted from all real dataset sequences. As shown, the principal axis method 

considering real pixel intensities achieved the worst results by far. In turn, when binary 

pixels intensity are considered, mean MSE suffered a large drop to approximately half of the 

value obtained by the previous referred way. Moreover, the optimization procedure was 

employed to refine the results obtained by the PA method (over binary pixel intensities) and 

a large drop of mean MSE value relatively to the other two procedures was evident again. 

 

Large variations between mean MSE results from the three employed methods are 

evidencing the weaknesses of PA method when deformations between images are not purely 

rigid. Starting with an analysis of the PA method using real pixels intensity, it is clear that 

the principal axis and centroids calculations were not accurate. Even thinking that the 

alignments were only performed in feet from the same subject, feet has not necessarily the 

same pressure distribution and the same shape when contact with the pressure measuring 

device in each step. Thus, thinking that centroids and principal axis calculations have a total 

geometrically dependence, it is logic to conclude that these parameters were highly 

affected by the geometrical differences between steps images. Theoretically, PA method 

would have better results the more geometrically similar were the steps. Even if this method 

is not accurate can be satisfactory to perform a pre-alignment step mainly if objects have 

large rotations or translations and have only small shape deformations. Such hypothesis was 

crucial to choose this method and to apply it in this work since the main goal was to obtain 

a fast pre-alignment spatial technique.  
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Figure 5.1 – Mean MSE values (over non-zero pixels) computed for the spatial 

alignments using real images. Three different methods were used and the results 
compared. 

 

 

Using a binary image in PA method, only the geometrical shape of the object 

influences centroids and PA calculations. This detail explains the high difference relatively 

to the mean MSE using real intensity values. In the last, besides the geometry, also different 

intensity distribution over the image influences the results. However, considering only 

binary images, only geometry differs. It was shown that between steps the main difference 

affecting PA method accuracy is surely the pressure distribution over the foot images. 

Nevertheless, the optimization framework showed that the PA method using a binary image 

is still far from the optimal results despite allowing the convergence of the optimization 

algorithm to an optimal solution.  

5.1.2 – RE assessment  

The mean and maximum RE values were calculated for all peak pressure images 

built from image sequences and deformed by a known rigid transformation. Therefore, the 

three alignment procedures were used to find that transformation and align the images. RE 

values for the alignment of the deformed images are shown in Table 5.1 together with the 

processing time.  The smallest mean RE value between both PA methods was achieved using 

the real intensities values. This finding is not in accordance with the previous one where 

using real images resulted in higher mean MSE values and consequently the worst result. 

When the deformation between images is purely rigid without geometric or data differences, 

PA method is a good solution. The difference in RE results between both PA methods 
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(without optimization) can be explained by the image resampling because linear 

interpolation may change slightly geometric shape.  

Real intensities are used as a weighting factor because the higher the intensities 

of the pixels the more influence that pixels have in centroids and PA calculations. Thus, 

using real intensities, it is minimized the influence of the geometry in cases where 

intensities distribution is similar for both images. 

 

 
Table 5.1 – Mean and maximum RE values computed for the alignment of a deformed 
image (by a known rigid deformation) with the original image. Computational processing 
speed of the algorithm is also presented. Three different alignment methods are 
compared. 

Spatial alignment method 
 

Mean 
RE           

( pixels) 

Maximum 
RE             

( pixels) 
Speed 
(ms) 

PA method (binary images) 0.404 1.188 4.795 

PA method (real images) 0.003 0.038 4.709 

PA method (binary images) + 
Optimization 1.73e-07 2.12e-05 1330.235 

 

 

From Table 5.1 is also evident a large drop in RE values when using the 

optimization framework. Although such drop has an adverse effect in the processing time, 

since many iterations are needed to achieve this large drop in RE values.  

 

Processing time is about 5ms using just the PA methods. Using optimization this 

time rises nearly 400 times (about 1.3 seconds). Here, there is a trade-off between accuracy 

and speed. Knowing that 0.003 pixels corresponds approximately to 0.021mm, it is 

reasonable to consider that the mean RE result (obtained to the PA method using real 

intensities) is a good result because it is much lower than the resolution of the pressure 

measuring device. In the case of the alignment of real sequences of plantar pressure images, 

the optimization algorithm seems to be very important due to the weakness of PA method 

in presence of variations in geometry and intensity distribution. Nevertheless, in this case 

where images only differ by a rigid deformation, PA method using real intensities can be 

enough to produce accurate results. However, using only the PA method over binary images 

could not be a good solution because the maximum RE was approximately 8.4 mm which is 

bigger than the spatial resolution of the device. 
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5.2 Spatio - temporal alignment 

5.2.1 – MSE assessment 

 
In order to compare different order polynomials performance in real sequences 

temporal alignment, the mean MSE values were calculated and the results found are shown 

in Table 5.2. Moreover, by each degree mean MSE values were calculated for different 

multiplication factors (m). Notice again that the fixed sequence has always m=2. Before the 

temporal alignment, the spatial alignment was performed using the PA method over the 

peak pressure binary images and then the optimization framework was employed. By Table 

5.2, one can confirm that the drop in the mean MSE values is patent when the degree is 

increased for almost all m. 

 

Table 5.2 – Mean MSE values computed for the spatio-temporal alignment of real image 
sequences using different degrees and multiplication factors (m). 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 1004.13 532.07 522.31 523.52 525.12 524.69 524.85 

5 1003.06 501.60 489.88 491.06 491.09 492.00 492.03 

6 1003.18 493.02 481.56 481.79 482.27 482.62 482.85 

7 1001.43 482.73 470.70 470.33 468.88 469.45 469.18 

8 999.78 477.80 464.75 463.09 463.02 462.85 463.16 

9 971.95 474.90 460.40 458.80 458.40 458.51 458.46 

10 933.33 472.66 456.27 452.34 451.60 451.25 451.08 
 

Comparing values between different m and the same degree (each row of Table 

5.2), the mean MSE values are much higher for m=2. These results were expected and can 

be explained by the matching algorithm behaviour. When m=2 in the moving sequence, the 

number of images in moving sequence is always close to the number in the fixed sequence. 

For example, supposing that fixed sequence has 18 images and the moving sequence has 20 

images, the number of possible matches when m=2 is: 

 

𝐶38
42 =  

42!

(42−38)!38!
= 111.930. 

 

Now assuming that m=3 (only in moving sequence) the number of total frames of 

moving sequence (N) is given by: 

 

𝑁 = 𝑚 × 20 + 𝑚 ⇔ 𝑁 = 63. 



Chapter 5 - Results and discussion 

 

 

51 

 

Then, for N = 63 the number of possible global matches comes: 

 

𝐶38
63 =  

63!

(63−38)!38!
= 2.4𝑒+17. 

 

Hence if m>2 there is a huge increase in possibilities of global matches explaining 

the high difference between mean MSE values for m=2 and m=3. 

Increasing m does not mean that mean MSE value decreases. Differences between 

mean MSE values are only significant (p<0.05) between m = 2 and 3 and m = 3 and 4 for all 

degrees. Additionally, the difference between the results for m = 4 and 5 is also significant 

(p<0.001) to the polynomial of 10th degree. This fact is very important because the smaller 

the m value, the faster the processing time. Using the previous example and considering the 

total number of images in fixed sequence as M and comparing m = 5 with m = 6, the results 

found are the ones presented in Table 5.3. 

 

Table 5.3 – Number of required MSE calculations when using two different m values (m=5 
and m=6). 

 m = 5 m = 6 

Fixed sequence 𝑀 = 18 × 2 + 2 = 38 𝑀 = 18 × 2 + 2 = 38 

Moving sequence 𝑁 = 20 × 5 + 5 = 105 𝑁 = 20 × 6 + 6 = 126 

MSE calculations  𝑀 ×  𝑁 = 38 × 105 = 𝟑𝟗𝟗𝟎 𝑀 ×  𝑁 = 38 × 126 = 4788 

 

Using values of Table 5.3 as example, when using m=5 there are less 798 MSE 

calculations to do. In addition, there are also less 21 images interpolations. Thus, using m = 

5 the mean MSE values of all used degrees are the ones depicted in Figure 5.2. 

 
Figure 5.2 – Plot of the mean MSE values calculated from the spatio-temporal 

alignment of real sequences of images. All used polynomial degrees are compared for 
m=5. 
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The decreasing of mean MSE is very notorious when the polynomial degree is 

increased. Notice that all differences between mean MSE values are significant (p<0.05).  

 

5.2.3 – RE assessment 

 
Two temporal control deformations were applied to each sequence. Mean 

temporal and spatial errors were calculated after applying both control and obtained 

transformations to the original indexes. The temporal error was the mean of the differences 

between transformed indexes by both transformations (control and obtained). The 

procedure was the same to both linear and curved control deformations.  

 

In order to compare different order polynomials accuracy, mean temporal error 

and mean spatial error were calculated for each polynomial degree and for different 

multiplication factors (m). Notice again that the fixed sequence has always m=2. 

Computational processing speed is also shown in Tables 5.6 and 5.9. 

 

 

 Linear deformation 

 
 

Concerning the mean spatial error (in case of linear deformation) the values are 

quite close for all degrees and for all m values (Table 5.4). However, comparing values of 

mean temporal error between different m values, it is observed that there is a significant 

difference (p<0.001) when m=2 and m≠2 (Table 5.5). This finding is explained by the poor 

matching achieved by the dynamic programing algorithm when both sequences have 

approximately the same number of frames. No significant differences were found between 

values obtained by the different degrees since the control deformation was linear and all 

polynomial degrees were greater than one. Thus, in presence of linear temporal 

deformations between different sequences, this framework has high accuracy both in time 

and space since all obtained error values were quite low. 

 

As expected, the processing time increased with m increasing. This fact is due the 

increasing in the number of needed calculations to match bigger sequences (with more 

images). There were no significant differences between processing speed of different 

degrees considering the same m (each column of Table 5.6). 
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Table 5.4 - Mean spatial error (in pixels) obtained after the spatio-temporal alignment 
of the deformed sequences. These values were computed using different polynomial 
degrees and different m. 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 0.0144 0.0111 0.0096 0.0105 0.0090 0.0098 0.0102 

5 0.0158 0.0169 0.0130 0.0146 0.0112 0.0144 0.0143 

6 0.0170 0.0168 0.0125 0.0146 0.0112 0.0144 0.0139 

7 0.0172 0.0171 0.0129 0.0150 0.0117 0.0148 0.0143 

8 0.0168 0.0182 0.0141 0.0165 0.0127 0.0163 0.0158 

9 0.0170 0.0181 0.0127 0.0165 0.0125 0.0164 0.0157 

10 0.0188 0.0177 0.0124 0.0162 0.0123 0.0164 0.0151 

 

 

 
Table 5.5 - Mean temporal error (in frames) obtained after the spatio-temporal 
alignment of the deformed sequences. These values were computed using different 
polynomial degrees and different m. 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 0.0923 0.0592 0.0528 0.0562 0.0531 0.0581 0.0521 

5 0.0951 0.0612 0.0521 0.0555 0.0528 0.0594 0.0516 

6 0.1047 0.0631 0.0545 0.0575 0.0566 0.0628 0.0539 

7 0.1124 0.0652 0.0570 0.0612 0.0579 0.0646 0.0557 

8 0.1157 0.0662 0.0607 0.0633 0.0597 0.0661 0.0572 

9 0.1165 0.0677 0.0620 0.0647 0.0603 0.0666 0.0584 

10 0.1191 0.0681 0.0637 0.0665 0.0605 0.0672 0.0590 

 

 

 
Table 5.6 - Mean computational processing time (in ms) obtained for all the performed 
spatio-temporal alignments. These values were computed using different polynomial 
degrees and different m. The computational speed was considered only to the temporal 
alignment algorithm. 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 1420 948 1425 1691 2016 2673 3027 

5 665 949 1413 1627 2037 2173 2895 

6 601 1008 1452 1818 1938 2441 2672 

7 755 1061 1364 1622 2109 2555 3155 

8 736 1841 1414 1707 2127 2431 2908 

9 640 965 1230 1662 1934 2389 2957 

10 689 974 1300 1603 2108 2587 2848 
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 Curved deformation 
 

 

In the case of the curved deformations, values of mean spatial error are quite 

similar excepting when m=2 (p<0.001) (Table 5.7). All values represent a high spatial 

alignment accuracy. When observing values of mean temporal error (Table 5.8), one detail 

is evident: when m=2 the mean temporal error is greater than 1 frame for all degrees. This 

high error is also explained by the matching algorithm behaviour, but adding the effect that 

when m=2 both sequences have approximately the same number of images resulting in an 

approximately linear relation established between images indexes by matching algorithm 

(since there are a few number of states – see fk(s) calculation in Chapter 4). As the control 

transformation is curved, the polynomial fails to fit the real transformation between both 

sequences. In addition, the same value of mean temporal error for all polynomial degrees 

when m=2 is explained by the same fact. Also the significant difference between mean 

spatial error when m=2 and m≠2 is explained by the high temporal error in sequence 

resampling. 

 

Generally, for degrees greater than 5, the mean temporal errors decrease when 

increasing m value. However this decrease is only significant (p<0.05) up to m=6. 

Significant differences between mean temporal errors for different polynomial 

degrees were only found to the 4th degree (p<0.001) when m>4. 

The processing time increased with m increasing (Table 5.9). This fact is also due 

the increasing in the number of needed calculations to match bigger sequences (with more 

images). 

 

 
Table 5.7 - Mean spatial error (in pixels) obtained after the spatio-temporal alignment 
of the deformed sequences. These values were computed using different polynomial 
degrees and different m. 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 0.0677 0.0183 0.0173 0.0182 0.0187 0.0186 0.0189 

5 0.0677 0.0193 0.0159 0.0176 0.0211 0.0206 0.0228 

6 0.0677 0.0228 0.0238 0.0267 0.0297 0.0297 0.0308 

7 0.0677 0.0248 0.0273 0.0289 0.0308 0.0306 0.0314 

8 0.0677 0.0231 0.0276 0.0285 0.0293 0.0285 0.0292 

9 0.0677 0.0247 0.0351 0.0343 0.0347 0.0330 0.0337 

10 0.0677 0.0280 0.0335 0.0322 0.0336 0.0326 0.0340 
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Table 5.8 - Mean temporal error (in frames) obtained after the spatio-temporal 
alignment of the deformed sequences. These values were computed using different 
polynomial degrees and different m. 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 1.7159 0.5432 0.2637 0.2148 0.2087 0.2081 0.2100 

5 1.7159 0.5567 0.2321 0.1454 0.1202 0.1220 0.1210 

6 1.7159 0.5461 0.2399 0.1511 0.1193 0.1217 0.1141 

7 1.7159 0.5440 0.2461 0.1560 0.1217 0.1233 0.1163 

8 1.7159 0.5396 0.2473 0.1549 0.1166 0.1182 0.1102 

9 1.7159 0.5382 0.2455 0.1562 0.1158 0.1172 0.1081 

10 1.7159 0.5404 0.2432 0.1522 0.1154 0.1151 0.1068 

 

 

 
Table 5.9 - Mean computational processing time (in ms) obtained for all the performed 
spatio-temporal alignments. These values were computed using different polynomial 
degrees and different m. The computational speed was considered only to the temporal 
alignment algorithm. 

 Multiplication factor (m) 

Degree 2 3 4 5 6 7 8 

4 681 980 1324 1656 2107 2851 3045 

5 679 1092 2438 1756 2089 2677 3113 

6 686 1001 1234 1524 1940 2724 3206 

7 626 924 1446 1801 2234 2486 2960 

8 638 1048 1383 1727 2186 2541 2945 

9 700 1042 1337 1794 2162 3620 4154 

10 715 1040 1400 1749 2254 2558 3158 

 

 

 
The best mean temporal error obtained by the 4th degree polynomial in this work 

is better than the mean temporal error obtained by the same polynomial degree in Oliveira 

and Tavares (2012b). This fact is observable to both control deformations and is justified by 

the usage of the matching algorithm in this work which establishes a very good matching 

between images. In the referred work, the temporal pre-registration method is based in the 

establishment of a linear transformation between both sequences. However B-splines 

achieved better accuracy (except to the case where the distance between knots is equal to 

five) than the framework presented here. The main advantage of this framework is the low 

computational processing speed since it also achieves high accuracy  

By last, the superior mean spatial errors in this work can be explained by the initial 

image interpolations when sequences are “expanded” by m. Nevertheless, high accuracy is 

also achieved since in most cases mean spatial error << 1 pixel. 
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The ability to fit the linear deformation by the 4th degree and 10th degree 

polynomials are compared in Figure 5.3. In the same figure are also shown the points found 

by the matching algorithm. The polynomials of other degrees are not represented because 

their curve are very similar and would damage legibility. 

 

 

 
 

Figure 5.3 – Comparison between two different polynomial transformation models (4th 
and 10th degree) when fitting points found by the dynamic programming algorithm. 

Indexes after the linear deformation are represented by circles.  

 

 

Matching algorithm found indexes very close to the transformed indexes (by the 

linear control deformation) as seen by the nearly perfect overlap in Figure 5.3. Moreover, 

both polynomial transformations fit similarly that points. 

 

Concerning the curved control deformation, the same polynomial degrees are 

compared and also matching points are represented in Figure 5.4. The points found by the 

matching algorithm are also close to the deformed indexes but between the index 7 and 15 

there is a slight deviation. This fact surely affects the polynomial accuracy. Even if the 

differences are almost indiscernible, it is possible to verify that the 10th degree polynomial 

fits better the matching points. 

 

The spatio-temporal alignment is well demonstrated in Figure 5.5 where an 

original sequence is deformed by the curved deformation and then the spatio-temporal 

alignment framework re-aligns the sequences again. Beyond the orientation difference the 

temporal difference is very pronounced in several images. However, the spatio-temporal 
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alignment drives to good results nearly indistinguishable at human eye. The difference 

between aligned and original sequences is almost zero since the only non-zero pixels have 

very low intensities. 

 

 

 
 

Figure 5.4 - Comparison between two different polynomial transformation models (4th 
and 10th degree) when fitting points found by the dynamic programming algorithm. 

Indexes after the curved deformation are represented by circles. 

 

 

In Figure 5.5, the temporal delay of the moving (M) image sequence is very 

pronounced relatively to the fixed (F) image sequence. Moreover, the higher delay is seen 

between the 7th and the 15th degrees, approximately. Such higher delay corresponds to the 

range of smaller slope in the control deformation curve of Figure 5.4. Additionally, the delay 

imposed in the M sequence leads to an increase in the number of images. 

In order to align F and M sequences, the spatio-temporal alignment framework 

starts with the spatial alignment. Thus, through the PA method, the rotation angle and 

translations between images are found. In this case, the rotation angle must be about -12˚ 

and translations approximately 0 pixels (according with the spatial control deformation 

applied). The values of the rigid geometrical transformation are then optimized. When the 

images of the moving sequence are spatially aligned, this sequence is expanded (using m = 

5) and the MSE is calculated between all images of both sequences (F sequence is always 

expanded using m=2). Then the matching of minimum global cost is established as seen in 

Figure 5.4 (matching indexes are represented by crosses). The coefficients of the 

polynomials are estimated by the least squares technique using the set of matching indexes. 

The aligned sequence is represented by MA in Figure 5.5. 
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Figure 5.5 – Representation of a full step. F is the original sequence, M is the deformed 
sequence, MA is the M sequence after the spatio-temporal alignment. M-F represents the 

difference between original and deformed sequences and MA – F represents the difference 
between the aligned and the original sequences. 
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5.3 Plantar pressure parameters extraction 

Plantar pressure values computed are shown in Tables 5.10-13. Image sequences 

from the two feet of 26 different subjects were used and analysed. To each parameter, its 

values were computed distinctly by A – average of the values obtained individually from 

each original peak pressure image - and B – values computed directly from the peak pressure 

image obtained from a mean sequence (after spatio-alignment of the original sequences). 

At the end, the average and the standard deviation of those values calculated for all subjects 

were presented. Additionally, variables A and B are correlated by Pearson correlation 

coefficient and Intraclass correlation coefficient. 

In Tables 5.10 and 5.11, the high correlation between A and B for the right foot is 

very evident. In fact, PCC values were very close to one for all parameters. The maximum 

pressure pixel relatively to the foot axis was the parameter with the smallest correlation 

between all parameters. However, such PCC value is still representative of high correlation 

between A and B as shown in Table 4.5.  

All ICC values were also quite close to one and the lowest one was also registered 

to the maximum pressure pixel relatively to the foot axis. These findings confirmed the high 

consistency between both measuring methods. 

Mean values and standard deviations were close between A and B to all 

parameters. As example considering mean values for B, the COP relatively to the foot axis 

had a medial displacement of -3.653 mm whereas COP relatively to the foot limit had a 

displacement of 130.7 mm. The maximum pressure pixel relatively to the foot axis was 

positioned 17.379 mm in the medial direction and relatively to the posterior limit there was 

a displacement of 184.8 mm. Mean AI value was 0.195 whereas MAI was 0.065. The high 

standard deviation errors were already expected since every subject has a personal gait and 

consequently parameters vary considerably between subjects. 

 

As in the case of the right foot, there is also a strong correlation between A and B 

for the left foot. Thus, by Tables 5.12 and 5.13, it is very notorious that PCC values were 

very close to one for all parameters except for the maximum pressure pixel relatively to the 

foot limit. This parameter registered the smallest correlation between A and B (0.673); 

however, it is a good correlation yet. In addition, the other obtained PCC values were 

representative of high correlations between A and B as shown in Table 4.5.  

All ICC values were representative of high consistency between methods A and B 

for the left foot. Again, there is an exception to the maximum pressure pixel relatively to 

the foot limit where the obtained ICC value represents a reasonable reliability.  
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Table 5.10 – Right foot. Calculation of PCC and ICC between A and B to the COP 
parameters and to the maximum pressure pixel relatively to the foot axis. 

 Right foot 

 

COP relatively to 
foot axis (mm) 

COP relatively to 
foot limit (mm) 

Maximum pressure 
pixel relatively to 

the foot axis (mm) 

Subject A B A B A B 

1 -3.102 -3.928 139.8 144.3 -5.198 -4.337 

2 -3.089 -2.236 134.3 134.2 -20.363 -26.756 

3 -0.287 -0.883 133.8 131.5 -4.075 -4.201 

4 -0.667 -0.151 123.9 119.8 -3.440 -0.202 

5 0.093 0.452 132.8 134.4 -1.901 0.000 

6 -0.846 -1.540 118.6 116.9 -2.378 -2.620 

7 -4.762 -5.578 140.4 139.6 -28.647 -7.874 

8 -0.687 -1.771 129.3 130.6 -40.175 -43.274 

9 -0.048 -0.345 133.2 134.7 6.194 -6.253 

10 -4.070 -2.679 132.6 133.9 -43.148 -40.658 

11 -6.184 -7.442 132.1 129.7 -21.700 -38.157 

12 -3.903 -4.229 149.4 152.3 -14.816 -4.869 

13 -5.767 -6.301 130.4 129.0 -31.906 -32.086 

14 -8.381 -9.485 126.4 125.2 -28.903 -28.380 

15 -4.838 -3.931 136.5 133.3 -18.388 -8.609 

16 -3.410 -3.156 136.3 135.9 -35.936 -38.019 

17 -10.397 -10.859 143.2 139.5 -49.785 -52.310 

18 -4.825 -4.582 132.6 133.8 -32.700 -34.681 

19 -5.269 -5.888 126.8 130.8 -33.820 -36.306 

20 -2.492 -3.333 124.9 126.3 -7.006 8.805 

21 -1.839 -1.308 118.2 118.0 5.163 5.704 

22 -3.141 -3.941 112.0 108.3 -3.612 -8.598 

23 -3.426 -2.981 123.4 122.9 -22.194 0.000 

24 -3.729 -3.176 125.7 127.8 -35.220 -34.516 

25 -3.717 -3.598 136.0 136.3 -19.598 -20.259 

26 -0.554 -2.115 126.0 127.9 9.351 6.603 

Average -3.436 -3.653 130.7 130.7 -18.623 -17.379 

Standard deviation 2.558 2.720 8.210 9.039 16.679 18.389 

Pearson correlation 
coefficient 

  0.960   0.967   0.882 

Intraclass correlation 
coefficient 

  0.958   0.963   0.878 

 

This reasonable reliability could be improved using more sequences of the same 

foot (> 3 ) in the calculations because using just 3 sequences, a high deviation in one of 

them could have a high impact in the final results. 
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Table 5.11 - Right foot. Calculation of PCC and ICC between A and B to the maximum 
pressure pixel relatively to the foot axis and to AI and MAI. 

 Right foot 

 

Maximum pressure 
pixel relatively to 

the foot limit (mm) 
AI MAI 

Subject A B A B A B 

1 38.3 42.8 0.176 0.205 0.043 0.047 

2 216.5 228.5 0.211 0.235 0.063 0.058 

3 196.6 195.4 0.228 0.226 0.097 0.101 

4 32.3 19.4 0.287 0.277 0.170 0.163 

5 192.4 193.9 0.201 0.218 0.068 0.074 

6 196.4 195.4 0.181 0.181 0.044 0.040 

7 212.7 197.3 0.221 0.235 0.085 0.093 

8 230.8 231.5 0.256 0.262 0.114 0.113 

9 196.2 209.6 0.263 0.263 0.155 0.158 

10 226.9 230.7 0.244 0.258 0.112 0.118 

11 165.6 240.2 0.072 0.074 0.017 0.015 

12 231.9 221.5 0.107 0.129 0.022 0.033 

13 226.7 225.5 0.209 0.199 0.063 0.062 

14 208.3 210.0 0.096 0.112 0.025 0.027 

15 210.9 191.6 0.201 0.215 0.069 0.069 

16 252.4 251.6 0.190 0.201 0.046 0.047 

17 255.4 244.9 0.167 0.155 0.033 0.025 

18 230.2 233.7 0.060 0.044 0.015 0.007 

19 228.0 230.0 0.096 0.095 0.015 0.021 

20 211.3 200.3 0.231 0.234 0.073 0.077 

21 170.0 169.2 0.224 0.215 0.072 0.059 

22 24.5 14.8 0.195 0.184 0.037 0.029 

23 181.6 176.7 0.174 0.180 0.042 0.035 

24 226.1 229.8 0.198 0.221 0.060 0.074 

25 143.3 195.8 0.225 0.249 0.086 0.089 

26 76.5 23.8 0.185 0.194 0.051 0.057 

Average 183.9 184.8 0.188 0.195 0.065 0.065 

Standard deviation 66.8 72.5 0.059 0.060 0.040 0.041 

Pearson correlation 
coefficient 

  0.951   0.977   0.987 

Intraclass correlation 
coefficient 

  0.948   0.976   0.987 

 

Again, as in the right foot, the mean values and standard deviations were close 

between A and B to all parameters. As example, considering mean values for B, the COP 
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relatively to the foot axis had a medial displacement of -2.914 mm whereas COP relatively 

to the foot limit had a displacement of 131.5 mm.  

 
Table 5.12 - Left foot. Calculation of PCC and ICC between A and B to the COP parameters 
and to the maximum pressure pixel relatively to the foot axis. 

 Left foot 

 

COP relatively to 
foot axis (mm) 

COP relatively to 
foot limit (mm) 

Maximum pressure 
pixel relatively to 

the foot axis (mm) 

Subject A B A B A B 

1 -3.095 -3.425 140.8 140.1 -10.547 -2.235 

2 -2.967 -4.074 133.4 136.3 1.460 -0.253 

3 0.925 0.592 126.6 127.6 6.824 -6.028 

4 -0.406 0.796 125.6 130.2 2.665 -4.697 

5 -1.215 -1.477 133.9 133.8 -10.550 -2.067 

6 -0.542 -1.107 123.1 121.0 -5.937 -3.663 

7 -3.719 -1.767 139.3 141.6 -20.698 -8.215 

8 -5.691 -4.134 133.4 134.7 -39.315 -33.293 

9 -3.142 -2.815 138.3 133.1 -8.323 -9.156 

10 -4.215 -4.175 132.4 131.0 -38.120 -37.938 

11 -5.190 -5.461 135.5 136.7 -11.612 -6.615 

12 -5.916 -5.711 145.5 143.2 -32.815 -34.180 

13 -2.519 -0.596 119.2 119.5 2.501 -2.092 

14 -6.662 -6.320 125.8 124.8 -28.504 -26.583 

15 -2.467 -2.959 144.9 145.3 -8.356 -9.026 

16 -1.209 -1.234 127.3 129.4 -12.641 -31.213 

17 -5.814 -5.356 146.6 147.6 -19.632 -9.054 

18 -4.669 -4.346 138.8 139.2 -16.840 -30.172 

19 -2.092 -3.228 120.4 119.8 -6.779 -10.290 

20 1.960 0.751 117.3 119.1 2.876 -0.352 

21 0.964 -0.498 115.5 118.7 4.485 1.894 

22 -2.098 -1.914 128.9 130.2 -6.438 -5.752 

23 -2.524 -3.654 118.6 117.8 -0.774 -5.828 

24 -5.050 -6.497 132.9 132.7 -36.336 -35.843 

25 -3.133 -3.793 134.5 134.1 -5.330 -9.017 

26 -3.521 -3.371 128.2 130.9 -18.991 -30.213 

Average -2.846 -2.914 131.0 131.5 -12.220 -13.534 

Standard deviation 2.261 2.138 8.902 8.638 13.685 13.333 

Pearson correlation 
coefficient 

  0.907   0.974   0.847 

Intraclass correlation 
coefficient 

  0.906   0.973   0.847 
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The maximum pressure pixel relatively to the foot axis was positioned -13.534 mm 

in the medial direction and relatively to the posterior limit there was a displacement of 

176.5 mm.  

 
Table 5.13 - Left foot. Calculation of PCC and ICC between A and B to the maximum 
pressure pixel relatively to the foot axis and to AI and MAI. 

 Left foot 

 

Maximum pressure 
pixel relatively to 

the foot limit (mm) 
AI MAI 

Subject A B A B A B 

1 103.0 33.5 0.167 0.206 0.044 0.045 

2 188.3 185.7 0.226 0.221 0.058 0.058 

3 184.1 192.4 0.232 0.224 0.120 0.113 

4 135.4 194.5 0.296 0.303 0.203 0.207 

5 190.7 196.4 0.215 0.219 0.061 0.063 

6 196.5 195.7 0.181 0.199 0.050 0.049 

7 199.5 191.0 0.240 0.249 0.105 0.114 

8 232.3 234.0 0.233 0.235 0.071 0.074 

9 207.1 203.7 0.265 0.281 0.140 0.147 

10 222.7 224.2 0.229 0.220 0.086 0.074 

11 210.7 37.2 0.062 0.079 0.018 0.024 

12 264.6 256.3 0.090 0.080 0.023 0.018 

13 85.8 35.1 0.236 0.227 0.067 0.057 

14 210.9 210.8 0.132 0.152 0.041 0.049 

15 194.5 195.3 0.228 0.243 0.090 0.097 

16 109.1 252.7 0.193 0.219 0.044 0.049 

17 232.3 218.7 0.186 0.199 0.044 0.046 

18 215.0 230.5 0.102 0.148 0.027 0.018 

19 190.5 189.8 0.111 0.156 0.018 0.018 

20 197.2 197.9 0.243 0.247 0.097 0.098 

21 176.8 179.9 0.226 0.242 0.073 0.084 

22 190.6 191.8 0.245 0.243 0.071 0.069 

23 80.2 33.0 0.157 0.167 0.040 0.036 

24 229.1 229.8 0.189 0.204 0.063 0.075 

25 95.2 42.8 0.249 0.244 0.102 0.101 

26 161.7 235.2 0.149 0.171 0.042 0.056 

Average 180.9 176.5 0.195 0.207 0.069 0.071 

Standard deviation 49.6 72.6 0.059 0.053 0.042 0.043 

Pearson correlation 
coefficient 

  0.673   0.965   0.987 

Intraclass correlation 
coefficient 

  0.627   0.960   0.987 
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Mean AI value was 0.207 whereas MAI was 0.071. There are high standard deviation 

errors due the reason previously pointed. 

 

In conclusion, PCC and ICC showed that using a mean sequence of images could be 

a good solution to access parameters with relevance in plantar pressure studies. Such 

procedure can avoid time-consuming analysis of many sequences saving time and resources 

to the clinician and the clinic.   

5.4 Summary 

The MSE and RE results for the spatial alignment demonstrate that PA method has 

poor accuracy in spatial alignment of plantar pressure images. This fact is confirmed by the 

large difference in MSE values between the framework using the optimization procedure and 

the methods based only in PA. However, PA method shows high accuracy when images differ 

only by rotation and translation (rigid geometric transformation). In addition, it has low 

computational processing time. Notice that differences in accuracy are found using real 

intensities values or binary intensities of image pixels in PA methods. 

 The “expansion” of the number of images of both sequences can avoid polynomial 

instability and help (significantly) to improve accuracy. However it increases the 

computational processing speed. This accuracy increase is confirmed by the MSE values 

calculated. MSE values also confirm a significant accuracy increase when the polynomial 

degree is increased (up to the 10th degree).  

 High accuracy is also verified through mean temporal and spatial errors between 

original image sequences and the aligned sequences previously deformed by both linear and 

curved deformations. An important vantage of the developed spatio-temporal alignment 

algorithm is the low processing time verified. 

 ICC and PCC were very close to one for all parameters used in this work excepting 

for the maximum pressure relatively to the foot limit. Nevertheless, the results indicate 

high correlation and consistency between the parameters obtained by both methods. Even 

in the case of the maximum pressure relatively to the foot limit there is a good correlation 

and a reasonable consistency. 

 Consequently, the framework proposed in this work can be a decisive tool, reducing 

the number of trials and maximizing the relevant information in plantar pressure analysis. 
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Chapter 6 – Conclusions and future 
perspectives 

Plantar pressure data provides crucial information about several pathologies and 

sports issues. This information is extracted from the plantar pressure patterns by means of 

parameters as the peak pressure pixel location, COP, AI and MAI. Image alignment is a 

valuable tool helping the researcher in the task of the relevant information search.  

In this work, fast alternative solutions were proposed in order to achieve the 

spatio-temporal alignment of plantar pressure image sequences. Thus, PA based methods 

were used in the spatial alignment of plantar pressure images.  

In the spatio-temporal alignment framework, the PA method was used as a pre-

registration algorithm followed by an optimization procedure. After this spatial alignment, 

the framework used a dynamic programing based algorithm to match images from different 

sequences. Finally, a polynomial temporal relationship between both sequences is 

established. The accuracy of the framework was accessed through the MSE calculation 

between the aligned and the template real sequences. In addition, control deformations 

applied to all image sequences allowed to find mean temporal and spatial errors between 

original and aligned image sequences. 

 

This work contributed to the development of the current spatio-temporal 

alignment algorithms found in literature.  

The use of polynomials to describe the temporal relationship between images from 

different sequences is a fast solution and the high degree polynomials (up to 10th degree) 

showed high accuracy. However, the central drawbacks of using polynomials are the 

instability of high degree polynomials and the strong dependence on the number of images 

in each sequence.  

The dynamic programming algorithm is a good solution to establish the 

correspondence between images from different sequences. This approach would be an 

alternative method to use in other alignment problems involving temporal alignment. 
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The principal axes method can be a good solution to align similar images differing 

only by a rotation and displacements in x and y axes. Nevertheless, it is not an accurate 

method to align images with different shapes and data contents.  

In this work, there were results pointing to the fact that the usage of a mean 

sequence can avoid time consuming analysis of several sequences to extract reliable 

relevant parameters. 

 

In the sequence of the developed work, there are relevant possible future 

perspectives: 

 

 To find correspondent reliable features between peak pressure images to 

calculate the centroids of the objects in order to increase accuracy of PA method. 

 

 To change the parameter used to build the cost matrix. MSE is highly 

dependent of displacements and rotation between objects. It would be better to find a 

parameter invariant to translations and rotation. Thereby the temporal alignment would be 

done before the spatial alignment or even simultaneously. 

 

 To use the matching algorithm to establish a pre-alignment in the 

framework of Oliveira and Tavares (2012). In this framework, B-splines would be used 

instead of polynomials and then a temporal optimization algorithm would be employed. This 

reformulation would reduce drastically the processing time of all framework. 

 

 To test the use of mean image sequences built through the process described 

in this work in a real clinical environment. 
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